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Abstract

We develop a general framework for inverse op-
timal control that distinguishes between rational-
izing demonstrated behavior and imitating induc-
tively inferred behavior. This enables learning
for more general imitative evaluation measures
and differences between the capabilities of the
demonstrator and those of the learner (i.e., differ-
ences in embodiment). Our formulation takes the
form of a zero-sum game between a learner at-
tempting to minimize an imitative loss measure,
and an adversary attempting to maximize the loss
by approximating the demonstrated examples in
limited ways. We establish the consistency and
generalization guarantees of this approach and il-
lustrate its benefits on real and synthetic imita-
tion learning tasks.

1 INTRODUCTION

Inverse optimal control (IOC) [Kalman, 1964, Rust, 1988,
Boyd et al., 1994] and inverse reinforcement learning
(IRL) [Ng and Russell, 2000, Abbeel and Ng, 2004] at-
tempt to rationalize demonstrated sequential decision mak-
ing by estimating a reward/cost function that makes ob-
served decision sequences optimal. When the learned re-
ward is defined over abstract properties of states and ac-
tions [Ng and Russell, 2000], it can generalize to new deci-
sion processes with states and actions that are similarly de-
scribed. In contrast, methods that directly estimate a policy
mapping from states to controls—also known as “behav-
ioral cloning” [Pomerleau, 1989]—often generalize poorly
when attempting to predict goal-directed sequential deci-
sions when aspects of the decision process change.

Unfortunately, the basic IOC problem—selecting a re-
ward function that makes demonstrated decision sequences
optimal—is ill-posed, since degenerate solutions exist
(e.g., setting all rewards to zero makes every decision se-

quence optimal) [Ng and Russell, 2000]. When demon-
strated behavior is noisy, only degenerate solutions may
remain as valid solutions to the basic IOC problem.
Existing methods pose the problem in various ways to
avoid degenerate solutions. Maximum margin planning
(MMP) [Ratliff et al., 2006] seeks a reward function that
makes demonstrated sequences have larger reward than
all alternatives by a structured loss measure. Maximum
(causal) entropy IRL [Ziebart et al., 2010], and its exten-
sions [Boularias et al., 2011, Levine et al., 2011], seek an
entropy-maximizing distribution over sequences/policies
that matches the feature-based components of the reward
function with demonstrated sequences. Each method is
constructed around a specific loss function: MMP mini-
mizes the the structured hinge loss, while MaxEnt IRL min-
imizes the (causal) log loss.

A typical assumption in IOC is that the demonstrator and
the learner operate under identical decision processes. In
other words, it is assumed that the demonstrator and im-
itator utilize the same action space, and have the same
state transition dynamics. In such settings, imitation can
be effectively accomplished by adequately predicting what
a demonstrator would do in a new situation. We con-
sider generalized imitation learning problems where the
abilities of the demonstrator and the learner are differ-
ent. This situation arises frequently in practice due to
differences in embodiment between human demonstra-
tors and robotic imitators [Nehaniv and Dautenhahn, 2002,
Alissandrakis et al., 2002], and, more generally, when
autonomously-controlled devices are more expensive and
less capable than manually-controlled devices.

We propose a more general framework for inverse optimal
control that is both consistent and computationally practi-
cal for a range of loss functions and situations where imita-
tion learning across different embodiments is required. The
key philosophy of our approach is that unknown properties
of how the demonstrator would behave in new situations
should be treated as pessimistically as possible, since any
unwarranted assumptions could lead to substantial errors
when behavior is evaluated under more general loss func-



tions or transferred across embodiments. Our formulation
produces a zero-sum game between: the learner seeking a
control policy to minimize loss; and an adversary seeking a
control policy that adequately characterizes the demonstra-
tions, but maximizes the learner’s loss. We establish con-
sistency and generalization guarantees, develop algorithms
for inference and learning under this formulation, and il-
lustrate the benefits of this approach on synthetic and real
imitation learning tasks.

2 BACKGROUND & NOTATION

In this paper, we denote single variables with assigned
values in lowercase (e.g., a, s), multivariates with values
in bold (e.g., s1:T ), and random variables using upper-
case (e.g., At or S1:T ). Decision processes are defined
by state and action sets (S and A) and the state transi-
tion dynamics τ , which describe the distribution of next
states st+1 ∈ S given current state st ∈ S and action
at ∈ A: τ(st+1|st, at). We make use of causally con-
ditioned probability distributions [Kramer, 1998],

P (y1:T ||x1:T ) ,
T∏
t=1

P (yt|y1:t−1,x1:t),

to compactly represent a decision process’s state transi-
tion dynamics,

τ(s1:T ||a1:T−1) ,
T∏
t=1

τ(st|s1:t−1,a1:t−1),

and stochastic control policy,

π(a1:T ||s1:T ) ,
T∏
t=1

π(at|a1:t−1, s1:t).

