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Abstract

The goal of many machine learning
tasks is to learn a model that has small
population risk. While mini-batch
stochastic gradient descent (SGD) and
variants are popular approaches for
achieving this goal, it is hard to pre-
scribe a clear stopping criterion and to
establish high probability convergence
bounds to the population risk. In this
paper, we introduce Stable Gradient
Descent which validates stochastic gra-
dient computations by splitting data
into training and validation sets and
reuses samples using a differential pri-
vate mechanism. StGD comes with a
natural upper bound on the number
of iterations and has high-probability
convergence to the population risk. Ex-
perimental results illustrate that StGD
is empirically competitive and often
better than SGD and GD.

1 INTRODUCTION

The primary goal in several machine learning
tasks is to learn a model with finite training
samples that generalizes well to unseen instances.
One typically attempt to solve the following
optimization problem which finds a minimizer
w? of the population risk F over some model
class W:

w? ∈ argmin
w∈W

F (w) , Ez∼P [l(w, z)] , (1)

where z ∈ Z is a data point in domain Z follow-
ing the unknown distribution P , and l :W×Z 7→
R is a certain loss function associated with the
learning problem. For example, in classification
problems z = (x, y) is an instance-label pair, w
denotes a classifier, and l(w, z) can be the hinge
loss or logistic loss.
Due to the unavailability of distribution P, the
challenge of a learning algorithm is to search
for an approximate minimizer ŵn of the risk
F based only on a set of finite samples Zn =
{z1, z2, ..., zn}. A good criterion for quantifying
the quality of ŵn is through the excess risk:

F (ŵn)− F (w?) . (2)

A learning algorithm for obtaining ŵn should
have small excess risk. Being a function of the
random set of samples Zn, F (ŵn) is a random
variable and a good learning algorithm is ex-
pected to have small excess risk with high prob-
ability.
In the literature, there are several approaches
to tackle the problem. The classical approach
is empirical risk minimization (ERM) (Shalev-
Shwartz and Ben-David [2014]) which aims to
find an empirical minimizer defined as ŵERMn ∈
argminw∈W F̂ (w) , 1

n

∑n
j=1 l(w, zj). Usually

first-order iterative optimization methods such
as gradient descent (GD) are used to obtain
the minimizer. However, GD uses all samples
to compute gradients in each iteration and is
quite slow for large datasets. A popular ap-
proach in modern machine learning is stochastic
gradient descent (SGD)(Zhang [2004];Rakhlin
et al. [2012];Hazan and Kale [2014]). SGD



minimizes the population risk directly by de-
scending along stochastic gradients, computed
based on a single sample or a mini-batch of
samples. The stochastic gradient equals the pop-
ulation gradient in expectation (Shalev-Shwartz
and Ben-David [2014]). Convergence of SGD
is typically analyzed in expectation rather than
with high probability with a few notable excep-
tions(Rakhlin et al. [2012]). In practice, since
the improvements in the objective function value
is non-monotonic, it is hard to prescribe a theo-
retically well grounded stopping criterion.
Conceptually, a mini-batch SGD algorithm
would be much more well behaved if we had
access to n fresh samples in each iteration. In
such a setting, one would be able establish high
probability bounds on the sample gradients stay-
ing close to the population gradient across all
iterations, leading to high probability bounds
on the excess risk. In this paper, we introduce
Stable Gradient Descent (StGD), which behaves
similar to the ideal case of n fresh samples per
iteration using ideas from adaptive data analysis
(Dwork et al. [2015c]) and differential privacy
(Dwork and Roth [2014]). Each iteration leads to
a small privacy loss which, unlike SGD, automat-
ically puts a bound on the number of iterations
StGD can be run. We present basic and mini-
batch StGD and provide high probability bounds
on the excess risk for different types of convex
loss functions.
The main idea in StGD is simple: separate the
available samples into a training and a valida-
tion set, compute stochastic gradient on both,
and check if they are close. If they are indeed
close, there is confidence in that descent direc-
tion and StGD proceeds with the descent. On
the other hand, if they are not close, there is lack
of confidence in the descent direction, and StGD
uses a noisy version of the estimated gradient
to do descent. The challenge in naively carrying
out the simple idea is that the algorithm may
overfit on both the training and the validation
set. As a result, StGD carries out the compar-
ison of training and validation gradients using
a differentially private mechanism, which allows
StGD to reuse the same samples over iterations

