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Abstract

Zero-inflated datasets, which have an ex-
cess of zero outputs, are commonly en-
countered in problems such as climate or
rare event modelling. Conventional ma-
chine learning approaches tend to overesti-
mate the non-zeros leading to poor perfor-
mance. We propose a novel model family
of zero-inflated Gaussian processes (ZiGP)
for such zero-inflated datasets, produced
by sparse kernels through learning a la-
tent probit Gaussian process that can zero
out kernel rows and columns whenever the
signal is absent. The ZiGPs are particu-
larly useful for making the powerful Gaus-
sian process networks more interpretable.
We introduce sparse GP networks where
variable-order latent modelling is achieved
through sparse mixing signals. We derive
the non-trivial stochastic variational infer-
ence tractably for scalable learning of the
sparse kernels in both models. The novel
output-sparse approach improves both pre-
diction of zero-inflated data and inter-
pretability of latent mixing models.

1 INTRODUCTION

Zero-inflated quantitative datasets with overabun-
dance of zero output observations are common in
many domains, such as climate and earth sciences
(Enke & Spekat, 1997; Wilby, 1998; Charles et al.,
2004), ecology (del Saz-Salazar & Rausell-Köster,
2008; Ancelet et al., 2009), social sciences (Bohn-
ing et al., 1997), and in count processes (Barry &
Welsh, 2002). Traditional regression modelling of
such data tends to underestimate zeros and overes-
timate nonzeros (Andersen et al., 2014).

A conventional way of forming zero-inflated mod-
els is to estimate a mixture of a Bernoulli “on-off”
process and a Poisson count distribution (Johnson
& Kotz, 1969; Lambert, 1992). In hurdle models a
binary “on-off” process determines whether a hur-
dle is crossed, and the positive responses are gov-
erned by a subsequent process (Cragg, 1971; Mul-
lahy, 1986). The hurdle model is analogous to first
performing classification and training a continuous
predictor on the positive values only, while the zero-
inflated model would regress with all observations.
Both stages can be combined for simultaneous clas-
sification and regression Abraham & Tan (2010).

Gaussian process models have not been proposed
for zero-inflated datasets since their posteriors are
Gaussian, which are ill-fitted for zero predictions. A
suite of Gaussian process models have been proposed
for partially related problems, such as mixture mod-
els (Tresp, 2001; Rasmussen & Ghahramani, 2002;
Lázaro-Gredilla et al., 2012) and change point de-
tection (Herlands et al., 2016). Structured spike-
and-slab models place smoothly sparse priors over
the structured inputs (Andersen et al., 2014).

In contrast to other approaches, we propose a
Bayesian model that learns the underlying latent
prediction function, whose covariance is sparsified
through another Gaussian process switching be-
tween the ‘on’ and ‘off’ states, resulting in an zero-
inflated Gaussian process model. This approach
introduces a tendency of predicting exact zeros
to Gaussian processes, which is directly useful in
datasets with excess zeros.

A Gaussian process network (GPRN) is a latent
signal framework where multi-output data are ex-
plained through a set of latent signals and mixing
weight Gaussian processes (Wilson et al., 2012). The
standard GPRN tends to have dense mixing that
combines all latent signals for all latent outputs. By



applying the zero-predicting Gaussian processes to
latent mixture models, we introduce sparse GPRNs
where latent signals are mixed with sparse instead
of dense mixing weight functions. The sparse model
induces variable-order mixtures of latent signals re-
sulting in simpler and more interpretable models.
We demonstrate both of these properties in our ex-
periments with spatio-temporal and multi-output
datasets.

Main contributions. Our contributions include1

1. A novel zero-inflated Gaussian process formal-
ism consisting of a latent Gaussian process and
a separate ‘on-off’ probit-linked Gaussian pro-
cess that can zero out rows and columns of the
model covariance. The novel sparse kernel adds
to GPs the ability to predict zeros.

2. Novel stochastic variational inference (SVI) for
such sparse probit covariances, which in gen-
eral are intractable due to having to compute
expectations of GP covariances with respect to
probit-linked processes. We derive the SVI for
learning both of the underlying processes.

3. A novel sparse GPRN with an on-off process
in the mixing matrices leading to sparse and
variable-order mixtures of latent signals.