Multiplied together, these produce a joint probability dis-
tribution over the states and actions:

P (a1:T , s1:T ) = π(a1:T ||s1:T )τ(s1:T ||a1:T−1).

We denote deterministic control policies (a special case
of stochastic control policies) mapping from states or state
histories to actions as δ(st) or δ(s1:t). In addition to denot-
ing the demonstrator’s full control policy, π, under dynam-
ics, τ , we also consider distributions of trajectories sampled
from the demonstrator’s distribution as π̃, τ̃ , and a learner’s
control policy, π̂, under a (possibly different) set of dynam-
ics τ̂ , and estimates of the demonstrator’s policy, π̌. We
similarly denote states, actions, and deterministic policies
corresponds to these different sources as s̃, ŝ, š, ã, â, δ̂, etc.

3 PROBLEM DEFINITION

We begin by formally defining the supervised learning task
of imitation learning with general loss measures in Defi-
nition 1. The learner’s performance is measured by a loss

Figure 1: Learning to imitate a slower robot capable of
walking over barriers.

function relating the expected state sequence of the learned
control policy with the state sequence resulting from the
demonstrator’s control policy. The key inductive reasoning
challenge is for the learner to produce a good control pol-
icy when demonstrations are unavailable by appropriately
inferring the demonstrator’s behaviors in such situations.

Definition 1. In the task of imitation learning with gen-
eral losses and embodiments, at training time: demon-
strated traces of behavior are available from distribu-
tion P̃ (A1:T ,S1:T ) under a dynamical system with known
dynamics, τ(S1:T ||A1:T ), and unknown control policy
π(A1:T ||S1:T ). The learner attempts to choose a con-
trol policy π̂(Â1:T ||Ŝ1:T ) for potentially different dynam-
ics, τ̂(Ŝ1:T ||Â1:T ), that, at testing time, minimizes a given
loss function relating (unknown) demonstration policies
and learned policies: minπ̂ lossτ,τ̂ (π, π̂).

When the demonstrator and the learner operate under dif-
ferent state-action transition dynamics, τ 6= τ̂ , we refer to
this setting as the imitation learning across embodiments
problem. We assume that a loss function expressing the un-
desirability of the imitator’s differences from the demon-
strator is available. The key challenge is that the learner
must still estimate the control policy of the demonstrator
to be able to generalize to new situations, while also con-
structing its own control policy to overcome its differences
in embodiment. We show a simple illustrative example of
this in Figure 1.

The ability to minimize the desired imitative loss func-
tion when provided enough demonstration data and a suf-
ficiently expressive characterization of decision policies is
desired in an imitation learning algorithm. This is formally
known as Fisher consistency (Def. 2).

Definition 2. An imitation learning algorithm producing
policy πimit is Fisher consistent if, given the demonstra-
tor’s control policy for any demonstrator/imitator decision



processes, (τ, τ̂), and a sufficiently expressive feature rep-
resentation for policies, the policy πimit is a loss minimizer:

πimit ∈ argmin
π̂

E [lossτ,τ̂ (π, π̂)] . (1)

We focus our attention in this work on loss functions that
additively decompose over the state sequence1:

EP (a1:T ,s1:T ,â1:T ,ŝ1:T )

[
T∑
t=1

loss(St, Ŝt)
∣∣∣∣π, τ, π̂, τ̂

]
,

where the state-action distribution is obtained by
combining a stochastic control policy with a state-
transition dynamics distribution: P (a1:T , s1:T , â1:T , ŝ1:T ) =

τ(s1:T ||a1:T−1) π(a1:T ||s1:T ) τ̂(ŝ1:T ||â1:T−1) π̂(â1:T ||ŝ1:T ).
Important to this problem definition is the independence
between the demonstrator and the learner: there is no direct
influence of one’s actions on the other’s state or actions, as
shown in the factorization of the joint distribution.

4 ADVERSARIAL APPROACH

We develop an adversarial approach to the problem
of imitation learning with general losses and embodi-
ments (Definition 1) by combining the idea of rationaliz-
ing demonstrated behaviors from inverse optimal control
[Abbeel and Ng, 2004] with a game-theoretic perspective
[Topsøe, 1979, Grünwald and Dawid, 2004] that incorpo-
rates different imitative losses. Our approach assumes that
except for certain properties of the limited samples of avail-
able demonstrated behavior, the demonstrator’s policy is
the worst-case possible for the learner. This avoids gener-
alizing from available demonstrations in a optimistic man-
ner that may be unrealistic and ultimately detrimental to
the learner. Using tools from convex optimization (Theo-
rem 3) and constraint generation (Algorithm 1), this for-
mulation can be solved efficiently (Algorithm 2). Though
the demonstrator’s true policy is unlikely to be maximally
detrimental to the learner, considering it as such leads to
Fisher consistency (Theorem 1), provides strong general-
ization guarantees (Theorem 2), and avoids making any un-
warranted assumptions.

