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About tutorial presenters

 Dr. Changhe Yuan (Part I)

— Associate Professor of Computer Science at Queens College/City University of
New York

— Director of the Uncertainty Reasoning Laboratory (URL Lab).

 Dr.James Cussens (Part Il)
— Senior Lecturer in the Dept of Computer Science at the University of York, UK

e Dr. Brandon Malone (Part | and II)
— Postdoctoral researcher at the Max Planck Institute for Biology of Ageing
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Bayesian networks

A Bayesian Network is a directed acyclic graph (DAG) in which:
— A set of random variables makes up the nodes in the network.
— A set of directed links or arrows connects pairs of nodes.

— Each node has a conditional probability table that quantifies the effects the
parents have on the node.
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Learning Bayesian networks

 Very often we have data sets
« We can learn Bayesian networks from these data
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ﬁ\/lajor learning approaches \

Score-based structure learning

— Find the highest-scoring network structure
» Optimal algorithms (FOCUS of TUTORIAL)
» Approximation algorithms

Constraint-based structure learning

— Find a network that best explains the dependencies and
independencies in the data

Hybrid approaches
— Integrate constraint- and/or score-based structure learning

Bayesian model averaging
— Average the prediction of all possible structures

N .




Score-based learning

 Find a Bayesian network that optimizes a given scoring function

« Two major issues
— How to define a scoring function?
— How to formulate and solve the optimization problem?
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Scoring functions

e Bayesian Dirichlet Family (BD)
— K2

 Minimum Description Length (MDL)

 Factorized Normalized Maximum Likelihood (fNML)
o Akaike’s Information Criterion (AIC)

 Mutual information tests (MIT)

« Etc.
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/Decomposability \

 All of these are expressed as a sum over the individual variables,

e.g.
BDeu I'(a;;) F(ai,jk + Niji)
Zzlobl"( ,J) Z I'(aiji)

ajj +

Z _LLx1PA) + 2B ¢ 1)q,

nfh L

ML ZZZ N,jklog——C(r NU)

 This property is called decomposability and will be quite important
for structure learning.

Score(G) = ZScore(X |PA;)
\ [Heckerman 1995, etc.y
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Querying best parents

BestScore(X,U) = b mlijr{{x} Score(X|PAy)
xS

€.J., BestScore(Xy,{X,, X,}) = PAX?;%?Z.XﬁScore(Xl|PAX1)

Naive solution: Search through all Solution: Propagate optimal
of the subsets and find the best scores and store as hash table.

Score(X,|PA,) BestScore(X,|PA,)




/Score pruning \

 Theorem: Say PA,; c PA’; and Score(X;|PA;) < Score(X|PA’)). Then PA’,
Is not optimal for X..
 Ways of pruning:
— Compare Score(X;|PA)) and Score(X|PA’)

— Using properties of scoring functions without computing scores (e.g.,
exponential pruning)

o After pruning, each variable has a list of possibly optimal parent
sets (POPS)

— The scores of all POPS are called local scores

POPS(X | PA(X},))

\ [Teyssier and Koller 2005, de Campos and Ji 2011, Tian ZOOOM
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Number of POPS
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The number of parent sets and their scores stored in the full parent graphs (“Full”),
the largest layer of the parent graphs in memory-efficient dynamic programming
(“Largest Layer”), and the possibly optimal parent sets (“Sparse”).
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Practicalities

N

« Empirically, the sparse AD-tree data structure is the best approach
for collecting sufficient statistics.

* A breadth-first score calculation strategy maximizes the efficiency
of exponential pruning.

e Caching significantly reduces runtime.

 Local score calculations are easily parallelizable.

