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Abstract

A latent force model is a Gaussian process with
a covariance function inspired by a differential
operator. Such covariance function is obtained
by performing convolution integrals between
Green’s functions associated to the differential
operators, and covariance functions associated
to latent functions. In the classical formula-
tion of latent force models, the covariance func-
tions are obtained analytically by solving a dou-
ble integral, leading to expressions that involve
numerical solutions of different types of error
functions. In consequence, the covariance ma-
trix calculation is considerably expensive, be-
cause it requires the evaluation of one or more
of these error functions. In this paper, we use
random Fourier features to approximate the so-
lution of these double integrals obtaining sim-
pler analytical expressions for such covariance
functions. We show experimental results using
ordinary differential operators and provide an
extension to build general kernel functions for
convolved multiple output Gaussian processes.

1 INTRODUCTION

Latent force models (LFMs) [Álvarez et al., 2009] are a
type of multiple-output Gaussian processes (GPs) where
the covariance function has been derived from physical
models. In particular, LFMs assume that each output
{fd(t)}Dd=1 can be expressed as the convolution inte-
gral of a latent function u(t), and a Green’s function
Gd(t) associated to a linear dynamical system, one per
output, fd(t) =

∫ t
0
Gd(t − τ)u(τ)dτ . Such representa-

tion for fd(t) introduces a dependency between outputs
fd(t) and fd′(t). For example, if we assume that u(t)
follows a Gaussian process prior with zero mean func-
tion and covariance k(t, t′), due to the linearity of the

integral transform, fd(t) and fd′(t) are jointly Gaussian
with a cross-covariance function given as kfd,fd′ (t, t

′) =∫ t
0
Gd(t− τ)

∫ t′
0
Gd′(t

′ − τ ′)k(τ, τ ′)dτ ′dτ .

LFMs have been used for uncovering the dynamics of
transcription factors in a gene network [Gao et al., 2008],
for extrapolating human motion from motion capture data
[Álvarez et al., 2013], for segmenting motor primitives in
humanoid robotics [Álvarez et al., 2011], for modeling
the thermal properties of buildings [Ghosh and et al.,
2015], among several other applications for which prior
knowledge of a mechanistic model can be coded in the
covariance function of a GP. By including physics in
the covariance function of a GP, we grant extrapolation
abilities to an otherwise interpolation only-model.

In a classical latent force model, the covariance of the la-
tent function k(t, t′) follows an Exponentiated Quadratic
(EQ) form, leading to analytical solutions for the cross-
covariances kfd,fd′ (t, t

′). However, these solutions are
computationally expensive since they involve calculating
functions that can only be obtained by numerical methods.
For example, using the second order LFM introduced
in Álvarez et al. [2009], involves computing the error
function erf(·) with a complex argument or the Faddeeva
function, that require the evaluation of numerical integrals
that are expensive to compute.

In this work, we use random Fourier features (RFF)
[Rahimi and Recht, 2008] to reduce the mathematical
complexity of the expressions involved in the covariance
functions of the LFM. In particular, we approximate the
calculation of the EQ kernel, with a representation that
involves its probability density via the Bochner’s theorem.
Such representation for the covariance of k(τ, τ ′) trans-
forms the double integral for kfd,fd′ (t, t

′) into two sepa-
rate integrals that can easily be solved using the Laplace
or Fourier transforms. Once the inner integrals are solved
(the integrals that depend on τ and τ ′), the remaining
integral is solved using a Monte Carlo approximation
with S samples. The quality of the approximation of the



cross-covariances kfd,fd′ (t, t
′) will depend, then, on the

number of samples S used. Additionally, by representing
the latent force model kernel using a sum of basis func-
tions, we are able to reduce the computational complexity
of inverting the ND ×ND kernel matrix obtained from
the multiple outputs, assuming that each output has N
data observations.

Following a similar procedure, we also introduce a ran-
dom Fourier feature approximation for the more general
convolved multiple output Gaussian process kernel, a
model that can be used for multiple-output with no parti-
cular known dynamics.

