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Abstract

Empirical evidence suggests that heavy-tailed
degree distributions occurring in many real net-
works are well-approximated by power laws
with exponents η that may take values either
less than and greater than two. Models based
on various forms of exchangeability are able
to capture power laws with η < 2, and admit
tractable inference algorithms; we draw on pre-
vious results to show that η > 2 cannot be gen-
erated by the forms of exchangeability used in
existing random graph models. Preferential at-
tachment models generate power law exponents
greater than two, but have been of limited use as
statistical models due to the inherent difficulty
of performing inference in non-exchangeable
models. Motivated by this gap, we design and
implement inference algorithms for a recently
proposed class of models that generates η of all
possible values. We show that although they
are not exchangeable, these models have prob-
abilistic structure amenable to inference. Our
methods make a large class of previously in-
tractable models useful for statistical inference.

1 INTRODUCTION

Sparsity and heavy-tailed degree distributions are believed
to occur in many real networks (Newman, 2005; Clauset,
Shalizi, and Newman, 2009). Sparsity has been well-
studied and is an intuitive concept: The typical social
network user interacts with only a vanishing fraction of
all users as the network grows. Heavy-tailed degree distri-
butions and the mechanisms that generate them are not as
well understood. However, empirical evidence indicates
that heavy-tailed distributions are expressed in a wide
range of settings, including network degrees (Clauset,

Shalizi, and Newman, 2009). Power law degree distribu-
tions, in which the proportion of vertices with degree d is
∝ d−η, are often used as models for real degree distribu-
tions, and serve as a useful analytic tool for characterizing
the asymptotic properties of random network models.

Many statistical network models make the assumption of
exchangeability over vertices, appealing to the Aldous–
Hoover theorem (Hoover, 1979; Aldous, 1981) for theo-
retical justification. Noting that networks sampled from
these models cannot be sparse, Orbanz and Roy (2015)
posed a question paraphrased as, “Can a probabilistic
model for random graphs produce sparse networks and
have some useful notion of probabilistic symmetry?” A
generation of models answered in the affirmative by incor-
porating other notions of exchangeability: In an exchange-
able point process representation of a network (Caron and
Fox, 2017; Veitch and Roy, 2015; Borgs et al., 2016), or as
an exchangeable sequence of edges (Crane and Dempsey,
2017; Cai, Campbell, and Broderick, 2016; Williamson,
2016). Under certain parameterizations, these models gen-
erate sparse networks. They are able to generate asymp-
totic power law degree distributions, providing a better
fit to real network data than their vertex exchangeable
counterparts. However, the power law exponent of the
degree distribution in both model classes is constrained
to the interval η ∈ (1, 2). That interval is not an artifact
of particular model specifications. Rather, it is a basic
property resulting from the fact that the average vertex
degree is asymptotically unbounded; vertex degrees grow,
on average, linearly in the number of edges. For some
data, this property may be undesirable; such properties
ideally would be inferred from a model able to capture a
larger range of power law behavior.

In a largely disjoint literature, so-called preferential at-
tachment (PA) models have been studied primarily for
their ability to generate power law degree distributions
from a simple size-biased reinforcement mechanism, and
for their analytical tractability (e.g., Barabási and Albert,
1999; Berger et al., 2014; Peköz, Röllin, and Ross, 2017).



PA models have power law exponents η > 2. As we
explain in Section 2, the exponent range is tied to PA
models’ non-exchangeability—a property that has made
them, until now, of limited use as statistical models. In
particular, if the history of the network is unobserved,
the order of the edges must be inferred or marginalized;
even for networks of modest size, such inference over
permutations is generally intractable.

Recently, Bloem-Reddy and Orbanz (2017) introduced a
class of models that can generate random graphs with
power law degree distributions of any exponent η ∈
(1,∞). For reasons discussed below, we propose naming
them Beta Neutral-to-the-Left (BNTL) models. BNTL
models generalize many known models that have a size-
biased reinforcement mechanism, including a sub-class
of edge exchangeable models based on the Pitman–Yor
process, and variations of the PA model. The cost of the
additional flexibility is exchangeability; BNTL models
depend on the times at which new vertices arrive and
are not exchangeable in any known sense. However, as
we show in Section 3, BNTL models have probabilistic
structure—namely, left-neutrality—that may be exploited
for efficient computation, making a large class of previ-
ously intractable models useful for statistical inference.

Bloem-Reddy and Orbanz (2017) established the asymp-
totic properties of BNTL models; statistical modeling and
inference were left unstudied. Our contributions are:

• We identify left-neutrality as the key property that
yields tractable inference schemes.

• We categorize and give solutions to the BNTL inference
problem based on what data are available: We design
schemes for maximum likelihood estimation when ver-
tex arrival times are observed, and for Bayesian infer-
ence when an unlabeled network is observed.

• We implement these schemes on real networks of var-
ious sizes, from modest (∼ 102 vertices) to massive
(∼ 106 vertices).

2 POWER LAWS IN RANDOM GRAPH
MODELS

This section provides some context, and collects and in-
terprets various results from random graph models with
asymptotic degree distributions exhibiting power law tails.
Although none of the results here are new, to our knowl-
edge they have not been coherently synthesized in the
literature. Technical details are omitted; they may be
found in the references given throughout the section. We
focus our attention on edge exchangeable and PA models
because they are most similar to the BNTL framework.

