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Abstract

The main goal of this work is to present the
proof-theoretical and model-theoretical approach
to a probabilistic logic which allows reasoning
about temporal information. We extend both the
language of linear time logic and the language of
probabilistic logic, allowing statements like “A
will always hold”and “the probability that A will
hold in next moment is at least the probability
that B will always hold,” where A and B are arbi-
trary statements. We axiomatize this logic, pro-
vide corresponding semantics and prove that the
axiomatization is sound and strongly complete.
We show that the problem of deciding decidabil-
ity is PSPACE-complete, no worse than that of
linear time logic.

1 INTRODUCTION

The study of temporal logics started with the seminal work
of Arthur Prior [Prior, 1957]. Temporal logics are designed
in order to analyze and reason about the way that sys-
tems change over time, and have been shown to be a use-
ful tool in describing behavior of an agent’s knowledge
base, for specification and verification of programs, hard-
ware, protocols in distributed systems etc. [Emerson, 1990,
Emerson, 1995]. In many practical situations the temporal
information is not known with certainty. A typical exam-
ple is formal representation of information about tracking
moving objects with GPS systems, in the case in which the
locations or the identities of the objects are not certainly
known [Grant et al., 2010].

Many different tools are developed for representing, and
reasoning with, uncertain knowledge. One particular line
of research concerns the formalization in terms of proba-
bilistic logic. After Nilsson [Nilsson, 1986] gave a proce-
dure for probabilistic entailment which, given probabilities
of premises, calculates bounds on the probabilities of the

derived sentences, researchers from the field started inves-
tigation about formal systems for probabilistic reasoning.
[Fagin et al., 1990] provided a finitary axiomatization for
reasoning about linear combinations of probabilities, and
they proved weak completeness (every consistent formula
is satisfiable). Their formulas are Boolean combinations of
the expressions of the form r1w(α1) + . . . + rnw(αn) ≥
rn+1, where w is the probability operator and αi’s are
propositional formulas. The semantics of the logic use
finitely additive probabilities, since σ-additivity cannot be
expressed by a formula of their language.

In this paper, we extend the approach from
[Fagin et al., 1990]. We start with the propositional
linear time logic (LTL) [Gabbay et al., 1980] with the
“next” operator © and “until” operator U . The meaning
of the formula©α is “α holds in the next time instance”,
and αUβ we read “α holds in every time instance until
β holds”. We apply the probabilistic operator w to the
formulas of LTL and define probabilistic formulas using
the linear combinations, like in [Fagin et al., 1990]. In our
logic there are two types of formulas, LTL formulas and
probabilistic formulas, with the requirement that if an LTL
formula is true, then its probability is equal to 1.

The main technical challenge in axiomatizing such a logic
lies in the fact that the set of models of the formula αUβ
can be represented as a countable union of models of tem-
poral formulas which are pairwise disjoint. As a conse-
quence, finitely additive semantics is obviously not ap-
propriate for such a logic, and we propose σ-additive se-
mantics for the logic. On the other hand, expressing σ-
additivity with an axiom would require infinite disjunc-
tions, and the resulting logic would be undecidable. We
shown in Section 3.1 that any finitary axiomatic system
wouldn’t be complete for the σ-additive semantics.

In order to overcome this problem, we axiomatize our lan-
guage using infinitary rules of inference. Thus, in this work
the term “infinitary” concerns the meta language only, i.e.,
the object language is countable and the formulas are finite,
while only proofs are allowed to be infinite. We prove that
our axiomatization is sound and strongly complete (every



consistent set of formulas is satisfiable). We also prove that
the logic is decidable, and we show that the satisfiability
problem is PSPACE-complete, no harder then satisfia-
bility for LTL.

There are several logics which combine time and prob-
ability in different ways [Guelev, 2000, Haddawy, 1996,
Halpern and Pucella, 2006, Hansson and Jonsson, 1994,
Ognjanovic, 2006, Shakarian et al., 2011]. However,
to the best of our knowledge, this is the first complete
axiomatization for the σ-additive probabilistic semantics.

2 THE LOGIC PLLTL: SYNTAX AND
SEMANTICS

We present the syntax and semantics of the logic for prob-
abilistic reasoning about linear time formulas, that we de-
note by PLLTL. The logic contains two types of formu-
las: formulas of LTL without probabilities, and the linear
weight formulas in the style of [Fagin et al., 1990], with
weights applied to temporal formulas.

In order to give semantics to the formulas,
we first briefly review some probability theory
[Ash and Doléans-Dade, 1999]. If W 6= ∅, then H is
an algebra of subsets of W , if it is a set of subsets of W
such that:

(a) W ∈ H ,
(b) if A,B ∈ H , then W \A ∈ H and A ∪B ∈ H .

A function µ : H −→ [0, 1] is a (σ-additive) probability
measure, if the following conditions hold:

(1) µ(W ) = 1,
(2) µ(

⋃
i∈ω Ai) =

∑
i∈ω µ(Ai), whenever A,Ai ∈ H and

Ai ∩Aj = ∅ for all i 6= j.

For W , H and µ described above, the triple 〈W,H, µ〉 is
called a probability space. A function µ : H −→ [0, 1] is a
finitely additive probability measure, if the condition

(3) µ(A ∪B) = µ(A) + µ(B), whenever A ∩B = ∅.

holds, instead of (2). We also say that an algebra H is a
σ-algebra, if

⋃
i∈ω Ai ∈ H whenever Ai ∈ H for every

i ∈ ω.