4.1 ADVERSARIAL FORMULATION AND
PROPERTIES

Our approach employs a game-theoretic formulation of
the prediction task for additive state-based losses. We in-
troduce an adversarially-estimated policy, π̌, which must
be similar to demonstrated training data traces, but is the
worst-case for the learner otherwise, as formalized in Defi-
nition 3.

1Loss functions for state-action pairs can also be incorporated
by defining new states that (partially) “remember” previous state-
action histories.

Definition 3. The adversarial inverse optimal control
learner for the joint demonstrator/learner transition dy-
namics, (τ, τ̂ ) is defined as a zero-sum game in which each
player chooses a stochastic control policy, π̂ or π̌, optimiz-
ing:

min
π̂

max
π̌∈Ξ̃

E

[
T∑
t=1

loss(Ŝt, Št)

∣∣∣∣∣π̌, τ, π̂, τ̂
]
, (2)

where Ξ̃ represents a convex set of constraints mea-
sured from characteristics of the demonstrated data (e.g.,
the moment-matching constraints: π̌ ∈ Ξ̃ ⇐⇒
E[
∑T
t=1 φ(Št)|π̌, τ ] = c̃ , E[

∑T
t=1 φ(St)|π̃, τ̃ ] of in-

verse reinforcement learning [Abbeel and Ng, 2004]) and
the joint state-action distributions are realized by com-
bining control policy and state-transition dynamics: e.g.,
P (â1:T , ŝ1:T ) = π̂(â1:T ||ŝ1:T )τ̂(ŝ1:T ||â1:T−1).

Though maximum margin methods, such as MMP
[Ratliff et al., 2006] in the imitation learning setting, can
similarly incorporate arbitrary structured loss functions,
they are not Fisher consistent (Def. 2) even for the rel-
atively simple Hamming loss (i.e., number of state mis-
matches between two sequences).2 We establish the con-
sistency of the adversarial inverse optimal control approach
in Theorem 1.

Theorem 1. Given a sufficiently rich feature representa-
tion defining the constraint set Ξ, the adversarial inverse
optimal control learner is a Fisher consistent loss function
minimizer for all additive, state-based losses.

Proof. A sufficiently rich feature representation is equiva-
lent to the constraint set Ξ containing only the true policy
π. Then, under π̌ = π, Eq. (2) then reduces to:

min
π̂

E

[
T∑
t=1

loss(Ŝt, Št)

∣∣∣∣∣π, τ, π̂, τ̂
]
, (3)

which is the loss function minimizer.

An additional desirable property of this approach—even
when the feature representation is not as expressive—is
that if the set Ξ̃ can be defined to include the demonstra-
tor’s true policy, π, then generalization performance will
be upper bounded by the expected adversarial training loss
(Theorem 2).
Theorem 2. The adversarial transfer IOC formulation
(Definition 3) provides a useful generalization bound: if the
true demonstrator policy π resides within the constraint set
Ξ̃ with probability at least 1 − α, then the generalization

2This follows directly from the Fisher inconsistency of mul-
ticlass classification [Liu, 2007, Tewari and Bartlett, 2007] using
the Crammer-Singer multi-class generalization of the hinge loss
[Crammer and Singer, 2002], which is a special case of the imita-
tion learning setting with a single time step.



error will be worse than the training error (expected game
value) with probability no more than α:

P (π ∈ Ξ̃) ≥ 1− α =⇒ P

(
E

[
T∑
t=1

loss(Ŝt, St)|π, τ, π̂, τ̂

]

≥ E

[
T∑
t=1

loss(Ŝt, Št)|π̌, τ, π̂, τ̂

])
≤ α. (4)

Proof. If π ∈ Ξ̃, then

E

[
T∑
t=1

loss(Ŝt, St)|π, τ, π̂, τ̂

]
≤ E

[
T∑
t=1

loss(Ŝt, Št)|π̌, τ, π̂, τ̂

]
,

since replacing π with a worst case policy (maximizer of
the set), π̌, only makes the expected loss worse. Thus,
bounds on P (π ∈ Ξ̃) provide generalization guarantees
with at least as much probability.

4.2 LEARNING AND INFERENCE ALGORITHMS

Building on recently developed methods for tractably
solving adversarial prediction problems for classifica-
tion with cost-sensitive [Asif et al., 2015] and multivariate
[Wang et al., 2015] performance measures, we employ the
method of Lagrange multipliers to simplify from a game
with one player’s actions jointly constrained to a param-
eterized game with only probabilistic constraints on each
player’s policy (Theorem 3).

Theorem 3. An equilibrium for the game of Definition 3 is
obtained by solving an unconstrained zero-sum game pa-
rameterized by a vector of Lagrange multipliers:

min
w

min
π̂

max
π̌

E
[ T∑
t=1

loss(Št, Ŝt) + w·φ(Št)

∣∣∣∣π̌, τ, π̂, τ̂]
−w · c̃.