A graph G is a set of vertices, V(G), and of edges,1 E(G),
between them. A multigraph allows for multiple edges
between vertices; we consider each edge to be distinct,
rather than as one integer-valued edge. We consider only
multigraphs and henceforth refer to them as graphs. A
sequence of growing graphs G1, G2, . . . is a stochastic
process G, indexed by the number of edges, n. Hence,
Gn may be interpreted as Gn−1 with an additional edge,
either between two vertices in V(Gn−1), between to new
vertices, or between one old and one new vertex. We
assume that the edges are labeled according to the order
in which they appear, though this assumption is not nec-
essary for edge exchangeable models (discussed below).
As such, Gn may be viewed simply as a sequence of
edges En := (E1, . . . , En) or, even more simply, as a se-
quence of ends of edges, denoted Z2n = (Z1, . . . , Z2n).
We denote by G(Z2n) the labeled graph with n edges
constructed from Z2n. (For convenience, we will use
the subscript n for all sequences when there is no risk of
confusion.)

For a graph G(Zn), Kn := |V(G(Zn))| is the number
of vertices (i.e., the number of unique values in Zn);
the degree of vertex j, dj,n :=

∑n
i=1 1{Zi = j}, is

equal to the number of ends of edges connected to it. Let
mn(d) denote the number of vertices with degree d. The
asymptotic degree distribution of G1, G2, . . . is said to
have power law tail with exponent η > 1 if

pn(d) =
mn(d)

Kn

p−−−−→
n→∞

pd
d↑∞∼ L(d)d−η for large d ,

such that
∑
d≥1 pd = 1, for some slowly varying function

L(d): limx→∞ L(rx)/L(x) = 1 for all r > 0 (Bingham,
Goldie, and Teugels, 1989). For power law tails, we state
the following fact (see Appendix A).

Fact. As n → ∞, if the expected average degree is
unbounded, then η ∈ (1, 2); if it is bounded, η ∈ (2,∞).

Edge exchangeable models (Crane and Dempsey,
2017; Cai, Campbell, and Broderick, 2016). Let Gn
be specified by its sequence of edges En (not necessarily
ends of edges), which is assumed to be exchangeable: Its
distribution is invariant under all permutations of the order
of the edges for all n, i.e., the labels carry no information
about their distribution. As a consequence of the law of
large numbers for exchangeable sequences, the counts of
all non-zero multi-edges grow linearly in n and thus so do
the vertex degrees. That is, dj,n = Θ(n). Furthermore,
Kn = o(n). The average degree is unbounded, implying
that if the degree distribution tail follows a power law,
then η ∈ (1, 2).

1We treat all graphs as undirected; extension to directed
graphs is straightforward.



As an example, consider sampling Z from the the Pitman–
Yor process (PYP) (Ishwaran and James, 2001) with
parameters τ ∈ (0, 1), θ > −τ ,

P[Zn+1 ∈ • |Zn] =
θ +Knτ

n+ θ
δKn+1( • ) (1)

+
n−Knτ

θ + n

Kn∑
j=1

dj,n − τ
n−Knτ

δj( • ) .

It can be shown that the asymptotic degree distribution
has power law tail (Pitman, 2006),

n−τmd(n)
a.s.−−−−→
n→∞

pd
d↑∞∼ d−(1+τ) ,

which implies that ητ = 1 + τ ∈ (1, 2).

The predictive rule (1) demonstrates why the expected
average degree is unbounded. The probability that Zn+1

corresponds to a new vertex is θ+Knτn+θ , which is arbitrarily
close to zero as n→∞. For large n, the expected interar-
rival time between new vertices becomes arbitrarily large,
and edges pile up on the existing vertices. Intuitively, ver-
tex j takes part in a constant fraction of all interactions as
n grows. This property is shared by all edge exchangeable
models; an analogous property holds for exchangeable
point process models (see Appendix B).

Preferential attachment models. Although the PYP
has the same size-biased reinforcement mechanism com-
mon to all PA models, typically it is not considered to be
part of the same class as the PA models in the probabil-
ity literature, of which Barabási and Albert (1999) pro-
vide the prototypical example. However, the difference
between them amounts to how frequently new vertices
appear (Bloem-Reddy and Orbanz, 2017). For our pur-
poses, this is best illustrated with a simple PA model, the
Yule–Simon (YS) model (Simon, 1955). For β ∈ (0, 1),
Z is generated via the predictive rule

P[Zn+1 ∈ • |Zn] = βδKn+1( • ) + (1− β)

Kn∑
j=1

dj,n
n
δj( • ).

(2)

The YS model is known to generate power law degree
distributions with ηβ = 1+ 1

1−β ∈ (2,∞) (Simon, 1955).
Different versions of PA exhibit a range of possible η’s,
but it is generally the case that ηPA > 2, and this is tied to
their lack of exchangeability. The average rate at which
new vertices arrive is constant in n; hence, Kn = Ω(n),
implying bounded expected average degree. The “edge
pileup” phenomenon of exchangeable models does not
occur: dj,n = o(n). In the YS model, dj,n = Θ(n1−β).

3 BETA NTL MODELS

BNTL models were introduced under the name (α, T )-
models by Bloem-Reddy and Orbanz (2017), who studied
their distributional and asymptotic properties. We briefly
review the definition of BNTL models and describe the
properties that make them amenable to inference.

