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Abstract

Treatment effects can be estimated from ob-
servational data as the difference in poten-
tial outcomes. In this paper, we address the
challenge of estimating the potential outcome
when treatment-dose levels can vary continu-
ously over time. Further, the outcome variable
may not be measured at a regular frequency.
Our proposed solution represents the treatment
response curves using linear time-invariant
dynamical systems—this provides a flexible
means for modeling response over time to
highly variable dose curves. Moreover, for
multivariate data, the proposed method: un-
covers shared structure in treatment response
and the baseline across multiple markers; and,
flexibly models challenging correlation struc-
ture both across and within signals over time.
For this, we build upon the framework of
multiple-output Gaussian Processes. On sim-
ulated and a challenging clinical dataset, we
show significant gains in accuracy over state-
of-the-art models.

1 INTRODUCTION

As computer storage is becoming cheaper, observational
data from tracking user behavior are becoming increas-
ingly available in many problem areas. In medicine, elec-
tronic health records contain data tracking a patient’s dis-
ease progression over time. On the web, it is common
for websites to track usage patterns over time. These
data can be cheap and valuable sources for learning about
the efficacy of interventions. For example, using health
record data to study the effects of different drugs can ac-
celerate our ability to generate hypotheses about drug re-
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sponsiveness and design downstream experiments to dis-
cover unknown biology linked to efficacy (Wilke et al.,
2011). Similarly, on the web, we can leverage observa-
tional data about visit and click patterns to measure user
responses to interventions (e.g., a new ad campaign or
a specific change to the website), allowing us to rapidly
improve their web experiences; e.g., Bottou et al. (2013);
Li et al. (2015); Schnabel et al. (2016).

In recent years, numerous studies have sought to use such
non-experimental datasets for evaluating effects of inter-
ventions. For example, Westreich et al. (2012) use the
parametric g-formula (Robins, 1987) to estimate the ef-
fect of an antiretroviral therapy on time until AIDS or
death from an observational cohort study. Hong and Yu
(2008) use propensity score methods (Rosenbaum and
Rubin, 1984) to examine the effect of kindergarten re-
tention on self-perceived social health.

In this paper, we focus on the task of estimating ef-
fects in the setting where multiple attributes (or outcome
variables) are being measured over time. For example,
in tracking kidney function, physicians measure several
markers—creatinine, potassium levels, urine output—
over time. The timing for when these measurements are
made is driven by whether a patient’s past measurements
suggest that they may be deteriorating. This means the
markers are not sampled at regular intervals; rather, they
may be missing at random (Rubin, 1976). Further, there
may be similarities in how individual markers change in
response to treatment: for example, blood urea nitrogen
(BUN) and creatinine, waste products in the blood, are
filtered at similar rates during dialysis. Therefore, the
treatment response to interventions for these markers are
likely to be correlated.

As an example, consider three signals from a patient, re-
ceiving the treatment of dialysis, shown in Fig. 1. We
show fits from the proposed model (blue) and its learned
treatment response curves (red). We see that the trajec-
tories of BUN and creatinine are closely tied with simi-



lar responses (shown in red) to dialysis, while heart rate
is less correlated with only a slight response to treat-
ment. We wish to infer such shared latent structure in the
treatment response curves from multivariate longitudinal
data. Doing so allows a better understanding of markers
that may be coupled via a common latent process.

In causal inference, the problem of estimating the effect
of the intervention (i.e. the treatment effect) has been
studied extensively (Robins, 1987; Robins et al., 2000;
Gill and Robins, 2001; Bang and Robins, 2005). Typi-
cally, the effect can be quantified as a difference in po-
tential outcomes: the outcome under treatment and what
the outcome would have been if no treatment were given
(Rubin, 1974; Pearl et al., 2009). Under specific assump-
tions about the data-generating process, the effect of the
intervention is said to be identified and can be expressed
as a function of the observational data. Once the effect
has been determined to be identifiable, a key challenge
is to posit an accurate and flexible estimation model for
the outcome conditioned on history and treatment infor-
mation. In recent causal inference challenges, Bayesian
additive regression trees (BART) (Chipman et al., 2010),
a Bayesian non-parametric method, have become an in-
creasingly popular choice of model to wide success (Hill,
2011; Green and Kern, 2012). However, popular out-
come models from cross-sectional scenarios, such as
BART, do not naturally extend to functional data.