but still get high probability bounds across all
iterations as if the samples were fresh.
The remainder of the paper is organized as fol-
lows. Section 2 describes related work. We
present basic StGD in Section 3, and present
min-batch StGD in Section 4, along with high
probability excess risk bounds. We present ex-
perimental results in Section 5, and conclude in
Section 6. All technical proofs are deferred to
the supplementary material.

2 RELATED WORK

ERM and SGD: For ERM, a common algo-
rithm is gradient descent (Shalev-Shwartz and
Ben-David [2014]) which computes the full gra-
dient of the empirical risk and takes a step along
it at each iteration. The performance of ERM
is usually measured in terms of the uniform
convergence of F̂ (w) to F (w) over W. (Hardt
et al. [2015]) analyzed the stochastic gradient
method (SGM) for ERM in terms of stability
and optimization error: E[F (ŵn)] − F (w?) ≤
εopt(w) + εstab. They demonstrated that for L-
Lipschitz continuous function, SGM has the con-
vergence rate of O(L/

√
n). SGD minimizes the

population risk by allowing the optimization pro-
cedure to take a step along a random direction,
as long as the expected value of the direction
is the population gradient (Shalev-Shwartz and
Ben-David [2014]). In this case, with n to be the
number of stochastic gradient computations. For
strongly convex functions, SGD can achieve an
expectation risk bound of rate O(1/n) (Hazan
and Kale [2014],Rakhlin et al. [2012]). (Rakhlin
et al. [2012]) also presented a similar high prob-
ability bound for SGD.
Differential Privacy: Informally, differential
private analysis ensures that the outcome of
analysis on two nearly identical input datasets
(different on a single component) should also be
nearly identical. As a result, an analyst will
not be able to distinguish any single data by
comparing the change of output. In the context
of machine learning, this randomized algorithm
M can be a learning algorithm that outputs a
classifier M(D) = f where D is the training
set. Some work (Chaudhuri et al. [2011], Bass-2



ily et al. [2014]) introduced differential privacy
to ERM to protect sensitive information about
training data. (Dwork et al. [2015b], Dwork et al.
[2015a]) introduced differential privacy to adap-
tive data analysis (ADA). In ADA, analyst test
adaptively generated hypotheses on one holdout
set where those hypotheses have dependence on
the holdout set. To ensure the repeatedly used
holdout set to provide valid validations, they
designed a Thresholdout mechanism which al-
lows the analyst to query the holdout set via a
differentially private way. They showed differen-
tially private reused holdout set maintains the
statistical nature of fresh sample.
The main contribution of this paper is, we in-
troduce differential privacy to gradient descent
by applying Thresholdout to the training set.
We show that the training set can be reused
and maintains the statistical nature of fresh
sample in all iterations. Mathematically speak-
ing, gradients computed on the differentially-
private reused training set concentrate around
the population value with high probability. We
exploit the concentration property to derive high-
probability risk bounds of StGD.

