
1/56

Optimal Algorithms for Learning Bayesian
Network Structures:

Introduction and Heuristic Search

Optimal Algorithms for Learning Bayesian
Network Structures:

Introduction and Heuristic Search

Changhe Yuan
UAI 2015 Tutorial

Sunday, July 12th, 8:30-10:20am
http://auai.org/uai2015/tutorialsDetails.shtml#tutorial_1

2/56

About tutorial presenters

• Dr. Changhe Yuan (Part I)
– Associate Professor of Computer Science at Queens College/City University of

New York
– Director of the Uncertainty Reasoning Laboratory (URL Lab).

• Dr. James Cussens (Part II)
– Senior Lecturer in the Dept of Computer Science at the University of York, UK

• Dr. Brandon Malone (Part I and II)
– Postdoctoral researcher at the Max Planck Institute for Biology of Ageing

3/56

Bayesian networks

• A Bayesian Network is a directed acyclic graph (DAG) in which:
– A set of random variables makes up the nodes in the network.
– A set of directed links or arrows connects pairs of nodes.
– Each node has a conditional probability table that quantifies the effects the

parents have on the node.

P(B) P(E)

P(N|A)

P(R|E)
P(A|B,E)

4/56

Learning Bayesian networks

• Very often we have data sets
• We can learn Bayesian networks from these data

data

structure

numerical
parameters

5/56

Major learning approaches

• Score-based structure learning
– Find the highest-scoring network structure

» Optimal algorithms (FOCUS of TUTORIAL)
» Approximation algorithms

• Constraint-based structure learning
– Find a network that best explains the dependencies and

independencies in the data

• Hybrid approaches
– Integrate constraint- and/or score-based structure learning

• Bayesian model averaging
– Average the prediction of all possible structures

6/56

Score-based learning

• Find a Bayesian network that optimizes a given scoring function

• Two major issues
– How to define a scoring function?
– How to formulate and solve the optimization problem?

7/56

Scoring functions

• Bayesian Dirichlet Family (BD)
– K2

• Minimum Description Length (MDL)
• Factorized Normalized Maximum Likelihood (fNML)
• Akaike’s Information Criterion (AIC)
• Mutual information tests (MIT)
• Etc.

8/56

• All of these are expressed as a sum over the individual variables,
e.g.

• This property is called decomposability and will be quite important
for structure learning.

BDeu

MDL

fNML

Decomposability

[Heckerman 1995, etc.]

9/56

Querying best parents

e.g.,

Naive solution: Search through all
of the subsets and find the best

Solution: Propagate optimal
scores and store as hash table.

10/56

POPS(X1|PA(X1))

Score pruning

• Theorem: Say PAi ⊂ PA’i and ScoreሺXi|PAiሻ	൏	ScoreሺX|PA’iሻ. Then PA’i
is not optimal for Xi.

• Ways of pruning:
– Compare ScoreሺXi|PAiሻ and ScoreሺX|PA’iሻ
– Using properties of scoring functions without computing scores (e.g.,

exponential pruning)
• After pruning, each variable has a list of possibly optimal parent

sets (POPS)
– The scores of all POPS are called local scores

[Teyssier and Koller 2005, de Campos and Ji 2011, Tian 2000]

11/56

Number of POPS

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10
O
pt
im

al
 P
ar
en

t S
et
s

Full Largest Layer Sparse

The number of parent sets and their scores stored in the full parent graphs (“Full”),
the largest layer of the parent graphs in memory-efficient dynamic programming
(“Largest Layer”), and the possibly optimal parent sets (“Sparse”).

12/56

Practicalities

• Empirically, the sparse AD-tree data structure is the best approach
for collecting sufficient statistics.

• A breadth-first score calculation strategy maximizes the efficiency
of exponential pruning.

• Caching significantly reduces runtime.

• Local score calculations are easily parallelizable.

