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Abstract

We developed a novel statistical method to
identify structural differences between net-
works characterized by structural equation
models. We propose to reparameterize the
model to separate the differential structures
from common structures, and then design an
algorithm with calibration and construction
stages to identify these differential structures.
The calibration stage serves to obtain con-
sistent prediction by building the ℓ2 regular-
ized regression of each endogenous variables
against pre-screened exogenous variables, cor-
recting for potential endogeneity issue. The
construction stage consistently selects and es-
timates both common and differential effects
by undertaking ℓ1 regularized regression of
each endogenous variable against the predicts
of other endogenous variables as well as its an-
choring exogenous variables. Our method al-
lows easy parallel computation at each stage.
Theoretical results are obtained to establish
non-asymptotic error bounds of predictions
and estimates at both stages, as well as the con-
sistency of identified common and differential
effects. Our studies on synthetic data demon-
strated that our proposed method performed
much better than independently constructing
the networks. A real data set is analyzed to
illustrate the applicability of our method.

1 INTRODUCTION

It is of great importance and interest to detect sparse
structural differences or differential structures between
two cognate networks. For instance, the gene regulatory
networks of diseased and healthy individuals may differ

slightly from each other [West et al., 2012], and identify-
ing the subtle difference between them helps design spe-
cific drugs. Social networks evolve over times, and mon-
itoring their abrupt changes may serve as surveillance to
economic stability or disease epidemics [Pianese et al.,
2013, Berkman and Syme, 1979]. However, addressing
such practical problems demands differential analysis of
large networks, calling for development of efficient sta-
tistical method to infer and compare complex structures
from high dimensional data. In this paper, we focus on
differential analysis of directed acyclic or even cyclic
networks which can be described by structural equation
models (SEMs).

Many efforts have been made towards construction of a
single network via SEM. For example, both Xiong et al.
[2004] and Liu et al. [2008] employed a genetic algo-
rithm to search for the best SEM using different infor-
mation criteria. Most recently, Ni et al. [2017, 2018]
employed a hierarchical Bayes approach to construct the
SEM based networks. However, these approaches were
designed for small or medium scale networks. For large-
scale networks that the number of endogenous variables
p exceeds the sample size n, Cai et al. [2013] proposed
a regularization approach to fit a sparse model. Because
this method suffers from incapability of parallel compu-
tation, it may not be feasible for large networks. Logs-
don and Mezey [2010] proposed another penalization ap-
proach to fit the model in a node-wise fashion which al-
leviates the computational burden. Most recently, Lin
et al. [2015], Zhu [2018], and Chen et al. [2017] each pro-
posed a two-stage approach to construct SEMs, with dif-
ferent algorithms designed at different stages. As shown
by Chen et al. [2017], such a two-stage approach can
have superior performance compared to other methods.

To the best of our knowledge, no algorithm has been
proposed to conduct differential analysis of directed net-
works characterized by SEM. While a naive approach
would separately construct each individual network and
identify common and differential structures, this ap-



proach fails to take advantage of the commonality as well
as sparse differential structures of the paired networks,
leading to higher false positive rate or lower power. In
this light, we introduce a novel statistical method, spe-
cially in the directed network regime, to conduct differ-
ential analysis of two networks via appropriate reparam-
eterization of the corresponding models. There are two
major features of our method. Firstly, we jointly model
the commonality and difference between two networks
explicitly. This helps us to gain dramatic performance
improvements over the naive construction method. Sec-
ondly, benefiting from the flexible framework of SEMs,
we are able to conduct differential analysis of directed
networks. Most importantly, our method allow for both
acyclic and cyclic networks. Compared to the other
methods, directionality and allowing for cyclicity are cru-
cial for many network studies, especially in construct-
ing gene regulatory networks. As far as we know, our
method is the first work on differential analysis of di-
rected networks that enjoys the two promising features.

The rest of this paper is organized as follows. We
first introduce the model and its identifiability condi-
tion in Section 2.1 and Section 2.2, respectively. Then,
we present our proposed method of Reparameterization-
based Differential analysis of directed Networks, termed
as ReDNet, in Section 2.3. The theoretical justification
of the proposed method is described in Section 2.4. Sec-
tion 3 includes our studies on synthetic data showing the
superior performance of our method, as well as an analy-
sis of the Genotype-Tissue Expression (GTEx) data sets.
We conclude our paper with brief discussion in Section 4.

2 METHODS

Here we first introduce the model and its identification
condition, and then describe our proposed ReDNet
method for identifying common and differential struc-
tures between two directed networks, followed with its
theoretical justification.

