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Abstract

We consider the problem of unsupervised
learning of meaningful behavioural segments
of high-dimensional time-series observations,
collected from a pride of African lions1.
We demonstrate, by way of a probabilistic
programming system (PPS), a methodology
which allows for quick iteration over mod-
els and Bayesian inferences, which enables
us to learn meaningful behavioural segments.
We introduce a new Bayesian nonparametric
(BNP) state-space model, which extends the
hierarchical Dirichlet process (HDP) hidden
Markov model (HMM) with an explicit BNP
treatment of duration distributions, to deal with
different levels of granularity of the latent be-
havioural space of the lions. The ease with
which this is done exemplifies the flexibility
that a PPS gives a scientist2. Furthermore, we
combine this approach with unsupervised fea-
ture learning, using variational autoencoders.

1 INTRODUCTION

Animal accelerometer data allows ecologists to identify
important correlates and drivers of animal behaviour.
Use of accelerometers is widespread within animal
biotelemetry as they provide a means of measuring an
animal’s activity in a meaningful and quantitative way,
where direct observation is not possible. In sequential
acceleration data there is a natural dependence between
observations of movement or behaviour, a fact that has
been largely ignored in most analyses [13]. Record-
ings are typically sampled at a high temporal resolution,

∗Equal contribution
1You may be familiar with one of the more famous mem-

bers of our study, the late Cecil the lion.
2Example code: https://goo.gl/14s8Sa

sometimes for years at a time, using tri-axial accelerom-
eter tags [15], which quickly results in terabytes of data
that present various challenges regarding transmission,
storage, processing and statistical modelling. The lat-
ter can be achieved by employing statistical classifica-
tion methods, and entails observing the animal, manu-
ally assigning labels corresponding to known behaviours
to segments of the data, and training a model using the
labelled data in order to subsequently classify remain-
ing unlabelled data based on certain chosen acceleration
features deemed to be salient by domain experts.

Consider the recent work of Pagano et al. [20] wherein
the authors use tri-axial accelerometers to identify wild
polar bear behaviours. They note that identification of
wild animals can be facilitated using captive counter-
parts, as their accelerometer signatures are generally as-
sumed to be similar to those of their wild kin [20]. They
use their captive bears as surrogates for wild ground-truth
behaviour, upon which they model polar bear behaviour
on sea ice and land, using random forests classification
and hand-engineered features. Their results, though of
good accuracy, rely on hand-engineered features, large
assumptions about captive and wild behaviours and a
fundamental need for labelled data to infer behaviour.
Along this trail of thought, the work McClune et al. [17]
is relevant for our discussion. Therein, the authors fitted
tri-axial accelerometers to a tame and captive Eurasian
badger, upon which it was allowed to roam free in an
enclosure, whilst movements were video recorded and
used as ground-truth for its behavioural states. Again,
features were hand-engineered using, e.g., acceleration
magnitude and principal component analysis. The k-
nearest neighbour classifier and decision trees were used
to automate classification of behaviours [17]. Their suc-
cess ranged from 77.4% to 100% classification accu-
racy, though again deploying a highly laborious pro-
cess, where a human is necessary for the extraction of
the video ground-truth (and classification is conditioned
on the ground truth existing at all). The work by Leos-
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Barajas et al. [13] is faced with precisely this challenge,
where they seek to measure an animal’s activity in a
meaningful and quantitative way where direct observa-
tion is not possible [13]. In doing so, they investigate a
marine and an aerial system (sharks and eagles). They
used the classical HMM to effect supervised and unsu-
pervised learning of animal activity. In the latter case,
an HMM is used to segment unlabelled acceleration data
into a finite set of pre-specified categories [13]. They
go on to show that the metrics that they derive from
the learned eagle -states provide meaningful insight into
activity levels and thus can lead to biologically inter-
pretable states. Their study is similar to that of Phillips
et al. [21], in which the authors applied HMMs in an un-
supervised context to model the behaviour of free swim-
ming tuna from vertical movement data collected by
data-storage tags [13, §3.3].

As we have thus demonstrated some studies do employ
models with temporal dependency (e.g., the Markov as-
sumption) but the far more popular method is to deploy
classification algorithms that do not, e.g., support vector
machines (SVM) or random forests see, e.g., [3]. We,
like Leos-Barajas et al. [13], note that disregarding the
serial dependence in the acceleration data usually is not
a realistic assumption. Moreover, independent and iden-
tically distributed statistics (i.i.d.) pose a particular risk
if “inferential statistics are applied to the output of say a
machine learning algorithm” [13].

