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Tutorial overview 
1. Representations of subjective opinions 

 
 

2. Operators of subjective logic 
 
 

3. Applications of subjective logic: 
– Trust fusion and transitivity 
– Trust networks 
– Bayesian reasoning 
– Subjective networks 
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The General Idea of Subjective Logic 

Probabilistic Logic Uncertainty & Subjectivity 

Subjective Logic 

Probability Logic 
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Probabilistic Logic Examples 
Binary Logic Probabilistic logic 

     AND:      x∧y p(x∧y) = p(x)p(y) 
     OR:        x∨y p(x∨y) = p(x) + p(y) − p(x)p(y) 

MP: { x→y,  x }   ⇒    y 
 
 

MT: { x→y, y }   ⇒   x 
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Probability and Uncertainty 
Frequentist (aleatory): 
• Confident when based on 

much observation evidence 
• Unconfident when based on 

little observation evidence 
• E.g.: Probability of heads 

when flipping coin is ½       
and confident 
 

 
 

Subjective (epistemic):  
• Confident when dynamics 

of situation are known 
• Unconfident when 

dynamics of situation are 
unknown 

• E.g. Probability of Oswald 
killed Kennedy is  ½   but 
unconfident 
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Domains, variables and opinions 

x x 

X 

x3 

x1 x2 

R (X) 

x3 

x1 x2 

X 

Binary domain X = {x, x} 
Binary variable X = x 

Binomial opinion 

3-ary domain X 
Random variable X∈X  

Multinomial opinion 

Hyperdomain R (X) 
Hypervariable X ∈R (X)  

Hypernomial opinion 
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Domains and Hyperdomains 

• A domain X  is a state space of distinct possibilities 
• Powerset P (X) = 2X , set of subsets, including {X,∅} 

• Reduced powerset R (X) = P (X) \ {X, ∅} 
• R (X) = { x1, x2, x3, x4, x5, x6 } 
• R (X)  called Hyperdomain 
• Cardinalities 

| X | = 3 in this example 
• |P (X)| = 2|X|  

= 8 in this example 
• |R (X)| = 2|X| − 2   

= 6 in this example 
 

x1 

x2 x3 

x4 x5 

x6 

R (X) 
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Domain 

Binomial  Opinion 
Binary domain X 

Binary variable X= x  

Multinomial Opinion 
n-ary domain X 

Random variable X ∈ X 

Hypernomial Opinion 
hyperdomain R (X) 

Hypervariable  X ∈ R (X) 

Opinion 
represen-
tation 

 
PDF 
represen-
tation 

Beta PDF over x 
 
 
 
 
 

Dirichlet PDF over X Hyper Dirichlet over X 

x x 

X 

x3 

x1 x2 

X 

x3 

x1 x2 

R (X) 
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Binomial subjective opinions 
• Belief mass and base rate on binary domains 

–                   is observer A’s belief in x 

–                   is observer A’s disbelief in x 
–                   is observer A’s uncertainty about x 

–                   is the base rate of x 
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Binomial opinions 

),,,( xxxxx audb=ω

Example  ωx =(0.4, 0.2, 0.4, 0.9),    P(x) = 0.76 

•  Ordered quadruple: 
  

– bx : belief 
– dx : disbelief 
– ux : uncertainty (vacuity of evidence) 
– ax : base rate 

 
•   

 
• Projected probability:  

1=++ xxx udb

xxx uabx ⋅+=)P(

ωx 

P(x) ax 

dx 
bx 

uX 

x vertex x vertex 
(belief) (disbelief) 

u vertex  
(uncertainty) 
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Opinion types 

Dogmatic opinion: ux=0 . 
Equivalent to probabilities. 

General uncertain opinion: ux≠0 . 

Absolute opinion: bx=1 . 
Equivalent to TRUE. 