Recently, Xu et al. (2016) proposed a flexible Bayesian
non-parametric approach for estimating univariate treat-
ment response curves and predicting disease trajectories.
Their approach, which attempts to model the impact of
a treatment over time, is limited to discrete-time treat-
ments. This is consistent with most existing methods
which model treatments as discrete events with poten-
tially continuous doses (Greenland, 1995; Silva, 2016).
While some treatments are administered discretely (e.g.,
diuretics when given orally), in practice, many others,
such as dialysis or intravenous diuretics, are adminis-
tered continuously over a period of time. Naturally, these
treatments should be modeled as continuous processes.

In this paper, we propose a semi-parametric Bayesian
framework to model treatment effects in multivariate
longitudinal data. The proposed framework makes the
following contributions. Contrary to past work, it unifies
response modeling for both discrete and continuously-
administered treatments. We build upon linear time-
invariant (LTI) systems (Golnaraghi and Kuo, 2010)
to flexibly represent the dynamic response of physio-
logic signals to arbitrary treatments (treatment response
curves). LTI systems and more generally differen-
tial equations are a natural and intuitive representation
for describing the way in which an intervention causes
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Figure 1: The proposed model fits multivariate longitu-
dinal data (blue) and extracts an estimated treatment re-
sponse (red). Vertical purple lines denote the start of 3
hour dialysis sessions.

change in the outcome over time. They are also used
in pharmacokinetics for modeling concentration of drugs
within the body over time (Cutler, 1978; Shargel et al.,
2005; Rich et al., 2016).

Second, because data are sparse and irregularly sam-
pled, rather than using imputation methods, we use
multiple-output Gaussian Processes (GPs) to jointly
model correlated multivariate signals through a shared
low-dimensional latent function space. This has multiple
advantages including flexibility to fit the complex varia-
tion seen within signals and across individuals in clinical
data. However, GPs scale poorly with the number of ob-
servations. To circumvent this, we employ a fast, approx-
imate inference algorithm using sparse variational infer-
ence techniques (Titsias, 2009; Hensman et al., 2013;
Hensman and Matthews, 2015).

The rest of the paper is organized as follows. We discuss
related work in section 2. In section 3, we describe the
proposed model. In section 4, we present experimental
results on a simulated and clinical dataset. Finally, con-
cluding remarks are in section 5.

2 RELATED WORK
Continuous-Dose Treatment Modeling: Standard
causal inference methods for estimating treatment effects
primarily focus on discrete-valued, discrete-time inter-
ventions. Here, the effect of the intervention is typically
estimated at a single point in time after the treatment is
administered. For example, Card (1999) measures the
effect of an individual’s number of years of education
(discrete-valued treatment) on their income. Other
studies have considered the effect of continuous-valued
treatments. For instance, several studies have focused
on estimating the effect of treatment on the outcome
variable as a function of the treatment’s continuous-
valued dose; see, e.g., (Greenland, 1995; Silva, 2016).
Others (Moodie and Stephens, 2012) estimate the effect
of continuous-valued dose on multivariate longitudinal
data using generalized propensity scores.

Most existing studies focus on the settings where the
treatment is given at discrete time points. A few



works which have considered continuously-administered
treatments have been limited to special cases of dose-
response learning. For example, Johnson and Tsiatis
(2005) consider a problem in which treatment assign-
ment is randomized, but the dose (the duration of con-
tinuous Integrilin therapy) is not. In this case, while
the treatment is administered continuously, its duration is
modeled as the dose and the effect is defined with respect
to the outcome at a fixed moment in time. Tao (2016)
also considers continuously-administered treatments in a
similar way by modeling the time at which the treatment
is discontinued as a time-to-event random variable for
developing dynamic treatment regimes. Both these ap-
proaches apply to the setting where the treatment dose is
fixed upfront and does not vary within the duration of the
treatment administration period.

Modeling Irregularly-Sampled Multivariate Longitu-
dinal Data: Generalized mixed-effects models (Ver-
beke and Molenberghs, 2009) have been widely used
to model multivariate longitudinal data. However, these
models rely on strong parametric assumptions and thus
cannot be easily applied to challenging data such as
physiologic signals.

Several flexible probabilistic approaches have been pro-
posed for modeling sparse and irregularly sampled longi-
tudinal data. Bayesian non-parametric models based on
Gaussian processes (GPs) have been particularly effec-
tive in modeling physiologic time series. For example,
Ghassemi et al. (2015) use multi-task GPs, Schulam and
Saria (2016) use coupled GPs, and Liu and Hauskrecht
(2016) combine state-space models with GPs.

