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Rationale

Some history

• a mathematical framework for representing and reasoning with
uncertain information

• also known as Dempster-Shafer (DS) theory or Evidence theory

• originates from the work of Dempster (1968) in the context of
statistical inference

• formalized by Shafer (1976) as a theory of evidence

• popularized and developed by Smets in the 1980’s and 1990’s
under the name Transferable Belief Model.

• starting from the 1990’s, growing number of applications in AI,
information fusion, classification, reliability and risk analysis, etc.
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Rationale

Rationale

1 a modeling language for representing elementary items of
evidence and combining them, in order to form a representation
of our beliefs about certain aspects of the world

2 the theory of belief function subsumes both the set-based and
probabilistic approaches to uncertainty:
• a belief function may be viewed both as a generalized set and as a

non additive measure
• basic mechanisms for reasoning with belief functions extend both

probabilistic operations (such as marginalization and conditioning)
and set-theoretic operations (such as intersection and union)

3 DS reasoning produces the same results as probabilistic reasoning
or interval analysis when provided with the same information

4 however, its greater expressive power allows us to handle more
general forms of information
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Basic notions Belief functions

Mass functions
or “Basic Probability Assignments”

• let ω be an unknown quantity with possible values in a finite
domain Ω, called the frame of discernment

• a piece of evidence about ω may be represented by a mass
function m on Ω, defined as a function 2Ω → [0, 1], such that:

m(∅) = 0
∑

A⊆Ω m(A) = 1

• P(Ω) = 2Ω is the set of all subsets of Ω

• any subset A of Ω such that m(A) > 0 is called a focal element
(FE) or “focal set” of m

• special cases:
• a logical (or “categorical”) mass function has one focal set (∼ set)
• a Bayesian mass function has only focal sets of cardinality one (∼

probability distribution)

• complete ignorance is represented by the vacuous mass function
defined by mΩ(ω) = 1
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Basic notions Belief functions

Mass function
Example

• a mass function encodes evidence directly supporting
propositions [Shafer, 1976] - let us see an example

• a murder has been committed. There are three suspects:
Ω = {Peter , John,Mary}

• available evidence: a witness saw the murderer going away, but he
is short-sighted and he only saw that it was a man. We know that
the witness is drunk 20 % of the time

• if the witness was not drunk, we know that ω ∈ {Peter , John}
• otherwise, we only know that ω ∈ Ω. The first case holds with

probability 0.8

• the corresponding mass function is:

m({Peter , John}) = 0.8, m(Ω) = 0.2
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Basic notions Belief functions

Random set interpretation
of belief functions

• a mass assignment on Ω is induced by a probability distribution P on a
different domain C, via a multi-valued mapping Γ : C → 2Ω

• Γ maps elements c ∈ C (“codes”) to subsets of Ω

• this is a random set, i.e, a set-valued random variable
• in the example, the source of the evidence is the probability P1 that the

witness is drunk (or not)
• Γ1 maps {not drunk} ∈ C1 to {Peter , John} ⊂ Ω
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Basic notions Belief functions

Belief (BFs) and plausibility
functions

induced by a mass function

• for any A ⊆ Ω, we can define:

• the total degree of support (belief) in A as the probability
that the evidence implies A:

Bel(A) = P({c ∈ C|Γ(c) ⊆ A}) =
∑
B⊆A

m(B)

• the plausibility of A as the probability that the evidence does
not contradict A:

Pl(A) = P({c ∈ C|Γ(c) ∩ A 6= ∅}) = 1− Bel(A)

• the uncertainty on the truth value of the proposition “ω ∈ A” is
represented by two numbers: Bel(A) and Pl(A), with

Bel(A) ≤ Pl(A)
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Basic notions Belief functions

Special cases of belief functions
they generalise both probabilities and possibilities

• if all focal sets of m are singletons, then m is said to be Bayesian

• it is equivalent to a probability distribution, and Bel = Pl is a
probability measure

• if the focal sets of m are nested, then m is said to be consonant

• in that case Pl is a possibility measure, i.e.,

Pl(A ∪ B) = max(Pl(A),Pl(B)), ∀A,B ⊆ Ω,

and Bel is the dual necessity measure

• the contour function pl(ω) = Pl({ω}) corresponds to the
possibility distribution (membership function)
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Basic notions Dempster’s rule

Combination of evidence
Murder example continued

• when we have separate bodies of evidence, each represented by a
belief function, can we combine them in order to estimate the
state of the world, or make a decision?

• the first item of evidence gave us: m1({Peter , John}) = 0.8,
m1(Ω) = 0.2

• new piece of evidence: a blond hair has been found

• also, there is a probability 0.6 that the room has been cleaned
before the crime

• this second body of evidence is encoded by the mass assignment
m2({John,Mary}) = 0.6, m2(Ω) = 0.4

• how to combine these two pieces of evidence?

• again, an answer can be given within the “random set”
interpretation of belief functions
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Basic notions Dempster’s rule

Combination of evidence
(C1,	
  P1)	
  

Ω	

Γ1	
  

drunk	
  (0.2)	
  

not	
  drunk	
  (0.8)	
  

Peter	
  

John	
  

Mary	
  

(C2,	
  P2)	
  

Γ2	
  

cleaned	
  (0.6)	
  

not	
  cleaned	
  
(0.4)	
  

• if codes c1 ∈ C1 and c2 ∈ C2 were selected, ω ∈ Γ1(c1) ∩ Γ2(c2)

• if the codes are selected independently, then the probability that
the pair (c1, c2) is selected is P1({c1})P2({c2})

• if Γ1(c1) ∩ Γ2(c2) = ∅, (c1, c2) cannot be selected, hence:
• the joint probability distribution on C1 × C2 must be conditioned to

eliminate such pairs
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Basic notions Dempster’s rule

Dempster’s rule
Definition

• under these assumptions we get Dempster’s rule of combination

• let m1 and m2 be two mass functions on the same frame Ω, induced
by two independent pieces of evidence

• their combination using Dempster’s rule is defined as:

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), ∀∅ 6= A ⊆ Ω,

where
κ =

∑
B∩C=∅

m1(B)m2(C)

is the degree of conflict between m1 and m2

• their Dempster’s sum m1 ⊕m2 exists iff κ < 1

• can be easily extended to any number of BFs
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Basic notions Dempster’s rule

Dempster’s rule
A simple numerical example
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Basic notions Dempster’s rule

Dempster’s rule
Properties

• Dempster’s rule has some interesting properties:

• commutativity, associativity, existence of a neutral element: the
vacuous BF mΩ

• it generalises set-theoretical intersection: if mA and mB are logical
mass functions and A ∩ B 6= ∅, then

mA ⊕mB = mA∩B

• it generalises probabilistic conditioning via Bayes’ rule: if m is a
Bayesian mass function and mA is a logical mass function, then
m ⊕mA is a Bayesian mass function that corresponding to Bayes’
conditioning of m by A
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Basic notions Families of frames

Families of frames
Refinements and coarsenings

• the theory allows us to handle evidence impacting on different
but related domains

• assume we are interested in the nature of an object in a road scene.
We could describe it, e.g., in the frame Θ = {vehicle, pedestrian},
or in the finer frame Ω = {car, bicycle,motorcycle, pedestrian}

• other example: different image features in pose estimation

• a frame Ω is a refinement of a frame Θ (or, equivalently, Θ is a
coarsening of Ω) if elements of Ω can be obtained by splitting some
or all of the elements of Θ

Θ	

 Ω	


θ1	
  

θ2	
  
θ3	
  

ρ	
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Basic notions Families of frames

Compatible frames
Families of frames

• when Ω is a refinement for a collection Θ1, ...,ΘN of other frames it
is called their common refinement

• two frames are said to be compatible if they do have a common
refinement

• compatible frames can be associated with different
variables/attributes/features:

• let ΩX = {red, blue, green} and ΩY = {small,medium, large}
be the domains of attributes X and Y describing, respectively,
the color and the size of an object

• in such a case the common refinement ΩX ×ΩY is ΩX and ΩY

• or, they can be descriptions of the same variable at different
levels of granularity (as in the road scene example)

• evidence can be moved from one frame to another within a
family of compatible frames
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Basic notions Families of frames

Marginalization
• let ΩX and ΩY be two compatible frames
• let mXY be a mass function on ΩX × ΩY

• it can be expressed in the coarser frame ΩX by transferring each
mass mXY (A) to the projection of A on ΩX :

• we obtain a marginal mass function on ΩX :

mXY↓X (B) =
∑

{A⊆ΩXY ,A↓ΩX =B}

mXY (A) ∀B ⊆ ΩX

• (again, it generalizes both set projection and probabilistic
marginalization)
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Basic notions Families of frames

Vacuous extension
• the “inverse” of marginalization
• a mass function mX on ΩX can be expressed in ΩX × ΩY by

transferring each mass mX (B) to the cylindrical extension of B:

• this operation is called the vacuous extension of mX in ΩX × ΩY :

mX↑XY (A) =

{
mX (B) if A = B × ΩY

0 otherwise

• a strong feature of belief theory: the vacuous belief function (our
representation of ignorance) is left unchanged when moving
from one compatible frame to another
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Semantics

The multiple semantics
of belief functions

• being complex objects, belief functions have a number of
(sometimes conflicting) semantics and mathematical interpretations

• original one [Dempster 1967]: lower probabilities induced by a
multivalued mapping
• the mathematical representation: random set framework

• Shafer’s (1976): representations of pieces of evidence in favour of
propositions within someone’s subjective state of belief
• represented as set functions on a finite domain Ω

• as convex sets of probability measures, in a robust Bayesian
interpretation
• mathematically, a credal set whose lower and upper envelopes are

belief and plausibility functions

• other equivalent mathematical formulations:
• as non-additive (generalised) probabilities
• as monotone capacities
• as inner measures (linked to the rough set idea)
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Semantics Lower probabilities

Upper and lower probabilities
induced by multi-valued mappings

• Dempster has shown that mapping a probability distribution via a
multi-valued map yields an object more general than a probability
distribution: a belief function

• belief and plausibility values are interpreted as lower and upper
bounds to the values of an unknown, underlying probability
measure: Bel(A) ≤ P(A) ≤ Pl(A) for all A ⊆ Ω
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Semantics Credal sets

Belief functions as credal sets
or convex sets of probabilities

• each focal element A of mass m(A) as the indication of the
existence of a mass m(A) “floating" inside A

• constraint on the probability measure on Ω: a distribution is
“consistent" with Bel if it is obtained by redistributing the mass of
each focal element to its singletons

• set of probabilities consistent with b:

P[Bel] .=
{

P ∈ P : P(A) ≥ Bel(A) ∀A ⊆ Ω
}

• it is a polytope in the probability simplex, with vertices induced by
permutations of the elements of Ω

• Shafer disavowed any probability-bound interpretation

• also criticized by Walley as incompatible with Dempster’s rule of
combination
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Semantics Set functions

Belief functions as set functions

• Shafer’s definition in terms of set functions [Aigner]

• a belief function Bel : 2Ω → [0, 1] is such that,

Bel(A) =
∑
B⊆A

m(B)

where m : 2Ω → [0, 1] is a basic probability assignment s.t.

m(∅) = 0,
∑
A⊆Ω

m(A) = 1,m(A) ≥ 0 ∀A ⊆ Ω

• operating with belief functions reduces to manipulating their focal
elements

• in Shafer’s framework, the mass assignment is derived by “impact
of evidence” associated with propositions via an exponential-like
relation
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Semantics Generalised probabilities

As non-additive probabilities
or “generalised” probabilities

Probability measure
A function P : F→ [0, 1] over a σ-field F ⊂ 2Ω such that

• P(∅) = 0, P(Ω) = 1;

• if A ∩ B = ∅, A,B ∈ F then P(A ∪ B) = P(A) + P(B) (additivity).

• if we relax the third constraint to allow the function to meet additivity
only as a lower bound we obtain a:

Belief function
A function Bel : 2Ω → [0, 1] from the power set 2Ω to [0, 1] such that:

• Bel(∅) = 0, Bel(Ω) = 1;

• for every n and for every collection A1, ...,An ∈ 2Ω we have that:

Bel(A1 ∪ ... ∪ An) ≥
∑

i

Bel(Ai )−
∑
i<j

Bel(Ai ∩ Aj ) + · · ·

· · ·+ (−1)n+1Bel(A1 ∩ ... ∩ An)

F. Cuzzolin and T. Denoeux Belief functions for the working scientist UAI 2015 33 / 229



Belief
functions for
the working

scientist

F. Cuzzolin
and

T. Denoeux

Rationale

Basic notions

Semantics
Lower probabilities

Credal sets

Set functions

Generalised
probabilities

Random sets

Inference

Conditioning

Computation

Propagation

Decisions

BFs on reals

Sister theories

Advances

Toolbox

Applications

Future trends

Semantics Generalised probabilities

Belief functions as completely
monotone capacities

• a function Bel : 2Ω → [0, 1] is a completely monotone capacity,
i.e., it verifies Bel(∅) = 0, Bel(Ω) = 1 and

Bel

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)

for any k ≥ 2 and for any family A1, . . . ,Ak in 2Ω

• conversely, to any completely monotone capacity Bel corresponds
a unique mass function m such that:

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B), ∀A ⊆ Ω

• in combinatorics this is called Moebius transform

• m, Bel and Pl are thus equivalent representations of the same
piece of evidence
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Semantics Random sets

Belief functions as random sets
Rationale

• given a multi-valued mapping Γ, a straightforward step is to consider
the probability value P(c) as attached to the subset Γ(c) ⊆ Ω

• what we obtain is a random set in Ω, i.e., a probability measure on
a collection of subsets

• roughly speaking, a random set is a set-valued random variable

• the degree of belief Bel(A) of an event A becomes the cumulative
distribution function (CDF) of the open interval of sets {B ⊆ A}

• this approach has been emphasized in particular by [Nguyen,1978]
and [Hestir,1991] and [Shafer,1987]

• example: a dice where one or more of faces are covered so that
we do not know what’s beneath is a random variable which “spits”
subsets of possible outcomes: a random set
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Semantics Random sets

Belief functions as random sets
Mathematics

• the lower inverse of Γ is defined as:

Γ∗(A)
.

