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Abstract

Recent stochastic quadrature techniques for
undirected graphical models rely on near-
minimax degree-k polynomial approximations
to the model’s potential function for inferring
the partition function. While providing de-
sirable statistical guarantees, typical construc-
tions of such approximations are themselves
not amenable to efficient inference. Here, we
develop a class of Monte Carlo sampling algo-
rithms for efficiently approximating the value
of the partition function, as well as the asso-
ciated pseudo-marginals. More precisely, for
pairwise models with n vertices and m edges,
the complexity can be reduced from O(dk)
to O(k4 + kn + m), where d ≥ 4m is the
parameter dimension. We also consider the
uses of stochastic quadrature for the problem
of maximum-likelihood (ML) parameter esti-
mation. For completely observed data, our
analysis gives rise to a probabilistic bound
on the log-likelihood of the model. Maxi-
mizing this bound yields an approximate ML
estimate which, in analogy to the moment-
matching of exact ML estimation, can be inter-
preted in terms of pseudo-moment-matching.
We present experimental results illustrating the
behavior of this approximate ML estimator.

1 INTRODUCTION

The major source of complexity in the course of param-
eter estimation for undirected graphical models is the
#P-hardness of the partition function (Valiant, 1979; Bu-
latov and Grohe, 2004). This quantity plays a funda-
mental role in various contexts, including approximate
inference, maximum-likelihood (ML) parameter estima-
tion, and large deviations analysis—to mention just a

few. For a general undirected model, exact computation
of this partition function is intractable; therefore, devel-
oping approximations and bounds is an important prob-
lem. The dominant approaches in this area are Markov
Chain Monte Carlo (MCMC) sampling approaches (An-
drieu et al., 2003) and variational inference (Wainwright
and Jordan, 2008). While both directions work very well
in practice, theoretical quality guarantees cannot be as-
serted. Some of the existing techniques indeed deliver
error bounds, but the error cannot be quantified without
making assumptions that go beyond the ordinary varia-
tional principle or sampling procedures.

Our recent stochastic quadrature technique (Piatkowski
and Morik, 2016) for undirected graphical models relies
on a near-minimax degree-k polynomial approximation
to the model’s potential function for inferring the parti-
tion function. While providing desirable statistical guar-
antees, typical constructions of such approximations are
themselves not amenable to efficient inference. Here, we
develop a class of Monte Carlo sampling algorithms for
efficiently approximating the value of the partition func-
tion, as well as the associated pseudo-marginals.

Our contributions can be summarized as follows:

• We provide a Monte Carlo sampling procedure that
reduces the complexity of the stochastic quadrature
inference method from O(dk) to O(k4 + kn + m)
when certain combinatorial quantities are precom-
puted. An empirical evaluation shows that our new
method is several orders of magnitude faster than
the existing approach.

• We provide the first stochastic quadrature based al-
gorithm for marginal inference, and thus, for ap-
proximate maximum-likelihood parameter estima-
tion. Experimental results show that approximate
log-likelihood and predicted marginal probabilities
are close to their exact counterparts.

• We explain how the stochastic quadrature can be ap-



plied to models with continuous random variables.

• Our results are derived from first-principles and
work with any discrete and some continuous expo-
nential family members.

2 NOTATION AND BACKGROUND

Let us summarize the notation and background neces-
sary for subsequent development. The set that con-
tains the first n strictly positive integers is denoted by
[n] = {1, 2, . . . , n}.

Graphical Models: An undirected graph G = (V,E)
consists of n = |V | vertices, connected via edges
(v, w) ∈ E. For each vertex v ∈ V , we denote the
set of adjacent vertices by N (v). A clique C is a fully-
connected subset of vertices, i.e., ∀v, w ∈ C : (v, w) ∈
E. The set of all cliques of G is denoted by C. Here,
any undirected graph represents the conditional inde-
pendence structure of an undirected graphical model or
Markov random field (MRF). To this end, we identify
each vertex v ∈ V with a random variable Xv tak-
ing values in the state space Xv . The random vector
X = (Xv : v ∈ V ) contains the joint state of all ver-
tices in some arbitrary but fixed order, taking values x in
the Cartesian product space X =

⊗
v∈V Xv . Moreover,

we allow to access these quantities for any proper subset
of variables S ⊂ V , i.e., XS = (Xv : v ∈ S), xS , and
XS , respectively.

