
Nesting Probabilistic Programs

Tom Rainforth
Department of Statistics

University of Oxford
rainforth@stats.ox.ac.uk

Abstract
We formalize the notion of nesting probabilistic
programming queries and investigate the result-
ing statistical implications. We demonstrate
that while query nesting allows the definition
of models which could not otherwise be ex-
pressed, such as those involving agents reason-
ing about other agents, existing systems take
approaches which lead to inconsistent estimates.
We show how to correct this by delineating pos-
sible ways one might want to nest queries and
asserting the respective conditions required for
convergence. We further introduce a new on-
line nested Monte Carlo estimator that makes it
substantially easier to ensure these conditions
are met, thereby providing a simple framework
for designing statistically correct inference en-
gines. We prove the correctness of this online
estimator and show that, when using the recom-
mended setup, its asymptotic variance is always
better than that of the equivalent fixed estimator,
while its bias is always within a factor of two.

1 INTRODUCTION
Probabilistic programming systems (PPSs) allow proba-
bilistic models to be represented in the form of a genera-
tive model and statements for conditioning on data (Good-
man et al., 2008; Gordon et al., 2014). Informally, one
can think of the generative model as the definition of
a prior, the conditioning statements as the definition of
a likelihood, and the output of the program as samples
from a posterior distribution. Their core philosophy is to
decouple model specification and inference, the former
corresponding to the user-specified program code and the
latter to an inference engine capable of operating on ar-
bitrary programs. Removing the need for users to write
inference algorithms significantly reduces the burden of
developing new models and makes effective statistical
methods accessible to non-experts.

Some, so-called universal, systems (Goodman et al., 2008;
Goodman and Stuhlmüller, 2014; Mansinghka et al.,
2014; Wood et al., 2014) further allow the definition of
models that would be hard, or even impossible, to convey
using conventional frameworks such as graphical models.
One enticing manner they do this is by allowing arbitrary
nesting of models, known in the probabilistic program-
ming literature as queries (Goodman et al., 2008), such
that it is easy to define and run problems that fall outside
the standard inference framework (Goodman et al., 2008;
Mantadelis and Janssens, 2011; Stuhlmüller and Good-
man, 2014; Le et al., 2016). This allows the definition of
models that could not be encoded without nesting, such
as experimental design problems (Ouyang et al., 2016)
and various models for theory-of-mind (Stuhlmüller and
Goodman, 2014). In particular, models that involve agents
reasoning about other agents require, in general, some
form of nesting. For example, one might use such nesting
to model a poker player reasoning about another player as
shown in Section 3.1. As machine learning increasingly
starts to try and tackle problem domains that require in-
teraction with humans or other external systems, such as
the need for self-driving cars to account for the behavior
of pedestrians, we believe that such nested problems are
likely to become increasingly common and that PPSs will
form a powerful tool for encoding them.
However, previous work has, in general, implicitly, and in-
correctly, assumed that the convergence results from stan-
dard inference schemes carry over directly to the nested
setting. In truth, inference for nested queries falls out-
side the scope of conventional proofs and so additional
work is required to prove the consistency of PPS inference
engines for nested queries. Such problems constitute spe-
cial cases of nested estimation. In particular, the use of
Monte Carlo (MC) methods by most PPSs mean they form
particular instances of nested Monte Carlo (NMC) esti-
mation (Hong and Juneja, 2009). Recent work (Rainforth
et al., 2016a, 2018; Fort et al., 2017) has demonstrated
that NMC is consistent for a general class of models, but

also that it entails a convergence rate in the total com-
putational cost which decreases exponentially with the
depth of the nesting. Furthermore, additional assumptions
are required to achieve this convergence, most noticeably
that, except in a few special cases, one needs to drive not
only the total number of samples used to infinity, but also
the number of samples used at each layer of the estimator,
a requirement generally flaunted by existing PPSs.
The aim of this work is to formalize the notion of query
nesting and use these recent NMC results to investigate
the statistical correctness of the resulting procedures car-
ried out by PPS inference engines. To do this, we pos-
tulate that there are three distinct ways one might nest
one query within another: sampling from the conditional
distribution of another query (which we refer to as nested
inference), factoring the trace probability of one query
with the partition function estimate of another (which we
refer to as nested conditioning), and using expectation es-
timates calculated using one query as first class variables
in another. We use the aforementioned NMC results to
assess the relative correctness of each of these categories
of nesting. In the interest of exposition, we will mostly
focus on the PPS Anglican (Tolpin et al., 2016; Wood
et al., 2014) (and also occasionally Church (Goodman
et al., 2008)) as a basis for our discussion, but note that
our results apply more generally. For example, our nested
inference case covers the problem of sampling from cut
distributions in OpenBugs (Plummer, 2015).
We find that nested inference is statistically challenging
and incorrectly handled by existing systems, while nested
conditioning is statistically straightforward and done cor-
rectly. Using estimates as variables turns out to be exactly
equivalent to generic NMC estimation and must thus be
dealt with on a case-by-case basis. Consequently, we will
focus more on nested inference than the other cases.
To assist in the development of consistent approaches, we
further introduce a new online NMC (ONMC) scheme
that obviates the need to revisit previous samples when
refining estimates, thereby simplifying the process of writ-
ing consistent online nested estimation schemes, as re-
quired by most PPSs. We show that ONMC’s convergence
rate only varies by a small constant factor relative to con-
ventional NMC: given some weak assumptions and the
use of recommended parameter settings, its asymptotic
variance is always better than the equivalent NMC estima-
tor with matched total sample budget, while its asymptotic
bias is always within a factor of two.