2 LATENT FORCE MODELS

Latent force models are Gaussian processes for multiple
outputs with the characteristic that their covariance func-
tion involves ordinary or partial differential equations. In
particular, LFMs assume that each output {fd(t)}Dd=1 can
be described using

Dd{fd(t)} = u(t),

where Dd is the differential operator associated to a linear
ordinary differential equation (ODE) or a linear partial
differential equation (PDE), and u(t) is the excitation
function. LFMs assume that u(t) is unknown and place
a Gaussian process prior over it. The solution for fd(t)
follows as

fd(t) =

∫ t

0

Gd(t− τ)u(τ)dτ, (1)

where Gd(·) corresponds to the Green’s function asso-
ciated to the differential operator Dd. The latent force
or function u(t) is unobserved, and follows a Gaussian
process prior with zero mean function, and covariance
function given by k(t, t′). Since u(t) is being transformed
by a linear operator, fd(t) also follows a Gaussian process
with covariance function kfd,fd(t, t

′). Furthermore, since
all fd(t) have a common input u(t), it is also possible to
compute a cross-covariance function between fd(t), and
fd′(t

′), kfd,fd′ (t, t
′).

Equation (1) can be extended to include additional latent
functions with different characteristics, leading to express
each output as

fd(t) =

Q∑
q=1

Sd,q

∫ t

0

Gd(t− τ)uq(τ)dτ,

where there are Q latent functions or forces {uq(t)}Qq=1,
and Sd,q is a sensitivity parameter that accounts for the
influence of force uq(t) over output d. Assuming the

independence of these latent forces and that they all fol-
low Gaussian process priors with covariance functions
kq(t, t

′), it is possible to compute the cross-covariance
functions kfd,fd′ (t, t

′), ∀ d, d′ = 1 . . . , D. The following
general expression can be used to build the covariance
kfd,fd′ (t, t

′) of a LFM

Q∑
q=1

Sd,qSd′,q

∫ t

0

Gd(t− τ)
∫ t′

0

Gd′(t
′ − τ ′)×

kq(τ, τ
′)dτ ′dτ. (2)

Depending on the form for the covariance function for
kq(t, t

′), it is possible to find a closed-form expression
for kfd,fd′ (t, t

′). A common option for kq(τ, τ ′) is the
Exponentiated Quadratic form

kq(τ, τ
′) = exp

[
− (τ − τ ′)2

`2q

]
,

where `q is known as the length-scale parameter.

LFMs have mostly being used for multiple output regres-
sion. In this case, the observed output d, yd(t), is assumed
to follow a Gaussian likelihood, yd(t) = fd(t)+εd,where
εd ∼ N (0, σ2

d).

3 FEATURE EXPANSIONS FOR
KERNELS DERIVED FROM LATENT
FORCE MODELS

In order to scale kernel machines, Rahimi and Recht
[2008] introduced the idea of random Fourier features
to approximate a kernel function using inner products be-
tween basis functions. Parameters of these basis functions
are sampled from a distribution associated to the kernel
function. We are particularly interested in the approxima-
tion for the EQ kernel, which has been commonly used
in LFMs. The idea is to replace the EQ kernel that is usu-
ally assumed for kq(τ, τ ′) by providing a random Fourier
feature representation for it via the Bochner’s theorem,

kq(τ, τ
′) = e

− (τ−τ′)2

`2q =

∫
p(λ)ej(τ−τ

′)λdλ, (3)

where p(λ) = N (λ|0, 2
`2q
). A key insight from Rahimi

and Recht [2008] was to use a finite approximation for
kq(τ, τ

′) by using Monte Carlo sampling to solve the
above integral over λ,

kq(τ, τ
′) ≈ 1

S

S∑
s=1

ejλsτe−jλsτ
′
,

=
1

S

S∑
s=1

v(τ, λs)v
∗(τ, λs),



where S is the number of Monte Carlo samples, v(τ, λs)
is a basis function with parameter λs, v∗(τ, λs) is the
complex conjugate of v(τ, λs), and λs ∼ p(λ). Since
the kernel function is a real function, the real part of the
product v(τ, λs)v∗(τ, λs) is used instead.

Using the expression for kq(τ, τ ′) in Eq. (3) inside the
expression for the cross-covariance function for the LFM,
kfdfd′ (t, t

′), we get

Q∑
q=1

Sd,qSd′,q

∫ t

0

Gd(t− τ)
∫ t′

0

Gd′(t
′ − τ ′)×∫

p(λ)ej(τ−τ
′)λdλdτ ′dτ.