4. A solution to the stochastic variational infer-
ence of sparse GPRN where the SVI is derived
for the network of full probit-linked covariances.

2 GAUSSIAN PROCESSES

We begin by introducing the basics of conventional
Gaussian processes. Gaussian processes (GP) are
a family of non-parametric, non-linear Bayesian
models (Rasmussen & Williams, 2006). Assume a
dataset of n inputs X = (x1, . . . ,xn) with xi ∈ RD
and noisy outputs y = (y1, . . . , yn) ∈ Rn. The ob-
servations y = f(x)+ε are assumed to have additive,
zero mean noise ε ∼ N (0, σ2

y) with a zero-mean GP
prior on the latent function f(x),

f(x) ∼ GP (0,K(x,x′)) , (1)

which defines a distribution over functions f(x)
whose mean and covariance are

E[f(x)] = 0 (2)

cov[f(x), f(x′)] = K(x,x′). (3)

1The TensorFlow compatible code will be
made publicly available at https://github.com/
hegdepashupati/zero-inflated-gp

Figure 1: Illustration of a zero-inflated GP (a) and
standard GP regression (b). The standard approach
is unable to model sudden loss of signal (at 4 . . . 5)
and signal close to zero (at 0 . . . 1 and 7 . . . 9).

Then for any collection of inputs X, the function
values follow a multivariate normal distribution f ∼
N (0,KXX), where f = (f(x1), . . . , f(xN ))T ∈ Rn,
and where KXX ∈ Rn×n with [KXX ]ij = K(xi,xj).
The key property of Gaussian processes is that they
encode functions that predict similar output values
f(x), f(x′) for similar inputs x,x′, with similarity
determined by the kernel K(x,x′). In this paper we
assume the Gaussian ARD kernel

K(x,x′) = σ2
f exp

−1

2

D∑
j=1

(xj − x′j)2

`2j

 , (4)

with a signal variance σ2
f and dimension-specific

lengthscale `1, . . . , `D parameters.

The inference of the hyperparameters θ =
(σy, σf , `1, . . . , `D) is performed commonly by max-
imizing the marginal likelihood

p(y|θ) =

∫
p(y|f)p(f |θ)df , (5)

which results in a convenient marginal likelihood
called evidence, p(y|θ) = N(y|0,KXX + σ2

yI) for
a Gaussian likelihood.

The Gaussian process defines a univariate nor-
mal predictive posterior distribution f(x)|y, X ∼
N (µ(x), σ2(x)) for an arbitrary input x with the
prediction mean and variance2

µ(x) = KxX(KXX + σ2
yI)−1y, (6)

σ2(x) = Kxx −KxX(KXX + σ2
yI)−1KXx, (7)

2In the following we omit the implicit conditioning on
data inputs X for clarity.

https://github.com/hegdepashupati/zero-inflated-gp
https://github.com/hegdepashupati/zero-inflated-gp


where KXx = KT
xX ∈ Rn is the kernel column vector

over pairs X×x, and Kxx = K(x,x) ∈ R is a scalar.
The predictions µ(x)± σ(x) come with uncertainty
estimates in GP regression.

3 ZERO-INFLATED GAUSSIAN
PROCESSES

Figure 2: Illustration of the zero-inflated GP (a)
and the sparse kernel (b) composed of a smooth
latent function (c,d) filtered by a probit support
function (e,f), which is induced by the underlying
latent sparsity (g,h).

We introduce zero-inflated Gaussian processes that
have – in contrast to standard GP’s – a tendency to
produce exactly zero predictions (See Figure 1). Let
g(x) denote the latent “on-off” state of a function
f(x). We assume GP priors for both functions with
a joint model

p(y, f ,g) = p(y|f)p(f |g)p(g), (8)

where

p(y|f) = N (y|f , σ2
yI) (9)

p(f |g) = N (f |0,Φ(g)Φ(g)T ◦Kf ) (10)

p(g) = N (g|β1,Kg) (11)

The sparsity values g(x) are squashed between 0 and
1 through a standard Normal cumulative distribu-
tion, or a probit link function, Φ : R→ [0, 1]

Φ(g) =

∫ g

−∞
φ(τ)dτ =

1

2

(
1 + erf

(
g√
2

))
, (12)

where φ(τ) = 1√
2π
e−

1
2 τ

2

is the standard normal den-

sity function. The structured probit sparsity Φ(g)
models the “on-off” smoothly due to the latent spar-
sity function g having a GP prior with prior mean
β. The latent function f is modeled throughout but
it is only visible during the “on” states. This mask-
ing effect has similarities to both zero-inflated and
hurdle models. The underlying latent function f is
learned from only non-zero data similarly to in hur-
dle models, but the function f is allowed to predict
zeros similarly to zero-inflated models.

