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Abstract

The Kaczmarz method is an iterative algorithm
for solving systems of linear equalities and in-
equalities, that iteratively projects onto these
constraints. Recently, Strohmer and Vershynin
[J. Fourier Anal. Appl., 15(2):262-278, 2009]
gave a non-asymptotic convergence rate anal-
ysis for this algorithm, spurring numerous ex-
tensions and generalizations of the Kaczmarz
method. Rather than the randomized selection
rule analyzed in that work, in this paper we in-
stead discuss greedy and approximate greedy se-
lection rules. We show that in some applica-
tions the computational costs of greedy and ran-
dom selection are comparable, and that in many
cases greedy selection rules give faster conver-
gence rates than random selection rules. Further,
we give the first multi-step analysis of Kaczmarz
methods for a particular greedy rule, and propose
a provably-faster randomized selection rule for
matrices with many pairwise-orthogonal rows.

1 KACZMARZ METHOD

Solving large linear systems is a fundamental problem in
machine learning. Applications range from least-squares
problems to Gaussian processes to graph-based semi-
supervised learning. All of these applications (and many
others) benefit from advances in solving large-scale lin-
ear systems. The Kaczmarz method is a particular itera-
tive algorithm suited for solving consistent linear systems
of the form Az = b. It was originally proposed by Pol-
ish mathematician Stefan Kaczmarz (1937) and later re-
invented by Gordon et al. (1970) under the name alge-
braic reconstruction technique (ART). It has been used in
numerous applications including image reconstruction and
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digital signal processing, and belongs to several general
categories of methods including row-action, component-
solution, cyclic projection, and successive projection meth-
ods (Censor, 1981).

At each iteration k, the Kaczmarz method uses a selec-
tion rule to choose some row iy of A and then projects
the current iterate z* onto the corresponding hyperplane
agc z® = b; . Classically, the two categories of selec-
tion rules are cyclic and random. Cyclic selection repeat-
edly cycles through the coordinates in sequential order,
making it simple to implement and computationally in-
expensive. There are various linear convergence rates for
cyclic selection (see Deutsch, 1985; Deutsch and Hundal,
1997; Galantai, 2005), but these rates are in terms of cycles
through the entire dataset and involve constants that are not
easily interpreted. Further, the performance of cyclic selec-
tion worsens if we have an undesirable ordering of the rows
of A.

Randomized selection has recently become the default se-
lection rule in the literature on Kaczmarz-type methods.
Empirically, selecting 7 randomly often performs substan-
tially better in practice than cyclic selection (Feichtinger
et al., 1992; Herman and Meyer, 1993). Although a num-
ber of asymptotic convergence rates for randomized se-
lection have been presented (Whitney and Meany, 1967;
Tanabe, 1971; Censor et al., 1983; Hanke and Nietham-
mer, 1990), the pivotal theoretical result supporting the
use of randomized selection for the Kaczmarz method was
given by Strohmer and Vershynin (2009). They proved a
non-asymptotic linear convergence rate (in expectation) in
terms of the number of iterations, when rows are selected
proportional to their squared norms. This work spurred nu-
merous extensions and generalizations of the randomized
Kaczmarz method (Needell, 2010; Leventhal and Lewis,
2010; Zouzias and Freris, 2013; Lee and Sidford, 2013; Liu
and Wright, 2014; Ma et al., 2015), including similar rates
when we replace the equality constraints with inequality
constraints.

Rather than cyclic or randomized, in this work we con-
sider greedy selection rules. There are very few results



in the literature that explore the use of greedy selection
rules for Kaczmarz-type methods. Griebel and Oswald
(2012) present the maximum residual rule for multiplica-
tive Schwarz methods, for which the randomized Kaczmarz
iteration is a special case. Their theoretical results show
similar convergence rate estimates for both greedy and ran-
dom methods, suggesting there is no advantage of greedy
selection over randomized selection (since greedy selec-
tion has additional computational costs). Eldar and Needell
(2011) propose a greedy maximum distance rule, which
they approximate using the Johnson-Lindenstrauss (1984)
transform to reduce the computation cost. They show that
this leads to a faster algorithm in practice, and show that
this rule may achieve more progress than random selection
on certain iterations.

