
Lighter-Communication Distributed Machine Learning via
Sufficient Factor Broadcasting

— Supplementary Material

Pengtao Xie, Jin Kyu Kim, Yi Zhou?, Qirong Ho†, Abhimanu Kumar§, Yaoliang Yu, Eric Xing
School of Computer Science, Carnegie Mellon University;

?Department of EECS, Syracuse University;
†Institute for Infocomm Research, A*STAR, Singapore; §Groupon

1 Proof of Convergence

Proof of Theorem 1
Proof. Let Fc := σ{Iτp : p = 1, . . . , P, τ = 1, . . . , c} be the filtration generated by the random samplings Iτp up to
iteration counter c, i.elet@tokeneonedot, the information up to iteration c. Note that for all p and c, Wc

p and Wc are
Fc−1 measurable (since τ qp (c) ≤ c− 1 by assumption), and Icp is independent of Fc−1. Recall that the partial update
generated by machine p at its c-th iteration is

Up(W
c
p, I

c
p) = −ηc|Sp|

∑
j∈Icp

∇fj(Wc
p)

Then it holds that
Up(W

c
p) = E[Up(Wc

p, I
c
p)|Fc−1] = −ηc∇Fp(Wc

p)

(Note that we have suppressed the dependence of Up on the iteration counter c.)
Then, we have

E
[∑P

p=1 Up(W
c
p, I

c
p) | Fc−1

]
=
∑P
p=1 E[Up(Wc

p, I
c
p) | Fc−1] =

∑P
p=1 Up(W

c
p) (1)

Similarly we have

E
[∥∥∑P

p=1 Up(W
c
p, I

c
p)
∥∥2
2
| Fc−1

]
=
∑P
p,q=1 E[〈Up(Wc

p, I
c
p), Uq(W

c
q, I

c
q)〉 | Fc−1]

=
∑P
p,q=1〈Up(Wc

q), Uq(W
c
q)〉+

∑P
p=1 E

[
‖Up(Wc

p, I
c
p)− Up(Wc

p)‖22 | Fc−1
] (2)

The variance term in the above equality can be bounded as∑P
p=1 E

[
‖Up(Wc

p, I
c
p)− Up(Wc

p)‖22 | Fc−1
]

= η2c

P∑
p=1

E

‖|Sp|∑
j∈Icp

∇fj(Wc
p)−∇Fp(Wc

p)‖22 | Fc−1


︸ ︷︷ ︸
σ̂2P

≤ η2c σ̂2P

(3)

Now use the update rule Wc+1
p = Wc

p +
∑P
p=1 Up(W

c
p, I

c
p) and the descent lemma [1], we have

F (Wc+1)− F (Wc)
≤ 〈Wc+1 −Wc,∇F (Wc)〉+ LF

2 ‖W
c+1 −Wc‖22

= 〈
∑P
p=1 Up(W

c
p, I

c
p),∇F (Wc)〉+ LF

2 ‖
∑P
p=1 Up(W

c
p, I

c
p)‖22

(4)

1

Then take expectation on both sides, we obtain

E [F (Wc+1)− F (Wc) | Fc−1
]

≤ 〈
∑P
p=1 Up(W

c
p),∇F (Wc)〉+ LF η

2
c σ̂

2P
2 + LF

2 ‖
∑P
p=1 Up(W

c
p)‖22

= (LF

2 − η
−1
c)‖

∑P
p=1 Up(W

c
p)‖22 +

LF η
2
c σ̂

2P
2 − η−1c 〈

∑P
p=1 Up(W

c
p),
∑P
p=1[Up(W

c)− Up(Wc
p)]〉

≤ (LF

2 − η
−1
c)‖

∑P
p=1 Up(W

c
p)‖22 +

LF η
2
c σ̂

2P
2 + ‖

∑P
p=1 Up(W

c
p)‖
∑P
p=1 Lp‖Wc −Wc

p‖

(5)

Now take expectation w.r.t all random variables, we obtain

E
[
F (Wc+1)− F (Wc)

]
≤ (LF

2 − η
−1
c)E

[
‖
∑P
p=1 Up(W

c
p)‖22

]
+
∑P
p=1 LpE

[
‖
∑P
p=1 Up(W

c
p)‖‖Wc −Wc

p‖
]
+

LF η
2
cσ

2P
2

(6)

Next we proceed to bound the term E‖
∑P
p=1 Up(W

c
p)‖‖Wc −Wc

p‖. We list the auxiliary update rule and the
local update rule here for convenience.

Wc = W0 +
∑P
q=1

∑c−1
t=0 Uq(W

t
q, I

t
q),

Wc
p = W0 +

∑P
q=1

∑τq
p (c)

t=0 Uq(W
t
q, I

t
q).