Vacuous opinion: ux=1 . 
Equivalent to UNDEFINED. 
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Beta PDF representation 

r: # observations of x 

s: # observations of  
a: base rate of x 

W = 2: non-informative 
 prior weight 

E(x): Expected probability 

E(x) = P(x) 

x
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α = r + Wa  
β = s + W(1-a)  

Example:  r = 2,     s = 1,     a = 0.9,        E(x)= 0.76 

Beta Probability Density Function 
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) 
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Binomial Opinion ↔ Beta PDF  
•  (r,s,a) represents Beta PDF evidence parameters. 
•  (b,d,u,a) represents binomial opinion. 
•  P(x) = E(x) 

 
• Op → Beta:  

 
 
 

• Beta → Op: 
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Online demo 

http://folk.uio.no/josang/sl/ 

http://en.wikipedia.org/wiki/File:Subjective-opinion.jpg
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Likelihood and Confidence 
Likelihood categories: 

Absolutely not 

Very unlikely 

U
nlikely 

Som
ew

hat unlikely 

C
hances about even 

Som
ew

hat likely 

Likely 

Very likely 

Absolutely 

Confidence categories: 9 8 7 6 5 4 3 2 1 
No confidence E 9E 8E 7E 6E 5E 4E 3E 2E 1E 
Low confidence D 9D 8D 7D 6D 5D 4D 3D 2D 1D 
Some confidence C 9C 8C 7C 6C 5C 4C 3C 2C 1C 
High confidence B 9B 8B 7B 6B 5B 4B 3B 2B 1B 
Total confidence A 9A 8A 7A 6A 5A 4A 3A 2A 1A 
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Mapping qualitative to opinion 
• Category mapped to corresponding field of triangle 
• Mapping depends on base rate 
• Non-existent categories depending on base-rates 

base rate  a = 1/3 base rate  a = 2/3 

9D 8D 7D 6D 5D 4D 3D 2D 1D 

9E 8E 7E 6E 5E 4E 3E 2E 1E 

9C 8C 7C 6C 5C 4C 3C 2C 1C 

9B 8B 7B 6B 5B 4B 3B 2B 1B 
9A 8A 7A 6A 5A 4A 3A 2A 1A 

9E 8E 7E 6E 5E 4E 3E 2E 1E 

9D 8D 7D 6D 5D 4D 3D 2D 1D 

9C 8C 7C 6C 5C 4C 3C 2C 1C 

9B 8B 7B 6B 5B 4B 3B 2B 1B 

9A 8A 7A 6A 5A 4A 3A 2A 1A 
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Mapping categories to opinions 

• Overlay category matrix with opinion triangle 
• Matrix skewed as a function of base rate 
• Not all categories map to opinions 

– For a low base rate, it is impossible to describe an 
event as highly likely and uncertain, but possible to 
describe it as highly unlikely and uncertain. 

– E.g. with regard to tuberculosis which has a low base 
rate, it would be wrong to say that a patient is likely to 
be infected, with high uncertainty. Similarly it would 
be possible to say that the patient is probably not 
infected, with high uncertainty 



19 Audun Jøsang Subjective Logic – UAI 2016 

Multinomial domain 

• Generalisation of binary domain 
 

• Set of exclusive and exhaustive singletons. 
 

• Example domain: X={x1, x2, x3, x4},   | X | = 4. 
 
 
 
 
 

 
 
 

x1 x2 x4 x3 

X 
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Multinomial Opinions 
• Domain:     X={x1…xk} 
• Random variable X ∈X 
• Multinomial opinion:    ωX = (bX, uX, aX) 
 
• Belief mass distribution  bX  where    u + ΣbX (x) = 1 

bX (x)  is belief mass on  x ∈X   

• Uncertainty mass:  uX   is a single value in range [0,1] 
• Base rate distribution  aX where  ΣaX (x) = 1 

aX (x)  is base rate of  x ∈X 
• Projected probability:  PX (x)= bX(x) + aX(x)⋅uX 
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Opinion tetrahedron (ternary domain) 

x1 axis 

u - axis 

Opinion  

Xa
Projected probability distribution Base rate distribution 

ωX 

XP

Projector 

x2 axis 

x3 axis 
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Dirichlet PDF representation 

 Example: 
– 6 red balls  
– 1 yellow ball 
– 1 black ball 
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rX (xi) : # observations of xi 

aX (xi) : base rate of xi 
EX: Expected proba. distr. 