In the next section, we define several relevant problems of
interest in machine learning that can be solved via Kacz-
marz methods. Subsequently, we define the greedy se-
lection rules and discuss cases where they can be com-
puted efficiently. In Section 4 we give faster convergence
rate analyses for both the maximum residual rule and the
maximum distance rule, which clarify the relationship of
these rules to random selection and show that greedy meth-
ods will typically have better convergence rates than ran-
domized selection. Section 5 contrasts Kaczmarz meth-
ods with coordinate descent methods, Section 6 consid-
ers a simplified setting where we explicitly compute the
constants in the convergence rates, Section 7 considers
how these convergence rates are changed under approxi-
mations to the greedy rules, and Section 8 discusses the
case of inequality constraints. We further give a non-trivial
multi-step analysis of the maximal residual rule (Section 9),
which is the first multi-step analysis of any Kaczmarz al-
gorithm. By taking the multi-step perspective, we also pro-
pose provably-faster randomized selection rules for matri-
ces A with pairwise-orthogonal rows by using the so-called
“orthogonality graph”. Section 10 presents numerical ex-
periments evaluating greedy Kaczmarz methods.

2 PROBLEMS OF INTEREST

We first consider systems of linear equations,
Ax =, (1)

where A is an m x n matrix and b € IR™. We assume
the system is consistent, meaning a solution x* exists. We
denote the rows of Aby a{ , ..., a,,, where each a; € R™,
and use b = (by,...,b,) ", where each b; € IR. One of
the most important examples of a consistent linear system,
and a fundamental model in machine learning, is the least
squares problem,

1
in =| Az — b||%.
IrgllrgQII x — b

An appealing way to write a least squares problem as a
linear system is to solve the (n + m)-variable consistent
system (see also Zouzias and Freris, 2013)

(0 )()=()

Other applications in machine learning that involve solv-
ing consistent linear systems include: least-squares sup-
port vector machines, Gaussian processes, fitting the fi-
nal layer of a neural network (using squared-error), graph-
based semi-supervised learning or other graph-Laplacian
problems (Bengio et al., 2006), and finding the optimal
configuration in Gaussian Markov random fields (Rue and
Held, 2005).

Kaczmarz methods can also be applied to solve consistent
systems of linear inequalities,

Az < b,

or combinations of linear equalities and inequalities. We
believe there is a lot potential to use this application of
Kaczmarz methods in machine learning. Indeed, a clas-
sic example of solving linear inequalities is finding a linear
separator for a binary classification problem. The classic
perceptron algorithm is a generalization of the Kaczmarz
method, but unlike the classic sublinear rates of perceptron
methods (Novikoff, 1962) we can show a linear rate for the
Kaczmarz method.

Kaczmarz methods could also be used to solve the /-
regularized robust regression problem,

min f(z) = [|Az = blly + Az,

for A > 0. We can formulate finding an = with f(z) < 7
for some constant 7 as a set of linear inequalities. By doing
a binary search for 7 and using warm-starting, this can be
substantially faster than existing approaches like stochas-
tic subgradient methods (which have a sublinear conver-
gence rate) or formulating as a linear program (which is not
scaleable due to the super-linear cost). The above logic ap-
plies to many piecewise-linear problems in machine learn-
ing like variants of support vector machines/regression with
the ¢1-norm, regression under the ¢,-norm, and linear pro-
gramming relaxations for decoding in graphical models.

3 KACZMARZ ALGORITHM AND
GREEDY SELECTION RULES

The Kaczmarz algorithm for solving linear systems begins
from an initial guess 20, and each iteration k chooses a row
ir, and projects the current iterate 2* onto the hyperplane
defined by a;f'; o = b;, . This gives the iteration

ot = gk ”7%%“ 2)



and the algorithm converges to a solution z* under weak
conditions (e.g., each ¢ is visited infinitely often).

We consider two greedy selection rules: the maximum
residual rule and the maximum distance rule. The maxi-
mum residual (MR) rule selects i according to

i) = argmax |alTat’C — by, 3)

which is the equation iy, that is ‘furthest” from being satis-
fied. The maximum distance (MD) rule selects i, accord-
ing to

T,k
a; &% —b;

; “4)

1) = argmax

i [lai|
which is the rule that maximizes the distance between iter-
ations, [|zF*+1 — z¥||.

3.1 EFFICIENT CALCULATIONS FOR SPARSE A

In general, computing these greedy selection rules exactly
is too computationally expensive, but in some applications
we can compute them efficiently. For example, consider a
sparse A with at most ¢ non-zeros per column and at most
7 non-zeros per row. In this setting, we show in Appendix
3.1 that both rules can be computed exactly in O(cr log m)
time, using that projecting onto row ¢ does not change the
residual of row j if a; and a; do not share a non-zero index.