Exponential Families: Markov random fields with
strictly positive density can be represented via exponen-
tial family members, which have been studied exten-
sively during the last century, e.g. (Pitman, 1936; Ham-
mersley and Clifford, 1971; Besag, 1975; Wainwright
and Jordan, 2008). The probability density of X w.r.t.
some probability measure Pθ can hence be written as

pθ(x) = exp(〈θ, φ(x)〉 −A(θ)) (1)

where θ ∈ Rd is the d-dimensional parameter vector,
and φ(x) is a statistic, sufficient for θ—it captures all
properties of X which are relevant for inferring θ, i.e.,
P(θ ∈ Ω | φ(x)) = P(θ ∈ Ω | x) for all Ω ⊆ Rd. Nor-
malization of pθ is guaranteed via A(θ) = lnZ(θ) =
ln
∫
X exp(〈θ, φ(x)〉) d ν(x) w.r.t. some base measure

ν. Different base measures allow for either discrete of
continuous random variablesX (Wainwright and Jordan,
2008). When X is discrete, the statistic φ(x), given via
φ(x)C=y =

∏
v∈V δ{xC=y} with y ∈ XC , is always

sufficient for θ. Here, δ{expression} is the indicator func-
tion that evaluates to 1 if and only if the expression is
true, and 0 otherwise. Note that each dimension of φ,

say φ(x)i, corresponds to φ(x)C=y . That is, we have an
equivalence between indices i ∈ [d] and pairs of clique
C ∈ C and clique-state y ∈ XC , in short: i ≡ (C,y).
Thus, we have d =

∑
C∈F |XC | dimensions in total.

This kind of sufficient statistic is also called overcom-
plete. In various applications (Ising, 1925; Sutton and
McCallum, 2011), the dimensionality of the model is re-
duced by assuming a pairwise factorization. Only cliques
of size ≤ 2 are considered in this case, which implies
d ≤

∑
v∈V |Xv|+

∑
{v,w}∈E |Xv||Xw|.

Quadrature: Whenever integrating a function f is not
tractable, one may resort to numerical methods in order
to approximate the definite integral I[f ] =

∫ u
l
f(z) d z.

A different way of performing numeric integration are
general quadrature rules. There, the basic idea is to re-
place the integrand f by an approximation h ≈ f , that
admits tractable integration. It turns out, that choosing
h = hk to be a degree-k Chebyshev polynomial approx-
imation of f , delivers highly accurate results, due to the
equioscillation property implied by near-minimax opti-
mality. The general quadrature procedure can be sum-
marized as∫ u

l

f(x)dx ≈
∫ u

l

hk(x)dx =

k∑
i=0

wif(xi) = Ik[f ]

where wi are certain coefficients and xi are certain ab-
scissae in [l, u] (all to be determined) (Mason and Hand-
scomb, 2002).

In general, any polynomial approximation works. It can
be shown that an optimal (w.r.t. the lp-norm) degree-
k polynomial approximation hk of any function f on a
fixed interval [l;u] always exists and is uniquely char-
acterized by the equioscillation property (Mason and
Handscomb, 2002). That is, the error function E(z) =
f(z) − hk(z) oscillates on [l;u] and has exactly k + 2
extrema (Jr., 1966).

Due to their oscillation property, Chebyshev polynomials
are an important building block in the construction and
analysis of minimax optimal approximations. Cheby-
shev polynomials are specified by the fundamental re-
currence relation

T0(z) = 1, T1(z) = z, Tk(z) = 2zTk−1(z)− Tk−2(z) .

They have an extraordinary large variety of convenient
properties, like rapidly decreasing and individually con-
verging coefficients (Gautschi, 1985), which make them
ubiquitous in virtually any field of numerical analysis.
An excellent discussion of Chebyshev polynomials in
general, can be found in (Mason and Handscomb, 2002).
Depending on the choice of interpolation points and
different kinds of orthogonality properties, Chebyshev



polynomial based quadrature rules are termed Gauss-
Chebyshev quadrature, Fejér quadrature or Clenshaw-
Curtis quadrature (Clenshaw and Curtis, 1960).

Putting all together, the (deterministic) quadrature ap-
proximation to the partition function Z(θ) is

Z(θ) =

∫
X

exp(〈θ, φ(x)〉) d ν(x)

≈
∫
X

ˆexpkζ(〈θ, φ(x)〉) d ν(x) = Ẑkζ (θ) , (2)

where ˆexpkζ is a degree-k Chebyshev approximation
to the exponential function on the interval [l;u], and
ζ are the corresponding coefficients. Chebyshev ap-
proximations yield the best uniform approximation on
[l;u]. ζ can be approximated numerically via discrete
cosine transformation or the Remez exchange algorithm
(Fraser, 1965). It can be shown that the approximation
error ε is bounded and exponentially small in k ln k (Xi-
ang et al., 2010) when l ≤ minx〈θ, φ(x)〉 and u ≥
maxx〈θ, φ(x)〉.

3 FAST STOCHASTIC QUADRATURE

In this section, we present the stochastic Clenshaw-
Curtis quadrature that yields an (1± ε)-approximation to
the partition function (Piatkowski and Morik, 2016). We
then develop a class of Monte Carlo algorithms designed
to perform the actual estimation of A(θ) efficiently.

k-Integrable Statistics: Let φ denote the d-
dimensional statistic of the exponential family rep-
resentation (1) of some undirected graphical model
for X . Of particular interest are statistics which are
k-integrable—that is, the function

χkφ(j) =

∫
X

k∏
i=1

φ(x)ji d ν(x) (3)

admits a polynomial time computable closed-form ex-
pression for all index tuples j ∈ [d]k. It can be shown
(Piatkowski and Morik, 2016) that overcomplete suffi-
cient statistics of discrete Markov random fields are al-
ways k-integrable. In this case,

χkφ(j) =


|X |

|X⋃k
i=1

C(ji)
| , j is realizable

0 , otherwise .
(4)

Here, C(ji) denotes the clique that corresponds to the
i-th entry of j, i.e., ji ≡ (C(ji),y(ji)). An index tuple
j is not realizable, if two (or more) indices imply that
the same vertex is in two (or more) different states at the
same time.