In this study, we therefore focus on state-space models
like HMMs to model accelerometer data. In doing so
we take care to emphasise the two significant disadvan-
tages of a simple HMM: (1) state duration distributions
are necessarily restricted to be of the geometric shape
P(d) = ad−1(1 − a) (and, in particular, monotonically
decreasing), where d denotes the duration of a given state
and a denotes its self-transition probability, which is not
appropriate for many real-world problems like modelling
animal behaviour (for instance, a human being usually
sleeps for roughly 7-8 hours and, certainly, sleep dura-
tions are not monotonically decreasing), and (2) the num-
ber of hidden states must be set a priori while one of
the main objectives of behavioural research is to discover
new or more fine-grained behavioural patterns.

Recent work has addressed the latter issue by way of
Bayesian nonparametric HMMs, which allow us to infer
state cardinality from observations, and allows it to grow
in a data-driven fashion. The former issue is addressed
by variations of the HMM with non-geometric duration
distributions like the Hidden semi-Markov model [18].
In the BNP paradigm, inference is usually performed in
models with an infinite number of states. Additionally,
we consider a BNP treatment of durations.

In this paper, we aim to introduce these two innovations
to the zoology toolbox, while at the same time show-
ing the value that unsupervised (behaviour) learning can
have, without reliance on expensive and difficult manual
data annotation, as well as unsupervised feature learn-
ing, reducing the reliance on domain experts to guess
the most salient features for possibly unknown kinds of
behaviour. We perform full unsupervised nonparamet-
ric time-series learning on the observations, resulting in
a time-segmented set of waveforms. Such a segmenta-
tion can provide useful interpretations which allow us
to quantify animal behaviour, energetic expenditure and
deepen our insights into individual behaviour as a con-
stituent of populations and ecosystems [13]. Further, we
hope to convey the huge value that a probabilistic pro-
gramming language like Anglican can have when explor-
ing the space of possible new models for a novel applica-
tion domain like ours, in enabling quick implementation
and evaluation of many complex models and even de-
sign of new ones with minimal mathematical and coding
burden to the scientist (e.g., no need to derive custom
inference algorithms).

The paper is organised as follows; in section 2, we give
an exegesis of BNP HMMs; in section 3, we present
the infinite duration HMM and section 4 discusses our
choice of using a probabilistic programming framework
to implement our models. Experiments and results are
presented for the understanding of lion behaviour ecol-
ogy in section 5. In section 6, we conclude.

2 BAYESIAN NONPARAMETRICS

We motivate our approach by reviewing the principles
underpinning BNP staet-space models (SSM), and use
this foundation to motivate our contributions in the com-
ing sections, taking our cue from Dhir et al. [5, §II].
We need to be able to infer state cardinality from ob-
servations, as well as discover new states as we acquire
more data. The former consideration of determining
model complexity motivates a Bayesian approach, while
the latter suggests a nonparametric model. The defining
difference between BNP methods and their parametric
cousins is that the size of the representation can grow as
we gather more data: for the HDP-HMM, the expecta-
tion and variance of the number of states grow logarith-
mically with the size of the dataset [24]. We can frame
our prior through Lo et al. [14]’s suggestion of an infinite
dimensional mixture model:

G ∼ P
θi | G i.i.d.∼ G i = 1, 2, . . .

yi | θi ind.∼ F (θi) i = 1, 2, . . . (1)
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Figure 1: Three types of Bayesian nonparametric hidden Markov models, with various structural prior encoded which,
from left to right, induce higher probability of state persistence.

whereG is a discrete random probability measure (RPM)
with distribution P , y1:n are a collection of continuous
and possibly multivariate observations and θ1:n are the
corresponding collection of latent random variables from
an i.i.d. sequence directed by G and F (θi) is some con-
tinuous distribution parametrised by θi [5]. The nonpara-
metric hierarchical model in eq. (1) defines a mixture
model (MM) with a potentially countably infinite num-
ber of components. Because the RPM in equation eq. (1)
is discrete, this means that a pair of consecutive values of
θ take on the same value with a strictly positive probabil-
ity. This value defines a mixture component. By setting
the RPM to the Dirichlet process (DP) [6] we obtain the
familiar DP mixture model

G | γ,H ∼ DP(γ,H),

θi | G ∼ G,
yi | θi ∼ F (θi) i = 1, 2, . . . . (2)

The DP, denoted byDP(γ,H), is a distribution over ran-
dom measures on a parameter space Θ with countably
infinite support. It can be parameterised by a base mea-
sure H on θ and a concentration parameter γ. The DP is
typically used as a prior on the mixture components θ, of
a MM of unknown complexity [5]. Note also that, e.g.,
the Pitman-Yor process or any other distribution over dis-
crete RPMs are valid alternatives to the DP.