The above sparsity condition guarantees that row ¢ is or-
thogonal to row j, and indeed projecting onto row ¢ will
not change the residual of row j under the more general
condition that a; and a; are orthogonal. Consider what
we call the orthogonality graph: an undirected graph on
m nodes where we place on edge between nodes ¢ and j
if a; is not orthogonal to a;. Given this graph, to update
all residuals after we update a row ¢ we only need to up-
date the neighbours of node ¢ in this graph. Even if A is
dense (r = n and ¢ = m), if the maximum number of
neighbours is g, then tracking the maximum residual costs
O(gr+glog(m)). If g is small, this could still be compara-
ble to the O(r +1log(m)) cost of using existing randomized
selection strategies.

3.2 APPROXIMATE CALCULATION

Many applications, particularly those arising from graphi-
cal models with a simple structure, will allow efficient cal-
culation of the greedy rules using the method of the previ-
ous section. However, in other applications it will be too
inefficient to calculate the greedy rules. Nevertheless, El-
dar and Needell (2011) show that it’s possible to efficiently
select an iy, that approximates the greedy rules by making
use of the dimensionality reduction technique of Johnson
and Lindenstrauss (1984). Their experiments show that ap-
proximate greedy rules can be sufficiently accurate and that

they still outperform random selection. After first analyz-
ing exact greedy rules in the next section, we analyze the
effect of using approximate rules in Section 7.

4 ANALYZING SELECTION RULES

All the convergence rates we discuss use the following re-
lationship between ||z%*+1 — z*|| and ||2* — z*|:

o+t — e

_ ka _ $*||2—H.’Ek+1 _ xk||2 + 2<l‘k+1 _ x*,xk+1—xk>.

(=0, by orthogonality)

Using the definition of 2**! from (2) and simplifying, we
obtain for the selected 7;, that

T .k 2
*”2 _ (aikx — blk)

o I L

4.1 RANDOMIZED AND MAXIMUM RESIDUAL

We first give an analysis of the Kaczmarz method with uni-
form random selection of the row to update ¢ (which we
abbreviate as ‘U’). Conditioning on the o-field F;_; gen-
erated by the sequence {z°,z', ..., z¥~1}, and taking ex-
pectations of both sides of (5), when i, is selected using U
we obtain

E[fla**! —2*||?)
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where [|A||2, 5 := max;{|a;||*} and o(A,?2) is the Hoff-
man (1952) constant. We’ve assumed that =¥ is not a so-
lution, allowing us to use Hoffman’s bound. When A has
independent columns, o (A, 2) is the nth singular value of
A and in general it is the smallest non-zero singular value.

The argument above is related to the analysis of Vishnoi
(2013) but is simpler due to the use of the Hoffman bound.
Further, this simple argument makes it straightforward to
derive bounds on other rules. For example, we can de-
rive the convergence rate bound of Strohmer and Vershynin
(2009) by following the above steps but selecting ¢ non-
uniformly with probability |la;|?/||Al|% (where ||A|F is



the Frobenius norm of A). We review these steps in Ap-
pendix 4.1, showing that this non-uniform (NU) selection
strategy has

2
]E[Hl'k+1 o SL'*||2] < (1 o G'(A,Q) )ka o x*”? (7)

[

This strategy requires prior knowledge of the row norms of
A, but this is a one-time computation that can be reused
for any linear system involving A. Because ||A[|% <
m||A||2, 2. the NU rate (7) is at least as fast as the uniform

rate (6).

While a trivial analysis shows that the MR rule also satis-
fies (6) in a deterministic sense, in Appendix 4.1 we give a
tighter analysis of the MR rule showing it has the conver-
gence rate

o(A,00)? .
ottt o < (1= T It - o @

where the Hoffman-like constant (A, co) satisfies the re-
lationship

o(A,2)
vm

Thus, at one extreme the maximum residual rule obtains the
same rate as (6) for uniform selection when o (A, 2)?/m =~
o(A,0)?. However, at the other extreme the maximum
residual rule could be faster than uniform selection by a
factor of m (0(A,00)? ~ o(A,2)?). Thus, although the
uniform and MR bounds are the same in the worst case, the
MR rule can be superior by a large margin.

<o(4,00) <0(4,2).

In contrast to comparing U and MR, the MR rate may be
faster or slower than the NU rate. This is because

[Allsc2 < 1 Allp < Vml[Allso,2,

so these quantities and the relationship between o (A, 2)
and (A, oo) influence which bound is tighter.