The key part of our model is the sparse probit-
sparsified covariance Φ(g)Φ(g)T ◦K where the “on-
off” state Φ(g) has the ability to zero out rows and
columns of the kernel matrix at the “off” states
(See Figure 2f for the probit pattern Φ(g)Φ(g)T and
Figure 2b for the resulting sparse kernel). Since
the sparse kernel is represented as Hadamard prod-
uct between a covariance kernel K and an outer
product kernel Φ(g)Φ(g)T , Schur product theorem
implies that it is a valid kernel. As the sparsity
g(x) converges towards minus infinity, the probit
link Φ(g(x)) approaches zero, which leads the func-
tion distribution approaching N (fi|0, 0), or fi = 0.
Numerical problems are avoided since in practice
Φ(g) > 0, and due to the conditioning noise vari-
ance term σ2

y > 0.

The marginal likelihood of the zero-inflated Gaus-
sian process is intractable due to the probit-
sparsification of the kernel. We derive a stochastic
variational Bayes approximation, which we show to
be tractable due to the choice of using the probit
link function.

3.1 STOCHASTIC VARIATIONAL
INFERENCE

Inference for standard Gaussian process models is
difficult to scale as complexity grows with O(n3) as
a function of the data size n. Titsias (2009) pro-
posed a variational inference approach for GPs using
m < n inducing variables, with a reduced computa-
tional complexity of O(m3) for m inducing points.
The novelty of this approach lies in the idea that
the locations and values of inducing points can be
treated as variational parameters, and optimized.
Hensman et al. (2013, 2015) introduced more effi-
cient stochastic variational inference (SVI) with fac-
torised likelihoods that has been demonstrated with
up to billion data points (Salimbeni & Deisenroth,
2017). This approach cannot be directly applied to
sparse kernels due to having to compute expectation
of the probit product in the covariance. We derive



the SVI bound tractably for the zero-inflated model
and its sparse kernel, which is necessary in order to
apply the efficient parameter estimation techniques
with automatic differentiation with frameworks such
as TensorFlow (Abadi et al., 2016).

We begin by applying the inducing point augmen-
tations f(zf ) = uf and g(zg) = ug for both
the latent function f(·) and the sparsity function
g(·). We place m inducing points uf1, . . .ufm
and ug1, . . .ugm for the two functions. The aug-
mented joint distribution is p(y, f ,g,uf ,ug) =
p(y|f)p(f |g,uf )p(g|ug)p(uf )p(ug), where3

p(f |g,uf ) = N (f |diag(Φ(g))Qfuf ,Φ(g)Φ(g)T ◦ K̃f )
(13)

p(g|ug) = N (g|Qgug, K̃g) (14)

p(uf ) = N (uf |0,Kfmm) (15)

p(ug) = N (ug|0,Kgmm) (16)

and where

Qf = KfnmK
−1
fmm (17)

Qg = KgnmK
−1
gmm (18)

K̃f = Kfnn −KfnmK
−1
fmmKfmn (19)

K̃g = Kgnn −KgnmK
−1
gmmKgmn. (20)

We denote the kernels for functions f and g by the
corresponding subscripts. The kernel Kfnn is be-
tween all n data points, the kernel Kfnm is between
all n datapoints and m inducing points, and the ker-
nelKfmm is between allm inducing points (similarly
for g as well).

The distributions p(f |uf ) and p(g|ug) can be ob-
tained by conditioning the joint GP prior between
respective latent and inducing functions. Further,
the conditional distribution p(f |g,uf ) can be ob-
tained by the sparsity augmentation of latent con-
ditional f |uf similar to equation (10) (See Supple-
ments).