Other flexible methods such as recurrent neural networks
have also been used for modeling multivariate longitu-
dinal data (Lipton et al., 2016). These methods require
alignment of the measurements across signals. When ob-
servations are not aligned, imputation and other smooth-
ing methods are used to fill in missing observations.

In this paper, we leverage multi-output GPs to jointly
model multivariate physiologic signals. In contrast to
above-mentioned methods, we aim to model shared
structure across signals and estimate dynamic response
to both discrete-time and continuous-time treatments.

3 METHODS
Here, we first review linear dynamic systems and de-
scribe their applicability to learning treatment response
curves. We then develop a semi-parametric approach for
modeling multivariate longitudinal signals with shared
structure and treatment response curves.

3.1 BACKGROUND: LTI SYSTEMS
As we see in Fig. 1, the observed values of BUN and
creatinine (black dots) decrease in response to dialysis.
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Figure 2: Sample responses (ρ(t)) of three LTI systems,
characterized by h(t), to input signals (x(t)).

However, this response is not instantaneous; rather, BUN
and creatinine decrease slowly after the treatment is ini-
tiated. Similarly, after the treatment is discontinued, the
effect does not disappear immediately; e.g., in Fig. 1, the
observed values of BUN and creatinine start to increase
and eventually return to the elevated level prior to treat-
ment. To capture this dynamic behavior, we use linear
time-invariant (LTI) systems.

Consider the examples of LTI dynamic systems shown in
Fig. 2. Given an input (e.g., drug dose) x(t), the treat-
ment response function ρ(t) is generated by convolving
x(t) with an impulse response function h(t) (Golnaraghi
and Kuo, 2010):

ρ(t) = x(t) ∗ h(t) =

∫ ∞
−∞

x(τ)h(t− τ) dτ . (1)

LTI systems make the following two assumptions:

A1) Linearity: Suppose (x1(t), ρ1(t)) and (x2(t), ρ2(t))
are two pairs of input-output signals for the system.
The response to the input ax1(t) + bx2(t) is aρ1(t) +
bρ2(t),∀a, b ∈ R. Thus, treatment responses are additive
when multiple treatments are given in the same interval.
A2) Time-Invariance: If ρ(t) is the output of the sys-
tem to input x(t), the response to a shifted input signal
x(t− t0) is ρ(t− t0) for every choice of t0 ∈ R.

In the top and bottom left subplots of Fig. 2, we show
two different dose functions. The middle panel, shows
impulse response functions, h(t), for three LTI sys-
tems. Convolving the input (dose functions) with differ-
ent impulse functions leads to varying treatment response
curves as shown in the top and bottom right subplots.

The input-output relationship of LTI dynamical systems
can also be characterized using differential equations.
Consider, for instance, the differential equations for a
second order LTI system d2ρ(t)

dt2 + (α+ β)dρ(t)dt + αβ =
αβx(t), where α 6= β are positive constants. The im-
pulse response for this system is:

h(t) =
αβ

β − α (e−αt − e−βt)1(t ≥ 0) . (2)



Here, the indicator function, 1(c), equals 1 or 0 when
c is true or false, respectively. The family of impulse
response functions can be made more flexible by adding
higher order derivatives to the differential equation.

3.2 PROPOSED MODEL

In this section, we describe our proposed approach for
modeling multiple outcomes and estimating dynamic
treatment responses from multivariate longitudinal data.
We model the disease trajectory of every signal d for pa-
tient i as follows:

yid(t) =

J∑
j=1

aijd(t;x
0:t
ij )︸ ︷︷ ︸

treatment response

+ φid(t)︸ ︷︷ ︸
fixed-effects
component

+ fid(t)︸ ︷︷ ︸
random-effects

component

+εid(t) .

(3)
Our model described in (3) consists of three major com-
ponents: treatment response, fixed-effects, and random-
effects components. The treatment response compo-
nent is the sum of responses to each treatment type
j = 1, 2, ..., J . We denote the response of signal d to
the treatment of type j given the treatment input (dose)
signal from time 0 to t, x0:tij , by aijd(t;x0:tij ). Example
treatment inputs are shown in the left column of Fig. 2.