Organizing the above expression we obtain

Q∑
q=1

Sd,qSd′,q

∫
p(λ)vd(t, θdλ)v

∗
d′(t
′, θd′ , λ)dλ, (4)

with

vd(t, θd, λ) =

∫ t

0

Gd(t− τ)ejλτdτ,

where θd makes reference to the parameters of the Green’s
function Gd(·). Also, v∗d′(t

′, θd′ , λ) is the complex conju-
gate for vd′(t′, θd′ , λ). The integrals over t and t′ above
can be solved using the Laplace transform L{·}

vd(t, θd, λ) = L−1L
{∫ t

0

Gd(t− τ)ejλτdτ
}

= L−1
{
Gd(s)L

{
ejλτ

}}
,

where Gd(s) is the Laplace transform for Gd(t). The
operator L−1{·} refers to the inverse Laplace transform.
Furthermore, notice that when Gd′(·) is a real function,
we can compute v∗d′(t

′, θd′ , λ) = vd′(t
′, θd′ ,−λ).

Similarly to Rahimi and Recht [2008], we use Monte
Carlo sampling to approximate the integral over λ in Eq.
(4), leading to

Q∑
q=1

Sd,qSd′,q
S

[
S∑
s=1

vd(t, θd, λs)v
∗
d′(t
′, θd′ , λs)

]
,

where λs ∼ p(λ).

The steps to compute a RFF approximation of the LFM
kernel are

1. Compute vd(t, θd, λ) =
∫ t
0
Gd(t− τ)ejλτdτ using

the Laplace transform.

2. Compute the RFF approximation for the LFM co-
variance function kfdfd′ (t, t

′) using

Q∑
q=1

Sd,qSd′,q
S

[
S∑
s=1

vd(t, θd, λs)v
∗
d′(t
′, θd′ , λs)

]
,

where λs ∼ p(λ). The distribution we use to sample
from, p(λ), depends on the kernel assumed for the
latent forces uq(t).

Interestingly, vd(t, θd, λ) represents the response of the
dynamical system to the excitation ejλt up to time t. We
will occasionally refer to this random feature as a random
Fourier response feature (RFRF).

In different applications of LFMs, we need to perform in-
ference over the latent forces uq(t). Inference over uq(t)
requires the evaluation of the cross-covariance functions
kfd,uq (t, t

′). Such cross-covariances are also important
in schemes that reduce computational complexity in con-
volved multiple output Gaussian processes, where the
underlying process uq(t) evaluated at a discrete set of
input locations serve the purpose of inducing variables
[Álvarez et al., 2010, Álvarez and Lawrence, 2011]. The
approximation of kfd,uq (t, t

′) using RFFs is given by

kfd,uq (t, t
′) =

1

S

S∑
s=1

vd(t, θd, λs)e
−jλst′ .

4 HYPERPARAMETER SELECTION
AND COMPUTATIONAL
COMPLEXITY

Let us assume, we are given observations {y,X} =
{yd,Xd}Dd=1 ( each yd ∈ RN and Xd ∈ RN×p), and we
want to learn the hyperparameters of the kernel function,
{{θd, σ2

d}Dd=1, {`q}
Q
q=1}, that allow us to explain y. With

that in mind, the hyperparamters can be learned from the
log-marginal likelihood [Rasmussen and Williams, 2006]

log p(y|X) =− ND

2
log(2π)− 1

2
y>(Kf ,f + Σ)−1y

− 1

2
log |Kf ,f + Σ| , (5)

where Σ is a diagonal matrix containing the variances
of the noise level per output, and Kf ,f ∈ RND×ND is a
block-wise matrix with blocks calculated using (2). As it
is usual, we can use a gradient-based optimization proce-
dure to estimate the hyperparameters that maximize the
log-marginal likelihood leading to the infamous computa-
tional complexity of O(D3N3).