3 STABLE GRADIENT DESCENT

3.1 PRELIMINARIES

We consider the problem of minimizing the pop-
ulation risk defined in Equation 1. We denote
∇l(w, z) as the gradient of l(w, z). We use ∇il(·)
to denote the i-th coordinate of ∇l(·). Besides,
we use gi(w), g̃i(w) and ĝi(w) to be the i-th coor-
dinate of g(w) (population gradient), g̃(w) (gra-
dient computed by StGD) and ĝ(w) (empirical
gradient), respectively, for i ∈ {1, ..., d}, where
d is the dimension of w. For example, given the
sample set S, ĝ(w) =

∑
zj∈S ∇l(w, zj)/|S|. We

consider some special cases of F (w) with the
following assumptions(Boyd and Vandenberghe
[2004]):
1. Convex and L-Lipschitz: Function F is
convex with L-Lipschitz if for all w,w′ ∈ W and
L ≥ 0:

|F (w′)− F (w)| ≤ L‖w′ − w‖.

2. Strongly Convex: Formally, a function F

Algorithm 1 Stable Gradient Descent (StGD)
Algorithm

1: Input: Dataset S, certain loss l(·), initial
point w0.

2: Set: Noise variance σ, iteration time T , step
size η.

3: Separate S randomly and evenly into St and
Sh.

4: for s = 0, ..., T do
5: Run DPGC(St, Sh, ws, σ, l(·)) to compute

gradient g̃(ws).
6: ws+1 = ws − ηg̃(ws).
7: end for

is α-strongly convex, if for all w,w′ ∈ W and
any subgradient g(w) of F at w, we have

F (w′) ≥ F (w) + (w′ − w)T g(w) + α

2 ‖w′ − w‖
2.

3. Smooth: We say a function F is β-smooth,
if w,w′ ∈ W and any subgradient g(w) of F at
w, we have

F (w′) ≤ F (w) + (w′ − w)T g(w) + β

2 ‖w′ − w‖
2.

3.2 STGD ALGORITHM

We present StGD in two parts: Algorithm 1 and
Algorithm 2 (DPGC). To simplify, we suppose
there are 2n available samples S ∼ P2n. The
StGD randomly and evenly separates them into
two datasets: training set St and validation set
Sh, both of which are of size n. We set a noise
parameter σ and the total iterations T . We
analyze the optimal values of parameters σ and
T in the next section. Starting from initial point
w0, at each s-th iteration, StGD runs DPGC
(Algorithm 2) to query the training set St in
order to obtain an estimated gradient g̃(ws),
then updates the ws+1 based on g̃(ws) (line 5, 6
in Algorithm 1).
We present the pseudo-code of DPGC in
Algorithm 2. DPGC unrestrictedly ac-
cesses the validation set Sh, but accesses St
via a differentially private way: Given ws,
DPGC first computes gradients on St and
Sh: gt(ws) =

∑
zi∈st ∇l(ws, zi)/|St|, g

h(ws) =3



Algorithm 2 Differentially Private Gradient
Computation (DPGC)

1: Input: Dataset St and Sh, parameter ws,
noise variance σ, loss l(·).

2: Compute gradients gt(ws) and gh(ws):
gt(ws) =

∑
zi∈st ∇l(ws, zi)/|St|,

gh(ws) =
∑
zi∈sh ∇l(ws, zi)/|Sh|.

3: for i= 1,...,d do
4: Sample ξ ∼ Lap(σ), γ ∼ Lap(2 · σ),

τ ∼ Lap(4 · σ).
5: if |gti(ws)− ghi (ws)| > γ + τ then
6: g̃i(ws) = gti(ws) + ξ.
7: else
8: g̃i(ws) = ghi (ws).
9: end if

10: end for
11: Return: g̃(ws) .

∑
zi∈sh ∇l(ws, zi)/|Sh|. Second, for each coordi-

nate i ∈ {1, ..., d}, DPGC validates gti(ws) with
ghi (ws) (line 5-line 8 in Algorithm 2): If their
absolute difference is beyond the threshold γ+τ ,
DPGC outputs gti(ws) with noise. Otherwise,
DPGC returns ghi (ws).