The fixed-effects and random-effects components, which
together we denote as the mixed-effects component,
model the natural evolution of the signal independently
of the treatments. For example, aging adults have higher
baseline creatinine levels. Further, creatinine may drift
upward when left untreated (e.g., patients with acute
kidney injury). The fixed-effects term is specific to
each signal, whereas the random-effects term captures
the correlations across and within each signal. Finally,
we assume an additive Gaussian noise term εid(t) =
N (0, σ2

id),∀d = 1, 2, ..., D, ∀t.
We expand on each of these components in the next
sections. Specifically, we describe the sharing mecha-
nism built into these components that allows us to jointly
model all D longitudinal signals for each individual.

3.2.1 Treatment Response Component

We develop the treatment response component of our
model based on the structure of second order LTI dy-
namic systems described in section 3.1.

Some treatments affect multiple signals in similar forms.
For instance, creatinine and blood urea nitrogen (BUN),
measures of kidney function, are similarly affected by
dialysis. However, their responses differ from those of
vital signs such as heart rate. To capture these differ-
ences, we posit that the total treatment response of signal
d is a mixture of two terms: a response shared across
signals, ρ(0), and a response specific to d, ρ(d).

Specifically, we model the response of treatment type j
on signal d as follows:

aijd(t;x
0:t
ij ) =χijd

(
ψijd ρ

(0)
ij (t;x0:tij )︸ ︷︷ ︸

shared

+ (1− ψijd) ρ(d)ij (t;x0:tij )︸ ︷︷ ︸
signal-specific

)
, (4)

Here, ψijd ∈ [0, 1] controls the degree of mixing be-
tween the shared and signal-specific terms, while χijd ∈
R defines the direction and influences the magnitude of
the response. To improve interpretability of the estimated
treatment response terms, we place sparsity inducing pri-
ors on ψ so that aijd(t;x0:tij ) is primarily determined by
either the shared or the signal-specific component.

We use second order LTI systems, introduced in section
3.1, as the form of the shared and signal-specific treat-
ment response components. We compute each of these
as the convolution of a treatment input signal which en-
codes dose and duration information, x0:tij , and an im-
pulse response function, hij(t) =

αijβij

βij−αij
(e−αijt −

e−βijt)1(t ≥ 0). The signal-specific impulse response
function, hijd(t), has distinct parameters αijd, βijd for
each signal d, while the shared-impulse response func-
tion, hijd(t) only has one pair of parameters αij0, βij0.

Priors: Since the treatment response parameters are
individual-specific, we posit a population-level prior on
them. This enables sharing statistical strength across in-
dividuals and prevents over-fitting.

Specifically, we posit a Gaussian prior on the weight-
ing coefficients: χijd ∼ N (χ̄; 1),∀i, j, d. We also
place log-normal priors on parameters of the treat-
ment functions (since they have to be positive) αijd ∼
logN (ᾱ, 1), βijd ∼ logN (β̄, 1),∀d = 0, 1, ..., D, ∀i, j.
Further, we impose a Beta prior on the mixing coefficient
ψ: ψijd ∼ Beta(λ−1ψ , λ−1ψ ).

3.2.2 Fixed-Effects Component

To capture covariate-dependent general trends in the pro-
gressions of particular markers (e.g., rate of deteriora-
tion can depend on age), we define the fixed-effects term,
φid(t) = γTidcit as a deterministic linear regression term.
Here, cit is a vector of individual-specific covariates in-
cluding observation time, and γid is the vector of regres-
sion parameters. We place Gaussian priors on the param-
eters of the baseline regression: γid ∼ N (γ̄, I),∀i, d.

3.2.3 Random-Effects Component

The random-effects component captures correlations
within and across signals. Since physiologic signals typ-
ically have very challenging structure, which is difficult



to capture using simple parametric functions, we use
Gaussian processes as the building block of the random-
effects component.

In particular, the random-effects component is com-
prised of a latent function shared across signals, gi(t) ∼
GP , and a signal-specific latent function for every d,
vid(t) ∼ GP . Some physiologic signals are expected
to be strongly correlated; e.g., BUN and creatinine, or
heart rate and blood pressure. The shared latent com-
ponent captures the common structure and correlations
across signals. Further, each marker may have its own
unique structure which cannot be modeled by gi(t); this
signal-specific structure is modeled by vid(t).

The structure used in the random-effects component is
similar to the linear models of coregionalization (Seeger
et al., 2005; Álvarez and Lawrence, 2009), which is used
to jointly model multiple correlated signals.