However, notice that by the elegance of the RFF represen-
tation, the covariance matrix can instead be approximated



as Kf ,f = R
{
ΦΦH

}
, where Φ ∈ CND×QS has entries

vd(t, θd, λs), and ΦH is the conjugate transpose of Φ.
Furthermore, the covariance matrix can be re-written as
Kf ,f = ΦcΦ

>
c , with Φc = [R{Φ} I{Φ}] ∈ CND×2QS .

Using the matrix inversion and determinant lemmas, we
express the log-marginal likelihood as

log p(y|X) =− 1

2
log |Σ| − 1

2

(
y>Σ−1y −α>A−1α

)
− 1

2
log |A| − ND

2
log(2π), (6)

with A = I+Φ>c Σ−1Φc and α = Φ>c Σ−1y, effectively
reducing computational complexity from O(D3N3) to
O(DNQ2S2), which is now linear with respect to the
data size.

Alternatively, one could couple the computation of the ker-
nel functions kfd,fd′ (t, t

′) and kfd,uq (t, t
′) through ran-

dom Fourier response features, with (i) any of the different
computationally efficient approximations for optimizing
the log-marginal likelihood in convolved multiple-output
Gaussian process [Álvarez and Lawrence, 2011], or (ii)
a lower bound on the log-marginal likelihood through a
variational approximation [Álvarez et al., 2010]. Both
styles of approximations require the specification of K
inducing variables.

5 FAST KERNEL BUILDING FROM
ORDINARY DIFFERENTIAL
EQUATIONS

Let us assume we are interested in analyzing an ODE of
order P given as

D(P )
d {fd(t)} =

Q∑
q=1

Sd,quq(t),

where the differential operator D(P )
d is defined as

D(P )
d = a0

dP

dtP
+ a1

dP−1

dtP−1
+ . . .+ aP−1

d

dt
+ aP .

The Laplace transform of the Green’s function Gd(t) for
the above ODE can be found as

Gd(s) =
1

a0

1

sP + a1
a0
sP−1 + . . .+ aP

a0

(7)

=
1

a0

1

(s− s1)(s− s2) . . . (s− sP )
,

where the si’s represent the roots of the polynomial given
in the denominator of (7). Additionally, the Laplace
transform for L{ejλτ} = 1

s−jλ . We can use a partial-
fraction expansion for Gd(s), and then apply the inverse

Laplace transform over the product Gd(s)L{ejλτ} to find
vd(t, θd, λ).

Interestingly, if all the roots s1, . . . , sP are distinct real
or distinct complex, and sP+1 = jλ (the additional root
obtained from L{ejλτ}), the random Fourier response
feature vd(t, θd, λ) can be expressed as

1

a0
L−1

{
P+1∑
p=1

Ap
(s− sp)

}
=

1

a0

P+1∑
p=1

Ape
spt,

where each coefficient Ap is calculated as

Ap =
1∏

∀i 6=p(sp − si)
, (8)

and, as before, sP+1 = jλ.

Next, we show some examples of the expressions ob-
tained for the random Fourier response features associ-
ated to the ODE of first and second orders. Besides, for
all ODE experiments the hyperparameters are learned us-
ing the variational approach described in Álvarez et al.
[2010] and they were carried out using a single core of
an AMD FX-8350 @ 4.0 GHz. We also include mea-
sures of the time required to evaluate the objective func-
tion and its gradients to compare the time cost induced
by the evaluation of the different covariance functions.
Code to replicate the following experiments is available
at github.com/cdguarnizo/kff_lfm.

5.1 FIRST-ORDER MODEL (ODE1)

For the first-order ODE we have the following equation

D(1)
d {fd(t)} =

dfd(t)

dt
+ γdfd(t) =

Q∑
q=1

uq(t),

from which the Laplace transform is given by Gd(s) =
1

s+γd
. We then have s1 = −γd, and s2 = jλ. The random

Fourier response feature for the d-th output function of a
first-order ODE is obtained as

v
(1)
d (t, θd, λ) = A1e

s1t +A1e
s2t

= − e−γdt

γd + jλ
+

ejλt

γd + jλ

=
ejλt − e−γdt

γd + jλ
.