3.3 CONVERGENCE ANALYSIS
We assume that for every i-th coordinate, the
gradient function |∇il(w, z)| ≤ G for a fixed
constant G. Given an n-sample set S ∈ Zn
and a fixed w0 that is chosen independent of
the dataset S, ĝi(w0) =

∑
zj∈S ∇il(w0, zj)/n

and gi(w0) = Ez∼P [∇il(w0, zj)], by Hoeffding’s
bound, we have the concentration as

P{|ĝi(w0)− gi(w0)| > σ} 6 2 exp
(
−2nσ2

4G2

)
. (3)

In general, updating w1 through typical gra-
dient descent: w1 = w0 − ηĝ(w0), the above
concentration bound does not hold for ĝi(w1) =∑
zj∈S ∇il(w1, zj)/n, because w1 is no longer in-

dependent of dataset S. In the next lemma,
we demonstrate that w1, w2, ..., wT updated by
a differential private mechanism have similar
concentration bounds as described in Equation
3.
Lemma 1. LetM be an ε-differentially private
gradient descent algorithm and St ∼ Pn be the

training set. Let ws =M(St) be the correspond-
ing output for s ∈ 1, ..., T and ĝ(ws) be the em-
pirical gradient on St. For any σ > 0, i ∈ 1, ..., d
and s ∈ 1, ..., T , setting ε 6 σ

2G ensures

P{|ĝi(ws)− gi(ws)| > σ} 6 6
√

2 exp
(
−nσ2

4G2

)
. (4)

Lemma 1 illustrates that differential privacy en-
ables the reused training set to maintain the
statistical guarantee as a fresh set under the con-
dition that the privacy parameter ε is bounded
by the estimation error σ. Next, we analyze the
privacy parameter ε of StGD.
Lemma 2. StGD satisfies 2TG

nσ -differentially
private.

In order to achieve the gradient concentration
bound described in Lemma 1 by considering the
guarantee of Lemma 2 (i.e. to guarantee that for
every ws, we have P{|ĝi(ws) − gi(ws)| > σ} 6
6
√

2 exp(−nσ2

4G2 )), we need to set 2TG
nσ 6 σ

2G so
that we achieve ε-differential privacy for ε 6 σ

2G .
As a result, we get the upper bound of itera-
tion time T in StGD as T = σ2n

4G2 . Next theo-
rem shows that across all iterations, gradients
produced by StGD maintain high probability
concentration bounds.
Theorem 1. Given parameter σ > 0, let
w1, w2, ..., wT be the adaptively updated points
by StGD and g̃(w1), ..., g̃(wT ) be the correspond-
ing output gradient. If we set T = σ2n

4G2 , then for
all s ∈ 1, ..., T and for all t > 0, we have

P{ ‖g̃(ws)− g(ws)‖2 > d(6t+ 1)2σ2}
6 2d exp(−t) + 6

√
2d exp

(
−nσ2

4G2

)
.

(5)

Theorem 1 concludes that the gradient g̃(ws)
produced by StGD concentrates to the popula-
tion gradient g(ws) and the concentration error
is tightly around (6t + 1)2σ2. Increasing noise
parameter σ increases the privacy guarantee as
well as the total number of iterations, but also
increases the concentration error. Decreasing σ
has the opposite effect. We consider StGD in
two cases: 1) F is L-Lipschitz and α-strongly
convex; 2) F is β-smooth and α-strongly convex.
For these two cases, we present the best value
of σ for the trade-off between statistical rate4



and optimization rate which depends on num-
ber of iterations in order to achieve the optimal
risk bound. To simplify the result, we use the
notation ρn,d = lnn+ ln d.
Theorem 2. For L-Lipschitz and α-strongly
convex function F , given 2n available samples,
set noise parameter σ2 = 4G2ρn,d/

√
n, step size

ηs = 2
α(s+1) and iteration time T = ρn,d

√
n

for StGD. Let ŵn =
∑T
s=0ws/(T + 1), StGD

achieves:

F (ŵn)− F (w?) 6 O
( ln(

√
nρn,d)√
nρn,d

)
+O

(
dρ3
n,d√
n

)
,

(6)
with probability at least 1−O(ρn,d√

n
)