=
{

c ∈ C : Γ(c) ⊂ A, Γ(c) 6= ∅
}

while its upper inverse is

Γ∗(A)
.

=
{

c ∈ C : Γ(c) ∩ A 6= ∅
}

• given two σ-fields A,B on C,Ω respectively, Γ is said strongly
measurable iff ∀B ∈ B, Γ∗(B) ∈ A

• the lower probability measure on B is defined as
P∗(B)

.
= P(Γ∗(B)) for all B ∈ B - this is nothing but a belief function!

• Nguyen proved that, if Γ is strongly measurable, the CDF P̂ of the
random set coincides with the lower probability measure:

P̂[I(B)] = P∗(B) ∀B ∈ B, I(B)
.

= {C ∈ B,C ⊆ B}
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Inference

The inference problem
Building belief functions from the available data

• first step in any estimation/decision problem: constructing a belief
function from the available evidence

• belief functions can be constructed from both statistical data
(quantitative inference) and experts’ preferences (qualitative
inference)

• inference from statistical data: we will see two

• Dempster’s approach
• likelihood-based approach

• inference from qualitative data

• Wong and Lingras’s perceptron idea
• Qualitative Discrimination Process (QDP)
• Ben Yaghlane’s constrained optimisation
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Inference

Inferring belief functions from
statistical data

• consider a statistical model{
f (x ; θ), x ∈ X, θ ∈ Θ

}
,

where X is the sample space and Θ the parameter space

• having observed x , how to quantify the uncertainty about the
parameter θ, without specifying a prior probability distribution?

• two main approaches using belief functions:

1 Dempster’s approach based on an auxiliary variable with a
pivotal probability distribution [Dempster, 1967]

2 Likelihood-based approach [Shafer, 1976, Wasserman
1990]
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Inference Dempster’s approach

Sampling model
Dempster’s approach to statistical inference

• suppose that the sampling model X ∼ f (x ; θ) can be represented
by an “a-equation” of the form

X = a(θ,U)

where U ∈ U is an (unobserved) auxiliary variable with known
probability distribution µ independent of θ

• this representation is quite natural in the context of sampling and
data generation

• for instance, to generate a continuous random variable X with
cumulative distribution function (CDF) Fθ, one might draw U from
U([0, 1]) and set

X = F−1
θ (U)
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Inference Dempster’s approach

From a-equations to belief
functions

• the equation X = a(θ,U) defines a multi-valued mapping (a
“compatibility relation”)

Γ : U → Γ(U) =
{

(X , θ) ∈ X×Θ
∣∣∣X = a(θ,U)

}
• under the usual measurability conditions, the probability space

(U,B(U), µ) and the multi-valued mapping Γ induce a belief function
BelΘ×X on X×Θ

• conditioning (by Dempster’s rule) BelΘ×X on θ yields the desired
sampling distribution f (·; θ) on X

• conditioning it on X = x gives a belief function BelΘ(·; x) on Θ
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Inference Dempster’s approach

Example: Bernoulli sample
Dempster’s approach to inference

• let X = (X1, . . . ,Xn) consist of independent Bernoulli
observations and θ ∈ Θ = [0, 1] is the probability of success

• sampling model:

Xi =

{
1 if Ui ≤ θ
0 otherwise,

where U = (U1, . . . ,Un) has pivotal measure µ = U([0, 1]n)

• having observed the number of successes y =
∑n

i=1 xi , the belief
function BelΘ(·; x) is induced by a random closed interval

[U(y),U(y+1)],

where U(i) denotes the i-th order statistics from U1, . . . ,Un

• quantities like BelΘ([a, b]; x) or PlΘ([a, b]; x) are readily calculated
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Inference Dempster’s approach

Discussion
Dempster’s method

• Dempster’s model has several nice features:
• it allows us to quantify the uncertainty on Θ after observing the data,

without having to specify a prior distribution on Θ
• when a Bayesian prior P0 is available, combining it with BelΘ(·; x)

using Dempster’s rule yields the Bayesian posterior:

BelΘ(·; x)⊕ P0 = P(·|x)

• it also has some drawbacks:
• it often leads to cumbersome or even intractable calculations

except for very simple models, which imposes the use of Monte-Carlo
simulations (see Computation later)

• more fundamentally, the analysis depends on the a-equation
X = a(θ,U) and the auxiliary variable U, which are not unique for a
given statistical model {f (·; θ), θ ∈ Θ}

• As U is not observed, how can we argue for an a-equation or another?
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Inference Likelihood-based
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Inference Likelihood-based

Likelihood-based belief function
Requirements

1 Likelihood principle: BelΘ(·; x) should be based only on the
likelihood function L(θ; x) = f (x ; θ)

2 Compatibility with Bayesian inference: when a Bayesian prior P0

is available, combining it with BelΘ(·, x) using Dempster’s rule
should yield the Bayesian posterior:

BelΘ(·; x)⊕ P0 = P(·|x)

3 Principle of minimal commitment: among all the belief functions
satisfying the previous two requirements, BelΘ(·; x) should be the
least committed (least informative)
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Inference Likelihood-based

Likelihood-based belief function
Solution

• BelΘ(·; x) is the consonant belief function with contour function
(plausibility of singletons) equal to the normalized likelihood:

pl(θ; x) =
L(θ; x)

supθ′∈Θ L(θ′; x)

• the corresponding plausibility function is:

PlΘ(A; x) = sup
θ∈A

pl(θ; x) =
supθ∈A L(θ; x)

supθ∈Θ L(θ; x)
, ∀A ⊆ Θ

• the corresponding random set is: (Ω,B(Ω), µ, Γx ) with Ω = [0, 1],
µ = U([0, 1]) and

Γx (ω) =
{
θ ∈ Θ

∣∣∣pl(θ; x) ≥ ω
}
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Inference Likelihood-based

Example: Bernoulli sample
• let X = (X1, . . . ,Xn) consist of independent Bernoulli observations

and θ ∈ Θ = [0, 1] is the probability of success

• we get

pl(θ; x) =
θy (1− θ)n−y

θ̂y (1− θ̂)n−y
,

where y =
∑n

i=1 xi and θ̂ is the MLE

• example for n = 20 and y = 10:
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Inference Likelihood-based

Discussion
Likelihood method

• the likelihood-based method is much simpler to implement than
Dempster’s method, even for complex models.

• by construction, it boils down to Bayesian inference when a
Bayesian prior is available

• it is compatible with usual likelihood-based inference:
• assume that θ = (θ1, θ2) ∈ Θ1 ×Θ2 and θ2 is a nuisance

parameter. The marginal contour function on Θ1

pl(θ1; x) = sup
θ2∈Θ2

pl(θ1, θ2; x) =
supθ2∈Θ2

L(θ1, θ2; x)

sup(θ1,θ2)∈Θ L(θ1, θ2; x)

is the relative profile likelihood function
• the plausibility of a composite hypothesis H0 ⊂ Θ

Pl(H0; x) =
supθ∈H0

L(θ; x)

supθ∈Θ L(θ; x)

is the usual likelihood ratio statistics Λ(x)
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Inference From preferences

Wong and Lingras
Building belief functions from preferences

• Wong and Lingras [16] proposed a method for generating BFs from
a body of qualitative preference relations between propositions

• two binary relations: preference · > and indifference ∼
• goal: to build a belief function Bel such that A· > B iff

Bel(A) > Bel(B) and A ∼ B iff Bel(A) = Bel(B)

• exists if · > is a weak order and ∼ an equivalence relation

• Algorithm

1 consider all propositions that appear in the preference relations as
potential focal elements (FEs)

2 elimination: if A ∼ B for some B ⊂ A then A is not a FE
3 a perceptron algorithm is used to generate the mass m by solving the

system of remaining equalities and disequalities

• however: it selects arbitrarily one solution over many

• does not address possible inconsistency in the given preferences
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Inference From preferences

Ben Yaghlane’s constrained
optimisation approach

Building belief functions from preferences

• uses preferences and indifferences as in Wong and Lingras, with
same axioms..

• .. but converts them into a constrained optimisation problem

• objective function: maximise the entropy/uncertainty of the BF to
generate (least informative result)

• constraints derived from input preferences/indifferences, i.e.

A· > B ↔ Bel(A)− Bel(B) ≥ ε, A ∼ B ↔ |Bel(A)− Bel(B)| ≤ ε

• ε is a constant specified by the expert

• various uncertainty measures can be plugged in (see Advances)
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Conditioning

Conditional belief functions
A variety of proposals

• many different approaches to conditioning belief functions have
been proposed

• a non-exhaustive list:
• original Dempster’s conditioning
• lower and upper envelopes of conditional probabilities [Fagin and

Halpern]
• geometric conditioning [Suppes]
• unnormalized conditional belief functions [Smets]
• generalised Jeffrey’s rules [Smets]
• sets of equivalent events under multi-valued mappings [Spies]
• conditioning by distance minimisation [Cuzzolin]

• implications of the notion of conditional belief function:
• generalised Bayes theorem [Smets]
• the generalisation of the total probability theorem
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Conditioning Dempster’s conditioning

Dempster’s conditioning
Conditioning

• Dempster’s rule of combination is associated with a conditioning
operator

• suppose we have an “a-priori” BF Bel

• given a new event A, the “logical” belief function such that m(A) = 1
can be defined ...

• ... and combined with Bel using Dempster’s rule

• the resulting BF is the conditional belief function given A, a la
Dempster
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Conditioning Lower conditional envelopes

Lower conditional envelopes
Conditioning

• Fagin and Halpern proposed an approach based on interpretation
of a belief function as the lower envelope of the family of
probabilities consistent with it (robust Bayesian)

Bel(A) = inf
P∈P[Bel]

P(A)

• they define the conditional belief as the lower envelope (that is, the
infimum) of the family of conditional probability functions
P(A|B), where P is consistent with Bel :

Bel(A|B)
.

= inf
P∈P[Bel]

P(A|B), Pl(A|B)
.

= sup
P∈P[Bel]

P(A|B)

• trivially generalises conditional probability

• have been considered by other authors too, e.g. Dempster 1967
and Walley 1981
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Conditioning Lower conditional envelopes

Lower conditional envelopes
versus Dempster’s

• the authors provide a closed-form expression for it:

Bel(A|B) = Bel(A∩B)

Bel(A∩B+Pl(Ā∩B)
, Pl(A|B) = Pl(A∩B)

Pl(A∩B)+Bel(Ā∩B)

• lower/upper envelopes of arbitrary sets of probabilities are not in
general belief functions, but these actually are, as Fagin and
Halpern have proven

• they are quite different from Dempster’s conditioning:

Bel⊕(A|B) = Bel(A∪B̄)

1−Bel(B̄)
, Pl⊕(A|B) = Pl(A∩B)

Pl(B)

• in fact, they provide a more conservative estimate:

Bel(A|B) ≤ Bel⊕(A|B) ≤ Pl⊕(A|B) ≤ Pl(A|B)

• Fagin and Halpern argue that Dempster’s conditioning behaves
unreasonably on their “three prisoners” example
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Conditioning Unnormalised vs geometric conditioning

Revision versus focussing
in belief as opposed to probability theory

Focussing
No new information is introduced, we merely focus on a specific subset of
the original set.

Belief revision
A state of belief is modified to take into account a new piece of
information.

• in probability theory, both are expressed by Bayes’ rule, but they
are conceptually different operations

• in belief theory, these principles lead to different conditioning
rules

• the application of revision and focussing to belief theory has been
explored by Smets in his Transferable Belief Model (TBM)

• here we are not assuming any random set generating Bel , nor any
underlying convex sets of probabilities
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Conditioning Unnormalised vs geometric conditioning

Suppes’ geometric conditioning
Conditioning

• the geometric conditioning proposed by Suppes and Zanotti

BelG(A|B) =
Bel(A ∩ B)

Bel(B)
,

is indeed a consequence of the focussing idea

• (this was proved by Smets using the “probability of provability”
interpretation of belief functions, yes, yet another one!)

