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Abstract

We propose in this paper the supervised re-

stricted Boltzmann machine (sRBM), a unified

framework which combines the versatility of

RBM to simultaneously learn the data represen-

tation and to perform supervised learning (i.e., a

nonlinear classifier or a nonlinear regressor). Un-

like the current state-of-the-art classification for-

mulation proposed for RBM in (Larochelle et al.,

2012), our model is a hybrid probabilistic graph-

ical model consisting of a distinguished genera-

tive component for data representation and a dis-

criminative component for prediction. While the

work of (Larochelle et al., 2012) typically incurs

no extra difficulty in inference compared with

a standard RBM, our discriminative component,

modeled as a directed graphical model, renders

MCMC-based inference (e.g., Gibbs sampler)

very slow and unpractical for use. To this end, we

further develop scalable variational inference for

the proposed sRBM for both classification and

regression cases. Extensive experiments on real-

world datasets show that our sRBM achieves bet-

ter predictive performance than baseline meth-

ods. At the same time, our proposed framework

yields learned representations which are more

discriminative, hence interpretable, than those of

its counterparts. Besides, our method is prob-

abilistic and capable of generating meaningful

data conditioning on specific classes – a topic

which is of current great interest in deep learn-

ing aiming at data generation.

1 INTRODUCTION

Restricted Boltzmann machine (RBM) is an important gen-

erative model that is capable of learning representations

from data. It has been successfully applied to diverse data

types including: images (Hinton and Salakhutdinov, 2006),

mixed low-level features of images (Nguyen et al., 2013c),

text (Salakhutdinov and Hinton, 2009a) and medical data

(Nguyen et al., 2013a). In these tasks, the RBMs can

serve as either fast feature extractors or building blocks

to provide a good parameter initialization for deep archi-

tectures (Hinton and Salakhutdinov, 2006; Salakhutdinov

and Hinton, 2009b). In both cases, one often uses a two-

stage pipeline framework that has the RBMs followed by

another supervised learning method (a classifier or a re-

gressor). The first stage is to train the RBMs using an un-

supervised learning algorithm with efficient MCMC-based

learning procedures (Hinton, 2002). Then the supervised

learning algorithm is built upon the representations or pa-

rameters learned by RBMs to further carry out a discrimi-

native training in the second stage.

These two-stage approaches, however, suffer from two key

drawbacks. First, they require to tune hyperparameters

for both models (RBM and the supervised model) which

is computationally expensive and time consuming. Sec-

ond, representations learned by RBM may effectively sup-

port generating the data, but there is no guarantee that they

would be useful for further fitting a supervised model, as

they have not seen any label during the unsupervised train-

ing. In other words, the models miss the opportunity to

use labeled data to ‘regularize’ the learned representations.

Thus separating the feature learning phase from the dis-

criminative training could be suboptimal.

Our solution is to construct a supervised restricted Boltz-

mann machine (sRBM) – a unified framework that lever-

ages the successful architecture of RBM to simultaneously

learn the data representation as a feature extractor and to

perform prediction as a nonlinear classifier or a nonlinear

regressor. The sRBM uses a hidden layer to associate the

outcome with input data in order to model their joint distri-

bution. The resulting hybrid probabilistic graphical model

consists of two components: an RBM with undirected con-

nections of hidden and visible units, and a predictive model

with directed connections from hidden units to outcome

variable. The RBM component has generative capability

of representing data whilst the discriminative part enables



the model to perform prediction by itself. Combining gen-

erative and discriminative models allows one to leverage

the strength from each other. More precisely, the gener-

ative component plays a role as a regularization for dis-

criminative part, at the same time the discriminative part

utilizes label statistical information to drive the generative

one to learn more expressive representations. Besides, the

combined framework facilitates the model selection since

no additional hyperparameters from the separate predic-

tion module must be tuned. However, the introduction

of the discriminative component into the model makes in-

ferences become much more challenging where standard

Gibbs sampler could be very slow for practical use. To this

end, we further develop variational inference for the pro-

posed sRBM for both classification and regression.