Let us extend this result by showing that various suf-
ficient statistics for continuous random variables are as
well k-integrable.

Lemma 1 (Continuous k-integrability) Let X be an
n-dimensional continuous random vector. Any statistic
φ(x) : Rn → Rd whose coordinate-wise statistics φ(x)i
are (linear transformations of)

φ(x)i = xcj , or φ(x)i = 1
xc

j
, or φ(x)i = ln(xj)

c,

with c ∈ N, j ∈ [n], is k-integrable for all k ∈ N.

Details on the integration of elementary functions can be
found in (Bronstein, 1990). In fact, the sufficient statis-
tics of the Gaussian, Poisson, exponential, beta, Dirich-
let, Pareto, Weibull with known shape, chi-squared, log-
normal, beta, and gamma distributions, restricted to the
interval (0;u], consist only of terms of the form 1/xc,
xc, and ln(x)c which implies their k-integrability. E.g.,
assume that φ(x)1 = x and φ(x)2 = ln2(x)2 with
x ∈ (0;u], then, for j = (1, 2, 1), we have χkφ(j) =

u3(9 ln(u)2 − 6 ln(u) + 2)/(27 ln(2)2), which is indeed
a polynomial time computable closed-form.

One may extend Lemma 1 to include statistics of the
form |x−m|c, which appear in the density of the Laplace
distribution. Closed-form expressions exist, but we ex-
cluded them here due to the notational clutter that arises
when products of such functions are integrated.

Stochastic Clenshaw-Curtis Quadrature (SCCQ):
The major ingredient of the stochastic quadrature is a
specific probability mass function (pmf) over index tu-
ples j ∈ [d]i of length 0 ≤ i ≤ k. For ease of notation,
we assume that indices of (k + 1)-dimensional objects
start at 0. Suppose φ : X → Rd+ is a non-negative, k-
integrable statistic. Let ‖χiφ‖1 denote the 1-norm of the
function χiφ. Moreover, for any (k+1)-dimensional real-
valued vector ζ, let |ζ| denote the element-wise absolute
value of ζ, i.e., ‖χiφ‖1 =

∑
j∈[d]i |χiφ(j)|.

Let further (J , I) be the discrete random variable with
state space [d]k ⊗ ([k] ∪ {0}) and pmf Pζ,φ(J = j, I =
i) = Pφ(J = j | I = i)Pζ,φ(I = i) with

Pζ,φ(I = i) =
|ζi|‖χiφ‖1∑k
j=0 |ζj |‖χ

j
φ‖1

(5)

and

Pφ(J = j | I = i) =
χiφ(j)

‖χiφ‖1
. (6)

We call Pζ,φ the tuple mass with parameter (ζ, φ).

Now, we define the random variable which constitutes
the core of SCCQ.



Algorithm 1: Stochastic Clenshaw-Curtis Quadra-
ture
input θ, ζ, k, N
output Approximate partition function ẐN,kζ (θ)

1: S ← 0
2: for l = 1 to N do
3: (j, i) ∼ Pζ,φ
4: S ← S + Ẑkj,i(θ)
5: end for
6: ẐN,kζ (θ)← 1

N S

Definition 1 (1-SCCQ) Let k ∈ N, θ ∈ Rd, and let J
be a random index tuple of random length I , both having
joint tuple mass Pζ,φ. The random variable

ẐkJ,I(θ) = τ sgn(ζI)
I∏
r=0

θJr

with τ =
∑k
j=0 |ζj |‖χ

j
φ‖1 is called 1-SCCQ.

Surprisingly, this random variable is closely related to
the quadrature approximation to Z(θ) from equation (2).

Theorem 1 (Unbiasedness of SCCQ) Let ζ be the co-
efficient vector ζ of a degree-k polynomial approxima-
tion to exp over some arbitrary but fixed interval [l;u],
and let φ be a non-negative and k-integrable statistic.
The random variable ẐkJ,I(θ) is an unbiased estimator
for Ẑkζ (θ) =

∫
x

ˆexpkζ(〈θ, φ(x)〉) d ν(x).

Proof. Using equations (3), (5), and (6), as well as Def-
inition 1, it follows that

E
[
ẐkJ,I(θ)

]
=

k∑
i=0

∑
j∈[d]k

Pζ,φ(J = j, I = i)τ sgn(ζi)

i∏
r=0

θjr

=

k∑
i=0

ζi
∑
j∈[d]i

i∏
r=0

θjr

∫
X

i∏
r=0

φ(x)jr d ν(x)

=

∫
X

k∑
i=0

ζi〈θ, φ(x)〉i d ν(x) = Ẑkζ (θ) ,

where the last line stems from the fact that

〈θ, φ(x)〉i =

d∑
j1=1

d∑
j2=1

· · ·
d∑

ji=1

i∏
l=0

θjl

i∏
r=0

φ(x)jr .

