A Proofs

The following result strengthens Proposition 1 and pro-
vides a sufficient condition under which f and its convex
envelope f. have the same set of minimizers. This result
implies that one can minimize the function f by minimiz-
ing its convex envelope f., under the assumption that the
set of minimizer of f, X’ ]T, is a convex set.

Lemma 2. Let f. be the convex envelope of f on X. Let
X7 be the set of minimizers of fc. Assume that X} is a
convex set. Then X§ = X5.

Proof. We prove this result by a contradiction argument.
Assume that the result is not true. Then there exists some
T € X suchthat f.(Z) = f* and T ¢ A7, ie., f(Z) >
f*. By definition of the convex envelope, (f*,Z) lies in
conv(epif). This combined with the fact that conv(epif)
is the smallest convex set which contains epi f, implies that
there exists some z; = (£1,21) and 2o = (€2, x2) in epif
and 0 < « < 1 such that

(f*,7) =az + (1 — a)zs. (6)

Let us first consider the case in which z; and 25 belong to
the set X* = {(&2)|x € XF,§ = f(x)}. The set X
is convex. So every convex combination of its entries also
belongs to X* as well. This is not the case for z1 and zo
due to the fact that (f*,7) = az; + (1 — o)z does not
belong to X*as 7 ¢ X*. Now consider the case that either
Z1 Or zo are not in X*. Without loss of generality, assume
that z1 ¢ X*. In this case, &, must be larger than f* since
x1 ¢ X7. This implies that (f*, Z) can not be expressed as
the convex combination of z; and 2 since in this case: (i)
for every 0 < a < 1, we have that a&; + (1 — )& > f*
and (ii) when o = 0, then x2 = 7 and therefore a&; + (1 —
)& = & = f(Z) > f*. Therefore Eqn. 6 can not hold for
any 21, 29 € epif when 0 < a < 1. Thus the assumption
that there exists some Z € X'/ X’} such that f.(Z) = f* can
not be true either, which proves the result. O

A.1 Proof of Lem. 1

We first prove that any underestimate (lower bound) of
function f (except f.) does not satisfy the constraint of the
optimization problem of Eqn. 2. This is due to the fact that
for any underestimate h(-;0) € /., there exists some
x,, € X and € > 0 such that for every 6, € O,

A3 0) = A3 0c)] = h(w; 0c) = h(y;0)
= fo(xy) — h(2y;0) = €.

For every x € X, the following then holds due to the fact
that the function class H is assumed to be Lipschitz:
h(z;0) — h(x;0.) = h(x;0) — h(zy,0) — €

Wy, 0c) — h(x;0.) < 2Xd(x,x,) — €. @

Eqn. 7 implies that for every « € B(z,,£/2)) the inequal-
ity Ac(z) = h(x;6.) — h(z;0) > 0 holds. Denote the
event {z € B(x,,e/(2\))} by ,. We then deduce that

E[Ac(2)] = P(Q)E[Ac ()] > 0

where the last inequality follows due to the fact that both
P(Q,) and E[A.(x)|€,] are larger than 0. The inequality
P(©2,,) > 0 holds since p(x) > 0 for every x e X and also
that B(zy,e/2)\) # 0. The inequality E[A.(z)|Q,] >
holds by the fact that for every © € B(x,, e/ 2) the in-
equality A.(x) > 0 holds.

Let H := {h : h € H,E[h(z;0)] = E[f.(x)]} be a set
of all functions h in H with the same mean as the convex
envelope f.. We now show that f, is the only minimizer of
L(6) = E[|h(z; 8)— f(x)|] that lies in the set H. We do this
by proving that for every h € H/ f., the loss L(6) > L(6,),
for every 6. € ©,. First we recall that any underestimate
h € H/ f. of f can not lie in H, as we have already shown
that E[h(x;0)] < E[f.(x)] for every h € H/f.. This im-
plies that for every h € H / f. there exists some z, € X
such that h(z,;6) > f(x), or equivalently, we have that
for every h € H / f. there exists some z, € X and £ > 0
such that

[h(20;0) = [ (o) = (03 0) — f(x,) = €.