2 BACKGROUND
2.1 NESTED MONTE CARLO
We start by providing a brief introduction to NMC, us-
ing similar notation to that of Rainforth et al. (2018).
Conventional MC estimation approximates an intractable

expectation γ0 of a function λ using

γ0 = E
[
λ(y(0))

]
≈ I0 =

1

N0

N0∑
n=1

λ(y(0)n) (1)

where y(0)n
i.i.d.∼ p(y(0)), resulting in a mean squared er-

ror (MSE) that decreases at a rate O(1/N0). For nested
estimation problems, λ(y(0)) is itself intractable, cor-
responding to a nonlinear mapping of a (nested) esti-
mation. Thus in the single nesting case, λ(y(0)) =
f0
(
y(0),E

[
f1
(
y(0), y(1)

)∣∣y(0)]) giving

γ0 = E
[
f0

(
y(0),E

[
f1

(
y(0), y(1)

)∣∣∣y(0)])]
≈ I0 =

1

N0

N0∑
n=1

f0

(
y(0)n ,

1

N1

N1∑
m=1

f1

(
y(0)n , y(1)n,m

))
where each y(1)n,m ∼ p(y(1)|y(0)n) is drawn independently
and I0 is now a NMC estimate using T = N0N1 samples.
More generally, one may have multiple layers of nesting.
To notate this, we first presume some fixed integral depth
D ≥ 0 (with D = 0 corresponding to conventional esti-
mation), and real-valued functions f0, . . . , fD. We then
recursively define

γD

(
y(0:D−1)

)
= E

[
fD

(
y(0:D)

)∣∣∣y(0:D−1)] , and

γk(y(0:k−1)) = E
[
fk

(
y(0:k), γk+1

(
y(0:k)

))∣∣∣y(0:k−1)]
for 0 ≤ k < D. Our goal is to estimate γ0 =
E
[
f0
(
y(0), γ1

(
y(0)

))]
, for which the NMC estimate is

I0 defined recursively using

ID

(
y(0:D−1)

)
=

1

ND

ND∑
nD=1

fD

(
y(0:D−1), y(D)

nD

)
and

Ik

(
y(0:k−1)

)
(2)

=
1

Nk

Nk∑
nk=1

fk

(
y(0:k−1), y(k)nk

, Ik+1

(
y(0:k−1), y(k)nk

))
for 0 ≤ k < D, where each y(k)n ∼ p

(
y(k)|y(0:k−1)

)
is

drawn independently. Note that there are multiple values
of y(k) for each associated y(0:k−1) and that Ik

(
y(0:k−1)

)
is still a random variable given y(0:k−1).
As shown by (Rainforth et al., 2018, Theorem 3), if each
fk is continuously differentiable and

ς2k = E
[(
fk

(
y(0:k), γk+1

(
y(0:k)

))
−γk

(
y(0:k−1)

))2]
<∞ ∀k ∈ 0, . . . , D, then the MSE converges at rate

E
[
(I0 − γ0)

2
]
≤ ς20
N0

+(
C0ς

2
1

2N1
+

D−2∑
k=0

(
k∏
d=0

Kd

)
Ck+1ς

2
k+2

2Nk+2

)2

+O(ε)

(3)

where Kk and Ck are respectively bounds on the magni-

tude of the first and second derivatives of fk, and O(ε)
represents asymptotically dominated terms – a convention
we will use throughout. Note that the dominant terms in
the bound correspond respectively to the variance and
the bias squared. Theorem 2 of Rainforth et al. (2018)
further shows that the continuously differentiable assump-
tion must hold almost surely, rather than absolutely, for
convergence more generally, such that functions with
measure-zero discontinuities still converge in general.
We see from (3) that if any of the Nk remain fixed, there
is a minimum error that can be achieved: convergence
requires each Nk →∞. As we will later show, many of
the shortfalls in dealing with nested queries by existing
PPSs revolve around implicitly fixing Nk ∀k ≥ 1.
For a given total sample budget T = N0N1 . . . ND, the
bound is tightest when

√
N0 ∝ N1 ∝ · · · ∝ ND giving

a convergence rate of O(1/T
2

D+2). The intuition behind
this potentially surprising optimum setting is that the vari-
ance is mostly dictated by N0 and bias by the other Nk.
We see that the convergence rate diminishes exponen-
tially with D. However, this optimal setting of the Nk
still gives a substantially faster rate than the O(1/T

1
D+1)

from naı̈vely setting N0 ∝ N1 ∝ · · · ∝ ND.

2.2 THE ANGLICAN PPS

Anglican is a universal probabilistic programming lan-
guage integrated into Clojure (Hickey, 2008), a dialect
of Lisp. There are two important ideas to understand
for reading Clojure: almost everything is a function and
parentheses cause evaluation. For example, a+ b is coded
as (+ a b) where + is a function taking two arguments
and the parentheses cause the function to evaluate.
Anglican inherits most of the syntax of Clojure, but ex-
tends it with the key special forms sample and observe
(Wood et al., 2014; Tolpin et al., 2015, 2016), between
which the distribution of the query is defined. Informally,
sample specifies terms in the prior and observe terms
in the likelihood. More precisely, sample is used to make
random draws from a provided distribution and observe
is used to apply conditioning, factoring the probability
density of a program trace by a provided density evaluated
at an “observed” point.
The syntax of sample is to take a distribution object
as its only input and return a sample. observe instead
takes a distribution object and an observation and returns
nil, while changing the program trace probability in
Anglican’s back-end. Anglican provides a number of
elementary random procedures, i.e. distribution object
constructors for common sampling distributions, but also
allows users to define their own distribution object con-
structors using the defdist macro. Distribution objects
are generated by calling a class constructor with the re-
quired parameters, e.g. (normal 0 1).

Anglican queries are written using the macro defquery.
This allows users to define a model using a mixture of
sample and observe statements and deterministic code,
and bind that model to a variable. As a simple example,
(defquery my-query [data]
(let [µ (sample (normal 0 1))

σ (sample (gamma 2 2))
lik (normal µ σ)]

(map (fn [obs] (observe lik obs)) data)
[µ σ]))

corresponds to a model where we are trying to in-
fer the mean and standard deviation of a Gaus-
sian given some data. The syntax of defquery is
(defquery name [args] body) such that we are
binding the query to my-query here. The query starts by
sampling µ ∼ N (0, 1) and σ ∼ Γ(2, 2), before construct-
ing a distribution object lik to use for the observations.
It then maps over each datapoint and observes it under
the distribution lik. After the observations are made, µ
and σ are returned from the variable-binding let block
and then by proxy the query itself. Denoting the data as
y1:S this particular query defines the joint distribution

p(µ, σ, y1:S) = N (µ; 0, 1) Γ(σ; 2, 2)
∏S

s=1
N (ys;µ, σ).