13/56

Graph search formulation

• Formulate the learning task as a shortest path problem
– The shortest path solution to a graph search problem corresponds to an optimal

Bayesian network

[Yuan, Malone, Wu, IJCAI-11]

14/56

Search graph (Order graph)

ϕ

1 2 3

1,2 1,3 2,3

1,2,3

4

1,4 2,4 3,4

1,2,4 1,3,4 2,3,4

1,2,3,4

Formulation:
Search space: Variable subsets
Start node: Empty set
Goal node: Complete set
Edges: Add variable
Edge cost: BestScore(X,U) for

edge UU{X}

3

2

4

[Yuan, Malone, Wu, IJCAI-11]

15/56

Search graph (Order graph)

ϕ

1 2 3

1,2 1,3 2,3

1,2,3

4

1,4 2,4 3,4

1,2,4 1,3,4 2,3,4

1,2,3,4

Formulation:
Search space: Variable subsets
Start node: Empty set
Goal node: Complete set
Edges: Add variable
Edge cost: BestScore(X,U) for

edge UU{X}
Task: find the shortest path between
start and goal nodes

2

1

4

3
1,3,4,2

[Yuan, Malone, Wu, IJCAI-11]

16/56

ϕ

A* search: Expands the nodes in the
order of quality: f=g+h

g(U) = Score(U)
h(U) = estimated distance to goal

A* algorithm

[Yuan, Malone, Wu, IJCAI-11]

h

1,2,3,4

0
10

Notation:
g: g-cost
h: h-cost
Red shape-outlined: open nodes
No outline: closed nodes

17/56

4
14

ϕ

1 2 3

1,2,3,4

A* search: Expands the nodes in the
order of quality: f=g+h

g(U) = Score(U)
h(U) = estimated distance to goal4

g

h

[Yuan, Malone, Wu, IJCAI-11]

0
10

2
10

3
8

5
11

Notation:
g: g-cost
h: h-cost
Red shape-outlined: open nodes
No outline: closed nodes

A* algorithm

18/56

ϕ

1 2 3

3,4

1,2,3,4

A* search: Expands the nodes in the
order of quality: f=g+h

g(U) = Score(U)
h(U) = estimated distance to goal

A* algorithm

4

g

h

[Yuan, Malone, Wu, IJCAI-11]

2,3

0
10

2
10

4
14

3
8

5
11

5/10 4/12 5/11

Notation:
g: g-cost
h: h-cost
Red shape-outlined: open nodes
No outline: closed nodes

1,3

19/56

ϕ

1 2 3

1,2 1,3

1,2,3,4

A* search: Expands the nodes in the
order of quality: f=g+h

g(U) = Score(U)
h(U) = estimated distance to goal

A* algorithm

4g

h

[Yuan, Malone, Wu, IJCAI-11]

2,3 3,41,4

0
10

2
10

4
14

3
8

5
11

4/13 5/12 4/10 5/11

Notation:
g: g-cost
h: h-cost
Red shape-outlined: open nodes
No outline: closed nodes

4/12

20/56

ϕ

1 2 3

1,2 1,3

A* search: Expands the nodes in the
order of quality: f=g+h

g(U) = Score(U)
h(U) = estimated distance to goal

A* algorithm

4g

[Yuan, Malone, Wu, IJCAI-11]

2,3 3,41,4

1,2,3,4

h

1,3,41,2,3

0
10

2
10

4
14

3
8

5
11

4/13 5/12 4/10 5/11

5/13 5/10

Notation:
g: g-cost
h: h-cost
Red shape-outlined: open nodes
No outline: closed nodes

4/12

21/56

ϕ

1 2 3

1,2 1,3

A* search: Expands the nodes in the
order of quality: f=g+h

g(U) = Score(U)
h(U) = estimated distance to goal

A* algorithm

4g

[Yuan, Malone, Wu, IJCAI-11]

2,3 3,41,4

0
10

2
10

4
14

3
8

5
11

4/13 5/11

Notation:
g: g-cost
h: h-cost
Red shape-outlined: open nodes
No outline: closed nodes

1,2,3,4

1,3,41,2,3

5/12 4/10

5/13 5/10

4/12

15/0

22/56

ϕ

1 2 3

1,2 1,3

A* search: Expands the nodes in the
order of quality: f=g+h

g(U) = Score(U)
h(U) = estimated distance to goal

A* algorithm

4g

[Yuan, Malone, Wu, IJCAI-11]

2,3 3,41,4

1,2,3

0
10

2
10

4
14

3
8

5
11

4/13 5/12 4/10 5/11

5/13

Notation:
g: g-cost
h: h-cost
Red shape-outlined: open nodes
No outline: closed nodes