In many scenarios we posit that groups of data are
thought to be produced by related, yet distinct, gener-
ative processes [5]. Concurrently, a recurring problem
in many areas of information technology is that of seg-
menting a signal into a set of time intervals that have a
useful interpretation in some underlying domain and can
be thought of as generated by related but distinct pro-
cesses [7]. Both of these scenarios describe the problem
we face in this work, and both can be analysed through
a hierarchical BNP approach. Viewed through this lens,
observations can be subdivided into a countable collec-
tion of groups [5]. Then, we take it that groups of obser-
vations are modelled by considering a collection of DPs
{Gj : j ∈ J }, defined on a common space Θ, where
J indexes the groups. By placing a global DP prior
DP(γ,H) on the base distribution G0, from whence we

draw group specific distributions Gj ∼ DP(α,G0), we
obtain the hierarchical DP (HDP) [26]. Teh et al. [26]
explain that the HDP induces sharing of support among
the random measures Gj since each inherits its support
from the same G0. This idea is used to develop HMMs
with unknown, potentially infinite, state spaces.

2.1 INFINITE HIDDEN MARKOV MODELS

Dhir et al. [5] describe an HMM as a doubly-stochastic
Markov chain in which a state sequence {θ1, . . . , θT } is
drawn according to a Markov chain on a discrete state
space Θ with transition kernels {Gθ : θ ∈ Θ} [25].
Corresponding observations {y1, . . . , yT }, conditional
on the state sequence, are drawn from a fixed emission
distribution yt | θt ∼ F (θt) ∀t ∈ {1, . . . , T}. By em-
ploying the HDP in an HMM setting, a prior distribution
is defined on transition kernels, yielding the HDP-HMM
[26] - see fig. 1a; an HMM with a countably infinite state
space, with generative model

G0 | γ,H ∼ DP(γ,H), (3)
Gθ | α,G0 ∼ DP(α,G0) for θ ∈ Θ, (4)
θt | θt−1, Gθt−1

∼ Gθt−1
for t = 1, . . . , T,

yt | θt ∼ F (θt).

To frame this discussion, consider two alternatives to
eq. (4) (see figs. 1b and 1c). The first extension is by
Fox et al. [7]

Gθ | α,G0, κ, θ ∼ DP
(
α+ κ,

αG0 + κδθ
α+ κ

)
(5)

and the second by Dhir et al. [5]

Gθ | αθ, G0, κθ, θ ∼ DP
(
αθ + κθ,

αθG0 + κθδθ
αθ + κθ

)
.

(6)
We shall consider both in turn, in league with our discus-
sion and motivation of this approach. Hence, consider
that each Gθ is a DP draw (this is true for eqs. (4) -
(6)), and is interpreted as the transition distribution over
θt | θt−1. All transition distributions are linked by the
same discrete measure G0 [5]. Hence, in expectation



E[Gθ] = G0, ∀θ ∈ Θ. Thus, transition distributions tend
to have their mass concentrated around a common set of
states, providing the desired bias towards re-entering and
re-using a consistent set of states [11, 5]. But, the rate
at which state change unfolds in the HDP-HMM is typi-
cally too fast for many real-world problems. The model
construction furthermore encourages the creation of re-
dundant states and rapid switching amongst these too
[11]. To alleviate this the sticky HDP-HMM (see fig. 1b)
was introduced by Fox et al. [7], with transition kernel
in eq. (5), that augment the HDP-HMM with an extra
parameter κ > 0 which encourages self-transitions and
thus longer state durations. The model, however, still
shares its global self-transition bias with all the other
states, and so it does not allow for learning state-specific
duration information [11]. An attempt to deal with this
restriction was introduced by Dhir et al. [5] with the
stateful HDP-HMM (fig. 1c), in which the authors pro-
pose that by allowing for group-specific self-transition
biases κθ, greater heterogeneity can be achieved in the
dwell-time distribution of the inferred states. Where the
transition kernel is given in eq. (6).