• somewhat dual to Dempster’s conditioning, as it replaces
probability with belief in Bayes’ rule

• remember that Dempster’s rule dually replaces probability with
plausibility in Bayes’ rule

Pl⊕(A|B) = Pl(A∩B)
Pl(B)

↔ BelG(A|B) = Bel(A∩B)
Bel(B)
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Conditioning Unnormalised vs geometric conditioning

Smets’ unnormalised rule
of conditioning

• to rebuke Bayesian criticisms, in his TBM Smets rejects the
existence of a probability measure on a parent space C

• Smet’s (Dempster’s) unnormalized conditional belief function:

mU(.|B) =


∑

X⊆Bc

m(A ∪ X ) if A ⊆ B

0 elsewhere

• (in the TBM BFs which assign mass to ∅ can exist, under the “open
world” assumption)

• in terms of plausibilities: PlU(A|B) = Pl(A ∩ B) - in the TBM the
mass m(A) is transferred by conditioning on B to A ∩ B

• it is a consequence of belief revision principles [Gilboa, Perea]
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Conditioning Conditional events as equivalence classes

Spies’ sets of equivalent events
under multi-valued mappings

Conditioning

• intriguing approach to conditioning, in the random set interpretation
with (C,F ,P) and Γ : C → 2Ω

• null sets for P(.|A): N (P(.|A)) = {B ∈ A : P(B|A) = 0}
• let 4 be the symmetric difference A4B = (A ∩ B̄) ∪ (Ā ∩ B)

• two events have the same conditional probability if they both are the
symmetric difference between a same event and some null set

• a conditional event [B|A] with A,B ⊆ Ω is a set of events with the
same conditional probability P(B|A):

[B|A] = B4N (PA)

• you can prove that [B|A] = {C : A ∩ B ⊆ C ⊆ Ā ∪ B}
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Conditioning Conditional events as equivalence classes

Conditional belief functions
Spies’ approach

• by applying to conditional events a multivalued mapping Spies gave
a new definition of conditional belief function

• conditional multivalued mapping for B ⊆ Ω: ΓB(c) = [Γ(c)|B],
where Γ : C → 2Ω

• (if A = Γ(c), ΓB maps c to [A|B])

• consequence: to all elements of each conditioning event (an
equivalence class) must be assigned equal belief/plausibility

• a conditional belief function is then a “second-order” BF with
values on collections of focal elements (the conditional events)

Bel([C|B]) = P({c : ΓB(c) = [C|B]}) =
1
K

∑
A∈[C|B]

m(A)

• it is not a BF on the sub-algebra {Y = C ∩ B,C ⊆ Ω}
• Spies’ conditional belief functions are closed under Dempster’s

rule of combination
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Conditioning Conditional events as equivalence classes

Jeffrey’s rule of conditioning
or Total Probability Theorem

• suppose P is defined on a σ-algebra A
• there is a new prob measure P′ on a sub-algebra B of A, and the

updated probability P′′ has to:

1 meet the prob values specified by P′ for events in B
2 be such that ∀ B ∈ B, X ,Y ⊂ B, X ,Y ∈ A

P′′(X)

P′′(Y )
=

{
P(X)
P(Y )

if P(Y ) > 0
0 if P(Y ) = 0

• there is a unique solution:

P′′(A) =
∑
B∈B

P(A|B)P′(B)

• meaning: the initial probability stands corrected by the second
one on a number of events

• generalises conditioning (obtained when P′(B) = 1 for some B)
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Conditioning Conditional events as equivalence classes

Jeffrey’s rule generalised

Jeffrey’s rule for belief functions

1 Let Π = {B1, ...,Bn} a disjoint partition of Ω;

2 m1, ...,mn the BPAs of BFs conditional on B1, ...,Bn respectively;

3 mB an unconditional belief function on the coarsening associated
with the partition Π

Then the belief function Beltot (A) =
∑
C⊆A

(
mB ⊕⊕n

i mBi

)
(C) is a marginal

belief function on Ω, and if all BFs are probabilities is reduces to the
result of Jeffrey’s rule of total probability

• combining the a-priori with all the conditionals we get a marginal

• is this the only solution? we will discuss this later (total belief
theorem)
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Conditioning Conditional events as equivalence classes

Conditioning approaches
A summary

• various approaches to conditioning have been proposed:
• Dempster’s (normalised) conditioning:

Bel⊕(A|B) = Bel(A∪B̄)

1−Bel(B̄)
, Pl⊕(A|B) = Pl(A∩B)

Pl(B)

• lower and upper conditional envelopes:

Bel(A|B) = Bel(A∩B)

Bel(A∩B+Pl(Ā∩B)
, Pl(A|B) = Pl(A∩B)

Pl(A∩B)+Bel(Ā∩B)

• geometric conditioning:

BelG(A|B) =
Bel(A ∩ B)

Bel(B)
,

• Smets’ unnnormalised rule: PlU (A|B) = Pl(A ∩ B)

• Spies’ conditioning: Bel[A|B] ∝
∑

X :A∩B⊆X⊆A∪B̄

m(X)

• derived from different revision principles
• follow different semantic interpretations (TBM rather than

random set, open versus closed world assumption, robust
Bayesian)
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Conditioning Generalised Bayes theorem

Bayes’ theorem
generalised to belief functions

• have a conditional probability P(x |θi ) over observations x ∈ X , and
an a-priori probability P0 over a set of hidden variables θi ∈ Θ

• (for instance, x is a symptom and θi a disease)

• after observing x , the probability distribution on Θ is updated to the
posterior via Bayes’s theorem:

P(θi |x) =
P(x |θi )P0(θi )∑
j P(x |θj )P0(θj )

∀θj ∈ Θ

• the GBT is a generalisation of Bayes’ theorem for conditional
BFs, when the a-priori BF on Θ is vacuous

• Dempster’s normalised/unnormalised conditioning is assumed

• (a further generalisation for non-vacuous priors is proposed in
Smets’ work) [Smets 1993]
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Conditioning Generalised Bayes theorem

Cognitive independence

• consider a belief function over the product space X × Y

• the two variables are cognitively independent if

plX×Y (x ∩ y) = plX (x)plY (y) ∀x ⊆ X , y ⊆ Y

• cognitive independence extends stochastic independence

• conditional cognitive independence reads as

plX×Y (x ∩ y |θi ) = plX (x |θi )plY (y |θi ) ∀x , y , θi

and implies that the ratio of plausibility/belief on X does not depend
on Y :

plX (x1|y)

plX (x2|y)
=

plX (x1)

plX (x2)
,

BelX (x1|y)

BelX (x2|y)
=

BelX (x1)

BelX (x2)
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Conditioning Generalised Bayes theorem

Likelihood principle
Edwards, 1929

• the likelihood of an hypothesis given the data amounts to the
conditional probability of the data given the hypothesis:

l(θi |x) = p(x |θi )

and, for unions of singleton hypotheses:

l(θ = {θ1, ..., θk}|x) = max
{

l(θi |x) : θi ∈ θ
}

• Shafer’s somewhat similar proposal for statistical inference (see
inference-likelihood method):

pl(θ|x) = max
θi∈θ

pl(θi |x)′

was rejected by Smets, for not satisfying the condition that, if two
pieces of evidence are conditionally independent, BelΘ(.|x , y) is the
conjunctive combination of BelΘ(.|x) and BelΘ(.|y)

F. Cuzzolin and T. Denoeux Belief functions for the working scientist UAI 2015 74 / 229



Belief
functions for
the working

scientist

F. Cuzzolin
and

T. Denoeux

Rationale

Basic notions

Semantics

Inference

Conditioning
Dempster’s
conditioning

Lower conditional
envelopes

Unnormalised vs
geometric
conditioning

Conditional events as
equivalence classes

Generalised Bayes
theorem

The total belief
theorem

Computation

Propagation

Decisions

BFs on reals

Sister theories

Advances

Toolbox

Applications

Future trends

Conditioning Generalised Bayes theorem

Generalised Likelihood Principle
Smets’ Generalised Likelihood Principle (GLP)

1 plΘ(θ|x) = plX (x |θ)

2 For all x , θ the plausibility of data pl(x |θ) given a compound
hypothesis θ = {θ1, ..., θm} is a function of only

{pl(x |θi ), pl(x̄ |θi ) : θi ∈ θ}

• the form of the function is not assumed (not necessarily the max)

• both pl(x |θi ) and pl(x̄ |θi ) are necessary because of the
non-addivitivity of belief functions

• justified by the following requirements:

• pl(x |θ) remains the same on the coarsening of X formed by
just x and x̄

• plausibilities for θj 6∈ θ are irrelevant for pl(x |θ)
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Conditioning Generalised Bayes theorem

Generalised Bayesian Theorem
and the disjunctive rule of combination

• under conditional cognitive independence and the Generalised
Likelihood Principle (2), BelX (.|θ), θ ⊂ Θ is generated from the
{BelX (.|θi ), θi ∈ Θ} by disjunctive rule of combination

PlX (x |θ) = 1−
∏
θi∈θ

(1− PlX (x |θi )), BelX (x |θ) =
∏
θi∈θ

BelX (x |θi )

• then, condition (1) of the GLP plΘ(θ|x) = plX (x |θ) implies the
generalised Bayes theorem:

PlΘ(θ|x) =
1
K

(
1−

∏
θi∈θ

(1− plX (x |θi ))
)

BelΘ(θ|x) =
1
K

( ∏
θi∈θ̄

BelX (x̄ |θi )−
∏
θi∈Θ

BelX (x̄ |θi )
)

where K = 1−
∏
θi∈Θ(1− plX (x |θi ))

F. Cuzzolin and T. Denoeux Belief functions for the working scientist UAI 2015 76 / 229



Belief
functions for
the working

scientist

F. Cuzzolin
and

T. Denoeux

Rationale

Basic notions

Semantics

Inference

Conditioning
Dempster’s
conditioning

Lower conditional
envelopes

Unnormalised vs
geometric
conditioning

Conditional events as
equivalence classes

Generalised Bayes
theorem

The total belief
theorem

Computation

Propagation

Decisions

BFs on reals

Sister theories

Advances

Toolbox

Applications

Future trends

Conditioning The total belief theorem

Outline

1 Rationale
2 Basic notions

Belief functions
Dempster’s rule
Families of frames

3 Semantics
Lower probabilities
Credal sets
Set functions
Generalised probabilities
Random sets

4 Inference
Dempster’s approach
Likelihood-based
From preferences

5 Conditioning
Dempster’s conditioning
Lower conditional envelopes
Unnormalised vs geometric
conditioning

Conditional events as
equivalence classes
Generalised Bayes theorem
The total belief theorem

6 Computation
Probability transformation
Possibility transformation
Monte-Carlo methods

7 Propagation
Barnett’s method
Diagnostic trees
Shafer-Shenoy architecture
Directed Evidential Networks

8 Decisions
Decision making in the TBM
Strat’s decision apparatus
Upper and lower expected
utilities

9 BFs on reals
Allocations of probabilitity
Random sets

Random closed intervals

10 Sister theories
Imprecise probability
Fuzzy sets and possibility
p-Boxes

11 Advances
Matrix representation
Geometry
Distances
Combinatorics
Uncertainty measures

12 Toolbox
Classification
Ranking aggregation

13 Applications
A brief survey
Climate change
Pose estimation

14 Future trends

F. Cuzzolin and T. Denoeux Belief functions for the working scientist UAI 2015 77 / 229



Belief
functions for
the working

scientist

F. Cuzzolin
and

T. Denoeux

Rationale

Basic notions

Semantics

Inference

Conditioning
Dempster’s
conditioning

Lower conditional
envelopes

Unnormalised vs
geometric
conditioning

Conditional events as
equivalence classes

Generalised Bayes
theorem

The total belief
theorem

Computation

Propagation

Decisions

BFs on reals

Sister theories

Advances

Toolbox

Applications

Future trends

Conditioning The total belief theorem

The total belief theorem
Generalising total probability to belief functions

Theorem
Suppose Θ and Ω are two frames of discernment, and ρ : 2Ω → 2Θ the
unique refining between them. Let Bel0 be a belief function defined over
Ω = {ω1, ..., ω|Ω|}. Suppose there exists a collection of belief functions
Beli : 2Πi → [0, 1], where Π = {Π1, ...,Π|Ω|}, Πi = ρ({ωi}), is the partition
of Θ induced by its coarsening Ω.
Then, there exists a belief function Bel : 2Θ → [0, 1] such that:

1 Bel0 is the restriction of Bel to Ω

2 Bel ⊕ BelΠi = Beli ∀i = 1, ..., |Ω|, where BelΠi is the logical belief
function with mass

mΠi (A) = 1 A = Πi , 0 otherwise
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Conditioning The total belief theorem

The total belief theorem
Visual representation

• pictorial representation of the total belief theorem
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Conditioning The total belief theorem

Structure of the focal elements
of the total belief function

• restricted total belief theorem: Bel0 has only disjoint FEs

• pictorial representation of the structure of the FEs of a total BF Bel lying in
the image of a focal element of Bel0 of cardinality 3
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Conditioning The total belief theorem

Graph of solutions
• potential solutions correspond to square linear systems, and form a graph

whose nodes are linked by linear transformations of columns

e 7→ e′ = −e +
∑
i∈C

ei −
∑
j∈S

ej

where C is a covering set for e (i.e., every component of e is covered by at
least one of them), S a set of selection columns

• at each transformation, the most negative component decreases

• general solution based on simplex-like optimisation?
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Computation

Efficient computation
with belief functions

• as belief functions are set functions, their complexity is exponential
on the size n of the domain they are defined on

• combinining belief functions via Dempster’s rule is also exponential:
(2n)N , where N is the number of BFs involved

• efficient approaches based on approximating the original evidence -
in particular, approaches that transform a belief function into a
less complex uncertainty measure
• probability (Bayesian) transformation
• possibility (consonant) transformation

• approaches based on the local propagation of evidence
• Barnett’s approximation
• hierarchical evidence
• Cano’s propagation on DAGs
• Shafer-Shenoy architecture

• Monte-Carlo methods [Wilson and Moral]
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Computation Probability transformation

Probability transformations
Mapping belief functions to probabilities

• probability transform of belief functions: an operator pt : B → P,
b 7→ pt [b] mapping belief measures onto probability distributions

• (not necessarily an element of the corresponding credal set)

• a number of transforms proposed, either as efficient
implementations of ToE or tools for decision making
• pignistic transform, central in the TBM [Smets]
• plausibility and belief transform [Voorbraak, Cobb & Shenoy]
• orthogonal projection and intersection probability [Cuzzolin]
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Computation Probability transformation

Transformation in the TBM: the
pignistic transform

Probability transformation

• Smets’ Transferable Belief Model -> decisions made via “pignistic
transform” ..