2.1 THE MODEL

We consider two networks, each describing the depen-
dencies among a common set of variables or nodes in a
unique population. For each node i ∈ {1, 2, . . . , p} in
network k ∈ {1, 2}, its regulation structure can be repre-
sented by the following equation,

Y
(k)
i︸︷︷︸

node i

= Y
(k)
−i γ

(k)
i︸ ︷︷ ︸

regulation by others

+ X(k)ϕ
(k)
i︸ ︷︷ ︸

anchoring regulation

+ ϵ
(k)
i︸︷︷︸

error

, (1)

where Y
(k)
i is the i-th column of Y(k) and Y

(k)
−i is

the submatrix of Y(k) by excluding Y
(k)
i , with Y(k) a

n(k) × p matrix. X(k) is a n(k) × q matrix with each col-
umn standardized to have ℓ2 norm

√
n(k). The vectors

γ
(k)
i and ϕ

(k)
i encode the inter-nodes and anchoring reg-

ulatory effects, respectively. The index set of non-zeros
of ϕ(k)

i is known and denoted by A(k)
i , in other words,

A(k)
i = supp(ϕ(k)

i ). The support set A(k)
i indexes the

direct causal effects for the i-th node, and can be pre-
specified based on the domain knowledge. However, the
size of nonzero effect ϕ(k)

i is unknown and can be es-
timated. Further property of A(k)

i will be discussed in
Section 2.2. All elements of the error term are indepen-
dently distributed following a normal distribution with
mean zero and standard deviation σ(k)

i . We assume that
the matrix X(k) and the error term ϵ

(k)
i are independent

of each other. However Y(k)
−i and ϵ

(k)
i may correlate with

each other. Y(k) and X(k) include observed endogenous
variables and exogenous variables, respectively.

By combining the p linear equations in (1), we can
rewrite the two sets of linear equations in a systematic
fashion as two structural equation models below,{

Y(1) = Y(1)Γ(1) +X(1)Φ(1) + E(1),

Y(2) = Y(2)Γ(2) +X(2)Φ(2) + E(2),
(2)

where each matrix Γ(k) is p × p with zero diagonal ele-
ments and represents the inter-nodes regulatory effects in
the corresponding network. Specifically, excluding the i-
th element (which is zero) from the i-th column of Γ(k)

leads to γ
(k)
i . The q×p matrix Φ(k) contains the anchor-

ing regulatory effects and its i-th column is ϕ
(k)
i . Each

error term E(k) is n(k) × p and has the error term ϵ
(k)
i as

its i-th column.

Figure 1 gives an illustrative example of networks with
three nodes and one anchoring regulation per node for the
structural equations in (2). For example, with anchoring
regulation on node Y1, X1 has a direct effect on node Y1
but indirect effects on node Y2 and Y3 via Y1.

(a) Network I (b) Network II (c) Differential

Figure 1: An Illustrative Example of Differential Net-
work Between Two Directed Networks. The error term
for each node is not shown for simplicity.



For each network k, its full model in (2) can be further
transformed into the reduced form as follows,

Y(k) = X(k)π(k) + ξ(k), (3)

where the q×p matrix π(k) = Φ(k)(I−Γ(k))−1 and the
transformed error term ξ(k) = E(k)(I−Γ(k))−1. The re-
duced model (3) reveals variables observed in X(k) as
instrumental variables which will be used later to cor-
rect for the endogeneity issue. Otherwise, directly apply-
ing any regularization based regression to equation (1)
will result in non-consistent or suboptimal estimation of
model parameters [Fan and Liao, 2014, Chen et al., 2017,
Lin et al., 2015, Zhu, 2018].

2.2 THE MODEL IDENTIFIABILITY

Here we introduce an identifiability assumption which
helps to infer an identifiable system (2) from available
data. We assume that each endogenous variable is di-
rectly regulated by a unique set of exogenous variables as
long as it regulates other endogenous variables. That is,
any regulatory node needs at least one anchoring exoge-
nous variable to distinguish the corresponding regulatory
effects from association. Explicitly let M(k)

i0 denote the
index set of endogenous variables which either directly
or indirectly regulate the i-th endogenous variable in the
k-th network. Thus, A(k)

i ⊆ M(k)
i0 . The model identifi-

cation condition can be stated in the below.

Assumption 1. For any i = 1, · · · , p, A(k)
i ̸= ∅ if there

exists j such that i ∈ M(k)
j0 . Furthermore, A(k)

i ∩A(k)
j =

∅ as long as i ̸= j.

This assumption is slightly less restrictive than the one
employed by Chen et al. [2017], and is a sufficient condi-
tion for model identifiability as it satisfies the rank condi-
tion in Schmidt [1976]. It can be further relaxed to allow
nonempty A(k)

i ∩ A(k)
j as long as each regulatory node

has its own unique anchoring exogenous variables.