For a finitely additive µ, the condition (2) is equivalent to
the condition

(2’) µ(
⋃
i∈ω Ai) = limn→+∞ µ(

⋃n
i=0Ai).

We will actually use (2’) in the axiomatization of our logic
(see the inference rule R6).

2.1 SYNTAX

First we introduce LTL formulas. Suppose that P is a
nonempty finite set of propositional letters. We denote the

elements of P with p and q, possibly with subscripts.

Definition 1 (LTL formula) An LTL formula is any for-
mula built from propositional letters from P , using the
Boolean connectives ¬ and ∧, and the temporal operators
© and U .

We use ForLTL for the set of all state formulas and de-
note arbitrary LTL formulas by α, β and γ, possibly with
subscripts.

We use ¬ and ∧ as the primitive connectives, while other
Boolean connectives (→, ∨,↔) can be introduced as usual.
We also define other LTL operators F (sometime) and G
(always) as abbreviations: Fα is >Uα, and Gα is ¬F¬α.
Note that we use the strong version of U , which means that
if αUβ holds in a path, then β must hold eventually.

Example 1 The expression

©(p ∧ q)→ (pU¬q)

is an example of LTL formula. Its meaning is “if both p and
q hold in the next moment, then p will hold until q becomes
false”.

Semantics for LTL formulas consists of the set of paths,
where a path is a ω-structure in P , of the form σ =
s0, s1, s2, . . . Here si, called the i-th time instance of σ,
is a subset of P , and p ∈ si represent the propositional
letter p being true at time i in σ. We denote the set of all
paths with Σ. In the rest of the paper, we use the following
abbreviations:

• σ≥i is the path si, si+1, si+2, . . .

• σi is the state si.

The evaluation function1 v : Σ × ForLTL −→ {0, 1} is
defined recursively as follows:

• if p ∈ P , then v(σ, p) = 1 iff p ∈ σ0,

• v(σ,¬α) = 1 iff v(σ, α) = 0,

• v(σ, α ∧ β) = 1 iff v(σ, α) = 1 and v(σ, β) = 1,

• v(σ,©α) = 1 iff v(σ≥1, α) = 1,

• v(σ, αUβ) = 1 iff there is some i ∈ ω such that
v(σ≥iβ) = 1, and for each j ∈ ω, if 0 ≤ j < i
then v(σ≥j , β) = 1.

1In the literature, the evaluation of LTL formulas in paths is
usually given in terms of satisfiability relation |=. We do not fol-
low this notation, because in this paper we use |= to denote satis-
fiability of formulas in PLLTL-structures.



We say that α is true in the path σ, if v(σ, α) = 1.

Now we introduce the probabilistic formulas. ByQ we de-
note the set of rational numbers. First we define the proba-
bilistic terms.

Definition 2 (Probabilistic term) A probabilistic term is
any expression of the form

r1w(α1) + . . .+ rkw(αk) + rk+1,

where k is a positive integer, and for all i ≤ k + 1, αi ∈
ForLTL and ri ∈ Q.2

We use f and g, possibly subscripted, to denote probabilis-
tic terms.

Definition 3 (Probabilistic formula) A basic probabilis-
tic formula is any formula of the form f ≥ r, where f
is a probabilistic term and r ∈ Q. The set ForP of prob-
abilistic formulas is the smallest set containing all basic
probabilistic formulas, closed under Boolean connectives.

We denote by φ, ψ and θ (possibly with indices) the ele-
ments of ForP . To simplify notation, we define the fol-
lowing abbreviations: f ≥ g is f − g ≥ 0, f ≤ g is g ≥ f ,
f < g is ¬f ≥ g, , f > g is ¬f ≤ g and f = g is
f ≥ g ∧ f ≤ g.

Example 2 The expression

w(p ∨ q) = w(©p)→ w(Gq) ≤ 1

2

is a probabilistic formula. Its meaning is “if the probabil-
ity that either p or q hold in this moment is equal to the
probability that p will hold in the next moment, then the
probability that q will always hold is at most one half”.

Definition 4 (Formula) The set For of all formulas of the
logic PLLTL is For = ForLTL ∪ ForP .

We denote arbitrary formulas by Φ and Ψ (possibly with
subscripts). We denote by ⊥ both φ ∧ ¬φ and α ∧ ¬α,
letting the context determines the meaning. Similarly, we
use > for both LTL and probabilistic formulas.

Example 3 The expression

(p ∨©q)→ w(p ∨©q) = 1

is not a formula, since mixing LTL formulas and proba-
bilistic formulas is not allowed, by Definition 4.

2In [Fagin et al., 1990], rk+1 does not appear in the definition
of terms. We introduce it for the simpler presentation, when we
introduce other formulas as abbreviations.

2.2 SEMANTICS

The semantics of the logic PLLTL is based on the possible-
world approach.

Definition 5 (PLLTL structure) A PLLTL structure is a
tuple M = 〈W,H, µ, π〉 where:

• W is a nonempty set of worlds,

• 〈W,H, µ〉 is a probability space, and

• π : W −→ Σ provides for each world w ∈ W a path
π(w).

For a PLLTL structure M = 〈W,H, µ, π〉, we define

[α]M = {w ∈W | v(π(w), α) = 1}.

We say that M is measurable, if [α]M ∈ H for every α ∈
ForLTL. We denote the class of all measurable PLLTL
structures with PLMeas

LTL .

