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Limitations: data inefficiency, approximate inference 
 
We consider a very simple alternative technique to resolve this 



Privacy and Machine Learning 

• As individuals and consumers we benefit from ML 
systems trained on OUR data 
– Internet search 

 

– Recommendations 
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restaurants, email recipients 

 

– Mobile phones 
• Autocorrect, speech recognition, Siri, … 
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The cost is our privacy 

 

 

 

10 http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/#b228dae34c62  
,Retrieved 6/16/2016 
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• Want the benefits of sharing our data while 
protecting our privacy 

– Have your cake and eat it too! 
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“We believe you should have 

great features 
 

and 
 

great privacy. 

 
You demand it and we're dedicated to providing it.” 

 
• Craig Federighi, 

Apple senior vice president of Software Engineering. 
June 13 2016, WWDC16 
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Quote from http://appleinsider.com/articles/16/06/15/inside-ios-10-apple-doubles-down-on-security-with-cutting-edge-differential-privacy , 
retrieved 6/16/2016 



Statistical analysis of sensitive data 
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[the Wikileaks disclosure] 
“puts the lives of United States 
and its partners’ service 
members and civilians at risk.” 
 
 - Hillary Clinton 



Bayesian analysis of sensitive data 

• Bayesian inference widely and successfully used in 
application domains where privacy is invaluable 
– Text analysis (Blei et al., 2003; Goldwater and Griffiths, 

2007) 

– Personalized recommender systems (Salakhutdinov and 
Mnih, 2008) 

– Medical informatics (Husmeier et al., 2006) 

– MOOCs (Piech et al., 2013). 

 

• Data scientists must balance benefits and potential 
insights vs privacy concerns (Daries et al., 2014). 
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Anonymization? 
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Aggregation? 

 

20 https://www.buzzfeed.com/nathanwpyle/can-you-spot-all-26-letters-in-this-messy-room-369?utm_term=.gyRdVVvV5#.kkovLL1LE 
Retrieved 6/16/2016 



Hiding in the crowd 

• Only release statistics aggregated over many 
individuals.  Does this ensure privacy? 
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Hiding in the crowd 

• Only release statistics aggregated over many 
individuals.  Does this ensure privacy? 

 
• Report average salary in CS dept. 

 

• Prof. X leaves. 

 

• Report avg salary again. 

– We can identify Prof. X’s salary 
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Noise / data corruption 

• Release Prof. X’s salary + noise 

 

 

 

 

 

 

• Once we sufficiently obfuscate Prof. X’s salary, 
it is no longer useful 
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Noise + crowd 

• Release mean salary + noise 

 

 

 

 

 

 

• Need much less noise to protect Prof. X’s salary 
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Solution 

 

• “Noise + crowds” can provide both 
individual-level privacy, and accurate 
population-level queries 
 

• How to quantify privacy loss? 

– Answer: Differential privacy 
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Differential privacy 
(Dwork et al., 2006) 

 

 

 

 

 

• DP is a promise: 

– “If you add your data to the database, you will not 
be affected much” 
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Individuals’ data 

Untrusted 
users 

Answers 

Queries 

Privacy-preserving interface: randomized algorithms 



Differential privacy 
(Dwork et al., 2006) 

• Consider randomized algorithm 

• DP guarantees that the likely output of              is not greatly affected by 
any one data point 

• In particular, the distribution over the outputs of the algorithm will not 
change too much 
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Differential privacy 
(Dwork et al., 2006) 
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Ratios of probabilities 
bounded by 



Properties of differential privacy 

• Immune to post-processing 

– Resists attacks using side information, as in 
the Netflix Prize linkage attack 
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Properties of differential privacy 

• Immune to post-processing 

– Resists attacks using side information, as in 
the Netflix Prize linkage attack 

 

• Composition 

– If you run multiple DP queries, their epsilons add up. 

– Can think of this as a “privacy budget” we spend over 
all queries 
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Laplace mechanism 
(Dwork et al., 2006) 

 

• Adding Laplace noise is sufficient 
to achieve differential privacy 

 

• The Laplace distribution is two 
exponential distributions, 
back-to-back 

 

• The noise level depends on a quantity called the L1 sensitivity of the query h: 
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Exponential mechanism 
(McSherry and Talwar, 2007) 

• Aims to output responses of high utility 

 

• Given real-valued utility function                , 
the exponential mechanism selects outputs r via 

40 

Temperature depends on sensitivity, epsilon 



Privacy-preserving Bayesian inference 
via the exponential mechanism (OPS) 

(Dimitrakakis et al., 2014; Wang et al., 2015) 
 

• Privacy cost of drawing a sample from posterior 

– Interpret as exponential mechanism with the log joint 
probability                                      as the utility function: 

 

 

 

 

 

– Setting                                gives the privacy we get “for free” 
from posterior sampling 

– For smaller     , flatten posterior by increasing the temperature 
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Privacy for exponential families 

• Consider an exponential family likelihood with 
conjugate prior 

 

 

 

• The posterior is 
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Privacy for exponential families: 
Exponential mechanism 

 

• Sample from temperature-adjusted posterior 

 

45 



Privacy for exponential families 
via the Laplace mechanism 

 

 

• Only interacts with the data via the aggregate 
sufficient statistics, 

 