�

Based on the theorem, we devise a Monte Carlo proce-
dure, called N -SCCQ or simply SCCQ, shown in Algo-
rithm 1. By combining the error ε that is introduced by

the polynomial approximation with the error that is intro-
duced by the sampling procedure, an overall error bound
can be derived1.

Theorem 2 (SCCQ Error Bound) Let ζ be the coeffi-
cient vector of a degree-k Chebyshev approximation to
exp on [l;u] = [−‖θ‖1; +‖θ‖1] with worst-case error ε.
Let ẐN,kζ (θ) be the output of Algorithm 1. Furthermore,
let δ ∈ (0, 1], ε > 0, N = (ln 2/δ)τ22‖θ‖2k′∞ ε−2|X |−2,
with (k − 1) k! ≥ 8 exp(2‖θ‖1)/(πε), and k′ = 1 if
‖θ‖∞ < 1 or otherwise k′ = k. Then,

P[|ẐN,kζ (θ)− Z(θ)| < εZ(θ)] ≥ 1− δ .

3.1 COMPUTATIONAL COMPLEXITY

While SCCQ enjoys a bounded error and an apparently
simple algorithm, the actual sampling of index tuples
from Pζ,φ (line 3 in Algorithm 1) and the computation
of ẐkJ,I(θ) (line 4 in Algorithm 1) turn out to be compu-
tationally hard. Computing ẐkJ,I(θ) requires the ‖χiφ‖1
values. In (Piatkowski and Morik, 2016), the authors as-
sume that the values of ‖χiφ‖1 for all 0 ≤ i ≤ k are pre-
computed, which requiresO(dk) additions. While rather
small polynomial degrees (k ≈ 8) suffice to achieve
reasonable results, the overcomplete dimension d of a
10 × 10 binary Ising grid model is 720. Hence, at least
dk = 7208 > 275 additions are required to compute
‖χiφ‖1. In our initial work on SCCQ (Piatkowski and
Morik, 2016), rejection sampling was used to generate
the samples from Pζ,φ with a uniform proposal Q on
[d]k ⊗ ([k] ∪ {0}). Since the ratio Pζ,φ(j, i)/Q(j, i) =
(k + 1)dkPζ,φ(j, i) is large, one shall expect that many
samples will be rejected.

3.2 NORMALIZING THE TUPLE MASS

To alleviate the complexity issues of SCCQ, we now
present a closed-form expression for ‖χiφ‖1. Our result
relies on the closed-form of k-integrable statistics, which
is given by equation (4) for discrete state space models.
We restrict ourselves to discrete models, since a general
closed-form that covers all continuous state space mod-
els does not exist. However, the general methodology
can be transferred to the continuous case.

The forthcoming results make heavy use of equivalence
classes of index tuples j ∈ [d]i and their cardinalities. In

1An earlier result can be found in (Piatkowski and Morik,
2016). There, the bound on the error of the polynomial ap-
proximation uses an inequality which is originally designed for
complex-valued functions. Here, we apply a recent inequality
due to Trefethen (Trefethen, 2008). Both results are qualita-
tively equivalent w.r.t. N and k. Nevertheless, the new proof is
simplified.



this context, it is important to recall that any index j ∈ [d]
corresponds to a pair of clique and state: i ≡ (C,y).
Consequently, a tuple of indices corresponds to a tuple
of cliques and states.

Definition 2 (Sub-Alphabets) Let A be some set of ob-
jects or symbols—A is an alphabet—and let P(A) be its
power set. The set P(A, n) ⊆ P(A) contains all subsets
of A with at most n elements, i.e.,

P(A, n) = {S ∈ P(A) | |S| ≤ n} .

The size of P(A, n) is thus

|P(A, n)| =
n∑
i=1

(
|A|
i

)
.

Definition 3 (Tuple Classes) Let i ∈ N, and denote the
clique tuple that corresponds to an index tuple j ∈ [d]i

byC(j) ∈ Ci. Two or more index tuples j, j′ may corre-
spond to the same clique tuple, i.e., C(j) = C(j′). The
equivalence class of all index tuples that correspond to
the same clique tuple is denoted by

[[j]] = {j′ ∈ [d]i | C(j) = C(j′)} .

Similarly, two or more clique tuples C,C ′ may corre-
spond to the same set of cliques. The equivalence class
of clique tuples that correspond to the same set of cliques
is denoted by

[[C]] =

{
C ′ ∈ Ci

∣∣∣∣∣ ⋃
c∈C

{c} =
⋃
c′∈C′

{c′}

}
.

Combining both, the equivalence class of all index tu-
ples, whose corresponding clique tuples are in the same
equivalence class, is denoted by

[[j]]∗ = {j′ ∈ [d]i | C(j′) ∈ [[C(j)]]} .

Note that all members of a specific clique tuple equiva-
lence class [[C]] are determined by a unique set of cliques
which come from the alphabet C. Hence, we identify
each class [[C]] with this unique set of cliques and treat
each [[C]] as an element of P(C, i). Moreover, there are
|P(C, i)| distinct size-i clique tuple equivalence classes.

