
1/56

Optimal Algorithms for Learning Bayesian 
Network Structures:

Introduction and Heuristic Search

Optimal Algorithms for Learning Bayesian 
Network Structures:

Introduction and Heuristic Search

Changhe Yuan
UAI 2015 Tutorial

Sunday, July 12th, 8:30-10:20am
http://auai.org/uai2015/tutorialsDetails.shtml#tutorial_1



2/56

About tutorial presenters

• Dr. Changhe Yuan (Part I)
– Associate Professor of Computer Science at Queens College/City University of 

New York 
– Director of the Uncertainty Reasoning Laboratory (URL Lab).

• Dr. James Cussens (Part II)
– Senior Lecturer in the Dept of Computer Science at the University of York, UK

• Dr. Brandon Malone (Part I and II)
– Postdoctoral researcher at the Max Planck Institute for Biology of Ageing
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Bayesian networks

• A Bayesian Network is a directed acyclic graph (DAG) in which:
– A set of random variables makes up the nodes in the network.
– A set of directed links or arrows connects pairs of nodes.
– Each node has a conditional probability table that quantifies the effects the 

parents have on the node.

P(B) P(E)

P(N|A)

P(R|E)
P(A|B,E)
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Learning Bayesian networks

• Very often we have data sets
• We can learn Bayesian networks from these data

data

structure

numerical 
parameters
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Major learning approaches

• Score-based structure learning
– Find the highest-scoring network structure

» Optimal algorithms (FOCUS of TUTORIAL)
» Approximation algorithms

• Constraint-based structure learning
– Find a network that best explains the dependencies and 

independencies in the data

• Hybrid approaches
– Integrate constraint- and/or score-based structure learning

• Bayesian model averaging
– Average the prediction of all possible structures
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Score-based learning

• Find a Bayesian network that optimizes a given scoring function

• Two major issues
– How to define a scoring function?
– How to formulate and solve the optimization problem?
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Scoring functions

• Bayesian Dirichlet Family (BD)
– K2

• Minimum Description Length (MDL)
• Factorized Normalized Maximum Likelihood (fNML)
• Akaike’s Information Criterion (AIC)
• Mutual information tests (MIT)
• Etc.
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• All of these are expressed as a sum over the individual variables, 
e.g.

• This property is called decomposability and will be quite important 
for structure learning.

BDeu

MDL

fNML

Decomposability

[Heckerman 1995, etc.]
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Querying best parents

e.g.,  

Naive solution: Search through all 
of the subsets and find the best

Solution: Propagate optimal 
scores and store as hash table.
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POPS(X1|PA(X1))

Score pruning

• Theorem: Say PAi ⊂ PA’i and ScoreሺXi|PAiሻ	൏	ScoreሺX|PA’iሻ.  Then PA’i
is not optimal for Xi. 

• Ways of pruning: 
– Compare ScoreሺXi|PAiሻ and ScoreሺX|PA’iሻ
– Using properties of scoring functions without computing scores (e.g., 

exponential pruning)
• After pruning, each variable has a list of possibly optimal parent 

sets (POPS)
– The scores of all POPS are called local scores

[Teyssier and Koller 2005, de Campos and Ji 2011, Tian 2000]
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Number of POPS
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The number of parent sets and their scores stored in the full parent graphs (“Full”), 
the largest layer of the parent graphs in memory-efficient dynamic programming
(“Largest Layer”), and the possibly optimal parent sets (“Sparse”).
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Practicalities

• Empirically, the sparse AD-tree data structure is the best approach 
for collecting sufficient statistics.

• A breadth-first score calculation strategy maximizes the efficiency 
of exponential pruning.

• Caching significantly reduces runtime.

• Local score calculations are easily parallelizable.
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Graph search formulation

• Formulate the learning task as a shortest path problem 
– The shortest path solution to a graph search problem corresponds to an optimal 

Bayesian network

[Yuan, Malone, Wu, IJCAI-11]



14/56

Search graph (Order graph)
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Formulation: 
Search space: Variable subsets
Start node:       Empty set
Goal node:       Complete set
Edges:              Add variable
Edge cost:        BestScore(X,U) for  
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[Yuan, Malone, Wu, IJCAI-11]
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ϕ

A* search: Expands the nodes in the 
order of quality: f=g+h

g(U) = Score(U)
h(U) = estimated distance to goal

A* algorithm

[Yuan, Malone, Wu, IJCAI-11]

h
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Notation:
g:                                 g-cost
h:                                 h-cost
Red shape-outlined:   open nodes
No outline:                  closed nodes
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Simple heuristic

[Yuan, Malone, Wu, IJCAI-11]

A* search: Expands nodes in order of 
quality: f=g+h

g(U) = Score(U)
h(U) = XV\U BestScore(X, V\{X})

h({1,3}):
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Properties of the simple heuristic
• Theorem: The simple heuristic function h is admissible

– Optimistic estimation: never overestimate the true distance
– Guarantees the optimality of A*

• Theorem: h is also consistent
– Satisfies triangular inequality, yielding a monotonic heuristic
– Consistency => admissibility
– Guarantees the optimality of g cost of any node to be expanded

[Yuan, Malone, Wu, IJCAI-11]
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BFBnB algorithm

ϕ

1 2 3

1,2 1,3 2,3

1,2,3

4

1,4 2,4 3,4

1,2,4 1,3,4 2,3,4

1,2,3,4

[Malone, Yuan, Hansen, UAI-11]

Breadth-first branch and bound 
search (BFBnB):
• Motivation:

Exponential-size order&parent graphs

• Observation:
Natural layered structure

• Solution:
Search one layer at a time
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BFBnB algorithm
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[Malone, Yuan, Hansen, UAI-11]
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Pruning in BFBnB
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• For pruning, estimate an upper bound solution before search
– Can be done using anytime window A*

• Prune a node when f-cost > upper bound 

[Malone, Yuan, Hansen, UAI-11]
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Performance of A* and BFBnB

A comparison of the total time (in seconds) for GOBNILP,  A*, and BFBnB. 
An “X” means that the corresponding algorithm did not finish within the time 
limit (7,200 seconds) or ran out of memory in the case of A*.
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Drawback of simple heuristic

• Let each variable to choose optimal parents from all the 
other variables

• Completely relaxes the acyclic constraint

2

1

3

4

21

3 4

Bayesian network Heuristic estimation

Relaxation
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Potential solution

• Breaking cycles to obtain a tighter heuristic
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3 4
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BestScore(1, {2,3,4})={2,3,4}
+

BestScore(2, {1,3,4})={1,4}
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+

BestScore(2, {3,4})={3}

BestScore(1, {3,4})={3,4}
+

BestScore(2, {1,3,4})

min  c({1,2})

[Yuan, Malone, UAI-12]
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Static k-cycle conflict heuristic

• Also called static pattern database
• Calculate joint costs for all subsets of non-overlapping static 

groups by enforcing acyclicity within a group: 
{1,2,3,4,5,6}  {1,2,3}, {4,5,6}

[Yuan, Malone, UAI-12]
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Computing heuristic value using static PD

• Sum costs of pattern databases according to static grouping

1,2,3

1 2 3
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ϕ
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ϕ

h({1,5,6}) = h({1})+h({5,6})

[Yuan, Malone, UAI-12]
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Properties of static k-cycle conflict heuristic

• Theorem: The static k-cycle conflict heuristic is admissible

• Theorem: The static k-cycle conflict heuristic is consistent

[Yuan, Malone, UAI-12]
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Enhancing A* with static k-cycle conflict heuristic

A comparison of the search time (in seconds) for GOBNILP, A*, BFBnB, and 
A* with pattern database heuristic. An “X” means that the corresponding algorithm 
did not finish within the time limit (7,200 seconds) or ran out of memory in the 
case of A*.
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Learning decomposition

• Potentially Optimal Parent Sets (POPS)
– Contain all parent-child relations

• Observation: Not all variables can possibly be ancestors of the 
others.

– E.g.,  any variables in {X3,X4,X5,X6} can not be ancestor of X1 or X2

[Fan, Malone, Yuan, UAI-14]



40/56

POPS Constraints

• Parent Relation Graph
– Aggregate all the parent-child relations in POPS Table

• Component Graph
– Strongly Connected Components (SCCs)
– Provide ancestral constraints

{1, 2}

{3,4,5,6}

[Fan, Malone, Yuan, UAI-14]
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POPS Constraints

• Decompose the problem
– Each SCC corresponds to a 

smaller subproblem

– Each subproblem can be 
solved independently.

{1, 2}

{3,4,5,6}

[Fan, Malone, Yuan, UAI-14]
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POPS Constraints

• Recursive POPS Constraints
– Selecting the parents for one of 

the variables has the effect of 
removing that variable from the 
parent relation graph. 

[Fan, Malone, Yuan, UAI-14]
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Evaluating POPS and recursive POPS constraints
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Evaluating POPS and recursive POPS constraints
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Evaluating POPS and recursive POPS constraints
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Grouping in static k-cycle conflict heuristic
• Tightness of the heuristic highly depends on the grouping
• Characteristics of a good grouping

– Reduce directed cycles between groups 
– Enforce as much acyclicity as possible

[Fan, Yuan, AAAI-15]



47/56

Existing grouping methods

• Create an undirected graph as skeleton
– Parent grouping: connecting each variable to potentials parents in the best 

POPS
– Family grouping: use Min-Max Parent Child (MMPC) [Tsarmardinos et al. 06] 

• Use independence tests in MMPC to estimate edge weights
• Partition the skeleton into balanced subgraphs

– by minimizing the total weights of the edges between the subgraphs

[Fan, Yuan, AAAI-15]
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Advanced grouping

• The potentially optimal parent sets (POPS) capture all possible 
relations between variables

• Observation: Directed cycles in the heuristic originate from the 
POPS

[Fan, Yuan, AAAI-15]
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Parent relation graphs from all POPS

[Fan, Yuan, AAAI-15]
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Parent relation graph from top-K POPS

K = 1 K = 2

[Fan, Yuan, AAAI-15]
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Component grouping 
• : the size of the largest pattern database that can be created
• Use parent grouping if the largest SCC in top-1 graph is already 

larger than 
• Otherwise, use component grouping

– For K = 1 to maxi |POPS|i
» Use top-K POPS of each variable to create a parent relation graph
» If the graph has only one SCC or a too large SCC, return
» Divide the SCCs into two or more groups by using a Prim-like algorithm

– Return feasible grouping of largest K

[Fan, Yuan, AAAI-15]
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Parameter K

The running time and number of expanded nodes
needed by A* to solve Soybeans with different K.

[Fan, Yuan, AAAI-15]



53/56

Comparing grouping methods 

[Fan, Yuan, AAAI-15]
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• Formulation:
– learning optimal Bayesian networks as a shortest path problem
– Standard heuristic search algorithms applicable, e.g., A*, BFBnB
– Design of upper/lower bounds critical for performance

• Extra information extracted from data enables
– Creating ancestral graphs for decomposing the learning problem
– Creating better grouping for the static k-cycle conflict heuristic

• Take home message: Methodology and data work better as a 
team!

• Open source software available from
– http://urlearning.org

Summary
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