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Abstract

This paper considers the problem of learning
time series segmentation models when the la-
beled data are subject to temporal uncertainty
or noise. Our approach augments the semi-
Markov conditional random field (semi-CRF)
model with a probabilistic model of the label
observation process. This augmentation allows
us to estimate the parameters of the semi-CRF
from timestamps corresponding roughly to the
occurrence of transitions between segments.
We show how exact marginal inference can be
performed in the augmented model in polyno-
mial time, enabling learning based on marginal
likelihood maximization. Our experiments on
two activity detection problems show that the
proposed approach can learn models from tem-
porally imprecise labels, and can successfully
refine imprecise segmentations through poste-
rior inference. Finally, we show how inference
complexity can be reduced by a factor of 40
using static and model-based pruning of the
inference dynamic program.

1 INDRODUCTION

Structured prediction frameworks (e.g. conditional ran-
dom fields [7]) are well-established approaches that often
improve on independent prediction models when applied
to problems with structured output spaces. In this pa-
per, we consider the problem of learning and inference in
structured prediction models for time series segmentation
when the labels are subject to temporal imprecision. In
this setting, supervision is provided in the form of times-
tamps that roughly correspond to segment boundaries.

This problem is an instance of weakly supervised learning
[5] motivated by real-world data analytic challenges that

arise in the area of mobile health (mHealth) research. A
central problem in mHealth research is learning accurate
models for detecting health behaviors like eating, smok-
ing, and sleeping from mobile sensor data [14, 18]. A
key challenge in such problems is the high cost of ob-
taining accurately annotated data. mHealth researchers
often must estimate the parameters of detection models
from limited amounts of data collected in a lab setting
where subjects perform scripted activities. This collection
process allows researchers to observe subject behavior
in detail, but severely limits the amount of data that can
be gathered. Further, such data can differ systematically
from data collected under real-world scenarios, leading
to a lab-to-field generalization gap [10].

An alternative to gathering data in the lab is having sub-
jects self-report their activities in the field, but this suffers
from a variety of problems from a modeling perspective
including limited frequency of the reports and recall bias.
In both lab and field settings, annotations are generally
provided in continuous time and may be subject to tempo-
ral imprecision. If ignored, such temporal imprecision in
the labels may lead to the degraded performance of mod-
els trained on these labels. This is the primary problem
we address in this paper.

This work makes three main contributions. First, we
propose a framework for estimating the parameters of
discrete time series segmentation models from tempo-
rally imprecise, continuous-time labels. Our approach
augments a conditional random field (CRF) model with a
probabilistic model of the label observation process. We
focus on two classes of CRF models: the semi-Markov
CRF (semi-CRF) [15], which models sequence segmen-
tations, and the hierarchical nested segmentation (HNS)
model [2], an extension of the semi-CRF that models ac-
tivities composed of repeated short duration events such
as eating. Our proposed observation model can account
for both temporal imprecision and missingness in the
labels. We evaluate this framework on sleep and smok-
ing detection problems using data gathered in both lab



and field settings, demonstrating improved performance
compared with ignoring label imprecision.

Second, we enable the synthesis of self-report and wear-
able sensor data. To the best of our knowledge, current
methods for synthesizing these two types of observations
are ad hoc and domain specific (e.g. [11]). In this work,
we combine sensor data with imprecise continuous-time
observations of activity segment boundaries by perform-
ing posterior inference in the proposed observation model.
This leads to improved predictive performance over treat-
ing test-time observations as ground truth.

Finally, we enable the practical application of the pro-
posed framework to long sequences. The model that we
present supports exact inference via dynamic program-
ming, but the complexity scales quadratically in the length
of the input sequence. We achieve a 40 times speedup by
applying a combination of static and model-based pruning
techniques, while matching the performance of a model
trained on hand-aligned labels.

2 RELATED WORK

In this section, we briefly describe related work on weakly
supervised learning in the independent classification and
structured prediction settings.

Weakly supervised classification: Reducing the cost
of acquiring labeled data is a fundamental problem in su-
pervised learning. This can often be achieved by lowering
the quality of labels in some way. For example, multi-
ple instance learning generalizes supervised learning by
allowing for sets (or “bags”) of instances to be labeled
instead of single instances. It is assumed that a positive
bag contains at least one positive instance [9]. Similarly,
the label proportions framework provides the proportion
of each type of label for a group of instances [13]. These
approaches avoid the need to label individual instances.