Then for every x € X, the following holds due to the fact
that the function class # and f are assumed to be Lipschitz:

h(z;0) — f(z) = h(x;0) — h(z,,0) + € (8)
flzo) = f(z) > —2XMd(x, z,). )

Eqn. 8 implies that for every z € B(z,,e/2\) the in-
equality h(x;0) — f.(z) > 0 holds. Denote the event

{z € B(zo,e/2)\)} by Q,. Let A(z) = f(z) — h(x;0).
We then deduce
[lh(x' 0) — f(@)l]
P(Q2)E[A()] | 2] + P(Q)E[A(2)] [ 23] (10)
P(Q0)E[A(2) [Q,] + P(25)E[A(z) [$25] (1)
E[A(x)] = E[f(z) — fe(2)]. (12)

Line (10) holds by the law of total expectation. The
inequality (11) holds since h(z;60) > f(z) for every
x € B(xo,e/2X). This implies that |h(z;60) — f(x)] >
0 > f(x) — h(x;0). Line (12) holds since E[h(x;0)] =
E[f.(z)] for h € H. The fact that L(#) = E[|h(z;0) —
J(@)] > ElIf(x) — fo(@)l] = L(6.) for every (<) ¢
H/ f. implies that the set of minimizers of L(#) coincide
with the set O, which completes the proof.

A.2 Proof of Thm. 1

To prove the result of Thm. 1, we need to relate the solution
of the optimization problem of Eqn. 4 with the result of
Alg. 1, for which we rely on the following lemmas.



Before we proceed, we must introducAe some new nota-
tion. Define the convex sets ©¢ and ©° as ©° := {0 :
9 € O,E[h(x;0)] = E[f.(x)]} and ©°¢ = {0 : 6 €
0, Es[h(x;0)] = Ea[f.(x)]}, respectively. Also define the
subspace Oy, := {0 : 6 € RP, E[h(x;0)] = E[f.(x)]}.
Lemma 3. Let § be a positive scalar. Under Assumptions
1 and 3 there exists some . € [—R, R] such that the fol-
lowing holds w.p. 1 — §:

T

|L(8,) - min L(0)| < O (BRU W) .

Proof. The empirical estimate GA# is obtained by minimiz-
ing the empirical L(6) under some affine constraints. Ad-
ditionally, the function L(6) takes the form of the ex-
pected value of a generalized linear model. Now set i =
Es[fe(x)]. In this case, the following result on stochas-
tic optimization of the generalized linear model holds for
= Eo[fe(z)] w.p. 1 — 9§ (see, e.g., Shalev-Shwartz et al.,
2009, for the proof):

L(,) — min L(6) = O <BRU1

[dSCh

log(1 /5))
T 9

where U is the Lipschitz constant of |h(x;60) — f(z)]. We
then deduce that for every z € X, 6 € © and ¢ € ©,

[ 112, 0) = f(2)| = [h(2,0") — f(2)| | < U1]|0 = 0]

The inequality | |a| — |b] | < |a — b|, combined with the
fact that for every € X the function h(z;6) is Lipschitz
continuous in 6 implies,

[ 1, 0) = f()| = [h(2,6") — f()] |
<|h(x,6) = h(z, 6" < U6 — 0.

Therefore the following holds:

L0,) - enelgi L(O) =0 (BRU

1°g(T1/5)> . (13)

For every 0 € ©°, the following holds w.p. 1 — §:
E[h(w;0)] - Ez[fo(x)] = E[h(w;0)] — Ea[h(x; 0)]

log(1/9)
< =~ 7
SR 2r -’
as well as,

log(1/6)

Bulfel@)] — Elf.(a)) < Ry 5%

in which we rely on the Hoeffding inequality for concen-
tration of measure. These results combined with a union
bound argument implies that:

E[h(x;0)] - E[f.(z)] = E[h(z;0)] - Es[f.(=)]
+]E2[fc($)] — E[fe(z)] (14)
2log(2/9)
<R #7
for every 6 € ©°. We know that mingg. L(0) < L(0.),

due the fact that 6, € ©°. This combined with the fact
that 6. = mingec o L(6) leads to the following sequence of
inequalities w.p. 1 — 4:

min L(0) < L(0.) = E[f(x) — fe(z)]

0cOe
< E[|f(2) = h(w;0.)|] + E[h(x; 0.) — fo(w)]
< min L(0) + R M,

9cde T

where the last inequality follows from the bound of
Eqn. 14. It immediately follows that:

21og(2/9)

min L(#) — min L(Q)‘ <R T

oo beor

w.p. 1 — 4. This combined with Eqn. 13 completes the
proof. O

Let @\gmj be the /5-normed projection of é\u on the subspace
Ogup- We now prove bound on the error ||§ET°j - §M Il
Lemma 4. Let § be a positive scalar. Then under Assump-

tions 1 and 3 there exists some |1 € [—R, R| such that the
following holds with probability 1 — §:

R 21og(4/6)

el —9,|| < :
195 = 0ull < BV — 1

Proof. Set p = py = E[f.(x)]. Then é\gr"j can be ob-
tained as the solution of following optimization problem:

gproj = argmin”e — §MH2 s.t. ]E[h(‘r’ 9)] = Hf-
0

o
€Rp

Thus §E’°j can be obtain as the extremum of the following
Lagrangian:

L(0,X) = [0 — ,.]|* + NE[~(;0)] — ).

This problem can be solved in closed-form as follows:

0= 220N _ G, + mlo()
AL, \) (15)
0= 220N _gina0)] - .

O



Solving the above system of equations leads to
Elh(z; (8, — AE[¢(x)])] = py. The solution for A
can be obtained as
A= M
[Elo(2)]]1?

By plugging this in Eqn. 15 we deduce:

oproj _ p (/.tf _E[h(xv “)])E[¢($)]
O = O Ee@IZ

For the choice of y = Es[f.(z)] we deduce:

g = s~ Elh(z:8,)]

S D)

_ [ELfe(@)) — Blh(:0,)]
@I

||ggr0J _

This combined with Eqn. 14 and a union bound proves the
result. O

We proceed by proving bound on the absolute error
[L(0F7) — L(6c)| = |L(OF")
Lemma 5. Let § be a positive scalar. Under Assumptions

1 and 3 there exists some | € [—R, R] such that the fol-
lowing holds with probability 1 — §:

— mingeee L(0)].

| (Gproj 10g(1/6)> .

0.)| = (BRU T

Proof. From Lem. 4 we deduce:

[E[(x; 827°F) — h(z;8,,)]]
log(4/5) (10

< = =,

0.1l |E[6(2)]]| < 2R

where the first inequality is due to the Cauchy-Schwarz in-
equality. We then deduce:

~

| |L(OE3) — L(6.)| — |L(B,,) —
< |L(O5Y) — L(

L(8.)| |
0,)| < [E[h(a; 627oF) —

» Y

h(w;8,)]],

in which we rely on the triangle inequality | |a| —
|a — b|. Tt then follows that

ol <

— L(6.) < |L(8,) — L(6.)]

+ [E[(; 053) — h(w;8,,)]|-

Combining this result with the result of Lem. 3 and Eqn. 16
proves the result.

O

In the following lemma we make use of Lem. 4 and Lem. 5
to prove that the minimizer Z,, = argmin,c,h(z;0,) is
close to a global minimizer * € X}.

Lemma 6. Under Assumptions 1, 3 and 4 there exists some
€ [-R, R] such that wp. 1 — §:

d(Zy, Xf) =0 ((bg(Tl/a)lez/Q) |

Proof. The result of Lem. 5 combined with Assump-
tion 4.b implies that w.p. 1 — J:

B2
dy (6773, 0,) < (El(a)) :

v

where ¢1(6) = BRU . This combined with the
result of Lem. 4 implies that w.p. 1 — ¢:

log(1/4)
T

= . PR 60(5) B2
ds(B,0.) < do (873, ©,)+da (1, 5,) < 2 ( ) :

1

— ___RBU __ [logg
where £.(6) = O (min(l,uﬁ[wx)u) T )

We now use this result to prove a high probability bound

on fo(Z,) — f*:

fc(x\u) - fr= h(ea/x\u) h(fc, ")
= 106, %) — h(B,, Tp) + mmh(o ,x) — h(f,, z*)
< W0, %) — h(0,,3,) + h(0,, 2) — b0, %)

B2
< 2Udy(0),,0,) < 2U (67@> ,
2

where the last inequality follows by the fact that h is U-
Lipschitz w.r.t. 6. This combined with Assumption 4.a
completes the proof.