• .. resulting in a pignistic probability:

BetP[b](x) =
∑

A⊇{x}

mb(A)

|A| ,

• its purpose is to allow decision making at the level of probabilities,
typically in an expected utility framework

• the result of a redistribution process in which the mass of each focal
element A is re-assigned to all its elements x ∈ A on an equal basis

• it commutes with affine combination and is the center of mass of
the credal set of consistent probabilities
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Computation Probability transformation

Plausibility and belief transform
Probability transformation

• plausibility transform [Voorbraak 89]: maps a belief function to
the relative belief of singletons:

p̃l(x) =
pl(x)∑

y∈Θ pl(y)

• relative plausibility of singletons p̃l is a perfect representative of Bel
when combined with other probabilities by Dempster’s rule ⊕

• meets a number of properties w.r.t. ⊕ [Coob&Shenoy 03]

• the relative belief transform maps each belief function to the
corresponding relative belief of singletons:

b̃el(x) =
Bel({x})∑

y∈Θ Bel({y})

• first proposed by Daniel in 2006, its geometry and that of plausibility
transform analyzed in [Cuzzolin 2010 AMAI]
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Geometric transformations
Probability transformation

• the probability transformation problem can be posed in geometric
terms [IEEE SMC-B07]

• orthogonal
projection π[b] ->
minimises the L2
distance from P

• intersection
probability p[b]
-> intersection
with P of the
belief-plausibility
line
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Computation Possibility transformation

Possibility transformations
Outer approximations

• necessity measures have as counterparts in the ToE consonant
belief functions, whose focal elements are nested: A1 ⊂ · · · ⊂ Am,
Ai ⊆ Θ

• outer consonant approximations [Dubois&Prade 90]: consonant
BFs co which are dominated by the original BF on all events:

co(A) ≤ Bel(A) ∀A ⊆ Θ

• for each possible maximal chain A1 ⊂ · · · ⊂ An, |Ai | = i of focal
elements the maximal outer consonant approximation has mass

mmax(Ai ) = Bel(Ai )− Bel(Ai−1)

• mirrors the behavior of the vertices of the credal set of probabilities
dominating a belief function [Chateauneuf, Miranda& Grabish]
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Computation Possibility transformation

Possibility transformation
Isopignistic approximation

• completely different approximation in Smets’ Transferable Belief
Model [Smets94,05]

• isopignistic" approximation: the unique consonant belief function
whose pignistic probability BetP is identical to that of Bel [Dubois,
Aregui]

• its contour function is:

pliso(x) =
∑
x′∈Θ

min
{

BetP(x),BetP(x ′)
}

• mass assignment:

miso(Ai ) = i · (BetP(xi )− BetP(xi+1))

where {xi} = Ai \ Ai−1
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Computation Monte-Carlo methods

A simple Monte-Carlo approach
to Dempster’s combination - Wilson, 1989

• we seek Bel = Bel1 ⊕ ...⊕ Belm on Ω, where the evidence is
induced by probability distributions Pi on Ci via Γi : Ci → 2Ω

• Monte-Carlo algorithm simulates the random set interpretation
of belief functions: Bel(A) = P(Γ(c) ⊆ A|Γ(c) 6= ∅)

for a large number of trials n = 1 : N do
randomly pick c ∈ C such that Γ(c) 6= ∅
for i = 1 : m do

randomly pick an element ci of Ci with probability Pi (ci )
end for
let c = (c1, ..., cm)
if Γ(c) = ∅ then

restart trial
end if
if Γ(c) ⊆ A then

trial succeeds, T = 1
end if

end for
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Computation Monte-Carlo methods

A Monte-Carlo approach
Wilson, 1989

• the proportion of trials which succeed converges to Bel(A):
E [T̄ ] = Bel(A), Var [T̄ ] ≤ 1

4N

• we say algorithms has accuracy k if 3σ[T̄ ] ≤ k
• picking c ∈ C involves m random numers so it takes A ·m, A

constant
• testing if xj ∈ Γ(c) takes less then Bm, constant B
• expected time of the algorithm is

N
1− κm · (A + B|Ω|)

where κ is Shafer’s conflict measure
• expected time to achieve accuracy k is then 9

4(1−κ)κ2 m · (A + C|Ω|)
for constant C, better for simple support functions

• conclusion: unless κ is close to 1 (highly conflicting evidence)
Dempster’s combination is feasible for large values of m
(number of BFs to combine) and large Ω (hypothesis space)
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Computation Monte-Carlo methods

Markov-Chain Monte-Carlo
Wilson and Moral, 1996

• trials are not independent but form a Markov chain

• non-deterministic OPERATIONi : changes at most the i-th
coordinate c′(i) of c′ to y , with chance Pi (y)

Pr(OPERATIONi (c′) = c) ∝ Pi (c(i)) if c(i) = c′(i), 0 otherwise

• MCMC algorithm which returns a value BELN(c0) which is the
proportion of time in which Γ(cc) ⊆ X

cc = c0
S = 0
for n = 1 : N do

for i = 1 : m do
cc = OPERATIONi (cc)
if Γ(cc) ⊆ X then

S = S + 1
end if

end for
end for
return S

Nm
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Computation Monte-Carlo methods

Importance sampling
Wilson and Moral, 1996

Theorem
If C is connected (i.e., any c, c′ are linked by a chain of OPERATIONi )
then given ε, δ there exist K ′, N ′ s.t. for all K ≥ K ′ and N ≥ N ′ and c0:

Pr(|BELN
K (c0)| < ε) ≥ 1− δ

• further step: importance sampling -> pick samples c1, ..., cN

according to an “easy to handle” probability distribution P∗

• assign to each sample a weight wi = P(c)
P∗(c)

• if P(c) > 0 implies P∗(c) > 0 then the average
∑

Γ(ci )⊆X wi

N is an
unbiased estimator of Bel(X )

• try to use P∗ as close as possible to the real one

• strategies are proposed to compute P(C) =
∑

c P(c)
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Propagation

Graphical models for belief
functions

• to tackle complexity, a number of local computation schemes have
been proposed

• Barnett’s computational scheme
• Gordon and Shortliffe’s diagnostic trees
• Shafer and Logan’s hierarchical evidence
• Shafer-Shenoy architecture

• later on, these developed into graphical models for reasoning with
conditional belief functions:

• Cano et al - propagating uncertainty in directed acyclic
networks

• Xu and Smets - Evidential networks with conditional belief
functions

• Shenoy - graphical representation of valuation-based systems
(VBS), called valuation networks

• Ben Yaghlane and Mellouli - Directed Evidential Networks
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Propagation Barnett’s method

Barnett’s scheme, 1981
• computations linear in the size of Ω if all BFs to combine are

simple support focused on singletons or their complements

• simple support function -> as focal elements only A or Ω

• assume we have a Belω with as FEs only {ω, ω̄,Ω} for all ω, and we
want to combine them

• uses the fact that the plausibility of the combined BF is a function of
their input BFs’ commonalities Q(A) =

∑
B⊇A m(B):

Pl(A) =
∑

B⊆A,B 6=∅

(−1)|B|+1
∏
ω∈Ω

Qω(B)

• we get that Pl(A) = K

(
1 +

∑
ω∈A

Belω(ω)

1− Belω(ω)
−
∏
ω∈A

Belω(ω̄)

1− Belω(ω)

)
• the computation of a specific plausibility value Pl(A) is linear in the

size of Ω (only elements of A and not subsets are involved)

• however, the number of events A themselves is still exponential
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Propagation Diagnostic trees

Gordon and Shortliffe’s scheme
based on diagnostic trees

• they are interested in computing degrees of belief only for events
forming a hierarchy (diagnostic tree)

• (in some applications certain events are not relevant, e.g. classes
of diseases)

• combine simple support functions focused on or against the nodes

• produces good approximations, unless evidence is highly conflicting
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Propagation Diagnostic trees

Gordon and Shortliffe’s scheme
based on diagnostic trees

• however, intersection of complements produces FEs not in the tree

• approximated algorithm:

1 first we combine all simple functions focussing on the node
events (by Dempster’s rule)

2 then, we successively (working down the tree) combine those
focused on the complements of the nodes

3 tricky bit: when we do that, we replace each intersection of
FEs with the smallest node in the tree that contains it

• results depends on the order of the combination in phase 2

• again approximation can be poor, also no degrees of belief are
assigned to complements of nodes

• therefore, we cannot compute their plausibilities!
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Propagation Shafer-Shenoy architecture

Shafer-Shenoy architecture
Qualitative Conditional Independence

• uses qualitative Markov trees, which generalise both diagnostic
trees and causal trees (Pearl). Extend Pearl’s idea to BFs

• partitions Ψ1, ...,Ψn of a frame are qualitatively conditionally
independent (QCI) given the partition Ψ if

P ∩ P1 ∩ ... ∩ Pn 6= ∅

whenever P ∈ Ψ, Pi ∈ Ψi and P ∩ Pi 6= ∅ for all i

• example: {θ1} × {θ2} ×Θ3 and Θ1 × {θ2} × {θ3} are QCI on
Θ1 ×Θ2 ×Θ3 given Θ1 × {θ2} ×Θ3 for all θi ∈ Θi

• does not involve probability, but only logical independence

• stochastic conditional independence does imply the above

• if two BFs Bel1 and Bel2 are carried by partitions Ψ1,Ψ2 which are
QCI given Ψ then

(Bel1 ⊕ Bel2)Ψ = (Bel1)Ψ ⊕ (Bel2)Ψ
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Propagation Shafer-Shenoy architecture

Qualitative Markov trees
Shafer-Shenoy architecture

• given a tree, deleting a node and all incident edges yields a forest -
denote the collection of nodes of the j-th subtree by αm(j)

• a qualitative Markov tree is a tree of
partitions s.t. for every node i the minimal
refinements of partitions in αm(j) for
j = 1, ..., k are QCI given Ψi

• a Bayesian causal tree becomes a
qualitative Markov tree whenever we
associate each node B with the partition ΨB
associated with the random variable vB

• a QMT remains such if we insert between
parent and child their common refinement

• can also be constructed from a diagnostic
tree (left), same interpolation property holds
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Propagation Shafer-Shenoy architecture

Propagating belief functions
on qualitative Markov trees

• each BF to combine has to be carried by a partition in the tree

• idea: replace Dempster’s combination over the whole frame
with multiple implementations over partitions

• a processor located at each node Ψi combines BFs using Ψi as a
frame and projects BFs to its neighbours

1 send Beli to its neighbours
2 whenever it gets a new input, computes

(BelT )Ψi ← (⊕{(Belx )Ψi : x ∈ N(i)} ⊕ Beli )Ψi

3 computes Beli,y ← (⊕{(Belx )Ψi : x ∈ N(i) \ {y}} ⊕ Beli )Ψy

and sends it to its neighbour y , for each neighbour

• inputting new BFs in the tree can take place asynchronously

• final result of each processor: coarsening to that partition of the
combination of all inputted BFs: (⊕j∈JBelj )Ψi
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Graphical representation
Shafer-Shenoy architecture

• total time to reach equilibrium is proportional to the tree’s diameter
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Propagation Directed Evidential Networks

Directed evidential networks
Ben Yaghlane and Mellouli, 2008

• Evidential networks with conditional belief functions (ENC) were
originally proposed by Xu and Smets for the propagation of beliefs
• (Dempster’s conditioning is adopted)

• ENCs contain a directed acyclic graph with conditional beliefs
defined in a different manner from conditional probabilities in
Bayesian networks (BNs)
• edges represent the existence of a conditional BF (no form of

independence assumed)
• initially defined only for binary (conditional) relationships

• Ben Yaghlane and Mellouli generalised ENCs to any number of
nodes - directed evidential network (DEVN)
• a directed acyclic graph (DAG) in which directed arcs describe the

conditional dependence relations expressed by conditional BFs for
each node given its parents

• new observations introduced in the network are represented by belief
functions allocated to some nodes
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Propagation Directed Evidential Networks

Directed evidential networks
Ben Yaghlane and Mellouli, 2008

• problem: given n BFs Bel1, ...,Beln over X1, ...,Xn we seek the
marginal on Xi of their joint belief function

• uses the generalised Bayesian theorem (GBT) to compute the
posterior Bel(x |y) given the conditional Bel(y |x)

• the marginal is computed for each node by combining all the
messages received from its neighbors and its own prior belief:

BelX = BelX
0 ⊕ BelY→X , BelY→X (x) =

∑
y⊆ΘY

m0(y)Bel(x |y)

where Bel(x |y) is given by GBT

• another application of the message-passing idea to belief functions

• propose a simplified scheme for simply directed networks

• extension to DEVNs by first transforming them to binary join trees
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Decision making with belief
functions

An overview

• natural application of belief function representation of uncertainty

• problem: selecting an act f from an available list F (making a
“’decision’), which optimises a certain objective function

• various approaches to decision making

• decision making in the TBM is based on expected utility via
pignistic transform

• Strat has proposed something similar in his “cloaked carnival
wheel” scenario

• generalised expected utility [Gilboa] based on classical
expected utility theory [Savage,von Neumann]

• a lot of interest in multicriteria decision making (based on a
number of attributes)
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Expected utility approach
Decision making under uncertainty

• a decision problem can be formalized by defining:

• a set Ω of states of the world;
• a set X of consequences;
• a set F of acts, where an act is a function f : Ω→ X

• let < be a preference relation on F , such that f < g means that f
is at least as desirable as g

• Savage (1954) has showed that < verifies some rationality
requirements iff there exists a probability measure P on Ω and a
utility function u : X → R s.t.