Inference on a query is performed using the macro
doquery, which produces a lazy infinite sequence
of approximate samples from the conditional distribu-
tion and, for appropriate inference algorithms, an es-
timate of the partition function. Its calling syntax is
(doquery inf-alg model inputs & options).
Key to our purposes is Anglican’s ability to nest queries
within one another. In particular, the special form
conditional takes a query and returns a distribution
object constructor, the outputs of which ostensibly cor-
responds to the conditional distribution defined by the
query, with the inputs to the query becoming its param-
eters. However, as we will show in the next section,
the true behavior of conditional deviates from this,
thereby leading to inconsistent nested inference schemes.

3 NESTED INFERENCE
One of the clearest ways one might want to nest queries is
by sampling from the conditional distribution of one query
inside another. A number of examples of this are pro-
vided for Church in (Stuhlmüller and Goodman, 2014).1

Such nested inference problems fall under a more general
framework of inference for so-called doubly (or multi-
ply) intractable distributions (Murray et al., 2006). The
key feature of these problems is that they include terms
with unknown, parameter dependent, normalization con-
stants. For nested probabilistic programming queries, this
manifests through conditional normalization.

1Though their nesting happens within the conditioning predi-
cate, Church’s semantics means they constitute nested inference.

Consider the following unnested model using the Angli-
can function declaration defm
(defm inner [y D]
(let [z (sample (gamma y 1))]
(observe (normal y z) D)
z))

(defquery outer [D]
(let [y (sample (beta 2 3))

z (inner y D)]
(* y z)))

Here inner is simply an Anglican function: it takes in
inputs y and D, effects the trace probability through its
observe statement, and returns the random variable z as
output. The unnormalized distribution for this model is
thus straightforwardly given by

πu(y, z,D) = p(y)p(z|y)p(D|y, z)
=BETA(y; 2, 3) Γ(z; y, 1)N (D; y, z2),

for which we can use conventional inference schemes.
We can convert this model to a nested inference problem
by using defquery and conditional as follows
(defquery inner [y D]
(let [z (sample (gamma y 1))]
(observe (normal y z) D)
z))

(defquery outer [D]
(let [y (sample (beta 2 3))

dist (conditional inner)
z (sample (dist y D))]

(* y z)))

This is now a nested query: a separate inference proce-
dure is invoked for each call of (sample (dist y D)),
returning an approximate sample from the conditional
distribution defined by inner when input with the cur-
rent values of y and D. Mathematically, conditional
applies a conditional normalization. Specifically, the com-
ponent of πu from the previous example corresponding to
inner was p(z|y)p(D|y, z) and conditional locally
normalizes this to the probability distribution p(z|D, y).
The distribution now defined by outer is thus given by

πn(y, z,D) = p(y)p(z|y,D) =
p(y)p(z|y)p(D|y, z)∫
p(z|y)p(D|y, z)dz

= p(y)
p(z|y)p(D|y, z)

p(D|y)
6= πu(z, y,D).

Critically, the partial normalization constant p(D|y) de-
pends on y and so the conditional distribution is doubly
intractable: we cannot evaluate πn(y, z,D) exactly.
Another way of looking at this is that wrapping inner in
conditional has “protected” y from the conditioning
in inner (noting πu(y, z,D) ∝ p(y|D)p(z|y,D)), such
that its observe statement only affects the probability of
z given y and not the marginal probability of y. This is
why, when there is only a single layer of nesting, nested
inference is equivalent to the notion of sampling from “cut

distributions” (Plummer, 2015), whereby the sampling of
certain subsets of the variables in a model are made with
factors of the overall likelihood omitted.
It is important to note that if we had observed the out-
put of the inner query, rather than sampling from it, this
would still constitute a nested inference problem. The
key to the nesting is the conditional normalization applied
by conditional, not the exact usage of the generated
distribution object dist. However, as discussed in Ap-
pendix B, actually observing a nested query requires nu-
merous additional computational issues to be overcome,
which are beyond the scope of this paper. We thus focus
on the nested sampling scenario.

3.1 MOTIVATING EXAMPLE

Before jumping into a full formalization of nested infer-
ence, we first consider the motivating example of model-
ing a poker player who reasons about another player. Here
each player has access to information the other does not,
namely the cards in their hand, and they must perform
their own inference to deal with the resulting uncertainty.
Imagine that the first player is deciding whether or not to
bet. She could naı̈vely just make this decision based on
the strength of her hand, but more advanced play requires
her to reason about actions the other player might take
given her own action, e.g. by considering whether a bluff
is likely to be successful. She can carry out such reasoning
by constructing a model for the other player to try and
predict their action given her action and their hand. Again
this nested model could just simply be based on a naı̈ve
simulation, but we can refine it by adding another layer
of meta-reasoning: the other player will themselves try to
infer the first player’s hand to inform their own decision.
These layers of meta-reasoning create a nesting: for the
first player to choose an action, they must run multiple
simulations for what the other player will do given that
action and their hand, each of which requires inference to
be carried out. Here adding more levels of meta-reasoning
can produce smarter models, but also requires additional
layers of nesting. We expand on this example to give a
concrete nested inference problem in Appendix E.