More closely related problems include learning indepen-
dent classifiers in the presence of label noise [6], and
learning independent sequence labeling models from tem-
porally imprecise labels [1]. In both of these frameworks,
the true instance labels are assumed to be unobserved. In
the label noise framework, noisy instances of the labels
are observed, while in the temporally imprecise labels
framework, timestamps roughly corresponding to positive
instances are observed. Approaches to both problems ex-
ist that are based on models of the noisy labeling process
that marginalize over the unobserved instance labels dur-
ing learning. The main difference between these models
and the model presented in this work is that these models
assume the true labels are independent given the features.
In this paper, we consider a more complex structured

prediction setting, which in turn requires more complex
observation models and inference algorithms.

Weakly supervised structured prediction: There has
also been significant research in the area of weakly su-
pervised structured prediction, particularly for computer
vision applications. Various standard weak supervision
frameworks, such as multiple instance learning, have been
extended to structured prediction. [16] extend the mul-
tiple instance SVM framework to structured SVMs by
considering an image to be a bag of pixels or overlapping
sub-windows. [4] extend multiple instance learning to an
auto-regressive HMM. While applicable to the problem
considered in this paper, these methods would require
discarding temporal information that was shown to be
valuable in [1].

Another common approach is to assume that only a subset
of the label variables in the model are exactly observed.
This can be handled by marginalizing out the unobserved
variables [17]; however, this framework cannot incorpo-
rate auxiliary observations such as continuous observa-
tion timestamps. [8] incorporate domain knowledge in
the form of constraints on the marginal label distributions.
These constraints can be enforced on unlabeled data, al-
lowing for weak supervision. [12] use a similar constraint
based approach where image tags are used to form con-
straints on the set of possible image segmentations. The
approach in this work can be interpreted as using obser-
vation timestamps to place soft constraints on the set of
segmentations; however, by using soft constraints, we can
explicitly model the notion of temporal proximity.

3 NOTATION AND BACKGROUND

Many mHealth detection problems involve inferring ac-
tivity segments from sensor data. Past work has shown
improved performance when using conditional random
field-based structured models to infer such segmentations
[2]. We begin by the defining notation used for the input
sequences and output structures in this type of problem.
We then briefly review the Semi-Markov CRF model that
this work extends.

3.1 Notation

We assume that the input data consists of N multivari-
ate time series that we will call sessions. Each session
contains a set of time-aligned signals gathered from one
or more sensors. Seperate sessions may correspond to
data from different subjects data or to data from the same
subject collected at different times. We assume that each
session n has been discretized into a sequence of Ln
potentially overlapping sub-windows and that a feature



vector xni ∈ RD has been extracted for each sub-window
i. We refer to each sub-window i as an instance. Further,
each instance i in session n is associated with a timestamp
tni which may correspond to the start, end, or other point
of interest associated with instance i. We refer to the com-
plete sequence of feature vectors xn = {xni}i=1,...,Ln as
the input sequence and the complete sequence of times-
tamps tn = {tni}i=1,...,Ln as the timestamp sequence.
Where it does not cause ambiguity, we will drop the ses-
sion index n. We use the notation xj:k = {xi}i=j,...,k to
refer to the subsequence of x beginning at j and ending
at k (this applies to any sequence).

In this work, our goal is to learn a model that produces a
labeled segmentation of the input sequence x. We repre-
sent such a segmentation as a sequence y = {ys}s=1,...,S

of segments where a segment ys = (cs, js, ks) is a tuple
containing a label cs ∈ C, a start position js ∈ {1, ..., L},
and an end position ks ∈ {1, ..., L}. To ensure only
valid segmentations, we assume j1 = 1, kS = L, and
ks = js+1 for all 1 ≤ s ≤ S − 1. Our goal, then, is to
learn the distribution p(y|x, t). We will parameterize this
distribution as a semi-Markov CRF.