Next we use the standard variational approach by
introducing approximative variational distributions
for the inducing points,

q(uf ) = N (uf |mf ,Sf ) (21)

q(ug) = N (ug|mg,Sg) (22)

where Sf ,Sg ∈ Rm×m are square positive semi-
definite matrices. The variational joint posterior is

q(f ,g,uf ,ug) = p(f |g,uf )p(g|ug)q(uf )q(ug). (23)

3We drop the implicit conditioning on z’s for clarity.

We minimize the Kullback-Leibler divergence be-
tween the true augmented posterior p(f ,g,uf ,ug|y)
and the variational distribution q(f ,g,uf ,ug),
which is equivalent to solving the following evi-
dence lower bound (as shown by e.g. Hensman et al.
(2015)):

log p(y) ≥ Eq(f) log p(y|f)−KL[q(uf ,ug)||p(uf ,ug)],
(24)

where we define

q(f) =

∫∫∫
p(f |g,uf )q(uf )p(g|ug)q(ug)dufdugdg

=

∫
q(f |g)q(g)dg, (25)

where the variational approximations are tractably

q(g) =

∫
p(g|ug)q(ug)dug (26)

= N (g|µg,Σg)

q(f |g) =

∫
p(f |g,uf )q(uf )duf (27)

= N (f |diag(Φ(g))µf ,Φ(g)Φ(g)T ◦ Σf )

with

µf = Qfmf (28)

µg = Qgmg (29)

Σf = Kfnn +Qf (Sf −Kfmm)QTf (30)

Σg = Kgnn +Qg(Sg −Kgmm)QTg . (31)

We additionally assume the likelihood p(y|f) =∏N
i=1 p(yi|fi) factorises.

We solve the final ELBO of equations (24) and (25)
as (See Supplements for detailed derivation)

LZI =

N∑
i=1

{
logN (yi|〈Φ(gi)〉q(gi)µfi, σ

2
y) (32)

− 1

2σ2
y

(
Var[Φ(gi)]µ

2
fi + 〈Φ(gi)

2〉q(gi)σ
2
fi

)}
−KL[q(uf )||p(uf )]−KL[q(ug)||p(ug)],

where µfi is the i’th element of µf and σ2
fi is the

i’th diagonal element of Σf (similarly with g).



The expectations are tractable,

〈Φ(gi)〉q(gi) = Φ(λgi), λgi =
µgi√

1 + σ2
gi

(33)

〈Φ(gi)
2〉q(gi) = Φ(λgi)− 2T

(
λgi,

λgi
µgi

)
(34)

Var[Φ(gi)] = Φ(λgi)− 2T

(
λgi,

λgi
µgi

)
− Φ(λgi)

2.

(35)

The Owen’s T function T (a, b) = φ(a)
∫ b
0
φ(aτ)
1+τ2 dτ

(Owen, 1956) has efficient numerical solutions in
practise (Patefield & Tandy, 2000).

The ELBO is considerably more complex than the
standard stochastic variational bound of a Gaussian
process (Hensman et al., 2013), due to the probit-
sparsified covariance.

The bound is likely only tractable for the choice of
probit link function Φ(g), while other link functions
such as the logit would lead to intractable bounds
necessitating slower numerical integration (Hensman
et al., 2015).

We optimize the Lzi with stochastic gradient as-
cent techniques with respect to the inducing lo-
cations zg, zf , inducing value means mf ,mg and
covariances Sf ,Sg, the sparsity prior mean β,
the noise variance σ2

y, the signal variances σf , σg,
and finally the dimensions-specific lengthscales
`f1, . . . , `fD; `g1, . . . , `gD of the Gaussian ARD ker-
nel.