3.2 FORMALIZATION

To formalize the nested inference problem more generally,
let y and x denote all the random variables of an outer
query that are respectively passed or not to the inner query.
Further, let z denote all random variables generated in the
inner query – for simplicity, we will assume, without loss
of generality, that these are all returned to the outer query,
but that some may not be used. The unnormalized density
for the outer query can now be written in the form

πo(x, y, z) = ψ(x, y, z)pi(z|y) (4)

where pi(z|y) is the normalized density of the outputs of
the inner query and ψ(x, y, z) encapsulates all other terms
influencing the trace probability of the outer query. Now
the inner query defines an unnormalized density πi(y, z)
that can be evaluated pointwise and we have

pi(z|y) =
πi(y, z)∫
πi(y, z′)dz′

giving (5)

po(x, y, z) ∝ πo(x, y, z) =
ψ(x, y, z)πi(y, z)∫

πi(y, z′)dz′
(6)

where po(x, y, z) is our target distribution, for which we
can directly evaluate the numerator, but the denominator
is intractable and must be evaluated separately for each
possible value of y. Our previous example is achieved by
fixing ψ(x, y, z) = p(y) and πi(y, z) = p(z|y)p(D|y, z).
We can further straightforwardly extend to the multiple
layers of nesting setting by recursively defining πi(y, z)
in the same way as πo(x, y, z).

3.3 RELATIONSHIP TO NESTED ESTIMATION

To relate the nested inference problem back to the nested
estimation formulation from Section 2.1, we consider
using a proposal q(x, y, z) = q(x, y)q(z|y) to calculate
the expectation of some arbitrary function g(x, y, z) under
po(x, y, z) as per self-normalized importance sampling

Epo(x,y,z) [g(x, y, z)] =
Eq(x,y,z)

[
g(x,y,z)πo(x,y,z)

q(x,y,z)

]
Eq(x,y,z)

[
πo(x,y,z)
q(x,y,z)

]

=

Eq(x,y,z)

[
g(x, y, z)ψ(x, y, z)πi(y, z)

q(x, y, z)Ez′∼q(z|y) [πi(y, z′)/q(z′|y)]

]

Eq(x,y,z)

[
ψ(x, y, z)πi(y, z)

q(x, y, z)Ez′∼q(z|y) [πi(y, z′)/q(z′|y)]

].
(7)

Here both the denominator and numerator are nested ex-
pectations with a nonlinearity coming from the fact that
we are using the reciprocal of an expectation. A similar
reformulation could also be applied in cases with multi-
ple layers of nesting, i.e. where inner itself makes use
of another query. The formalization can also be directly
extended to the sequential MC (SMC) setting by invoking
extended space arguments (Andrieu et al., 2010).
Typically g(x, y, z) is not known upfront and we instead
return an empirical measure from the program in the form
of weighted samples which can later be used to estimate
an expectation. That is, if we sample (xn, yn) ∼ q(x, y)
and zn,m ∼ q(z|yn) and return all samples (xn, yn, zn,m)
(such that each (xn, yn) is duplicated N1 times in the
sample set) then our unnormalized weights are given by

wn,m =
ψ(xn, yn, zn,m)πi(yn, zn,m)

q(xn, yn, zn,m) 1
N1

∑N1

`=1
πi(yn,zn,`)
q(zn,`|yn)

. (8)

This, in turn, gives us the empirical measure

p̂(·) =

∑N0

n=1

∑N1

m=1 wn,mδ(xn,yn,zn,m)(·)∑N0

n=1

∑N1

m=1 wn,m
(9)

where δ(xn,yn,zn,m)(·) is a delta function centered on
(xn, yn, zn,m). By definition, the convergence of this
empirical measure to the target requires that expectation
estimates calculated using it converge in probability for
any integrable g(x, y, z) (presuming our proposal is valid).
We thus see that the convergence of the ratio of nested ex-
pectations in (7) for any arbitrary g(x, y, z), is equivalent
to the produced samples converging to the distribution
defined by the program. Informally, the NMC results then
tell us this will happen in the limit N0, N1 → ∞ pro-
vided that

∫
πi(y, z)dz is strictly positive for all possible

y (as otherwise the problem becomes ill-defined). More
formally we have the following result. Its proof, along
with all others, is given in Appendix A.

Theorem 1. Let g(x, y, z) be an integrable function,
let γ0 = Epo(x,y,z)[g(x, y, z)], and let I0 be a self-
normalized MC estimate for γ0 calculated using p̂(·) as
per (9). Assuming that q(x, y, z) forms a valid impor-
tance sampling proposal distribution for po(x, y, z), then

E
[
(I0 − γ0)

2
]

=
σ2

N0
+

δ2

N2
1

+O(ε) (10)

where σ and δ are constants derived in the proof and, as
before, O(ε) represents asymptotically dominated terms.

Note that rather than simply being a bound, this result is
an equality and thus provides the exact asymptotic rate.
Using the arguments of (Rainforth et al., 2018, Theo-
rem 3), it can be straightforwardly extended to cases of
multiple nesting (giving a rate analogous to (3)), though
characterizing σ and δ becomes more challenging.

3.4 CONVERGENCE REQUIREMENTS
We have demonstrated that the problem of nested infer-
ence is a particular case of nested estimation. This prob-
lem equivalence will hold whether we elect to use the
aforementioned nested importance sampling based ap-
proach or not, while we see that our finite sample esti-
mates must be biased for non-trivial g by the convexity of
f0 and Theorem 4 of Rainforth et al. (2018). Presuming
we cannot produce exact samples from the inner query
and that the set of possible inputs to the inner query is not
finite (these are respectively considered in Appendix D
and Appendix C), we thus see that there is no “silver bul-
let” that can reduce the problem to a standard estimation.
We now ask, what behavior do we need for Anglican’s
conditional, and nested inference more generally, to
ensure convergence? At a high level, the NMC results
show us that we need the computational budget of each
call of a nested query to become arbitrarily large, such
that we use an infinite number of samples at each layer of

the estimator: we require each Nk →∞.
We have formally demonstrated convergence when this
requirement is satisfied and the previously introduced
nested importance sampling approach is used. Another
possible approach would be to, instead of drawing sam-
ples to estimate (7) directly, importance sample N1 times
for each call of the inner query and then return a single
sample from these, drawn in proportion to the inner query
importance weights. We can think of this as drawing the
same raw samples, but then constructing the estimator as

p̂∗(·) =

∑N0

n=1 w
∗
nδ(xn,yn,zn,m∗(n))(·)∑N0

n=1 w
∗
n

(11)

where w∗n =
ψ(xn, yn, zn,m∗(n))

q(xn, yn)
and (12)

m∗(n) ∼DISCRETE

(
πi(yn, zn,m)/q(zn,m|yn)∑N1

`=1 πi(yn, zn,`)/q(zn,`|yn)