1,2,3,4

1,3,4
5/10

4/12

15/0

23/56

Simple heuristic

[Yuan, Malone, Wu, IJCAI-11]

A* search: Expands nodes in order of
quality: f=g+h

g(U) = Score(U)
h(U) = XV\U BestScore(X, V\{X})

h({1,3}):

3
2

1
4

ϕ

1 2 3

1,2 1,3

4

2,3 3,41,4

1,2,3,4

h

24/56

Properties of the simple heuristic
• Theorem: The simple heuristic function h is admissible

– Optimistic estimation: never overestimate the true distance
– Guarantees the optimality of A*

• Theorem: h is also consistent
– Satisfies triangular inequality, yielding a monotonic heuristic
– Consistency => admissibility
– Guarantees the optimality of g cost of any node to be expanded

[Yuan, Malone, Wu, IJCAI-11]

25/56

BFBnB algorithm

ϕ

1 2 3

1,2 1,3 2,3

1,2,3

4

1,4 2,4 3,4

1,2,4 1,3,4 2,3,4

1,2,3,4

[Malone, Yuan, Hansen, UAI-11]

Breadth-first branch and bound
search (BFBnB):
• Motivation:

Exponential-size order&parent graphs

• Observation:
Natural layered structure

• Solution:
Search one layer at a time

26/56

BFBnB algorithm

Breadth-first branch and bound
search (BFBnB):
• Motivation:

Exponential-size order&parent graphs

• Observation:
Natural layered structure

• Solution:
Search one layer at a time

ϕ

1 2 3

1,2 1,3 2,3

1,2,3

4

1,4 2,4 3,4

1,2,4 1,3,4 2,3,4

1,2,3,4

[Malone, Yuan, Hansen, UAI-11]

27/56

BFBnB algorithm

ϕ

1 2 3 4

[Malone, Yuan, Hansen, UAI-11]

28/56

ϕ

1 2 3 41 2 3

1,2 1,3 2,3

4

1,4 2,4 3,4

[Malone, Yuan, Hansen, UAI-11]

BFBnB algorithm

29/56

1 2 3

1,2 1,3 2,3

4

1,4 2,4 3,41,2 1,3 2,3

1,2,3

1,4 2,4 3,4

1,2,4 1,3,4 2,3,4

ϕ

1 2 3 4

[Malone, Yuan, Hansen, UAI-11]

BFBnB algorithm

30/56

1,2 1,3 2,3

1,2,3

1,4 2,4 3,4

1,2,4 1,3,4 2,3,41,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

1 2 3

1,2 1,3 2,3

4

1,4 2,4 3,4

ϕ

1 2 3 4

[Malone, Yuan, Hansen, UAI-11]

BFBnB algorithm

31/56

Pruning in BFBnB

ϕ

1 2 3

1,3 2,3 1,4 2,4

1,2,4 1,3,4 2,3,4

1,2,3,4

• For pruning, estimate an upper bound solution before search
– Can be done using anytime window A*

• Prune a node when f-cost > upper bound

[Malone, Yuan, Hansen, UAI-11]

32/56

Performance of A* and BFBnB

A comparison of the total time (in seconds) for GOBNILP, A*, and BFBnB.
An “X” means that the corresponding algorithm did not finish within the time
limit (7,200 seconds) or ran out of memory in the case of A*.

33/56

Drawback of simple heuristic

• Let each variable to choose optimal parents from all the
other variables

• Completely relaxes the acyclic constraint

2

1

3

4

21

3 4

Bayesian network Heuristic estimation

Relaxation

34/56

Potential solution

• Breaking cycles to obtain a tighter heuristic

21

3 4

21

3 4

21

3 4

BestScore(1, {2,3,4})={2,3,4}
+

BestScore(2, {1,3,4})={1,4}

BestScore(1, {2,3,4})
+

BestScore(2, {3,4})={3}

BestScore(1, {3,4})={3,4}
+

BestScore(2, {1,3,4})

min  c({1,2})

[Yuan, Malone, UAI-12]

35/56

Static k-cycle conflict heuristic

• Also called static pattern database
• Calculate joint costs for all subsets of non-overlapping static

groups by enforcing acyclicity within a group:
{1,2,3,4,5,6}  {1,2,3}, {4,5,6}

[Yuan, Malone, UAI-12]