Next, we compare the performance of the first order ODE
described in Gao et al. [2008] with the kernel obtained
by using the above random Fourier response feature for
interpolation of Air temperature.

github.com/cdguarnizo/kff_lfm
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Figure 1: Comparison of the predictive GPs, for the air temperature experiment, using the standard LFM (first column)
and the RFRF approximation for S = 100 (second column) and S = 10 samples (third column). Training data is
represented using red dots and Test data using blue dots. The black line in the mean over the predictive GP function,
and the shaded region denotes two times the standard deviation.

Air temperature Here, we consider the problem of
modeling and predicting air temperature time series from
a network sensor located at the south coast of England.
The dataset consists of temperature measurements at four
locations known as Bramblemet, Sotonmet, Cambermet
and Chimet. 1 The air temperatures are measured during
the period from July 10 to July 15, 2013. Specifically,
we adopt the same experiment (train and test data) used
in Nguyen and Bonilla [2014] and described in Tab. 1.
The variational approach is configured with 200 inducing
variables, six latent forces and the maximum number of
iterations for the optimization procedure is set to 500.

Table 1: Number of training and test data-points consid-
ered on the air temperature experiment.

# Name Training Test
1 Bramblemet 1425 0
2 Cambermet 1268 173
3 Chimet 1235 201
4 Sotonmet 1097 0

Table 2 reports the predictive performance using the co-
variance functions build from the LFM and the proposed
RFRF. Note that for a low number of samples S, the pro-
posed approach presents the worst performance. This is
because the more samples we use the better the mean of
predictive GP is able to fit the coarse behavior from the
observed data, as shown in figure 1. Interestingly, the

1Weather data can be found in http://www.
bramblemet.co.uk.

RFRF starts to outperform the standard one, using only
50 or 100 samples with about half of the time required by
the original covariance function.

Table 2: Results on air temperature data.
Kernel Cambermet Chimet Time

NMSE NLPD NMSE NLPD [s]
ODE1+S10 0.74 3.26 0.58 1.53 1.89
ODE1+S20 0.45 1.95 0.93 1.75 2.09
ODE1+S50 0.08 1.10 0.21 1.08 2.68
ODE1+S100 0.12 1.18 0.12 0.82 3.93

ODE1 0.11 1.37 0.19 0.99 6.28

5.2 SECOND-ORDER MODEL (ODE2)

As a second example of a random Fourier feature represen-
tation of a LFM, we use a second-order ordinary differen-
tial operator D(2)

d {·} that represents, e.g., a mass-spring-
damper system. The second-order operator is given as

D(2)
d = md

d2

dt2
+ cd

d

dt
+ bd,

where md, cd and bd are the mass, damper and spring
constants, respectively. From the above equation, we
obtain the Laplace transform of the Green’s function as

Gd(s) =
1

md

1

s2 + cd
md
s+ bd

md

.

Following the procedure described above, it can be shown
that the random Fourier response feature for the d-th out-

http://www.bramblemet.co.uk
http://www.bramblemet.co.uk


put is given by

v
(2)
d (t, θd, λ) =

1

md

[
A1e

s1t +A2e
s2t +A3e

s3t

]
,

where

s1, s2 = − cd
2md

±

√
c2d
4m2

d

− bd
md

,

are the roots of the polynomial obtained from the second-
order ODE, and s3 = jλ corresponds to the root in-
duced by the excitation ejλt. Note that the coefficients
A1 and A2 were calculated using (8). Furthermore, if
c2d > 4mdbd then the roots s1 and s2 are real, and the
model’s response is known as “overdamped”. When
c2d < 4mdbd the roots are a pair of complex conjugates,
and the response is known as “underdamped”.

Figure 2 shows the covariance matrices for a two-output
LFM using the standard expression for the covariance
function in Álvarez et al. [2009], and the kernel obtained
by using the random Fourier response features for the
ODE2, v(2)d (t, θd, λ), based on S = 100 samples. In
this example, we consider that the first output follows
an overdamped response, while the second output has
an underdamped response. Additionally, the input times
comprises 100 values in the range from 0s to 3s for each
output. Just to have a quantitative measure of the approx-
imation obtained by the RFRF approach, the Frobenius
norm between the covariance matrices shown in figure 2
is 239.1. However, for S = 105 samples, the Frobenius
norm is 5.8, which states that we are able to reduce the
approximation error by the cost of increasing the number
of samples. Note that the covariance values are similar,
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Figure 2: Comparison of the covariance matrix evaluation
using the standard LFM and the RFRF.

indicating that the correlation between the outputs and
within each output is preserved and well approximated by
the inner products of the random features v(2)d (t, θd, λ).