The first term of the risk bound in Theorem 2 cor-
responds to typical strongly convex optimization
rate O(lnT/T ) (Bubeck [2015]) ( T = ρn,d

√
n in

our case) and is similar to the high probability
bound of SGD analyzed in Rakhlin et al. [2012].
The second term comes from the statistical er-
ror that depends on available sample size n and
dimension d.
Theorem 3. For β-smooth and α-strongly con-
vex function F , given 2n available samples, set
noise parameter σ2 = ρn,d(4G2α+β)2

nαβ , step size
η = 1

α+β and iteration time T = (κ+ 1
κ + 2)ρn,d

where κ = β/α. Let ŵn = wT be the output of
StGD, we have the following excess risk bound:

F (ŵn)−F (w?) 6 O

(
‖w1 − w?‖2

n

)
+O

(
dρ3
n,d

n

)
(7)

with probability at least 1−O
(
ρn,d
n4d3

)
.

The risk bound in Theorem 3 is also composed of
optimization term and statistical term (same for
the subsequent theorems). Factor ‖w1 − w?‖2
implies a good initial point can be beneficial.
In terms of computational complexity, StGD re-
peats O(lnn) iterations on n samples. It requires
a complexity of O(n lnn) gradient computations.

4 MINI-BATCH EXTENSIONS

In this section, we extend StGD to its mini-
batch version for large-scale machine learning
tasks. We first introduce a simple mini-batch

Algorithm 3 mini-batch SGD
1: Input: Dataset S, loss l(·), initial point w0
2: Set: Step size η, batch size m.
3: Separate S into T parts: S0, ..., ST−1 with
m samples each part.

4: for s = 0, ..., T − 1 do
5: Compute gradient ĝ(ws) on Ss
6: ws+1 = ws − ηs · ĝ(ws)
7: end for

SGD algorithm, then we present the differentially
private algorithm mini-batch StGD.
The mini-batch SGD algorithm is described in
Algorithm 3. The available set is first partitioned
into T batches withm samples each batch. Then
Algorithm 3 updates ws based on the gradient
computed on each batch. Mini-batch SGD ter-
minates after a single pass over all batches. The
following theorem analyzes the risk bound of
mini-batch SGD.
Theorem 4. Given 2n available samples,
mini-batch SGD can achieve the following:

1. F is L-Lipschitz and α-strongly con-
vex: If we set the step size ηs = 2

α(s+1) , batch
size m =

√
n and iteration time T = 2n/m,

output ŵn =
∑T
s=1ws/T of mini-batch SGD sat-

isfies:

F (ŵn)− F (w?) 6 O
(

ln(
√
n+1)√
n

)
+O

(
d ln
√
n√

n

)
(8)

with probability at least 1− d/
√
n.

2. F is β smooth and α-strongly convex:
If we set the step size η = 1

α+β , m = αβn
(α+β)2 lnn ,

T = 2n/m, output ŵn = wT of StGD satisfies:
F (ŵn)− F (w?) 6 O

(
‖w1−w?‖2

n

)
+O

(
d ln2 n
n

)
(9)

with probability 1−O
(

lnn
n

)
.

(Frostig et al. [2015]) proposed a variant of mini-
batch SGD that also does a single pass of the
available data. For smooth and strongly convex
function, they established a convergence rate of
O(1/n) in expectation that is similar to the rate
in Theorem 4.5



Algorithm 4 mini-batch StGD
1: Input: Dataset S, loss l(·), initial point w0
2: Set: Step size η, batch size m, inner itera-

tions T1, noise σ
3: Separate S into T parts: S0, ..., ST−1 with
m samples each part.