The above identifiability assumption not only identifies
γ
(k)
i in model (1) from π(k) in model (3) but also helps

reveal regulatory directionality of the networks. As illus-
trated in Figure 2, we can not recover the directionality
between nodes Y1 and Y2 without the extra information
provided by the direct causal factors X1 and X2 because
all four sub-networks consisting of Y1 and Y2 (without
X1 and X2) will be Markov equivalent. The known set
A(k)
j serves as external prior knowledge which helps re-

cover the directionality. In our two-stage construction
of the differential network, the additional anchors X1

and X2 serve as instrumental variables in the calibration
stage, since both X1 and X2 are independent of the er-
ror terms. The present direct causal effects from X(k)

together with Assumption 1 differentiates our approach
from the classical graphical models [Meinshausen and
Bühlmann, 2006, Yuan and Lin, 2007] or the PC al-
gorithm approaches [Spirtes et al., 2000, Kalisch and
Bühlmann, 2007], since those methods either cannot re-
cover edge directions or do not allow for cyclic structures
due to lack of additional direct causal effects from X(k).

(a) (b) (c) (d)

Figure 2: An Illustrative Example of Networks Which
Are Not Markov Equivalent. However, without X1 and
X2, sub-networks consisting of only node Y1 and Y2 will
be Markov equivalent.

2.3 TWO-STAGE DIFFERENTIAL ANALYSIS
OF NETWORKS

Here we intend to develop a regularized version of the
two-stage least squares. We first screen for exogenous
variables and conduct ℓ2 regularized regression of each
endogenous variable against screened exogenous vari-
ables to obtain its good prediction which helps address
the endogeneity issue in the following stage. At the
second stage, we reparametrize the model to explicitly
model the common and differential regulatory effects
and identify them via the adaptive lasso method.

2.3.1 The Calibration Stage

To address the endogeneity issue, we aim for good predic-
tion of each endogenous variable following the reduced
model in (3). However, in the high-dimensional setting,
the dimension q of X(k) can be much larger than the
sample size n(k), and any direct prediction with all ex-
ogenous variables may not produce consistent prediction.
Note that both Lin et al. [2015] and Zhu [2018] proposed
to conduct variable selection with lasso or its variants and
predict with selected exogenous variables. We here in-
stead propose to first screen for exogenous variables with
ISIS [Fan and Lv, 2008], and then apply ridge regression
to predict the endogenous variables with screened exoge-
nous variables. While variable screening is more robust



and provides higher coverage of true variables than vari-
able selection, its combination with ridge regression puts
less computational burden. Furthermore, as shown by
Chen et al. [2017], ridge regression performs well in pre-
dicting the endogenous variables.

Let M(k)
i denotes the selected index set for i-th node in

k-th network from the variable screening which reduces
the dimension from q to d = |M(k)

i |. The Sure Inde-
pendence Screening Property in Fan and Lv [2008] can
be directly applied in our case to guarantee that M(k)

i

covers the true set M(k)
i0 with a large probability.

Assumption 2. n(1) and n(2) are at the same order, i.e.,
nmin = min(n(1), n(2)) ≍ n(1) ≍ n(2), and p ≍ q.

Theorem 1. Assuming Conditions 1-4 in the supplemen-
tal materials which restrict positive τ̃ and κ̃, under As-
sumption 2, there exists some θ ∈ (0, 1 − 2κ̃ − τ̃) such
that, when d = |M(k)

i | = O((nmin)
1−θ), we have, for

some constant C > 0,

P(M(k)
i0 ⊆ M(k)

i ) = 1−O
(
exp

{
−C(n

(k))1−2κ̃

log(n(k))

})
.

Hereafter we assume that M(k)
i successfully covers the

true set M(k)
i0 for convenience of stating the following

assumptions and theorems. That is, the probability of
successful screening is not incorporated into our assump-
tions or theorems in the below.

For node i in network k, let X(k)

M(k)
i

denotes the submatrix

of X(k) with prescreened columns which are indexed by
M(k)

i . With π
(k)
i denoting the i-th column of π(k), the

subvector of π
(k)
i indexed by M(k)

i will be simply de-
noted by π

(k)

M(k)
i

without confusion. Such simplified nota-

tions will apply to other vectors and matrices in the rest
of this paper.

With d pre-screened exogenous variables, we can apply
ridge regression to the model

Y
(k)
i = X

(k)

M(k)
i

π
(k)

M(k)
i

+ ξ
(k)
i , (4)

to obtain the estimates π̂(k)

M(k)
i

of π(k)

M(k)
i

, and predict Y(k)
i

with Ŷ
(k)
i = X

(k)

M(k)
i

π̂
(k)

M(k)
i

.