3.2 Semi-Markov Conditional Random Fields

The semi-CRF [15] associates each segment ys with a
feature function f(ys, cs−1,x, t) which may depend on
the segment ys, the label of the previous segment cs−1,
and the complete feature and timestamp sequences x and
t. The function f maps these inputs to a length F feature
vector. Given a parameter vector θ ∈ RF , the distribution
over segmentations is given by

pθ(y|x, t) =
∏
s exp (〈θ, f(ys, cs−1,x, t)〉)

Zθ(x, t)
(1)

Both maximum a posteriori (MAP) and marginal infer-
ence can be performed in this model by dynamic programs
with complexity O(|C|2L2) [15]. The parameters θ are
typically estimated using maximum likelihood estimation,
however, this requires observing the ground truth segmen-
tations. In settings such as mHealth, acquiring the exact
segmentation boundaries may be costly or even impossi-
ble. We next present our proposed method for estimating
the parameters of the semi-CRF model from timestamps
corresponding roughly to segment boundaries.

4 LEARNING SEMI-CRF MODELS
FROM TEMPORALLY IMPRECISE
LABELS

Let z = {zm}m=1,...,M be a sequence of observations
where each observation zm is a timestamp corresponding
to a particular kind of transition. For example, each zm

may be the time a subject reported going to sleep marking
the start of a sleep segment. For ease of exposition, we
will assume that there is only one type of observation
and will later generalize to multiple observation types.
To map between our labels y and our observations z, let
o = {oi}i=1,...,L be a sequence of latent binary variables
where oi = 1 if and only if instance i is associated with an
observation. Under the assumption that observations are
recorded in the order they actually occurred and

∑
i oi =

M , o defines a matching between instances in the input
sequence and observations in the observation sequence.

We model the observation sequence using a generative
model with three components. The base segmentation
model pθ(y|x, t) is the semi-CRF model whose param-
eters we are interested in estimating. The observation
indicator distribution pπ(o|ys, cs−1, i) models the prob-
ability that instance i is associated with an observation
given the segment it is contained in and the label of the
previous segment. Finally, the observation timestamp
density pφ(z|t) models the timestamp of an observation
z given the timestamps t with which it is associated. For
example, we may use a simple Bernoulli distribution for
pπ(o|ys, cs−1, i) and a normal distribution centered at t
for pφ(z|t). The specific choices for these distributions
are domain specific and we demonstrate a couple different
choices in section 5. With these distributions, we can now
write the observation generation process as shown below:

1: M ← 0
2: y ∼ pθ(y|x)
3: for s = 1, ..., S do
4: for i = js, ..., ks do
5: oi ∼ pπ(o|ys, cs−1, i)
6: if oi = 1 then
7: M ←M + 1
8: zM ∼ pφ(z|ti)

This generative process asserts that a complete segmen-
tation is first sampled according to the semi-CRF model.
Next, each instance either generates an observation or not
according to pπ(o|ys, cs−1, i). Finally, if instance i does
generate an observation, an observation timestamp is sam-
pled from pφ(z|ti). The variable M counts the number of
generated observations. We note that additional structure
could be encoded into the label observation process at the
cost of a potentially more complex inference algorithm.

pω(z,y,o|x, t) = pθ(y|x)pπ(o|y)pφ(z|o, t) (2)

pπ(o|y) =
∏
s

ks∏
i=js

pπ(oi|ys, cs−1, i) (3)

pφ(z|o, t) =
M∏
m=1

pφ(zm|ti(m)) (4)

The joint model implied by this generative process is



given in Equation 2 where the set of all parameters in
the model is ω = {θ, π, φ}. The distributions pπ(o|y)
and pφ(z|o, t) are defined in Equations 3 and 4. We
define i(m) as the function mapping observation m to the
instance that generated it.

4.1 Inference and Learning

To learn the parameters of this model, we maximize the
log marginal likelihood L(ω|D):

L(ω|D) =
N∑
n=1

log pω(zn|xn, tn) (5)

pω(z|x, t) =
∑
y∈Y

∑
o∈O

pω(z,y,o|x, t) (6)

where D = {(xn, tn, zn)}n=1,...,N consists of the ob-
served data for all sessions. We perform this optimization
using standard gradient methods. Here, we consider the
gradient equation for each of the three parameter groups:
θ, π, and φ. These equations are presented primarily to
give intuition for what maximum likelihood estimation is
doing in this model. The gradient equations for π and φ
are shown below.

∇φ log pω(z|x, t)

=

M∑
m=1

Epω(i(m)|z,x,t)
[
∇φ log pφ(zm|ti(m))

]
(7)

∇π log pω(z|x, t)

=

L∑
i=1

Epω(oi,y|z,x,t) [∇π log pπ(oi|y)] (8)

Both gradient equations take the form of a posterior ex-
pectation of the log gradient of the relevant distribution.
The gradient with respect to the base classifier parame-
ters also takes the form of an expected gradient of a log
density and is shown below.