Now we define the satisfiability of a formula from For in
a structure from PLMeas

LTL .

Definition 6 (Satisfiability) Let M = 〈W,H, µ, π〉 be a
PLLTL structure. We define the satisfiability relation |=⊆
PLMeas

LTL × For recursively as follows:

• M |= α iff v(π(w), α) = 1 for every w ∈W ,

• M |= r1w(α1) + . . .+ rkw(αk) ≥ r iff
r1µ([α1]M ) + . . .+ rkµ([αk]M ) ≥ r,

• M |= ¬φ iff M 6|= φ,

• M |= φ ∧ ψ iff M |= φ and M |= ψ.

Definition 7 (Model) We say that M ∈ PLMeas
LTL is a

model of Φ, if M |= Φ. A formula Φ is valid, if M |= Φ
holds for every M ∈ PLMeas

LTL . We say that M is a model
of a set of formulas T , and we write M |= T , iff M |= Φ
for every Φ ∈ T . A set of formulas T is satisfiable if there
is M such that M |= T .

Definition 8 (Entailment) We say that the set of formulas
T entails a formula Φ, and we write T |= Φ, if all M ∈
PLMeas

LTL , M |= T implies M |= Φ.

For every α, β ∈ ForLTL, let us denote by αUnβ the for-
mula

(

n−1∧
k=0

©kα) ∧©nβ,

and by αUnβ the formula
∨n
k=0 αUnβ.



Those formulas will play the important role in our axioma-
tization. Obviously, v(σ, αUβ) = 1 iff there is some n ∈ ω
such that v(σ, αUnβ) = 1, and

[αUβ]M =
⋃
n∈ω

[αUnβ]M . (1)

Similarly,
[αUβ]M =

⋃
n∈ω

[αUnβ]M . (2)

Since (1) follows directly from the definition of the evalu-
ation function v, we will use it to properly axiomatize LTL
part of our logic. On the other hand, (2) is more convenient
for capturing σ-additivity.

3 The axiomatization of PLLTL

In this section we provide an axiomatization for PLLTL,
which we denote by AXPLLTL . Let us first discuss some
axiomatization issues. By (2) and σ-additivity, we obtain
µ([αUβ]M ) = µ(

⋃
n∈ω[αUnβ]M ). Then we can see that

the set

T = {w(αUβ) > r} ∪ {w(αUnβ) ≤ r|n ∈ ω}

is an unsatisfiable set of formulas. On the other hand, it is
easy to check that every finite subset of T is satisfiable. In
other words, the logic is not compact. It is known that, in
this case, any finitary axiomatization would be incomplete
[van der Hoek, 1997]. Here we use an infinitary rule (R6)
to obtain completeness, and, in particular, to make the set
T inconsistent. It turns that it is necessary (see the proof
of Theorem 4) to introduce another infinitary rule (R4) to
properly axiomatize LTL part of the logic, since the set of
LTL formulas {αUβ} ∩ {¬(αUnβ) | n ∈ ω} is also an
example of non-compactness.

3.1 THE AXIOMATIC SYSTEM AXPLLTL

the axiomatization AXPLLTL contains 8 axioms and 6
rules of inference. We divide the axioms into 3 groups as
given below.

Tautologies

A1. All instances of classical propositional tautologies for
both LTL and probabilistic formulas.

Temporal axioms

A2. ©(α→ β)→ (©α→©β).

A3. ¬© α↔©¬α.

A4. αUβ ↔ β ∨ (α ∧©(αUβ)).

Axioms for reasoning about linear inequalities

A5. All instances of valid formulas about linear inequali-
ties.

Probabilistic axioms

A6. w(α) ≥ 0.

A7. w(α ∧ β) + w(α ∧ ¬β) = w(α).

A8. w(α→ β) = 1→ w(α) ≤ w(β).

Inference rules

R1. From Φ and Φ → Ψ infer Ψ (where either Φ,Ψ ∈
ForLTL or Φ,Ψ ∈ ForP ).

R2. From α infer©α.

R3. From α infer w(α) = 1.

R4. From the set of premises

{γ → ¬(αUnβ) | n ∈ ω}

infer γ → ¬(αUβ).

R5. From the set of premises

{φ→ f ≥ r − 1

n
| n ∈ ω \ {0}}

infer φ→ f ≥ r.

R6. From the set of premises

{φ→ w(αUnβ) ≤ r | n ∈ ω}

infer φ→ w(αUβ) ≤ r.

Let us briefly discuss the axiomatic system.
A1 and R1 allow propositional reasoning with all formulas
from For.
The axioms A2–A4 are some standard axioms in various
axiomatization of LTL. Although all the axiomatizations
contain some additional axioms, we show in Lemma 1(1)
that all the valid temporal formulas can be deduced in
AXPLLTL . Moreover, by Lemma 2, A1–A4 together with
R1,R2 and R4 make a strongly complete system for LTL.
Note that we use the temporal necessitation R2 with the
next operator, while the standard generalization can be de-
rived, as it is shown in the proof of Lemma 1(1). The rule
R4 is an infinitary rule that characterizes the until operator.
It is similar to a rule from [Marinkovic et al., 2014], and it
is necessary for the proof of σ-additivity.
The axiom A5 includes all valid formulas about linear in-
equalities. For example, f + 1 ≤ f + 2 and f + g =



g + f are instances of A5. A particular sound and com-
plete axiomatization for Boolean combination is given in
[Fagin et al., 1990], but, as it is pointed out there, any other
axiomatization can be used.
The probabilistic axioms A6 and A7 correspond to non-
negativity and finite additivity, respectively. They are two
of the four axioms presented in [Fagin et al., 1990]. Other
two axioms are theorems of AXPLLTL (see Lemma 1).
The rule R3 states that if we know that α holds, then we
believe that it is true with probability 1. The rules R4–R6
are infinitary rules of inference. R4 and R6 are crucial for
the proof of σ-additivity, while R5, ensures that the values
of probability measures belong to the set of reals. R5 is a
variant of a rule introduced in [Perovic et al., 2008].