Proof. The proof follows from applying the method of
Lagrangian multipliers (a) to the constrained optimization
problem of Eq. (2), and then employing strong Lagrangian
duality and minimax duality (b):

min
π̂

max
π̌∈Ξ̃

E

[
T∑
t=1

loss(Ŝt, Št)

∣∣∣∣∣π̌, τ, π̂, τ̂
]

(a)
= min

π̂
max
π̌

min
w

E

[
T∑
t=1

loss(Ŝt, Št)

+ w ·

(
T∑
t=1

φ(Št)− c̃

)∣∣∣∣∣π̌, τ, π̂, τ̂
]

(b)
= min

w
min
π̂

max
π̌

E

[
T∑
t=1

loss(Ŝt, Št) + w · φ(Št)

∣∣∣∣∣π̌, τ, π̂, τ̂
]

−w · c̃.

Note that we assume that the loss function is an expected
loss over state predictions. The objective function of our

optimization is therefore a bilinear function of the learner’s
strategy and the adversary’s strategy, which provides the
strong Lagrangian duality that we employ. No stronger as-
sumption about the state-based loss function is needed so
long as it takes this bilinear form.

We form the stochastic policy of each player π̌, π̂ as a mix-
ture of deterministic policies: δ̌ and δ̂. Conceptually, the
payoff matrix of the zero-sum game can be constructed by
specifying each combination of deterministic policies, δ̌, δ̂,
having payoff: E[

∑T
t=1 loss(Št, Ŝt) +w · φ(Št)|δ̌, τ, δ̂, τ̂ ].

An example payoff matrix is shown in Table 1 with the
adversary choosing a distribution over columns, and the
learner choosing a distribution over rows.

Table 1: The payoff matrix for the adversarial IOC pre-
diction game with `(δ̌, δ̂) = E[

∑T
t=1 loss(Št, Ŝt)|δ̌, τ, δ̂, τ̂ ]

and ψ(δ̌) = w · E[
∑T
t=1 φ(Št)|δ̌, τ ].

δ̌1 δ̌2 . . . δ̌k

δ̂1
`(δ̌1, δ̂1)

+ψ(δ̌1)

`(δ̌2, δ̂1)

+ψ(δ̌2)
. . .

`(δ̌k, δ̂1)

+ψ(δ̌k)

δ̂2
`(δ̌1, δ̂2)

+ψ(δ̌1)

`(δ̌2, δ̂2)

+ψ(δ̌2)
. . .

`(δ̌k, δ̂2)

+ψ(δ̌k)
...

...
...

. . .
...

δ̂j
`(δ̌1, δ̂j)

+ψ(δ̌1)

`(δ̌2, δ̂j)

+ψ(δ̌2)
. . .

`(δ̌k, δ̂j)

+ψ(δ̌k)

Unfortunately, this leads to a payoff matrix with a size that
is exponential in terms of the actions in the decision pro-
cess. This cannot be explicitly constructed for practical
problems of even modest size. We employ the double or-
acle method [McMahan et al., 2003] to construct a smaller
sub-portion of the matrix that supports the Nash equilib-
rium strategy for the full game. The basic strategy, outlined
in Algorithm 1, iteratively computes a Nash equilibrium for
a payoff sub-matrix and augments the payoff matrix with
an additional column and row that provide the most im-
provement for each player.

Finding the best response for each player:

argmin
δ̂

E

[
T∑
t=1

loss(Št, Ŝt)
∣∣∣∣π̌, τ, δ̂, τ̂

]
; or (5)

argmax
δ̌

E

[
T∑
t=1

loss(Št, Ŝt) + w · φ(Št)

∣∣∣∣δ̌, τ, π̂, τ̂
]
,

reduces to a time-varying optimal control problem. Con-
sider finding the best demonstrator estimation policy δ̌∗.
The “expected loss” can be treated as a reward for state
st ∈ SD with a numerical value of:

reward(st) = E[loss(st, Ŝt)|π̂] + w · φ(st).



Algorithm 1 Double oracle method for adversarial IOC
Input: Demonstrator’s state transition dynamics τD;

learner’s state transition dynamics, τ̂ ; loss function:
loss(st, ŝt); initial policy sets: Π̌ and Π̂; feature func-
tion φ(st); and Lagrange multipliers w.

Output: A Nash equilibrium (π̌∗, π̂∗).