∇θ log pω(z|x, t) = Epω(y|z,x,t) [∇θ log pθ(y|x)]
= Epω(y|z,x,t) [∇θ〈θ, f(x, t,y)〉]−∇θZθ(x) (9)
= Epω(y|z,x,t) [f(x, t,y)]− Epθ(y|x) [f(x, t,y)]

where f(x, t,y) denotes the sufficient statistics function
for the semi-CRF model. In this case, the log-linear form
of the semi-CRF model gives us the further interpretation
that the learning algorithm is trying to match the expected
sufficient statistics under the base semi-CRF model to
the posterior expected sufficient statistics given by the
observation model. This is in contrast to typical maximum
likelihood estimation for a log-linear model which would
match the expected sufficient statistics under the model
to the observed sufficient statistics.

The primary computational challenge of this learning pro-

cedure is calculating the log marginal likelihood. This
can be done exactly using a dynamic program for calcu-
lating pω(z|x, t). An entry in the dynamic programming
table α has the following interpretation: α(k, c,m) is the
unnormalized probability that the input subsequence x1:k

generated the observation subsequence z1:m given that the
last segment in y has label c. Or, written mathematically:

α(k, c,m) ∝ pω(z1:m|x1:k, t1:k, c|y| = c) (10)

Filling in this table has complexityO(|C|2L2M) where L
is the length of the input sequence, C is the set of possible
segment labels, and M is the length of the observation
sequence. A full description of this dynamic program can
be found in section 2 of the supplementary materials. We
use reverse-mode automatic differentiation [3] to derive a
dynamic program with the same complexity to calculate
the necessary gradients for learning.

4.2 MAP Inference

Our second goal is to combine temporal observations,
such as self-reported activities, and wearable sensor input
to infer behaviors. That is, we would like to infer the
most likely segmentation of the input sequence given x, t,
and z. To do this, we perform full maximum a posteriori
(MAP) inference over both y and o

y∗,o∗ = argmax
y,o

pω(y,o|z,x, t) (11)

The same dynamic program used to calculate the marginal
likelihood can be used to perform MAP inference by
swapping summation over y and o for maximization with
no change in the computational complexity.

4.3 Multiple Observation Types

In some settings, it may be desirable to allow for mul-
tiple types of observations. For example, we may want
to include observations of both the beginning and end
of sleep. This can be handled by including multiple ob-
servation sequences z(l) each with length M (l) and ob-
servation indicator sequences o(l) where l indicates the
observation type. Observation sequences of each type
are assumed to be independent conditioned on the seg-
mentation y and the ordering assumption need not hold
between types. The complexity of inference in this setup
is O(|C|2L2

∏
lM

(l)).

5 EXPERIMENTS AND RESULTS

We evaluated the proposed framework’s ability to accom-
modate the temporal label imprecision that arises in both
the lab and field settings on two mHealth detection prob-
lems: sleep detection and cigarette smoking detection. In



this section we describe the datasets and models used as
well as the results of these evaluations.

5.1 Sleep detection

We evaluated our framework’s performance on data from
the field using the Extrasensory1 dataset [18]. This dataset
contains signals from a variety of sensors including the
accelerometer, gyroscope, GPS, and microphone on a
mobile device as well as a wrist-worn accelerometer. Sub-
jects carried these sensors during daily activities and self-
reported a range of activities such as sleeping, eating, and
exercising. We focus on the sleep detection problem, as
this was one of the more abundantly reported activities.
Signals from all sensors were recorded for 20 seconds
every minute leading to a natural one minute discretiza-
tion, which we downsampled to one instance every two
minutes in order to run a large number of experiments (a
2x downsample results in a 4x inference speedup). We
partitioned the data into 24 hour sessions beginning and
ending at 2:00pm and dropped any session with less than
four hours of recorded data or less than one hour of re-
ported sleep. This resulted in 80 sessions from 28 subjects.
While the researchers corrected obvious conflicts in the
self-reported activities, there is no ground truth for this
data, so we evaluated against the cleaned self-reported
sleep. To simulate extra noise in the observation process,
we added further synthetic noise (described below) to the
observation timestamps.