Definition 9 (Proof) A formula Φ is a theorem of the logic
PLLTL, (` Φ), if there is an at most countable sequence
of formulas Φ0,Φ1, . . . ,Φ, such that every Φi is an axiom,
or it is derived from the preceding formulas by an inference
rule.
A formula Φ is deducible from a set of formulas T (T `
Φ) if there is an at most countable sequence of formulas
Φ0,Φ1, . . . ,Φ, such that every Φi is a theorem or a formula
from T , or it is derived from the preceding formulas by one
of the inference rules, excluding R2. The corresponding
sequence Φ0,Φ1, . . . ,Φ is the proof of Φ from T .

By the previous definition, application of the rule R2 is re-
stricted to theorems only. Otherwise, any change during the
time would be impossible. Note that the length of a proof
(the number of formulas in the corresponding sequence) is
any countable successor ordinal.

Definition 10 (Consistency) A set of formulas T is con-
sistent if there is no φ ∈ ForP such that T ` φ ∧ ¬φ,
otherwise it is inconsistent. T is maximal consistent if it is
consistent and for all Φ /∈ T , T ∪ {Φ} is inconsistent.

Next we make several observations about the notions of
consistency and maximal consistency:

- If T is consistent, then there is no α ∈ ForLTL such that
T ` α ∧ ¬α, since otherwise T ` w(α) = 1 ∧w(¬α) = 1
by R3, and T ` w(α) = 1 ∧ ¬w(α) = 1 by probabilistic
axioms.

- Maximal consistency of T doesn’t imply that for every
α ∈ ForLTL either T ` α or T ` ¬α. Indeed, suppose
that w(α) = 1

2 ∈ T for some α. If T ` α or T ` ¬α,
then by R3 (and some probabilistic reasoning) we have
T ` w(α) = 1 or T ` w(α) = 0, which would make
T inconsistent. On the other hand, for a φ ∈ ForP we
have either T ` φ or T ` ¬φ (see Lemma 1(4)).

- If T is consistent, then T is deductively closed, i.e., if
T ` Φ then Φ ∈ T .

3.2 SOME THEOREMS ABOUT AXPLLTL

It is straightforward to check that all the axioms of
AXPLLTL are valid, and that the rules of inference main-
tain the validity of formulas. Thus, we omit the proof of
the following result.

Theorem 1 (Soundness) The axiomatization AXPLLTL

is sound with respect to the class of models PLMeas
LTL .

Theorem 2 (Deduction theorem) Let T be a set of for-
mulas and let Φ and Ψ be two formulas such that either
Φ,Ψ ∈ ForLTL or Φ,Ψ ∈ ForLTL. Then T ∪ {Φ} ` Ψ
iff T ` Φ→ Ψ.

Proof. (sketch) We will prove the direction from right to
left because the other direction is immediate from R1. We
will use induction on the length of the inference. We will
only consider the case when R6 is applied. Suppose that
T ∪ {φ} ` ψ → w(αUβ) ≤ r is obtained by R6. Then
T ∪ {φ} ` ψ → w(αUnβ) ≤ r holds, by assumption, for
every n ∈ ω. Using induction hypothesis and reasoning as
above, we have:
T ` φ→ (ψ → w(αUnβ) ≤ r), for for every n ∈ ω;
T ` (φ ∧ ψ)→ w(αUnβ) ≤ r, for every n ∈ ω;
T ` (φ ∧ ψ)→ w(αUβ) ≤ r, by R6;
T ` φ→ (ψ → w(αUβ) ≤ r).

Lemma 1

1. If v(σ, α) = 1 for all σ ∈ Σ, then ` α.

2. ` w(>) = 1

3. If T ` α↔ β, then T ` w(α) = w(β)

4. If T is maximal consistent then either φ ∈ T or ¬φ ∈
T , for every φ ∈ ForP .

Proof. (1) If is sufficient to prove that all the axioms of
any complete axiomatization of LTL (for example C1–C8
form [Reynolds, 2001]) are theorems of our logic, and that
the standard Generalization rule “if α is a theorem, from α
infer Gα” is derived rule in AxPLLTL . As an ilustration,
let us derive Generalization. If ` α, applying rule R2 we
obtain ` ©nα for every n ∈ ω. Using A3, we conclude
` ¬ ©n ¬α for every n ∈ ω. Note that ¬ ©n ¬α can
be writen as ¬(>Un¬α). Finally, applying R4 we obtain
` ¬(>U¬α), or, equivalently, ` Gα.
(2) Follows directly form R3.
(3) Apply R3, then A8.
(4) If φ 6∈ T , then T∪{φ} ` ⊥, by the maximality of T . By
Theorem 2, we have T ` φ → ⊥, so T ` ¬φ. Similarly,
ifφ 6∈ T , then T ` ¬φ, which contradicts the assumption
that T is consistent.