O

It then follows by combining the result of Lem. 6, Assump-
tion 2 and the fact that f, is the tightest convex lower bound
of function f that there exist a 4 = [— R, R] such that

<1og(711/5)>5152/2]

This combined with the fact that f(Z;) < f(Z,) for ev-
ery i € [—R, R], completes the proof of the main result
(Thm. 1) .

[@)— 1 =0




A.3 Proof of Thm. 2

We prove this theorem by generalizing the result of
Lems. 3-6 to the case that f ¢ #. First we need to in-
troduce some notation. Under the assumptions of Thm. 2,
for every ¢ > 0, there exists some 0¢ € © and v > 0 such
that the following inequality holds:

E[[h(x;6°) — fo(@)]] < v +C.

Define the convex sets ¢ := {0 : 6 € O, Ey[h(x;0)] =
Eo[h(z;6¢)]} and ©¢ := {0 : 0 € © Eg[h(x;O)] =
[ (x;6)]}. Also define the subspace ©5,, := {0 : 0 €

RP, E[h(x;0)] = E[h(z; 0)]}.

Lemma 7. Let § be a positive scalar. Under Assumptions
1 and 5 there exists some p € [—R, R] such that for every
¢ > 0 the following holds with probability 1 — §:

!L(g — min L(¢)| = O | BRU log(1/9) +v+C.
0e6¢ T

Proof. The empirical estimate 5# is obtained by minimiz-
ing the empirical L (0) under some affine constraints. Also
the function L(#) is in the form of expected value of some
generalized linear model. Now set i = B, [h(z;6%)]. Then
the following result on stochastic optimization of the gen-
eralized linear model holds w.p. 1 — ¢ (see, e.g., Shalev-
Shwartz et al., 2009, for the proof):

~

L(#,) — min L(F) =

6c6¢

log(1/3)
@) (BRUl T) ,

where U, satisfies the following Lipschitz continuity in-
equality forevery x € X, 0 € © and ¢’ € ©O:

f@)| = [h(z,6") -

The inequality | |a| — |b] | < |a — b| combined with the
fact that for every z € X the function h(z;6) is Lipschitz
continuous in # implies

| |h(z,0) — f@) | <ULo -0

| h(z,0) —
§|h(117,9) -

F(@)| ~ [he,0') - f(@)]|
B, 8) < U0 — 8]

Therefore the following holds:

L(6,) — min L(0) = O (BRU bg(l/‘”) .37
#co¢ T

For every 0 € ©¢ the following holds w.p. 1 — §:
E[h(x;0)] — Ba[h(w; 6°)] — Ea[h(x;0)]

log(1/9)
2T

= E[h(z;0)]

<R

as well as,

log(1/0)

By [h(a:6°)] L,

~E[h(z;6°)] < R

in which we rely on the Hoeffding inequality for concen-
tration of measure. These results combined with a union
bound argument implies that

— Ea[h(x;6%)]

= E[h(x;0)]
~Elh(a; 0] < Ry B0

E[h(x;0)] — E[h(z;6°)]

+ Balh(a; 6°))

R (18)

for every 6 € ©5. Then the following sequence of inequal-
ities holds:

min L(0) < L(6°) = E[|h(x;0°) — f()|]
<L(0.) + E[|h(z;0%) — fe(z)]]
<L(0.) +v+¢
, 2log(2/9)
< aré%nC L)+ R T .

The first inequality follows from the fact that 6. € oc.
Also the following holds w.p. 1 — §:

L(6.) < Eh(w:6) — fu(w)]] + Elh(z; 0)] — E[f(2)
<o+ ¢+ Elh(z; 6] — E[f(2)]

< min {n(a;0)]  E[f(2)] + By 282D 4y ¢
[ISCHN

< min L(0) + Ry/ 22082/ |y ¢

0e6¢ T

The last inequality follows from the bound of Eqn. 18. It
immediately follows that

min L(f) — min L(F))’ <R 2log(2/9) +uv+¢,

0e6¢ feo¢ - T
w.p. 1 — . This combined with Eqn. 17 completes the
proof.