In the predictive distributions (1)-(2), the probability that
Zn+1 is a new vertex is independent of the degrees dj,n,
which allows the sampling of Z to be separated into two
parts: A sequence T1 < T2 < . . . of arrival times of
new vertices, and size-biased reinforcement at all steps
not associated with an arrival time. As such, a BNTL
model is parameterized by a scalar “discount parameter”
α ∈ (−∞, 1) and a probability distribution Λ on strictly
increasing integer-valued sequences, which specifies the
law of the arrival times T1, T2, . . . . A sequence Z is said
to have law BNTL(α,Λ) if, for a random arrival time
sequence T = (T1, T2, . . . ) ∼ Λ, Z is sampled as

P[Zn+1 ∈ • |Zn,T] = 1{n+ 1 = TKn+1}δKn+1( • )

+ 1{n+ 1 < TKn+1}
Kn∑
j=1

dj,n − α
n−Knα

δj( • ) . (3)

In practice, it may be simpler to specify the distribution of
interarrival times ∆j = Tj − Tj−1, and use their partial
sums to construct T; we discuss this in more detail in
Section 4. The similarity of (3) to (1)-(2) is not coinci-
dental. The PYP and the YS model each correspond to
particular parameterizations of the BNTL model: The YS
model corresponds to i.i.d. ∆j ∼ Geom(β); the arrival
time distribution induced by the PYP in (1) also has
known form (see (11)).

For a given T, the probability of any G(Zn) is

P[G(Zn)|T] = P[G(Zn)|TKn+1,Kn] (4)

=
Γ(d1,n − α)

Γ(n−Knα)

Kn∏
j=2

Γ(Tj − jα)Γ(dj,n − α)

Γ(Tj − 1− (j − 1)α)Γ(1− α)
.

A crucial property that makes BNTL models amenable to
inference is that conditioned on T, the joint probability
(4) factorizes over the vertices; each term is expressed in
terms of its arrival time, Tj , and its degree, dj,n. Note that
given T, the degree sequence dKn := (d1,n, . . . , dKn,n)
is a sufficient statistic for α. Furthermore, the distribution
of the arrival times (and therefore Kn) is independent of
the degrees. The factorization becomes explicitly use-
ful in the Gibbs sampling updates and in the maximum
likelihood estimating equations in Section 4.

Sampling representation. Like their exchangeable coun-
terpart the PYP , BNTL models have a sampling repre-
sentation in terms of products of independent beta random



variables: (3) is an urn sequence corresponding to the fol-
lowing (Bloem-Reddy and Orbanz, 2017):

• T ∼ Λ.
• Ψj |Tj ∼ Beta(1− α, Tj − 1− (j − 1)α) for j ≥ 1.

• Pj,Kn = Ψj

∏Kn
`=j+1(1−Ψ`)

• Zn ∼

{
δKn( • ) for n = TKn
Categorical(Pj,Kn) o.w.

(By convention, Beta(a, 0) is a point mass on 1, so Ψ1 =
1.) The last two items specify that when there are k
vertices in the graph, Zn is sampled from a categorical
distribution over those vertices, each with probability Pj,k.
After the subsequent arrival time, Tk+1, when there are
k + 1 vertices, the probability that Zn = j is

Pj,k+1 =

{
Pj,k(1−Ψk+1), j ∈ {1, . . . , k}
Ψk+1, j = k + 1

.

That is, the vector of probabilities Pk = (P1,k, . . . , Pk,k)
grows in length as each new vertex arrives, and each of
the previous entries is scaled by (1−Ψnew).

Neutrality. The recursive scaling of Pj,k is the essence
of a neutral-to-the-left (NTL) sequence. A random vector
X = (X1, . . . , Xk) ∈ Rk+, is NTL if the increments,

Rj :=
Xj∑j
i=1Xi

, (5)

form a sequence of mutually independent random vari-
ables; a non-decreasing stochastic process Z defined on R
is NTL if the vector of increments Z(tj)−Z(tj−1)

Z(tj)
is NTL

for any finite partition −∞ ≤ t1 < . . . < tk ≤ ∞ of R
(Doksum, 1974). A bit of algebra shows that Pk is NTL:
The corresponding sequence of increments is Rj = Ψj ,
for all k. Intuitively, this must be the case due to the recur-
sive scaling construction. Together with the beta random
variables in the sampling representation, left-neutrality
characterizes these models; hence the name.

Neutral-to-the-right (NTR) processes are better known
than NTL processes, and appear throughout the Bayesian
statistics literature, both explicitly (Walker and Muliere,
1997; James, 2006) and implicitly in the form of the stick-
breaking constructions of the Dirichlet Process and the
PYP (e.g., Ishwaran and James, 2001). The properties
of right- and left-neutrality are, as their names suggest,
symmetric opposites: A NTR vector in reverse order is
NTL, and vice versa.

The independence properties that make NTR stick-
breaking constructions useful for modeling and inference
purposes transfer in large part to NTL models. The Ψj’s
are conditionally independent given the Tj’s; along with

the parameters of the beta distribution, this independence
induces the factorized form in (4). In the exchangeable
random partitions literature, a model with joint probabil-
ity that factorizes over the blocks and the probability of
having Kn blocks is known as Gibbs-type (Gnedin and
Pitman, 2006).