Performing inference over these types of models seeks to
infer the posterior distributions over the state sequence
and, therefore, implicitly, over the persistence of each
state. It is with respect to this latter domain, that we pro-
pose new methodology for inferring state-specific dura-
tions, drawn from an infinite set.

3 INFINITE DURATION HIDDEN
MARKOV MODEL

As discussed, in the classic HMM, the duration of a
given state has a geometric (in particular, monotonically
decreasing) distribution, because of the Markov prop-
erty. Geometric duration distributions have been found
to be deficient not just in behavioural modelling but also
in e.g. speech synthesis [1]. Explicit duration HMMs
(EDHMM) have been developed [4] to make the du-
ration distribution explicit and allow it to have a more
general form. Put simply, in an EDHMM, during a
(Markov) state transition, a duration is drawn explicitly
from a specified duration distribution depending on the
new state. After that, the probability of self-transition
is one until the duration has elapsed. We prefer to con-
sider the EDHMM over the hidden semi-Markov model
(HSMM), which achieves a similar effect through differ-
ent, less explicit means [11].

The HDP-HSMM was introduced by Johnson & Will-
sky [11] and has its graphical model structure shown in
fig. 2c (see appendix E for further discussion). Con-
trast this to the infinite duration HMM (IDHMM), a BNP

variant on the EDHMM, which we present herein (see
fig. 2a). We posit that the IDHMM can be preferable as it
gives a nonparametric rather than parametric treatment of
duration distributions. The IDHMM models the relation-
ship between state θt ∈ Θ ⊆ N, duration dt ∈ D ⊆ N
and observation yt ∈ Y ⊆ Rn, ∀t ∈ T , {1, . . . , T},
whilst giving a nonparametric treatment of state cardinal-
ity and state duration. The base and group distributions,
in the generative model, are drawn as

G0 | γ,HΘ ∼ DP(γ,HΘ)

D0 | γ′, HD ∼ DP(γ′, HD) (7)
Gθ | α,G0 ∼ DP(α,G0) for θ ∈ Θ

Dθ | α′, D0 ∼ DP(α′, D0) for θ ∈ Θ (8)

where G0 and D0 have support Θ and D respectively.
Noting that Gθ, being a draw from a DP, is a discrete
distribution, we can define Gθ[P(θ) = 0] as the measure
obtained from Gθ by setting the probability of drawing
θ to 0 and renormalising. Next, a sequence of states,
durations and emissions are drawn as

θt | θt−1, dt−1 ∼
{
δθt−1

, if dt−1 > 1

Gθt−1
[P(θt−1) = 0], otherwise

dt | dt−1, θt ∼
{
δdt−1−1, if dt−1 > 1

Dθt−1 , otherwise

yt | θt ∼ F (θt).

where δa is a δ-distribution with all its mass on a [4].
That is, we keep the state fixed and decrease the duration
with one or, if the duration would reach 0, we sample
a different new state, depending on the old state, and a
corresponding new duration, depending on the new state.

Consider that each Gθ[P(θ) = 0] is obtained from a
DP draw and is interpreted as the transition distribution
over θt | θt−1. All transition distributions are linked by
the same discrete measure G0. Hence, in expectation
E[Gθ[P(θ) = 0] | G0] = G0[P(θ) = 0], ∀θ ∈ Θ.
Since transition distributions tend to have their mass
concentrated around a common set of states, a bias to-
wards re-entering and re-using a common of states is re-
ceived. Similarly, our choice to extend the representa-
tional power of an HDP to durations as well means that
the model reuses a common set of state durations.

We can also expose the IDHMM to the stateful repre-
sentation, fig. 2b, as analogous to that in [5]. As for
the stateful HDP-HMM, this adds greater heterogeneity
in the state and dwell-time distributions of the inferred
states. We will explain in section 4 how general purpose
inference allows us to quickly build and experiment with
models in this modular fashion, which can give us greater
flexibility than using bespoke sampling algorithms such
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Figure 2: Bayesian nonparametric state-space models with explicitly modelled state dwell durations.

as those employed by, e.g., Fox et al. [7] and Johnson
& Willsky [11], in settings like ours where the compu-
tational efficiency of the latter is outweighed by the pro-
grammer efficiency of the former.