EX = PX 

αX(xi) = rX(xi) + W⋅aX(xi)  

Σ pX(xi) = 1 

Trinomial Dirichlet 
Probability Density Function 

Density 
Dir(pX) 
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Multinomial Opinion ↔ Dirichlet PDF  

• Dirichlet PDF evidence parameters: (rX, aX) 

• Multinomial opinion parameters:    (bX, uX, aX) 
 

• Op → Dir: 

 
• Dir → Op: 
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Non-informative prior weight: W 

• Value normally set to W = 2. 
• When W is equal to the frame cardinality, then 

the prior Dirichlet PDF is a uniform. 
• Normally required that the prior Beta is uniform, 

which  dictates W = 2 
• Beta PDF is a binomial Dirichlet PDF 
• Setting W > 2  would make Dirichlet PDF 

insensitive to new observations, which would be 
an inadequate model. 
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Prior trinomial Dirichlet PDF,  W = 2 
Example:  
 Urn with balls of 3 

different colours.  
– t1: Red 
– t2: Yellow 
– t3: Black 
  

 Ternary a priori 
probability density. 



26 Audun Jøsang Subjective Logic – UAI 2016 

Posterior trinomial Dirichlet PDF 

 A posteriori 
probability density 
after picking: 
– 6 red balls (t1) 
– 1 yellow ball (t2) 
– 1 black ball (t3) 

 
– W = 2 
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Posterior trinomial Dirichlet PDF 

 A posteriori 
probability density 
after picking: 
– 20 red balls (t1) 
– 20 yellow balls (t2) 
– 20 black balls (t3) 

 
– W = 2 
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Posterior trinomial Dirichlet PDF 

 A posteriori 
probability density 
after picking: 
– 20 red balls (t1) 
– 20 yellow balls (t2) 
– 50 black balls (t3) 

 
– W = 2 
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Hyper-Opinions 
• Domain:   X={x1…xk} 
• P (X)  is the powerset of  X 
• Hyperdomain R (X) = P (X) \ {X, ∅} 
• R (X)  is the reduced powerset 
• Hypervariable: X ∈R (X) 
• Hyper opinion:     ωX = (bX, uX, aX) 
• Belief mass distribution:  bX  where   

bX (x) is belief mass on  x ∈R (X)  

• Base rate distribution:  aX   where 
aX (x) is base rate of  x ∈X  

• Proj. probability:  
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Hyper Dirichlet PDF 
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Opinions v. Fuzzy membership functions 

Tall 

Average 

Short 
0 cm 

50 cm 

100 cm 

150 cm 

200 cm 

250 cm 

Friendly 
aircraft 

Enemy 
aircraft 

Civilian 
aircraft 

Uncertain 
measures ω 

Domain of 
fuzzy 

categories 

Domain of 
crisp 

categories 

Crisp 
measures 

Fuzzy logic 

Subjective logic 

Fuzzy 
membership 

functions 

Subjective 
opinions 
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Subjective Logic Operators 
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Homomorphic correspondence 

• P(ωx ·ωy) = P(ωx)· P(ωy)    for probabilistic multiplication 
• B(ωx ·ωy) = B(ωx) ∧ B(ωy)  for Boolean conjunction 

 
 

Generalisation 

Homomorphic i.c.o. 
probability 0 or 1 

Generalisation 

Homomorphic i.c.o. 
dogmatic multi-nomial 

opinions 

Homomorphic in case of absolute binomial opinions 

Probabilistic logic 

• Probabilities 

• PL operators 

Subjective logic 

• Opinions 
• SL operators 

• Booleans 

• Truth tables 

Binary logic 

Xω
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Subjective logic operators 1 
Opinion operator name Opinion 

operator 

symbol 

Logic 
operator 
symbol 

Logic  operator name 

Addition + ∪ UNION 

Subtraction - \ DIFFERENCE 

Complement ¬ x NOT 

Projected probability P(x) n.a. n.a. 