4 GAUSSIAN PROCESS
NETWORK

The Gaussian Process Regression Networks (GPRN)
framework by Wilson et al. (2012) is an efficient
model for multi-target regression problems, where
each individual output is a linear but non-stationary
combination of shared latent functions. Formally, a
vector-valued output function y(x) ∈ RP with P
outputs is modeled using vector-valued latent func-
tions f(x) ∈ RQ with Q latent values and mixing
weights W (x) ∈ RP×Q as

y(x) = W (x)[f(x) + ε] + ε, (36)

where for all q = 1, . . . , Q and p = 1, . . . , P we as-
sume GP priors and additive zero-mean noises,

fq(x) ∼ GP(0,Kf (x,x′)) (37)

Wqp(x) ∼ GP(0,Kw(x,x′)) (38)

εq ∼ N (0, σ2
f ) (39)

εp ∼ N (0, σ2
y). (40)

The subscripts are used to denote individual compo-
nents of f and W with p and q indicating pth output
dimension and qth latent dimension, respectively.
We assume shared latent and output noise variances
σ2
f , σ

2
y without loss of generality. The distributions

of both functions f and W have been inferred ei-
ther with variational EM (Wilson et al., 2012) or by
variational mean-field approximation with diagonal-
ized latent and mixing functions (Nguyen & Bonilla,
2013).

4.1 STOCHASTIC VARIATIONAL
INFERENCE

Variational inference for GPRN has been proposed
earlier with diagonalized mean-field approximation
by (Nguyen & Bonilla, 2013). Further, stochastic
variational inference by introducing inducing vari-
ables has been proposed for GPRN (Nguyen et al.,
2014). In this section we rederive the SVI bound
for standard GPRN for completeness and then pro-
pose the novel sparse GPRN model, and solve its
SVI bounds as well, in the following section.

We begin by introducing the inducing variable aug-
mentation technique for latent functions f(x) and

mixing weights W (x) with uf , zf = {ufq , zfq}
Q
q=1

and uw, zw = {uwqp , zwqp}
Q,P
q,p=1:

p(y, f ,W,uf ,uw) (41)

= p(y|f ,W )p(f |uf )p(W |uw)p(uf )p(uw)

p(f |uf ) =

Q∏
q=1

N (fq|Qfqufq , K̃fq ) (42)

p(W |uw) =

Q,P∏
q,p=1

N (wqp|Qwqp
uwqp

, K̃wqp
) (43)

p(uf ) =

Q∏
q=1

N (ufq |0,Kfq,mm) (44)

p(uw) =

Q,P∏
q,p=1

N (uwqp
|0,Kwqp,mm), (45)

where we have separate kernels K and extrapolation
matrices Q for each component of W (x) and f(x)



that are of the same form as in equations (17–20).
The w is a vectorised form of W . The variational
approximation is then

q(f ,W,uf ,uw) = p(f |uf )p(W |uw)q(uf )q(uw)

(46)

q(ufq ) =

Q∏
q=1

N (ufq |mfq ,Sfq ) (47)

q(uwqp) =

Q,P∏
q,p=1

N (uwqp |mwqp ,Swqp), (48)

where uwqp and ufq indicate the inducing points for
the functions Wqp(x) and fq(x), respectively. The
ELBO can be now stated as

log p(y) ≥ Eq(f ,W ) log p(y|f ,W ) (49)

−KL[q(uf ,uw)||p(uf ,uw)],

where the variational distributions decompose as
q(f ,W ) = q(f)q(W ) with marginals of the same form
as in equations (28–31),

q(f) =

∫
q(f |uf )q(uf )duf = N (f |µf ,Σf ) (50)

q(W ) =

∫
q(W |uw)q(uw)duw = N (w|µw,Σw).

(51)

Since the noise term ε is assumed to be isotropic
Gaussian, the density p(y|W, f) factorises across all
target observations and dimensions. The expecta-
tion term in equation (49) then reduces to solving
the following integral for the ith observation and pth

target dimension,

N,P∑
i,p=1

∫∫
logN (yp,i|wT

p,ifi, σ
2
y)q(fi,wp,i)dwp,idfi.

(52)

The above integral has a closed form solution result-
ing in the final ELBO as (See Supplements)

Lgprn =

N∑
i=1

{
P∑
p=1

logN
(
yp,i|

Q∑
q=1

µwqp,iµfq,i, σ
2
y

)

− 1

2σ2
y

Q,P∑
q,p=1

(
µ2
wqp,iσ

2
fq,i + µ2

fq,iσ
2
wqp,i + σ2

wqp,iσ
2
fq,i

)}

−
Q,P∑
q,p

KL[q(uwqp
,ufq )||p(uwqp

,ufq )], (53)

where µfq,i is the i’th element of µfq and σ2
fq,i

is

the i’th diagonal element of Σfq (similarly for the
Wqp’s).