)
As demonstrated formally in Appendix A, this approach
also converges. However, if we Rao Blackwellize (Casella
and Robert, 1996) the sampling of m∗(n), we find that
this recovers (9). Consequently, this is a strictly inferior
estimator (it has an increased variance relative to (9)).
Nonetheless, it may often be a convenient setup from
the perspective of the PPS semantics and it will typically
have substantially reduced memory requirements: we
need only store the single returned sample from the inner
query to construct our empirical measure, rather than all
of the samples generated within the inner query.
Though one can use the results of Fort et al. (2017) to
show the correctness of instead using an MCMC estima-
tor for the outer query, the correctness of using MCMC
methods for the inner queries is not explicitly covered by
existing results. Here we find that we need to start a new
Markov chain for each call of the inner query because
each value of y defines a different local inference prob-
lem. One would intuitively expect the NMC results to
carry over – as N1 → ∞ all the inner queries will run
their Markov chains for an infinitely long time, thereby
in principle returning exact samples – but we leave for-
mal proof of this case to future work. We note that such
an approach effectively equates to what is referred to as
multiple imputation by Plummer (2015).

3.5 SHORTFALLS OF EXISTING SYSTEMS
Using the empirical measure (9) provides one possible
manner of producing a consistent estimate of our target
by taking N0, N1 →∞ and so we can use this as a gold-
standard reference approach (with a large value of N1) to
assess whether Anglican returns samples for the correct
target distribution. To this end, we ran Anglican’s im-
portance sampling inference engine on the simple model
introduced earlier and compared its output to the refer-
ence approach using N0 = 5 × 106 and N1 = 103. As

Figure 1: Empirical densities produced by running the
nested Anglican queries given in the text, a reference
NMC estimate, the unnested model, a naı̈ve estimation
scheme where N1 = 1, and the ONMC approach intro-
duced in Section 6, with the same computational budget
of T = 5× 109 and τ1(n0) = min(500,

√
n0). Note that

the results for ONMC and the reference approach overlap.

shown in Figure 1, the samples produced by Anglican
are substantially different to the reference code, demon-
strating that the outputs do not match their semantically
intended distribution. For reference, we also considered
the distribution induced by the aforementioned unnested
model and a naı̈ve estimation scheme where a sample
budget of N1 = 1 is used for each call to inner, effec-
tively corresponding to ignoring the observe statement
by directly returning the first draw of z.
We see that the unnested model defines a noticeably differ-
ent distribution, while the behavior of Anglican is similar,
but distinct, to ignoring the observe statement in the
inner query. Further investigation shows that the default
behavior of conditional in a query nesting context
is equivalent to using (11) but with N1 held fixed to at
N1 = 2, inducing a substantial bias. More generally, the
Anglican source code shows that conditional defines
a Markov chain generated by equalizing the output of the
weighted samples generated by running inference on the
query. When used to nest queries, this Markov chain is
only ever run for a finite length of time, specifically one
accept-reject step is carried out, and so does not produce
samples from the true conditional distribution.
Plummer (2015) noticed that WinBugs and Open-
Bugs (Spiegelhalter et al., 1996) similarly do not provide
valid inference when using their cut function primitives,
which effectively allow the definition of nested inference
problems. However, they do not notice the equivalence to
the NMC formulation and instead propose a heuristic for
reducing the bias that itself has no theoretical guarantees.

4 NESTED CONDITIONING
An alternative way one might wish to nest queries is to
use the partition function estimate of one query to factor
the trace probability of another. We refer to this as nested
conditioning. In its simplest form, we can think about

conditioning on the values input to the inner query. In
Anglican we can carry this out by using the following
custom distribution object constructor
(defdist nest [inner inputs inf-alg M] []
(sample [this] nil)
(observe [this _]
(log-marginal (take M
(doquery inf-alg inner inputs)))))

When the resulting distribution object is observed, this
will now generate, and factor the trace probability by, a
partition function estimate for inner with inputs inputs,
constructed using M samples of the inference algorithm
inf-alg. For example, if we were to use the query
(defquery outer [D]
(let [y (sample (beta 2 3))]
(observe (nest inner [y D] :smc 100) nil)
y))

with inner from the nested inference example, then this
would form a pseudo marginal sampler (Andrieu and
Roberts, 2009) for the unnormalized target distribution

πc(y,D) =BETA(y; 2, 3)

∫
Γ(z; y, 1)N (D; y, z2)dz.

Unlike the nested inference case, nested conditioning
turns out to be valid even if our budget is held fixed,
provided that the partition function estimate is unbiased,
as is satisfied by, for example, importance sampling and
SMC. In fact, it is important to hold the budget fixed to
achieve a MC convergence rate. In general, we can define
our target density as

po(x, y) ∝ πo(x, y) = ψ(x, y)pi(y), (13)
where ψ(x, y) is as before (except that we no longer have
returned variables from the inner query) and pi(y) is the
true partition function of the inner query when given
input y. In practice, we cannot evaluate pi(y) exactly,
but instead produce unbiased estimates p̂i(y). Using an
analogous self-normalized importance sampling to the
nested inference case leads to the weights

wn = ψ(xn, yn)p̂i(yn)/q(xn, yn) (14)
and corresponding empirical measure

p̂(·) =
1∑N0

n=1 wn

N0∑
n=1

wn,δ(xn,yn)(·) (15)