1: repeat
2: Compute Nash equilibrium (π̌∗D, π̂

∗) and its game
value v̌∗ for sub-game Π̌, Π̂, loss(·, ·), φ(·), and w

3: Compute best response δ̌∗ to π̂∗ with value v̌δ̌∗
4: if v̌∗ 6= vδ̌∗ then
5: Add action to set: Π̌← Π̌ ∪ δ̌∗
6: end if
7: Compute Nash equilibrium (π̌∗, π̂∗) and its game

with value v̂∗ for sub-game Π̌, Π̂, loss(·, ·), φ(·), and
w

8: Compute best response δ̂∗ to π̌ value v̂δ̂∗
9: if v̂∗ 6= v̂δ̂∗ then

10: Add action to set: Π̂← Π̂ ∪ δ̂∗
11: end if
12: until v̌δ̌∗ = v̂δ̂∗ = v̌∗ = v̂∗

13: return (π̌∗, π̂∗)

Once the reward function is constructed, this time-varying
optimal control problem can be solved efficiently in
O(|S||A|T ) time using value iteration [Bellman, 1957].
We assume that the set of deterministic policies defining
each player’s stochastic policy is relatively small so that
marginalizing to compute state rewards is dominated by
the run time of solving the optimal control problem. Each
player’s best response can be constructed in this manner.
Upon termination, neither player’s (mixed) strategy can be
improved with an additional game action (i.e., determinis-
tic policy), and, thus, by definition π̌∗ and π̂∗ must be an
equilibrium pair [McMahan et al., 2003].

Algorithm 2 Learning algorithm for adversarial IOC

Input: Demonstration P̃ (A1:T ,S1:T ) from given decision
processes, (τ, τ̂ ); loss function: loss(·, ·); and learning
rate schedule λt

Output: Parameters w providing adversarial generaliza-
tion

1: w← 0
2: while w not converged do
3: Compute π̌∗ from parameters w using double oracle

method (Alg. 1) given τ, τ̂
4: Gradient update of parameters: w ← w −

λt(EP (Š1:T ,Ǎ1:T )[
∑T
t=1 φ(Št)|π̌∗, τ ]− c̃)

5: end while

Model parameters w are estimated using a convex opti-
mization routine described in Algorithm 2. We refer the
reader to Asif et al. [Asif et al., 2015] for the proof of con-

vexity for adversarial prediction learning problems of this
form with payoff values that are constant with respect to
the probability of each player’s actions, but not the values
themselves.

4.3 EXISTING METHOD RELATIONSHIPS

We conclude our development of the adversarial IOC
method by highlighting its conceptual similarities to and
differences from previous methods for imitating and pre-
dicting sequential decision making policies with the aid of
Figure 2.

a. b.

c. d.

Figure 2: A set of deterministic policies, δa, . . . , δo,
represented as points in the two-dimensional feature
space based on the expected sum of features under
the policy, E[

∑
t φk(St)|δ]. Maximum margin plan-

ning [Ratliff et al., 2006] chooses weight w to separate
demonstration δk from δf and δn (top left); Abbeel &
Ng’s feature-matching algorithm [Abbeel and Ng, 2004]
mixes between policies δa, δd, and δn (top right); maxi-
mum entropy IRL [Ziebart et al., 2010] chooses a weight
direction and produces a probability distribution over
all policies (bottom left); and our adversarial approach
generates an equilibrium over deterministic policies,
δf , δg, δj , δk, δl, δn, and δo, based on the learned weight w
(bottom right).

When a single demonstrated trajectory resides on the
convex hull of the expected feature space (e.g., δk in
Figure 2a), Abbeel & Ng’s feature-matching IRL al-
gorithm [Abbeel and Ng, 2004], maximum margin plan-
ning [Ratliff et al., 2006], maximum causal entropy IRL
[Ziebart et al., 2010] and our adversarial IOC approach will



produce weight estimates w that make the demonstrated
policy (uniquely) optimal. They differ in that Abbeel &
Ng’s algorithm will be satisfied with any weight w that
makes δk uniquely optimal, since this would match feature
counts with the distribution of demonstrated sequences:
1
n

∑n
i=1 E[

∑T
t=1 φ(S

(i)
t )|π, τ ] = 1

n

∑n
i=1

∑T
t=1 φ(s

(i)
t ),

guaranteeing equivalent expected reward under the as-
sumption that the reward function is linear in the feature
vector, φ [Abbeel and Ng, 2004]. As a refinement to this
idea, maximum margin planning [Ratliff et al., 2006] seeks
parameter weights that make a demonstrated policy on
the convex hull “more optimal” than other policies by a
structured margin (using a structured loss to penalize be-
ing “almost as optimal” from a policy that is very differ-
ent from the demonstration policy), as shown in Figure 2a.
Maximum (causal) entropy inverse reinforcement learning
[Ziebart et al., 2010], which employs a Boltzmann distri-
bution over actions for each state, similarly converges to
allocate all of its probability to the actions of the demon-
strated policy. Adversarial IOC’s behavior is equivalent to
that of maximum margin planning (when a small amount
of regularization is included) in this situation: it obtains a
weight vector w so that the demonstrated policy is better
than all alternatives by the structured loss.