For the following experiments, we consider two motion
capture (MOCAP) datasets, 2 which consist of measured
joint angles from different types of motions. Additionally,
the variational approach is configured with 25 inducing
variables, six latent forces and the maximum number of
iterations set to 500.

MOCAP - Golf swing In this experiment, we consider
the movement “Golf swing” performed by subject 64
motion 01. From the 62 available channels, we selected 56
each having 448 samples, except for two outputs where 81
consecutive samples were considered for testing purposes.
The complete dataset for training consists of 24926 data-
points.

Table 3: Results for Golf Swing dataset.
Kernel root-Ypos lowerback-Yrot Time

NMSE NLPD NMSE NLPD [s]
ODE2+S10 0.39 -2.23 0.98 2.69 2.20
ODE2+S20 0.24 -2.35 1.49 4.30 3.02
ODE2+S50 0.17 -2.39 0.27 1.17 4.59
ODE2+S100 0.12 -2.45 0.32 1.34 9.31

ODE2 0.11 -2.39 3.19 7.26 28.96

Table 3 reports the predictive performance using the co-
variance functions built from the LFM and the proposed
RFRF. In this experiment, the RFRF approximations fit
better the testing data for output “lowerback-Yrot”, as
shown in figure 3. In contrast, output “root-Ypos” testing
data is best fitted by the standard LFM. In summary, the
models learned using 50 and 100 samples not only per-
formed better than the standard LFM, but also their cost
time is reduced by a fraction of three and six, respectively.

MOCAP - Walk For this experiment, we consider the
movement “walk” from subject 02 motion 01. From the
62 available channels, we selected 48 each having 343
samples, except for 121 and 105 consecutive samples of
two outputs that were considered for testing purposes.
The complete dataset for training consists of 16238 data-
points.

Table 4 reports the predictive performance for the testing
data used in “walk” experiment. Output “lowerback-Yrot”
missing data is best fitted by the standard LFM. However,
the testing data for output “lradius-Xrot” is best fitted
by the proposed RFRF approach, as shown in figure 3.
Interestingly, for this experiment, the observed data are
smooth, which can be fitted with adequate accuracy using
10 or 20 samples using the RFRF approach.

2MOCAP datasets are available at http://mocap.cs.
cmu.edu/.

http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
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We remark that the evaluation of the covariance function
ODE2 is the most expensive one because it requires the
evaluation of the Faddeeva function. Hence, the computa-
tion time per iteration is reduced using the inner product
of v(2)d (t, θd, λ).

6 RANDOM FOURIER FEATURES FOR
CONVOLVED MULTIPLE OUTPUT
GAUSSIAN PROCESSES

Convolution processes can be used to build kernels for
vector-valued functions, as reviewed in Álvarez and
Lawrence [2011]. Following similar expressions to the
ones in section 3, an output fd(x), with x ∈ Rp, can
be modeled as a convolution integral of general smooth-



Table 4: Results for Walk Dataset.
Kernel lowerback-Yrot lradius-Xrot Time

NMSE NLPD NMSE NLPD [s]
ODE2+S10 0.21 5.05 0.12 1.06 1.45
ODE2+S20 0.22 2.09 0.49 0.87 2.04
ODE2+S50 0.22 4.77 0.19 5.28 3.24
ODE2+S100 0.18 3.35 0.09 3.86 6.09

ODE2 0.02 -0.10 0.99 19.63 19.67

ing kernels {Gid,q(·)}
D,Q,Rq
d=1,q=1,i=1, and latent processes

{uiq(x)}
Q,Rq
q=1,i=1

fd(x) =

Q∑
q=1

Rq∑
i=1

∫
X
Gid,q(x− z)uiq(z)dz,

where, according to Álvarez and Lawrence [2011], the
variable Rq makes reference to the number of latent func-
tions uq that share the same covariance function kq(x, x′),
although are sampled independently. Granted that the
uiq(x) are independent GPs with zero mean and covari-
ance functions cov[uiq(x), u

j
q′(x

′)] = kq(x,x
′)δq,q′δi,j ,

where δq,q′ and δi,j are Kronecker deltas, the cross-
covariance between fd(x), and fd′(x

′), kfd,fd′ (x,x
′),

follows a familiar form

Q∑
q=1

Rq∑
i=1

∫
X
Gid,q(x−z)

∫
X
Gid′,q(x

′−z′)kq(z, z
′)dzdz′.