4.2 TIGHTER UNIFORM AND MR ANALYSIS

In our derivations of rates (6) and (8), we use the following
inequality
laill* < NAl%2 Vi, ©)

which leads to a simple result but could be very loose if the
range of row norms is large. In this section, we give tighter
analyses of the U and MR rules that are less interpretable
but are tighter because they avoid this inequality.

In order to avoid using this inequality for our analysis of
U, we can absorb the row norms of A into a row weighting
matrix D, where D = diag(||a1]], |laz]|,- - ., ||am]|). Defin-
ing A := D' A, we show in Appendix 4.2 that this results

in the following upper bound on the convergence rate for
uniform random selection,

A 2
Blla+ - o) < (1- 2220 ot~ o)

A similar result is given by Needell et al. (2015) under the
stronger assumption that A has independent columns. The
rate in (10) is tighter than (6), since 0(A4,2)/[|Aljco,2 <
o(A,2) (van der Sluis, 1969). Further, this rate can be
faster than the non-uniform sampling method of Strohmer
and Vershynin (2009). For example, suppose row % is or-
thogonal to all other rows but has a significantly larger row
norm than all other row norms. In other words, ||a;|| >>
|la;|| for all j # i. In this case, NU selection will repeat-
edly select row ¢ (even though it only needs to be selected
once), whereas U will only select it on each iteration with
probability 1/m. It has been previously pointed out that
Strohmer and Vershynin’s method can perform poorly if
you have a problem where one row norm is significantly
larger than the other row norms (Censor et al., 2009). This
result theoretically shows that U can have a tighter bound
than the NU method of Strohmer and Vershynin.

In Appendix 4.2, we also give a simple modification of our
analysis of the MR rule, which leads to the rate

(A, 0)?

||.’L'k+1 _x*||2 < (1 _
llai,[I?

)|w’“ —a'|%an
This bound depends on the specific ||a;, || corresponding
to the i; selected at each iteration k. This convergence
rate will be faster whenever we select an 5, with ||a;, || <
|A]|co,2- However, in the worst case we repeatedly select
i values with ||a;, || = [|A|lco,2 SO there is no improve-
ment. In Section 9, we return to this issue and give tighter
bounds on the sequence of ||a;, || values for problems with
sparse orthogonality graphs.

4.3 MAXIMUM DISTANCE RULE

If we can only perform one iteration of the Kaczmarz
method, the optimal rule (with respect to iteration progress)
is in fact the MD rule. In Appendix 4.3, we show that this
strategy achieves a rate of

Jah T — | < (1 . a(A,oo>2) et —2* 2, (12)

where o (A, 00) satisfies

e O’(A,Z) 0(A,2) o(A4,00) (A 00) <o (A
{ A ||Aoo,2}< (4, 00)<old,2).

Thus, the maximum distance rule is at least as fast as the
fastest among the U/NU/MR, rules, where MR, refers
to rate (8). Further, in Appendix 7.3 we show that this new
rate is not only simpler but is strictly tighter than the rate re-
ported by Eldar and Needell (2011) for the exact MD rule.




Table 1: Comparison of Convergence Rates

Ux | U| NU | MR, | MR | MD
U | = =] <] < | =] <
U — P P P | <
NU — | p P | <
MR = <
MD =

In Table 4.3, we summarize the relationships we have dis-
cussed in this section among the different selection rules.
We use the following abbreviations: U, - uniform (6), U
- tight uniform (10), NU - non-uniform (7), MR, - maxi-
mum residual (8), MR - tight maximum residual (11) and
MD - maximum distance (12). The inequality sign (<) in-
dicates that the rate for the selection rule listed in the row
is slower or equal to the rule listed in the column, while
we have written ‘P’ to indicate that the faster method is
problem-dependent.

S KACZMARZ AND COORDINATE
DESCENT

With the exception of the tighter U and MR rate, the re-
sults of the previous section are analogous to the recent
results of Nutini et al. (2015) for coordinate descent meth-
ods. Indeed, if we apply coordinate descent methods to
minimize the squared error between Az and b then we ob-
tain similar-looking rates and analogous conclusions. With
cyclic selection this is called the Gauss-Seidel method, and
as discussed by Ma et al. (2015) there are several connec-
tions/differences between this method and Kaczmarz meth-
ods. In this section we highlight some key differences.