Specifically, we define the random-effects component for
each signal d of every individual using a shared and a
signal-specific term:

fid(t) = ωidgi(t)︸ ︷︷ ︸
shared component

+ κidvid(t) .︸ ︷︷ ︸
signal-specific component

(5)

Here, ωid, κid,∀i, d, are the mixing coefficients, and
gi(t), is a shared latent function drawn from a GP
prior with zero mean and kernel function Ki; i.e.,
gi = gi(tid) ∼ GP(0,K

(i)
NidNid

) where K
(i)
NidNid

=
Ki(tid, t

′
id), and Nid is the number of observations

from signal d. The signal-specific component is an-
other latent function with a GP prior: vid = vid(tid) ∼
GP(0,K

(id)
NidNid

) where K
(id)
NidNid

= Kid(tid, t
′
id). In

contrast to the shared latent function, the latent functions
vid are drawn independently from a GP with a signal-
specific kernel function.

We use Matérn-3/2 kernel for each latent function (see,
e.g., Rasmussen and Williams (2006)) with variance set
to 1 and length-scale as the only free parameter (l(g)i for
shared and l(v)id for signal-specific latent functions). The
variance is set to 1 since we can scale each latent function
using the mixing coefficients ω and κ.

Priors: We place Gaussian priors on the mixing coef-
ficients: ωid ∼ N (ω̄d, λ

−1
ωκ) and κid ∼ N (κ̄d, λ

−1
ωκ),

and log-normal priors on the length-scales of the kernels:
l
(g)
i ∼ logN (l̄g, 1),∀i and l(v)id ∼ logN (l̄vd, 1),∀i.

3.2.4 Learning and Inference

In this section, we describe the learning and in-
ference for our proposed model. Our model has
local and global parameters. Local parameters

are individual-specific which we denote by Θi =

{χijd, ψijd, αijd, βijd, αij0, βij0, ωid, κid, l(g)i , l
(v)
id , σ

2
id}.

The global parameters, denoted by Θ0, are the param-
eters of the prior distributions which are shared across
individuals; Θ0 = {χ̄, ᾱ, β̄, γ̄, ω̄d, κ̄d, l̄g, l̄vd,∀d}.
We take a maximum a posteriori (MAP) approach and
compute point-estimates of all model parameters. We
treat λωκ and λψ as regularization terms. For each in-
dividual i, we observe the longitudinal samples and the
treatment inputs. Computing the log-likelihood for each
individual requires integrating out all latent stochastic
function gi and vid in the random effects component (5).

The main bottleneck for learning and inference in our
model is the use of GPs in fid(t). Due to requiring co-
variance matrix inversion, GP inference scales cubically
in the number of observations. To reduce this compu-
tational complexity, we develop the learning and infer-
ence algorithms for our model using the sparse varia-
tional techniques (Titsias, 2009; Hensman et al., 2013;
Hensman and Matthews, 2015).

Using these techniques, we compute the evidence lower
bound for each individual: ELBOi. Detailed derivation
of ELBO is provided in Appendix A.

Learning: The overall objective function for our
model (ELBO) is additive over the lower bound for each
of the I individuals: ELBO =

∑I
i=1 ELBOi. We use

stochastic gradient techniques for learning. At each iter-
ation of the algorithm, we randomly select a mini-batch
of individuals and update their local parameters, keep-
ing the global parameters fixed. We then compute the
gradients of ELBO on the mini-batch with respect to Θ0

and perform one step of stochastic gradient ascent to up-
date the global parameters. We use AdaGrad (Byrd et al.,
1995) for stochastic gradient optimization. We repeat
this process until either the relative change in global pa-
rameters is less than a threshold or the maximum number
of iterations is reached.

We use TensorFlow (Abadi et al., 2014) and GPflow
(Hensman et al., 2016) to implement our model. Tensor-
Flow automatically computes gradients of the objective
function with respect to model parameters.

4 EXPERIMENTS

In this section, we evaluate the proposed model using
two datasets. First, we perform a simulation study to
show that in the presence of known shared structure (in
signals and treatment effects) the proposed model can re-
cover the true decomposition. In order to do this, we con-
struct a synthetic dataset that mimics the conditions we
expect to see in clinical data. Then, to demonstrate that
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Figure 3: Decomposition of the fit for the disease trajec-
tory of one synthetic patient. (a)-(b) show the observa-
tions (dots) and the total fit’s (blue curve) separation into
mixed-effects (green curve) and treatment response (red
curve) components for each signal. (c)-(d) show the esti-
mated shared (sh-tr) and signal-specific (ss-tr) treatment
response components against the true treatment response
curves used to generate the data.

the model can accurately represent complex multivariate
longitudinal data, we compare the model against state-
of-the-art baselines on the task of predicting disease tra-
jectories under treatment in a challenging, publicly avail-
able clinical dataset. We also assess the use of the model
as an exploratory tool for discovering shared structure in
data of this sort by validating the learned treatment re-
sponses against clinical knowledge.