4: for s = 0, ..., T − 1 do
5: ws+1 = StGD(ws, Ss, η, T1, σ)
6: end for

The mini-batch version of StGD is given in Algo-
rithm 4 (mini-batch StGD) that is also a private
version of mini-batch SGD: For each batch Ss,
where s ∈ {0, ..., T − 1}, call StGD to query Ss
and update ws+1 as the initial point for next
batch Ss+1. In each call, there are T1 inner
iterations that StGD queries Ss for T1 times
through DPGD. Let w̃0 = ws as the initial point
in each call, then sub-algorithm StGD updates
w̃k+1 = w̃k + ηg̃(w̃k) for k = {0, ..., T1 − 1} and
ws+1 = w̃T1 .
Theorem 5. Given 2n available samples,
mini-batch StGD can achieve the following:

1. F is L-Lipschitz and α-strongly con-
vex: If we set the step size ηs = 2

α(s+1) , batch
size m =

√
n, T = 2n/m, noise parame-

ter σ2 = 8G2 lnn/
√
n and T1 = lnn, output

ŵn =
∑T
s=1ws/T of mini-batch StGD satisfies:

F (ŵn)− F (w?) 6 O
(

ln(
√
n+1)√

n lnn

)
+O

(
ln3 n√
n

)
(10)

with probability at least 1− d/
√
n.

2. F is β smooth and α-strongly convex:
If we set the step size η = 1

α+β , m = αβn
(α+β)2 lnn ,

T = 2n/m, T1 = lnn , noise parameter σ2 =
4G2(α+β)2(lnn)2

αβn , output ŵn = wT of mini-batch
StGD satisfies:

F (ŵn)− F (w?) 6 O
(
‖w1−w?‖2

nlnn

)
+O

(
d ln4 n
n

)
(11)

with probability at least 1−O
(

ln2 n
n

)
.

Theorem 5 shows that, compared to the basic
mini-batch SGD (Theorem 4), the private ver-

sion improves the rate of the first term for both
types of functions.

5 EXPERIMENTS

In this section, we conduct experiments to evalu-
ate performances of the proposed algorithms on
artificial data and real world data. We divide our
experiments into three sets to address questions:
(i) How do the StGD and the mini-batch StGD
perform regarding the convergence to the pop-
ulation optimum? (ii) For small datasets, how
does StGD perform compared to SGD and GD.
(iii) For large datasets, does mini-batch StGD
outperform SGD and mini-batch SGD? After
discussing the experimental setup, we evaluate
these questions empirically in Sections 5.2, 5.3,
and 5.4 respectively.

5.1 EXPERIMENTAL SETTING

Datasets: We use both artificial datasets and
real-world datasets for our experiments. We dis-
cuss the datasets in two categories: the small
datasets (i.e., small artificial dataset, breast can-
cer, diabetes and german.numer) for StGD, SGD
and GD, and large datasets (i.e., large artifi-
cial dataset, cove type, rcv1 and real-sim) for
mini-batch StGD, SGD and mini-batch SGD.
All the real-world datasets are from LIBSVM
(Chang and Lin [2011]). The real-world datasets
are described in the Table 1. The small arti-
ficial dataset, consists of 50 features and one
label: zi = (xi, yi) ∈ R50 × {1,−1}. The large
artificial dataset consists of 500 features and
one label: zi = (xi, yi) ∈ R500 × {1,−1}. The
value of each feature is random noise, drawn
i.i.d. from normal distribution N(0, 1). To gen-
erate the label, we first set an optimal minimizer
w? ∈ R50 for small datasets and w? ∈ R500 for
large datasets. Then, we draw the label yi cor-
responding to xi from the Bernoulli distribution
yi ∼ B( 1

1+exp(−w?Txi) ,
exp(−w?Txi)

1+exp(−w?Txi)).
Evaluation Metrics: We measure the perfor-
mance of these algorithms for binary classifica-
tion problem with linear models. We focus on
the smooth and strongly convex loss function
case and define the loss function F to be the6