Instance Features: We used the full set of instance fea-
tures reported in [18] which include a number of statistical
features calculated on the various accelerometer and gy-
roscope sensors, relative features calculated on the GPS
positions, and discrete time-of-day features.

Model: Our goal in the sleep detection problem is to
segment the input sequence into periods of sleep and
non-sleep. We use a binary semi-CRF with a constraint
that consecutive segments may not have the same label.
We included as features the sum of all instance level fea-
tures within segment xjk =

∑k
i=j xi and duration based

features I[cm = 1](tk − tj) and I[cm = 1](tk − tj)
2,

which are similar to putting a normal distribution on the
duration of sleeping activities2. We placed a zero-mean
gaussian prior with tuned variance on the parameters of
the semi-CRF model (i.e. `2 regularization).

We included two types of observations: the beginning of
sleep z(1) and the end of sleep z(2). Because sleep was
observed in all sessions, we used a deterministic observa-
tion indicator distribution. If instance i is the beginning

1http://extrasensory.ucsd.edu/
2I[·] is the indicator function

of a sleep segment, it must generate an observation z(1)m

and likewise for the end of a sleep segment. No other
instances may generate observations in this model.

To model the procedure of self-reporting when you go
to sleep and when you wake up, we used a one-sided
distribution to model the observation timestamp noise.
We used the following exponential distributions to model
observation timestamp noise:

pφ(z
(1)
m |ti(m)) = Exp(ti(m) − z(1)m ;λ)

pφ(z
(2)
m |ti(m)) = Exp(z(2)m − ti(m);λ)

We placed an inverse-Gamma prior with shape α = 1 and
scale β = 1 on λ. We found parameter estimation to be
fairly insensitive to changes in the settings of this prior
distribution and used informative values for α and β.

Train and Test Procedures: We evaluated perfor-
mance using a 10-fold cross-validation procedure, where
folds were calculated at the session level. The strength of
the `2 regularizer was tuned to maximize instance-level F1

over a logarithmic grid using a further 9-fold evaluation.
This procedure is equivalent to assuming that some of the
data has been labeled for tuning purposes. Predictions
were evaluated against the self-reported labels.

Experiments: We compared semi-CRF models trained
in two ways. First, we trained a semi-CRF model based on
a naive alignment defined by mapping each augmented ob-
servation to the nearest instance (semi-NV). Second, we
trained a semi-CRF model using the proposed weak super-
vision framework applied to the augmented observations
(semi-WS). To test these models under a variety of noise
conditions, we augmented the observation timestamps
by adding different amounts of exponentially distributed
noise and trained both models using these augmented ob-
servations. Finally, we tested each model when provided
with different amounts of information. At test time, each
model was given either all segment start observations
(Start), all segment end observations (End), neither obser-
vations (None), or both observations (Start+End). Obser-
vations were incorporated into semi-WS as described in
section 4.2, and were incorporated into semi-NV by map-
ping the provided observations to the nearest instance and
performing MAP inference over the label set constrained
to agree with the mapped observations.

The results from these experiments are shown in figure 1.
The three plots correspond to models trained and tested
on observations augmented with standard deviation λ =
0, 30, 60 minutes of temporal noise. Within each plot,
the performance for each model when conditioned on
different amounts of information is shown. In all cases,
semi-WS outperforms semi-NV. The performance gap
grows both as the standard deviation of the observation

http://extrasensory.ucsd.edu/
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Figure 1: Performance for the semi-WS and semi-NV models on the sleep detection problem when trained on data with
Exp(λ) distributed noise (measured in minutes) added to the observation timestamps. Each plot shows the performance
of both models when conditioned on all segment start observations (Start), all segment end observations (End), neither
(None), or both (Start+End) at test time.

noise increases and as the amount of information available
at test time increases. This indicates that semi-WS is
better able to learn from temporally imprecise labels, and
that using an explicit observation model is useful when
incorporating imprecise observations.