Sparsity and power law tails in BNTL models. The
asymptotic behavior of BNTL models is controlled pri-
marily by the arrival times, T. In order to obtain sparse
graphs, Kn must be ω(n1/2). If T are the arrival times
from an exchangeable sequence Z, then Kn is at most
Θ(nδ), for some δ ∈ (0, 1), in which case η = 1 + δ
(Pitman, 2006); thus, sparse graphs generated this way
have η ∈ (3/2, 2). For the PYP , δ = τ . Alternatively,
for T sampled such that the mean interarrival time,

∆̄Kn :=
1

Kn − 1

Kn∑
j=2

∆j , (6)

converges to some finite µ, then Kn = Θ(n) and
η = 1 + µ−α

µ−1 > 2. Furthermore, vertex degrees grow

as dj,n = Θ(n
µ−1
µ−α ) (Bloem-Reddy and Orbanz, 2017).

Thus, depending on the specification of the arrival time
distribution, BNTL models can achieve any η ∈ (1,∞).

Microclustering in BNTL partitions. The sequence
Zn can be transformed into an arrival-ordered partition
Π(Zn) := {B1,n, . . . , BKn,n} of [n] := {1, . . . , n} by
grouping Zn into blocks Bj,n := {i ∈ [n] : Zi = j}.
There is a bijective mapping between Π(Zn) and G(Zn)
for all n (Bloem-Reddy and Orbanz, 2017), which puts
blocks of the partition in correspondence with vertices of
the graph. Hence, properties ofG(Zn) translate into prop-
erties of Π(Zn). In particular, the growth rate of vertex
degrees translates to the growth rate of blocks sizes. Re-
cent work (Betancourt et al., 2016; Di Benedetto, Caron,
and Teh, 2017) has explored the so-called microcluster-
ing property, which is defined as block sizes that grow
sub-linearly in n. The η > 2 range of BNTL models
corresponds precisely with this property. Although we
do not make explicit statements about partition-valued
data, statements about graphs are easily translated into
statements about partitions via the correspondence be-
tween blocks and vertices. In particular, the inference
algorithms in Section 4 are valid for partition-valued data.

4 INFERENCE

Although PA models exhibit a range of power laws not
captured by exchangeable models, they face a significant
barrier to use as statistical models due to their inherent
lack of exchangeability. At a high level, applying a non-
exchangeable model to data for which the order is un-
known requires inference over permutations of the data.



This is, in general, a prohibitively difficult problem even
for modest n. However, using the probabilistic structure
of BNTL models, we design a Gibbs sampling algorithm
that overcomes this difficulty for networks with thousands
of vertices (Section 4.1). If the ordered edge sequence
is observed, maximum likelihood estimation scales to
networks with millions of vertices (Section 4.2).

Given the hierarchical nature of BNTL models, infer-
ence may be performed at a number of levels. In the
simplest case, suppose the data are a sequence of edge-
ends, Zn. From this sequence the arrival times and the
arrival-ordered graph can be perfectly reconstructed, and
inferring the parameters φ of the arrival distribution Λφ

and the parameters ΨKn := (Ψj)
Kn
j=1 is straightforward:

Simple maximum likelihood estimators exist for ΨKn

(see Appendix C), and for the parameters of many arrival
time distributions of interest, or equally simple MCMC
samplers may be constructed for Bayesian inference.

More challenging are the situations in which some aspect
of the data is not perfectly observed. For graph-valued
observations, the following table summarizes the range of
possibilities, in order of increasing difficulty of inference:

Observation Unobserved variables

End of edge sequence Zn α, φ,ΨKn

Vertex arrival-ordered graph α, φ,ΨKn ,TKn

Unlabeled graph α, φ,ΨKn ,TKn , σ[Kn]

The last row presents a significant challenge. In par-
ticular, the unobserved variables include a permutation
σ mapping the arrival-ordered sequence to some arbi-
trary ordering of the vertices (by which the vertices are
uniquely identified). For a graph with Kn vertices, there
are Kn! possible permutations. Conditioned on a se-
quence of arrival times, some permutations have zero
posterior probability, making the problem space both
high-dimensional and constrained. Despite these diffi-
culties, the inference problem is much simpler than that
of a generic non-exchangeable model for a sequence of
n data points: Even in sparse graphs, typically Kn � n
and thus the dimension of the problem is exponentially
smaller. Furthermore, the form of (4) yields simple condi-
tional distributions for Gibbs sampling.

4.1 GIBBS SAMPLING

In this section, we build from the simplest inference prob-
lem to the hardest, progressing through the table in the
previous section. The full sampler infers the posterior
distributions of the parameters ΨKn and α, of the arrival
times TKn , of the parameters of the arrival time distribu-
tion, and of the permutation of the vertices. In order to
maintain the structure of the factorization over vertices

in (4), we assume that the arrival time distribution has a
Markov factorization (with a slight abuse of notation):

Λφ(Tk) = δT1
(1)

k∏
j=2

Λφj (∆j |Tj−1) , (7)

with φ representing any parameters. Examples are i.i.d.
interarrivals such that Λφj (∆j |Tj−1) = pφ(∆j); and inter-
arrivals that depend on the previous interarrivals through
their sum and the number of previous arrivals, such as the
interarrival sequence generated by exchangeable Gibbs-
type sequences (De Blasi et al., 2015).