such that we are conducting conventional MC estima-
tion, but our weights are now themselves random vari-
ables for a given (xn, yn) due to the p̂i(yn) term. How-
ever, the weights are unbiased estimates of the “true
weights” ψ(xn, yn)pi(yn)/q(xn, yn) such that we have
proper weighting (Naesseth et al., 2015) and thus conver-
gence at the standard MC rate, provided the budget of
the inner query remains fixed. This result also follows
directly from Theorem 6 of Rainforth et al. (2018), which
further ensures no complications arise when conditioning
on multiple queries if the corresponding partition func-
tion estimates are generated independently. These results

further trivially extend to the repeated nesting case by
recursion, while using the idea of pseudo-marginal meth-
ods (Andrieu and Roberts, 2009), the results also extend
to using MCMC based inference for the outermost query.
Rather than just fixing the inputs to the nested query, one
can also consider conditioning on the internally sampled
variables in the program taking on certain values. Such a
nested conditioning approach has been implicitly carried
out by Rainforth et al. (2016b); Zinkov and Shan (2017);
Scibior and Ghahramani (2016); Ge et al. (2018), each of
which manipulate the original program in some fashion
to construct a partition function estimator that is used
used within a greater inference scheme, e.g. a PMMH
estimator (Andrieu et al., 2010).

5 ESTIMATES AS VARIABLES
Our final case is that one might wish to use estimates
as first class variables in another query. In other words,
a variable in an outer query is assigned to a MC expec-
tation estimate calculated from the outputs of running
inference on another, nested, query. By comparison, the
nested inference case (without Rao-Blackwellization) can
be thought of as assigning a variable in the outer query to
a single approximate sample from the conditional distri-
bution of the inner query, rather than an MC expectation
estimate constructed by averaging over multiple samples.
Whereas nested inference can only encode a certain class
of nested estimation problems – because the only nonlin-
earity originates from taking the reciprocal of the partition
function – using estimates as variables allows, in principle,
the encoding of any nested estimation. This is because
using the estimate as a first class variable allows arbitrary
nonlinear mappings to be applied by the outer query.
An example of this approach is shown in Appendix G,
where we construct a generic estimator for Bayesian ex-
perimental design problems. Here a partition function
estimate is constructed for an inner query and is then used
in an outer query. The output of the outer query depends
on the logarithm of this estimate, thereby creating the
nonlinearity required to form a nested expectation.
Because using estimates as variables allows the encoding
of any nested estimation problem, the validity of doing
so is equivalent to that of NMC more generally and must
thus satisfy the requirements set out in (Rainforth et al.,
2018). In particular, one needs to ensure that the budgets
used for the inner estimates increase as more samples of
the outermost query are taken.

6 ONLINE NESTED MONTE CARLO
NMC will be highly inconvenient to actually implement
in a PPS whenever one desires to provide online estimates;
for example, a lazy sequence of samples that converges
to the target distribution. Suppose that we have already

calculated an NMC estimate, but now desire to refine it
further. In general, this will require an increase to all Nk
for each sample of the outermost estimator. Consequently,
the previous samples of the outermost query must be
revisited to refine their estimates. This significantly com-
plicates practical implementation, necessitating additional
communication between queries, introducing computa-
tional overhead, and potentially substantially increasing
the memory requirements.
To highlight these shortfalls concretely, consider the
nested inference class of problems and, in particular, con-
structing the un–Rao–Blackwellized estimator (11) in an
online fashion. Increasing N1 requires m∗(n) to be re-
drawn for each n, which in turn necessitates storage of
previous samples and weights.2 This leads to an over-
head cost from the extra computation carried out for re-
visitation and a memory overhead from having to store
information about each call of the inner query.
Perhaps even more problematically, the need to revisit old
samples when drawing new samples can cause substantial
complications for implementation. Consider implement-
ing such an approach in Anglican. Anglican is designed
to return a lazy infinite sequence of samples converging
to the target distribution. Once samples are taken from
this sequence, they become external to Anglican and can-
not be posthumously updated when further samples are
requested. Even when all the output samples remain inter-
nal, revisiting samples remains difficult: one either needs
to implement some form of memory for nested queries
so they can be run further, or, if all information is instead
stored at the outermost level, additional non-trivial code is
necessary to apply post-processing and to revisit queries
with previously tested inputs. The latter of these is likely
to necessitate inference–algorithm–specific changes, par-
ticularly when there are multiple levels of nesting, thereby
hampering the entire language construction.
To alleviate these issues, we propose to only increase the
computational budget of new calls to nested queries, such
that earlier calls use fewer samples than later calls. This
simple adjustment removes the need for communication
between different calls and requires only the storage of
the number of times the outermost query has previously
been sampled to make updates to the overall estimate. We
refer to this approach as online NMC (ONMC), which, to
the best of our knowledge, has not been previously con-
sidered in the literature. As we now show, ONMC only
leads to small changes in the convergence rate of the re-
sultant estimator compared to NMC: using recommended
parameter settings, the asymptotic root mean squared er-

2Note that not all previous samples and weights need storing
– when making the update we can sample whether to change
m∗(n) or not based on combined weights from all the old sam-
ples compared to all the new samples.

ror for ONMC is never more than twice that of NMC for
a matched sample budget and can even be smaller.
Let τk(n0) ∈ N+, k = 1, . . . , D be monotonically in-
creasing functions dictating the number of samples used
by ONMC at depth k for the n0-th iteration of the outer-
most estimator. The ONMC estimator is defined as

J0 =
1

N0

N0∑
n0=1

f0

(
y(0)n0

, I1

(
y(0)n0

, τ1:D(n0)
))

(16)

where I1(y
(0)
n0 , τ1:D(n0)) is calculated using I1 in (2), set-

ting y(0) = y
(0)
n0 and Nk = τk(n0),∀k ∈ 1, . . . , D. For

reference, the NMC estimator, I0, is as per (16), except
for replacing τ1:D(n0) with τ1:D(N0). Algorithmically,
we have that the ONMC approach is defined as follows.