~
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Graph search formulation

« Formulate the learning task as a shortest path problem

— The shortest path solution to a graph search problem corresponds to an optimal
Bayesian network

\ [Yuan, Malone, Wu, IJCAI-lly
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Search graph (Order graph)

Formulation:
c . Search space: Variable subsets
""""""""" Start node:  Empty set
. Goal node: Complete set
" Edges: Add variable

Edge cost: BestScore(X,U) for
edge U->UU{X}

\ [Yuan, Malone, Wu, IJCAI-lly
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Search graph (Order graph)

Formulation:

Search space: Variable subsets

Start node: Empty set

Goal node: Complete set

Edges: Add variable

Edge cost: BestScore(X,U) for
edge U->UU{X}

Task: find the shortest path between

start and goal nodes

[Yuan, Malone, Wu, IJCAI-lly
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A* algorithm
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A* search: Expands the nodes in the
order of quality: f=g+h

g(U) = Score(V)
h(U) = estimated distance to goal

Notation:
g g-cost
h: h-cost
Red shape-outlined: open nodes
No outline: closed nodes

[Yuan, Malone, Wu, IJCAI-lly
16/56




@ N

A* algorithm

A* search: Expands the nodes in the
order of quality: f=g+h

g(U) = Score(V)
h(U) = estimated distance to goal

Notation:
g g-cost
h: h-cost
Red shape-outlined: open nodes
No outline: closed nodes

[Yuan, Malone, Wu, IJCAI-lly
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A* algorithm

A* search: Expands the nodes in the
0 order of quality: f=g+h

’ g(U) = Score(V)

> O 4 3 Q s h(U) = estimated distance to goal
10 14 8 11

Notation:
OO
“ 5/10 4/12 5/11 h COSt

Red shape-outlined: open nodes
No outline: closed nodes

\ [Yuan, Malone, Wu, IJCAI-lly
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A* algorithm

A* search: Expands the nodes in the
order of quality: f=g+h

g(U) = Score(V)
3 Q 5 h(U) = estimated distance to goal
8

11

Notation:
Q Q g g-cost
2 S h: | h-cost
Red shape-outlined: open nodes
No outline: closed nodes

[Yuan, Malone, Wu, 1JCAI-11]
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A* algorithm

A* search: Expands the nodes in the
a 0 order of quality: f=g+h
/ g(U) = Score(V)
2 gQ 4 3 O 5 h(U) = estimated distance to goal
10 X 14 8 11
\ Notation:

200D O 0%

h-cost

4113 5/12 4/10 4/12 5/11 _
Red shape-outlined: open nodes
No outline: closed nodes

[Yuan, Malone, Wu, IJCAI-lly
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A* algorithm

A* search: Expands the nodes in the
a 0 order of quality: f=g+h
/ g(U) = Score(V)
gQ 4 h(U) = estimated distance to goal

Notation:

: O

8 11
D0VO O
h: h-cost

4/13 5/12 4/10 4/12 5/11

5/13 ; 5/10
15/0
\ [Yuan, Malone, Wu, IJCAI-lly
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A* algorithm

A* search: Expands the nodes in the
a 0 order of quality: f=g+h
/ g(U) = Score(V)
gQ 4 h(U) = estimated distance to goal

Notation:

: O

8 11
D0VO O
h: h-cost

4/13 5/12 4/10 4/12 5/11

5/13 ; 5/10
15/0
\ [Yuan, Malone, Wu, IJCAI-lly
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Simple heuristic

A* search: Expands nodes in order of
a quality: f=g+h

g(U) = Score(V)

h(U) = X2y .\ BestScore(X, VI{X})
h({1,3}):

S

YD

N

[Yuan, Malone, Wu, IJCAI-lly
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/Properties of the simple heuristic

« Theorem: The simple heuristic function h is admissible
— Optimistic estimation: never overestimate the true distance
— Guarantees the optimality of A*

« Theorem: h is also consistent
— Satisfies triangular inequality, yielding a monotonic heuristic
— Consistency => admissibility
— Guarantees the optimality of g cost of any node to be expanded

\ [Yuan, Malone, Wu, 1JCAI-11]
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BFBNnB algorithm

~

Breadth-first branch and bound
search (BFBnB):