In the remainder, it will be important to know how large
these equivalence classes are.

Lemma 2 (Counting Tuples) Let i, j ∈ N, j ∈ [d]j ,
C ∈ Ci, and consider the equivalence classes defined
above. Then,

|[[j]]| =
i∏
l=1

|XC(j)l |, |[[C]]| = h(C)!

{
i

h(C)

}
,

|[[j]]∗| = |[[C(j)]]||[[j]]|

where h(C) is the number of distinct cliques which ap-
pear in the tupleC, n! is the factorial, and {n k}> is the
Stirling number of second kind.

It will be helpful to define equivalence classes of index
tuples w.r.t. some k-integrable statistics. Here, equiva-
lence w.r.t. χiφ is established by the value that each mem-
ber of an equivalence class contributes to ‖χiφ‖1.

Definition 4 (Tuple Classes and k-integrability) Let φ
be a k-integrable statistic, i ∈ N, and j ∈ [d]i. The
equivalence class of all index tuples which correspond
to the same clique tuple and have non-zero χiφ-value is
denoted by

[[j]]φ = {j′ ∈ [d]i | j′ ∈ [[j]] ∧ χiφ(j′) 6= 0} .

The corresponding extension to equivalence classes of
clique tuples, is denoted by

[[j]]∗φ = {j′ ∈ [d]i | j′ ∈ [[j]]∗ ∧ χiφ(j′) 6= 0} .

Up to now, we made no use of the fact that our state
space is discrete. The above definitions and lemmas
are valid for any exponential family model with posi-
tive k-integrable statistic. However, the proof of the next
lemma makes use of equation (4). In order to extend our
results to continuous random variables, one has to invoke
Lemma 1 to derive a closed-form for χiφ.

Lemma 3 (Counting Realizable Tuples) Suppose φ is
the binary, overcomplete sufficient statistic of discrete
MRFs. Then,

|[[j]]φ| = |XC(j)|, and |[[j]]∗φ| = |[[C(j)]]||[[j]]φ| ,

with XC(j) = X∪i
l=1C(j)l and C(j) ∈ Ci.

Now, we have gathered all terms and definitions to devise
an improved procedure for the normalization of the index
tuple mass.

Theorem 3 (Tuple Mass Normalization) Suppose φ is
the binary, overcomplete sufficient statistic of discrete
MRFs. The conditional index tuple mass Pζ,φ(J = j |
I = i) (equation (6)) can be normalized in O(1) steps.
More precisely,

‖χiφ‖1 = |X |
i∑
l=0

{
i
l

}(
|C|
l

)
l! = |X ||C|i . (7)

The complexityO(1) provided in the theorem is an over-
whelming improvement, compared to the naive summa-
tion, i.e.,O(dk). Since we need the normalization ‖χiφ‖1
for all 1 ≤ i ≤ k tuple lengths, ẐkJ,I(θ) can be computed
in O(k) steps when a pair (j, i) is given.



Algorithm 2: Fast Index Tuple Sampler
input Tuple length i
output Sample j | I = i from Pζ,φ

1: l ∼ P(l | i) // See Theorem 4
2: a ∼ U(1; binom(|C|, l))
3: b ∼ U(1; Stirling2(i, l)× factorial(l))
4: [[C]]← compute a-th l-combination of
{1, 2, . . . , |C|} // via (Buckles and Lybanon, 1977)

5: C ← compute b-th composition of {1, 2, . . . , i}
with l subsets // via (Ehrlich, 1973)

6: S ←
⋃i
h=1Ch

7: c ∼ U(1;
∏
v∈S |Xv|)

8: y← compute c-th joint state of all vertices in S
9: return j that corresponds to C = y

3.3 FAST INDEX TUPLE SAMPLER

Based on the insights that we gained so far, we derive a
direct sampling scheme for index tuples that circumvents
any rejection step (Algorithm 2).

Given our results from the last subsection, drawing a ran-
dom tuple length from Pζ(I) can be done efficiently—it
is a draw from a categorical distribution with state space
size k (which is rather small). Sampling from the tu-
ple mass Pζ,φ(J = j | I = i) can be more involved,
which motivates the derivation of a specialized sampling
scheme. Our algorithm is motivated by inversion sam-
pling: For any fixed i, inversion sampling of j then con-
sists of drawing a uniform random number u in (0; 1),
and finding the smallest L ∈ N, such that the sum of the
first L tuple masses exceeds u. The L-th tuple is then
the sample. The worst-case runtime complexity is then
O(dk) per sample, which can be prohibitively expensive
whenever the dimension d of the model is large. Based
on the equivalence classes that we exploited already for
the normalization of the tuple mass, we derive a factor-
ization of Pζ,φ(J = j | I = i) which in turn implies an
efficient stagewise sampling procedure.

To this end, let ≺ be an any arbitrary but fixed strict to-
tal ordering on the equivalence classes of clique tuples.
I.e., ∀A,B ∈ P(C, i) with A 6= B, either [[A]] ≺ [[B]]
or [[B]] ≺ [[A]]—by definition, each element of P(C, i)
corresponds to a unique equivalence class. This order
induces an order on clique tuples and index tuples, i.e.,
j, j′ ∈ [d]i, j ≤ j′ ⇔ [[C(j)]] � [[C(j′)]]. Within each
equivalence class, we assume that tuples are ordered lex-
icographically.