∀f , g ∈ F , f < g ⇔ EP(u ◦ f ) ≥ EP(u ◦ g)

where EP denotes the expectation w.r.t. P

• P and u are unique up to a positive affine transformation

• does that mean that basing decisions on belief functions is
irrational?
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Decision making in the TBM
Expected utility using the pignistic probability

• in the TBM, decision making is done by maximising the expected
utility of actions based on the pignistic transform

• (as opposed to computing upper and lower expected utilities
directly from (Bel,Pl) via Choquet integral, as we will see later)

• the set of possible actions F and the set Ω of possible outcomes
are distinct, and the utility function is defined on F × Ω

• Smets proves the necessity of the pignistic transform by maximizing

E [u] =
∑
ω∈Ω

u(f , ω)Pign(ω)
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Strat’s decision apparatus
[UAI 1990]

• Strat’s decision apparatus is based
on computing intervals of expected
values

• assumes that the decision frame Ω
is itself a set of scalar values (e.g.
dollar values, see left) - does not
distinguish between utilities and
elements of Ω (returns)

• .. so that an expected value interval can be computed:
E(Ω) = [E∗(Ω),E∗(Ω)], where

E∗(Ω)
.

=
∑
A⊆Ω

inf(A)m(A), E∗(Ω)
.

=
∑
A⊆Ω

sup(A)m(A)

• not good enough to make a decision, e.g.: should we pay a 6$
ticket when the expected interval is [5$, 8$]?
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Strat’s decision apparatus
A probability of favourable outcome

• Strat identifies ρ as the probability that the value assigned to the
hidden sector is the one the player would choose

• 1− ρ is the probability that the sector is chosen by the carnival
hawker

Theorem
The expected value of the mass function of the wheel is
E(Ω) = E∗(Ω) + ρ(E∗(Ω)− E∗(Ω))

• to decide whether to play the game we only need to assess ρ

• basically, this amounts to a specific probability transform (like the
pignistic one)

• Lesh, 1986 had also proposed a similar approach
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Decisions Upper and lower expected utilities

Savage’s axioms

• Savage has proposed 7 axioms, 4 of which are considered as
meaningful (the others are rather technical)

• let us examine the first two axioms:

• Axiom 1: < is a total preorder (complete, reflexive and transitive)

• Axiom 2 [Sure Thing Principle]. Given f , h ∈ F and E ⊆ Ω, let fEh
denote the act defined by

(fEh)(ω) =

{
f (ω) if ω ∈ E
h(ω) if ω 6∈ E

• then the Sure Thing Principle states that ∀E , ∀f , g, h, h′,

fEh < gEh⇒ fEh′ < gEh′

• this axiom seems reasonable, but it is not verified empirically!
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Ellsberg’s paradox
• suppose you have an urn containing 30 red balls and 60 balls, either black

or yellow. Consider the following gambles:
• f1: you receive 100 euros if you draw a red ball
• f2: you receive 100 euros if you draw a black ball
• f3: you receive 100 euros if you draw a red or yellow ball
• f4: you receive 100 euros if you draw a black or yellow ball

• in this example Ω = {R,B,Y}, fi : Ω→ R and X = R
• the four acts are the mappings in the left table
• empirically it is observed that most people strictly prefer f1 to f2, but they

strictly prefer f4 to f3

R B Y
f1 100 0 0
f2 0 100 0
f3 100 0 100
f4 0 100 100

Now, pick E = {R,B}: by definition

f1{R,B}0 = f1, f2{R,B}0 = f2
f1{R,B}100 = f3, f2{R,B}100 = f4

• since f1 < f2, i.e. f1{R,B}0 < f2{R,B}0 the Sure Thing principle would
imply f1{R,B}100 < f2{R,B}100, i.e., f3 < f4

• empirically the Sure Thing Principle is violated!
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Gilboa’s theorem

• Gilboa (1987) proposed a modification of Savage’s axioms with, in
particular, a weaker form of Axiom 2

• a preference relation < meets these weaker requirements iff there
exists a (non necessarily additive) measure µ and a utility
function u : X → R such that

∀f , g ∈ F , f < g ⇔ Cµ(u ◦ f ) ≥ Cµ(u ◦ g),

where Cµ is the Choquet integral, defined for X : Ω→ R as

Cµ(X ) =

∫ +∞

0
µ(X (ω) ≥ t)dt +

∫ 0

−∞
[µ(X (ω) ≥ t)− 1]dt .

• given a belief function Bel on Ω and a utility function u, this theorem
supports making decisions based on the Choquet integral of u
with respect to Bel or Pl
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Lower and upper expected
utilities

• for finite Ω, it can be shown that

CBel (u ◦ f ) =
∑
B⊆Ω

m(B) min
ω∈B

u(f (ω))

CPl (u ◦ f ) =
∑
B⊆Ω

m(B) max
ω∈B

u(f (ω))

• let P(Bel) as usual be the set of probability measures P compatible
with Bel , i.e., such that Bel ≤ P. Then, it can be shown that

CBel (u ◦ f ) = min
P∈P(Bel)

EP(u ◦ f ) = E(u ◦ f )

CPl (u ◦ f ) = max
P∈P(Bel)

EP(u ◦ f ) = E(u ◦ f )
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Decision making
Strategies

• for each act f we have two expected utilities E(f ) and E(f ). How do
we make a decision?

• possible decision criteria based on interval dominance:

1 f < g iff E(u ◦ f ) ≥ E(u ◦ g) (conservative strategy)
2 f < g iff E(u ◦ f ) ≥ E(u ◦ g) (pessimistic strategy)
3 f < g iff E(u ◦ f ) ≥ E(u ◦ g) (optimistic strategy)
4 f < g iff

αE(u ◦ f ) + (1− α)E(u ◦ f ) ≥ αE(u ◦ g) + (1− α)E(u ◦ g)

for some α ∈ [0, 1] called a pessimism index (Hurwicz
criterion)

• the conservative strategy yields only a partial preorder: f and g are
not comparable if E(u ◦ f ) < E(u ◦ g) and E(u ◦ g) < E(u ◦ f )
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Ellsberg’s paradox revisited

• going back to the example, the evidence naturally translates into a
belief function

• we have m({R}) = 1/3, m({B,Y}) = 2/3

• we can then compute lower and upper expected utilities for each
action:

R B Y E(u ◦ f ) E(u ◦ f )

f1 100 0 0 u(100)/3 u(100)/3
f2 0 100 0 u(0) u(200)/3
f3 100 0 100 u(100)/3 u(100)
f4 0 100 100 u(200)/3 u(200)/3

• the observed behavior (f1 < f2 and f4 < f3) is explained by the
pessimistic strategy
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BFs on reals

Continuous formulations
of the theory of belief functions

• in the original formulation by Shafer [1976], belief functions are
defined on finite sets only

• need for generalising this to arbitrary domains has been recognised
at an early stage

• main approaches to continuous formulation presented here:

• Shafer’s allocations of probability [1982]
• belief functions as random sets [Nguyen]
• belief functions on Borel intervals of the real line

[Strat,Smets]

• other approaches, with limited (so far) impact

• generalised evidence theory
• MV algebras
• several others
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BFs on reals Allocations of probabilitity

Allocations of probability
Shafer, 1979

• every belief function can be represented as an allocation of
probability, i.e., ∩-homomorphisms into positive and completely
additive probability algebra (deduced from the integral
representation due to Choquet)
• for every belief function Bel defined on a class of events E ⊆ 2Ω there

exists a complete Boolean algebraM, a positive measure µ and an
allocation of probability ρ between E andM such that Bel = µ ◦ ρ

• two regularity conditions for a belief function over an infinite domain
are considered: continuity and condensability

• canonical continuous extensions of belief functions to arbitrary
power sets can be introduced by allocation of probability

• the approach shows significant resemblance with the notions of
inner measure and extension of capacities [Honda]
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BFs on reals Allocations of probabilitity

Continuity and condensability
Shafer’s allocations of probability

• E ⊂ 2Θ is a multiplicative subclass of 2Θ if A ∩ B ∈ E for all A,B ∈ E
• a function Bel : E → [0, 1] such that Bel(∅) = 0, Bel(Θ) = 1 and

Bel is monotone of order∞ is a belief function
• equally, an upper probability (plausibility) function is alternating of

order∞ (≥ is exchanged with ≤)

• a BF on 2Θ is continuous if Bel(∩iAi ) = limi→∞ Bel(Ai ) for every
decreasing sequence of Ais. A BF on a multiplicative subclass E is
continuous if it can be extended to a continuous one on 2Θ

• continuity arises from partial beliefs on ‘objective’ probabilities

• a BF on 2Θ is condensable if Bel(∩A) = infA∈A Bel(A) for every
downward net A in 2Θ. A BF on a multiplicative subclass E is
condensable if it can be extended to a condensable one on 2Θ

• a downward net is such that given two elements there is always an
element subset of their intersection

• condensability is restrictive, but related to Dempster’s rule
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BFs on reals Allocations of probabilitity

Choquet’s representation
Shafer’s allocations of probability

• Choquet’s integral representation says that every belief function can be
represented by allocation of probability

• r : E → F is a ∩-homomorphism if it preserves ∩

Choquet’s theorem
For every BF Bel on a multiplicative subclass E of 2Θ, ∃ a set X and an algebra F
of its subsets, a finitely additive probability measure µ on F , and a
∩-homomorphism r : E → F such that Bel = µ ◦ r .

• if we replace the measure space (X ,F , µ) with a probability algebra (a
complete Boolean algebraM with a completely additive prob measure µ)
we get

Allocation of probability
For every BF Bel on a multiplicative subclass E of 2Θ, ∃ an allocation of probability
ρ : E →M such that Bel = µ ◦ ρ.

• non-zero elements ofM can be thought of as focal elements
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Canonical extension
Shafer’s allocations of probabilityTheorem

a BF on a multiplicative subclass E can always be extended to a belief
function on 2Θ by canonical extension

Bel(A)
.

= sup
n≥1,A1,...,An∈E

∑{
(−1)|I|+1Bel(∩i∈IAi )|∅ 6= I ⊂ {1, ..., n}

}
• proof is based on the existence of an allocation for the extension
• note the similarity with the superadditivity axiom
• also related to inner measures, which provide approximate belief values for

subsets not in a sigma-algebra
• Bel is the minimal such extension
• what about evidence combination? condensability ensures that the

Boolean algebraM represents intersection properly for arbitrary (not just
finite) collections B of subsets:

ρ(∩B) =
∧

B∈B
ρ(B) ∀B ⊂ 2Ω

• allows us to imagine Dempster’s combinations of infinitely many belief
functions
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Random sets
to extend belief functions to arbitrary domains

• the notion of condensability has been studied by Nguyen for upper
probabilities generated by random sets too [Nguyen 1978]

• efforts directed at a general theory on arbitrary domains

• for finite random sets (i.e. with a finite number of focal elements),
under independence of variables Dempster’s rule can be applied:

(F ,m) =
{

Ai1,...,id = ×d
j=1Aij ,mi1,...,id = mi1 · · · · ·mid

}
• for dependent sources Fetz and Oberguggenberger have proposed

an “unknown interaction” model

• for infinite random sets Alvarez (see p-boxes later) a Monte-Carlo
sampling method

F. Cuzzolin and T. Denoeux Belief functions for the working scientist UAI 2015 135 / 229



Belief
functions for
the working

scientist

F. Cuzzolin
and

T. Denoeux

Rationale

Basic notions

Semantics

Inference

Conditioning

Computation

Propagation

Decisions

BFs on reals
Allocations of
probabilitity

Random sets

Random closed
intervals

Sister theories

Advances

Toolbox

Applications

Future trends

BFs on reals Random closed intervals

Outline

1 Rationale
2 Basic notions

Belief functions
Dempster’s rule
Families of frames

3 Semantics
Lower probabilities
Credal sets
Set functions
Generalised probabilities
Random sets

4 Inference
Dempster’s approach
Likelihood-based
From preferences

5 Conditioning
Dempster’s conditioning
Lower conditional envelopes
Unnormalised vs geometric
conditioning

Conditional events as
equivalence classes
Generalised Bayes theorem
The total belief theorem

6 Computation
Probability transformation
Possibility transformation
Monte-Carlo methods

7 Propagation
Barnett’s method
Diagnostic trees
Shafer-Shenoy architecture
Directed Evidential Networks

8 Decisions
Decision making in the TBM
Strat’s decision apparatus
Upper and lower expected
utilities

9 BFs on reals
Allocations of probabilitity
Random sets

Random closed intervals

10 Sister theories
Imprecise probability
Fuzzy sets and possibility
p-Boxes

11 Advances
Matrix representation
Geometry
Distances
Combinatorics
Uncertainty measures

12 Toolbox
Classification
Ranking aggregation

13 Applications
A brief survey
Climate change
Pose estimation

14 Future trends

F. Cuzzolin and T. Denoeux Belief functions for the working scientist UAI 2015 136 / 229



Belief
functions for
the working

scientist

F. Cuzzolin
and

T. Denoeux

Rationale

Basic notions

Semantics

Inference

Conditioning

Computation

Propagation

Decisions

BFs on reals
Allocations of
probabilitity

Random sets

Random closed
intervals

Sister theories

Advances

Toolbox

Applications

Future trends

BFs on reals Random closed intervals

Continuous belief functions
Strat’s approach

• idea: take a real interval I and split it into N bits

• take as frame of discernment the set of possible intervals with
these extreme: [0, 1), [0, 2), [1, 4] etc

• a belief function there has ∼ N2/2 possible focal elements, so that
its mass lives on a triangle (left), and one can compute belief and
plausibility by integration (right)
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Continuous belief functions
Strat’s approach

• this trivially generalises to all arbitrary intervals of I (below)

Bel([a, b]) =
∫ b

a

∫ b
x m(x , y)dydx , Pl([a, b]) =

∫ b
0

∫ N
max(a,x)

m(x , y)dydx

• Dempster’s rule generalises as Bel1 ⊕ Bel2([a, b]) =

1
K

∫ a
0

∫ N
b

[
m1(x , b)m2(a, y) + m2(x , b)m1(a, y) + m1(a, b)m2(x , y)

+m2(a, b)m1(x , y)
]
dydx
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BFs on reals Random closed intervals

Continuous belief functions
on the Borel algebra of intervals

• a pretty much identical approach is followed by Smets
• allows us to define a continuous pignistic PDF as

Bet(a)
.