» Motivation:
Exponential-size order&parent graphs

* Observation:
Natural layered structure

 Solution:
Search one layer at a time

[Malone, Yuan, Hansen, UAI-ll]/
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BFBNnB algorithm
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Breadth-first branch and bound
search (BFBnB):

» Motivation:
Exponential-size order&parent graphs

* Observation:
Natural layered structure

 Solution:
Search one layer at a time

[Malone, Yuan, Hansen, UAI-ll]/
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BFBNnB algorithm

[Malone, Yuan, Hansen, UAI-1
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BFBNnB algorithm

[Malone, Yuan, Hansen, UAI-1
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BFBNnB algorithm

[Malone, Yuan, Hansen, UAI-1
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BFBNnB algorithm

[Malone, Yuan, Hansen, UAI-1
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Pruning in BFBnB

 For pruning, estimate an upper bound solution before search
— Can be done using anytime window A*

e Prune anode when f-cost > upper bound

~

\ - [Malone, Yuan, Hansen, UAI-11]/
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Performance of A* and BFBnB
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A comparison of the total time (in seconds) for GOBNILP, A*, and BFBnB.
An “X” means that the corresponding algorithm did not finish within the time
limit (7,200 seconds) or ran out of memory in the case of A*.
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Drawback of simple heuristic

 Let each variable to choose optimal parents from all the
other variables

« Completely relaxes the acyclic constraint

Bayesian network Heuristic estimation

[ O ) T
Relaxation l
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~__ g

N o

A
-

\ 4




@ N

Potential solution

 Breaking cycles to obtain a tighter heuristic

[
»

A

BestScore(1, {2,3,4})

o B
— e 12 | BestScore(2, {3,4})={3}

pele’ \
| I ‘a-
! min = c({1,2})
«

\ 4

v

A

BestScore(1, {2,3,4})={2,3,4}
+

BestScore(2, {1,3,4})={1,4} BestScore(2, {1,3,4})

\ [Yuan, Malone, UAI-12]
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fStatic k-cycle conflict heuristic \

 Also called static pattern database

o Calculate joint costs for all subsets of non-overlapping static
groups by enforcing acyclicity within a group:

{1,2,3,4,5,6} = {1,2,3}, {4,5,6}

)=o) s, s, U1/




fComputing heuristic value using static PD \

 Sum costs of pattern databases according to static grouping

h({1,5,6}) = h({1})+h({5,6})

\ [Yuan, Malone, UAl-ly
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/Properties of static k-cycle conflict heuristic \

« Theorem: The static k-cycle conflict heuristic is admissible

« Theorem: The static k-cycle conflict heuristic is consistent

\ [Yuan, Malone, UAI-12]
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Enhancing A* with static k-cycle conflict heuristic
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A comparison of the search time (in seconds) for GOBNILP, A*, BFBnB, and

A* with pattern database heuristic. An “X” means that the corresponding algorithm
did not finish within the time limit (7,200 seconds) or ran out of memory in the
case of A*.
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Learning decomposition

 Potentially Optimal Parent Sets (POPS)
— Contain all parent-child relations

variable POPS

X1 {X2} {}

Xy {X1} {}

X3 {X1, Xo} {X5, X6} {X1,Xe} {Xo} {Xe} {}
X4 {X1,X3} {Xi} { X5} {}

X5 { X4} { X2} {}

Xe {Xo, X5} {Xo} {}

 Observation: Not all variables can possibly be ancestors of the
others.

\ — E.g., any variables in {X3,X,,Xs,Xg} can not be ancestor of X, or X, /
[Fan, Malone, Yuan, UAI-14] 20/56




/POPS Constraints

 Parent Relation Graph
— Aggregate all the parent-child relations in POPS Table

« Component Graph
— Strongly Connected Components (SCCs)
— Provide ancestral constraints

[Fan, Malone, Yuan, UAI-14]
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POPS Constraints o

e Decompose the problem o o

— Each SCC corresponds to a st
smaller subproblem 1™ Subproblem

{12}

— Each subproblem can be
solved independently.