Algorithm 1 Online Nested Monte Carlo
1: n0 ← 0, J0 ← 0
2: while true do
3: n0 ← n0 + 1, y

(0)
n0 ∼ p(y(0))

4: Construct I1
(
y
(0)
n0 , τ1:D(n0)

)
using Nk = τk(n0) ∀k

5: J0 ← n0−1
n0

J0 + f0
(
y
(0)
n0 , I1

(
y
(0)
n0 , τ1:D(n0)

))
We see that OMMC uses fewer samples at inner layers
for earlier samples of the outermost level, and that each
of resulting inner estimates is calculated as per an NMC
estimator with a reduced sample budget. We now show
the consistency of the ONMC estimator.

Theorem 2. If each τk(n0) ≥ A (log(n0))
α
,∀n0 > B

for some constants A,B, α > 0 and each fk is continu-
ously differentiable, then the mean squared error of J0 as
an estimator for γ0 converges to zero as N0 →∞.

In other words, ONMC converges for any realistic choice
of τk(n0) provided limn0→∞ τk(n0) = ∞: the require-
ments on τk(n0) are, for example, much weaker than
requiring a logarithmic or faster rate of growth, which
would already be an impractically slow rate of increase.
In the case where τk(n0) increases at a polynomial rate,
we can further quantify the rate of convergence, along
with the relative variance and bias compared to NMC:

Theorem 3. If each τk(n0) ≥ Anα0 , ∀n0 > B for some
constants A,B, α > 0 and each fk is continuously differ-
entiable, then

E
[
(J0 − γ0)

2
]
≤ ς20
N0

+

(
βg(α,N0)

ANα
0

)2

+O(ε), (17)

where g(α,N0) =

1/(1− α), α < 1

log(N0) + η, α = 1

ζ(α)Nα−1
0 , α > 1

; (18)

β =
C0ς

2
1

2
+

D−2∑
k=0

(
k∏
d=0

Kd

)
Ck+1ς

2
k+2

2
; (19)

η ≈ 0.577 is the Euler–Mascheroni constant; ζ is the

Riemann–zeta function; andCk,Kk, and ςk are constants
defined as per the corresponding NMC bound given in (3).
Corollary 1. Let J0 be an ONMC estimator setup as per
Theorem 3 with N0 outermost samples and let I0 be an
NMC estimator with a matched overall sample budget.
Defining c = (1 + αD)(−1/(1+αD)), then

Var[J0]→ cVar[I0] as N0 →∞.
Further, if the NMC bias decreases at a rate proportional
to that implied by the bound given in (3), namely

|E[I0 − γ0]| = b

Mα
0

+O(ε) (20)

for some constant b > 0, where M0 is the number of
outermost samples used by the NMC sampler, then
|E[J0 − γ0]| ≤ cαg(α,N0) |E[I0 − γ0]|+O(ε).

We expect the assumption that the bias scales as 1/Mα
0 to

be satisfied in the vast majority of scenarios, but there may
be edge cases, e.g. when an fk gives a constant output, for
which faster rates are observed. Critically, the assumption
holds for all nested inference problems because the rate
given in (10) is an equality.
We see that if α < 1, which will generally be the case in
practice for sensible setups, then the convergence rates for
ONMC and NMC vary only by a constant factor. Specifi-
cally, for a fixed value of N0, they have the same asymp-
totic variance and ONMC has a factor of 1/(1−α) higher
bias. However, the cost of ONMC is (asymptotically) only
c < 1 times that of NMC, so for a fixed overall sample
budget it has lower variance.
As the bound varies only in constant factors for
α < 1, the asymptotically optimal value for α for
ONMC is the same as that for NMC, namely α =
0.5 (Rainforth et al., 2018). For this setup, we have
c ∈ {0.763, 0.707, 0.693, 0.693, 0.699, 1} respectively
for D ∈ {1, 2, 3, 4, 5,∞}. Consequently, when α = 0.5,
the fixed budget variance of ONMC is always better than
NMC, while the bias is no more than 1.75 times larger if
D ≤ 13 and no more than 2 times large more generally.

6.1 EMPIRICAL CONFIRMATION
To test ONMC empirically, we consider the simple an-
alytic model given in Appendix F, setting τ1(n0) =
max(25,

√
no). The rationale for setting a minimum

value of N1 is to minimize the burn-in effect of ONMC
– earlier samples will have larger bias than later samples
and we can mitigate this by ensuring a minimum value
for N1. More generally, we recommend setting (in the
absence of other information) τ1(n0) = τ2(n0) = · · · =
τD(n0) = max(T

1/3
min,
√
n0), where Tmin is the minimum

overall budget we expect to spend. In Figure 2, we have
chosen to set Tmin deliberately low so as to emphasize
the differences between NMC and ONMC. Given our
value for Tmin, the ONMC approach is identical to fix-

Figure 2: Convergence of ONMC, NMC, and fixed N1.
Results are averaged over 1000 runs, with solid lines
showing the mean and shading the 25-75% quantiles. The
theoretical rates for NMC are shown by the dashed lines.

ing N1 = 25 for T < 253 = 15625, but unlike fixing
N1, it continues to improve beyond this because it is not
limited by asymptotic bias. Instead, we see an inflection
point-like behavior around Tmin, with the rate recovering
to effectively match that of the NMC estimator.

6.2 USING ONMC IN PPSs
Using ONMC based estimation schemes to ensure con-
sistent estimation for nested inference in PPSs is straight-
forward – the number of iterations the outermost query
has been run for is stored and used to set the number of
iterations used for the inner queries. In fact, even this min-
imal level of communication is not necessary – n0 can be
inferred from the number of times we have previously run
inference on the current query, the current depth k, and
τ1(·), . . . , τk−1(·).
As with NMC, for nested inference problems ONMC can
either return a single sample from each call of a nested
query, or Rao–Blackwellize the drawing of this sample
when possible. Each respectively produces an estimator
analogous to (11) and (9) respectively, except that N1 in
the definition of the inner weights is now a function of n.
Returning to Figure 1, we see that using ONMC with
nested importance sampling and only returning a single
sample corrects the previous issues with how Anglican
deals with nested inference, producing samples indistin-
guishable from the reference code.