Suppose we observe a sequence of edge-ends Zn. Denote
the partial sums of the ordered degree sequence as d̄j,n =∑j
i=1 dj,n. For any fixed α and φ,

pα,φ(Zn,ΨKn) = (8)
Kn∏
j=2

Ψ
dj,n−α−1
j (1−Ψj)

d̄j−1,n−(j−1)α−1

B(1− α, Tj − 1− (j − 1)α)
Λφ(Tj | Tj−1)

× Λφ(TKn+1 > n | TKn) ,

where B(a, b) is the beta function, and
Λφ(TKn+1 > n | TKn) is the censored probability
of vertex Kn + 1’s unobserved arrival time. Note that
marginalizing ΨKn recovers (4).

Updates for ΨKn . From (8) it is clear that

Ψj | Zn,Ψ\j ∼ Beta(dj,n − α, d̄j−1,n − (j − 1)α) ,
(9)

where Ψ\j is shorthand for the sequence ΨKn with Ψj

excluded. That is, given the arrival-ordered block sizes,
the ΨKn are independent of each other and of the arrival
times, and the beta distribution is the conjugate prior for
the BNTL sampling process. To understand this, consider
a second scenario in which a graph is observed with ver-
tices labeled in order of arrival (though not their time of
arrival). The data consist of an ordered sequence of de-
grees, dKn = (d1, . . . , dKn), which corresponds to more
than one possible edge-end sequence Zn. The model
places equal probability on each sequence that gives rise
to the same arrival-ordered degree sequence dKn and the
same arrival times; summing over these sequences yields

pα,φ(dKn ,ΨKn | TKn ,Kn) (10)

=

Kn∏
j=2

Ψ
dj−α−1
j (1−Ψj)

d̄j−1−(j−1)α−1

B(1− α, Tj − 1− (j − 1)α)

(
d̄j − Tj
dj − 1

)
.

The binomial coefficients count the number of sequences
Zn that yield dKn , given TKn (Griffiths and Spanò,
2007). (10) is a product of binomial likelihoods with
beta priors. Hence, the conjugacy derived in (9).



Updates for α. In both observation scenarios, generic
MCMC methods such as slice sampling (Neal, 2003) can
be used to sample from the full conditional distribution of
α. We use slice sampling in the experiments in Section 5.

Updates for φ. Many models of i.i.d. interarrival times
will yield conjugate updates for φ. For other models,
generic MCMC methods can be used. In the experiments
in Section 5, we consider three interarrival models: i.i.d.
Geom(β) and i.i.d. Pois+(λ), which is the Poisson distri-
bution shifted to the positive integers; and the interarrival
distribution induced by the PYP , which is (Griffiths and
Spanò, 2007)

Λθ,τj+1(∆j+1 = s | Tj) (11)

= (θ + jτ)
Γ(θ + Tj)Γ(Tj + s− 1− jτ)

Γ(θ + Tj + s)Γ(Tj − jτ)
.

In the former two cases, conjugate updates are performed
(conditioned on TKn); in the latter case, we perform
univariate slice sampling for each of θ and τ .

Updates for TKn . The assumed Markov structure of
the arrival times induces a simple conditional distribu-
tion for Tj that is supported on the set Sj = {Tj−1 +
1, . . . , Tj−1 + Mj}, where Mj = min{Tj+1 − Tj−1 −
1, d̄j−1 − Tj−1 + 1}. The support set enforces the con-
straints that d̄j−1 ≥ Tj − 1, and that Tj−1 < Tj < Tj+1.
Conditioning on Tj−1 and Tj+1, updating Tj is equivalent
to updating ∆j and ∆j+1; for j = 2, . . . ,Kn − 1,

pα,φ(∆j = s,∆j+1 = Tj+1 − Tj−1 − s | T\j ,dn)

∝
Λφj+1(Tj+1 − Tj−1 − s | Tj−1 + s)Λφj (s | Tj−1)

B(1− α, Tj−1 + s− 1− (j − 1)α)

×
(
d̄j − Tj−1 − s

dj − 1

)
.

For j = Kn,

pα,φ(∆Kn = s | T\Kn ,d)

∝ ΛφKn(s | TKn−1)

(
n− TKn−1 − s

dKn − 1

)
×

ΛφKn+1(∆Kn+1 > n− TKn−1 − s | TKn−1 − s)
B(1− α, TKn−1 + s− 1− (Kn − 1)α)

,

and MKn = min{n− TKn−1 − 1, d̄j−1 − Tj−1 + 1}.

For i.i.d. interarrivals with distribution pφ, the updates are
particularly easy to compute because

Λφj+1(Tj+1 − Tj−1 − s | Tj−1 − s)Λφj (s | Tj−1)

= pφ(Tj+1 − Tj−1 − s)pφ(s) . (12)

pφ(s) can be computed for each s ∈ {1, . . . ,Mj};
each term multiplied by the corresponding term in s ∈

{Mj , . . . , 1} yields (12). In the case of Geom(β) interar-
rivals, the distribution is uniform on s ∈ {1, . . . ,Mj}:

Λφj+1(Tj+1 − Tj−1 − s | Tj−1 − s)Λφj (s | Tj−1) (13)

= β(1− β)Tj+1−Tj−1−s−1β(1− β)s−1 ∝ 1 .