2.3.2 The Construction Stage

With known A(k)
i , we can rewrite model (1) as,

Y
(k)
i = Y

(k)
−i γ

(k)
i +X

(k)

A(k)
i

ϕ
(k)

A(k)
i

+ ϵ
(k)
i . (5)

Before we use the predicted Y(k) to identify both com-
mon and differential regulatory effects across the two net-
works, we first reparametrize the model so as to define
differential regulatory effects explicitly,

β−
i =

γ
(1)
i − γ

(2)
i

2
, β+

i =
γ
(1)
i + γ

(2)
i

2
. (6)

Here β−
i represents the differential regulatory effects

between the two networks. We need compare β+
i with

β−
i to identify the common regulatory effects, that is,

effects of all regulations with nonzero values in β+
i but

zero values in β−
i .

Note that other differential analysis of networks may sug-
gest a different reparametrization to identify common
and differential regulatory effects. For example, in a
typical case-control study, we may expect few structures
in the case network mutated from the control network.
While we are interested in identifying differential struc-
tures in the case network, we may be also interested in
identifying baseline network structures in the control net-
work. Therefore we may reparametrize the model with
the regulatory effects in the control network, as well as
the differential regulatory effects defined as the differ-
ence of regulatory effects between case and control net-
works. We want to point out that the method described
here still applies and we can also derive similar theoreti-
cal results as follows.

Following the reparametrization in (6), we can rewrite
model (5) as follows,(

Y
(1)
i

Y
(2)
i

)
=

(
Y

(1)
−i Y

(1)
−i

Y
(2)
−i −Y

(2)
−i

)(
β+
i

β−
i

)
+X

(1)

A(1)
i

0

0 X
(2)

A(2)
i

ϕ
(1)

A(1)
i

ϕ
(2)

A(2)
i

+

(
ϵ
(1)
i

ϵ
(2)
i

)
. (7)

Denote

Yi =

(
Y

(1)
i

Y
(2)
i

)
, Z−i =

(
Y

(1)
−i Y

(1)
−i

Y
(2)
−i −Y

(2)
−i

)
,

βi =

(
β+
i

β−
i

)
, ϵi =

(
ϵ
(1)
i

ϵ
(2)
i

)
.

Further define the projection matrix for each network,

H
(k)
i = In(k) −X

(k)

A(k)
i

(
X

(k)T

A(k)
i

X
(k)

A(k)
i

)−1

X
(k)T

A(k)
i

.

Applying the projection matrix Hi = diag{H(1)
i ,H

(2)
i }

to both sides of model (7), we can remove the exogenous
variables from the model and obtain,

HiYi = HiZ−iβi +Hiϵi. (8)



Algorithm 1 Reparameterization-Based Differential
Analysis of Network (ReDNet)

Input: For k ∈ {1, 2}, Y(k), X(k), index set A(k)
i for

each i ∈ {1, 2, . . . , p}. Set d = O(n1−θmin ).
for i→ 1 to p do

Stage 1.a. Screen for a submatrix X
(k)

M(k)
i

of X(k) for

Y(k)
i versus X(k) and set X(k)

M(k)
i

= X(k) if q ≤ n(k).

Stage 1.b. Apply ridge regression to regress Y(k)
i

against X(k)

M(k)
i

to obtain prediction Ŷ
(k)

i .

end for
for i→ 1 to p do

Stage 2. Apply adaptive lasso to regress HiYi

against HiẐ−i to obtain coefficients estimate β̂i.
end for
Output: The common and differential regulatory ef-
fects in β̂1, . . . , β̂p.

To address the endogeneity issue, we predict Z−i by
replacing its component Y(k)

−i with the predicted value
Ŷ

(k)
−i from the previous stage, and then regressing HiYi

against HiẐ−i with the adaptive lasso to consistently es-
timate βi. That is, an optimal βi can be obtained as,

β̂i = arg min
βi

{
1

n
||HiYi −HiẐ−iβi||22 + λiω

T
i |βi|1

}
,

where |βi|1 is a vector taking elementwise absolute val-
ues of βi, ωi is the adaptive weights whose components
are inversely proportional to the components of an initial
estimator of βi, and λi is the adaptive tuning parameter.

The two-stages algorithm is summarized in Algorithm 1.
With the estimator β̂i from the second stage, we can
accordingly obtain estimators γ̂

(1)
i = β̂

+

i + β̂
−
i and

γ̂
(2)
i = β̂

+

i − β̂
−
i .