In addition to predictive capacity, the sRBM offers a prin-

cipled way to generate data based on the specific labels

or classes, and to disentangle the data and labels via the

learned latent representations and embedding connection

matrix – a capability that is desirable in many cases, es-

pecially in natural language processing (Mikolov et al.,

2013). As a generative model, once our model has been

learned, we can select and fix the labels and then alterna-

tively sample hidden and visible variables using MCMC to

obtain the data corresponding to the labels. For disentan-

gling capability, recall that, in the standard RBM, each unit

in the hidden layer can act as a feature detector, and to-

gether, all the hidden units form a distributed, and discrete

representation of data (Nguyen et al., 2013b). In sRBM,
they are also linked to the labels via directed connections

parameterized by a weight matrix. Due to the explaining

away effect (Coates and Ng, 2011; Bengio et al., 2013),

these hidden units must compete with each other to explain

the labels. Thus, the learned representations and weight

matrix associating latent factors to the labels are driven to

discriminate the labels.

We quantitatively and qualitatively demonstrate the capac-

ity of our proposed model through comprehensive exper-

iments on three tasks – classification, regression and data

generation using three real-world datasets: handwritten

digits, newsgroup documents, and CT scan images. Our

primary target is to verify the predictive and generative ca-

pabilities of sRBM, and the effectiveness of learned rep-

resentations and the embedding discovered by the model.

The experimental results show that our method achieves

better predictive performance than the baselines. At the

same time, its learned representations and embedding ma-

trices are more discriminative than those of the ClassRBM

and standard RBM, and the data generated by the proposed

model are meaningful and appropriate to respective classes.

In short, our contributions are: (i) a novel unified RBM-

based model that can acts as a complete supervised model,

thus there is no need to tune additional hyperparameters for

the separate predictor; (ii) the derivation of variational in-

ference for the proposed model for both classification and

regression cases; and (ii) a comprehensive evaluation of the

effectiveness of our method on three learning tasks of three

applications: image recognition, text classification and lo-

cation prediction for CT images.

2 RELATED WORK

We first describe the restricted Boltzmann machine (RBM)

for unsupervised learning representation. An RBM is a

bipartite undirected graphical model in which the bottom

layer contains observed variables called visible units and

the top layer consists of latent representational variables,

known as hidden units (Freund and Haussler, 1994). Two

layers are fully connected but there is no connection within

layers. The hidden units can capture the latent factors not

presented in the observations. As a matter of convention

in the literature of RBM, we shall use the term “unit” and

“random variable” interchangeably.

More formally, assume a binary RBM with N visible units

and K hidden units, let v denote the set of visible variables:

v = [v1, v2, ..., vN]
⊤ ∈ {0, 1}N and h indicate the set of

hidden ones: h = [h1, h2, ..., hK]
⊤ ∈ {0, 1}K. The RBM

assigns an energy function for a joint configuration over the

state (v,h) as:

E (v,h;ψ) = −
(

a
⊤
v + b

⊤
h+ v

⊤
Wh

)

(1)

where ψ = {a,b,W} is the set of parameters. a =
[an]N ∈ R

N,b = [bk]K ∈ R
K are the biases of hidden and

visible units respectively; and W = [wnk]N×K ∈ R
N×K

represents the weights connecting the hidden and visible

units. The model admits a Boltzmann distribution (also

known as Gibbs distribution) as follows:

p (v,h;ψ) = exp {−E (v,h;ψ)−A (ψ)} (2)

where A (ψ) is the log-partition function. Since the net-

work has no intra-layer connections, units in one layer be-

come conditionally independent given the other layer. Thus

the conditional distributions over visible and hidden units

are factorized as:

p (h | v;ψ) =
∏K

k=1
p (hk | v) (3)

p (v | h;ψ) =
∏N

n=1
p (vn | h) (4)