Updates for σ[Kn]. Given a sample of TKn , the order
of the vertices can be updated via a series of adjacent
swap proposals. Let σj be the identity of the j-th vertex
in the current sampling iteration. A sampling update of σ
proposes swapping σj ↔ σj+1 with probability propor-
tional to the value of (10), with ΨKn marginalized and
with dj and dj+1 swapped. Due to the factorization over
vertices, all but the j-th and j + 1-st terms are the same;
as a result, swap proposals are inexpensive to compute
(for compactness, ‘−’ indicates all other variables):

pα,φ(σj ↔ σj+1|−) ∝ Γ(d̄j−1 + dj+1 − Tj + 1)

Γ(d̄j+1 − dj − Tj+1 + 2)

pα,φ(σj 6↔ σj+1|−) ∝ Γ(d̄j−1 + dj − Tj + 1)

Γ(d̄j − Tj+1 + 2)
.

The simplicity of swap proposals enables many swaps
to be sampled in a short amount of computational time,
helping to overcome the high dimensionality of the sam-
ple space. We note that in general, local proposals of all
possible permutations of m > 1 consecutive vertices are
possible and m > 2 would likely enhance exploration of
the state space; here we consider only m = 2.

Computational complexity. The slice sampling updates
for α, which require evaluation of (4), are of complexity
O(Kn), as are the permutation swap proposals. Updates
for the arrival parameter(s) φ depend on the model, but
as they depend only on the Kn arrival times, they are at
most O(Kn). The most expensive update is that of TKn ,
which isO(n), though the constant hidden inO may vary
greatly across arrival models.

4.2 MAXIMUM LIKELIHOOD FOR
PARAMETERS IN EDGE SEQUENCES

Suppose the edge-end sequence Zn is observed. For ar-
rival time distribution Λφ, φ and α can be estimated by
maximum likelihood (ML). The likelihood admits the
factorization

pα,φ(Zn) = pα(Zn|TKn)Λφ(TKn) , (14)

with the practical implication that the estimating equations
for α and φ can be solved separately. In particular,

α̂ = arg max
α∈(−∞,1)

log pα(Zn|TKn) , (15)

where pα(Zn | TKn) is as in (4).



Table 1: Results of Gibbs sampling experiments on synthetic data (α∗ = 0.75). The top four rows show results
from each of four different BNTL models fit to a synthetic graph with 500 edges generated by the coupled PYP
BNTL model; the bottom four rows show the same BNTL models fit to a synthetic graph with Geom(0.25)-distributed
interarrivals.

Gen. arrival distn. Kn Inference model |α̂− α∗| |Ŝ− S∗| Pred. log-lik. Runtime (sec.) ESS
PYP(1.0, 0.75) 260 (τ,PYP(θ, τ)) 0.046± 0.002 28.5± 0.7 -2637.0± 0.1 297.6± 0.2 0.80± 0.09
PYP(1.0, 0.75) 260 (α,PYP(θ, τ)) 0.045± 0.003 33.4± 1.0 -2638.4± 0.2 313.6± 0.4 0.77± 0.07
PYP(1.0, 0.75) 260 (α,Geom(β)) 0.049± 0.004 66.8± 1.2 -2660.5± 0.7 90.5± 0.1 0.78± 0.09
PYP(1.0, 0.75) 260 (α,Pois+(λ)) 0.054± 0.004 68.0± 0.7 -2902.5± 1.4 112.5± 0.1 0.79± 0.07

Geom(0.25) 251 (τ,PYP(θ, τ)) 0.086± 0.002 56.6± 1.3 -2386.8± 0.1 295.4± 0.6 0.83± 0.06
Geom(0.25) 251 (α,PYP(θ, τ)) 0.078± 0.003 54.2± 2.0 -2387.5± 0.5 312.7± 0.3 0.66± 0.09
Geom(0.25) 251 (α,Geom(β)) 0.043± 0.003 24.8± 0.8 -2382.6± 0.2 87.2± 0.1 0.92± 0.04
Geom(0.25) 251 (α,Pois+(λ)) 0.041± 0.003 21.0± 0.5 -2562.2± 0.2 109.5± 0.1 0.91± 0.05

Closed-form MLEs are known for many i.i.d. interarrival
distributions. For the Geom(β) and Pois+(λ) distribu-
tions used in Section 5, β̂ = Kn−1

n−Kn and λ̂ = n−Kn
Kn−1 .

MLEs for θ and τ in PYP-induced interarrivals can be
found by numerically optimizing the product over arrival
times of (11). See Appendix D for details. Maximum a
posteriori (MAP) estimates are straightforward to com-
pute by placing priors on the model parameters and in-
cluding the relevant prior probabilities in (14)-(15).

4.3 RELATED WORK

There is relatively little previous work on statistical in-
ference for non-exchangeable models of network data.
Bloem-Reddy and Orbanz (2018) develop sequential
Monte Carlo methods for non-exchangeable models;
those methods are feasible only for networks with hun-
dreds of vertices. See references therein for related ideas
based on importance sampling. Where BNTL models
overlap with edge exchangeable models, there exist in-
ference algorithms that do not account for arrival times.
Namely, if Zn is assumed to be an exchangeable sequence
of edge-ends, then the sampling and estimation algorithms
for Gibbs-type partitions can be used. For example, Gibbs
sampling methods for the PYP are derived in Ishwaran
and James (2001). Crane and Dempsey (2017) give maxi-
mum likelihood estimating equations. However, neither
method infers arrival times, and the inference techniques
do not extend to the wider class of non-exchangeable
BNTL models.