= lim
ε→0

∫ a

0
dx
∫ 1

a+ε

m(x , y)

y − x
dy

• can be easily extended to the real line, by considering belief
functions defined on the Borel σ-algebra of subsets of R
generated by the collection I of closed intervals

• the theory provides a way of building a continuous belief
function from a pignistic density, by applying the least
commitment principle and assuming unimodal pignistic PDFs

Bel(s) = −(s − s̄)
dBet(s)

ds
where s̄ is such that Bet(s) = Bet(s̄)

• example: Bet(x) = N (x , µ, σ) is normal→ Bel(y) = 2y√
2π

e−y2
,

where y = (x − µ)/σ
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Continuous belief functions
induced by random closed intervals

• formal setting:
• let (U,V ) be a two-dimensional random variable from (C,A,P) to

(R2,B(R2)) such that P(U ≤ V ) = 1 and Γ(c) = [U(c),V (c)] ⊆ R

(C,A,P)	
  

c	
   Γ	
  

U(c)	
  

V(c)	
  

• this setting defines a random closed interval, which induces a
belief function on (R,B(R)) defined by

Bel(A) = P([U,V ] ⊆ A), ∀A ∈ B(R)
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Special cases
of random closed intervals

Consonant random interval p-box

0	
  

1	
  

c	
  
Γ(c)	
  

U(c)	
   V(c)	
  

x	
  

π(x)	
  

0	
  

1	
  

c	
  
Γ(c)	
  

U(c)	
   V(c)	
  

x	
  

F*	
  

F*	
  

• special cases
• a fuzzy set on the real line induces a mapping to a collection of

nested intervals, parameterised by the level c
• a p-box, i.e, upper and lower bounds to a cumulative distribution

function (see later) also induces a family of intervals
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Sister theories

Relationships with other
theories of uncertainty

• belief functions have meaningful relationships with a number of
other theories of uncertainty

• here we briefly recall the most significant ones:
• imprecise probabilities [Walley]
• credal sets [Levi]
• possibility theory [Zadeh, Dubois & Prade]
• belief functions on fuzzy sets [Zadeh & others]
• p-boxes [Ferson]

• others we will not touch here for lack of time:
• probability intervals [Moral]
• monotone capacities
• fuzzy measures
• rough sets [Pawlak]
• probabilistic and modal logic
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Lower probabilities and credal
sets

in Imprecise Probability

• a lower probability P is a function from 2Ω, the power set of Ω, to
the unit interval [0, 1]

• with any lower probability P is associated a dual upper probability
function P, defined for any A ⊆ Ω as P(A) = 1− P(Ac)

• with any lower probability P we can associate a closed convex set
(credal set [Levi])

P(P) =
{

P : P(A) ≥ P(A), ∀A ⊆ Ω
}

of probability measures P which dominate P

• note that not all convex sets of probabilities can be described by
merely focusing on events [Walley]
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Coherent lower probabilities
in Imprecise Probability

• a lower probability P is called ‘consistent’ if P(P) 6= ∅ and ‘tight’ if

inf
p∈P(P)

P(A) = P(A)

• (respectively P ‘avoids sure loss" and P is ‘coherent’ in Walley’s
terminology)

• consistency means that the lower bound constraints P(A) can
indeed be satisfied by some probability measure

• tightness indicates that P is the lower envelope on subsets of P(P)

• belief functions are indeed a special type of coherent lower
probabilities, which in turn can be seen as a special class of lower
previsions

• having said that, the two approaches depart on the fundamental
epistemic representation of evidence
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Possibility theory
and consonant belief functions

• a possibility measure on a domain Ω is a function
Pos : 2Ω → [0, 1] such that Pos(∅) = 0, Pos(Ω) = 1 and

Pos

(⋃
i

Ai

)
= sup

i
Pos(Ai )

for any family {Ai |Ai ∈ 2Ω, i ∈ I} where I is an arbitrary set index

• it is uniquely characterized by a membership function or
“possibility distribution” π(x)

.
= Pos({x}), as Pos(A) = supx∈A π(x)

• Nec(A) = 1− Pos(Ac) is called necessity measure

• call “plausibility assignment” pl the restriction of the plausibility
function to singletons pl(x) = Pl({x}) - then [Shafer]:

• Bel is a necessity measure iff Bel is consonant

• the membership function coincides with the plausibility assignment
• according to Shafer, the difference between possibilities and

consonant BFs is just in the language used
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Belief functions on fuzzy sets
1 a finite fuzzy set is equivalent to a consonant belief function

2 generalisations of belief functions defined on fuzzy sets have
been proposed [Zadeh]

• basic idea: belief measures generalised on fuzzy sets as follows:

Bel(X ) =
∑

A∈M

I(A ⊆ X )m(A)

where X is a fuzzy set defined on Ω, m is a mass function defined
on the collection of fuzzy sets on Ω

• I(A ⊆ X ) is a measure of how much the fuzzy set A is included in
the fuzzy set X

• various measures of inclusion in [0, 1] can be proposed:

• Lukasiewicz: I(x , y) = min{1, 1− x − y} [Ishizuka]
• Kleene-Dienes: I(x , y) = max{1− x , y} [Yager]

• from which one can get: I(A,B) =
∧

x∈Θ I(A(x),B(y)) [Wu 2009]
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Probability-boxes (p-Boxes)
Classes of cumulative distribution functions

• a probability box or p-box [Ferson and Hajagos] 〈F ,F 〉 is a class of
cumulative distribution functions (CDFs)

〈F ,F 〉 =
{

F CDF : F ≤ F ≤ F
}

delimited by upper and lower CDF bounds F and F

• represents the epistemic uncertainty about the CDF of a random variable

• every RS generates a unique p-box whose CDFs are all those consistent
with the evidence:

F (x) = Bel((−∞, x ]), F (x) = Pl((−∞, x ])

• every p-box generates an infinite RS with as focal elements the following
infinite collection of intervals of R:{

[F
−1

(α),F−1(α)] ∀α ∈ [0, 1]
}

where F
−1

(α)
.

= inf{F (x) ≥ α}, F−1(α)
.

= inf{F (x) ≥ α}
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Approximate computations
for random sets

• in an infinite RS the computation of the integral
Bel(A) =

∫
c∈C I[Γ(c) ⊂ A]dP(c) (or those for Pl(A), etc) is not trivial

• we can use the representation of infinite RSs provided by p-boxes,
with set of focal elements

F =
{
γ = [F

−1
(α),F−1(α)] ∀α ∈ [0, 1]

}
• if α has its own CDF Fα, we can sample from it
• after sampling FEs from the RS, we can compute belief and

plausibility integrals
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Sister theories p-Boxes

Approximate combination of
random sets

α-representation

• we can also calculate the combination of the sampled FEs

• if d random sets to combine, FEs are vectors of indices from all
constituing RS: α = [α1, ..., αd ] ∈ (0, 1]d

• suppose a copula C is defined on the unit hypercube (i.e. a prob
distribution whose marginals are uniform)..
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Approximate combination of
random sets

Monte-Carlo approach
• ..we can use it to compute the desired integrals, i.e.

PΓ(G) =

∫
α∈G

dC(α)

• if input RS are independent, these integrals decompose as, e.g.

• Monte-Carlo approach [Alvarez 2006] - for j = 1, ..., n:
1 randomly extract a sample αj from the copula C
2 form the corresponding focal element Aj = ×i=1,...,dγ

d
i

3 assign to it mass m(Aj ) = 1
n

• can prove that such approximation converges as n→ +∞ almost
surely to the actual random set
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The mathematics of belief
functions

• belief functions are rather complex mathematical objects, therefore:

• have links with a number of fields of (applied) mathematics
• lead to interesting generalisations of standard results of

classical probability (e.g. Bayes’ theorem, total probability)

• matrix representation

• geometric approach to uncertainty [Cuzzolin]

• measuring distances [Jousselme et al]

• algebra of frames [Kohlas]

• abstract independence, Boolean algebras and matroids [Cuzzolin]

• Moebius transforms

• entropy and other measures of uncertainty [Yager, Klir,
Harmanec]
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Matrix representation
Linear algebra

• given an ordering of the subsets of Ω mass, belief, and plausibility
functions can be represented as vectors m, bel and pl

• various operations with belief functions can be expressed via
vectors and matrices

• negation (m(A) = m(A)): m = Jm where J is the matrix whose
inverse diagonal is made of 1s

• belief value: b = BfrMm, where BfrM(A,B) = 1 iff B ⊆ A and 0
otherwise

• BfrMi+1 =

[
1 0
1 1

]
⊗ BfrMi where ⊗ is the Kronecker product

• other transformation matrices for Moebius inversion can be defined:

MfrB = BfrM−1, QfrM = JBfrMJ, MfrQ = JBfrM−1J

• normalised BFs and plausibilities: Bel = b− b(∅)1, pl = 1− Jb
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Advances Matrix representation

Fast Moebius Transform
• to efficiently compute Moebius transforms (e.g. from Bel to m)

• can also be computed in matrix form as BfrM = M3 ·M2 ·M1, where
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A geometric approach
to the theory of evidence

• the collection B of all the vectors b = [Bel(A), ∅ ( A ( Ω]′

representing a belief function on Ω is a “simplex" (in rough words a
higher-dimensional triangle), the belief space

B = Cl(bA, ∅ ( A ⊆ Ω)

which is the convex closure of (the vectors of) all “logical" BFs bA

• alternatively we can adopt mass vectors mb = [mb(A), ∅ ( A ⊆ Ω]′,
living in a mass space: M = Cl(mA, ∅ ( A ⊆ Ω)
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Binary example
The simplex of BFs on a frame of size 2

• belief/mass space B2 =M2 for a binary frame
• set of probabilities is a face of the simplex (triangle)

• region of consonant BFs is a “simplicial complex” CO =
⋃

x∈Ω

Cl(bA,A 3 x)
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Geometry of Dempster’s rule
Conditional subspaces

• Dempster’s rule behavior w.r.t. affine combination

b⊕
∑

i

αibi =
∑

i

βi (b⊕ bi ), βi =
αiκ(b, bi )∑n
j=1 αjk(b, bj )

where κ(b, bi ) is the usual Dempster’s conflict

• convex closure (Cl) and ⊕ commute in the belief space

b⊕ Cl(b1, · · · ,bn) = Cl(b⊕ b1, · · · ,b⊕ bn)

• the conditional subspace 〈b〉 - the set of all BFs (Dempster-)
conditioned by b:

〈b〉 .=
{

b⊕ b′, ∀b′ ∈ B s.t . ∃ b⊕ b′
}

is the convex closure

〈b〉 = Cl(b⊕ bA, ∀A ⊆ Cb)
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Geometry of Dempster’s rule
Geometric construction

• the pointwise behavior of ⊕ depends on the notions of constant mass
locus [Cuzzolin, 2004] and of foci {Fx , x ∈ Ω} of a conditional subspace
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Dissimilarity measures
between belief functions - an overview

• a number of norms can be introduced for belief functions
• e.g., generalizations to belief functions of the classical

Kullback-Leibler divergence of two probability distributions P,Q:
DKL(P|Q) =

∫∞
−∞ p(x) log( p(x)

q(x)
)dx

• measures based on information theory such as fidelity and
entropy-based norms [Jousselme IJAR’11]

• many others have been proposed [diaz,jiang,khatibi,shi], exhaustive
analysis huge task!
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Families of distances
between belief functions

• experimental tests on randomly generated BFs lead to the
emergence of four families

• metric (i.e. proper distance functions)
• pseudo-metric (dissimilarities)
• non-structural (do not account for structure of focal elements)
• non-metric
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Jousselme’s distance

• most popular and cited measure of dissimilarity

• was proposed as a “measure of performance” of algorithms (e.g.
object identification) where successive evidence combination leads
to convergence to the “true” solution

• based on the geometric representation of mass functions m

dJ (m1,m2)
.

=

√
1
2

(m1 −m2)T D(m1 −m2)

where D(A,B) = |A∩B|
|A∪B| for all A,B ∈ 2Θ

• D so defined:

• is definite positive, therefore it defines a metric distance
• takes into account the similarity among subsets
• is such that d(A,B) < d(A,C) is C is “closer” to A than B

• this notion remains not well specified though
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Moebius inverses
of plausibilities and commonalities?