First, the previous work required strong-convexity which
would require that A has independent columns. This is of-
ten unrealistic, and our results from the previous section
hold for any A. Second, here our results are in terms of
the iterates ||z¥ — x*||, which is the natural measure for
linear systems. The coordinate descent results are in terms
of f(z¥) — f(2*) and although it’s possible to use strong-
convexity to turn this into a rate on ||z* — z*||, this would
result in a looser bound and would again require strong-
convexity to hold (see Ma et al., 2015). On the other hand,
coordinate descent gives the least squares solution for in-
consistent systems. However, this is also true of Kaczmarz
method using the formulation in Section 2. Another subtle
issue is that the Kaczmarz rates depend on the row norms of
A while the coordinate descent rates depend on the column
norms. Thus, there are scenarios where we expect Kacz-
marz methods to be much faster and vice versa. Finally,
we note that Kaczmarz methods can be extended to allow
inequality constraints (see Section 8§).

As discussed by Wright (2015), Kaczmarz methods can
also be interpreted as coordinate descent methods on the
dual problem

1
min | ATy[* = b7y, (13)
Y

where © = ATy* so that Az = AATy* = b. Applying
the Gauss-Southwell rule in this setting yields the MR rule
while applying the Gauss-Southwell-Lipschitz rule yields
the MD rule (see Appendix 5 for details and numerical
comparisons, indicating that in some cases Kaczmarz sub-
stantially outperforms CD). However, applying the analysis
of Nutini et al. (2015) to this dual problem would require
that A has independent rows and would only yield a rate on
the dual objective, unlike the convergence rates in terms of
||z* —a*|| that hold for general A from the previous section.

6 EXAMPLE: DIAGONAL A

To give a concrete example of these rates, we consider the
simple case of a diagonal A. While such problems are
not particularly interesting, this case provides a simple set-
ting to understand these different rates without referring to
Hoffman bounds.

Consider a square diagonal matrix A with a;; > 0 for all 4.
In this case, the diagonal entries are the eigenvalues \; of
the linear system. The convergence rate constants for this
scenario are given in Table 2. 'We provide the details in

Table 2: Convergence Rate Constants for Diagonal A

)\2
1_ m
Ve ( mA%)
1
vl ()
m
N - fm
N ( sz)

MR

-1
1 1
MR 1A2lZA2]

1
MD (1 — >

m
Appendix 6 of the derivations for o(A, 00) and o (A, c0),
as well as substitutions for the uniform, non-uniform, and
uniform tight rates to yield the above table. We note that

the uniform tight rate follows from A2, (A) being equivalent
to the minimum eigenvalue of the identity matrix.

If we consider the most basic case when all the eigenval-
ues of A are equal, then all the selection rules yield the



same rate of (1 — 1/m) and the method converges in at
most m steps for greedy selection rules and in at most
O(mlogm) steps (in expectation) for the random rules
(due to the ‘coupon collector’ problem). Further, this is
the worst situation for the greedy MR and MD rules since
they satisfy their lower bounds on o'( A, co) and o (A, o).

Now consider the extreme case when all the eigenvalues
are equal except for one. For example, consider when \; =

Aa == Ap_1 > Ay, with m > 2. Letting o = \2(A)
foranyi=1,...,m — 1and 8 = A2 (A), we have
6. ;
ma am—-1)+8  a+p(m—1)
Uso NU MRoo
S 1
Af, a4+ B(m—1) m
R U, MD

Thus, Strohmer and Vershynin’s NU rule would actually be
the worst rule to use, whereas U and MD are the best. In
this case o (4, 00)? is closer to its upper bound (= ) so
we would expect greedy rules to perform well.

7 APPROXIMATE GREEDY RULES

In many applications, computing the exact MR or MD rule
will be too inefficient, but we can always approximate it
using a cheaper approximate greedy rule, as in the method
of Eldar and Needell (2011). In this section we consider
methods that compute the greedy rules up to multiplicative
or additive errors.

7.1 MULTIPLICATIVE ERROR

Suppose we have approximated the MR rule such that there
is a multiplicative error in our selection of i,

1k

laT 2k — b, | > miax|a;fpack —bi|(1 — eg),

for some €5, € [0, 1). In this scenario, using the tight anal-
ysis for the MR rule, we show in Appendix 7.1 that

1—e)%0(A, 0)?
ka—i—l _x*HQ <[(1- ( 6k> 0( ,OO) ||$k —J]*||2.
2
lai, |

Similarly, if we approximate the MD rule up to a multi-
plicative error,

alzk — b,

?