Wan et al. (2017) propose MLEs for the parameters of a
class of PA models when the edge sequence is observed.
A MLE of the parameter α in a slightly different PA
model was proposed by Gao and van der Vaart (2017) for
observed edge sequences. The PA model considered there
has random initial degrees, rather than random arrival
times, but the initial degrees play a similar role to the
arrival times. Those authors find that conditioned on

the initial degrees, the degree sequence at step n, dKn ,
is sufficient for α, and that the MLE is asymptotically
normal. Based on the similarities of the models and the
corresponding log-likelihoods, it is plausible that similar
properties hold for BNTL models.

5 EXPERIMENTS

We apply the inference methods developed in Section 4
to data. The first set of experiments is in the unlabeled
network setting, in which the posterior distribution over
vertex ordering must be inferred along with the model
parameters. In a second set of experiments, we consider
graphs with edges labeled in order of appearance, and
demonstrate that maximum likelihood and MAP estima-
tion scale to networks with millions of nodes.2

5.1 BAYESIAN INFERENCE

We first apply the Gibbs sampler from Section 4.1 to
synthetic data, which allows us to study the effects of
model misspecification on parameter estimation, and to
demonstrate the feasibility of inference over the vertex
order and the arrival times. We generated two synthetic
graphs, each with 1,000 edges: One from a PYP(θ, τ)
sequence (1) in which τ is forced to be equal to the BNTL
parameter α, which corresponds to the edge exchangeable
Hollywood model of Crane and Dempsey (2017); and
one from a BNTL model with i.i.d. Geom(β)-distributed
interarrival times. We set θ = 1.0, β = 0.25, and in both
cases, α = 0.75.

For each of the graphs, we held out the final 500 edges for
prediction, and we fit four different BNTL models to the
first 500 edges whose order we treated as unknown: One
with PYP(θ, τ)-induced arrivals and α = τ (the “cou-
pled PYP” model), which is the same as the generative

2Julia code is available at https://github.com/
emilemathieu/NTL.jl.

https://github.com/emilemathieu/NTL.jl
https://github.com/emilemathieu/NTL.jl


Table 2: Scaling performance of the Gibbs sampler.

100 edges 1,000 edges 10,000 edges
|α̂− α∗| 0.12± 0.01 0.03± 0.00 0.01± 0.00

|β̂ − β∗| 0.02± 0.00 0.01± 0.00 0.00± 0.00

|Ŝ− S∗| 10.3± 0.4 33.9± 0.9 343± 1.6
ESS 0.90± 0.04 0.85± 0.05 0.75± 0.08
Runtime (s) 21± 0.0 213± 0.4 2267± 2

model of the first synthetic dataset; one with PYP(θ, τ)-
induced arrivals and α allowed to vary separately from
τ (the “uncoupled PYP” model); and two i.i.d. interar-
rival models, with Geom(β)- and Pois+(λ)-distributed
interarrivals. We ran 125,000 Gibbs sampling iterations,
including a burn-in of 25,000, and collected one in every
1,000 iterations for a total of 1,000 samples. To assess
performance, we calculated the average absolute error
(relative to the true value) of MCMC samples of α, and
of S := 1

Kn−1

∑
j>1(d̄j−1 − Tj). The latter statistic

captures how well the sampler recovers the vertex per-
mutation and the arrival times. We also calculated the
predictive log-likelihood of a further 500 edges. Average
runtimes3 and effective sample size (ESS) factors, based
on the log of the normalized L1 distance between the
sampled degree sequence and the true degree sequence,
are also shown.

Table 1 summarizes the results, averaged over 10 repeti-
tions. The top four rows show the results of fitting four
BNTL inference models to the coupled PYP dataset. Un-
surprisingly, the inference models with arrivals induced by
thePYP achieve the lowest errors in α and S, and highest
predictive log-likelihood. The bottom four rows show the
same four inference models fit to the Geom(0.25) BNTL
dataset; the i.i.d. interarrival models achieve lower errors,
and the Geom(β) inference model attains the highest pre-
dictive log-likelihood. Although the Pois+(λ) inference
model attains low errors in α and S, the low variance of
the Poisson distribution compared to the Geometric distri-
bution means that it attains low predictive probability due
to the relatively frequent occurrence of large interarrivals.

As discussed in Section 4.1, the most expensive Gibbs
update is that of the arrival time sequence. As such, the
Geom(β) interarrival inference model benefits greatly
from (13), which implies that computation of Λφj is not
required. The i.i.d. interarrival models each have con-
jugate updates for their parameters, whereas the PYP
interarrival models require slice sampling for φ = (θ, τ).
These differences are reflected in the runtimes shown in
Table 1. Finally, all four inference models exhibit good
ESS factors, indicating that the sampler is exploring per-

3All Gibbs sampling experiments were run on a quad-core
(3.1 GHz) Dell desktop running Linux.

mutation space beyond simply swapping vertices of the
same degree.

Scaling in n. In order to study how sampling and com-
putational efficiency scale with the size of the network,
we generated a single BNTL network of 10,000 edges
with i.i.d. Geom(0.25)-distributed arrival times, and per-
formed Gibbs sampling using the subgraphs formed by
the first n edges, with n ∈ {100, 1,000, 10,000}. Table 2
shows the results of 10 repetitions, each of 150,000 Gibbs
iterations; samples were collected once every 1,000 itera-
tions after a burn-in period of 75,000 iterations. Parameter
estimation is increasingly accurate for increasing n with-
out major decrease in ESS, indicating that the sampler is
taking advantage of the increased statistical signal in the
bigger network. Runtimes increase at a rate linear in n.