Theorem 4 (Tuple Mass Factorization) Suppose that
φ is the binary, overcomplete sufficient statistic of a dis-

I L [[C]]

Y C

Figure 1: Directed graphical model for the factorization
of the tuple mass Pζ,φ(J = j, I = i). Any index tuple
j can be identified with some pair (C,y) of clique tuple
and state tuple.

crete state MRF. The tuple mass of any j factorizes:

Pζ,φ(J = j | I = i)

=P(C | [[C]], l, i)P(y | [[C]], i)P([[C]] | l)P(l | i)

with

P(l | i) =|C|−i
{
i
l

}(
|C|
l

)
l!

P([[C]] | l) =
1(
|C|
l

) P(C | [[C]], l, i) =
1{
i
l

}
l!

P(y | [[C]], i) =

{
1

|X[[C]]|
,y ∈ X[[C]]

0 , otherwise ,

where l denotes the number of distinct cliques in the
clique tuple C, [[C]] denotes the equivalence class that
contains C, and y is the joint state of all cliques in the
tuple C.

While the proof is rather simple, it is not obvious how to
come up with this factorization. The idea is to first draw
the equivalence class [[C]], then a uniform member C of
this class, then a uniform joint state y of all cliques in
C. Notice that the sampling steps for [[C]], C and y are
uniform, while the probability mass of the number l of
distinct cliques that will appear in the tuple is a function
of l. Let us now investigate the complexity of our new
method.

Theorem 5 (Complexity of Tuple Sampling)
Algorithm 2 samples an index tuple j of given length i
from Pζ,φ in

O(k4 + kn+ |C|+ {i l}> + l!)

steps. When permutations and partitions are precom-
puted, the runtime reduces to

O(k4 + kn+ |C|)



per sample. Here, k is the polynomial degree, l ≤ i is
the number of distinct cliques in the generated tuple, and
n = |V |.

Thus, we found a Monte Carlo algorithm to sample from
Pζ,φ without any rejection step. Since the algorithm does
not use a Markov chain, the generated samples are truly
independent. Any number of samples can thus be gen-
erated in parallel. Because no data has to be exchanged,
the overall runtime scales linearly with the number of
processors. This is a superior property compared to
MCMC methods, where sampling cannot be parallelized
and consecutive samples are not independent. More-
over, the theorem tells us how the complexity of stochas-
tic quadrature is related to the graphical structure and
the polynomial degree. The runtime is independent of
the parameter dimension d and the state space sizes. In
contrast, the runtime of loopy belief propagation (Pearl,
1988; Kschischang et al., 2001) and similar variational
techniques (like TRW-BP (Wainwright et al., 2003)) is at
least quadratic in the vertex state space sizes.

4 APPROXIMATE ML ESTIMATION

An important feature of maximum-likelihood parameter
estimation is that the solution is specified by moment-
matching. To illustrate this notion, suppose that we are
given an i.i.d. data set D = {x1,x2, . . . ,xN} from
some unknown measure Pθ∗ . By using an exponential
family model (which is exact whenever the state space
X is discrete), the log-likelihood of θ on D is given by:

`(θ) =
1

N

N∑
i=1

lnPθ(xi) = 〈θ, µ̃〉 −A(θ)

with µ̃ = (1/N)
∑N
i=1 φ(xi). Taking the derivatives

of ` w.r.t. some θi, we find that (1/N)
∑N
i=1 φ(xi) =

Eθ[φ(X)i] at any critical point θ where Eθ denotes the
expectation under Pθ. That is, the maximum-likelihood
solution has its moments matched to the empirical av-
erage µ̃. In this section, we show how SCCQ can be
used to develop a method for approximate ML estima-
tion that, in analogy to this exact moment-matching, per-
forms a type of pseudo-moment matching. To this end, a
means of computing ∇A(θ) = ∇ lnZ(θ) = Eθ[φ(X)]
via SCCQ is required. Recalling that i ≡ (C,y)
and that φ(y) is binary in discrete models reveals that
Eθ[φ(X)i] = Pθ(φ(X)i = 1) = Pθ(XC = y). Since
Pθ(XC = y) is the marginal probability mass of the
event {C = y}, the problem of computing Eθ[φ(X)i] is
also called marginal inference.