Multiplication · AND 

Division / UN-AND 

Comultiplication OR 

Codivision UN-OR 

 п 
 п 

∧
∧
∨
∨
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Opinion operator name Opinion 
operator 

symbol 

Logic 
operator 
symbol 

Logic  operator name 

Transitive discounting ⊗ : TRANSITIVITY 

Cumulative fusion ⊕ ◊ n.a. 

Averaging fusion ⊕ ◊ n.a. 

Constraint fusion  & n.a. 
Inversion, 
Bayes’ theorem 

 
φ 

 
| 

CONTRAPOSITION 

Conditional deduction  

 

DEDUCTION 
(Modus Ponens) 

Conditional abduction 

 

               ABDUCTION 

(Modus Tollens) 

Subjective logic operators 2 

|| 

|| ~ ~ 

~ ~ 
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Subjective Trust Networks 
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Trust transitivity 

Direct   
referral trust 

Advice 

Direct 
functional 
trust 

Indirect functional trust 

2 

3 

4 

1 

Thanks to Bob’s advice, 
Alice trusts Eric to be a 
good mechanic. 

Eric has proven to 
Bob that he is a 
good mechanic. 

Bob has proven to Alice that  
he is knowledgeable in matters   
relating to car maintenance.  

Eric 

Bob 

Alice 
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Functional trust derivation requirement 

• Functional trust derivation through transitive paths 
requires that the last trust edge represents 
functional trust (or an opinion) and that all previous 
trust edges represent referral trust. 
 

• Functional trust can be an opinion about a variable. 

referral 
trust 

functional 
trust 

Alice Bob Claire Eric 

1 

2 

3 
functional trust 

referral 
trust 

1 

2 

1 
adv. adv. 
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Trust transitivity characteristics 
Trust is diluted in a transitive chain. 

trust trust trust 

adv. adv. 
A B C E 

Graph notation: [A, E]  = [A; B] : [B; C] : [C, E] 

Computed with discounting/transitivity operator of SL 

diluted trust 

SL notation: C
E

B
C

A
B

CBA
E ωωωω ⊗⊗=);;(
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Trust Fusion 
Combination of serial and parallel trust paths 

Graph notation: [A, E]  =  (( [A;B] : [B;D] ) ◊ ( [A;C] : [C;D] )) : [D,E] 

Alice 

Bob 

David Eric 

3 

Claire 

1 

derived func-trust 

Trusting 
party 

Trusted 
party func-trust 

SL not.: D
E

C
D

A
C

B
D

A
B

DCADBA
E ωωωωωω ⊗⊗⊕⊗=◊ ))()((];;[];;[
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diluted trust 

Discount and Fuse: Dilution and Confidence 

 Discounting dilutes trust confidence 

trust trust 
adv. 

adv. 

A D 

B 

confident trust 

trust trust C 

 Fusion strengthens trust confidence 



42 Audun Jøsang Subjective Logic – UAI 2016 

Incorrect trust / belief derivation 

2 

2 

3 

3 

1 

1 
A 

B 

C 

D 

belief / 
func. trust 
advice 

Hidden: ([A, B] : [B, D] : [D, X])  ◊  ([A, C] : [C, D] : [D, X]) 

incorrect belief 
4 

Beware! 

Perceived:                                             ([A, B] : [B, X])  ◊  ([A, C] : [C, X]) 

X 

ref. trust 
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Hidden and perceived topologies 

A 

B 

C 

Perceived topology: Hidden topology: 

([A, B] : [B, X])  ◊  ([A, C] : [C, X])   
 ≠  ([A, B] : [B, D] : [D, X])  ◊  ([A, C] : [C, D] : [D, X]) 

A 

B 

C 

D 

D 

(D, E) is taken into account twice 

X X 
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Correct trust / belief derivation 

correct belief 
2 

1 

1 

1 

A 

B 

C 

D 

Perceived and real 
topologies are equal: ( ([A; B] : [B; D])  ◊  ([A; C] : [C; D]) ) : [D, X] 

SAFE 

belief / 
func. trust 
advice 

X 

ref. trust 
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Computing discounted trust 
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Example: Weighing testimonies 

•  Computing beliefs about statements in court. 
•  J  is the judge. 
•  W1, W2 , W3  are witnesses providing testimonies. 