5.2 MAXIMUM LIKELIHOOD ESTIMATION
ON EDGE SEQUENCES

For observed edge sequences, maximum likelihood esti-
mation scales to networks with millions of vertices and
tens of millions of edges. To demonstrate, we compute
MLEs on a collection of temporal network datasets avail-
able from the Stanford Network Analysis Project (SNAP)
(Leskovec and Krevl, 2014).

For each of the datasets listed in Table 3, we fit MLEs
of α and of the parameters of three different interarrival
models: coupledPYP(θ, α); uncoupledPYP(θ, τ); and
Geom(β). Table 4 displays the MLEs of the model param-
eters and the plug-in estimates of the asymptotic power
law degree exponent, η. (The asymptotic degree distri-
bution of the uncoupled PYP model is unknown.) Note
that due to the factorization of the likelihood in (14), α̂ is
the same for any model in which α is not coupled to the
arrival distribution. In order to assess model fitness, we
fit MLEs for the same BNTL models to the first 80% of
the edges in each network and calculated the predictive
log-likelihood based on the MLEs of the remaining 20%;
this is also shown in Table 4. For context, the arrival time
sequence of each dataset is plotted in Figure 1. Unsurpris-
ingly, whether or not the arrival times are approximately
linear in n largely determines which BNTL model fits

Table 3: SNAP temporal network datasets.

Dataset # of vertices # of edges
Ask Ubuntu 159,316 964,437
UCI social network 1,899 20,296
EU email 986 332,334
Math Overflow 24,818 506,550
Stack Overflow 2,601,977 63,497,050
Super User 194,085 1,443,339
Wikipedia talk pages 1,140,149 7,833,140



Table 4: MLEs on full datasets, and predictive log-likelihood for final 20% of edges based on MLEs fit to the first 80%,
for three different BNTL models. Note that the uncoupled PYP(θ, τ) and Geom(β) interarrival models have the same
α̂ due to the factorization in (14).

Dataset Coupled PYP(θ, α) Uncoupled PYP(θ, τ) Geom(β)

(θ̂, α̂) η̂ Pred. l-l. α̂ (θ̂, τ̂) Pred. l-l. β̂ η̂ Pred. l-l.
Ask Ubuntu (18080, 0.25) 1.25 -3.707e6 -2.54 (-0.99, 0.99) -3.678e6 0.083 2.32 -3.678e6
UCI social network (320.4, 4.4e-11) – -1.600e5 -4.98 (5.50, 0.52) -1.595e6 0.016 2.10 -1.596e5
EU email (113.6, 2.5e-14) – -8.06e5 -1.86 (113.6, 9.2e-10) -8.06e5 0.001 2.00 -8.07e5
Math Overflow (2575, 0.15) 1.15 -1.685e6 -6.62 (-0.97, 0.997) -1.670e6 0.025 2.19 -1.670e6
Stack Overflow (297600, 0.11) 1.11 -3.358e8 -8.94 (-1.0, 1.0) -3.333e8 0.020 2.21 -3.333e8
Super User (20640, 0.24) 1.24 -5.855e6 -4.19 (-0.996, 1.0) -5.775e6 0.067 2.37 -5.775e6
Wikipedia talk pages (14870, 0.54) 1.54 -3.074e7 -0.25 (-1.0, 1.0) -3.066e7 0.073 2.10 -3.066e7

best. The two densest networks, the EU email and UCI
social networks, exhibit arrival times that are sub-linear
in n; as such, the PYP models fit best. Note that the
coupled PYP model estimates α̂ ≈ 0, indicating the lack
of a power law tail in the degree distribution. In the rest
of the networks, the arrival times appear approximately
linear in n. The Geom(β) and uncoupled PYP model fit
best. However, we note that in these cases the MLEs for
the uncoupled PYP model are at the boundaries of the
parameter range (θ̂ ≈ −1, τ̂ ≈ 1). This illustrates that
although the uncoupled PYP model is more flexible than
the coupled version, the underlying arrival time model
cannot capture linear arrival time sequences without driv-
ing the parameters to the boundaries.

6 DISCUSSION

BNTL models are a useful tool to reason about asymptotic
properties of a network. For example, the exponent of the
asymptotic power law tail is a function of model param-
eters, which can be estimated from finite-size networks
without dealing with the large fluctuations of heavy-tailed
degree distributions in finite samples. Furthermore, the
ability to capture the full range of power law exponents
and sparsity levels within the same model class allows
for model fitness comparisons using the same set of tech-
niques, as in Section 5. We have designed a set of infer-
ence algorithms for these models; in doing so, we have
made a large class of previously intractable models useful
for statistical inference.

Future research directions. The full Gibbs sampler
scales reasonably well to networks with thousands of
vertices; in order to scale to larger networks, further
work is needed. One possible approach is via Metropolis–
Hastings with cheap joint proposals of the arrival times
and the permutation, which may be able to take larger
steps in sample space. A different direction is variational
inference, though permutations pose a significant chal-
lenge in that context; recent work (Linderman et al., 2018)
is a step in that direction.
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