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Abstract

Measuring uncertainty is a promising technique
for detecting adversarial examples, crafted in-
puts on which the model predicts an incorrect
class with high confidence. There are various
measures of uncertainty, including predictive
entropy and mutual information, each capturing
distinct types of uncertainty. We study these
measures, and shed light on why mutual infor-
mation seems to be effective at the task of adver-
sarial example detection. We highlight failure
modes for MC dropout, a widely used approach
for estimating uncertainty in deep models. This
leads to an improved understanding of the draw-
backs of current methods, and a proposal to im-
prove the quality of uncertainty estimates using
probabilistic model ensembles. We give illustra-
tive experiments using MNIST to demonstrate
the intuition underlying the different measures
of uncertainty, as well as experiments on a real-
world Kaggle dogs vs cats classification dataset.

1 INTRODUCTION

Deep neural networks are state of the art models for rep-
resenting complex, high dimensional data such as nat-
ural images. However, neural networks are not robust:
there exist small perturbations to the input of the network
which produce erroneous and over-confident classifica-
tion results. These perturbed inputs, known as adversarial
examples (Szegedy et al., 2013), are a major hurdle for
the use of deep networks in safety-critical applications, or
those for which security is a concern.

One possible hypothesis for the existence of adversarial
examples is that such images lie off the manifold of nat-
ural images, occupying regions where the model makes
unconstrained extrapolations. If this hypothesis were to
hold true, then one could detect adversarial perturbation

by measuring the distance of the perturbed input to the
image manifold.

Hypothetically, such distances could be measured using
nearest neighbour approaches, or by assessing the proba-
bility of the input under a density model on image space.
However, approaches based on geometric distance are a
suboptimal choice for images, as pixel-wise distance is a
poor metric for perceptual similarity; similarly, density
modelling is difficult to scale to the high dimensional
spaces found in image recognition.

Instead, we may consider proxies to the distance from
the image manifold. For example, the model uncertainty
of a discriminative Bayesian classification model should

Figure 1: Uncertainty of a standard dropout network
trained on MNIST, as measured by mutual information,
visualized in the latent space obtained from a variational
autoencoder. Colours are classes for each encoded train-
ing image. The background shows uncertainty, calculated
by decoding each latent point into image space, and evalu-
ating the mutual information between the decoded image
and the model parameters. A lighter background corre-
sponds to higher uncertainty.



be high for points far away from the training data, for
a high-capacity model such as a deep network. Under
the hypothesis that adversarial examples lie far from the
image manifold, i.e. the training data, such uncertainty
could be used to identify an input as adversarial.

The uncertainty of such models is not straightforward to
obtain. Numerical methods for integrating the posterior,
such as Markov Chain Monte Carlo, are difficult to scale
to large datasets (Gal, 2016). As a result, approximations
have been studied extensively. For example, approximate
inference in Bayesian neural networks using dropout is a
computationally tractable technique (Gal & Ghahramani,
2016) which has been widely used in the literature (Leibig
et al., 2017; Gal, 2016). Dropout based model uncertainty
can be used for the detection of adversarial examples,
with moderate success (Li & Gal, 2017; Feinman et al.,
2017; Rawat et al., 2017).

However, existing research has mostly overlooked the ef-
fect of the chosen measure for uncertainty quantification.
Many such measures exist, including mutual information,
predictive entropy and softmax variance. (Li & Gal, 2017)
for example use expected entropy, (Rawat et al., 2017)
use mutual information, whereas (Feinman et al., 2017)
estimate the variance of multiple draws from the predic-
tive distribution (obtained using dropout). Further, to date,
research for the identification of adversarial examples us-
ing model uncertainty has concentrated on toy problems
such as MNIST, and has not been shown to extend to
more realistic data distributions and larger models such
as ResNet (He et al., 2015).

In this paper we examine the differences between the vari-
ous measures of uncertainty used for adversarial example
detection, and in the process provide further evidence for
the hypothesis that model uncertainty could be used to
identify an input as adversarial. More specifically, we
illustrate the differences between the measures by project-
ing the uncertainty onto lower dimensional spaces (see for
example Fig. 1). We show that the softmax variance can
be seen as an approximation to the mutual information
(section 3.2), explaining the effectiveness of this rather
ad-hoc technique. We show that some measures of un-
certainty do not distinguish between non-adversarial off-
manifold images (for example image interpolations) and
adversarial inputs. We highlight ways in which dropout
fails to capture the full Bayesian uncertainty by visualiz-
ing gaps in model uncertainty in the latent space (Section
4.2), and use this insight to propose a simple extension
to dropout schemes to be studied in future research. We
finish by demonstrating the effectiveness of dropout on
the real-world ASIRRA (Elson et al., 2007) cats and dogs
classification dataset (Section 4.3). Code for the experi-

ments described in this paper is available online1.