J 
W1 

statement X W2 

W3 

);();();( 321 WJWJWJ
X

◊◊ω
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C
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http://folk.uio.no/josang/sl/ 

http://persons.unik.no/josang/sl/
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Bayesian Reasoning 
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Parent node  X 

Child node  Y 

ωX 

ωY|X 

Causal 
conditionals 

ωY||X 

ωX||Y D
eduction 

A
bd

du
ct

io
n 

Deduction and Abduction 

~ 
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Deduction visualisation 
• Evidence pyramid is mapped inside hypothesis 

pyramid as a function of the conditionals. 
• Conclusion opinion is linearly mapped   

by1 

by2 

by3 

uY 

bx1 

bx2 

bx3 

uX 

1|xYω

2|xYω

3|xYω

XY


||ω

XY ||ω

Xω

Opinions on parent  X Opinions on child  Y 

X
ω



51 Audun Jøsang Subjective Logic – UAI 2016 

Deduction – online operator demo 

http://folk.uio.no/josang/sl/ 

http://persons.unik.no/josang/sl/


52 Audun Jøsang Subjective Logic – UAI 2016 

Bayes’ Theorem 
• Traditional statement of 

Bayes’ theorem:  
 

• Bayes’ theorem with 
base rates: 
 

• Marginal base rates: 
 
 

• Bayes’ theorem with 
marginal base rates 

)(
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)(
)|()()|( ya

xypxayxp =

)|()()|()(
)|()()|( xypxaxypxa

xypxayxp +=

)|()()|()(
)|()()|( xypxaxypxa

xypxayxp +=



53 Audun Jøsang Subjective Logic – UAI 2016 

The Subjective Bayes’ Theorem 

X 

Y 

),,(),( |||~|~ xxyxyyxyx aωωωω = φ ~ 
X 

Y 

Binomial: 

X 

Y 

),( ||~ xXYYX aωω = φ ~ 
X 

Y 

Multinomial: 
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Inversion Visualisation 
(Subjective Bayes’ theorem

) 

Antecedent  
X Xω

Inversion of 
conditional opinions 

Conditionals  ωY | X  

y1 

uY vertex 

Yω
   Conditionals 

Antecedent  
Y 

y3 

y2 

uX vertex 

x1 
x3 

x2 1|xYω
2|xYω

3|xYω

XY ||ω Consequent  
Y 

y1 
y3 

y2 

uY vertex 

1|~ yXω

2|~ yXω

3|~ yXω

YX ||ω

Consequent  
X 

x1 
x3 

uX vertex 

x2 

YX |~ω
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Deduction and abduction notation 

XYXXY ||| ωωω =

),( ||| XXYYYX aωωω =

X 

Y 

ωX 

ωY|X 

X 

Y 

ωY|X 

D
eduction 

Ab
dd
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),( | XXYY aωω= φ ~ 

YXY |~ωω=

ωY||X 

ωY 

ωX||Y ~ 

XY |ω
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Example: Medical reasoning 
• Medical test reliability determined by: 

– true positive rate       where  x: infected 
– false positive rate         y: positive test 

 
• Bayes’ theorem: 
• Probabilistic model hides uncertainty 
• Use subjective Bayes’ theorem to determine ω(infected)  

 
 

• GP derives ω(infected | positive)  and ω(infected | negative)  
• Finally compute diagnosis ω(infected || test result)  
• Medical reasoning with SL reflects uncertainty 

~ 

)|()()|()(
)|()(
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xypxpyxp
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)|( xyp
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Abduction – Online operator demo 

http://folk.uio.no/josang/sl/ 

http://persons.unik.no/josang/sl/
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Subjective Bayesian Networks Subjective Trust Networks 

Subjective Networks 

Subjective Logic Bayesian Networks 

The General Idea of Subjective Networks 
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Example SN Model 

X Y Z 

B 
B
Xω
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Subjective Networks 
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