2.4 THEORETICAL ANALYSIS

As shown in Theorem 1, a screening method like ISIS
[Fan and Lv, 2008] can identify M(k)

i with size d =

O(n1−θmin ) which covers the true set M(k)
i0 with a suffi-

ciently large probability. For the sake of simplicity and
without loss of generality, in the following we assume
M(k)

i0 ⊆ M(k)
i .

We first investigate the consistency of predictions from
the first stage. The consistency properties will be char-
acterized by prespecified sequences f (k) = o(n(k)) but
f (k) → ∞ as n(k) → ∞. We also denote fmax =
f (1) ∨ f (2), i.e., max{f (1), f (2)}.

The following assumption is required for the consistency
properties.

Assumption 3. For each network k, the singular values
of I−Γ(k) are positively bounded from below, and there
exist some positive constants c(k)1 and c(k)2 such that, for
each node i, max||δ||2=1(n

(k))−1/2||X(k)

M(k)
i

δ||2 ≤ c
(k)
1

and min||δ||2=1(n
(k))−1/2||X(k)

M(k)
i

δ||2 ≥ c
(k)
2 . Further-

more, the ridge parameter λ(k)i = o(nmin).

For the ease of exposition, we will omit the subscript
M(k)

i from X(k)

M(k)
i

henceforth, and accordingly use π
(k)
i

and π̂
(k)
i which include the zero components of excluded

predictors.

Denote X = diag{X(1),X(2)}, and

Z =

(
Y(1) Y(1)

Y(2) −Y(2)

)
, Π =

(
π(1) π(1)

π(2) −π(2)

)
.

We use Πj to denote the j-th column of the matrix Π

and π
(k)
j to denote the j-th column of the matrix π(k).

We also use Ẑ and Π̂ to denote the prediction of Z and
estimate of Π, respectively. Note that, with the ridge
parameter λ(k)i for the ridge regression taken on node i
in network k, we have r(k)i = (λ

(k)
i )2||π(k)

i ||22/n(k) and
hence define rmax = max

1≤i≤p
[r

(1)
i ∨ r

(2)
i ]. Then the es-

timation and prediction losses at the first stage can be
summarized in the following theorem.

Theorem 2. Under Assumptions 1-3, for each j ∈
{1, 2, . . . , 2p}, there will exist some constant C1 and C2

such that, with probability at least 1− e−f
(1) − e−f

(2)

,
1. ||Π̂j −Πj ||22 ≤ C1 (d ∨ rmax ∨ fmax)

/
nmin;

2. ||X(Π̂j −Πj)||22 ≤ C2 (d ∨ rmax ∨ fmax).

The proof is detailed in the supplemental materials.

Note that these two sets of losses can be controlled by the
same upper bounds across the two networks with proba-
bility at least 1 − e−f

(1)+log (p) − e−f
(2)+log (p). There-

fore, f (k) can be selected such that f (k) − log(p) → ∞,
which will provide a probability approaching one to have
the network-wide losses approaching zero.

Furthermore, the dimension p can be divergent up to an
exponential order, say p = en

c
min for some c ∈ (0, 1). We

can set f (1) = f (2) = n
(1+c)/2
min and, apparently, f (k) =

o(nmin) but f (k) − log(p) = n
(1+c)/2
min − ncmin → ∞.

Since the ridge parameter λ(k)i = o(nmin), r
(k)
i =

||π(k)
i ||22×o(nmin). Therefore, when all ||π(k)

i ||2 are uni-
formly bounded, we have rmax = o(nmin). Otherwise,
the ridge parameter λ(k)i should be adjusted accordingly



to control both estimation and prediction losses.

Before we characterize the consistency of estimated reg-
ulatory effects on the second stage, we first introduce the
following concept of restricted eigenvalue which is used
to present an assumption.

Definition 2.1. The restricted eigenvalue of a matrix A
on an index set S is defined as

ϕre(A,S) = min
||δSc ||1≤3||δS ||1

||Aδ||2√
n||δS ||2

. (9)

For the i-th node, we use Si to denote the non-zero in-
dices of βi, i.e., Si = supp(βi). Further denote

Π−i =

(
π

(1)
−i π

(1)
−i

π
(2)
−i −π

(2)
−i

)
.

As in Bickel et al. [2009], we impose the following re-
stricted eigenvalue condition on the design matrix in (8).

Assumption 4. There exists a constant ϕ0 > 0 such that
ϕre(HiXΠ−i,Si) ≥ ϕ0.