2 BACKGROUND

2.1 BAYESIAN DEEP LEARNING

A deep neural network (with a given architecture) de-
fines a function f : X 7→ Y parametrised by a set of
weights and biases ω = {Wl,bl}Ll=1. These parame-
ters are generally chosen to minimize some loss function
E : Y × Y 7→ R on the model outputs and the target
outputs over some dataset D = {xi,yi}Ni=1 with x ∈ X
and y ∈ Y . Since neural networks are highly flexible
models with many degrees of freedom, a regulariser is
often added to the loss, giving

ω̂ = argmin
ω

∑
i

E(f(xi;ω), y) + λ
∑
l

||Wl||2 (1)

for the common choice of an L2 regulariser with weight
decay λ.

In Bayesian approaches, rather than thinking of the
weights as fixed parameters that are optimised over, we
treat them as random variables, and so we place a prior
distribution p(ω) over the weights of the network. If we
also have a likelihood function p(y | x, ω) that gives the
probability of y ∈ Y given the model parameters and an
input to the network, we can conduct inference given a
dataset by marginalizing the parameters. Such models are
known as Bayesian neural networks.

If the prior on the weights is a zero mean Gaussian with
diagonal covariance, and the loss of the network is the
negative log likelihood (so p(y | ω,x) = e−E(f(x),y))
then the optimised solution in equation 1 corresponds to
a mode of the posterior over the weights.

Ideally we would integrate out our uncertainty by tak-
ing the expectation of the predictions over the posterior,
rather than using this point estimate. For neural networks
this can only be done approximately. Here we discuss
one practical approximation, variational inference with
dropout approximating distributions.

2.2 VARIATIONAL INFERENCE

Variational inference is a general technique for approx-
imating complex probability distributions. The idea is
to approximate the intractable posterior p(ω | D) with a
simpler approximating distribution qθ(ω). By applying
Jensen’s inequality to the Kullback-Leibler divergence
between the approximating distribution and the true pos-

1https://github.com/lsgos/uncertainty-adversarial-paper



terior, we obtain the log-evidence lower bound LV I

LV I :=
∫
qθ(ω) log p(D | ω)dω −DKL(qθ || p(ω)).

Since the model evidence is a constant independent of the
parameters of qθ, maximizing LV I with respect to θ will
minimize the KL divergence between q and the model
posterior. The key advantage of this from a computational
perspective is that we replace an integration problem with
an optimisation problem, maximising a parametrised func-
tion, which can be approached by standard gradient based
techniques.

For neural networks, a common approximating distribu-
tion is dropout (Srivastava et al., 2014) and it’s variants.
In the variational framework, this means the weights are
drawn from

Wl = Ml · diag([zl,j ]Kl
j=1)

where zl,j ∼ Bernoulli(pl), l = 1..L, j = 1..Kl−1

for a network with L layers, where the dimension of
each layer is Ki × Ki−1, and the parameters of q are
θ = {Ml, pl | l = [1..L]}. Informally, this corresponds
to randomly setting the outputs of units in the network to
zero (or zeroing the rows of the fixed matrix Ml). Often
the layer dropout probabilities pi are chosen as constant
and not varied as part of the variational framework, but
it is possible to learn these parameters as well (Gal et al.,
2017). Using variational inference, the expectation over
the posterior can be evaluated by replacing the true pos-
terior with the approximating distribution. The dropout
distribution is still challenging to marginalise, but it is
readily sampled from, so expectations can be approxi-
mated using the Monte Carlo estimator

Ep(ω|D)[f
ω(x)] =

∫
p(ω|D)fω(x)dω

'
∫
qθ(ω)f

ω(x)dω

' 1

T

T∑
i=1

fωi(x), ω1..T ∼ qθ(ω). (2)

2.3 ADVERSARIAL EXAMPLES

Works by (Szegedy et al., 2013) and others, demonstrating
that state-of-the-art deep image classifiers can be fooled
by small perturbations to input images, have initiated a
great deal of interest in both understanding the reasons
for why such adversarial examples occur, and devising
methods to resist and detect adversarial attacks. So far,
attacking has proven more successful than defence; a
recent survey of detection methods by (Carlini & Wag-

ner, 2017a) found that, with the partial exception of the
method based on dropout uncertainty analysed by (Fein-
man et al., 2017), all other investigated methods could be
defeated straightforwardly.