When demonstrated trajectories are on the interior of the
convex hull, as shown in Figure 2b-d, the behaviors of
the methods differ substantially. Abbeel & Ng’s feature-
matching algorithm [Abbeel and Ng, 2004] produces a
mixture of deterministic policies (e.g., a mixture of δa, δd,
and δn with probabilities of 10%, 10%, and 80%, as shown
in Figure 2b) that match demonstrated feature counts. Un-
fortunately, many such mixtures exist and switching be-
tween the extremes of the convex hull often proves to imi-
tate poorly in practice. Maximum (causal) entropy inverse
reinforcement learning [Ziebart et al., 2010] provides a dis-
tribution that places some probability on each deterministic
policy, with higher probabilities specified by the learned
weight vector w, as shown in Figure 2c. This avoids
mixing between extremely different deterministic policies
[Abbeel and Ng, 2004], but requires a computationally ex-
pensive integration over all policies instead of using an op-
timal MDP policy solver as a sub-routine for learning.

An additional limitation of maximum (causal) entropy
inverse reinforcement learning [Ziebart et al., 2010] is
due to its global normalization over control policies.
This normalization imposes burdensome implicit con-
straints on learned cost functions3 due to cycle sensitivity
[Monfort et al., 2015, Ziebart, 2010], as defined below and
illustrated in Figure 3. These cost function constraints can
increase the loss of resulting maximum entropy IRL pre-
dictions in practice even when demonstrated behavior tra-

3These implicit cost function constraints are in contrast to ex-
plicit constraint, like cost function non-negativity to prevent neg-
ative cost cycles.

Figure 3: A deterministic Markov decision process with
initial state s1 and absorbing state s3 in which we assume
for simplicity that state two and four have identical fea-
tures: φ(s4) = φ(s5). Under maximum entropy inverse
reinforcement learning [Ziebart et al., 2010], P (s1:T ) ∝
e−w·

∑T
t=1 φ(st) The number of paths terminating in the ab-

sorbing state of odd length n ≥ 3 is 2
n−3
2 , each with cost

of C0 + n−3
2 C1, where C0 , w · (φ(s1) + φ(s2) + φ(s3))

and C1 , w · (φ(s2) + φ(s4)). The normalization con-
stant under maximum entropy inverse optimal control is∑∞
i=0 2ie−C0+iC1 = e−C0

∑∞
i=0 e

i ln 2−iC1 , and requires
that C1 > ln 2 for it to be finite.

jectories do not include the states of the cycles. Conversely,
removing a completely irrelevant cycle from a Markov
decision process can drastically change the estimated re-
ward/cost function.

Definition 4. An inverse optimal control method is char-
acterized as being cycle sensitive when differences in a
decision process’s state representation and dynamics—
independent from demonstrated trajectories through the
decision process—can introduce arbitrary additional con-
straints on the estimated cost function.

When provided with sub-optimal demonstration policies,
our adversarial approach mixes together deterministic poli-
cies to match feature expectations with demonstrated poli-
cies. Unlike the extreme convex hull policies of the feature-
matching algorithm [Abbeel and Ng, 2004], the determin-
istic policies mixed together by the adversarial IOC method
are “competitive” with the demonstrated policy. They are
specified by the learned weight vector w, which determines
thresholds for which deterministic policies need to be con-
sidered for mixing. For example, deterministic policies
δk, δn, δo, δl, δj , δg are included in the strategic game and
appropriately mixed together when δl is demonstrated, as
shown in Figure 2d. From this perspective, adversarial IOC
can be viewed as combining the mixing behavior of Abbeel
& Ng’s feature-matching algorithm [Abbeel and Ng, 2004]
with MMP’s margin-like [Ratliff et al., 2006] selection of
policies to mix, while avoiding the integration over all poli-
cies required by maximum (causal) entropy inverse rein-
forcement learning [Ziebart et al., 2010] and its sensitivity
to irrelevant cycles in the MDP.



5 EXPERIMENTS

We demonstrate the benefits of our approach on synthetic
and real imitation learning tasks with application-specific
imitation losses and/or different embodiments.

5.1 NAVIGATION ACROSS A GRID

Our first experiment considers trajectories collected from
simulated navigation across a discrete grid with various
characteristics. For each task, a robot navigates through
the environment to reach a target location. Each cell of the
grid world is denoted by its horizontal and vertical posi-
tions, (x, y), where each is an integer value from 1 to N .
The robot’s goal is to reach the target location while min-
imizing the navigation cost within a fixed period of time.
We define this fixed time horizon as the maximum number
of steps needed to reach any cell of the grid world. The nav-
igation task stops once the robot reaches the target, which
is equivalent to representing that the robot stays in the cell
where the target exists until the end of the final time step.
We formulate the robot navigation problem to be an opti-
mal sequential decision-making problem in a finite Markov
decision process (MDP) in which the policy minimizes the
expected cost of successful navigation.