Let us comment the lemma. By (1), we can use all the stan-
dard theorems of LTL in our reasoning in PLLTL. (2) is an



axiom for probabilistic reasoning from [Fagin et al., 1990].
(3) plays the crucial role in the construction of the canoni-
cal model in the next section. If we choose α and β to be
propositional formulas and T = ∅, we obtain another ax-
iom from [Fagin et al., 1990]. Thus, by (1)–(3), AXPLLTL

extends both temporal and probabilistic logic.
We use (4) in the proof of Theorem 5. We already pointed
out that the same property doesn’t hold for the LTL for-
mulas. Note that we cannot copy the proof of (4) in LTL
case, since we distinguish between the probabilistic contra-
diction and LTL contradiction (although we use ⊥ in both
cases).

4 THE COMPLETENESS OF PLLTL

In this section we prove strong version of completeness the-
orem: “every consistent set of formulas has a model”. We
use a Henkin-like construction. First we extend a consis-
tent set T of formulas to a maximal consistent set T ∗, then
we use T ∗ to define the corresponding structure MT∗ , and
finally we prove that MT∗ is a model of T . For given T ∗,
we say that MT∗ is its canonical model.

4.1 LINDENBAUM’S LEMMA

Theorem 3 (Lindenbaum’s lemma) Every consistent set
of formulas can be extended to a maximal consistent set.

Proof.(sketch) Let T be a consistent set and let Φ0,Φ1, . . .
be an enumeration of all formulas from For. We define the
sequence of sets Ti, i = 0, 1, 2, . . . and the set T ∗ recur-
sively as follows:

1. T0 = T ,

2. for every i ≥ 0,

(a) if Ti∪{Φi} is consistent, then Ti+1 = Ti∪{Φi},
otherwise

(b) if Φi is of the form γ → ¬(αUβ), then Ti+1 =
Ti ∪ {γ → (αUnβ)}, where n is the smallest
nonnegative integer such that Ti+1 is consistent,
otherwise

(c) if Φi is of the form φ → f ≥ r, then Ti+1 =
Ti ∪ {φ → f < r − 1

n}, where n is the small-
est positive integer such that Ti+1 is consistent,
otherwise

(d) if Φi is of the form φ → w(αUβ) ≤ r, then
Ti+1 = Ti ∪ {φ → w(αUnβ) > r}, where n is
the smallest nonnegative integer such that Ti+1 is
consistent, otherwise

(e) Ti+1 = Ti.

3. T ? =
⋃∞
i=0 Ti.

First, using Theorem 2 one can prove that the set T ∗ is
correctly defined, i.e., there exist n from the parts 2(b)–2(d)
of the construction. Each Ti, i > 0 is consistent. The steps
(1) and (2) of the construction ensure that T ? is maximal.
Also, T ? obviously doesn’t contain all formulas. Finally,
one can show that T ? is deductively closed set, and as a
consequence we obtain that T ? is consistent ( otherwise it
would contain ⊥).

4.2 CANONICAL MODEL

Definition 11 (Canonical model) For a maximal consis-
tent set T ∗, we define a PLLTL structure as a tupleMT∗ =
〈W,H, µ, π〉, such that:

1. W = {σ ∈ Σ | v(σ, α) = 1 for all α ∈ T ∗ ∩
ForLTL},

2. H = {[α] | α ∈ ForLTL}, where [α] = {w ∈
W | v(w,α) = 1},

3. µ([α]) = sup{r ∈ Q | T ∗ ` w(α) ≥ r}, for every
α ∈ ForLTL,

4. π(w) = w for every w ∈W .

Now we show that MT∗ is a measurable PLLTL structure.
In the proof, we will use the following result.

Lemma 2 The axioms A1–A4 and the inference rules R1,
R2 and R4 form a strongly complete axiomatization for
LTL.

Proof. We need to show that every consistent set T of
LTL formulas has a model, i.e., that there is σ such that
v(σ, α) = 1 for every α ∈ T . Reasoning similarly as
above, we can prove that Deduction theorem holds and that
T can be extended to a maximal consistent set T ∗. Now
we work with LTL formulas only, and we can prove that
for each α either α ∈ T ∗ or ¬α ∈ T ∗. Also, using the
axiomatization it is straightforward to show that if T ∗ is
maximal consistent set, then the set T ∗n = {α | ©α ∈ T ∗}
is also maximal consistent.
For given T ∗ , we define the path σ = s0, s1, . . . by
si = {p ∈ P | T ∗i ` p}.
It is sufficient to prove that v(σ, γ) = 1 iff T ∗ ` γ, for
every LTL formula γ. We use induction on the complexity
of the formula. The only interesting case is when γ is of
the form αUβ.
v(σ, γ) = 0 iff v(σ,¬(αUβ)) = 1
iff for all n ∈ ω, it is not the case that v(σ≥n, β) = 1 and
for all k < n, v(σ≥k, α) = 1
iff for all n ∈ ω, it is not the case that T ∗n ` β and for all
k < n, T ∗k ` α (by induction hypothesis)
iff for all n ∈ ω, it is not the case that T ∗ ` ©nβ and for
all k < n, T ∗ ` ©kα



iff for all n ∈ ω, T ∗ ` ¬(αUnβ) (by the maximal consis-
tency of T ∗)
iff T ∗ ` ¬(αUβ) (by R4).