(7)

Now subtract the above two and use the bounded delay assumption 0 ≤ (c− 1)− τ qp (c) ≤ s, we obtain

‖Wc −Wc
p‖

= ‖
∑P
q=1

∑c−1
t=τq

p (c)+1 Uq(W
t
q, I

t
q)‖

≤ ‖
∑P
q=1

∑c−1
t=c−s Uq(W

t
q, I

t
q)‖+ ‖

∑P
q=1

∑τq
p (c)

t=c−s Uq(W
t
q, I

t
q)‖

≤
∑c−1
t=c−s ‖

∑P
q=1 Uq(W

t
q, I

t
q)‖+ ηc−sG

(8)

where the last inequality follows from the facts that ηc is strictly decreasing, and ‖
∑P
q=1

∑τq
p (c)

t=c−s∇Fq(Wt
q, I

t
q)‖

is bounded by some constant G since ∇Fq is continuous and all the sequences Wc
p are bounded. Thus by taking

expectation, we obtain

E
[
‖
∑P
p=1 Up(W

c
p)‖ ‖Wc −Wc

p‖
]

≤ E
[
‖
∑P
p=1 Up(W

c
p)‖
(∑c−1

t=c−s ‖
∑P
q=1 Uq(W

t
q, I

t
q)‖+ ηc−sG

)]
=
∑c−1
t=c−s E

[
‖
∑P
p=1 Up(W

c
p)‖‖

∑P
q=1 Uq(W

t
q, I

t
q)‖
]
+ ηc−sG · E

[
‖
∑P
p=1 Up(W

c
p)‖
]

≤
∑c−1
t=c−s E

[
‖
∑P
p=1 Up(W

c
p)‖22 + ‖

∑P
q=1 Uq(W

t
q, I

t
q)‖22

]
+ E‖

∑P
p=1 Up(W

c
p)‖22 + η2c−sG

2

≤ (s+ 1)E‖
∑P
p=1 Up(W

c
p)‖22 + η2c−sG

2 +
∑c−1
t=c−s

[
E‖
∑P
q=1 Uq(W

t
q)‖22 + η2t σ

2P
]

(9)

Now plug this into the previous result in (6):

EF (Wc+1)− EF (Wc)

≤ (LF

2 − η
−1
c)E‖

∑P
p=1 Up(W

c
p)‖22 + (s+ 1)LE‖

∑P
p=1 Up(W

c
p)‖22 + η2c−sG

2L

+
∑c−1
t=c−s

[
LE‖

∑P
p=1 Up(W

c
p)‖22 + η2tLσ

2P
]
+

LF η
2
cσ

2P
2

= (LF

2 + (s+ 1)L− η−1c)E‖
∑P
p=1 Up(W

c
p)‖22 + η2c−sG

2L

+
∑c−1
t=c−s

[
LE‖

∑P
p=1 Up(W

c
p)‖22 + η2tLσ

2P
]
+

LF η
2
cσ

2P
2

(10)

Sum both sides over c = 0, ..., C:

EF (WC+1)− EF (W0)

≤
∑C
c=0

[
(LF

2 + (2s+ 1)L− η−1c)E‖
∑P
p=1 Up(W

c
p)‖22

]
+ (Lσ2Ps+ LFσ

2P
2)

∑C
c=0 η

2
c +G2L

∑C
c=0 η

2
c−s

(11)

2

After rearranging terms we finally obtain∑C
c=0

[
η2c (η

−1
c − LF

2 − 2(s+ 1)L)E‖
∑P
p=1 ∇Fp(Wc

p)‖22
]

≤ EF (W0)− EF (WC+1) + (Lσ2Ps+ LFσ
2P

2)
∑C
c=0 η

2
c +G2L

∑C
c=0 η

2
c−s

≤ F (W0)− infF + (Lσ2Ps+ LG2 + LFσ
2P

2)
∑C
c=0 η

2
c .

(12)

It then follows that

min
c=1,...,C

E
[
‖
∑P
p=1∇Fp(Wc

p)‖22
]

≤
F (W0)− infF + (Lσ2Ps+ LG2 + LFσ

2P
2)

∑C
c=0 η

2
c∑C

c=0 ηc − (LF /2 + 2L(s+ 1))η2c

≈
F (W0)− infF + (Lσ2Ps+ LG2 + LFσ

2P
2)

∑C
c=0 η

2
c∑C

c=0 ηc
,

where we ignore the higher order term (LF /2 + 2L(s + 1))η2c in the last equation for simplicity, and this does not
affect the order of the final estimate since we will use a diminishing stepsize ηc = O(1/

√
c). Now we can apply [2,

Theorem 4.2] to the last equation to conclude that

min
c=1,...,C

E
[
‖
∑P
p=1∇Fp(Wc

p)‖22
]

≤
√

(F (W0)− infF)[2L(σ2Ps+G2) + LFσ2P]

2C

with the choice of stepsize

ηc =

√
8(F (W0)− infF)

2L(σ2Ps+G2) + LFσ2P

1√
c
.