Differing initial positions for the robot and the target lo-
cation are sampled uniformly from the N × N cells. We
generate the cost C(s) for the demonstrator to traverse a
particular grid cell (x, y position in the grid) in our simu-
lations based on a linear function of feature vectors, φ(s),
which characterize the state: C(s) = θTφ(s) + ε(s), and
a noise component, ε(s). We employ a 7-element feature
function vector, φ(s), in these grid experiments and choose
each element of θ by sampling from the uniform distribu-
tion U(0, 1). The noise component is similarly sampled
from a uniform distribution, U(0, ε), bounded by a scalar
parameter ε that controls the amount of noise in the imita-
tion learning task. We setC(s) = 0 when the robot reaches
the cell where the target exists. Note that the cost is sta-
tionary; all values of C(s) are sampled and fixed for each
navigation task. The robot can attempt to move one step
from its position in each of the cardinal directions (north,
south, east and west), except it is unable to move beyond
the boundaries of the grid. When the state transition dy-
namics are stochastic, the robot may accidentally move into
another neighboring cell rather the intended one (e.g., north
or south when attempting to move east). The state transi-
tion dynamics are formally then:

p(st+1|st, at) =

{
pm matching the action

1−pm
number of neighbor cells neighbor cells

where we call pm the matching probability. The opti-
mal policy from solving the finite MDP problem gives the
robot’s navigation strategy which then can generate a navi-
gation trajectory for learning.

We establish a specific set of grid world navigation simula-
tion characteristics as the base setting of our simulations:

• The size of the grid world is 9× 9;

• The noise weight ε is 1; and

• The matching probability pm is 0.7.

We repeat the simulation 200 times, yielding 200 naviga-
tion trajectories of which we use 100 as training data, and
the remainder as testing data. We compare adversarial IOC
to MMP [Ratliff et al., 2006] across various settings of the
size of the grid, the amount of feature noise, the matching
probability, and the number of training/testing datapoints.
For our grid navigation experiments, we evaluate the loss
as the Euclidean distance between the demonstrator’s grid
position (x, y) and the imitator’s grid position (x̂, ŷ), nor-
malized by the maximum loss, m:

1

Ntest

Ntest∑
n=1

E

[
T∑
t=1

m−1

√(
X

(n)
t − X̂(n)

t

)2

+
(
Y

(n)
t − Ŷ (n)

t

)2
]
,

where (X
(n)
t and Y

(n)
t ) are random variables under the

demonstrator’s control policy—the policy from solving the
simulated finite MDP problem—and (X̂

(n)
t and Ŷ (n)

t ) are
the ones with estimated policy. We employ this normalized
Euclidean loss as the structured loss function for the margin
in MMP and the game payoff in our adversarial method.

As shown in the first four plots of Figure 4, our adversar-
ial IOC approach (Adv) provides significant improvements
in reducing the imitation loss over the trajectory compared
to maximum margin planning (MMP) under equivalent em-
bodiment setting (i.e., standard imitation learning). Though
the imitator’s performance generally becomes worse as the
imitation task becomes more difficult (less determinism in
the state transition dynamics, increased amounts of noise
influencing the demonstrator’s optimal policy, and larger
sizes of the grid), adversarial IOC consistently outperforms
MMP across all of these settings. Very little dependence of
the imitation performance on the number of training ex-
amples in the fourth plot reveals the general efficiency of
training using IOC/IRL methods that estimate the motivat-
ing cost function.

We also compare the performance of our adversarial
IOC imitation policy with the policy produced by MMP
[Ratliff et al., 2006] when demonstrator and imitator have
different embodiments. We assume that the demonstration
robot’s dynamics are noise free and more flexible. In our
first experiment, the demonstrator has deterministic state
transition dynamics with matching probability 1, and we
evaluate the performance of the learner operating under
stochastic dynamics with various matching probabilities
from 0.9 to 0.5. In the second experiment, we set some
obstacles in the grid world so that the imitating robot has
to make a detour when it faces any of them, but the demon-
strator does not. We evaluate the performance of learner on
various number of obstacles from 20 to 60.
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Figure 4: Experimental results with 95% confidence interval of various settings of the grid world’s characteristics, includ-
ing: the degree of stochasticity of the dynamics (top, left); varying amount of cost noise generating the demonstrator’s
trajectories (top, center); differences size of the grid world from 5x5 to 15x15 (top, right); different amount of training
(test) data (bottom, left); the learner’s dynamics differing from the demonstrator’s (bottom, center); and the introduction of
impassible obstacles for the learner (bottom, right).

The performance of the two methods under different em-
bodiments is similarly evaluated according to the average
expected trajectory loss of withheld test data, as shown in
the final two plots of Figure 4. Our adversarial IOC method
also outperforms MMP in these experimental settings.

