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Abstract

We address the problem of learning Bayesian
networks from discrete, unmatched case-control
data using specialized conditional independence
tests. Those tests can also be used for learn-
ing other types of graphical models or for fea-
ture selection. We also propose a post-processing
method that can be applied in conjunction with
any Bayesian network learning algorithm. In
simulations we show that our methods are able to
deal with selection bias from case-control data.

1 INTRODUCTION

Most Bayesian network learning algorithms assume i.i.d.
data. In many studies, such as case-control studies, this
not the case. In case-control studies data are selected
based on one or multiple variables, usually using a com-
parable number of samples from different values of those
variables, leading to non i.i.d. data. Such data are also
called artificially balanced in the machine learning liter-
ature. Case-control sampling is often used in epidemio-
logical or biomedical studies [Breslow, 1996], particularly
when studying a disease that is relatively rare. Their goal
is usually to identify differences between patients (cases)
and healthy individuals (controls), such as identifying dif-
ferentially expressed genes between the two groups from
gene expression data. Case-control sampling is especially
important when cases are very rare, as much fewer samples
have to be collected compared to cross-sectional studies,
significantly reducing the time and cost for obtaining the
data.

We address the problem of learning Bayesian networks
from discrete case-control data. This is challenging be-
cause case-control data do not necessarily represent a sam-
ple from the general population. In general, non i.i.d.
sampling may lead to selection bias, which could alter
the (conditional) independence relations in the data; case-

control sampling is a special case of such sampling. Be-
cause of that, one cannot usually use methods designed for
i.i.d. data.

To the best of our knowledge, there has been only one
previous approach to learn Bayesian networks from case-
control data by Cooper [2000]. The idea is to use a
Bayesian method to integrate over all possible values for
all non-sampled cases and controls, assuming that those
numbers are known a priori. This method is very imprac-
tical, mainly due to its high computational cost. There is a
vast literature on methods for case-control data ([Rothman
et al., 2008] contains a review of many methods, as well
as relevant references) but they are mostly concerned with
modeling the outcome (on which selection is based on),
and thus are not applicable for modeling other measured
variables or for Bayesian network learning.

Learning from case-control data is important for the fol-
lowing reasons. First, a lot of case-control datasets have ac-
cumulated over the years and such methods could be used
to identify novel associations or possibly even causal re-
lations. For instance, the NCBI GEO database contains
thousands of biological datasets [Edgar et al., 2002, Barrett
et al., 2013], many of which stem from case-control studies.
In addition, this would allow co-analysis of data collected
under different experimental designs. Currently, there exist
several methods for learning causal networks from multi-
ple heterogeneous datasets [Cooper and Yoo, 1999, Tillman
and Spirtes, 2011, Hyttinen et al., 2013, Triantafillou and
Tsamardinos, 2014]. Those methods are able to use obser-
vational and experimental i.i.d. data. Extending them for
other types of data, such as case-control data, is a natural
next step.

In this paper we define the problem and show the implica-
tions of case-control sampling on the observed independen-
cies. We propose different conditional independence tests
for discrete data, as well as a post-processing method that
can be used with any Bayesian network learning algorithm.
Finally, we investigate the behavior of our methods in var-
ious, simulated experiments and show that they are able to
handle selection bias from case-control data.



2 PRELIMINARIES

We will briefly introduce the basic theory and notation used
throughout the paper. Interested readers may refer to Pearl
[2000] or Spirtes et al. [2000].

We use upper-case and lower-case letters to refer to ran-
dom variables (e.g. X) and values of those variables (e.g.
x), and bold letters to refer to sets of variables or values.
Let V be a set of random variables. A Bayesian Network
(BN) over V is a pair B = ⟨G,P⟩, where G is a Directed
Acyclic Graph (DAG) representing conditional indepen-
dencies between variables V, and P is the joint probability
distribution of V. We will use the terms variable and node
interchangeably. The graph and distribution are connected
through the Markov Condition: a variable is condition-
ally independent of all its non-descendants given its par-
ents. The skeleton GS of a BN G is the undirected graph
which can be constructed by ignoring the orientations of
G. A triple of nodes ⟨X,Y, Z⟩ is called a collider in G,
if X → Y ← Z is in G. Two variables X and Y are d-
separated given a (possibly empty) set of variables Z if
and only if for all paths between X and Y one of the fol-
lowing is true: (a) there is a collider U → V ← W on that
path and neither V nor any of its descendants is in Z, or (b)
there is a consecutive triple ⟨U, V,W ⟩ that is not a collider
and V is in Z. If X and Y are not d-separated given Z
they are d-connected. We assume the Faithfulness Con-
dition that (together with the Markov Condition) implies
that there is a d-connecting path between X and Y given
Z, if and only if X and Y are statistically dependent given
Z. We denote conditional dependence and independence
of two variables X and Y given Z as Dep(X;Y |Z) and
Ind(X;Y |Z) respectively.