5.2 Smoking detection

We evaluated the proposed framework’s ability to handle
the types of imprecision that arise in a laboratory setting
using the puffMarker smoking dataset [14]. This data was
collected in a lab setting where subjects were fitted with
chest-worn respiration monitors and wrist-worn actig-
raphy sensors and asked to smoke a cigarette while an
observer marked the occurrence of smoking puffs using a
mobile phone app. The respiration signal was discretized
into a sequence of non-overlapping respiration cycles (a
single inhalation and exhalation) and the goal is to label
each respiration cycle as a smoking puff or not and seg-
ment the respiration cycles into periods of smoking and
non-smoking activities. We created sessions by including
random amounts of non-smoking on either side of each
recorded smoking activity resulting in 23 sessions from
five subjects. In addition to the raw observation times-
tamps, researchers visualized the respiration signal and
hand-aligned the observation timestamps to respiration
signal. We treat these hand aligned labels as ground truth
for the purposes of evaluation, though we acknowledge
that there may be errors in the alignment process. While
most experiments on this data were conducted using the
true observation timestamps, we also tested the robustness
of our framework to extra noise which was generated syn-
thetically and added to the raw observation timestamps.

Instance Features: Features were extracted from the
respiration monitor data for each respiration cycle ac-
cording to [14]. Further, we extracted features from the
actigraphy data using the following procedure: Let ti be
the timestamp of the maximum peak in respiration cycle i.

For each actigraphy channel, extract a window beginning
8 seconds before ti and ending 1 second after ti and cal-
culate as features the mean, max, min, standard deviation,
median, and five bin histogram of the channel’s signal
within this window. The actigraphy channels included
were accelerometer x, y, and z, accelerometer magnitude,
gyroscope x, y, and z, gyroscope magnitude, and pitch
and roll angles for a total of 100 actigraphy based features.
Pitch and roll calculations using accelerometer data are
only valid when the hand is stationary, so these signals
were filtered using the procedure described in [14].

Respiration and actigraphy-based features have different
properties as a function of time. Due to the method we
used to extract actigraphy-based features, these features
tend to be smooth through time, particularly as compared
to the respiration features extracted from non-overlapping
windows. The smooth noise model we propose tends to
over-emphasize temporally smooth features at the expense
of less smooth features To combat this effect, we use the
actigraphy features to augment the respiration features in
a manner similar to the filtering approach used in [14].

We trained a logistic regression model on a small set
of instances with hand-aligned labels using only the
actigraphy features, then took the predictions from this
model and augmented the respiration features as xaug =
[ĉactxresp (1− ĉact)xresp] where ĉact ∈ {0, 1} is a pre-
diction from the filter model and xresp is the vector con-
taining only respiration features. A similar effect might
be achieved by including interaction effects between the
actigraphy and respiration features; however, this would
result in more than 10,000 features. The filtering approach
can therefore also be thought of as first doing a supervised
compression of the actigraphy features and then doing a
polynomial basis expansion. For more details, see section
3 in the supplemental materials.

Model: Our goal in the smoking detection problem is to
label each respiration cycle as smoking or non-smoking



and to segment the input sequence into periods of smok-
ing and non-smoking; however, smoking detection differs
from typical segmentation problems in that a complete
smoking activity contains a mix of smoking puffs and
non-smoking respiration cycles. In terms of the model,
this means that the instances contained in a positive seg-
ment may be both positive or negative (an example of this
structure with example observations is shown below). To
address this we used an extension of the standard semi-
CRF called the hierarchical nested segmentation (HNS)
model [2]. Rather than segment a sequence into positive
and negative activities, the HNS model segments the se-
quence into periods between positive instances, termed
inter-event spans. Further, the HNS model includes a
cardinality potential that models the number of positive
instances that make up a positive activity (or the number
of consecutive positive inter-event spans). In addition
to the instance level features, we included the segment
duration, tk− tj and segment duration squared (tk− tj)2
to model the time between positive instances (i.e. the
time between puffs on a cigarette). For full details of the
HNS model for smoking detection, see [2], and for details
on how the HNS model can be written as a semi-CRF,
see section 4 of the supplementary materials. We placed
a zero-mean gaussian prior with tuned variance on the
parameters of the HNS model (i.e. `2 regularization).semi-CRF

HNS

HNS as semi-CRF

smoking
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As seen in the figure above, we included three types of ob-
servations: positive instance observations associated with
any inter-event span z(1), activity start observations asso-
ciated only with the first inter-event span in a complete
activity z(2), and activity end observations associated
only with the last inter-event span in a complete activity
z(3). We used the following Bernoulli distributions for
our observation indicator model pπ(o

(l)
i |y):

pπ(o
(1)
i = 1| i is the start of an inter-event span ) = π

(1)
1

pπ(o
(2)
i = 1| i is the start of a smoking activity) = π

(2)
1

pπ(o
(3)
i = 1| i is the end of a smoking activity) = π

(2)
1

where π(1)
1 , π

(2)
1 ∈ [0, 1]. For the observation timestamp

density, we used the following normal distribution:

pφ(z
(l)
m |ti(m)) = N (z(l)m ; ti(m) + µl, σ

2
l )

for l ∈ {1, 2, 3} where φ = {µ, σ}. This density was
chosen to match the empirical noise distribution [1]. We
placed a Uniform(0, 1) prior on each π(l), a standard
normal prior on each µl, and an inverse-Gamma prior

with shape α = 1 and scale β = 1 on each σ2
l .