This covariance function subsumes several other covari-
ance functions proposed in the literature for multiple out-
put GPs, including the linear model of coregionalization
[Álvarez and Lawrence, 2011].

A general purpose expression for kfd,fd′ (x,x
′) can be

obtained by assuming that both Gid,q(·) and kq(·, ·) fol-
low Gaussian forms. The cross-covariance kfd,fd′ (x,x

′)
would then also follow a Gaussian form after solving the
double integration for X = Rp. The authors in Álvarez
and Lawrence [2011] provided a closed-form expression
for kfd,fd′ (x,x

′) for this case, when Rq = 1.

We can also use random Fourier features for kq(·, ·) in the
expression above. For the Gaussian case, since the inte-
grations are over Rp, we use a Fourier transform instead
of a Laplace transform as it was the case for the LFM. Let
us assume that both Gd,q(·) and kq(·, ·) follow Gaussian
forms,

Gd,q(τ ) = exp

[
−Pd

2
τ>τ

]
,

kq(z, z
′) = exp

[
− 1

`2q
(z− z′)>(z− z′)

]
,

where Pd is the inverse-width associated to the smooth-
ing kernel for output d, and `q is the length-scale for
the kernel of the latent function. The cross-covariance
kfd,fd′ (x,x

′) follows as

Q∑
q=1

Sd,qSd,q′

∫
X

∫
X
exp

[
−Pd

2
(x− z)>(x− z)

]
× exp

[
−Pd

′

2
(x′ − z′)>(x′ − z′)

]
kq(z, z

′)dzdz′.

Using again the Bochner’s theorem for kq(z, z′),

kq(z, z
′) =

∫
p(λ) exp(jλ>(z− z′))dλ.

Placing this form for kq(z, z′) inside the expression
for kfd,fd′ (x,x

′), and solving the integral over λ using
Monte Carlo, we get that kfd,fd′ (x,x

′) follows

Q∑
q=1

Sd,qSd,q′

S
φ>d (x, Pd,Λq)φ

∗
d′(x

′, Pd′ ,Λq),

where

φd(x, Pd,Λq) = exp

[
− 1

2Pd
bq + jΛqx

]
,

with bq =
∑
j (Λq �Λq)i,j ∈ RS×1, being � the

Hadamard product, and Λq = 1
`q

Z ∈ RS×p, where the
entries of the matrix Z are sampled from N (0, 1). Hy-
perparameters θd and `q can be estimated using similar
procedures to the ones described in section 4.

SARCOS As an illustration of the use of the kernel
above, we performed an experiment on a subset of the
SARCOS dataset described in the book by Rasmussen
and Williams [2006].3 We use a subset of the data in
the file sarcos inv.mat. In particular, we randomly
select 10000 data observations that include two outputs,
corresponding to the first two joint torques, and the first
seven inputs, corresponding to the joint positions. We then
randomly select 1000 observations for the second output
as the test data. We use the remaining 19000 for training,
this is, for hyperparameter optimization. We compare
the performance between the kernel proposed in Álvarez
and Lawrence [2011] (CMOC) and the kernel obtained
using the random Fourier response features for different
values of S. For the CMOC we optimize the marginal
likelihood as in Eq. (5), whereas for the RFRF, we use
the marginal likelihood as in Eq. (6). Table 5 reports the
NMSE and NLPD for the 1000 test observations for the
second output. These experiments were carried out using
a single core of an Intel Xeon E5-2630v3 @ 2.4 GHz.