Let n = n(1) + n(2), cmax = c
(1)
1 ∨ c

(2)
1 , and B =

[β1,β2, . . . ,βp]. The matrix norms || · ||1 and ∥ · ∥∞
are the maximum of column and row sums of absolute
values of the matrix, respectively. For a vector, we de-
fine ∥·∥∞ and ∥·∥−∞ to be the maximum and minimum
absolute values of its components. Then, we can derive
the following loss bounds for the estimation and predic-
tion at the second stage on the basis of Theorem 2.

Theorem 3. Suppose that, for node i, the adaptive
lasso at the second stage takes the tuning parameter
λi ≍ ∥ωi∥−1

−∞||B||1||Π||1
√

(d ∨ rmax ∨ fmax) log(p)
/
nmin,

and
√
(d ∨ rmax ∨ fmax)

/
n + cmax||Π||1 ≤√

c2max||Π||21 + ϕ20/(64C2|Si|). Let hn = (||B||21 ∧ 1)
×
(
(n||Π||21/d) ∧ (d ∨ rmax ∨ fmax)

)
log(p). Un-

der Assumptions 1-4, there exist positive constants
C3 and C4 such that, with probability at least
1− 3e−C3hn+log(4pq) − e−f(1)+log(p) − e−f(2)+log(p),
1. Estimation Loss:

||β̂i − βi||1 ≤ 8C4|Si|×

∥ωSi∥2∞||B||1||Π||1
ϕ2

0∥ωi∥2−∞

√
(d ∨ rmax ∨ fmax) log(p)

nmin
;

2. Prediction Loss:

1

n
||HiẐ−i(β̂i − βi)||22 ≤ C2

4 |Si|×

∥ωSi∥2∞||B||21||Π||21
ϕ2

0∥ωi∥2−∞

(d ∨ rmax ∨ fmax) log(p)

nmin
.

The main idea of the proof is to take advantage of the
commonly used restricted eigenvalue condition and ir-
representable condition for lasso-type estimator. How-
ever, the design matrix in our case includes predicted val-
ues instead of the original one, which complicates the
proof. We claim that the restricted eigenvalue and irrep-
resentable condition still hold for the predicted design
matrix as long as the estimation and prediction losses are
well controlled at the calibration stage. The proof is de-
tailed in the supplemental materials.

The available anchoring regulators as required by As-
sumption 1 implies that both ||B||1 > 0 and ||Π||1 > 0,
so hn/ log(p) → ∞. That is, these loss bounds hold with
a sufficient large probability with properly chosen f (k).

The two sets of losses in Theorem 3 can also be con-
trolled across the whole system by the same upper
bounds defined by replacing |Si| with smax = maxi |Si|,
with probability at least 1 − 3e−C3hn+log(4q)+2 log(p) −
e−f

(1)+2 log(p) − e−f
(2)+2 log(p). When both p and q

are divergent up to an exponential order, say p ≍ q ≍
en

c
min for some c ∈ (0, 1), we can set f (1) = f (2) =

n
(1+c)/2
min to guarantee the bounds at a sufficient large

probability. However, the bounds are determined by
(d ∨ rmax ∨ fmax) log(p) which is o(nmin) only when
c < min(1/3, θ). Therefore, if smax also diverges up to
nc̃min with c̃ < min(1/4, θ/2, 1 − θ), the losses can be
well controlled for c < min((1− 4c̃)/3, θ − 2c̃).

Note that, with properly chosen f (1) and f (2), these
losses are well controlled at o(nmin), revealing the fact
that we need to have sufficient observations for each net-
work for consistent differential analysis of the two net-
works.

Let Wi = diag{ωi}. Denote Ii = 1
nΠ

T
−iX

THiXΠ−i

and Îi = 1
nΠ̂

T

−iX
THiXΠ̂−i. Let Ii,11 be a submatrix

of Ii with rows and columns both indexed by Si, and
Ii,21 be a submatrix of Ii with rows and columns indexed
by Sci and Si, respectively. Îi,11 and Îi,21 are similarly
defined from Îi. We further define the minimal signal
strength bi = max

j∈Si

|βij | and ψi = ||I−1
i,11WSi ||∞.

The following assumption, reminiscent of the adaptive ir-
representable condition in Huang et al. [2008], helps in-
vestigate the selection consistency of regulatory effects.

Assumption 5. (Weighted Irrepresentable Condi-
tion) There exists a constant τ ∈ (0, 1) such that
||W−1

Sc
i
I−1
i,21Ii,11WSi

||∞ < 1− τ .

Theorem 4. (Variable Selection Consistency)
Denote Ŝ = {j : β̂ij ̸= 0, j ̸= i}. Sup-
pose that, for node i, Îi,11 is invertible,

bi > λiψi/(2−τ), and
√

(d ∨ rmax ∨ fmax)
/
n+cmax||Π||1 ≤



√
c2max||Π||21 + min(ϕ2

0

/
64, τ(4 − τ)−1∥ωi∥−∞/ψi)

/
(C2|Si|).