There is no precise definition of when an example quali-
fies as ‘adversarial’. The most common definition used
is of an input xadv which is close to a real data point x
as measured by some Lp norm, but is classified wrongly
by the network with high score. Speaking more loosely,
an adversarially perturbed input is one which a human
observer would assign a certain class, but for which the
network would predict a different class with a high score.

It is notable that there exists a second, related, type of im-
ages which have troubling implications for the robustness
of deep models, namely meaningless images which are
nevertheless classified confidently as belonging to a par-
ticular class (see, for example, Nguyen et al. (2015)). That
such images can be found reveals another shortcoming
of neural networks from the point of view of uncertainty,
since they are far from all training data by any reasonable
metric (based on either pixel-wise or perceptual distance).
We refer to these as ‘rubbish class examples’ or ‘fooling
images’ following (Nguyen et al., 2015) and (Goodfellow
et al., 2014).

Several possible explanations for the existence of ad-
versarial examples have been proposed in the literature
(Akhtar & Mian, 2018). These include the idea, proposed
in the original paper by (Szegedy et al., 2013), that the
set of adversarial examples are a dense, low probability
set like the rational numbers on R, with the discontinuous
boundary somehow due to the strong non-linearity of neu-
ral networks. Contrary to that, (Goodfellow et al., 2014)
proposed that adversarial examples are partially due of
the intrinsically linear response of neural network layers
to their inputs. (Tanay & Griffin, 2016) have proposed
that adversarial examples are possible when the decision
boundaries are strongly tilted with respect to the vector
separating the means of the class clusters.

Many of these ideas are consistent with the idea that
the training data of the model lies on a low dimensional
manifold in image space, the hypothesis we build upon in
this paper.

2.4 MEASURES OF UNCERTAINTY

There are two major sources of uncertainty a model may
have:

1. epistemic uncertainty is uncertainty due to our lack
of knowledge; we are uncertain because we lack
understanding. In terms of machine learning, this
corresponds to a situation where our model parame-
ters are poorly determined due to a lack of data, so



our posterior over parameters is broad.

2. aleatoric uncertainty is due to genuine stochastic-
ity in the data. In this situation, an uncertain pre-
diction is the best possible prediction. This corre-
sponds to noisy data; no matter how much data the
model has seen, if there is inherent noise then the
best prediction possible may be a high entropy one
(for example, if we train a model to predict coin flips,
the best prediction is the max-entropy distribution
P (heads) = P (tails)).

In the classification setting, where the output of a model
is a conditional probability distribution P (y|x) over some
discrete set of outcomes Y , one straight-forward measure
of uncertainty is the entropy of the predictive distribution

H[P (y|x)] = −
∑
y∈Y

P (y|x) logP (y|x). (3)

However, the predictive entropy is not an entirely satisfac-
tory measure of uncertainty, since it does not distinguish
between epistemic and aleatoric uncertainties. However,
it may be of interest to do so; in particular, we want to
capture when an input lies in a region of data space where
the model is poorly constrained, and distinguish this from
inputs near the data distribution with noisy labels.

An attractive measure of uncertainty able to distinguish
epistemic from aleatoric examples is the information gain
between the model parameters and the data. Recall that
the mutual information (MI) between two random vari-
ables X and Y is given by

I(X,Y ) = H[P (X)]− EP (y)H[P (X | Y )]

= H[P (Y )]− EP (x)H[P (Y | X)].

The amount of information we would gain about the
model parameters if we were to receive a label y for
a new point x, given the dataset D is then given by
I(ω, y | D, x) = H[p(y | x,D)]− Ep(ω|D)H[p(y | x, ω)]

(4)
Being uncertain about an input point x implies that if we
knew the label at that point we would gain information.
Conversely, if the parameters at a point are already well
determined, then we would gain little information from
obtaining the label. Thus, the MI is a measurement of the
model’s epistemic uncertainty.