There have been recent approaches that attempt to incorpo-

rate label information into the standard RBM (McCallum et

al., 2006; Schmah et al., 2009; Li et al., 2015). The main

differences from our method are: (i) such methods still re-

quire separate classifiers, and (ii) without sharing param-

eters, they fail to directly capture the latent similarity be-

tween classes. Our idea is to focus on the self-contained

framework for prediction, which does not need to rely on



an additional supervised algorithm. The model introduced

in (Yang et al., 2007) and the current state-of-the-art clas-

sification formulation proposed for RBM (ClassRBM) in

(Larochelle et al., 2012) are closely related to ours, that

couple the label to input features of RBMs. These mod-

els, however, only support classification whilst our model

can perform both classification and regression. Moreover,

in these models, the label is considered an additionally ob-

served variable that links to hidden units using undirected

connections. On the other hand, our proposed model uses

directed connections to construct a discriminative modeling

of the label given hidden layer (cf. Fig. 1b). This structure

enhances the discriminative latent representations and pre-

dictive performance, allowing for better prediction results.

More specifically, our proposed model differs substantially

from the ClassRBM from three crucial points: model repre-

sentation, inference scheme and model expressiveness. For

model representation and inference, although one might

construct the moral graph of our hybrid model, resulting in

a similar undirected graphical model (as shown in Fig. 1c),

they are technically different since one cannot convert an

undirected form of the ClassRBM to our model. As a con-

sequence, the ClassRBM can still be viewed as a standard

RBM with some nodes being designated as label variables,

hence can still be learned with standard techniques for

RBM. Whereas, our directed link has resulted in a technical

challenge during the inference process, hence our contribu-

tion in the variational inference techniques.

Furthermore, from the conceptual point of view, after being

moralized, in both our sRBM and ClassRBM, the data fea-

tures and label interact indirectly through the hidden layer,

thus this layer would play an important role in capturing

the relationship between features and label. The difference

is that our proposed model now contains the connections

among hidden units, which enables hidden units to cap-

ture more complex structures than those of the ClassRBM

where these connections are not modeled. This view has

indeed been considered in semi-restricted Boltzmann ma-

chines (Salakhutdinov, 2009), a wider class of RBMs.

In terms of model expressiveness, our sRBM implicitly

models the correlations among hidden units, thus it pro-

vides flexible capacity to capture a wider class of distribu-

tions as discussed in (Salakhutdinov, 2009). In particular, it

can model nonlinear interactions between label and hidden

units (cf. Eq. (7)), whilst all interactions in the ClassRBM

are linear. Another advantage is that our model, when us-

ing the first-order Taylor series, offers more freedom to

choose the conditional distribution p (y | h) due to appeal-

ing approximation in Eq. (11). This is a promising fea-

ture and opens room for further extensions of our approach

to cover broader ranges of applications such as multi-task

and multi-modal learning (Srivastava and Salakhutdinov,

2012), as well as incorporating different discriminative ar-

chitectures such as Lasso (Tibshirani, 1996).

In the deep learning literature, the RBMs can be in-

terpreted as stochastic neural networks, pretrained and

then stacked layer-by-layer as a building block for deep

architectures such as deep belief nets (DBNs) (Hinton

and Salakhutdinov, 2006) and deep Boltzmann machines

(DBMs) (Salakhutdinov and Hinton, 2009b). These deep

models, however, are either trained not completely as gen-

erative models (e.g., DBNs are often fine-tuned as a stan-

dard feedforward neural nets after pretraining), and known

to be extremely difficult to train (e.g., training DBMs

requires a very careful weights initialization procedure,

i.e., layer-by-layer pretraining followed by weights halving

trick). By contrast, our sRBM still enjoys its versatility on

efficient learning and inference of standard RBMs where

the effective learning algorithm can be used.

Lastly, while we do not claim our main contribution in data

generation, we would like to point out its connection to re-

cent important and active research direction in constructing

data generators epitomized by two current state-of-the-art

density-based approaches, namely the variational autoen-

coder (VAE) (Kingma and Welling, 2014) and generative

adversarial nets (GAN) (Goodfellow et al., 2014). While

these methods are still unsupervised, our sRBM provides a

conditional probabilistic generator where data can be gen-

erated based on specific labels or classes.