5.2 LEARNING CAMERA CONTROL FROM
DEMONSTRATION

We consider the task of learning to autonomously control a
camera in a manner that appropriately captures the action
of a basketball game based on human demonstrations of
camera control [Chen and Carr, 2015]. The decision pro-
cess characterizing camera control can be divided into a
probabilistic model describing the state of the basketball
game (the presence of players in different locations), and
a dynamics model describing how camera movement con-
trols effect the camera’s state (quantized pan angle, θ, and
quantize pan angle velocity, θ̇). As our focus is on the sep-
aration of rationalization and imitation evaluation measure,
we assume that camera controls have no influence on the
basketball game. Also based on this focus, we employ the
empirical distribution of player locations rather than con-
structing a predictive model for those locations.

Our dataset is collected from high school basketball games.
The camera recording the basketball game was operated
by a human expert. The dataset consists of 46 sequences
collected at 60Hz. The average number of frames for the
sequences is 376. The output for each frame is the cam-
era’s horizontal pan angle, and the input is a 14 element
vector that describes the state of the basketball game (the
presence of players in different locations on the basketball
court). The degree of the camera’s pan angle in this dataset
ranges from−30 degrees (left) to 30 degree (right), and we
quantize the pan angle θ into discrete 61 levels. The pan
angel velocity θ̇ of a particular frame is the difference be-
tween the current pan angle and the previous one, which
is then mapped to 5 discrete levels [−2,−1, 0, 1, 2] repre-
senting high speed of turning left to high speed of turning
right. Overall, by combining the discrete pan angles and
pan angle velocities, there are 305 total possible states for
each frame. We use the first 23 sequences as our train-
ing dataset and the 23 remaining sequences as the testing
dataset. We measure the performance of our adversarial
IOC method and baseline methods using the average square
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Figure 5: Imitating human camera operator’s pan angle control (the Real trajectory on the left) using a regression approach,
maximum margin planning, and our adversarial inverse optimal control method. Average squared loss and absolute loss of
the imitator (with 95% mean confidence intervals estimates) are shown in the center and right plots, with maximum margin
planning results suppressed due to being significantly worse and off of the presented scale.

loss per frame between pan angles:

N∑
n=1

Tn∑
t=1

(θ
(n)
t − θ̂(n)

t )2/

N∑
n=1

Tn. (6)

We compare our adversarial structured prediction method
with a few forms of least squares linear regression models:
one that is not constrained by the camera dynamics (LS);
one that is constrained by the empirical dynamics of the
camera (LSC); and one Markovian-based model that also
conditions on the previous camera location (LSMI). Ad-
ditionally, we consider two variants of maximum marginal
planning methods: MMPSL is provided with the starting
location of the human-operated camera, while MMP is not.
Similarly, AdvSL is our adversarial IOC method provided
with the starting location of the human-operated camera,
while Adv is not. Let Xt denotes the 14 entry feature vec-
tor of the state of the basketball game at timestep t. The
feature vector φ(St) of our adversarial method in Defini-
tion 3 is a 33 entry vector [θ, θ2, θ̇, θ̇2, θXt, θ̇Xt], which
combines the basketball game state features and the cam-
era angle and angle velocity state. For the regression mod-
els, the estimated sequence is a standard linear regression
method θ̂t = âXt + b̂ where â and b̂ are trained from the
training dataset. For the constrained regression method, the
predicted camera angle is projected to the closest angle for
which transitioning is feasible.

The result of a test sequence of our experiment is shown in
the left plot of Figure 5. The first two regression methods
are generally very noisy as the predicted pan angle changes
rapidly based on the rapid changes of the underlying inputs
corresponding to the game state. The Markovian regres-
sion model performs well initially, but diverges from the
demonstrated trajectory over time. Both of the MMP meth-
ods have much worse performance than the other methods
presented. Our adversarial approaches tend to be similar
to the regression model, but are much less noisy and pro-
vide a closer match to the demonstrated trajectory with sig-

nificantly lower amounts of squared and absolute loss, as
shown in the other plots of Figure 5.

6 CONCLUSION

In this paper, we introduced an adversarial framework for
imitation learning using inverse optimal control. It takes
the form of a game between an adversary seeking to maxi-
mize loss by approximating the training data, and a learner
seeking to minimize the loss. Algorithmically, our ap-
proach possesses similarities with existing inverse optimal
control methods, while resolving some of the deficiencies
of those methods (e.g., lack of consistency, sensitivity to
low cost cycles) in a principled manner. A key benefit
of our approach is that it separates the rationalization of
demonstrated decision sequences with the learner’s opti-
mization of an imitative loss function. We focused this
added flexibility on the problem of learning to imitate under
differences in embodiment. This is an underexplored, but
important problem for imitation learning to be employed in
practice. We established the consistency and useful gener-
alization bounds for our adversarial inverse optimal control
approach. We developed and presented efficient algorithms
for inference and learning under this formulation. Finally,
we demonstrated the benefits of adversarial inverse optimal
control in a set of synthetic experiments and an autonomous
camera control task where an autonomous camera is trained
based on observations of human camera control. In the fu-
ture, we plan to apply the developed framework to imitation
learning settings for robotics applications for which we be-
lieve that generalizing across different embodiments will
be especially useful.
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