Under Assumptions 1-5, there exists some constant
C5 > 0 such that Ŝi = Si with probability at least
1− 3e−C5hn+log(4pq) − e−f

(1)+log(p) − e−f
(2)+log(p).

This theorem implies that our proposed method can iden-
tify both common and differential regulatory effects be-
tween the two networks with a sufficiently large proba-
bility. On the other hand, the assumed weighted irrepre-
sentable condition means that the true signal should not
correlate too much with irrelevant predictors so as to con-
duct a successful differential analysis. The correspond-
ing proof is detailed in the supplemental materials.

3 EXPERIMENTS

3.1 SYNTHETIC DATA EVALUATION

Here we report on experiments with synthetic data to
show the superior performance of our method. We com-
pare the method ReDNet to a naive differential analysis
which employs the 2SPLS method proposed by [Chen
et al., 2017] to construct each network separately. Note
that the 2SPLS method is modified here by applying ISIS
to screen exogenous variables before conducting ridge
regression to predict endogenous variables, making the
naive differential analysis comparable to ReDNet.

Synthetic data are generated from both acyclic and cyclic
networks involving 1000 endogenous variables, with the
sample size from 200 to 300. Each network includes a
subnetwork of 50 endogenous variables, whose shared
and differential structures will be investigated against its
pair. On average, each endogenous variable has one reg-
ulatory effect in a sparse subnetwork, and three regula-
tory effects in a dense network. While each pair of sub-
networks in comparison share many identical regulatory
effects, they also share five regulatory effects but with
opposite signs, and each network has five unique regula-
tory effects (so the total number of differential regulatory
effects is 15). The nonzero regulatory effects were inde-
pendently sampled from a uniform distribution over the
range [−0.8,−0.3]∪ [0.3, 8]. While assuming each node
is directly regulated by one exogenous variable, each ex-
ogenous variable was sampled from discrete values 0,1
and 2 with probabilities 0.25, 05 and 0.25, respectively.
All of the noise terms were independently sampled from
the normal distribution N(0, 0.12). We also conducted
differential analysis between two networks with both
X(1) ̸= X(2) and X(1) = X(2) as in practice the paired
networks may or may not share identically valued exoge-
nous variables.

We evaluate the the performance in terms of the false dis-
covery rate (FDR), power and Matthews correlation co-

efficient (MCC) [Matthews, 1975]. Let TP, TN, FP and
FN denote the numbers of true positives, true negatives,
false positives, and false negatives, respectively. MCC is
defined as,

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

Here we refer nonzero effects as positives and zero ef-
fects as negatives. The MCC varies from 0 to 1 with
larger values implying better variable selection.

In each differential analysis, the ridge regression em-
ployed the generalized cross validation [Golub et al.,
1979] to select the ridge parameter, and the adaptive
lasso used 10-fold cross-validation to choose its tuning
parameter. Following the recommendation by Fan and
Lv [2008], (n(k))0.9 variables are screened by ISIS.

For each type of networks, 100 synthetic data sets were
generated, and the differential analysis results are sum-
marized in Figure 3. Overall, both ReDNet and the naive
approach maintain high power in identifying both dif-
ferential and common regulatory effects. However, the
naive approach tends to report high FDR, especially over
80% false discoveries of differential regulatory effects.
Such a tendency to report false positives by the naive ap-
proach results in lower MCC, with dramatic decrease in
identifying differential regulatory effects.

While both methods performed stably across networks
with X(1) ̸= X(2) and X(1) = X(2), ReDNet per-
formed better in identifying both common and differen-
tial regulatory effects from dense networks than sparse
networks in terms of FDR and MCC. However, the naive
approach tends to report even higher FDR and so much
lower MCC when identifying differential regulatory ef-
fects from dense networks, although reporting lower
FDR and higher MCC when identifying common regu-
latory effects from dense networks.

We also calculated the standard errors (SE) of the re-
ported FDR, power, and MCC over 100 synthetic data
sets (the results are not shown). They are all small with
most at the scale of thousandth and others at the scale
of hundredth. Therefore, ReDNet performed robustly
in differential analysis of networks, and the 2SPLS ap-
proach by Chen et al. [2017] performed also robustly in
constructing single networks.