7 CONCLUSIONS
We have formalized the notion of nesting probabilistic
program queries and investigated the statistical validity of
different categories of nesting. We have found that current
systems tend to use methods that lead to asymptotic bias
for nested inference problems, but that they are consistent
for nested conditioning. We have shown how to carry out
the former in a consistent manner and developed a new on-
line estimator that simplifies the construction algorithms
that satisfy the conditions required for convergence.

References

C. Andrieu and G. O. Roberts. The pseudo-marginal
approach for efficient Monte Carlo computations. The
Annals of Statistics, pages 697–725, 2009.

C. Andrieu, A. Doucet, and R. Holenstein. Particle
Markov chain Monte Carlo methods. Journal of the
Royal Statistical Society: Series B (Statistical Method-
ology), 2010.

G. Casella and C. P. Robert. Rao-Blackwellisation of
sampling schemes. Biometrika, 83(1):81–94, 1996.

K. Chaloner and I. Verdinelli. Bayesian experimental
design: A review. Statistical Science, 1995.

R. Cornish, F. Wood, and H. Yang. Efficient exact infer-
ence in discrete Anglican programs. 2017.

K. Csilléry, M. G. Blum, O. E. Gaggiotti, and O. François.
Approximate Bayesian Computation (ABC) in practice.
Trends in Ecology & Evolution, 25(7):410–418, 2010.

M. F. Cusumano-Towner and V. K. Mansinghka. Using
probabilistic programs as proposals. arXiv preprint
arXiv:1801.03612, 2018.

G. Fort, E. Gobet, and E. Moulines. MCMC design-based
non-parametric regression for rare-event. application to
nested risk computations. Monte Carlo Methods Appl,
2017.

H. Ge, K. Xu, and Z. Ghahramani. Turing: a language for
composable probabilistic inference. In AISTATS, 2018.

N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz,
and J. B. Tenenbaum. Church: a language for genera-
tive models. UAI, 2008.

N. D. Goodman and A. Stuhlmüller. The Design and Im-
plementation of Probabilistic Programming Languages.
2014.

A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K.
Rajamani. Probabilistic programming. In Proceedings
of the on Future of Software Engineering. ACM, 2014.

R. Hickey. The Clojure programming language. In
Proceedings of the 2008 symposium on Dynamic lan-
guages, page 1. ACM, 2008.

L. J. Hong and S. Juneja. Estimating the mean of a non-
linear function of conditional expectation. In Winter
Simulation Conference, 2009.

T. A. Le, A. G. Baydin, and F. Wood. Nested compiled
inference for hierarchical reinforcement learning. In
NIPS Workshop on Bayesian Deep Learning, 2016.

V. Mansinghka, D. Selsam, and Y. Perov. Ven-
ture: a higher-order probabilistic programming plat-
form with programmable inference. arXiv preprint
arXiv:1404.0099, 2014.

T. Mantadelis and G. Janssens. Nesting probabilistic
inference. arXiv preprint arXiv:1112.3785, 2011.

I. Murray, Z. Ghahramani, and D. J. MacKay. MCMC for
doubly-intractable distributions. In UAI, 2006.

C. A. Naesseth, F. Lindsten, and T. B. Schön. Nested
sequential Monte Carlo methods. In ICML, 2015.

L. Ouyang, M. H. Tessler, D. Ly, and N. Goodman. Prac-
tical optimal experiment design with probabilistic pro-
grams. arXiv preprint arXiv:1608.05046, 2016.

M. Plummer. Cuts in Bayesian graphical models. Statis-
tics and Computing, 25(1):37–43, 2015.

J. G. Propp and D. B. Wilson. Exact sampling with cou-
pled Markov chains and applications to statistical me-
chanics. Random structures and Algorithms, 9(1-2):
223–252, 1996.

T. Rainforth. Automating Inference, Learning, and Design
using Probabilistic Programming. PhD thesis, 2017.

T. Rainforth, R. Cornish, H. Yang, and F. Wood. On
the pitfalls of nested Monte Carlo. NIPS Workshop on
Advances in Approximate Bayesian Inference, 2016a.

T. Rainforth, T. A. Le, J.-W. van de Meent, M. A. Osborne,
and F. Wood. Bayesian optimization for probabilistic
programs. In NIPS, pages 280–288, 2016b.

T. Rainforth, R. Cornish, H. Yang, A. Warrington, and
F. Wood. On nesting Monte Carlo estimators. In ICML,
2018.

A. Scibior and Z. Ghahramani. Modular construction of
Bayesian inference algorithms. In NIPS Workshop on
Advances in Approximate Bayesian Inference, 2016.

D. Spiegelhalter, A. Thomas, N. Best, and W. Gilks.
BUGS 0.5: Bayesian inference using Gibbs sampling
manual (version ii). MRC Biostatistics Unit, Cam-
bridge, 1996.

A. Stuhlmüller and N. D. Goodman. A dynamic program-
ming algorithm for inference in recursive probabilistic
programs. In Second Statistical Relational AI workshop
at UAI 2012 (StaRAI-12), 2012.

A. Stuhlmüller and N. D. Goodman. Reasoning about
reasoning by nested conditioning: Modeling theory of
mind with probabilistic programs. Cognitive Systems
Research, 28:80–99, 2014.

D. Tolpin, J.-W. van de Meent, and F. Wood. Probabilistic
programming in Anglican. Springer, 2015.

D. Tolpin, J.-W. van de Meent, H. Yang, and F. Wood.
Design and implementation of probabilistic program-
ming language Anglican. In Proceedings of the 28th
Symposium on the Implementation and Application of
Functional Programming Languages. ACM, 2016.

F. Wood, J. W. van de Meent, and V. Mansinghka. A new
approach to probabilistic programming inference. In
AISTATS, pages 2–46, 2014.

R. Zinkov and C.-C. Shan. Composing inference algo-
rithms as program transformations. In UAI, 2017.