3 PROPOSED SUPERVISED RBMs

We now present our main contribution – the supervised

RBM (sRBM) that adds to the standard RBM an outcome

variable y associated with each data point. This variable is

generated from the hidden units via directed connections.

The model now consists of two components: an RBM with

undirected connections of joint distribution p (v,h) that

has generative capability of representing data, and a predic-

tive model with directed connections of conditional distri-

bution p (y | h) that allows the model to perform prediction

on its own right. These components form a hybrid proba-

bilistic graphical model of sRBM as illustrated in Fig. 1b.

3.1 MODEL REPRESENTATION

More formally, the target variable represents the target label

y ∈ {1, 2, ...C} in classification problems or the response

value y ∈ R in regression tasks. Without loss of generality,

the outcome follows a conditional distribution of exponen-

tial family that has the probability density as below:

p (y | h;θ) = t (y) exp
{

θ⊤φ (y,h)−B (θ,h)
}

(5)

wherein θ denotes the natural or canonical parameters;

φ (y,h) refers to sufficient statistics; and B (θ,h) is the

log-partition or cumulant function. The function t (y) is

independent of the parameter θ. The function B (θ,h) en-



(a) (b) (c)

Figure 1: Graphical illustrations of (a) ClassRBM, (b)

sRBM, and (c) the moralization form of sRBM. The shaded

nodes represents observed variables.

sures p (y | h;θ) is a proper density, thus:

B (θ,h) = log

ˆ

y

t (y) exp
[

θ⊤φ (y,h)
]

dy (6)

Our aim is to jointly model the data and the outcome in

order to learn alternative data representations that simulta-

neously explain the data and predict the outcome for future

unlabeled data. Multiplicatively combining two probability

densities in Eq. (5) and Eq. (2), we obtain the joint distri-

bution of sRBM that is also an exponential family distribu-

tion: p (v,h, y;ψ,θ) = p (y | h;θ) p (v,h;ψ) =

e
log t(y)+θ⊤φ(y,h)−B(θ,h)−E(v,h;ψ)−A(ψ) (7)

3.2 INFERENCE

As in any other graphical models, inference is a key task in

sRBM. Suppose that the model parameters have been fully

specified, there are various inference tasks to be performed

in a sRBM. What we present next are the most typical ones:

expectation over hidden posterior and prediction.

3.2.1 Expectation over Hidden Posterior

Our aim is to compute the expectation over the hidden pos-

terior: Ep(h|v,y), which requires a sum over an exponential

space of hidden units. Due to the explaining away effect,

the hidden units become conditionally dependent given the

response y. Therefore the conditional distributions over

hidden units are no longer factorized as in Eq. (3) of the

standard RBM, resulting in an intractable inference. To

overcome this shortcoming, we must resort to approxima-

tion methods. In what follows we propose two approxima-

tion approaches: Gibbs sampling and variational inference.

Gibbs sampling. Let h¬k denote the state of all hidden

units except the k-th one. The conditional distribution of a

single hidden unit is:

p (hk | h¬k,v, y) ∝ p (hk,h¬k | v, y) ∝ p (y | h) p (hk | v)

Thus sampling from the posterior distribution of hk can be

performed using:

p (hk = 1 | h¬k,v, y) ∝ p (y | hk = 1,h¬k) p (hk = 1 | v)

p (hk = 0 | h¬k,v, y) ∝ p (y | hk = 0,h¬k) p (hk = 0 | v)

in which the state of a hidden unit being active or inactive

given the visible units is:

p (hk = 1 | v) = sig
(

bk + v
⊤
w·k

)

(8)

p (hk = 0 | v) = sig
(

−bk − v
⊤
w·k

)

(9)

where sig (x) = 1/1+e−x is logistic sigmoid function. We

refer to supplementary material for full derivations.

Variational inference. When performing inference in

large models or on moderately-sized datasets, the Gibbs

sampler can become extremely slow as it must sequentially

iterate over every single hidden unit. We hereby choose a

faster method – variational inference.