4.1 MARGINAL INFERENCE

For any subset U ⊆ V of variables, and any joint state
xU , the marginal density is defined by

Pθ(XU = xU ) =

∫
XV \U

Pθ(xU ,xV \U ) d ν(x)

=
1

Z(θ)

∫
XV \U

exp(〈θ, φ(x)〉) d ν(x) ,

with x = (xU ,xV \U ). Especially the last integral is
reminiscent of the partition function. In fact, it can be
interpreted as the partition function of another model
with state space XV \U . It is this sum that will be ap-
proximated via SCCQ to estimate the marginal. To for-
malize this idea, we provide adjusted definitions of the
SCCQ core concepts. First, we adapt the notion of
k-integrability to marginal densities. In accordance to
equation (3), we call φ marginally k-integrable, if

χkφ,U (j,xU ) =

∫
XV \U

k∏
i=1

φ(xU ,xV \U )ji d ν(xV \U )

admits a polynomial time computable closed-form ex-
pression for all j ∈ [d]k, for all U ⊆ V , and for all
xU ∈ XV \U . The difference to ordinary k-integrability
is merely symbolical. In fact, all k-integrable statistics
that are mentioned in this paper are also marginally k-
integrable. Moreover, marginally k-integrable statistics
give rise to the marginal tuple mass Pζ,φ(J = j,XU =
xU , I = i) in the same way how the ordinary tuple mass
from equation (6) arises from ordinary k-integrability.
Moreover, the marginal tuple mass factorizes.

Corollary 1 (Marginal Tuple Mass Factorization)
Suppose that φ is the binary, overcomplete sufficient
statistic . The marginal tuple mass factorizes:

Pζ,φ(J = j, I = i,XU = xU )

=P(C | [[C]], l, i)P(y,xU | [[C]], i)P([[C]] | l)P(l | i)p(i)

where P(l | i), P([[C]] | l), and P(C | [[C]], l, i) are given
by Theorem 4, and

P(y,xU | [[C]], i) =


1

|X[[C]]∪U |
,y ∈ X[[C]]

∧ 6 ∃v ∈ U : xv 6= yv
0 , otherwise .

The ordinary tuple mass Pζ,φ(J = j, I = i) and the
marginal tuple mass Pζ,φ(J = j,XU = xU , I = i) dif-
fer only in the factor P(y,xU | [[C]], i). We may hence
use their quotient as importance weight to convert SCCQ
samples for the partition function into SCCQ samples for



Algorithm 3: SCCQ Marginal Inference
input θ, k, ζ, N
output Pseudo marginals µ̂

1: S ← 0,m← 0, done← false
2: while ∃i : mi < N do
3: (j, i) ∼ Pζ,φ(·,xC)
4: for C ∈ C do
5: for xC ∈ XC do
6: if agree(j, i, C,x) ∧mi < N then
7: Sl ← Sl + Ẑkj,i(θ)p(y(j),xC |[[C(j)]],i)

p(y(j)|[[C(j)]],i)
8: mi ←mi + 1
9: end if

10: end for
11: end for
12: end while
13: for C ∈ C do
14: for xC ∈ XC do
15: µ̂C=xC

← SC=xC∑
xC∈XC

SC=xC

16: end for
17: end for

marginal probabilities. We have

EJ,I
[
p(y(J),xU | [[C(J)]], I)

p(y(J) | [[C(J)]], I)
ẐkJ,I(θ)

]
=

k∑
i=0

∑
j∈[d]i

Pζ,φ(J = j, I = i)wj,i,U Ẑ
k
j,i(θ)

=

k∑
i=0

∑
j∈[d]i

Pζ,φ(J = j, I = i,XU = xU )Ẑkj,i(θ)

=EJ,I,XU=xU

[
ẐkJ,I(θ)

]
,

with importance weight wj,i,U = p(y(j),xU |[[C(j)]],i)
p(y(j)|[[C(j)]],i) .

Now, we gathered all parts which are required for
marginal inference. The corresponding inference proce-
dure is provided in Algorithm 3. While the main idea is
to perform d separate runs of Algorithm 1, such a naive
approach would result in an unnecessary high runtime.
Instead, we make use of Corollary 1 to propose an im-
portance sampling approach, in which each SCCQ sam-
ple is shared among all marginals. For each marginal
p(XC = xC), we validate if the pair (j, i) that is
sampled in line 3 agrees with the assignment xC (line
6)—otherwise, its marginal tuple mass is zero. If they
agree, we reweigh the sample, perform the summation
and count the number of successes in lines 7 and 8. In
lines 13–17, the estimated sums are normalized and writ-
ten to µ̂.

4.2 PARAMETER ESTIMATION

With Algorithm 3, we can compute the log-likelihood’s
gradient ∇`(θ), and employ any first-order method to
estimate the parameters. To measure the progress of pa-
rameter estimation, it is convenient to estimate the log-
likelihood of the model, which inherits its computational
complexity from the log-partition function. Before we
proceed to some experimental results, we close this sec-
tion by translating the SCCQ error bound from Theo-
rem 2 to an error bound on the log-likelihood.

Theorem 6 (SCCQ Log-Likelihood Error) Assume
that the preconditions of Theorem 2 hold. Let
ˆ̀(θ) = 〈θ, µ̃〉 − ln ẐN,kζ (θ) be the SCCQ approx-
imation to the log-likelihood. Whenever the outcome
ẐN,kζ (θ) of Algorithm 1 is positive, we have

P

[
|ˆ̀(θ)− `(θ)| < εZ(θ)

min{ẐN,kζ (θ), Z(θ)}

]
≥ 1− δ .