4.1 SIMULATION STUDY
Data: We generate the synthetic dataset consistent
with the settings typically encountered in clinical ob-
servational studies. We generated sparse and irregularly
sampled observations for each marker; observation times
are drawn from a Poisson process. Specifically, we gen-
erated a synthetic dataset consisting of 50 patients, each
with two irregularly-sampled longitudinal signals. To
simulate the unalignment of the signals, for every marker
of each patient, we first randomly chose the number of
observations from a Poisson distribution with mean 50,
and then generated the observation times from a Poisson
process with rate 0.2.

We assume each signal consists of a mixed-effects and
a treatment response component. We generated the sig-
nals with shared mixed-effects components. In partic-
ular, the signals have opposite fixed-effect trends with
similar rates and shared random-effect component drawn
from a GP. For each patient i, we computed the mixed-
effects component using γid1 log(t+ 10) + γid2 + fi(t),
where γid1, γid2 are signal-specific coefficients and fi ∼
GP(0,K) with a shared patient-specific RBF kernel with
length-scale 20 and variance 0.05. We assume patients in
the population have similar fixed-effect components; we
draw γi1 ∼ N (1, 0.1), γi2 ∼ N (−4, 0.1) for signal 1
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Figure 4: Q-Q plot for the estimated and the true α, β of
shared and signal-specific treatment response functions.

and γi1 ∼ N (−1, 0.1), γi2 ∼ N (4, 0.1),∀i for signal 2.

In clinical data, some treatments affect multiple phys-
iologic markers whereas others may only change one
marker. To simulate this setting, we consider two treat-
ments, a continuous one which has shared effect on both
signals and a discrete treatment with signal-specific ef-
fect only on the first marker. We generate treatment
1 with αi1 ∼ logN (0.2, 0.1), βi1 ∼ logN (0.6, 0.1),
and treatment type 2 with αi2 ∼ logN (0.1, 0.1), βi2 ∼
logN (0.2, 0.1). Treatment type 1 has shared effects
on both signals, with χi11 ∼ N (−1, 0.1) and χi12 ∼
N (1, 0.1). This treatment was administered continu-
ously in the time interval [40, 60] with dose 1. Treatment
2, on the other hand, only has signal-specific effect on
marker 1 with χi21 ∼ N (1, 0.05) and χi22 = 0, and was
given discretely at times 100, 120, 140, 160, and 180,
each with dose 20.

We train our model on the trajectories from all 50 pa-
tients, setting the maximum number of iterations for op-
timization to 1000 with mini-batch size 2.
Results: To evaluate the ability of the proposed model
to fit disease trajectories, in Fig. 3 we show the decompo-
sition of the model’s fit for one patient. Fig. 3a-b shows,
for each of the signals, the observations (dots) and the to-
tal fit’s (blue curve) separation into mixed-effects (green
curve) and treatment response (red curve) components.
The purple vertical lines correspond to treatment type
2, and the shaded cyan regions indicate the duration of
treatment type 1. These plots qualitatively show that the
estimated signal values closely fit the disease trajectory
under the given treatments. Note that the proposed model
is able to uncover that treatment type 2 only affects signal
1, and, as a result, learns that there are no shared effects.
Rather, the effect on signal 1 is correctly captured using
the signal-specific component.

To analyze the correctness of the decomposition, in Fig.
3c-d we plot the estimated (dashed lines) shared and
signal-specific treatment response components against
the true (solid lines) treatment response curves used to



generate the data. We can see that the model does learn
the correct treatment responses. Further, we compare the
true and estimated α, β parameters of the treatment func-
tions for all patients using the Q-Q plots in Fig. 4. This
figure shows that our model can closely recover the true
α and β since the relationship between the quantiles of
the distributions of the estimated and true values is linear
(with correlation coefficients greater than 0.92).