4 GENERAL PURPOSE INFERENCE

As the optimal model structure, to nonparametrically and
in an unsupervised fashion, infer behavioural states from
accelerometer data was far from clear, we chose to use
a PPS for our analyses, specifically Anglican [30]. The
idea of a PPS is that it is a programming language with
an implementation of many of the basic building blocks
for both statistical models and (general purpose) infer-
ence algorithms. By composing these building blocks,
even a non-expert should be able to quickly build com-
plex statistical models. For instance, Anglican provides
a primitive for a Chinese restaurant process which easily
allowed us to implement our (H)DPs.

Importantly, Anglican (like many PPS:es) provides a
separation between model specification and implemen-
tation of inference. In particular, it comes equipped with
several general purpose inference algorithms, such as Se-
quential Monte Carlo (SMC), Markov chain Monte Carlo
(MCMC) and Particle MCMC. These can be combined
with any model, allowing a user to focus on the mod-
elling task, without having to worry about the implemen-
tation of a complicated custom inference algorithm.

A model is a simplified representation of reality, and the
simplifications are made to discard unnecessary detail
and allow us to focus on the aspect of reality that we
want to understand. Depending on the problem, it is
important to assess the trade-offs between speed, accu-
racy, and complexity of different models and algorithms
and find a model that works best for that particular prob-
lem. Consequently, the pairing of a suitable inference
scheme to a model is a notoriously difficult problem; no
one method is likely to generalise across the board [29].
A PPS allows us to quickly and accurately iterate over
models and inference methods, to find the most optimal
pair conditioned on the problem domain.

In our case, this enabled us to quickly experiment with
and evaluate many models for lion accelerometer data.
The fact that we could quickly design and implement a
new model, the IDHMM, speaks to the ease of use and
flexibility of the probabilistic programming methodol-
ogy. In practice, we chose to perform our analyses in
Anglican with the SMC inference algorithm. SMC takes
as a parameter “the number of particles”, where higher
numbers increase the expected accuracy of inference.

5 LEARNING LION BEHAVIOUR

We qualify our models and inference methodology, by
applying them, and contemporary state-of-the-art, to
synthetic followed by lion observations.

5.1 SYNTHETIC OBSERVATIONS

We explore the relative performance between the five
models introduced hitherto, by simulating observations
yt ∈ RD=2, from a very noisy three-state multivariate
HSMM with Gaussian emissions − see fig. 3a. Conse-
quently, from the inference perspective, the emission dis-
tribution has unknown mean and covariance parameters.
The conjugate prior is the normal-inverse-Wishart distri-
bution, denoted by NIW(µ0, λ0,Ψ, ν). Through conju-
gacy we seek the posterior distribution of {µθ,Σθ} ∀θ ∈
Θ, where we index group-specific (i.e., behaviour-
specific) parameter samples by θ, given a set of ob-
servations yt ∼ N (µθ,Σθ). For convenience of no-
tation let Y = [y1, . . . , yT ]T. For brevity, results are
only shown for SMC, chosen for its superior perfor-
mance for this model class. In addition, particle Gibbs
(iterated conditional SMC) and lightweight Metropolis-
Hastings were all tested as part of our experiments [30].
Model and emissions parameter priors are shown in ta-
ble 1 in appendix C. We place non-informative hyper-
priors on model parameters and then condition the mod-
els on the observations and sample state trajectories; i.e.
θ → t, ∀θ ∈ Θ ∧ ∀t ∈ {1, . . . , T}. We use synthetic
observations of size T = 1000 and use 100 samples for
each particle count (see fig. 3).
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Figure 3: Results from experiments on multivariate synthetic Gaussian observations with SMC inference. A three-
state HSMM with non-geometric duration distributions was sampled to create the observation set in fig. 3a. All models
under discussion are compared and contrasted in fig. 3b and fig. 3c.

Performance is measured with the Hamming distance,
a common clustering metric [16]. This distance metric
works by mapping the randomly chosen indices of the
estimated state sequence, to the set of indices that max-
imise the overlap with the true sequence [7]. In other
words the distance between two sequences, is the num-
ber of positions at which the corresponding symbols are
different. Hence, the lower, the better.

The results in fig. 3 demonstrate the advantage that our
proposed model structure can have for modelling phe-
nomena with non-geometric duration distributions. First,
as demonstrated by [5], stateful models yield a clear ben-
efit compared to their contemporaries. This is because
we increase the heterogeneity of the dwell-time distribu-
tion of the inferred states of the model, by making the
model statistics group specific. This is shown in fig. 3b
and fig. 3c where the stateful HDP-HMM outperforms
the HDP-HMM and sticky HDP-HMM for some particle
counts. The benefits of a stateful representation are less
clearcut for the IDHMM, but both IDHMMs outperform
other state-of-the-art BNP SSMs.