• belief function are sum functions: Bel(A) =
∑

B⊆A m(B)

• analogous of integral in calculus, derivative = Moebius inversion

• plausibilities and commonalities have Moebius inverses

• only, b.pl.a.s can be negative; b.comm.a.s are not even normalised

• plausibilities and commonalities live in simplices congruent with
the belief space B
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Advances Uncertainty measures

Measures of uncertainty
for belief functions

• various measures have been proposed - see for instance the
(rather outdated) survey by Nikhil Pal, 1992

• Yager’s entropy measure (350+ citations):

E(m) = −
∑
A∈F

m(A) log Pl(A)

• Yager’s entropy is 0 for consonant or consistent BFs (Ai ∩ Aj 6= ∅ for
all FEs)

• is maximal for disjoint focal elements with equal mass
• Hohle’s measure of confusion: C(m) = −

∑
A∈F m(A) log Bel(A)

• specificity of belief measures: N(m) =
∑

A∈F
m(A)
|A|

• measure the dispersion of the evidence
• clearly related to pignistic function

• Klir’s non-specificity (extended by Dubois & Prade):

I(m) =
∑
A∈F

m(A) log |A|
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Measures of uncertainty
Global measures

• composite measures: Lamata and Moral: E(m) + I(m)

• E(m) was criticised by Klir & Ramer for it expresses conflict as
A ∩ B = ∅ rather than B 6⊆ A

• C(m) was criticised for it does not measure to what extent two focal
elements disagree (size of A ∩ B)

• Klir & Ramer’s global uncertainty measure: D(m) + I(m), where

D(m) = −
∑
A∈F

m(A) log

[∑
B∈F

m(B)
|A ∩ B|
|B|

]

• Pal argues that none of them is really satisfactory: none of the
composite measures have a unique maximum

• there is no sounding rationale for simply adding conflct and
non-specificity measures together to get a “total” one

• some are computationally very expensive
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Advances Uncertainty measures

Aggregated Uncertainty vs
Ambiguity Measure

• Harmanec’s Aggregated Uncertainty (AU) as the maximal
Shannon entropy of all consistent probabilities
• obviously assumes a credal set interpretation
• it is the minimal measure meeting eight requirements: symmetry,

continuity, expansibility, subadditivity, additivity, monotonicity,
normalisation

• criticised by Klir and Smith for being insensitive to changes in
evidence

• replaced by a linear combination of AU and nonspecificity I(m)

• still high computational complexity

• Jousselme et al, 2006: Ambiguity Measure (AM), basically
classical entropy of pignistic function
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A set of tools for the working
scientist

using belief functions

• scientists face on a daily basis problems such as:

• making decisions based on the available data (we already
covered this)

• estimating a quantity of interest give the available data (which
can be missing, incomplete,conflicting,partially specified)

• classifying data-points into bins
• extending k-NN classification approaches
• fusing the results of multiple classifiers

• clustering clouds of data to make sense of them
• learning a mapping from measurements to a domain of

interest (regression)
• ranking objects

• belief functions can provide useful approaches to all these
problems when in the presence of (heavy) uncertainty
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Belief functions in Machine
Learning

• the theory of belief functions has great potential to help solve
complex machine learning (ML) problems, particularly those
involving:

• weak information (partially labeled data, unreliable sensor
data, etc.);

• multiple sources of information (classifier or clustering
ensembles) [Quost et al., 2007; Masson & Denoeux, 2011]

• other recent ML applications of belief functions:

• regression [Petit-Renaud & Denoeux, 2004]
• multi-label classification [Denoeux et al. 2010]
• clustering [Masson & Denoeux, 2008; Antoine et al., 2012]
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Classification problems
in machine learning

?

• a population is assumed to be
partitioned in c groups or classes

• let Ω = {ω1, . . . , ωc} denote the set of
classes

• each instance is described by

• a feature vector x ∈ Rp

• a class label y ∈ Ω

• problem: given a learning set L = {(x1, y1), . . . , (xn, yn)}, predict
the class of a new instance described by x
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Main approaches
Classification with belief functions

1 Approach 1 (ensemble classification): Convert the outputs from
standard classifiers into belief functions and combine them using
Dempster’s rule or any other alternative rule (e.g., Quost al., IJAR,
2011)

2 Approach 2: Develop evidence-theoretic classifiers directly
providing belief functions as outputs:
• Generalized Bayes theorem, extends the Bayesian classifier when

class densities and priors are ill-known [Appriou, 1991; Denœux &
Smets, 2008]

• Distance-based approach: evidential k -NN rule [Denœux, 1995],
evidential neural network classifier [Denœux, 2000]

• today we will just see the evidential k-NN rule (for complete and
partially specified data)
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Evidential K-NN

Xi

di

X

• let Ω be the set of classes

• let Nk (x) ⊂ L denote the set of the k nearest
neighbors of x in L, based on some distance
measure d

• each xi ∈ Nk (x) can be considered as a piece of
evidence regarding the class of x represented by
a mass function mi on Ω:

mi ({yi}) = ϕ (di ) , mi (Ω) = 1− ϕ (di )

• the strength of this evidence decreases with the distance di between x
and xi - ϕ is a decreasing function such that limd→+∞ ϕ(d) = 0

• pooling of evidence: m =
⊕

xi∈Nk (x)

mi

• the function ϕ can be fixed heuristically or selected among a family
{ϕθ|θ ∈ Θ} using, e.g., cross-validation

• decision: select the class with the highest plausibility
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Classification with partially
specified data

• in some applications, learning instances are labeled by experts or
indirect methods (no ground truth)

• class labels of learning data are then uncertain: partially
supervised learning problem

• formalization of the learning set: L = {(xi ,mi ), i = 1, . . . , n}, where

• xi is the attribute vector for instance i , and
• mi is a mass function representing uncertain expert

knowledge about the class yi of instance i

• special cases:

• mi ({ωk}) = 1 for all i : supervised learning
• mi (Ω) = 1 for all i : unsupervised learning

• the evidential k -NN rule can easily be adapted to handle such
uncertain learning data
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Toolbox Classification

Evidential k -NN rule
for partially supervised data

(Xi,mi)	
  

di	
  

X	
  

• Ω is again the collection of classes

• each mass function mi is discounted
with a rate depending on the distance di :

m′i (A) = ϕ (di ) mi (A), ∀A ⊂ Ω

m′i (Ω) = 1−
∑
A⊂Ω

m′i (A)

• the k mass functions m′i are combined
using Dempster’s rule:

m =
⊕

xi∈Nk (x)

m′i
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Ranking aggregation
Problem definition

• we consider a set of alternatives O = {o1, o2, ..., on} and an
unknown linear order (transitive, antisymmetric and complete
relation) on O

• typically, this linear order corresponds to preferences held by an
agent or a group of agents, so that oi � oj is interpreted as
“alternative oi is preferred to alternative oj ”
• (compare inference from qualitative data)

• a source of information (elicitation procedure, classifier) provides us
with n(n − 1)/2 paired comparisons, affected by uncertainty

• problem: derive the most plausible linear order from this
uncertain (and possibly conflicting) information
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Example
Tritchler & Lockwood, 1991

• consider four scenarios O = {A,B,C,D} describing ethical
dilemmas in health care

• suppose two experts gave their preference for all six possible
scenario pairs with confidence degrees described below

A

D C

B
0,44

0,06

0,930,970.740.94

A

D C

B
0,44

0,01

0,80,970.740.94

• assuming the existence of a unique consensus linear ordering L∗

and seeing the expert assessments as sources of information, what
can we say about L∗?
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Combining pairwise masses
on the space of linear orders

• the frame of discernment is the set L of linear orders over O

• comparing each pair of objects (oi , oj ) yields a pairwise mass
function mΘij on a coarsening Θij = {oi � oj , oj � oi} with:

mΘij (oi � oj ) = αij , mΘij (oj � oi ) = βij , mΘij (Θij ) = 1− αij − βij

• mΘij may come from a single expert (e.g., an evidential classifier) or
from the combination of the evaluations of several experts

• let Lij = {L ∈ L|(oi , oj ) ∈ L}. Vacuously extending mΘij in L yields

mΘij↑L(Lij ) = αij , mΘij↑L(Lij ) = βij , mΘij↑L(L) = 1− αij − βij

• combining the pairwise mass functions using Dempster’s rule:

mL =
⊕
i<j

mΘij↑L
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Plausibility of a linear order
An integer programming problem

• the plausibility of the combination mL is:

pl(L) =
1

1− κ
∏
i<j

(1− βij )
`ij (1− αij )

1−`ij ,

where `ij = 1 if (oi , oj ) ∈ L and 0 otherwise

• its logarithm pl(L) can be maximized by solving the following binary
integer programming problem:

max
`ij∈{0,1}

∑
i<j

`ij ln
(

1− βij

1− αij

)

subject to:
{
`ij + `jk − 1 ≤ `ik , ∀i < j < k (1)
`ik ≤ `ij + `jk , ∀i < j < k (2)

• constraint (1) ensures that `ij = 1 and `jk = 1⇒ `ik = 1, and (2)
ensures that `ij = 0 and `jk = 0⇒ `ik = 0.
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On preference aggregation
A summary

• the framework of belief functions allows us to model uncertainty in
paired comparisons

• the most plausible linear order can be computed efficiently using
a binary linear programming approach

• the approach has been applied to label ranking, in which the task
is to learn a “ranker” that maps p-dimensional feature vectors x
describing an agent to a linear order over a finite set of alternatives,
describing the agent’s preferences [Denœux and Masson, 2012]

• the method can easily be extended to the elicitation of preference
relations with indifference and/or incomparability between
alternatives [Denœux and Masson. AOR 195(1):135-161, 2012]
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New applications
of belief functions

• sensor fusion has always been a stronghold of
belief calculus

• mainly about merging different sensors using
Dempster’s rule

• typical applications: tracking and data
association, reliability in engineering, image
processing, robotics, medical imaging and
diagnosis, business and finance (audit)

• a new wave of applications, on:

• geographical information systems
• communication networks and security
• earth sciences

• here we present one (or two!) in more detail:

• climate change
• motion capture in computer vision
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Applications A brief survey

Most popular applications
of belief functions

• information quality in financial accounting [A conceptual
framework and belief-function approach to assessing overall
information quality (158)]

• auditing [The Bayesian and belief-function formalisms: A general
perspective for auditing (148)]

• reputation and trust management in telecoms [An evidential
model of distributed reputation management (615)]

• security [An information systems security risk assessment model
under the DS theory of belief functions (137)]

• DoS [Towards multisensor data fusion for DoS detection (137)]
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Applications A brief survey

Most popular applications
of belief functions

• molecular biology [Ensemble classifier
for protein fold pattern recognition (257)],
[Predicting eukaryotic protein
subcellular location by fusing
optimized evidence-theoretic
K-nearest neighbor classifiers (205)]

• medical imaging [Some aspects of Dempster-Shafer evidence theory for
classification of multi-modality medical images taking partial volume effect
into account (218)]

• earth sciences and ecology [Integration of geophysical and geological data
using evidential belief function (106)], [Decision support system for the
sustainable forest management (131)]

• context-aware HCI and sensing [Sensor fusion using Dempster-Shafer
theory (238)], [Evidential fusion of sensor data for activity recognition in
smart homes (158)]
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Applications A brief survey

Most popular applications
of belief functions

• measurement theory [Measurement uncertainty: An approach via
the mathematical theory of evidence (77)]

• reliability [Engine fault diagnosis based on multi-sensor
information fusion using Dempster-Shafer evidence theory (243)]

• engineering [Modelling global risk factors affecting construction
cost performance (303)]

• semantic web and information retrieval [Dempster-Shafer’s theory
of evidence applied to structured documents: modelling uncertainty
(154)], [EDM: a general framework for data mining based on
evidence theory (109)]

• reputation management in e-commerce [Distributed reputation
management for electronic commerce (257)]

• climate change [Utilizing belief functions for the estimation of
future climate change (86)]

• chemistry [Application of belief theory to similarity data fusion for
use in analog searching and lead hopping (99)]
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Most popular applications
of belief functions

• robotics and navigation [An evidential approach to map-building
for autonomous vehicles (229)], [Dempster-Shafer theory for sensor
fusion in autonomous mobile robots (192)]

• tracking and data association [Shafer-Dempster reasoning with
applications to multisensor target identification systems (317)]

• image processing and computer vision [Image annotations by
combining multiple evidence Wordnet (231)], [Evidence-based
recognition of 3-D objects (176)]

• biometrics [Image quality assessment for iris biometric (160)]
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Climate change
Adaptation of flood defense structures

• climate change is expected to have enormous economic impact, including
threats to infrastructure assets through

• damage or destruction from extreme events;
• coastal flooding and inundation from sea level rise, etc.