O

Under Assumption 6, for every h(-;0) € H, there exists
0) € H such that h(x;0) = h(x;0) for every
r € X. Let 6 be the corresponding set of parameters

some h(-;

for 9“ in ©. Let HpmJ be the /5-normed projection of 9
on the subspace 0
16, — G|

ob- We now prove bound on the error



Lemma 8. Under Assumptions 1 and 5 and 6 there exists
some i € [—R, R] such that the following holds with prob-
ability 1 — §:

R /210g[}4/6) +U+<

IE[p()]| ’

16770 — 0] <

Proof. ggr‘)j is the solution of following optimization prob-
lem:

P st El(6)] = gy,

6Pr3 = arg minl|0 — 4,
0eRP

where 1y = E[f.(z)]. Thus 6™ can be obtain as the
extremum of the following Lagrangian:

L0,) = 10 = 81> + AE[A(w:0)] — pp).

This problem can be solved in closed-form as follows:

0L(0, A ~ ~
0= 20N g G am@) 9
_0L(0,N) )
Solving the above system of equations leads to
Elh(z;0,)] — ME[¢(x)] = py. The solution for A
can be obtained as
_ 1= E[h(z; 6,,)] .
[E[¢(2)]]]?

By plugging this in Eqn. 19 we deduce:

gorol = 3, (g — Elh(z; 0,)])E[o(x)]

7

IE[$()]]|?
We then deduce:
Hggroj _ gMH _ |/J'f - Eﬂ[vh(x,é\u)”
o ()] )
Ellfe(@) = h(w; 0] + [El(w; 09)] — E[h(x:6,)]|
- IE[()]]l

This combined with Eqn. 18 and a union bound proves the
result. O

We proceed by proving bound on the absolute error
[L(O7") = L(0c)| = |L(67) — ming g L(6)].

Lemma9. Under Assumptions 1, 5 and 6 there exists some
w € [—R, R] such that for every ¢ > 0 the following bound
holds with probability 1 — §:

|L(62T) — L(6.)| = O << +v+ BRU 1og(T1/5)> :
Proof. From Lem. 8 we deduce
[El(; 67°1) = b3 0,)
~ i ~ log(4/6
S A )[RV AL

(20)
where in the first inequality we rely on the Cauchy-Schwarz
inequality. We then deduce:

| |L(GP°F) — L(6.)] — |L(6,) — L(6.)] |
<L) — L(0,)| < |E[h(z; 077°%) — h(z36,,)]],

in which we rely on the triangle inequality | |a| — |b] | <
|a — b|. We then deduce

L(OR1) — L(0.) < |L(8,,) — L(6.))|
+ [E[h(w; 0577) — h(w; 0,)]l-

Y

Combining this result with the result of Lem. 7 and Eqn. 20
proves the main result.

O

In the following lemma, we make use of Lem. 8 and Lem. 9
to prove that the minimizer Z,, = argmin,ch(z;0,) is
near a global minimizer z* € Ay w.r.t. to the metric d.

Lemma 10. Under Assumptions 1, 5 and 6 there exists
some i € [—R, R] such that w.p. 1 — §:

B1B2
d(F,, Xf) = O ( k’g(;/‘s)+c+v>

Proof. The result of Lem. 9 combined with Assump-
tion 6.b implies that w.p. 1 — J:

20",

a(0.0,) <
2

where 1 () = O(BRU 4/ M—i—v—&—{). This combined
with the result of Lem. 8 implies that w.p. 1 — ¢:

0 Nproj nproj p ‘50(6) P
d2 (0,0, 0.) < da (27, 0,) +do (6773, 6,,) < 2 . ,



where £.(0) is defined as:

RBU /2819 4 ¢4y
e.(0 o L

. min(1, HE[(EW)))H]

We now use this result to prove high probability bound on

fe(@p) — "

Fe(@) = 7 = M, Ty) = h(Bc, 27)
= Wl0c, ) = D0, B) + min h(B, ) — (B, 27)

< h(0e,Tp) — h(0,, %) + h(0,,2%) — h(0e, 2¥)

R LN
< 2Udy(0,,0,) < 29U (57( )> ,
2

where the last inequality follows by the fact that h is U-
Lipschitz w.r.t. 6. This combined with Assumption 6.a
completes the proof.

O

It then follows by combining the result of Lem. 10 and As-
sumption 2 that there exist a y € [—R, R] such that for
every £ > O:

B152
f@) - f=0 < bg(;/(s)+v+£>

This combined with the fact that f(Z;) < f(z,) for ev-
ery i € [—R, R] completes the proof of the main result
(Thm. 2) .