By extending the HDP-HMM and stateful HDP-HMM,
by drawing upon explicit-duration semi-Markovianity
[11], as was done in the HDP-HSMM, one allows for
the parametric construction of highly interpretable mod-
els which admit prior information on the state durations
[11]. We make that model more flexible still by giving
a nonparametric treatment treatment to the state cardi-
nality and durations. By levering the statistical strength
of HDPs for durations, we can model complex duration
phenomena, which may be more difficult to treat in a
parametric setting. We demonstrate, in appendix D, in
fig. 9b and fig. 9c the flexibility that our model structure
provides. By employing the duration distributions shown
in fig. 9a, we gain approximately the same utility in terms

of the Hamming distance, when using a uniform-discrete
duration prior. However because we are targeting a dura-
tion process of the form shown by the red bars in fig. 9a,
it is more appropriate to focus our duration prior density
on those regions. Hence, we see that by employing two
poorly-specified mixture duration distributions (fig. 9b:
N (35, 15)+N (85, 15) and fig. 9c: Pois(35)+Pois(85)
– with equal mixing proportions), the posterior state car-
dinality is better specified.

5.2 LION BEHAVIOUR

We demonstrate our methods by applying them to lion
behaviour segmentation, to better understand their ecol-
ogy. Hence, biologger observations are becoming in-
creasingly popular tools for animal behaviour research.
The number of studies using accelerometers in particu-
lar, has increased rapidly over the last 15 years due to
the advantages offered over methods relying solely on
direct observation [2]. While direct observation may be
the only viable means of studying animal behaviour in
certain cases, it can pose several difficulties which may
include biases suffered as a result of observer presence
[9] or the inability to continuously observe the focal an-
imal if it is an elusive species, or a species that occurs
in inaccessible habitats. The African lion is an example
of a species for which behavioural research can benefit
from accelerometer data-loggers due the challenges as-
sociated with keeping study individuals in sight continu-
ously while avoiding influencing their behaviour. How-
ever, with the ability to record continuously at sampling
frequencies as high as 10,000Hz [2], accelerometers gen-
erate extremely large datasets which are impossible to
classify manually, which is why unsupervised learning
could help.



The majority of studies which make use of machine
learning to classify large accelerometry datasets, tend to
rely on supervised learning techniques [2] or very coarse
quantification of activity [19]. While such techniques
have proven effective for many studies focussing on se-
lect, broad behavioural states such as ‘stationary’, ‘mo-
bile’ and ‘feeding’ as shown by [8] on the cheetah, they
are potentially limiting for those aimed at developing de-
tailed activity budgets, as detailed manual labelling can
be labour intensive and difficult. Hence, in this study we
seek to dwell deeper by investigating, on a per-second
basis, tri-axial accelerometry (ẍ, ÿ, z̈) and magnetometer
(Bx,By,Bz) observations, collected from a male lion
using a 32Hz sampling rate. Unlike previous studies, we
shall employ a novel form of feature engineering, for our
time-series observations, using the recent development
of the variational autoencoder [12].

5.3 UNSUPERVISED FEATURE LEARNING

The study by Rahman et al. [22] presented an application
of autoencoders (AE) to temporal tri-axial accelerometry
observations. They used it to effect unsupervised feature
learning, later used for supervised classification of cattle
behaviour. This data-driven approach is one which we
shall espouse too with the difference that we instead use
variational AEs (VAE), whose generative nature has the
advantage that the learned features are easier to interpret.
For further details on the VAE structure and our imple-
mentation see appendix B.