[ladll

T .k
a; " — b,

i |

(1 - E/<7)7

> max
7

for some €, € [0, 1), then we show in Appendix 7.1 that
the following rate holds,

ka+1 _ x*HQ < (1 _ (1 _ Ek)Qo'(A,OO)2> ||.C6k _ 1;*||2

These scenarios do not require the error to converge to 0.
However, if €}, or €, is large, then the convergence rate will
be slow.

7.2 ADDITIVE ERROR

Suppose we select i using the MR rule up to additive error,

T

T
\%C

2F —b;, |7 > max |a] 2% — b;|* — e,
K3

or similarly for the MD rule,

2
T .k 2
a; % — b;

llasll

T .k
a; " —bj,

> max
@i |

(2

_Elm

for some €, > 0 or € > 0, respectively. We show in

Appendix 7.2 that this results in the following convergence

rates for the MR and MD rules with additive error (respec-
tively),

2

ot a2 < (1= D Yok -

a2 a2

and
2" — 2*]]* < (1 — (4, 00)?)|Jz"* — z*||” + &.

With an additive error, we need the errors to go to 0 in order
for the algorithm to converge; if it does go to 0 fast enough,
we obtain the same rate as if we were calculating the exact
greedy rule. In the approximate greedy rule used by Eldar
and Needell (2011), there is unfortunately a constant addi-
tive error. To address this, they compare the approximate
greedy selection to a randomly selected ¢, and take the one
with the largest distance. This approach can be substan-
tially faster when far from the solution, but may eventually
revert to random selection. We give details comparing El-
dar and Needell’s rate to our above rate in Appendix 7.3,
but here we note that the above bounds will typically be
much stronger.

8 SYSTEMS OF LINEAR INEQUALITIES

Kaczmarz methods have been extended to systems of linear
inequalities,

az-Tx < b;

alz = b

where the disjoint index sets /< and I— partition the set
{1,2,...,m} (Leventhal and Lewis, 2010). In this setting
the method takes the form

(i€ l<)

(iel). (1

k
k+1 _ k B
" =g — ag,
lal|> ™
with g = @l =b)T (i€ 1o
alaz® — b, (i elo),



where (y)T = max{~v,0}. In Appendix 8 we derive anal-
ogous greedy rules and convergence results for this case.
The main difference in this setting is that the rates are in
terms of the distance of 2* to the feasible set S of (14),

d(z*,8) = min |z* — 2]l = [|z* = Ps(a")]2,
z€

where Pg(x) is the projection of z onto S. This gener-
alization is needed because with inequality constraints the
different iterates 2* may have different projections onto S.

9 MULTI-STEP ANALYSIS

All existing analyses of Kaczmarz methods consider con-
vergence rates that depend on a single step (in the case
of randomized/greedy selection rules) or a single cycle (in
the cyclic case). In this section we derive the first tighter
multi-step convergence rates for iterative Kaczmarz meth-
ods; we first consider the MR rule, and then we explore
the potential of faster random selection rules. These new
rates/rules depend on the orthogonality graph introduced in
Section 3.1, and thus in some sense they depend on the ‘an-
gle’ between rows. This dependence on the ‘angle’ is simi-
lar to the classic convergence rate analyses of cyclic Kacz-
marz algorithms, and is a property that is not captured by
existing randomized/greedy analyses (which only depend
on the row norms).

9.1 MULTI-STEP MAXIMUM RESIDUAL BOUND

If two rows a; and a; are orthogonal, then if the equality
al'z* = b; holds at iteration z* and we select ij, = j, then
we know that al x**1 = b;. More generally, updating iy,
makes equality i satisfied but could make any equality j
unsatisfied where a; is not orthogonal to a;,. Thus, after
we have selected row 7y, equation ¢, will remain satisfied
for all subsequent iterations until one of its neighbours is
selected in the orthogonality graph. During these subse-
quent iterations, it cannot be selected by the MR rule since
its residual is zero.

In Appendix 9.1, we show how the structure of the orthog-
onality graph can be used to derive a worst-case bound on
the sequence of ||a;, || values that appear in the tighter anal-
ysis of the MR rule (11). In particular, we show that the MR
rule achieves a convergence rate of

lz* — 2*)|* <

k
A 00)2
O(1)| max ¢ 5@ H (1 — W) R(2)7
S(G) : llas
JES(G)
where Ry = [|2° — z*|| and the maximum is taken over

the geometric means of all the star subgraphs S(G) of the
orthogonality graph with at least two nodes (these are the

connected subgraphs that have a diameter of 1 or 2). Al-
though this result is quite complex, even to state, there is
a simple implication of it: if the values of ||a;|| that are
close to || Ao 2 are all more than two edges away from
each other in the orthogonality graph, then the MR rule
converges substantially faster than the worst-case MR,
bound (8) indicates.