{1, 2}

{3,4,5,6}

\ [Fan, Malone, Yuan, UAI-14] , ..~




@ N

POPS Constraints

e Recursive POPS Constraints

— Selecting the parents for one of
the variables has the effect of
removing that variable from the
parent relation graph.

1* Subproblem

2"' Subproblem

[Fan, Malone, Yuan, UAI-14] ..~
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Evaluating POPS and recursive POPS constraints

Alarm, 37 : # Expanded

Nodes(million)

N
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[Fan, Malone, Yuan, UAI-14] . . /




@ N

Evaluating POPS and recursive POPS constraints

Barley, 48: # Expanded Barley, 48 : # Running
Nodes(million) Time(seconds)
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\ [Fan, Malone, Yuan, UAI-14] .. /
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Evaluating POPS and recursive POPS constraints

Soybean, 36 : # Expanded Soybean, 36 : # Running

Nodes(seconds) Time(seconds)
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~
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& o»
NO POPS Recursive No POPS Recursive
Constraint POPS Constraint POPS

[Fan, Malone, Yuan, UAI-14] . /



/Grouping In static k-cycle conflict heuristic \

e Tightness of the heuristic highly depends on the grouping

 Characteristics of a good grouping
— Reduce directed cycles between groups
— Enforce as much acyclicity as possible

\ [Fan, Yuan, AAAI-uSy
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/Existing grouping methods \

 Create an undirected graph as skeleton

— Parent grouping: connecting each variable to potentials parents in the best
POPS

— Family grouping: use Min-Max Parent Child (MMPC) [Tsarmardinos et al. 06]
 Use independence tests in MMPC to estimate edge weights

« Partition the skeleton into balanced subgraphs
— by minimizing the total weights of the edges between the subgraphs

\ [Fan, Yuan, AAAI-uSy
47156



ﬂdvanced grouping

 The potentially optimal parent sets (POPS) capture all possible
relations between variables

var. POPS

X1 | {Xa} {Xs}

Xo | {X1}

XS {X13X5} {Xl:ﬂXQ} {X23X4} {Xl}
Xy | { X5} { X} { X7}

Xs | {X1, X5} {X5)
Xg | {Xo, X7} {X7}
X7 | {Xs) { X6, X4}
Xs | { X6} { X7}

 Observation: Directed cycles in the heuristic originate from the
POPS

~

\ [Fan, Yuan, AAAI—lESy
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Parent relation graphs from all POPS

\ [Fan, Yuan, AAAI-RSy
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Parent relation graph from top-K POPS

[Fan, Yuan, AAAI-y
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/Component grouping \

e v: the size of the largest pattern database that can be created

e Use parent grouping if the largest SCC in top-1 graph is already
larger than y
 Otherwise, use component grouping
— For K = 1to max; |[POPS];
» Use top-K POPS of each variable to create a parent relation graph
» If the graph has only one SCC or atoo large SCC, return

» Divide the SCCs into two or more groups by using a Prim-like algorithm
— Return feasible grouping of largest K

\ [Fan, Yuan, AAAI-uSy
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Parameter K
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The running time and number of expanded nodes [ ]
needed by A* to solve Soybeans with different K.
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Comparing grouping methods

NG

1000

100

10

0.1

0.01

Barley

X

Soybean Flag

mFG m mPG

mCG

[Fan, Yuan, AAAI-15]
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Summary

Formulation:
— learning optimal Bayesian networks as a shortest path problem
— Standard heuristic search algorithms applicable, e.g., A*, BFBnB
— Design of upper/lower bounds critical for performance

Extra information extracted from data enables
— Creating ancestral graphs for decomposing the learning problem
— Creating better grouping for the static k-cycle conflict heuristic

Take home message: Methodology and data work better as a
team!

Open source software available from
— http://urlearning.org
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