5.4 FUZZY GROUND TRUTH

Ground truth (GT), as we have already alluded to, is an
elusive property in the zoological domain. In section 1,
we noted how, e.g., video was used as a form of GT. In
our case, GT, or labelled observations, is received via
sound [27]. The collar of each lion, apart from being
equipped with sensors that log physical variations (e.g.,
acceleration), also log the audio of each animal. This
enables the zoologist to get a measure of the animal’s ac-
tivity at time t. It also means that in order to ascertain a
dataset that can be used for statistical learning, an excep-
tionally expensive process takes place where a human lis-
tens to an audio recording. For it to be of any use though,
that recording has to span not hours, but days. Conse-
quently this type of labelling is prohibitive due to its huge
cost in man hours, but it also needs to be performed by
the same person, as to remove as much bias as possible
(e.g., our dataset contains ‘trot’ and ‘walking’ - two ac-
tivities that are perceptively similar). This is another rea-
son why unsupervised learning could prove preferable,
being solely observation-driven. Furthermore, whilst it
is true that a human does listen to the lion for a signif-

icant portion of time, she does not listen to the whole
recording (which again can span days). Instead, record-
ings are sub-sampled, where, e.g., every other minute
(or five minutes in some cases) are monitored and the
inferred label (based on the zoologists’ interpretation of
the lion’s audible activity at that point in time) is inter-
polated until the next sampling point. All of which leads
to a form of semi ground truth.

5.5 EXPERIMENTS

Before describing the minutia of our experiments, it is
important to re-iterate the purpose of this exercise, and
the potential value it could have for zoological stud-
ies. Whilst a human will need to be in the semi-GT
extraction-loop, we propose that the methods within can
function as a conduit for behaviour discovery. Differ-
ently put, we posit that our methodology can function as
a useful tool for zoologist, as the unsupervised segmen-
tation will allow them to hone in on regions of interest,
and consequently will allow them to more intelligently
choose regions of interest for their work. Upon which
their semi-GT can be used in any of the standard super-
vised classification methods which hitherto have proved
their worth in this domain (when good GT is available).

For our experiments, we used 10 hours of labelled3 ob-
servations for one lion, part of a pride currently being
studied by our institution. After experimenting with
several window sizes, we settled on 3s as providing a
useful level of granularity. As such, each observation
y ∈ R96×6 (see appendix B, fig. 8b), was normalised,
passed to a VAE, where a low-dimensional latent repre-
sentation z ∈ R3 was extracted. The sequence of latent
representations is what we used as input for our models,
all of which were written as probabilistic programs (see
appendix appendix F, for an example), to which we ap-
plied black-box SMC inference. We used the same con-
jugate prior as in section 5.1. For details see table 2 in
appendix C. In summary, the purpose of these methods
is not to segment the signal into ‘correct’ features (given
that no true form of the ground truth exists). Rather, the
purpose, given limited and noisy information, is to detect
regions of interest (as opposed to, e.g., large regions of a
resting behaviour). Results are shown in fig. 4.

5.6 DETAILED ANALYSIS: A HUNT

In fig. 5, we demonstrate the utility of the IDHMM and
the stateful IDHMM, on a smaller segment of fig. 4. In
this experiment, we sought to understand if our meth-
ods could accurately segment fast-changing animal be-
haviour, specifically that related to hunting. Panel four,

3In the sense in which this exposition is framed.



S
ig

na
l
m

ag
ni

tu
de

[−
]

z1 z2 z3

A

B

C

D

E

B
ehavioural

S
tate

0 2.5 5 7.5 10

Time [hours]

GT

A : HDP-HMM • B : Sticky HDP-HMM • C : Stateful HDP-HMM • D : IDHMMM • E : Stateful IDHMM

Figure 4: The top panel displays the feature-set over which inference was performed. The middle panel shows the
inferred state trajectories, with the highest log-marginal likelihood logP(y1:T ) for all models. The bottom panel
displays the manually labelled ground-truth which serves as a comparison to our unsupervised labelling. The colorbar
maps the numbers of inferred states to each model heatmap in the middle panel.

Magnitude [−]
4

5

6

T
im

e
[h

]

State [#]

rest

grooming

post-capture

eating

Magnitude [−] State [#]

rest

grooming

post-capture

alert

State [#]

hunt-capture

grooming

post-capture

panting

wake-up/yawn

State [#]

rest

grooming

intense
grooming

post-capture

sprinting
kill

Figure 5: Detailed depiction of a two hour segment which features hunting behaviour, using the IDHMM and the
stateful IDHMM. The first two panels (from the left) show a two hour segment with ’ground truth’, the second pair
of panels show a zoomed in 30min period in which multiple behaviours exist (some of which have been annotated).
The final two panels show the inferred behaviour sequences using the IDHMM and the stateful IDHMM (last panel).

from the left, in fig. 5 contains the manual labelling
of this segment, followed by the IDHMM and stateful
IDHMM inferred state trajectories. For model and con-
jugate prior details, see table 3 in appendix C.