Train and Test Procedures: We evaluated perfor-
mance using a leave-one-session-out cross-validation pro-
cedure. All tuned hyperparameters were tuned to max-
imize instance level F1 over a logarithmic grid using a
further nested leave-one-session-out evaluation. Predic-
tions were evaluated against the hand-aligned labels.

Experiment 1 - Pruning Strategies: While the in-
ference algorithm described in section 4.1 is at most
quadratic in the size of each input, the overall run time
can be quite high, particularly for long sequences or mod-
els with a large label set C such as the HNS model. In
order to improve inference run times, we consider three
strategies to prune the inference dynamic program.

Maximum segment length: One straightforward way
to constrain the label space is to place a bound on seg-
ment lengths. For example, in the case of smoking
detection, we might say that two smoking puffs sepa-
rated by five minutes (or approximately 50 respiration cy-
cles) constitute two separate smoking activities. Adding
this constraint reduces the complexity of inference to
O(|C|2LBM) where B is the maximum segment length.

Maximum observation distance: Depending on the
observation process, we might also place a constraint on
the maximum time between a true event and an associated
timestamp. This corresponds to using a truncated distribu-
tion for pφ(z|t). Given a maximum observation distance
of r, we can upper bound the inference complexity by
O(|C|2LBM̃) where M̃ is the maximum number of ob-
servations that could be associated with a single instance
or M̃ = maxi

∑
m I [ti − r ≤ zm ≤ ti + r]. In practice,

the average improvement in runtime is better than this.

Negative instance filtering: In cascaded classification,
a simple classifier is used to filter the label set for a more
complex classifier [19]. This technique has been success-
fully applied to structured prediction problems (e.g. [20])
and we apply it here to filter the space of possible segmen-
tations. Due to the heavy instance level class imbalance
in many mHealth problems, it is often easy to learn a high
recall instance-level classifier, which can then be used
to clamp instance labels to the negative class. Given an
instance level classifier, let c̃i be the filter model’s predic-
tion for instance i. Then, during inference, we constrain
the set of possible segmentations to agree with the neg-
ative predictions of the filter model. Using this filtering
procedure, the worst case complexity remains unchanged
(it is possible that the filter model filters nothing), but the
average case complexity becomes O(γ|C|2LBM̃) where
γ is the proportion of instances that pass the filter.
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Figure 2: This figure shows the effect of changing the maximum segment length with no observation depth pruning
or filtering (left), the effect of changing the maximum observation distance with no filtering (center), and the further
marginal effect of filtering approximately 85% of instances (right). The maximum pruning configuration results in a
40x speedup.

To test the effect of the proposed pruning strategies, we
ran an ablation experiment to assess the time required
to run marginal inference in the HNS model augment
with an observation model using different combinations
of pruning techniques. First, we varied the maximum
segment length from 350 to 50. Next, with the maxi-
mum segment length fixed at 50, we varied the maximum
observation distance from 350 to 50. Finally with the max-
imum segment length and maximum observation distance
fixed at 50, we ran inference with and without negative
instance filtering. For the filtering model, we used the
same actigraphy-based logistic regression model used to
perform feature augmentation (Section 5.2, Instance Fea-
tures). Figure 2 shows the run time in seconds for each of
these settings3. Using all pruning strategies, the runtime
of marginal inference is decreased from approximately
600 seconds to approximately 15 seconds, a 40 times
speedup. We use the most aggressive pruning settings in
all subsequent experiments.