A multi-step analysis of coordinate descent with the Gauss-
Southwell rule and exact coordinate optimization was re-
cently considered by Nutini et al. (2015). To derive this
bound, they convert the problem to the same weighted
graph construction we use in Appendix 9.1. However, they
were only able to derive a bound on this construction in the
case of chain-structured graphs. Our result is a generaliza-
tion of their result to the case of general graphs, and indeed
our result is tighter than the bound that they conjectured
would hold for general graphs. Since the graph construc-
tion in this work is the same as in their work, our proof
also gives the tightest known bound on coordinate descent
with the Gauss-Southwell rule and exact coordinate opti-
mization.

9.2 FASTER RANDOMIZED KACZMARZ RULES

The orthogonality graph can also be used to design faster
randomized algorithms. To do this, we use the same prop-
erty as in the previous section: after we have selected ¢y,
equality ¢;, will be satisfied on all subsequent iterations
until we select one of its neighbours in the orthogonality
graph. Based on this, we call a row 7 ‘selectable’ if ¢ has
never been selected or if a neighbour of 7 in the orthog-
onality graph has been selected since the last time ¢ was
selected.! We use the notation s¥ = 1 to denote that row i
is ‘selectable’ on iteration k, and otherwise we use sf =0
and say that 7 is ‘not selectable’ at iteration k. There is
no reason to ever update a ‘not selectable’ row, because by
definition the equality is already satisfied. Based on this,
we propose two simple randomized schemes:

1. Adaptive Uniform: select i, uniformly from the se-
lectable rows.

2. Adaptive Non-Uniform: select i; proportional to
|la;||* among the selectable rows.

Let Ay /Ay denote the sub-matrix of A/A formed by con-
catenating the selectable rows on iteration &, and let my
denote the number of selectable rows. If we are given the
set of selectable nodes at iteration k, then for adaptive uni-
form we obtain the bound

* U(Ak32)2 *
Eflle*+ — 2" < (1 ot — 2|2,
my

'If we initialize with 2° = 0, then instead of considering all
nodes as initially selectable we can restrict to the nodes ¢ with
b; # 0 since otherwise we have aZTxO = b, already.



while for adaptive non-uniform we obtain the bound

* U<Ak72)2 *
Bl -t P < (1= S et - o7

If we are not on the first iteration, then at least one node is
not selectable and these are strictly faster than the previous
bounds. The gain will be small if most nodes are selectable
(which would be typical of dense orthogonality graphs), but
the gain can be very large if only a few nodes are selectable
(which would be typical of sparse orthogonality graphs).

Theoretical Rate: If we form a vector s* containing the
values s¥, it’s possible (at least theoretically) to compute
the expected value of s* by viewing it as a Markov chain.
In particular, s° is a vector of ones while p(s*+1[s*) is
equal to the normalized sum of all ways s*** could be the
set of selectable nodes given the selectable nodes s* and the
orthogonality graph (most p(s¥*1|s*) values will be zero).
Given this definition, we can express the probability of a
particular s* recursively using the Chapman-Kolmogorov
equations,

p(s* ) = p(sFTs*)p(sh).

If we are interested in the probability that a particular sf =
1, we can sum p(s*) over values s* compatible with this
event. Unfortunately, deriving tighter bound using these

probabilities appears to be highly non-trivial.

Practical Issues: In order for the adaptive methods to be
efficient, we must be able to efficiently form the orthog-
onality graph and update the set of selectable nodes. If
each node has at most g neighbours in the orthogonal-
ity graph, then the cost of updating the set of selectable
nodes and then sampling from the set of selectable nodes
is O(glog(m)) (we give details in Appendix 9.2). In order
for this to not increase the iteration cost compared to the
NU method, we only require the very-reasonable assump-
tion that g log(m) = O(n+log(m)). In many applications
where orthogonality is present, g will be far smaller than
this.

However, forming the orthogonality graph at the start may
be prohibitive: it would cost O(m?n) in the worst case to
test pairwise orthogonality of all nodes. In the sparse case
where each column has at most ¢ non-zeros, we can find
an approximation to the orthogonality graph in O(c?n) by
assuming that all rows which share a non-zero are non-
orthogonal. Alternately, in many applications the orthog-
onality graph is easily derived from the structure of the
problem. For example, in graph-based semi-supervised
learning where the graph is constructed based on the k-
nearest neighbours, the orthogonality graph will simply be
the given k-nearest neighbour graph as these correspond
the columns that will be mutually non-zero in A.