Theorem 4 For every maximal consistent set T ∗, MT∗ ∈
PLMeas

LTL .

Proof. First we need to show that the definition is correct.
The set {[α] | α ∈ ForLTL} is an algebra of subsets of W ,
since W = [>], W \ [α] = [¬α] and [α] ∪ [β] = [α ∨ β].
We also need to check that µ is correctly defined, i.e., that
if [α] = [β] then µ([α]) = µ([β]). From [α] = [β]
we conclude that if σ is a path such that v(σ, γ) = 1
for all γ ∈ T ∗ ∩ ForLTL, then v(σ, α ↔ β) = 1.
From Lemma 2 we obtain T ∗ ` α ↔ β. Consequently,
T ∗ ` w(α) = w(β) by Lemma 1(3), so µ([α]) = µ([β]).
Obviously µ(W ) = µ([>]) = 1 by Lemma 1(2). Similarly,
using A6 we conclude that µ is nonnegative, and using A7
we conclude that µ is a finitely additive probability mea-
sure on A. We need to prove that µ is σ-additive.
Let HΣ = {[α]Σ | α ∈ ForLTL}, where [α]Σ = {σ ∈
Σ | v(w,α) = 1}. By For©LTL we denote the set of all
LTL formulas in which © is the only temporal operator
(i.e. there are no appearances of U ). We also introduce the
set A = {[α] | α ∈ For©LTL}. Using the same argument as
above, we can show that the sets HΣ and A are two alge-
bras of subsets of Σ. Similarly as in the definition of MT∗ ,
we define µ∗ on HΣ by

µ∗([α]Σ) = sup{r ∈ Q | T ∗ ` w(α) ≥ r}.

Reasoning as above, we conclude that µ∗ is a finitely ad-
ditive measure. We also use the same symbol µ∗ to de-
note the restriction of µ∗ to A. We actually want to show
that µ∗ is σ-additive on A. It is sufficient to show that if
B =

⋃
n∈ω Bi, where B,Bi ∈ A , then there is n such that

B =
⋃ω
n=0Bi.

If 2P denotes the set of subsets of P , note that Σ =
2P × 2P × 2P × . . . If we assume discrete topology on
the finite set 2P and the induced product topology on Σ,
then Σ is a compact space as a product of compact spaces.3

By definition of evaluation function v, we obtain that for
every α ∈ For©LTL there exist n ∈ ω (for example n is
the number of appearances of ©) and S ⊆ (2P)n such
that [α]Σ = S × 2P × 2P × . . . are Note that the sets of
the form S × 2P × 2P × . . ., where S ⊆ (2P)n for some
n ∈ ω, are clopen (both closed and open) sets in product
topology. Thus, each [α]Σ ∈ A is a clopen set in Σ. Now
assume that [α]Σ =

⋃
n∈ω[αn]Σ, where α ∈ For©LTL and

αn ∈ For©LTL for every n ∈ ω. The set {[αn]Σ | n ∈ ω}
is an open cover of the closed subset [α]Σ of the compact
space Σ, so there is a finite subcover {[αn1 ]Σ, . . . , [αn1 ]Σ}
of [α]Σ. Thus, µ∗ is σ-additive on A.

3For the basic notions and results about the topology used here
we refer the reader to [Kechris, 1995]

Let F be the σ-algebra generated by A. Since [αUβ]Σ =⋃
n∈ω[αUnβ]Σ, we can show that [α]Σ ∈ F for every

α ∈ ForLTL, using the induction on the number of appear-
ances of U in α. Thus, HΣ ⊆ F . By Caratheodory’s exten-
sion theorem (see [Ash and Doléans-Dade, 1999]), there is
a unique σ-additive probability measure ν on F which
coincide with µ∗ on A. We will actually show that
µ∗ is the restriction of ν to HΣ, i.e., that µ∗([α]Σ) =
ν([α]Σ) for all α ∈ ForLTL, using the induction on the
number of appearances of U in α. Indeed, ν([α]Σ) =

ν(
⋃
n∈ω[αUnβ]Σ) = limk→+∞ ν(

⋃k
n=1[αUnβ]Σ) =

limk→+∞ µ∗(
⋃k
n=1[αUnβ]Σ) = µ∗([αUβ]Σ). Here we

used σ-additivity of ν, the induction hypothesis and, in the
last step, the definition of µ∗ and R6.
Thus, µ∗ is a σ-additive probability measure on HΣ. Note
that we have that µ∗([α]Σ) = 1 whenever T ∗ ` α, by R3.
Thus, µ∗(W ) = µ∗(

⋂
α:T∗`α[α]Σ) = 1, by σ-additivity of

µ∗.
Note that [α] = [α]Σ ∩ W , so H ⊆ F . Let µ be the σ-
additive probability measure on H induced by µ∗ by

µ([α]) = µ([α]Σ ∩W ) = µ∗([α]Σ).

Note that µ∗(W ) = 1 implies µ∗([α]Σ) = µ∗([α]Σ ∩W ),
so µ∗([α]) = ν([α]). By definitions of µ and µ∗ it follows
that µ and ν coincide. Thus, µ is σ-additive.
We showed that MT∗ is a PLLTL structure. Finally, note
that [α] = [α]MT∗ , by the choice of π, soMT∗ ∈ PLMeas

LTL .

Now we can prove the main result of this section.

4.3 COMPLETENESS THEOREM

Theorem 5 (Strong completeness) A set of formulas T ⊆
For is consistent iff it is satisfiable.