In the form presented above, it is also readily approxi-
mated using the Bayesian interpretation of dropout. The
first term we will refer to as the ‘predictive entropy’; this
is just the entropy of the predictive distribution, which we
have already discussed. The second term is the mean of
the entropy of the predictions given the parameters over
the posterior distribution p(ω | D), and we thus refer to it
as the expected entropy.

These quantities are not tractable analytically for deep

nets, but using dropout inference and equation (2), the
predictive distribution, entropy and the MI are readily
approximated; (Gal, 2016):

p(y | D,x) ' 1

T

T∑
i=1

p(y | ωi,x) (5)

:= pMC(y | x)
H[p(y | D,x)] ' H[pMC(y | D,x)] (6)
I(ω, y | D, x) ' H[pMC(y | D,x)] (7)

− 1

T

T∑
i=1

H[p(y | ωi,x)] (8)

where ωi ∼ q(ω | D) are samples from the dropout
distribution.

Other, measures of uncertainty include the empirical vari-
ance of the softmax probabilities p(y = c | ωi,x) (with
the variance calculated over i), and variation ratios (Gal,
2016), with the former commonly used in previous re-
search on adversarial examples.

3 UNCERTAINTY FOR ADVERSARIAL
EXAMPLE DETECTION

We start by explaining the type of uncertainty relevant for
adversarial example detection under the hypothesis that
adversarial images lie off the manifold of natural images,
occupying regions where the model makes unconstrained
extrapolations. We continue by relating the softmax vari-
ance measure of uncertainty to mutual information.

3.1 WHAT KIND OF UNCERTAINTY?

Both the MI and predictive entropy should increase on
inputs which lie far from the image manifold. Under our
hypothesis, we expect both to be effective in highlighting
such inputs. However, predictive entropy could also be
high near the image manifold, on inputs which have inher-
ent ambiguity. Such inputs could be ambiguous images,
such as an image that contains both a cat and a dog, or
more generally interpolations between classes, such as a
digit that could be either a 1 or a 7. Such inputs would
have high predictive probability for more than one class
even in the limit of infinite data, yielding high predictive
entropy (but low MI). Such inputs are clearly not adver-
sarial, but would falsely trigger a hypothetical automatic
detection system2. We demonstrate this experimentally in
the next section.

Algorithms to find adversarial examples seek to create
an example image with a different class to the original,
typically by either minimising the predicted probability of

2We speculate that previous research using predictive en-
tropy has not encountered this phenomenon due to insufficient
coverage of the test cases.



the current class for an untargeted attack, or maximising
the predicted probability of a target class. This has the
side-effect of minimising the entropy of the predictions,
a simple consequence of the normalisation of the proba-
bility. It is interesting to highlight that this also affects
the uncertainty as measured by MI; since both the mutual
information and entropy are strictly positive, the mutual
information is bounded above by the predictive entropy
(see equation 4). Therefore, the model giving low entropy
predictions at a point is a sufficient condition for the mu-
tual information to be low as well. Equally, the mutual
information bounds the entropy from below; it is not pos-
sible for a model to give low entropy predictions when
the MI is high. It is important to realise that this means
that adversarial example algorithms implicitly seek low
uncertainty examples: detecting adversarial examples, at
least via model uncertainty, is not independent of being
able to fool the model without explicit detection methods.

3.2 MI AND SOFTMAX VARIANCE

Some works in the literature estimate the epistemic un-
certainty of a dropout model using the estimated variance
of the MC samples, rather than the mutual information
(Leibig et al., 2017; Feinman et al., 2017; Carlini & Wag-
ner, 2017a). This is somewhat arbitrary for classification,
but seems to work fairly well in practice. We suggest a
possible explanation of the effectiveness of this measure,
arguing that the softmax variance can be seen as a proxy
to the mutual information.

One way to see the relation between the two measures
of uncertainty is to observe that the variance is the lead-
ing term in the series expansion of the mutual informa-
tion. For brevity, we denote the sampled distributions
p(y | ωi,x) as pi and the mean predictive distribution
pMC(y | x) as p̂. These are in general distribution over
C classes, and we denote the probability of the jth class
as p̂j and pij for the mean and ith sampled distribution
respectively. The variance score is the mean variance
across the classes

σ̂2 =
1

C

C∑
j=1

1

T

T∑
i=1

(pij − p̂j)2 (9)

=
1

C

 C∑
j=1

(
1

T

T∑
i=1

p2ij

)
− p̂2j


And the mutual information score is

Î = H(p̂)− 1

T

∑
i

H(pi)

=
∑
j

(
1

T

∑
i

pij log pij

)
− p̂j log p̂j

Using a Taylor expansion of the logarithm,

Î =
∑
j

(
1

T

∑
i

pij(pij − 1)

)
− p̂j(p̂j − 1) + ...