1,2,3

1 2 3

1,2 1,3 2,3

ϕ

4,5,6

4 5 6

4,5 4,6 5,6

ϕ

h({1}) = gr({1})

gr

36/56

Computing heuristic value using static PD

• Sum costs of pattern databases according to static grouping

1,2,3

1 2 3

1,2 1,3 2,3

ϕ

4,5,6

4 5 6

4,5 4,6 5,6

ϕ

h({1,5,6}) = h({1})+h({5,6})

[Yuan, Malone, UAI-12]

37/56

Properties of static k-cycle conflict heuristic

• Theorem: The static k-cycle conflict heuristic is admissible

• Theorem: The static k-cycle conflict heuristic is consistent

[Yuan, Malone, UAI-12]

38/56

Enhancing A* with static k-cycle conflict heuristic

A comparison of the search time (in seconds) for GOBNILP, A*, BFBnB, and
A* with pattern database heuristic. An “X” means that the corresponding algorithm
did not finish within the time limit (7,200 seconds) or ran out of memory in the
case of A*.

39/56

Learning decomposition

• Potentially Optimal Parent Sets (POPS)
– Contain all parent-child relations

• Observation: Not all variables can possibly be ancestors of the
others.

– E.g., any variables in {X3,X4,X5,X6} can not be ancestor of X1 or X2

[Fan, Malone, Yuan, UAI-14]

40/56

POPS Constraints

• Parent Relation Graph
– Aggregate all the parent-child relations in POPS Table

• Component Graph
– Strongly Connected Components (SCCs)
– Provide ancestral constraints

{1, 2}

{3,4,5,6}

[Fan, Malone, Yuan, UAI-14]

41/56

POPS Constraints

• Decompose the problem
– Each SCC corresponds to a

smaller subproblem

– Each subproblem can be
solved independently.

{1, 2}

{3,4,5,6}

[Fan, Malone, Yuan, UAI-14]

42/56

POPS Constraints

• Recursive POPS Constraints
– Selecting the parents for one of

the variables has the effect of
removing that variable from the
parent relation graph.

[Fan, Malone, Yuan, UAI-14]

43/56

Evaluating POPS and recursive POPS constraints

0
10
20
30
40
50
60
70
80
90

No
Constraint

POPS Recursive
POPS

Alarm, 37 : Running
Time(seconds)

0

0.5

1

1.5

2

2.5

3

No
Constraint

POPS Recursive
POPS

Alarm, 37 : # Expanded
Nodes(million)

[Fan, Malone, Yuan, UAI-14]

44/56

Evaluating POPS and recursive POPS constraints

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
Constraint

POPS Recursive
POPS

Barley, 48: # Expanded
Nodes(million)

0

0.5

1

1.5

2

2.5

3

No
Constraint

POPS Recursive
POPS

Barley, 48 : # Running
Time(seconds)

[Fan, Malone, Yuan, UAI-14]

45/56

Evaluating POPS and recursive POPS constraints

0

100

200

300

400

500

600

No
Constraint

POPS Recursive
POPS

Soybean, 36 : # Running
Time(seconds)

0

2

4

6

8

10

12

No
Constraint

POPS Recursive
POPS

Soybean, 36 : # Expanded
Nodes(seconds)

[Fan, Malone, Yuan, UAI-14]

46/56

Grouping in static k-cycle conflict heuristic
• Tightness of the heuristic highly depends on the grouping
• Characteristics of a good grouping

– Reduce directed cycles between groups
– Enforce as much acyclicity as possible

[Fan, Yuan, AAAI-15]

47/56

Existing grouping methods

• Create an undirected graph as skeleton
– Parent grouping: connecting each variable to potentials parents in the best

POPS
– Family grouping: use Min-Max Parent Child (MMPC) [Tsarmardinos et al. 06]

• Use independence tests in MMPC to estimate edge weights
• Partition the skeleton into balanced subgraphs

– by minimizing the total weights of the edges between the subgraphs

[Fan, Yuan, AAAI-15]

48/56

Advanced grouping

• The potentially optimal parent sets (POPS) capture all possible
relations between variables

• Observation: Directed cycles in the heuristic originate from the
POPS

[Fan, Yuan, AAAI-15]

49/56

Parent relation graphs from all POPS

[Fan, Yuan, AAAI-15]