• adaptation of infrastructure to climate change is a major issue

• engineering design processes and standards are based on analysis of
historical climate data (using, e.g. Extreme Value Theory), with the
assumption of a stable climate

• commonly, flood defenses in coastal areas are designed to withstand at
least 100 years return period events. However, due to climate change,
they will be subject during their life time to higher loads than the design
estimations

• the main impact is related to the increase of the mean sea level, which
affects the frequency and intensity of surges

• for adaptation purposes, statistics of extreme sea levels derived from
historical data should be combined with projections of the future sea level
rise (SLR)
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Assumptions and approach
• the annual maximum sea level Z at a given location is often

assumed to have a Gumbel distribution

P(Z ≤ z) = exp
[
− exp

(
−z − µ

σ

)]
with mode µ and scale parameter σ

• current design procedures are based on the return level zT

associated with a return period T , defined as the quantile at level
1− 1/T : zT = µ− σ log

[
− log

(
1− 1

T

)]
• because of climate change, it is assumed that the distribution of

annual maximum sea level at the end of the century will be shifted
to the right, with shift equal to the SLR : z′T = zT + SLR

• approach:
1 represent the evidence on zT by a likelihood-based belief function

using past sea level measurements;
2 represent the evidence on SLR by a belief function describing expert

opinions;
3 combine these two items of evidence to get a belief function on

z′T = zT + SLR.
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Statistical evidence on zT

• let z1, . . . , zn be n i.i.d. observations of Z . The likelihood function is:

L(zT , µ; z1, . . . , zn) =
n∏

i=1

f (zi ; zT , µ),

where the pdf of Z has been reparametrized as a function of zT and
µ

• the corresponding contour function is thus:

pl(zT , µ; z1, . . . , zn) =
L(zT , µ; z1, . . . , zn)

supzT ,µ
L(zT , µ; z1, . . . , zn)

and the marginal contour function of zT is

pl(zT ; z1, . . . , zn) = sup
µ

pl(zT , µ; z1, . . . , zn)
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Example of inference
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Expert evidence on SLR

• future SLR projections provided by the IPCC last Assessment
Report (2007) give [0.18 m, 0.79 m] as a likely range of values for
SLR over the 1990-2095 period

• however, it is indicated that higher values cannot be excluded

• other recent SLR assessments based on semi-empirical models
have been undertaken. For example, based on a simple statistical
model, Rahmstorf (2007) suggests [0.5m, 1.4 m] as a likely range

• recent studies indicate that the threshold of 2 m cannot be
exceeded by the end of this century due to physical constraints
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Representation
of expert evidence

• the interval [0.5, 0.79] = [0.18, 0.79] ∩ [0.5, 1.4] seems to be fully
supported, as considered highly plausible by all three sources

• while values outside the interval [0, 2] are considered as impossible
• three representations of expert evidence:

• consonant random intervals with core [0.5, 0.79], support [0, 2] and
different contour functions π;

• p-boxes with same cumulative Bel and Pl as above;
• random sets [U,V ] with independent U and V and same cumulative

belief and plausibility functions as above

Contour functions Cumulative Bel and Pl
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Combination
Principle

• let [UzT ,VzT ] and [USLR ,VSLR] be the independent random
intervals representing evidence on zT and SLR, respectively

• the random interval for z′T = zT + SLR is

[UzT ,VzT ] + [USLR ,VSLR] = [UzT + USLR ,VzT + VSLR]

• the corresponding belief and plausibility functions are

Bel(A) = P([UzT + USLR ,VzT + VSLR] ⊆ A)

Pl(A) = P([UzT + USLR ,VzT + VSLR] ∩ A 6= ∅)

for all A ∈ B(R)

• Bel(A) and Pl(A) can be estimated by Monte Carlo simulation
(see Computation)
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Results
of combining expert and historical belief functions
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Pose estimation

• estimating the position and
orientation of an object, along with
its internal configuration or pose

• “model-based": explicitly known
parametric body model

• “learning-based": exploit the fact
that typical (human) motions
involve a far smaller set of poses

• directly recover pose estimates
from observable image
quantities (features)
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Example-based estimation

• explicitly store a set of training examples whose 3D poses are
known

• estimate pose by searching for training image(s) similar to the given
input image and interpolating from their poses

• no prior structure of the pose space is incorporated

• typical architecture:
• features are extracted from individual images
• a map from the features space to the pose space is learned from

a training set of examples
• the likely pose of the object is then predicted by feeding this feature

vector to the learnt map

• approaches: Relevant Vector Machines (RVMs), shape context
matching, Local Weighted Regression, BoostMap, Bayesian
Mixture of Experts
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Scenario
• the available evidence comes in the form of a training set of

images containing sample poses of an unspecified object

• configuration: a vector q ∈ Q ⊂ RD

• an “oracle" provides for each training image Ik the configuration qk

of the object portrayed in the image

• object location within each training image is known in the form of a
bounding box

• in training, the object explores its range of possible configurations
and both samples poses Q̃ .

=
{

qk , k = 1, ...,T
}

and N features

Ỹ .
=
{

yi (k), k = 1, ...,T
}

, i = 1, ...,N are collected

• source of ground truth: motion capture system

• in testing, a supervised localization algorithm is employed to locate
the object within the test image

• such features are exploited to produce an estimate of the object’s
configuration
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Pose estimation via belief
calculus: why

• let us assume features and poses are described by probability
distributions

• as feature-to-pose maps are typically multi-valued ..

• ..they induce belief functions on the space of poses

• also, in pose estimation training sets are of limited size

• as in the credal interpretation belief functions amount to a set of
linear constraints on the actual conditional pose distribution
(given the features) ..

• .. they encode the uncertainty induced by the size of the
training set

• finally, multiple features defined as belief functions on different
(feature) domains can be moved to a common refinement (the pose
space) and there combined
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Training session
• learn from the training data an approximation ρ̃ of the

unknown mapping between each feature space Yi and the
pose space Q

• we apply EM clustering to the N training sequences of
feature values {yi (k), k = 1, ...,T}, i = 1, ...,N ..

• ..obtaining a obtain a Mixture of Gaussians (MoG){
Γj

i , j = 1, ...,ni

}
, Γj

i ∼ N (µj
i ,Σ

j
i )

approximation of each feature space Yi

• .. and a discrete approximation of the feature-pose
mapping

ρi : Y j
i 7→ Q̃

j
i
.

=
{

qk ∈ Q̃ : yi (k) ∈ Y j
i

}
• Y j

i is the region of Yi in which the j-th Gaussian dominates
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Discrete feature-pose maps

• each element Y j
i of the approximate feature space is

associated with the set of training poses qk ∈ Qk whose i-th
feature value falls in Y j

i
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Evidential model

• as the applications ρi map approximate feature spaces to disjoint partitions
of the set of sample poses Q̃ they are refinings

• Q̃ is a common refinement for the approximate feature spaces Θ1, ...,ΘN

• the collection of FODs Q̃,Θ1, ...,ΘN along with their refinings ρ1, ..., ρN is
characteristic of object to track, features yi , and training data

• we call it the evidential model of the moving object, learned by example
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Testing: Dirichlet belief
functions

• when one or more new test images are acquired, new visual
features y1, ..., yN are extracted

• feature values can be mapped to a collection of belief
functions Bel1, ...,BelN on the set of sample poses Q

• belief functions also allow to take into account the scarcity
of the training samples..

• .. by assigning some mass m(Θi ) to the whole feature space

mi : 2Θi → [0,1], mi (Y j
i ) =

Γj
i (yi )∑

k

Γk
i (yi )

(
1−mi (Θi )

)

• a reasonable choice is mi (Θi ) = 1
ni

, as when ni →∞ the discount
factor tends to zero and the approximate feature space Θi tends to
the real feature space Yi
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Computing pose estimates
Belief estimate

• the belief functions inferred from the test feature values are then
mapped to the approximate pose space Q̃ by vacuous extension

• where they are combined by conjunctive combination

• this yields the belief estimate of the pose, which amounts to a
convex set of probabilities on the set of sample poses Q̃. Then:

1 we can compute the expected pose associated with each vertex
of the credal set:

q̂ =
T∑

k=1

p(qk )qk

• degree of confidence on the accuracy of the pointwise estimate→
size of the credal set

2 or, we can approximate b̂ with a probability p̂ on Q̃ (e.g. the
pignistic function)
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Two human pose estimation
experiments

• person filmed by two uncalibrated DV cameras

• arm experiment: subject moves his arm, while standing in a fixed floor
location

• legs experiment: person walking normally on the floor, training set
collected by sampling a random walk on a section of the floor

• length of the training sequences: 1726 frames for the arm and 1952 frames
for the legs

• quite challenging setup: background was highly non-static, with people
coming in and out the scene and flickering monitors; self-occlusions
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Annotation and features

• color-based segmentation to get the object of interest (to automatically
generate the bounding box annotation required)

• simple feature vector directly from the bounding box: the collection
max(row), min(row), max(col), min(col)

• built different evidential models with 2 features from left view, 3 features from
right view, or both

• MoG with n = 5 components for each feature space
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Empirical results
Comparison with Relevant Vector Machine

• results for component 9 on top, components 1 and 6 at bottom

• blue→ ground truth, red→ pignistic estimate

• average Euclidean errors: 25.0, 10.6, 18.6, and 7.0 centimeters

• our belief-theoretical approach outperforms the competitor
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Empirical results
Comparison with Gaussian Process Regression

• used to build feature-pose maps in, for instance, [14] and [16]

• same components of the pose vector, same test sequence

• our BMR approach clearly outperforms a standard RVM implementation

• average Euclidean errors: 31.2, 13.6, 23.0, and 4.5 centimeters
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Applications Pose estimation

Conclusions
on the Belief Modeling Regression approach

• presented a novel approach to example-based pose estimation

• framing the problem within belief calculus is natural

• tested in a fairly challenging human pose recovery setup

• exhibits interesting relationships with Gaussian Process approach
we did not mention

• future: efficient conflict resolution mechanism

• future: testing of the framework in higher-dimensional pose ranges

• full development of an evidential tracking approach, exploiting
temporal information as well via tht total belief theorem (see
Conditioning)
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A summary
of what we have learned in this tutorial

• the theory of belief functions is a modeling language for
representing elementary items of evidence and combining
them, in order to form a representation of our beliefs about certain
aspects of the world

• it is relatively simple to implement and has been successfully
used in a wide range of applications

• has strong relationships with other theories of uncertainty
• belief functions have interesting mathematical properties in terms of

geometry, algebra, combinatorics

• evidential reasoning can be implemented even for very large
spaces and numerous pieces of evidence, because
• elementary items of evidence induce simple belief functions, which

can be combined very efficiently;
• the most plausible hypothesis can be found without computing the

whole combined belief function;
• Monte-Carlo approximations are easily implementable
• local propagation schemes allow parallelisation
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A summary
of what we have learned in this tutorial

• statistical evidence may be represented by likelihood-based belief
functions, generalizing both likelihood-based and Bayesian
inference

• inference can also be performed from qualitative data

• decision making strategies based on intervals of expected
utilities can be formulated that are more cautious than traditional
ones

• the extension to continuous domains can be tackled via the
Borel interval representation, possibly in connection with p-Boxes

• a toolbox of estimation, classification, regression tools based
on the theory of belief functions is available
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Recent trends
in the theory and application of belief functions

• in 2014 alone, almost 1200 papers were published on belief
functions and their applications

• new applications are gaining ground, beyond sensor fusion or
expert systems

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
0

200

400

600

800

1000

1200
Scholar entries for "belief functions"
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Publications venues

• conferences on the theory of uncertainty:
• BFAS’s International Conference on Belief Functions (BELIEF)
• Uncertainty in Artificial Intelligence (UAI)
• International Conference on Information Fusion (FUSION)
• International Symposium on Imprecise Probability - Theories and

Applications (ISIPTA)
• Symbolic and Quantitative Approaches to Reasoning with

Uncertainty (ECSQARU)
• IEEE Systems, Man and Cybernetics (SMC)
• Information Processing and Management under Uncertainty

(IPMU)

• journals (for theoretical contributions):
• International Journal of Approximate Reasoning (IJAR)
• IEEE Transactions on Fuzzy Systems (I.F. 6.306)
• IEEE Transactions on Cybernetics (I.F. 3.781)
• Artificial Intelligence
• Information Sciences (4.038)
• Fuzzy Sets and Systems
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Open issues
and future developments

• what still needs to be resolved:
• competing epistemic interpretations of belief function theory
• conditioning issue still open, a variety of approaches proposed

depending on semantic adopted and revision principles
• correct mechanism for evidence combination still debated, depend on

meta-information on sources hardly accessible
• local propagation models (e.g. Shenoy-Shafer) still assume low

complexity of local cliques

• what are the next steps?
• relationships with several fields of mathematics not completely

understood
• generalisation of the total probability theorem in full generality
• full development of evidential graphical models (e.g. evidential HMMs)
• tackling current machine learning trends such as transfer learning
• can it cope with big data paradigm?

F. Cuzzolin and T. Denoeux Belief functions for the working scientist UAI 2015 226 / 229



Belief
functions for
the working

scientist

F. Cuzzolin
and

T. Denoeux

Rationale

Basic notions

Semantics

Inference

Conditioning

Computation

Propagation

Decisions

BFs on reals

Sister theories

Advances

Toolbox

Applications

Future trends

Future trends

For Further Reading

Papers and Matlab software available at:

https://www.hds.utc.fr/˜tdenoeux

Belief Functions Encyclopedia:

http://cms.brookes.ac.uk/staff/FabioCuzzolin

These slides are available online at:

/FabioCuzzolin/uai-tutorial.pdf

THANK YOU!
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For Further Reading I

G. Shafer.
A mathematical theory of evidence.
Princeton University Press, 1976.

F. Cuzzolin.
Visions of a generalized probability theory.
Lambert Academic Publishing, 2014.

F. Cuzzolin (Ed.).
Belief functions: theory and applications.
LNCS Volume 8764, Springer, 2014.
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For Further Reading I

F. Cuzzolin.
Fifty years of belief functions: a survey. Part I:
Theory
International Journal of Approximate
Reasoning (in preparation) 2000.

F. Cuzzolin and C. Sengul.
Fifty years of belief functions: a survey. Part II:
Applications
International Journal of Approximate
Reasoning (in preparation) 2000.

F. Cuzzolin.
The geometry of uncertainty.
Springer-Verlag, 2016.
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