5 SPARSE GAUSSIAN PROCESS
NETWORK

In this section we demonstrate how zero-inflated
GPs can be used as plug-in components in other
standard models. In particular, we propose a sig-
nificant modification to GPRN by adding sparsity
to the mixing matrix components. This corresponds
to each of the p outputs being a sparse mixture of
the latent Q functions, i.e. they can effectively use
any subset of the Q latent dimensions by having ze-
ros for the rest in the mixing functions. This makes
the mixture more easily interpretable, and induces
a variable number of latent functions to explain the
output of each input x. The latent function f can
also be sparsified, with a derivation analogous to the
derivation below.

We extend the GPRN with probit sparsity for the
mixing matrix W , resulting in a joint model

p(y, f ,W,g) = p(y|f ,W )p(f)p(W |g)p(g), (54)

where all individual components of the latent func-
tion f and mixing matrix W are given GP priors.
We encode the sparsity terms g for all the Q × P
mixing functions Wqp(x) as

p(Wqp|gqp) = N (wqp|0,Φ(gqp)Φ(gqp)
T ◦Kw).

(55)

To introduce variational inference, the joint model
is augmented with three sets of inducing variables
for f , W and g. After marginalizing out the induc-
ing variables as in equations (25–27), the marginal
likelihood can be written as

log p(y) ≥ Eq(f ,W,g) log p(y|f ,W ) (56)

−KL[q(uf ,uw,ug)||p(uf ,uw,ug)].

The joint distribution in the variational expecta-
tion factorizes as q(f ,W,g) = q(f)q(W |g)q(g). Also,
with a Gaussian noise assumption, the expectation
term factories across all the observations and tar-
get dimensions. The key step reduces to solving the
following integrals:

N,P∑
i,p=1

∫∫∫
logN (yp,i|(wp,i ◦ gp,i)T fi, σ2

y) (57)

· q(fi,wp,i,gp,i)dwp,idfidgp,i.



The above integral has a tractable solution leading
to the final sparse GPRN evidence lower bound (See
Supplements)

Lsgprn =

N∑
i=1

{
P∑
p=1

logN
(
yp,i|

Q∑
q=1

µwqp,iµgqp,iµfq,i, σ
2
y

)

− 1

2σ2
y

Q,P∑
q,p=1

(
(µ2
gqp,i + σ2

gqp,i) (58)

· (µ2
wqp,iσ

2
fq,i + µ2

fq,iσ
2
wqp,i + σ2

wqp,iσ
2
fq,i)

)
− 1

2σ2
y

Q,P∑
q,p=1

(
σ2
gqp,iµ

2
fq,iµ

2
wqp,i

)}

−
Q,P∑
q,p

KL[q(ufq ,uwqp
,ugqp)||p(ufq ,uwqp

,ugqp)],

where µfq,i, µwqp,i are the variational expectation
means for f(·),W (·) as in equations (28, 29), µgqp,i is
the variational expectation mean of g(·) as in equa-
tion (33), and analogously for the variances.

6 EXPERIMENTS

First we demonstrate how the proposed method can
be used for regression problems with zero-inflated
targets. We do that both on a simulated dataset
and for real-world climate modeling scenarios on
a Finnish rain precipitation dataset with approx-
imately 90% zeros. Finally, we demonstrate the
GPRN model and how it improves both the inter-
pretability and predictive performance in the JURA
geological dataset.

We use the squared exponential kernel with ARD in
all experiments. All the parameters including in-
ducing locations, values and variances and kernel
parameters were learned through stochastic Adam
optimization (Kingma & Ba, 2014) on the Tensor-
Flow (Abadi et al., 2016) platform.

We compare our approach ZiGP to baseline Zero
voting, to conventional Gaussian process regression
(GPr) and classification (GPc) with SVI approxi-
mations from the GPflow package (Matthews et al.,
2017). Finally, we also compare to first classifying
the non-zeros, and successively applying regression
either to all data points (GPcr), or to only pre-
dicted non-zeros (GPcr6=0, hurdle model).

We record the predictive performance by consider-
ing mean squared error and mean absolute error. We
also compare the models’ ability to predict true ze-
ros with F1, accuracy, precision, and recall of the
optimal models.