• Add Laplace noise to          . 
Releases privatized posterior, not just a sample! 
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Summary 
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Worst case over parameters as well as data 

Example: 
Beta-Bernoulli 
model 
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Data (in)efficiency in 
beta-Bernoulli model 



Asymptotic relative efficiency 

• ARE = ratio between variance of estimator and optimal 
variance achieved by posterior mean in the limit 

 

• Exponential mechanism:    ARE = 1 + T 
Temperature T >= 1 (Wang et al., 2015) 
 
Our results: under general conditions, 

• Laplace mechanism (one sample):   ARE = 2 

 

• Laplace mechanism (posterior mean):  ARE = 1 
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Assumptions for ARE result 

• Laplace regularity conditions, and posterior satisfies 
asymptotic normality as in Bernstein-von Mises theorem: 
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Privacy of approximate sampling 

• Posterior sampling in general intractable 
– exponential mechanism typically must be approximated. 

 

• Approximate sampler is “close” to true posterior 
– Privacy cost will be close to that of a true posterior sample (Wang et al., 

2015).  However, cannot typically verify MCMC convergence 

 

• Wang et al. also proposed an approximate sampling scheme via 
stochastic gradient Langevin dynamics. 
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Privacy of Gibbs sampling: 
Exponential mechanism 

• We can interpret Gibbs updates as an instance of 
the exponential mechanism: 
 
 
 
 

•  A Gibbs update is therefore 
 

• Since worst case is computed over a strictly 
smaller set of outcomes, 
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Privacy of Gibbs sampling: 
Laplace mechanism 

• If the Gibbs update interacts with the data via an exponential 
family likelihood, only need to privatize the sufficient statistics 

 

• Can do this once at the beginning of the algorithm, and run as 
many iterations as we’d like! 

 

• Unlike the exponential mechanism, the sampler does not 
need to converge to get verifiable privacy guarantees 

 

• For this to work well, we need aggregate sufficient statistics to 
be large relative to Laplace noise, e.g. multiple observations 
per latent variable 
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Case study: Wikileaks war logs 

• We investigate the performance of our technique  
on sensitive military data: 

– US military war logs from the wars in Iraq and Afghanistan 
disclosed by the Wikileaks organization. 
 

• January 2004 - December 2009, 

• Afghanistan: 75,000 log entries 

• Iraq: 390,000 log entries 
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Wikileaks features 

• Coarse-grained label “Type”: 
– friendly action, explosive hazard, … 

 

• Fine-grained label “Category”: 
– mine found/cleared, show of force, … 

 

• Casualties for different factions: 
– Friendly/HostNation, Civilian, Enemy 

(names relative to US military perspective) 
1 IFF > 0 killed/wounded/captured/detained 
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Hidden Markov model for Wikileaks 

• An HMM chain of latent states for each region, with a timestep per month 
– Multiple emissions per timestep (all logs in that month) 

 
• Naïve Bayes multinomial emissions 

 
• 2 states for Iraq, 3 states for Afghanistan 

 
• MCMC with a partially collapsed Gibbs sampler 

 
• Total privacy budget epsilon = 5 for visualization results, 

varied from 10-1 to 10 for held-out log-likelihood experiments 
 
(10% timestep/region pairs held out, 10 train/test splits) 
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Held-out log-likelihood: 
Naïve Bayes (Afghanistan) 
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Held-out log-likelihood: Afghanistan 
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Held-out log-likelihood: Iraq 

 

61 



Visualization: Iraq, Laplace Mechanism 
State 1: US military “doing well” 
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Visualization: Iraq, Laplace Mechanism 
State 1: US military “doing well” 
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Visualization: Iraq, Laplace Mechanism 
State 2: US military “doing not so well” 
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Visualization: Iraq, Laplace Mechanism 
State 2: US military “doing not so well” 
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Visualization: Iraq, Laplace Mechanism 
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Visualization: Iraq, Laplace Mechanism 
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Type Category Casualties 



Visualization: Iraq, Laplace Mechanism 
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Visualization: Afghanistan, 
Exponential Mechanism 
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Last 100 samples: 

Last 1 samples: 



Conclusions 

• We have proposed a Laplace mechanism approach for 
privacy-preserving Bayesian inference, as an alternative to 
the exponential mechanism (OPS) approach 
 

• Asymptotic relative efficiency theorem shows data 
efficiency advantages vs exponential mechanism 
 

• Privacy-preserving Gibbs sampling via exponential and 
Laplace mechanisms 
 

• We demonstrated the benefits of our approach in a case 
study on an HMM time-series analysis of sensitive military 
records disclosed by Wikileaks 
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Future work 

• Other approximate inference algorithms 
– In appendix, we analyze privacy of Metropolis-Hastings and annealed 

importance sampling. 
– Open problem to make better use of privacy budget to make these practical 
– New preprint on privacy-preserving EM! 

• M. Park, J. R. Foulds, K. Chaudhuri, M. Welling. Practical Privacy for Expectation 
Maximization. ArXiv preprint arXiv:1605:06995 [cs.LG] 

 
• Practical applications to other sensitive real-world datasets: MOOCS, 

email data, genetic data… 
 

• We have argued that asymptotic efficiency is important in a privacy 
context. 
– Open problem: How large is the class of privacy preserving algorithms that are 

asymptotically efficient? 
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Thanks for your attention! 