=
∑
j

(
1

T

∑
i

p2ij

)
− p̂2j −

(
1

T

∑
i

pij

)
+ p̂j + ...

=

C∑
j

(
1

T

T∑
i

p2ij

)
− p̂2j + ... (10)

we see that the first term in the series is identical up
to a multiplicative constant to the mean variance of the
samples.

This relation between the softmax variance and the mutual
information measure could explain the effectiveness of the
variance in detecting adversarial examples encountered
by (Feinman et al., 2017). MI increases on images far
from the image manifold and not on image interpolations
(on which the predictive variance increases as well), with
the variance following similar trends.

4 EMPIRICAL EVALUATION

In the next section we demonstrate the effectiveness of
various measures of uncertainty as proxies to distance
from the image manifold. We demonstrate the difference
in behaviour between the predictive entropy and mutual
information on image interpolations, for interpolations in
the latent space as well as interpolations in image space.
We continue by visualising the various measures of uncer-
tainty, highlighting the differences discussed above. This
is further developed by highlighting shortcomings with
current approaches for uncertainty estimation, to which
we suggest initial ideas on how to overcome and suggest
new ideas for attacks (to be explored further in future
research). We finish by assessing the ideas discussed in
this paper on a real world dataset of cats vs dogs image
classification.

4.1 UNCERTAINTY ON INTERPOLATIONS

We start by assessing the behaviour of the measures of
uncertainty on image interpolations, comparing interpo-
lations via convex combination (λx1 + (1 − λ)x2, λ ∈
[0, 1], xi ∈ D) in latent space to those in image space. A
convex combination in image space will clearly produce
off manifold images, while we assume that moving in
latent space approximates the manifold of the data fairly
closely. That model uncertainty can capture what we want
in practice is demonstrated in Figures 2 and 3. We see
that the MI distinguishes between these on-manifold and
off-manifold images, whereas the entropy fails to do so.
This is necessary for the hypothesis proposed in the in-
troduction; if we are able to accurately capture the MI,



Figure 2: Entropy (middle) and the MI (bottom) vary
along a convex interpolation between two images in latent
space and image space (top). The entropy is high for
regions along both interpolations, wherever the class of
the image is ambiguous. In contrast, the MI is roughly
constant along the interpolation in latent space, since these
images have aleatoric uncertainty (they are ambiguous),
but the model has seen data that resembles them. On the
other hand, the MI has a clear peak as the pixel space
interpolation produces out-of-sample images between the
classes

Figure 3: The entropy (top) and mutual information (bot-
tom) of the interpolation halfway between 3000 random
points of different classes in the MNIST test set, showing
that the two modes of interpolation have very different
statistical properties with respect to the model uncertainty,
as shown for a single example in figure 2.

it would serve well as a proxy for whether an images
belongs to the learned manifold or not.

4.2 VISUALIZATION IN LATENT SPACE

We wish to gain intuition into how the different mea-
sures of uncertainty behave. In order to do so, we use
a variational autoencoder (Kingma & Welling, 2013) to
compress the MNIST latent space. We choose a latent
space of two dimensions so we can use this to visualise
the dataset. By decoding the image that corresponds to a
point in latent space, we can classify the decoded image

Figure 4: The predictive entropy of the same network as
in figure 1. Note the differences with the MI, which is low
everywhere close to the data in the centre of the plot, but
the entropy is high between the classes here. These points
correspond to images which resemble digits, but which
are inherently ambiguous. Note however that there are
large regions of latent space where the predictive entropy
is high and the MI low, despite being far from any training
data.

and evaluate the network uncertainty, thus providing a
two dimensional map of the input space. Figure 1 shows
the latent space with the uncertainty measured using the
MI, calculated using dropout. Similarly, Figure 4 shows
the predictive entropy. Note the differences in uncertainty
near the class cluster boundaries (corresponding to im-
age interpolations) – the MI has low uncertainty in these
regions, whereas the predictive entropy is high.

Another question of interest in this context is how well
the dropout approximation captures uncertainty. The ap-
proximating distribution is fairly crude, and variational
inference schemes are known to underestimate the uncer-
tainty of the posterior, tending to fit an approximation to
a local mode rather than capturing the full posterior3.