Post-analysis showed that the models are reasonably suc-
cessful in segmenting the time-series from a zoological
point of view; subtle and short behaviours can be picked
out from the audio, which the models ‘accurately’ recog-



nise from the input sequences. Granted, post-analysis
is subject to human error and bias, but is still valu-
able, if only to validate that something has been found
and should be studied in more detail. As an example,
consider panel four again (from the left), the large top
segment labelled ‘post-capture’ is immediately preceded
by a long (minutes) sequence of alert and walking be-
haviours, all of which eventually lead to a chase and kill.
The human labelling of this segment is good, but could
be better at picking out subtle behaviours such as the
sprint that leads to the kill (behaviours currently folded
into the ’post-capture’ and ‘capture’ labels, the latter of
which is not shown on the plot). The stateful IDHMM
successfully captures this, while the IDHMM does not.

6 DISCUSSION AND CONCLUSION

From the middle panel of fig. 4, a clear trend emerges
regarding the nature and behaviour of the models w.r.t.
to the observations. The IDHMMs variants (models E
and D in fig. 4) allow the practitioner to employ spe-
cific domain knowledge regarding the duration distribu-
tion of the phenomena being studied. Hence as shown,
the model samples from a bespoke duration distribution,
where, in this instance, we have employed a simple mix-
ture of discrete-uniform distributions that reflect the du-
ration content as seen in the feature space. In fig. 4,
the light grey area preceding the five-hour mark, consti-
tutes an area of less frequent behaviour (as labelled by
the zoologists); a hunt (labelled as ‘capture’), followed
by a kill, followed by post-kill behaviour such as eat-
ing and drinking. It is clear that all models segment the
onset of this activity sequence, but then differ in the du-
ration properties and number of activities present in this
event segment. The HDP-HMM and the sticky HDP-
HMM both capture the fast switching dynamics. The
other models do not, the IDHMMs do not by design,
as they are primed to find large regions of interest, with
statistical observation similarity. This points towards a
scenario where both types of models are used jointly,
as the strength of their sum is greater than their indi-
vidual parts. Viewed this way, we can apply the mod-
els of fig. 4 top to bottom. State-space models that bet-
ter deal with coarse state-space granularity, and observa-
tions with non-geometric duration distributions, are la-
belled top to bottom in the middle panel, according to
how much granularity they offer the user for this task.
Conversely the IDHMM can be tuned to model bursts of
activity as demonstrated in fig. 5.

Having ascertained where large regions of interest are lo-
cated, we can turn to models A-C of the middle panel
in fig. 4. The sticky HDP-HMM, not being as state-
persistent as the stateful version, does not smooth out

the activity labelling as much, but still quickly introduces
new labels for surprising features. The inferred state car-
dinalities for the HDP-HMM, sticky HDP-HMM and the
stateful HDP-HMM were 23, 18 and 20 respectively. The
activity set, as labelled by the zoologists consisted of 14.
That should not be taken as evidence that these models
are converging to the right number. Critical analysis must
still be maintained as there are many minor activities,
which should be differentiated, such as ‘trot’ and ‘walk’
which, from a feature point of view are almost identical.

The unsupervised learning methodology demonstrated in
this paper, holds promise when used in conjunction with
supervised methods as no prior behavioural states need
to be specified, thereby allowing for the recognition of
less obvious or unknown behavioural states that may be
missed through limited observation. Prior classification
of states used in supervised learning may be subject to
confirmation bias where an observer may oversimplify a
chosen state based upon their expectations and thus ex-
clude a separate, and perhaps more subtle, behavioural
class [28]. Moreover, there are many ventures for fur-
ther exploration from the modelling side, such as train-
ing the models in a semi-supervised fashion and then us-
ing those models, to segment other regions. We, further-
more, suggest that the methods demonstrated within can
be particularly valuable for lion behavioural ecology as
the last detailed activity budget for the species was com-
piled more than four decades ago by [23], where unob-
servable behaviours may not have been recognised.

Finally, we hope to have conveyed that PPS:es like An-
glican hold promise to accelerate modelling innovation
in scientific domains like zoology. In areas like these,
programmer/scientist time often is a scarcer resource
than computation time and the flexibility and ease of use
of general purpose inference already weighs up against
the downside of extra computation time. With computing
power increasing, but our brain power remaining fixed,
we expect this to become even more true in the future,
particularly when more mature PPS:es are developed.
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