Table 1: Datasets
Datasets Data size Features

breast cancer 683 10
diabetes 768 8

german.numer 1000 24
cove type 581012 54

rcv1 697641 47236
real-sim 72309 20958

logistic loss. Thus, the population risk is

F (w) = E[ln(1 + exp(−yiwTxi))]. (12)

Given a training set of instance-label pairs
{xi, yi}ni=1 the empirical risk is

F̂ (w) = 1
n

n∑
i=1

ln(1 + exp(−yiwTxi))]. (13)

The population optimum is

F (w?) = E[ln(1 + exp(−yiw?Txi))]. (14)

We use ŵn to be the output trained on n sam-
ples. We evaluate these algorithms in terms
of the excess risk F (ŵn) − F (w?) and test er-
ror rate for artificial datasets. Since we cannot
know the population optimum F (w?) out of the
expectation, we let the loss computed on a large
fresh set (2000 fresh samples for small data case,
20000 fresh samples for large data case) to rep-
resent the population risk. As for the real-world
datasets, since the population minimizer is un-
known, we evaluate these algorithms based on
the test loss and test error rate.
Setup and parameters: We set w0 = {1}d
as the initial point for artificial datasets and
w0 = {0}d for real-world datasets. As for the
step size, we use the typical η = a1/

√
n for

SGD, η = a2 for StGD, mini-batch SGD and
mini-batch StGD (which is the default setting
in our theoretical analysis) and η = a3 for GD.
The above a1, a2 and a3 are all constants and we
use grid search to find the best values of them
for different datasets. As for the iteration times,
given the training set with size n and d features,
we set 500 iterations for GD and 10∗ (lnn+ln d)
for StGD. SGD stops iteration after a single
pass over all training samples. Mini-batch StGD
has batch size n/ lnn and ln2 n iterations. Mini-
batch SGD has the same batch size, but lnn

iterations. Finally, we set the noise parameter
σ = (lnn + ln d)/n for StGD and σ = ln2 n/n
for mini-batch StGD.

5.2 EVALUATIONS OF STGD

In the first set of experiments, we validate the
theoretical promise of StGD and mini-batch
SGD on artificial datasets. To show the con-
vergence in terms of the sample size n, we
sample a series of artificial datasets with size
n ∈ {50, 100, 150, ..., 2000} and run these algo-
rithms on those datasets. To show how feature
size d influences the convergence of StGD, we
generate samples with feature size d = 100 and
d = 150 and report corresponding risks. We
repeat the experiment 50 times and report the
mean and standard deviation of the results.
We report the population risks (test loss on the
large fresh set) F (ŵn), empirical risks (train loss)
F̂ (wn), population optimum (estimated by the
large fresh set) and excess risks F (ŵn)− F (w?).
Fig. 1 (a) and Fig.1 (c) illustrate the convergence
rate of StGD and mini-batch SGD respectively.
As n increases, the population risks of StGD
and mini-batch StGD converge to population
optimum. Fig. 1 (b) and (d) show how the
feature size d influences the convergence rate.
Larger d implies a slower convergence rate.

5.3 COMPARISON of STGD, SGD
AND GD

In the second set of experiments, we compare
StGD, SGD and GD on small datasets in terms
of excess risk/test loss and test error rate. For
the real-world datasets, we first sample 20% data
points from the whole datasets to be the test set,
and let the remaining samples to be the train
set. Afterwards, we sample a series of datasets
with size n ∈ {10, 20, ..., 250} (for diabetes and
breast cancer) and n ∈ {20, 40, ..., 400} (for ger-
man.numer) from the remaining train set and
run these algorithms on those datasets. The
artificial data split is the same as the first set
experiment. Given each n, we train the model
and report the loss and error rate on the test
set. We repeat the above procedure 10 times
and report the mean and standard deviation of7



(a) (b) (c) (d)
Figure 1: The StGD and mini-batch StGD on artificial data. (a) The risks of StGD. (b) The excess risks of StGD with
different data dimension d. (c) The risks of mini-batch StGD. (d) The excess risks of mini-batch StGD with different data
dimension d. The X-axis is the number of samples, and the Y-axis is the Risk/Loss.