Proof. The direction from right to left follows from the
soundness of the axiomatization AXPLLTL . For the other
direction, we need to show that a consistent set of formulas
T has a model. First we extend T to a maximal consistent
set T ∗, and we construct the canonical model MT∗ . We
will show that MT∗ is a model of T ∗, and, consequently, a
model of T . It is sufficient to prove that for all Φ ∈ For,
T ∗ ` Φ iff MT∗ |= Φ.
If Φ = α ∈ ForLTL. If α ∈ T ∗, then by the definition of
W from MT∗ , MT∗ |= α. Conversely, if MT∗ |= α, by
Lemma 2, α ∈ T ∗.
If Φ ∈ ForP , we proceed by induction on the complexity
of Φ.
Let Φ = f ≥ r. If f = r1w(α1) + . . .+ rkw(αk) + rk+1,
we can show, using the properties of supremum, that

r1µ([α1])+. . .+rkµ([αk])+rk+1 = sup{s | T ∗ ` f ≥ s}.

If we suppose that f ≥ r ∈ T ∗, then r ≤ sup{s | T ∗ `
f ≥ s}, so MT∗ |= f ≥ r. For the other direction, assume
that MT∗ |= f ≥ r. Then MT∗ 6|= f < r. If f < r ∈ T ∗,



then, reasoning as above, we conclude MT∗ |= f < r, a
contradiction. By Maximality of T ∗, we obtain f ≥ r ∈
T ∗.
If Φ = ¬φ, then MT∗ |= ¬φ iff MT∗ 6|= φ iff φ 6∈ T ∗ iff
¬φ ∈ T ∗, by maximality of T ∗.
If Φ = φ ∧ ψ, then MT∗ |= φ ∧ ψ iff MT∗ |= φ and
MT∗ |= φ iff φ, ψ ∈ T ∗ iff φ ∧ ψ ∈ T ∗, by maximality of
T ∗.

As it is well known, the alternative formulation of Com-
pleteness theorem, stated below, follows directly from the
previous result.

Theorem 6 If T ⊆ For and Φ ∈ For, then T |= Φ iff
T ` Φ.

5 THE DECIDABILITY OF PLLTL

[Sistla and Clarke, 1985] proved that the logic LTL is de-
cidable, and they showed that the problem of decid-
ing whether an LTL formula is satisfiable in a path is
PSPACE-complete. Note that if α is not satisfiable in
any path, then by Definition 6 it is not satisfiable in the
logic PLLTL. On the other hand, if there is a path σ such
that v(σ, α) = 1, then we can define a measurable structure
M = 〈W,H, µ, π〉, such that W = {w} is a singleton and
π(w) = σ (note that in that case the range of µ is {0, 1}).
Obviously, v(π(w), α) = 1 for every w ∈ W , so M |= α.
Thus, we proved that the satisfiability problem of LTL for-
mulas for the logic PLLTL is PSPACE-complete.

Now let us consider the satisfiability of a formula ϕ ∈
ForP . Let ForB(ϕ) denote the set of all basic probabilis-
tic formulas which appear in ϕ. Suppose that the formula
ϕ ∈ ForP is given in the complete disjunctive normal form
(CDNF),. i.e., ϕ =

∨m
i=1 ϕi, where each ϕi is a conjunc-

tion of the formulas from ForB(ϕ) or their negations, us-
ing all elements of ForB(ϕ), i.e. the number of conjuncts
of each ϕi is |ForB(ϕ)|. Note that the disjunction ϕ is
satisfiable iff at least one of its disjuncts ϕi is satisfiable.

Thus, we focus on satisfiability of the formulas of the form

|ForB(ϕ)|∧
k=1

ψk, (3)

where each ψk is a basic formula or its negation. In the fol-
lowing, we assume that a formula of the form (3) is given,
and we denote by F the set of its conjuncts {ψk | k =
1, . . . , |ForB(ϕ)|}.

For a LTL formula α, by Subfor(α) we denote the set
of its subformulas. If ForLTL(F ) is the set of all LTL
formulas which appear in at least one element of F (un-
der the scope of probability operator w), let Subfor =⋃
α∈ForLTL(F ) Subfor(α). Let us consider the formulas

of the form
|Subfor|∧
k=1

βk, (4)

where each βk belongs to Subfor ∪ {¬β | β ∈ Subfor},
and each subformula of α appears exactly once (negated or
not). Obviously the conjunction of any two different for-
mulas of the form (4) is a contradiction, while the disjunc-
tion of all such formulas is a tautology. This enables us to
translate the satisfiability problem to the problem of find-
ing a solution of a system of inequalities. First, note that
there are 2|Subfor| formulas of the form (4). First we elim-
inate the formulas which are not satisfiable in LTL, using
the procedure from [Sistla and Clarke, 1985]. Suppose that
there are ` formulas which are satisfiable (` ≤ 2|Subfor|).
We denote those formulas by α1, . . . , α`.