In variational methods (Jordan et al., 1998), the true pos-

terior distribution p (h | v, y) is approximated by a varia-

tional distribution q (h;µ) with µ = [µ1, µ2, ..., µK]
⊤

is

the vector of variational parameters. These parameters are

learned in order to maximize the following evidence lower

bound (ELBO):

L (ψ,θ,µ) = Eq(h) [log p (v,h, y)]− Eq(h) [log q (h)]

= Eq(h)

[

θ⊤φ (y,h)−B (θ,h)− E (v,h;ψ)
]

+ log t (y)− Eq(h) [log q (h)]−A (ψ)

Using a naive mean-field approximation, we choose a vari-

ational distribution that is fully factorized into K Bernoulli

distributions as: q (h;µ) =
∏K
k=1 q (hk;µk) in which

µk denotes the probability q (hk = 1). The ELBO now

reads (c.f. supplementary material for the full derivation):

L (ψ,θ,µ) =

∑K

k=1
θk [µkφ (y, hk = 1) + (1− µk)φ (y, hk = 0)]

− Eq(h) [B (θ,h)] +
∑K

k=1
µk

(

bk +
∑N

n=1
vnwnk

)

+K

(

∑N

n=1
anvn

)

+ log t (y)−A (ψ)

−
∑K

k=1
[µk logµk + (1− µk) log (1− µk)] (10)

As the model parameters ψ,θ are fixed, three terms

K
(

∑N
n=1 anvn

)

, log t (y) and A (ψ) are constant. Thus

we can ignore them in this maximization process. Only
the log-partition function B (θ,h) cannot be decomposed
into individual functions of each hidden unit, rendering its
expectation intractable. We approximate this expectation
using two strategies: the first-order and the second-order



Taylor series approximations. The first-order approxima-
tion evaluated at the first moment µ = Eq(h) [h] reads:

Eq(h) [B (θ,h)] ≈ Eq(h)

[

B (θ,µ) + (h− µ)⊤∇hB (θ,h)
]

= B (θ,µ) + Eq(h) [h− µ]⊤∇hB (θ,h) = B (θ,µ) (11)

wherein∇hB (θ,h) denotes the derivative w.r.t h and then

evaluated at h = µ, thus it is independent with q (h) and

can be taken out from the expectation in the second step.

Note that we have used Eq(h) [h− µ]
⊤
= 0 in the last step.

The result offers an interesting property that the expecta-

tion can be approximated by the function itself, evaluated

at the mean. This allows us more freedom to choose the

conditional distribution p (y | h).

Assuming thatB (θ,h) is a twice differentiable function of

h, the second-order approximation evaluated at µ is:

Eq(h) [B (θ,h)]

≈ B (θ,µ) + Eq(h)

[

1

2
(h− µ)

⊤
H [B (θ,µ)] (h− µ)

]

(a)
= B (θ,µ) +

1

2

K
∑

i=1

K
∑

j=1

HijEq(h) [(hi − µi) (hj − µj)]

= B (θ,µ) +
1

2

K
∑

i=1

Hiiµi (1− µi) (12)

where Hij , ∂hi
∂hj

B (θ,µ) denotes the second-order

derivative of B (θ,h) evaluated at h = µ, thus Hij is con-

stant w.r.t h and can be taken out from the expectation as in

step (a). We refer to supplementary material for full deriva-

tions.

Substituting Eq. (11) into the ELBO in Eq. (10), and then

taking the derivative with respect to (w.r.t) variational pa-

rameter, we obtain: ∇µk
L =

θk [φ (y, hk = 1)− φ (y, hk = 0)] + bk +
∑N

n=1
vnwnk

−∇µk
Eq(h) [B (θ,h)]− [logµk − log (1− µk)] (13)

Since there is no closed-form solution to compute µk by

setting the gradient to zero, we update the variational pa-

rameters by iterating at the following fixed point:

µk ← sig(θk [φ (y, hk = 1)− φ (y, hk = 0)]

+ bk +
∑N

n=1
vnwnk −∇µk

Eq(h) [B (θ,h)]) (14)