As seen from the figures, the network does a reasonable
job of capturing uncertainty close to the data. However,
the network’s uncertainty has ‘holes’– regions where the
predictions of the model are very confident, despite the
images generated by the decoder here being essentially
nonsense (see Figure 5). This suggests that, while the
uncertainty estimates generated by MC dropout are useful,

3There are two reasons for this behaviour: firstly, that the
approximating distribution q may not have sufficient capacity
to represent the full posterior, and secondly, the asymmetry of
the KL divergence, which penalizes q placing probability mass
where the support of p is small far more heavily than the reverse.



Figure 5: A typical garbage class example from the ‘holes’
in latent space. This is classified as a 2 with high confi-
dence.

they do not capture the full posterior, instead capturing
local behaviour near one of its modes, since we would
expect the uncertainty to be high for a neural network
everywhere where it is not constrained by the training
data due to the high capacity of the model.

This may offer an explanation as to why MC dropout nets
are still vulnerable to adversarial attack; despite their treat-
ment of uncertainty, there are still large regions where they
are mistakenly overconfident due to the approximations
used, which adversarial attack algorithms can exploit. It
may be possible to deliberately find and exploit these
‘holes’ to create adversarial examples. This intuition sug-
gests a simple fix; since a single dropout model averages
over a single mode of the posterior, we can capture the
posterior using an ensemble of dropout models using dif-
ferent initializations, assuming that these will converge to
different local modes. We find that even a small ensemble
can qualitatively improve this behaviour (Figure 6).

Figure 6: The MI calculated using an ensemble of dropout
models, treating all of their predictions as Monte Carlo
samples from the posterior. This mitigates some of the
spuriously confident regions in latent space

It should be noted, though, that there is no guarantee that
an ensemble of dropout models is a better approximation
to the true posterior. It will approximate it well only if
the posterior is concentrated in many local modes, all
of roughly equal likelihood (since all the models in the
ensemble are weighted equally), and a randomly initial-
ized variational dropout net trained with some variant
of gradient descent will converge to all of these modes
with roughly equal probability4. Investigating possible
theoretical justification for this ensembling procedure for
variational models is a possible direction for future re-
search.

4.3 EVALUATION ON CATS AND DOGS
DATASET

It has been observed by (Carlini & Wagner, 2017a) that
many proposed defences against adversarial examples
fail to generalize from MNIST. Therefore, we also evalu-
ate the various uncertainty measures on a more realistic
dataset; the ASSIRA cats and dogs dataset (see Figure
7 for example images). The task is to distinguish pic-

4This description does coincide with common beliefs about
neural network loss surfaces, for which there is some justifi-
cation in the literature; see, for example, Choromanska et al.
(2015)

Figure 7: Example adversarial images generated by the
Momentum iterative method at ε = 10, with original
images on the left, adversarial images on the determin-
istic model in the second column, and those for the MC
dropout model in the fourth column. The difference be-
tween the adversarial image and the original is shown on
the right of each image.



Table 1: The AUC for the adversarial discrimination task described in the experiments section. Fields marked with (S)
denote this quantity evaluated on a version of the dataset with unsuccessful adversarial examples (that do not change the
label) removed. The success rate of each attack in changing the label is given as a measure of each attacks effectiveness
on this dataset.

ENTROPY MI ENTROPY (S) MI (S) SUCCESS RATE

BIM ε = 5
DETERMINISTIC 0.322 N.A 0.293 N.A 0.757
MC 0.0712 0.728 0.0617 0.733 0.900
FGM ε = 5
DETERMINISTIC MODEL 0.439 N.A 0.490 N.A 0.517
MC MODEL 0.426 0.557 0.465 0.497 0.563
MIM ε = 5
DETERMINISTIC MODEL 0.347 N.A 0.319 N.A 0.743
MC MODEL 0.0476 0.657 0.0410 0.669 0.917
BIM ε = 10
DETERMINISTIC MODEL 0.302 N.A 0.285 N.A 0.753
MC MODEL 0.0686 0.708 0.0719 0.723 0.917
FGM ε = 10
DETERMINISTIC MODEL 0.502 N.A 0.550 N.A 0.487
MC MODEL 0.480 0.529 0.514 0.491 0.547
MIM ε = 10
DETERMINISTIC MODEL 0.350 N.A 0.319 N.A 0.763
MC MODEL 0.0527 0.661 0.0442 0.665 0.907

tures of cats and dogs. While this is not a state of the art
problem, these are realistic, high resolution images. We
finetune a ResNet model (He et al., 2015), pre-trained on
Imagenet, replacing the final layer with a dropout layer
followed by a new fully connected layer. We use 20 for-
ward passes for the Monte Carlo dropout estimates. We
use dropout only on the layers we retrain, treating the
pre-trained convolutions as deterministic.