Figure 3: ZiGP model fit on the precipitation
dataset. Sample of the actual data (a) against the
sparse rain function estimate (b), with the probit
support function (c) showing the rain progress.

6.1 SPATIO-TEMPORAL DATASET

Zero-inflated cases are commonly found in clima-
tology and ecology domains. In this experiment
we demonstrate the proposed method by model-
ing precipitation in Finland4. The dataset consists
of hourly quantitative non-negative observations of
precipitation amount across 105 observatory loca-
tions in Finland for the month of July 2018. The
dataset contains 113015 datapoints with approxi-
mately 90% zero precipitation observations. The
data inputs are three-dimensional: latitude, longi-
tude and time. Due to the size of the data, this ex-
periment illustrates the scalability of the variational
inference.

We randomly split 80% of the data for training and
the rest 20% for testing purposes. We split across
time only, such that at a single measurement time,
all locations are simultaneously either in the training
set, or in the test set.

4Data can be found at http://en.
ilmatieteenlaitos.fi/

http://en.ilmatieteenlaitos.fi/
http://en.ilmatieteenlaitos.fi/


Table 1: Results for the precipitation dataset over
baseline (Zero; majority voting), four competing
methods and the proposed method ZiGP on test
data. The columns list both quantitative and qual-
itative performance criteria, best performance is
boldfaced.

Model RMSE MAE F1 Acc. Prec. Recall
Zero 0.615 0.104 0.000 0.898 0.000 0.000
GPc - - 0.367 0.911 0.675 0.252
GPr 0.569 0.159 0.401 0.750 0.266 0.817
GPcr 0.589 0.102 0.366 0.911 0.679 0.251
GPcr6=0 0.575 0.101 0.358 0.912 0.712 0.240
ZiGP 0.561 0.121 0.448 0.861 0.381 0.558

We further utilize the underlying spatio-temporal
grid structure of the data to perform inference in an
efficient manner by Kronecker techniques (Saatchi,
2011). All the kernels for latent processes are as-
sumed to factorise as K = Kspace ⊗ Ktime which
allows placing inducing points independently on spa-
tial and temporal grids.

Figure 4: The distribution of errors with the rain
dataset with the ZiGP and the GPr. The zero-
inflated GP achieves much higher number of perfect
(zero) predictions.

Figure 3 depicts the components of the zero-inflated
GP model on the precipitation dataset. As shown
in panel (c), the latent support function models the
presence or absence of rainfall. It smoothly follows
the change in rain patterns across hourly observa-
tions. The amount of precipitation is modeled by
the other latent process and the combination of these
two results in sparse predictions. Figure 4 shows
that the absolute error distribution is remarkably
better with the ZiGP model due to it identifying
the absence of rain exactly. While both models fit
the high rainfall regions well, for zero and near-zero
regions GPr does not refine its small errors. Table
1 indicates that the ZiGP model achieves the lowest
mean square error, while also achieving the highest
F1 score that takes into account the class imbalance,

Figure 5: The sparse GPRN model fit on the Jura
dataset with 11 inducing points. The Q = 2 (dense)
latent functions (a) are combined with the 3 × 2
sparse mixing functions (b) into the P = 3 output
predictions (c). The real data are shown in (d).
The white mixing regions are estimated ‘off’.

which biases the elementary accuracy, precision and
recall quantities towards the majority class.

6.2 MULTI-OUTPUT PREDICTION -
JURA

In this experiment we model the multi-response Jura
dataset with the sparse Gaussian process regression
network sGPRN model and compare it with stan-
dard GPRN as baseline. Jura contains concentra-
tion measurements of cadmium, nickel and zinc met-
als in the region of Swiss Jura. We follow the ex-
perimental procedure of Wilson et al. (2012) and
Nguyen & Bonilla (2013). The training set consists
of n = 259 observations across D = 2 dimensional
geo-spatial locations, and the test set consists of 100
separate locations. For both models we use Q = 2
latent functions with the stochastic variational in-
ference techniques proposed in this paper. Sparse
GPRN uses a sparsity inducing kernel in the mix-
ing weights. The locations of inducing points for the
weights W (x) and the support g(x) are shared. The
kernel length-scales are given a gamma prior with
the shape parameter α = 0.3 and rate parameter
β = 1.0 to induce smoothness. We train both the
models 30 times with random initialization.