3.2.2 Prediction

The next goal is to predict the outcome given the input data:

p (y | v). This conditional probability density can be de-

rived as follows:

p (y | v) =
∑

h
p (y | h) p (h | v) = Ep(h|v) [p (y | h)]

As can be seen from the graphical model of sRBM, the

hidden units are conditionally independent given observed

visible units and unobserved outcome variables. Thus the

model realizes the hidden factorization (see Eq. (3)) as in

the standard RBM. Furthermore, according to Eq. (8) and

Eq. (9), the probability of being active of each hidden unit

also follows a Bernoulli distribution. Hence, the distribu-

tion p (h | v) plays the same role as the one of variational

distribution q (h) in Section 3.2.1. This allows us to use the

similar approximation approach as the first-order approxi-

mation in Eq. (11), that is:

p (y | v) = Ep(h|v) [p (y | h)] ≈ p (y | µ)

in which µk is the mean of distribution q (hk;µk) ≈
p (hk | v).

Interestingly, the predictive inference is reminiscent of the

forward pass of an ordinary feedforward neural network. In

particular, it could be implemented by a single layer neural

network with sigmoid hidden units and softmax (for clas-

sification) or identity (for regression) output neurons. This

also suggests an approach to pretrain deep models that con-

tain the sRBM as the top layer of a building block of RBMs.

3.3 PARAMETER ESTIMATION

In this section we present how to estimate the parameters

of sRBM from training data. Following the learning in the

standard RBM, the sRBM also aims to maximize the log-

likelihood of data: log p (v, y) = log
∑

h
p (v,h, y), but

the data now include the features and outcome instead of

the features only. The parameters are then updated in a

gradient ascent fashion as (cf. supplementary material for

more details):

ψ ← ψ + η (Ep̃ [∇ψE (v,h)]− Ep [∇ψE (v,h)]) (15)

θ ← θ + η (Ep̃ [φ (y,h)]− Ep̃ [∇θB (θ,h)]) (16)

for a learning rate η > 0. p̃ (h |v, y) denotes the data dis-

tribution, and p (v,h) the model distribution of RBM part

in sRBM. It is intractable to compute both two expecta-

tions exactly as it requires the sum over exponential space.

We choose a stochastic method known as contrastive diver-

gence (CD) (Hinton, 2002) which runs short Markov chains

started from the data to approximate the model expectation.

For the data expectation, we use the approximation vari-

ational inference of Ep(h|v,y) as described in Section 3.2.

The mean-field update rule in Eq. (14) depends on the

forms of sufficient statistics φ (y,h) and log-partition func-

tionB (θ,h). For multiclass classification, the parameter θ

is a K×C matrix, and the probability density p (y | h;θ,β)
in Eq. (5) is given by:

exp
{

θ⊤

·yh+ βy − log
∑

c
exp

(

θ⊤

·ch+ βc

)}



in which θ·c is the c-th column, and we have further intro-

duced the bias βc for the c-th class, hence:

θ⊤φ (y,h) , θ⊤

·yh+ βy

B (θ,h) = log
∑C

c=1
exp

(

θ⊤

·ch+ βc

)

The update rule in Eq. (14) when using the first-order ap-
proximation in Eq. (11) now reads:

µk ← sig






θky + bk +

N
∑

n=1

vnwnk −
∑

c
θkce

(

θ⊤·cµ+βc

)

∑

l
e
θ⊤·lµ+βl







The derivation for the second-order in Eq. (12) is more

complicated, thus we refer to the supplementary material.