Hence, we must have
lim inf
c→∞

E‖
∑P
p=1∇Fp(Wc

p)‖ = 0 (13)

proving the first claim.
On the other hand, the bound of ‖Wc −Wc

p‖ in (8) gives

‖Wc −Wc
p‖ ≤

∑c−1
t=c−s ηt‖

∑P
q=1 |Sq|

∑
j∈Itq
∇fj(Wt

q)‖+ ηc−sG (14)

By assumption the sequences {Wc
p}p,c and {Wc}c are bounded and the gradient of fj is continuous, thus ∇fj(Wt

q)
is bounded. Now take c → ∞ in the above inequality and notice that lim

c→∞
ηc = 0, we have lim

c→∞
‖Wc −Wc

p‖ = 0

almost surely, proving the second claim.
Lastly, the Lipschitz continuity of∇Fp further implies

0 = lim inf
c→∞

E‖
∑P
p=1∇Fp(Wc

p)‖ ≥ lim inf
c→∞

E‖
∑P
p=1∇Fp(Wc)‖ = lim inf

c→∞
E‖∇F (Wc)‖ = 0 (15)

Thus there exists a common limit point of Wc,Wc
p that is a stationary point almost surely. The proof is now complete.

2 Sample Code for Sparse Coding
Figure 2 shows the sample code of implementing sparse coding in SFB. D is the feature dimensionality of data and J
is the dictionary size. Users need to write a SF computation function to specify how to compute the sufficient factors:
for each data sample xi, we first compute its sparse code a based on the dictionary B stored in the parameter matrix
sc.para mat. Given a, the sufficient factor u can be computed as Ba − xi and the sufficient factor v is simply a. In
addition, users need to provide a proximal operator function to specify how to project B to the `2 ball constraint set.

3 Implementation Details

3

Input SF Queue Output SF Queue

SF Computing
Thread

Parameter Update
Thread

Parameter
Matrix

SF
Update

Matrices

Training Data

SF
SF

Communication
Thread

Data

Parameter

SF
SF

SFSF

Figure 2: Implementation details on each worker in SFB.

sfb app sc (int D, int J , int staleness)
//SF computation function
function compute sf (sfb app sc):

while (! converge):
X=sample minibatch ()
foreach xi in X:

//compute sparse code
a = compute sparse code (sc.para mat, xi)
//sufficient factor ui
sc.sf list[i].write u (sc.para mat * a-xi)
//sufficient factor vi
sc.sf list[i].write v (a)

commit()
//Proximal operator function
function prox (sfb app sc):

foreach column bi in sc.para mat:
if ‖bi‖2 > 1:
bi =

bi

‖bi‖2

Figure 1: Sample code of sparse coding in SFB

Figure 2 shows the implementation details on
each worker in SFB. Each worker maintains three
threads: SF computing thread, parameter update
thread and communication thread. Each worker
holds a local copy of the parameter matrix and
a partition of the training data. It also maintains
an input SF queue which stores the sufficient fac-
tors computed locally and received remotely and
an output SF queue which stores SFs to be sent
to other workers. In each iteration, the SF com-
puting thread checks the consistency policy de-
tailed in the main paper. If permitted, this thread
randomly chooses a minibatch of samples from
the training data, computes the SFs and pushes
them to the input and output SF queue. The pa-
rameter update thread fetches SFs from the input
SF queue and uses them to update the parame-
ter matrix. In proximal-SGD/SDCA, the proxi-
mal/dual operator function (provided by the user)
is automatically called by this thread as a function
pointer. The communication thread receives SFs
from other workers and pushes them into the input
SF queue and broadcasts SFs in the output SF queue to other workers. One worker is in charge of measuring the
objective value. Once the algorithm converges, this worker notifies all other workers to terminate the job. We imple-
mented SFB in C++. OpenMPI was used for communication between workers and OpenMP was used for multicore
parallelization within each machine.

The decentralized architecture of SFB makes it robust to machine failures. If one worker fails, the rest of workers
can continue to compute and broadcast the sufficient factors among themselves. In addition, SFB possesses high
elasticity [3]: new workers can be added and existing workers can be taken offline, without restarting the running
framework. A thorough study of fault tolerance and elasticity will be left for future work.