3.2 THE GENOTYPE-TISSUE EXPRESSION
DATA

We performed differential analysis of gene regulatory
networks on two sets of genetic genomics data from the
Genotype-Tissue Expression (GTEx) project [Carithers
et al., 2015], with one collected from human whole blood
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Figure 3: Performance of ReDNet Versus the Naive Approach (i.e. two networks are constructed independently). The
results average over 100 synthetic data sets for different types of networks, with letters A, C, S, D in the x-axis denoting
Acyclic, Cyclic, Sparse and Dense networks, respectively. “Diff” and “Common” summarize the performance on
differential and common regulatory effects, respectively. The sample size n(2) = n(2) is either 200 or 300.

(WB) and another one from human muscle skeletal (MS).
The WB and MS data included genome-wide genetic and
genotypic values from 350 and 367 healthy subjects, re-
spectively. Both data sets were preprocessed following
Carithers et al. [2015] and Stegle et al. [2010], resulting
in a total of 15,899 genes and 1,083,917 single nucleotide
polymorphisms (SNPs) being shared by WB and MS.

Expression quantitative trait loci (eQTL) mapping [Gilad
et al., 2008] was conducted and identified 9875 genes
with at least one marginally significant cis-eQTL (with
p-value< 0.05). For each gene, we further filtered its
set of cis-eQTL by controlling the pairwise correlation
under 0.9 and keeping up to three cis-eQTL which have
the strongest association with the corresponding gene ex-
pression. These cis-eQTL serve as anchoring exogenous
variables for the genes, and expression levels of differ-
ent genes are endogenous variables. At completion of
preprocessing data, we have 9,875 endogenous variables
and 23,920 exogenous variables.

We applied ReDNet to infer the differential gene regu-
lation on a set of eighty target genes, which had largest
changes on gene-gene correlation between the two tis-

sues. We identified a total of 711 common and 572 dif-
ferential regulations on the eighty target genes. To eval-
uate the significance of identified regulations, we boot-
strapped 100 data sets, and conducted differential analy-
sis on each bootstrap data set. As summarized in Table 1,
50, 43 and 34 differential regulatory effects were identi-
fied in over 70%, 80% and 90% of the bootstrap data sets,
respectively.

Table 1: Summary of Regulations Identified in Over
70%, 80%, 90% of the Bootstrap Data Sets by ReDNet
From GTEx Data. Shown under “Original” are for those
identified from the original data.

Original 70% 80% 90%
Common 711 116 108 93

Differential 572 50 43 34

The top four subnetworks bearing differential regulations
on some of the eighty target genes were shown in Fig-
ure 4. We also constructed the differential networks us-
ing the naive approach (the results are not shown), and
reported more regulations which cover the reported ones
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Figure 4: The Top Four Differential Subnetworks of Gene Regulation Identified by ReDNet From GTEx Data. The
dotted, dashed, and solid lines imply regulations constructed in over 70%, 80%, and 90% of the bootstrap data sets,
respectively. Highlighted in yellow are the target genes whose regulatory genes are focused in this study. The differ-
ential regulations are in red while common regulations are in black. The arrow head implies up regulation in both
networks or no regulation in at most one network; the circle head implies down regulation in the whole blood but up
regulation in muscle skeletal; and the diamond head implies up regulation in whole blood but down regulation muscle
skeletal.

by ReDNet. This concurs with our observation in the
synthetic data evaluation that the naive approach tends
to report higher false positives, especially for differential
regulatory effects.

4 CONCLUSION

We have developed a novel two-stage differential analy-
sis method named ReDNet. The first stage, i.e., the cal-
ibration stage, aims for good prediction of the endoge-
nous variables, and the second stage, i.e., the construc-
tion stage, identifies both common and differential net-
work structures in a node-wise fashion. The key idea of
ReDNet method is to appropriately reparametrize the in-
dependent models into a joint model so as to estimate
differential and common effects directly. This approach
can dramatically reduce the false discovery rate. In the
experiments with synthetic data, we demonstrated the ef-
fectiveness of our method, which outperformed the naive
approach with a large margin. Note that ReDNet allows
independently conducting all ℓ2 regularized regressions
at the same time at the first stage, and all ℓ1 regular-
ized regressions at the same time at the second stage.
Therefore, ReDNet not only permits parallel computa-

tion but also allows for fast subnetwork construction to
avoid potential huge computational demands from differ-
ential analysis of large networks.

There are some interesting directions for future
research. Firstly, it is worthwhile to explore
other re-parametrization approaches such as baseline
reparametrizaiton in a case-control study. Secondly,
while we only consider differential analysis of two
networks, it is possible to generalize our method to
compare multiple networks, demanding more com-
plex reparametrization. Finally, applying the proposed
method for fully differential analysis of 53 tissues in the
GTEx project still provides challenging computational
and methodological issues.
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