Figure 2: Compare the StGD, SGD and GD on both artificial datasets and small real-world datasets. The X-axis and the
Y-axis refer to Fig. 1. The excess risk of StGD converges as fast as GD on artificial dataset. The StGD outperforms GD
and SGD in terms of the test loss on real-world datasets.

Figure 3: Compare the StGD, SGD and GD on both artificial dataset and small real-world datasets. The X-axis and
the Y-axis refer to Fig. 1. The StGD outperforms GD and SGD in terms of the test error rate on artificial dataset and
real-world datasets.

Figure 4: Compare the mini-batch StGD, SGD and mini-batch SGD on both artificial dataset and large real-world datasets.
The X-axis and the Y-axis refer to Fig. 1. The excess risk of mini-batch StGD converges as fast as GD on artificial dataset.
The mini-batch StGD outperforms SGD and mini-batch SGD in terms of the test loss on real-world datasets.

the results.
Fig. 2 presents the excess risks and test losses
on four small datasets of the three algorithms
and Fig. 3 compares the test error rates. For
artificial datasets, StGD performs nearly the

same as GD in terms of the excess risks and
test error rates. For diabetes, breast cancer
and german.numer, StGD converges better than
GD. In terms of the variance, these three algo-
rithms perform more variance on real-world data

8



Figure 5: Compare the mini-batch StGD, SGD and mini-batch SGD on both artificial dataset and large real-world datasets.
The X-axis and the Y-axis refer to Fig. 1. The test error rate of mini-batch StGD converges as fast as GD on artificial
dataset. The mini-batch StGD outperforms SGD and mini-batch SGD in terms of the test error rate on real-world datasets.

than artificial data. The variance of the losses
and error rates from repeated runs come form
the training data and the algorithm themselves.
The noise amount in StGD and the size of the
training sample play an important role in vari-
ances. Repeating training the models with small
dataset brings out large variance. Fig. 2 and
Fig. 3 show that the variances decrease as the
sample size increases.

5.4 COMPARISON of MINI-BATCH
SGD, MINI-BATCH STGD AND
SGD

In the third set of experiments, we com-
pare mini-batch StGD, mini-batch SGD and
SGD on large datasets. For the real-world
datasets, the train and test data split is the
same as the second set experiment. From
the train set, we sample a series of datasets
with size n ∈ {100, 300, ..., 50000} for artifi-
cial data, n ∈ {100, 200, ..., 20000} for cove
type, n ∈ {100, 500, ..., 100000} for rcv1 and
n ∈ {100, 500, ..., 70000} for real-sim. Given
each n, we train the model and report the loss
and error rate on the test set. We repeat the
above procedure 10 times and report the mean
and standard deviation of the results.
The excess risks on artificial dataset and the test
losses on real-world datasets are shown in Fig. 4
and the test error rates is given in Fig. 5. The re-
sults show mini-batch StGD achieves the lowest
test loss and test error rate for four datasets and
lowest variance for cover type (three algorithms
perform low variance in the other three datasets).
Compared to training with small datasets (Fig.2
and Fig. 3), we observe less variance with large

datasets.

6 CONCLUSION

In this paper, we study the optimization prob-
lems in machine learning. Considering the dif-
ficulty of obtaining new samples for gradient
descent to approximate population gradient, we
propose a stable gradient descent algorithm
based on adaptive data analysis and differen-
tial privacy. We demonstrate StGD works as a
basic gradient descent which has access to fresh
sample at each iteration. Furthermore, we the-
oretically analyze that the proposed algorithm
converges fast to the population optimum with
high probability. Finally, we compare the pro-
posed algorithm with existing methods in exper-
iments. The empirical evaluation illustrate the
promise of the proposed algorithm and demon-
strated it outperforms existing methods.
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