10 EXPERIMENTS

Eldar and Needell (2011) have already shown that ap-
proximate greedy rules can outperform randomized rules
for dense problems. Thus, in our experiments we focus
on comparing the effectiveness of different rules on very
sparse problems where our max-heap strategy allows us to
efficiently compute the exact greedy rules. The first prob-
lem we consider is generating a dataset A with a 50 by
50 lattice-structured dependency (giving n = 2500). The
corresponding A has the following non-zero elements: the
diagonal elements A; ;, the upper/lower diagonal elements
A; i1 and A; 4 ; when 4 is not a multiple of 50 (horizontal
edges), and the diagonal bands A; ;450 and A;50,; (verti-
cal edges). We generate these non-zero elements from a
N(0,1) distribution and generate the target vector b = Az
using z ~ N(0,T). Each row in this problem has at most
four neighbours, and this type of sparsity structure is typi-
cal of spatial Gaussian graphical models and linear systems
that arise from discretizing two-dimensional partial differ-
ential equations.

The second problem we consider is solving an overdeter-
mined consistent linear system with a very sparse A of size
2500 x 1000. We generate each row of A independently
such that there are log(m)/2m non-zero entries per row
drawn from a uniform distribution between 0 and 1. To
explore how having different row norms affects the perfor-
mance of the selection rules, we randomly multiply one out
of every 11 rows by a factor of 10,000.

For the third problem, we solve a label propagation prob-
lem for semi-supervised learning in the ‘two moons’
dataset (Zhou et al., 2004). From this dataset, we generate
2000 samples and randomly label 100 points in the data.
We then connect each node to its 5 nearest neighbours.
Constructing a data set with such a high sparsity level is
typical of graph-based methods for semi-supervised learn-
ing. We use a variant of the quadratic labelling criterion of
Bengio et al. (2006),

. 1
hing 52 2wl = w)’

where y is our label vector (each y; can take one of 2 val-
ues), S is the set of labels that we do know and w;; > 0 are
the weights assigned to each y; describing how strongly we
want the label y; and y; to be similar. We can express this
quadratic problem as a linear system that is consistent by
construction (see Appendix 10), and hence apply Kaczmarz
methods. As we labelled 100 points in our data, the result-
ing linear system has a matrix of size 1900 x 1900 while
the number of neighbours ¢ in the orthogonality graph is at
most 5.

In Figure 1 we compare the normalized squared error and
distance against the iteration number for 8 different selec-
tion rules: cyclic (C), random permutation (RP - where we
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Figure 1: Comparison of Kaczmarz selection rules for squared error (top) and distance to solution (bottom).

change the cycle order after each pass through the rows),
uniform random (U), adaptive uniform random (A(u)),
non-uniform random NU, adaptive non-uniform random
(A(Nu)), maximum residual (MR), and maximum distance
(MD).

In experiments 1 and 3, MR performs similarly to MD and
both outperform all other selection rules. For experiment 2,
the MD rule outperforms all other selection rules in terms
of distance to the solution although MR performs better on
the early iterations in terms of squared error. In Appendix
10 we explore a ‘hybrid’ method on the overdetermined
linear system problem that does well on both measures. In
Appendix 10, we also plot the performance in terms of run-
time.

The new randomized A(u) method did not give signifi-
cantly better performance than the existing U method on
any dataset. This agrees with our bounds which show that
the gain of this strategy is modest. In contrast, the new ran-
domized A(Nu) method performed much better than the ex-
isting NU method on the over-determined linear system in
terms of squared error. This again agrees with our bounds
which suggest that the A(Nu) method has the most to gain
when the row norms are very different. Interestingly, in
most experiments we found that cyclic selection worked
better than any of the randomized algorithms. However,
cyclic methods were clearly beaten by greedy methods.

11 DISCUSSION

In this work, we have proven faster convergence rate
bounds for a variety of row-selection rules in the con-

text of Kaczmarz methods for solving linear systems. We
have also provided new randomized selection rules that
make use of orthogonality in the data in order to achieve
better theoretical and practical performance. While we
have focused on the case of non-accelerated and single-
variable variants of the Kaczmarz algorithm, we expect that
all of our conclusions also hold for accelerated Kaczmarz
and block Kaczmarz methods (Needell and Tropp, 2014;
Lee and Sidford, 2013; Liu and Wright, 2014; Gower and
Richtarik, 2015; Oswald and Zhou, 2015).
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