3Available at http://www.gaussianprocess.org/
gpml/data/

http://www.gaussianprocess.org/gpml/data/
http://www.gaussianprocess.org/gpml/data/


Table 5: Results for the Sarcos Experiment.
Kernel NMSE NLPD Time [s]

RFF+GG+S50 0.34 3.58 10.14
RFF+GG+S100 0.30 3.52 18.47
RFF+GG+S200 0.26 3.44 38.55
RFF+GG+S500 0.24 3.41 64.62

RFF+GG+S1000 0.22 3.36 85.00
CMOC 0.19 3.21 353.00

We notice that the performance of the approximation
increases with S, and approaches the performance of
CMOC, keeping the computation time per iteration to a
fraction of the original one. As it was also expected, in
higher dimensions, we need a larger number of random
features to approach the performance of the CMOC.

7 RELATED WORK

Random Fourier features have been used in the literature
for Gaussian processes before. For example, in Bonilla
et al. [2016], the authors use RFFs in order to propose a
multi-task GP model that circumvents the scalability prob-
lem of the GPs. Their model for the multiple outputs uses
an affine transformation of the random features, whereas
we use a non-instantaneous transformation via the Green’s
functions. Also in Yang et al. [2015], the authors use a
faster approximation of random Fourier features via the
FastFood kernels [Le et al., 2013], for approximating the
kernel functions of a GP. Their method is not used for
multiple outputs, nor does include dynamical systems.

Latent force models have been also studied using a state-
space formulation [Hartikainen and Särkkä, 2011] and in
that line of research, low-rank approximations for comput-
ing features have also been introduced [Solin and Särkkä,
2014]. Specifically, this work approximates the covari-
ance function using the Laplace operator eigenvalues and
eigenfunctions. This formulation has been used in Svens-
son et al. [2016] to approximate the GP priors that are
placed over the functions that transform the state vector
in the update state and observation equations. Thus, it has
not been considered to approximate the GP model of the
excitation function.

Brault et al. [2016] directly build random Fourier features
for vector-valued kernels using an operator-valued version
of Bochner’s theorem. The construction is applied to the
decomposable kernel, the curl-free kernel and the div-
free kernel. In our construction, rather than starting with
a fixed form for the operator-valued kernel, we use a
general mechanism used to build valid operator kernel
functions and apply linear operators over the random
Fourier features defined for single output kernels.

8 CONCLUSIONS AND FUTURE
WORK

We have shown in this paper how to use random Fourier
features for easing the computation of the kernel func-
tions associated to LFMs. As a by-product, we have
also reduced the computational complexity of working
in multiple-output GPs fromO(D3N3) toO(DNQ2S2).
We showed experiments over datasets of different sizes
for which results with LFM are slow to compute. Our
random Fourier response features reduce computational
time without compromising performance. Also, notice
that by having decoupled the solution of the convolution
integrals from the particular form for the kernel of the
latent functions, we now can easily build kernels for latent
force models with different kernel functions in the GPs
of the latent functions, just by changing the distribution
p(λ) from which we sample from.

These novel representations of latent force models open
the path for different types of future work: the application
of random Fourier response features for building more
efficient versions of sequential LFM [Álvarez et al., 2011]
and hierarchical LFM [Honkela and et al., 2010]; the use
of physically inspired Fourier features in other Gaussian
process models, particularly, deep models [Cutajar et al.,
2017]; the use of more efficient sampling techniques for
obtaining the Fourier features, e.g. Quasi-Monte Carlo
sampling [Avron et al., 2016]. With a more efficient way
to compute kernels for multiple-outputs, we can also use
more expensive model selection approaches, for example,
those based on automatic composition of kernel functions
[Duvenaud and et al., 2013], for building more complex
covariance functions, e.g. combinations of first order
models and second order models, as sums of kernels or
as products of kernels. For the case of convolved mul-
tiple outputs GPs where the input dimension is greater
than three (compared to typical LFMs), the computation
of dense Gaussian matrices can be replaced by the prod-
uct between Hadamard matrices and diagonal Gaussian
matrices, which are faster to compute [Le et al., 2013].
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M. A. Álvarez, J. Peters, B. Schölkopf, and N. D.
Lawrence. Switched Latent Force Models for Move-
ment Segmentation. In J. Shawe-Taylor, R. Zemel,
C. Williams, and J. Lafferty, editors, Advances in Neu-
ral Information Processing Systems 24, pages 55–63.
MIT, 2011.
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