Experiment 2 - Prior predictive performance: We
next evaluated the ability of the proposed framework to
learn the parameters of the base classifier from imprecise
lab data by comparing the HNS model trained in three
different ways. First, we trained the HNS model directly
on the hand-aligned labels (HNS-HA). This represents the
gold standard performance that we would like to achieve.
Second, we trained the HNS model on labels generated by
associating each observation timestamp with the closest
respiration cycle (HNS-NV). This represents the naive
baseline and we would expect our procedure to fall some-
where between HNS-HA and HNS-NV. Third, we trained
the HNS model using the weak supervision framework
proposed above (HNS-WS). Figure 3 shows the perfor-
mance of all three models on the instance labeling and

3Runtime experiments were performed on a 2.8 GHz Intel
Core i7 processor with 8GB of RAM and the inference algorithm
was coded in Cython.

segmentation tasks. The HNS-WS model performs ap-
proximately as well as the HNS-HA model at both the
instance labeling and segmentation tasks while the HNS-
NV model performs worse than either. A paired t-test in-
dicates that the improvement in the HNS-WS results over
the HNS-NV results is statistically significant in terms
of both instance labeling and segmentation (p ≤ 0.05).
These results indicate that we have achieved our primary
aim of enabling learning of the HNS model from data
with noisy observation timestamps.

Experiment 3 - Posterior predictive performance:
We evaluated the ability of the HNS-WS model to com-
bine sensor data with timsestamp observations at test time.
As in the sleep detection experiments, we evaluated of all
three models when given either all activity start observa-
tions (Start), all activity end observations (End), neither
(None), or both (Start+End) at test time. The results are
shown in Figure 4 (left). Unlike in our sleep detection
experiments, all noise present in these observations was
real and all evaluations were made against carefully hand
aligned labels. While conditioning on segment observa-
tions results in improvements for all three models, these
gains are much larger for the HNS-WS model. In par-
ticular, conditioning on both the segment start and end
timestamps results in a 6% error reduction for the HNS-
HA model and a 16% error reduction for the HNS-NV
model whereas conditioning on the same information re-
sults in an 89% error reduction for the HNS-WS model.

In general, we cannot expect the noise we observe in the
field to look like the noise we observe in the lab, therefore
it is valuable to know how sensitive the HNS-WS model is
to the correctness of the observation timestamp model. To
test this, we generated synthetic observation timestamps
from a normal distribution centered at the true activity
start or end and varied the standard deviation of the distri-
bution. The segmentation accuracy of the HNS-WS model
when conditioning on these synthetic observations at test
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Figure 3: The left plot shows instance level F1 score for all three models. The right plot shows the segmentation
accuracy for all three models. The proposed HNS-WS model significantly outperforms the HNS-NV model. Error bars
show one standard error.
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Figure 4: The left plot shows the segmentation accuracy when each HNS model is conditioned on different combinations
of observations (segment start, segment end or both). The right plot shows the HNS-WS model when conditioned
on segment observations with different amounts of synthetic noise added. The dashed line shows the segmentation
accuracy of the HNS-WS model when conditioned on no observations (None) and the solid line shows the empirical
standard deviation of the timestamp noise in the data, which reflects what HNS-WS was trained on.

time is shown in Figure 4 (right). The results show that
the HNS-WS model can successfully incorporate obser-
vations with up to an order of magnitude more noise than
was observed at train time. As expected, adding sufficient
noise to the observations eventually causes performance
to degrade; However, even with large amounts of noise,
posterior segmentation accuracy plateaus between 0.6 and
0.7 compared to an accuracy of approximately 0.8 when
not conditioning on any observations.

6 CONCLUSIONS

In this work, we have addressed the problem of learning
time series segmentation models from noisy observation
timestamps. We extended the weakly supervised learn-
ing framework of [1] to the semi-Markov CRF and HNS
models and derived exact and approximate inference algo-
rithms based on dynamic programming. We showed using
real sleeping and smoking data that learning the segmen-
tation models in this way can recover the performance of
models trained on more expensive hand-aligned labels,
while significantly out-performing the naive alignment
strategy. Further, we showed that this framework can be

used to combine noisy observations with sensor input at
test time in a principled way.

This work suggests a several of interesting research di-
rections for future research. First, in many cases it is
much cheaper to gather large amounts self-report data
than it is to gather lab data. The proposed framework
is capable of incorporating both lab data and self-report
data gathered in the field to train or fine-tune a model in a
noisy semi-supervised-like learning framework. Second,
personalizing detection models is an important goal in
mHealth research, but is typically not practical due to the
cost of obtaining labels. Our approach opens the possi-
bility of personalizing models using less costly (but more
noisy) self-report data from the field.
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