For any formula α ∈ ForLTL(F ) we have that α ∈
Subfor. Consequently, α appears in each conjunction αk,
negated or not. Since

∨`
k=1 αk is a tautology, there is

a unique set of indices Iα ⊆ {1, . . . , `} such that α ↔∨
i∈Iα αi is a tautology. Let Γα be the corresponding set
{αi | i ∈ Iα}. Using the probabilistic axioms and Lemma
1(3), we obtain

` w(α) =
∑
αi∈Γα

w(αi). (5)

Now, we can transform every formula ψ ∈ F of the form
r1w(γ1)+ . . .+rkw(γk) ≥ rk+1 to the equivalent formula

r1

∑
αi∈Γγ1

w(αi) + . . .+ rk
∑

αi∈Γγk

w(αi) ≥ rk+1. (6)

Thus, we obtain that a measurable structure M =
〈W,H, µ, π〉 satisfies ψ if and only if

r1

∑
αi∈Γγ1

µ([αi]) + . . .+ rk
∑

αi∈Γγk

µ([αi]) ≥ rk+1. (7)

Similarly, if ψ from F is a negation of a basic probabilistic
formula, then it is of the form r1w(γ1) + . . .+ rkw(γk) <
rk+1, which give us the similar condition for satisfiability
of ψ under M :

r1

∑
αi∈Γγ1

µ([αi]) + . . .+ rk
∑

αi∈Γγk

µ([αi]) < rk+1. (8)

Let denote by xi the probability of the formula αi in a po-
tential model M = 〈W,H, µ, π〉 of the formula (3), i.e.,
xi = µ([αi]) each i ∈ {1, . . . , `}.

Let Fpos be the set of basic probabilistic formulas from F ,
and let Fneg be the set of formulas from F which are nega-
tions of basic probabilistic formulas. For given ψ ∈ Fpos
of the form r1w(γ1)+ . . .+rkw(γk) ≥ rk+1 we define the
inequality Ineq(ψ), obtained by (7), as

Ineq(ψ) : r1(
∑

i:αi∈Γγ1

xi) + . . .+ rk(
∑

i:αi∈Γγk

xi) ≥ rk+1.



In the same way we define Ineq(ψ) for ψ ∈ Fneg of the
form r1w(γ1) + . . .+ rkw(γk) < rk+1 as

Ineq(ψ) : r1(
∑

i:αi∈Γγ1

xi) + . . .+ rk(
∑

i:αi∈Γγk

xi) < rk+1.

Then the formula (3) is satisfiable iff the following sentence
of the language of real closed fields is satisfiable:

∃x1 . . . ∃x`
( ∧̀
k=1

(xk ≥ 0)

∧
∑̀
k=1

xk = 1

∧
∧
ψ∈F

Ineq(ψ)
)
.

The sentence represents a nonlinear system of linear in-
equalities: the first line represents non-negativity of prob-
ability measures; the second line represents the condition
µ(W ) = µ([>]) =

∑`
k=1 µ([αk]) = 1. The third line rep-

resent the conditions (7) and (8). Obviously, if the system
doesn’t have a solution, there is no µ which satisfies (3).
If the system has the solution (x1, . . . , x`) = (c1, . . . , c`),
then we can construct M = 〈W,H, µ, π〉 which satisfies
(3) in the following way: W = {w1, . . . w`}, π(wi) is any
path σ such that v(σ, αi) = 1, H is the set of all subsets of
W and µ is determined by the condition µ({wi}) = ci.

Since the theory of real closed fields is decidable, our logic
is decidable as well. Moreover, note that the above sen-
tence is an existential sentence. Thus, we can use Canny’s
decision procedure from [Canny, 1988]. Since the proce-
dure decides satisfiability of the formula in PSPACE, we
conclude that satisfiability of probabilistic formulas is in
PSPACE as well.

Thus, in both probabilistic and LTL case there is a
procedure which decides satisfiability of the formula in
PSPACE. Since PSPACE is also a lower bound in the
case of LTL formulas, we proved the following result.

Theorem 7 The problem of deciding whether a formula of
the logic PLLTL is satisfiable in a measurable structure
from PLMeas

LTL is PSPACE-complete.

6 CONCLUSION

In this paper, we introduced the logic PLLTL for prob-
abilistic reasoning about temporal information. The lan-
guage contains both LTL formulas and probabilistic for-
mulas in the style of [Fagin et al., 1990], with the differ-
ence that the probabilistic operator w is now applied to
LTL formulas. We propose an axiomatization for the logic
and prove strong completeness. Since the semantical rela-
tionship between the operators “next” and “until” explicitly
requires σ-additive semantics, the axiomatization contains
infinitary rules of inference. We show that the satisfiability

problem is PSPACE-complete, no harder then satisfiabil-
ity for LTL.

It seems that combining any standard finitary axiomatizatin
of LTL with the axiomatization from [Fagin et al., 1990]
could be extended to a weakly (but not strongly) com-
plete axiomatization for a finitely additive restriction of our
logic, which would be convenient for possible applications.
On the other hand, we believe that our infinitary rules of
inference can be represented using schemes (similarly as
quantifiers in the first order logic are abbreviations for the
infinite conjunctions and disjunctions), so that some of in-
finitary proofs might be finitary represented and used in au-
tomated reasoning.

Some probabilistic LTL’s were motivated by
the need to analyze probabilistic programs and
stochastic systems [Donaldson and Gilbert, 2008,
Feldman, 1984, Hansson and Jonsson, 1994, Kozen, 1985,
Lehmann and Shelah, 1982]. In some of them, probabilis-
tic operators are not explicitly mentioned in the formulas,
while in the others it is possible to directly express prob-
abilities. Our logic allows one to quantify runs satisfying
some properties. In this paper we restrict our attention
to theoretical issues (e.g., worst case complexity), while
the possible applications (e.g., heuristic procedures for
satisfiability checking) are left for the future work.
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