4

0

5

10

15

20

30k 100k 325k

R
u

n
ti

m
e

 (
h

o
u

rs
)

Classes in MLR

FMS

SFB

0

5

10

15

20

25

30

35

10k 30k 50k

R
u

n
ti

m
e

 (
h

o
u

rs
)

Latent dimension in DML

0

5

10

15

20

25

10k 30k 50k

R
u

n
ti

m
e

 (
h

o
u

rs
)

Dictionary size in SC

0

2

4

6

8

10

12

14

30k 100k 325k

R
u

n
ti

m
e

 (
H

o
u

rs
)

Classes in L2-MLR

Figure 3: Convergence time versus model size for MLR, DML, SC, L2-MLR (left to right), under SSP with stale-
ness=20.

0

2

4

6

8

10

12

14

3 6 9 12

Sp
e

e
d

u
p

Machines (MLR)

Linear SFB

0

2

4

6

8

10

12

14

3 6 9 12

Sp
e

e
d

u
p

Machines (DML)

0

2

4

6

8

10

12

14

3 6 9 12

Sp
e

e
d

u
p

Machines (SC)

0

2

4

6

8

10

12

14

3 6 9 12

R
u

n
ti

m
e

 (
H

o
u

rs
)

Machines (L2-MLR)

Figure 4: SFB scalability with varying machines, for MLR, DML, SC, L2-MLR (left to right), under SSP with
staleness=20.

4 Additional Experiment Results
Figure 3 shows the convergence time versus model size for MLR, DML, SC, L2-MLR, under SSP with staleness=20.
Figure 4 shows SFB scalability with varying machines under SSP with staleness=20, for MLR, DML, SC, L2-MLR.
Figure 5 shows the iteration throughput (left) and iteration quality (right) for MLR, under SSP (staleness=20). The
minibatch size was set to 100 for both SFB and FMS. As can be seen from the rightmost graph, SFB has a lightly
worse iteration quality than FMS. The reason we conjecture is that the centralized architecture of FMS is more robust
and stable than the decentralized architecture of SFB. On the other hand, the iteration throughput of SFB is much
higher than FMS as shown in the leftmost graph. Figure 6 shows the convergence time of MLR and L2-MLR versus
varying Q in partial broadcasting, under SSP (staleness=20). Figure 7 shows the communication volume of four
models under BSP. As shown in the figure, the communication volume of SFB is significantly lower than FMS and
Spark. Under the BSP consistency model, SFB and FMS share the same iteration quality, hence need the same number
of iterations to converge. Within each iteration, SFB communicates vectors while FMS transmits matrices. As a result,
the communication volume of SFB is much lower than FMS.

References
[1] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, 1989.

[2] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Opera-
tions Research Letters, 31(3):167 – 175, 2003.

[3] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J Shekita,
and Bor-Yiing Su. Scaling distributed machine learning with the parameter server. In USENIX Symposium on Operating
Systems Design and Implementation, 2014.

5

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 10000 20000 30000 40000 50000

It
e

ra
ti

o
n

s

Runtime (seconds)

FMS

SVB

1.75

1.85

1.95

2.05

2.15

2.25

2.35

0 5000 10000 15000 20000

O
b

je
ct

iv
e

Iterations

FMS

SVB

Figure 5: MLR iteration throughput (left) and iteration quality (right) for MLR under SSP (staleness=20).

3.4

3.6

3.8

4

4.2

4.4

1 2 4 8 12

R
u

n
ti

m
e

 (
h

o
u

rs
)

Q

100k 325k

3.69

3.7

3.71

3.72

R
u

n
ti

m
e

(h

o
u

rs
)

3.05
3.1
3.15
3.2
3.25
3.3
3.35
3.4
3.45

1 2 4 8 12

R
u

n
ti

m
e

 (
h

o
u

rs
)

Q

Figure 6: Convergence time versus Q in partial broadcasting for MLR (left) and L2-MLR (right), under SSP (stale-
ness=20).

0

500

1000

1500

2000

30k 100k 325k

C
o

m
m

.
vo

lu
m

e
 (

TB
)

Classes in MLR

Spark

FMS

SFB
0

500

1000

1500

10k 30k 50k

C
o

m
m

.
V

o
lu

m
e

 (
TB

)

Latent dimension in DML

FMS

SFB

0

200

400

600

800

1000

1200

10k 30k 50k

C
o

m
m

.
V

o
lu

m
e

 (
TB

)

Dictionary size in SC

FMS

SFB

0

500

1000

1500

2000

30k 100k 325k

C
o

m
m

. V
o

lu
m

e
 (

TB
)

Classes in L2-MLR

Spark

FMS

SFB

Figure 7: Communication volume for MLR, DML, SC, L2-MLR (left to right) under BSP.

6