50/56

Parent relation graph from top-K POPS

K = 1 K = 2

[Fan, Yuan, AAAI-15]

51/56

Component grouping
• : the size of the largest pattern database that can be created
• Use parent grouping if the largest SCC in top-1 graph is already

larger than 
• Otherwise, use component grouping

– For K = 1 to maxi |POPS|i
» Use top-K POPS of each variable to create a parent relation graph
» If the graph has only one SCC or a too large SCC, return
» Divide the SCCs into two or more groups by using a Prim-like algorithm

– Return feasible grouping of largest K

[Fan, Yuan, AAAI-15]

52/56

Parameter K

The running time and number of expanded nodes
needed by A* to solve Soybeans with different K.

[Fan, Yuan, AAAI-15]

53/56

Comparing grouping methods

[Fan, Yuan, AAAI-15]

54/56

• Formulation:
– learning optimal Bayesian networks as a shortest path problem
– Standard heuristic search algorithms applicable, e.g., A*, BFBnB
– Design of upper/lower bounds critical for performance

• Extra information extracted from data enables
– Creating ancestral graphs for decomposing the learning problem
– Creating better grouping for the static k-cycle conflict heuristic

• Take home message: Methodology and data work better as a
team!

• Open source software available from
– http://urlearning.org

Summary

55/56

• NSF CAREER grant, IIS-0953723
• NSF IIS grant, IIS-1219114
• PSC-CUNY Enhancement Award
• The Academy of Finland (COIN, 251170)

Acknowledgements

56/56

References
• Xiannian Fan, Changhe Yuan. An Improved Lower Bound for Bayesian Network Structure Learning. In Proceedings

of the 29th AAAI Conference (AAAI-15). Austin, Texas. 2015.
• Xiannian Fan, Brandon Malone, Changhe Yuan. Finding Optimal Bayesian Networks Using Constraints Learned

from Data. In Proceedings of the 30th Annual Conference on Uncertainty in Artificial Intelligence (UAI-14). Quebec
City, Quebec. 2014.

• Xiannian Fan, Changhe Yuan, Brandon Malone. Tightening Bounds for Bayesian Network Structure Learning. In
Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI-14). Quebec City, Quebec. 2014.

• Changhe Yuan, Brandon Malone. Learning Optimal Bayesian Networks: A Shortest Path Perspective. Journal of
Artificial Intelligence Research (JAIR). 2013.

• Brandon Malone, Changhe Yuan. Evaluating Anytime Algorithms for Learning Optimal Bayesian Networks. In
Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI-13). Seattle, Washington. 2013.

• Brandon Malone, Changhe Yuan. A Depth-first Branch and Bound Algorithm for Learning Optimal Bayesian
Networks. IJCAI-13 Workshop on Graph Structures for Knowledge Representation and Reasoning (GKR'13).
Beijing, China. 2013.

• Changhe Yuan, Brandon Maone. An Improved Admissible Heuristic for Learning Optimal Bayesian Networks. In
Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence (UAI-12). Catalina Island, CA. 2012.

• Brandon Malone. Learning optimal Bayesian networks with heuristic search. PhD Dissertation. Department of
Computer Science and Engineering, Mississippi State University. July, 2012.

• Brandon Malone, Changhe Yuan. A Parallel, Anytime, Bounded Error Algorithm for Exact Bayesian Network
Structure Learning. In Proceedings of the Sixth European Workshop on Probabilistic Graphical Models (PGM-12).
Granada, Spain. 2012.

• Changhe Yuan, Brandon Malone and Xiaojian Wu. Learning Optimal Bayesian Networks Using A* Search. 22nd
International Joint Conference on Artificial Intelligence (IJCAI-11). Barcelona, Catalonia, Spain, July 2011.

• Brandon Malone, Changhe Yuan, Eric Hansen and Susan Bridges. Memory-Efficient Dynamic Programming for
Learning Optimal Bayesian Networks, 25th AAAI Conference on Artificial Intelligence (AAAI-11). San Francisco, CA.
August 2011.

• Brandon Malone, Changhe Yuan, Eric Hansen and Susan Bridges. Improving the Scalability of Optimal Bayesian
Network Learning with Frontier Breadth-First Branch and Bound Search, 27th Conference on Uncertainty in Artificial
Intelligence (UAI-11). Barcelona, Catalonia, Spain, July 2011.