That is, with probability of at least 1− δ, the absolute er-
ror in the approximated log-likelihood is roughly ε when
ẐN,kζ (θ) and Z(θ) have the same order of magnitude.

5 EXPERIMENTAL DEMONSTRATION

Theoretical insights from the previous sections do prov-
ably reduce the computational complexity. Moreover,
pseudo marginals, based on unbiased estimates of the
quadrature approximation to the partition function, facil-
itate approximate maximum-likelihood estimation. We
conduct a small set of experiments to assess our methods
empirically and answer the following questions:

Q1 What is the runtime improvement when ‖χkφ‖ is
computed via Theorem 3 instead of naive summa-
tion?

Q2 What is the runtime improvement when index tuples
are sampled with Algorithm 2 instead of rejection
sampling?

Q3 Does SCCQ-based approximate maximum-
likelihood estimation work in practice?

To answer Q1, we measure the runtime in nanoseconds
for computing ‖χkφ‖ via Theorem 3 and via naive sum-
mation on a 4×4 binary Ising grid for polynomial degree
k ∈ {1, 2, 3, 4}. The results are depicted in the leftmost
plot of Figure 2. All results are averaged over 10 in-
dependent runs and error-bars show the standard devia-
tion (if any). The runtime is shown in log-scale. Nor-
malizing the tuple mass via Theorem 3 is several orders
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Figure 2: From left to right: (1) Runtime in log-scale for computing ‖χkφ‖ with Theorem 3 (light blue) and naive
summation (dark blue). Runtime in log-scale for drawing a single index tuple via Algorithm 2 (light blue) and rejection
sampling (dark blue). (3) and (4): Progress of (approximate) negative log-likelihood −`(θ) and mean squared error
(MSE) between predicted and empirical marginals during parameter estimation on the mushroom data set. The solid
line indicates the exact outcome, while the dashed lines represent SCCQ results withN = 104 samples and k ∈ {1, 3}.

of magnitude faster than the standard approach, as ex-
pected. Regarding Q2, the situation looks similar. The
corresponding results are depicted in the second plot of
Figure 2. We see that increasing the polynomial degree
and thus the maximal tuple length increases the runtime
of rejection sampling. Clearly, the proportion of rejected
samples increases when the state space size of the ran-
dom tuples increases. On the other hand, the runtime
of Algorithm 2 is almost constant in practice. To an-
swer Q3, a regularized maximum-likelihood estimation
on the mushroom data set2 is conducted. The set contains
5644 fully observed training instances. Each data point
x consists of 23 categorical features with up to 9 dif-
ferent states, representing properties of mushrooms. In
total, |X | ≈ 243. To facilitate exact computation of like-
lihood and marginals, we use the Chow-Liu tree (Chow
and Liu, 1968) as the conditional independence structure
of the model. Note, however, that SCCQ is completely
oblivious of the graphical structure. Hence, the reported
results are valid for intractable non-tree-structured mod-
els as well. To prevent the model parameters from be-
coming too large, l1-regularization with λ = 1/2 is ap-
plied. The actual parameter estimation is carried out
via the fast iterative shrinkage-thresholding algorithm
(FISTA) (Beck and Teboulle, 2009) with stepsize 1/L
where L is an upper bound on the log-likelihood’s gradi-
ent’s Lipschitz constant. We run SCCQ with N = 104

Monte Carlo samples. In each training iteration, we as-
sess the (approximate) negative log-likelihood and the
mean squared error (MSE) between predicted and empir-
ical marginal probabilities. The last two plots of Figure 2
show the corresponding results. Each line corresponds
to one parameter estimation. Since the runs converge in
different iterations, the three lines have slightly different
lengths. The results show that even the very coarse linear
(k = 1) approximation yields a reasonable approximate
log-likelihood and approximate marginals. The learning

2https://archive.ics.uci.edu/ml/datasets/mushroom

process evolves similar to the exact computation. When
the polynomial degree is increased to k = 3, the approx-
imation is even closer to the exact outcome as predicted
by the theory. Especially the SCCQ marginal probabili-
ties are often indistinguishable from the exact marginals.

6 CONCLUSION

We presented the first complete framework for SCCQ-
based parameter learning for undirected graphical mod-
els. Quadrature-based inference provides bounds on the
partition partition. However, the complexity of exist-
ing algorithms is exponential in the degree of the un-
derlying polynomial approximation and polynomial in
the dimension of the model’s parameter vector—the ac-
companying computational complexity is not practical.
We provide accelerated SCCQ algorithms whose com-
plexity is independent of the dimension. Our empiri-
cal evaluation shows that the new algorithms are sev-
eral orders of magnitude faster. In addition, we provide
the first algorithm for SCCQ-based marginal inference
whose practical speed and accuracy are sufficient to be
used for approximate maximum-likelihood estimation.
Hence, SCCQ is a highly parallel drop-in replacement
for MCMC and message-passing whenever the parame-
ter norm is bounded (e.g., via regularization). Finally,
we explained how the stochastic quadrature can be ap-
plied to models with continuous random variables, which
opens new research opportunities, e.g., inference in ex-
ponential family models with mixed domains, where
some dimensions are discrete and others are continuous.
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