For regression problem, the parameter θ is a K-
dimensional vector, and the outcome variable follows the
following Gaussian distribution: p (y | h;θ, β) =

1√
2π

exp

[

− 1

2σ2
y2 +

θ⊤
h+ β

σ2
y −

(

θ⊤
h+ β

)2

2σ2
− log σ

]

with the standard deviation σ and bias β, thus:

θ⊤φ (y,h) , −y2/
(

2σ2
)

+ y
(

θ⊤
h+ β

)

/σ2

B (θ,h) =
(

θ⊤
h+ β

)2

/
(

2σ2
)

+ log σ

Fixing σ = 1, the update rule in Eq. (14) when using the

first-order approximation in Eq. (11) now reads:

µk ← sig

[

θky + bk +
∑N

n=1
vnwnk − θk

(

θ⊤µ+ β
)

]

, and using the second-order approximation in Eq. (12) is:

µk ← sig[θky + bk +
∑N

n=1
vnwnk

− θk
(

θ⊤µ+ β
)

−
1

2
θ2k (1− 2µk)]

We refer to the supplementary material1 for the pseudo-

code of learning parameters for sRBM using CD-1. Once

the model is fully specified, the new representation of an

input data can be achieved by computing the posterior

vector ĥ =
(

ĥ1, ĥ2, ..., ĥK

)

, where ĥk is shorthand for

ĥk = p (hk = 1 | v) in Eq. (8).

4 EXPERIMENTS

In this section, we examine the predictive and generative

capabilities of sRBM, and the effectiveness of discrimina-

tive representations and semantically related features dis-

covered by the proposed model on three tasks – classifica-

tion, regression and data generation. For classification, we

1https://tund.github.io/papers/tu etal uai17 srbm supp.pdf

use identical experimental setups to those of (Larochelle et

al., 2012) in order to directly compare our method with the

current state-of-the-art – ClassRBM – and other baselines.

Here we consider the ClassRBM with generative training

objective since it is the most relevant approach to our model

that is also learned in a generative fashion. We also would

like to note that we do not compare with deep neural nets

because our focus is on generative models.

Datasets. We use three datasets: MNIST2, 20 Newsgroups

(Mitchell, 1997) and CT slices obtained from UCI reposi-

tory3. After ordinal preprocessing steps (e.g., normalizing,

rescaling), they are not exactly binary data. Following the

previous work (Hinton and Salakhutdinov, 2006), we treat

their feature values as empirical probabilities on which the

RBM-based models are naturally applied. Since the em-

pirical expectations Ep̃ [·] in Eq. (15) and Eq. (16) require

the probability p (v), the normalized intensity is a good ap-

proximation.

Methods and baselines. We create two versions of

our approach: sRBM using the first-order approxi-

mation (sRBM-1st) and the second-order (sRBM-2nd).

For classification performance comparison, we employ

5 baselines: ClassRBM with generative training strat-

egy (Larochelle et al., 2012), k-nearest neighbors (kNN,

where k = 1, with cosine similarity measures) and

support vector machine (SVM) directly on the hidden

posteriors of sRBM (sRBM+kNN, sRBM+SVM), Class-

RBM (ClassRBM+kNN, ClassRBM+SVM) and RBM

(RBM+kNN, RBM+SVM). We obtain ClassRBM code4

that reproduces the results of (Larochelle et al., 2012). For

regression, we use: ridge regression (RR) – linear regres-

sion with ℓ2-norm regularization, and RR on top of other

methods, similar to the setup for classification.

Hyperparameter settings. For RBM-based models, map-

ping parameters are randomly drawn from N (0, 0.01),
and biases are set to zeros. Learning is terminated af-

ter a number of epochs over training set, that was speci-

fied using early stopping based on the error of validation

set in every interval of 15 epochs. For a fair compari-

son, we empirically tune the learning rate of each model:

η ∈ {0.1, 0.05, 0.01, 0.005, 0.001} using cross-validation

for the best result on validation part.

4.1 IMAGE AND TEXT CLASSIFICATION

In the first task, we replicate the experimental settings in

Sections 7.1 and 7.2 in (Larochelle et al., 2012). In partic-

ular, we use MNIST and the “bydate” version of 20 News-

groups datasets to validate the predictive performance of

our proposed model on image and text data. The MNIST

consists of 50, 000 training; 10, 000 validation; and 10, 000
testing 28 × 28 grayscale handwritten digit images whose

2http://yann.lecun.com/exdb/mnist/.
3https://archive.ics.uci.edu/ml/datasets.html.
4https://github.com/skaae/rbm toolbox
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