4.2 REAL DATA: MODELING RESPONSE TO
DIALYSIS

Dataset: We apply and evaluate our model on the
MIMIC II Clinical Database (Saeed et al., 2002), which
consists of electronic health records for ICU patients
from the Beth Israel Deaconess Medical Center. In par-
ticular, we examine the effect of two types of dialysis:
Continuous Renal Replacement Therapy (CRRT) and In-
termittent Hemodialysis (IHD).

Dialysis is used to filter blood in place of the kid-
neys when patients are suffering from acute kidney in-
jury (AKI). While CRRT and IHD are both types of
hemodialysis, they differ in their administration: IHD is
typically administered 3 times a week with each session
lasting 3 hours, whereas CRRT must be administered in
the ICU and is typically given 24 hours a day (Pannu and
Gibney, 2005). In the ICU, CRRT is used as an alter-
native for IHD with no significant differences in effect
(Pannu and Gibney, 2005).

Elevated levels of waste products like blood urea nitro-
gen (BUN) and creatinine, which indicate poor kidney
function, are reduced over the course of dialysis. Sim-
ilarly, dialysis is used to regulate the concentration of
electrolytes like potassium and calcium in the blood.
Dialysis sometimes also indirectly affects other signals
which are not primarily controlled by the kidneys; e.g.,
it can reduce blood pressure causing hypotension (Chou
et al., 2006). Therefore, we chose to model BUN and
creatinine as primary measures of kidney function, potas-
sium and calcium since they are dialysis-regulated so-
lutes in blood, and blood pressure and heart rate as sig-
nals which may be affected by dialysis but are typically
not primary factors of interest when prescribing dialysis.

We included acute kidney injury patients who had at least
10 measured values in each signal and received no treat-
ments other than dialysis for AKI, resulting in 67 rele-
vant patients. For every patient, we use the first 70% of
the observed marker trajectories for training and the rest
for prediction. On average, each patient has 106 train-
ing observations and 46 test observations per signal. The
training and test regions have average lengths of 11 and
6 days, respectively.

The learning algorithm for the proposed model alternates
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Figure 5: Normalized root mean square error (NRMSE)
for the proposed model and the baselines.

between optimization of local and global variables. We
set the learning rate and the maximum number of iter-
ations for the global optimization step to 0.05 and 200,
respectively. The local optimization for each individual
is terminated when the relative change in the objective
function (ELBOi) is less than 10−4 or the maximum
number of iterations (500) is reached. We also set the
regularization terms λψ = 100 and λωκ = 0.1. These
were determined on held-out training data from a subset
of the patients. We found that the model performance
was not highly sensitive to the choice of the regulariza-
tion terms within a reasonable range.

Baselines: We compare the proposed model’s ability
to predict marker trajectories against two state-of-the-art
regression and time series prediction methods: Bayesian
additive regression trees (BART) (Chipman et al., 2010),
and long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997).

For both baselines, we train separate models for each sig-
nal by binning the data into 6 hour intervals. For non-
empty intervals, we take the average value. When there
are no observations in an interval, we take the value of
the previous bin; i.e., we use last-observation-carried-
forward imputation. We use the bin midpoint, time since
last treatment, dose of last treatment, and the marker
value as features. We train BART and LSTM with the
features from the previous L bins as covariates and the
current value of the marker as the outcome. We de-
termine L for each method via cross-validation. These
methods are trained for one-step ahead prediction. For
predictions longer than one step, we use the model’s pre-
dicted value as a feature for predicting the next step.

Performance Criterion: We compute the root mean
square error normalized by the standard deviation for
each signal (NRMSE) and then average across markers.
We also performed non-parametric bootstrap with sam-
ple size 50 on the test set to measure the statistical sig-
nificance of the results.



BUN Creatinine Potassium Calcium Heart Rate Blood Pressure

50 150 250 350 450

Time (hours)
50 150 250 350 450

Time (hours)
50 150 250 350 450

Time (hours)
50 150 250 350 450

Time (hours)
50 150 250 350 450

Time (hours)
50 150 250 350 450

Time (hours)

BUN Creatinine Potassium Calcium Heart Rate Blood Pressure

50 150 250

Time (hours)
50 150 250

Time (hours)
50 150 250

Time (hours)
50 150 250

Time (hours)
50 150 250

Time (hours)
50 150 250

Time (hours)

(a)

(b)

Figure 6: The observations (dots), the model’s learned fits (blue line, top row) and mixed-effects (blue line, bottom
row, shifted down for viewing) and treatment response (red line, bottom row) decompositions for 6 marker trajectories
of two patients receiving (a) IHD (purple vertical lines) (b) CRRT (cyan shaded regions).