We compare the receiver operating characteristic (ROC)
of the predictive entropy of the deterministic network,
the predictive entropy of the dropout network (equation
7), and the MI of the dropout network (the MI is always
zero if the model is deterministic; this corresponds to the
approximating distribution q being a delta function). Note
that we compare with the same set of weights (trained
with dropout) – the only difference is whether we use
dropout at test time. For each measure of uncertainty we
generate the ROC plot by thresholding the uncertainty at
different values, using the threshold to decide whether an
input is adversarial or not.

The receiver operating characteristic is evaluated on a
synthetic dataset consisting of images drawn at random
from the test set and images from the test set corrupted by
Gaussian noise, which comprise the negative examples,
as well as adversarial examples generated with the Basic
Iterative Method (Kurakin et al., 2016), Fast Gradient

method (Goodfellow et al., 2014), and Momentum Iter-
ative Method (Dong et al., 2017). We test with the final
attack because it is notably strong, winning the recent
NIPS adversarial attack competition, and is simpler to
adapt to stochastic models than the other strong attacks in
the literature, such as that of Carlini and Wagner (Carlini
& Wagner, 2017b).

We find that only the mutual information gets a useful
AUC on adversarial examples. In fact, most other mea-
sures of uncertainty seem to be worse than random guess-
ing; this suggests that this dataset has a lot of examples
the model considers to be ambiguous (high aleatoric un-
certainty), which mean that the entropy has a high false
positive rate. The fact the AUC of the entropy is low
suggests that the model is actually more confident about
adversarial examples than natural ones under this mea-
sure.

An interesting quirk of this particular model is that the ac-
curacy of using Monte Carlo estimation is lower than the
point estimates, even though the uncertainty estimates are
sensible. Possibly this is because the dropout probability
is quite high; only a subset of the features in the later lay-
ers of a convnet are relevant to cat and dog discrimination,
so this may be a relic of our transfer learning procedure;
dropout does not normally have an adverse effect on the
accuracy of fully trained models (Gal, 2016).



Figure 8: BIM with ε = 5 Figure 9: FGM with ε = 5 Figure 10: MIM with ε = 5

Figure 11: BIM with ε = 10 Figure 12: FGM with ε = 10 Figure 13: MIM with ε = 10

Figure 14: ROC plots for adversarial example detection with different measures of uncertainty and different attacks.
From left to right: basic iterative method (BIM), fast gradient method (FGM), and momentum iterative method (MIM).
Top row uses ε of 5, bottom row uses ε of 10. All use infinity norm. (succ) denotes the quantity evaluated only for
successful adversarial examples. We suspect that the low FGM attack success rate is related to the difficulty we observe
in identifying these using model uncertainty, however further investigation is required.

5 DISCUSSION & CONCLUSION

We have examined various measures of uncertainty for
detecting adversarial examples, and provided both the-
oretical and experimental evidence that measuring the
epistemic uncertainty with the mutual information is the
most appropriate and effective for this task.

We do not claim, however, that using dropout provides a
very convincing defence against adversarial attack. Our
results (in agreement with previous literature on the sub-
ject) show that dropout networks are more difficult to
attack than their deterministic counterparts, but attacks
against them can still succeed while remaining impercep-
tible to the human eye, at least in the white-box setting
we investigated.

It is worth noting, however, that these techniques for quan-
tifying uncertainty can be derived without any explicit
reference to the adversarial setting, and no assumptions
are made about the distribution of adversarial examples.

By improving model robustness and dealing with uncer-
tainty more rigorously, models become harder to fool as
a side effect; model robustness and good uncertainty esti-
mates are not independent, as discussed in section 3. We
think the fact that dropout models can still be defeated
by adversarial attack is at least partly because dropout
is a fairly crude approximation that underestimates the
uncertainty significantly, as we have demonstrated here.
Looking for scalable ways to improve on the uncertainty
quality captured by dropout is an important avenue for
future research.
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