Table 2 shows that our model performs better than
the state-of-the-art SVI-GPRN, both with m = 5
and m = 10 inducing points. Figure 5 visualises
the optimized sparse GPRN model, while Figure 6
indicates the sparsity pattern in the mixing weights.
The weights have considerable smooth ‘on’ regions
(black) and ‘off’ regions (white). The ‘off’ regions
indicate that for certain locations, only one of the
two latent functions is adaptively utilised.



Figure 6: The sparse probit support (a) and latent
functions (b) of the weight function W (x) of the
optimized sparse GPRN model. The black regions
of (a) show regional activations, while the white re-
gions show where the latent functions are ‘off’. The
elementwise product of the support and weight func-
tions is indicated in the Figure 5b).

Table 2: Results for the Jura dataset for sparse
GPRN and vanilla GPRN models with test data.
Best performance is with boldface. We do not report
RMSE and MAE values GPc, since its a classifica-
tion method.

Cadmium Nickel Zinc
Model m RMSE MAE RMSE MAE RMSE MAE

GPRN
5 0.724 0.566 6.469 4.958 33.729 21.959
10 0.736 0.574 6.626 5.109 34.923 22.544
15 0.749 0.590 6.526 5.033 35.033 22.670

sGPRN
5 0.719 0.565 6.553 5.054 33.475 21.774
10 0.727 0.567 6.520 5.062 34.225 22.114
15 0.725 0.569 6.479 5.033 34.308 22.288

6.3 MULTI-OUTPUT PREDICTION -
SARCOS

In this experiment we tackle the problem of learn-
ing inverse dynamics for seven degrees of freedom of
SARCOS anthropomorphic robot arm (Vijayakumar
et al., 2005). The dataset consists of 48,933 observa-
tions with an input space of 21 dimensions (7 joints
positions, 7 joint velocities, 7 joint accelerations).
The multi-output prediction task is to learn a map-
ping from these input variables to the corresponding
7 joint torques of the robot. Multi-output GP has
been previously used for inverse dynamics modeling
(Williams et al., 2009), but in a different model set-
ting and on a smaller dataset. GPRN with stochas-
tic inference framework has also been explored to
model SARCOS dataset (Nguyen et al., 2014), how-
ever, they use a different experimental setting and
consider 2 of the 7 joint torques as multi-outptut
targets.

Table 3: Normalized MSE results on the SARCOS
test data for sparse GPRN and standard GPRN
models. Best performance is mentioned with bold-
face.

Model m = 50 m = 100 m = 150

GPRN
Q = 2 0.0167 0.0145 0.0127
Q = 3 0.0146 0.0121 0.0108

sGPRN
Q = 2 0.0159 0.0131 0.0125
Q = 3 0.0140 0.0117 0.0096

We consider 80%+20% random split of the full
dataset for training and testing respectively. Both
GPRN and SGPRN model are trained with m =
50, 100 and 150 inducing points and Q = 2 and
3 latent functions. We repeat the experiment 20
times and report normalized-MSE in Table 3. Sparse
GPRN gives better results than standard GPRN
in all our experimental settings. Moreover, sparse
model (nMSE= 0.0096) gives gives 12% improve-
ment over the standard model (nMSE= 0.0108) for
the best test performance with Q = 3 latent func-
tions and m = 150.

7 DISCUSSION

We proposed a novel paradigm of zero-inflated Gaus-
sian processes with a novel sparse kernel. The spar-
sity in the kernel is modeled with smooth probit
filtering of the covariance rows and columns. This
model induces zeros in the prediction function out-
puts, which is highly useful for zero-inflated datasets
with excess of zero observations. Furthermore, we
showed how the zero-inflated GP can be used to
model sparse mixtures of latent signals with the pro-
posed sparse Gaussian process network. The latent
mixture model with sparse mixing coefficients leads
to locally using only a subset of the latent functions,
which improves interpretability and reduces model
complexity. We demonstrated tractable solutions to
stochastic variational inference of the sparse probit
kernel for the zero-inflated GP, conventional GPRN,
and sparse GPRN models, which lends to efficient
exploration of the parameter space of the model.
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