Quantitative Results: Fig. 5 shows NRMSE and stan-
dard error for prediction horizons of 1 to 7 days for each
method. We see that the proposed method achieves bet-
ter NRMSE than BART and LSTM. Further, the rate of
increase of NRMSE as a function of prediction horizon
is smaller for the proposed method than the baselines.
Neither BART nor LSTM can naturally model treatment
response. This is especially apparent on the subset of
patients who received treatment in the test region: for a
prediction horizon of 7 days on these patients, the model
does 15% better than BART and 8% better than LSTM.

Qualitative Results: In order to demonstrate the po-
tential of our model as an exploratory analysis tool, we
examine in detail the latent treatment response structure
it uncovers on the kidney function data.

Fig. 6a,b show the model’s learned fits (top row) and
mixed-effects and treatment response decompositions
(bottom row) for six physiologic trajectories of two pa-
tients, a patient receiving IHD (Fig 6a) and a patient re-
ceiving CRRT (Fig. 6b). We can see that the proposed
model can fit the overall trajectories in these signals well.

The learned decompositions qualitatively match clinical
knowledge of dialysis. Both types of dialysis are used
to lower BUN and creatinine levels in the blood. This
is seen in both patients, for whom the proposed model
learns a negative treatment response curve (red line in
the bottom row). Further, we see that the observed val-
ues of BUN and creatinine return to elevated values once
treatment is discontinued, as would be clinically relevant.

In order to quantitatively compare the relative impact of
each treatment type j, we define a criterion to compute its
maximum effect on every signal d, (Ijd). Since the 2nd
order LTI systems used in the treatment response com-
ponents are normalized, the maximum amplitude of the
estimated treatment response curves is bounded by the
volume (dose) of the treatment input signal, x(t), multi-
plied by the corresponding coefficient χ. Thus, we com-
pute Iijd = χijd × [maxt xij(t)] for each individual i.

Since dialysis is primarily used for managing waste prod-
ucts like BUN and creatinine, and electrolytes like cal-
cium and potassium, the estimated effect of CRRT and
IHD on these signals should be higher than the estimated
effects on vital signals. This matches what our model
learns: on average across the population, the maximum
treatment effect of dialysis (I) on BUN (-5.14), crea-
tinine (-3.39), potassium (-0.57), and calcium (2.03) is
greater than I on heart rate (1.48) and blood pressure (-
0.08), which can be indirectly affected by dialysis.

As we qualitatively saw in Fig. 6, dialysis decreases
BUN and creatinine. This is consistent with the aver-
age I of these two signals which are both negative. We
find that the maximum effect of BUN is significantly less
than 0 using a one-sided t-test with p-value 0.015, though
it is not significant for the max effect of creatinine at the
0.05-level with p-value 0.065.

While CRRT and IHD are expected to have similar out-
comes with respect to BUN and creatinine, IHD sessions
are shorter with more aggressive dosing. The proposed



model captures this difference: IBUN and Icreatinine are
significantly lower for CRRT than for IHD with p-values
0.0002 and 0.013, calculated using a one-sided t-test.

The ability of the model to extract these clinically-
validated relationships from the sparse, unaligned, mul-
tivariate data shows its capability as an exploratory tool.

5 CONCLUSION
In this paper, we propose a flexible Bayesian semi-
parametric approach for modeling multivariate outcomes
over time. The proposed method provides a unified way
to model continuous response over time to highly flexible
dose functions (i.e. functions with continuous changes in
dose level over time). For this, we model the treatment
response curves using linear time-invariant dynamical
systems. Further, our approach enables learning of struc-
ture in the response function that may be shared across
multiple signals. Finally, using both simulated and real
datasets, we show significant gains in performance for
predicting outcomes.

It is worth noting that in the potential outcomes frame-
work, estimation of the causal effect is precluded by the
need to justify a set of generally untestable assumptions
(Gill and Robins, 2001); e.g., see Lok (2008); Schulam
and Saria (2017) for assumptions needed for continuous-
time potential outcomes. When these conditions hold,
the proposed method provides a highly flexible and ac-
curate means for jointly modeling the multivariate poten-
tial outcomes. Further, while our approach relies on reg-
ularization to decompose the observed data into shared
and signal-specific components, we need new methods
for constraining the model in order to guarantee poste-
rior consistency of the sub-components of this model.
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