3 PROBLEM DEFINITION

In this work we consider discrete data from unmatched
case-control studies. In unmatched studies samples are as-
sumed to be sampled in an i.i.d. fashion from the respec-
tive subpopulations. We assume that the data have been
selected based on a set of measured variables T; we will
call those variables selection variables. In case T contains
only a single variable, we will refer to it as T . We denote
with S a binary variable that indicates whether a sample
has been selected or not. In our case, we assume that S
only depends on T; their relation can be modeled by nodes
with directed edges from each T to S.
Assumption 1. S depends only on T and all variables in
T have been measured.

Case-control sampling induces a type of selection bias.
Selection bias arises if samples are less probably to be
sampled based on some criteria. When analyzing such
data it may happen that spurious dependencies are iden-
tified which do not exist in the general population, but are

Figure 1: Conditioning on S = 1 introduces a spurious
dependence between X and Y .

due to the selection process. The reason for that is that
the data D are collected from the conditional distribution
P (D|S = 1). Consider the example shown in Figure 1. Al-
though X and Y are independent in the general population,
a naive analysis that does not account for the sampling pro-
cess would identify a spurious dependence between them.
This happens because the data are selected conditional on
S = 1, d-connecting X and Y through T , as S is a descen-
dant of T and T is a collider on the path X → T ← Y .

The question is if and when it is possible to estimate the
joint probability distribution of a set of variables X in the
general population, P (X), from data collected with case-
control sampling, that is following P (X|S = 1). Barein-
boim et al. [2014] address the general problem of recover-
ability of conditional distributions when data are collected
under selection. They show that the conditional distribu-
tion P (Y |X) is not recoverable when data are collected
with case-control sampling. This result can be trivially ex-
tended to the case of estimating the joint distribution of a
set of variables. Fortunately, they show that it is possible to
recover the population distribution if the joint distribution
of T is known. Then, P (X) can be estimated as follows.

P (X) =
∑
t

P (X|T = t)P (T = t)

=
∑
t

P (X|T = t, S = 1)P (T = t)
(1)

The second equality follows by Assumption 1. The con-
ditional probability P (X|T = t, S = 1) can be directly
estimated fromD. Thus, in order to estimate P (X) for any
set of variables we only need the joint probability distribu-
tion of T in the general population. This could either be
provided as prior knowledge by a domain expert or from
the literature, or estimated from an external data source.

Assumption 2. The joint probability distribution of T in
the general population is known.

Notice that there are cases where the equality P (X) =
P (X|S = 1) holds. For example, if none of the variables
in X is dependent with T, P (X) can be directly estimated
from D. We will further investigate the conditions under
which this holds in the next section.



We conclude with some comments on our assumptions.
Assumption 1 is reasonable and probably holds for most
case-control studies. In case it is violated additional spuri-
ous dependencies may be introduced. Regarding Assump-
tion 2: although it may be restrictive in some cases, prior
information about the joint distribution is often available.
In fact, many methods for analyzing case-control data re-
quire such prior information. For example, in logistic re-
gression models for an outcome that has been selected on
(e.g. disease), such knowledge is necessary in order to es-
timate the intercept of the model, although it is not needed
in order to estimate the remaining parameters [Breslow and
Day, 1980].

4 IMPLICATIONS OF CONDITIONING
ON S

In the previous section we saw an example where condi-
tioning on S = 1 introduces a spurious dependence. Next,
we will further investigate how the dependencies and inde-
pendencies are affected after conditioning on S = 1. Most
of those results are based on previous results by Spirtes
et al. [2000] (see Section 9.3). Those results are general,
allowing for S do be in any position in the graph. We
will show their consequences for the special case of case-
control sampling.

First we investigate whether conditioning on S = 1 re-
moves any dependencies that exist in the general popula-
tion. Spirtes et al. [2000] have characterized all situations
where this happens.

Corollary 1 (Adapted from [Spirtes et al., 2000]). If
Dep(X;Y |Z), then Ind(X;Y |Z, S = 1) holds if and only
if there exists a path U between X and Y such that (a)
every collider on U has a descendant in Z, (b) no non-
collider in U is in Z, and (c) S is a non-collider on every
such path.

In our case there is no such path because the third condition
can never be satisfied, as S does not have any outgoing
edges. Because of that, S can only be a collider on all such
paths. Therefore, conditioning on S = 1 does not remove
any dependencies.

The next corollary characterizes the cases where a condi-
tional independence may turn into a dependence.

Corollary 2 (Adapted from [Spirtes et al., 2000]). If
Ind(X;Y |Z), then Dep(X;Y |Z, S = 1) holds if and only
if there exists a path U between X and Y such that (a) no
non-collider on U is in Z ∪ {S}, (b) every collider on U
has a descendant in Z ∪ {S}, and (c) some collider on U
does not have a descendant in Z.

Based on this result, we will characterize all cases where a
spurious dependence will appear in the graph after condi-
tioning on S = 1 that cannot be removed by conditioning

on any set of variables. We proceed by stating and proving
the result.

Theorem 1. Let X,Y be two variables. If
∃Z Ind(X;Y |Z), then ∀Z′ Dep(X;Y |Z′, S = 1)
holds if and only if there is a node W such that (a)
X →W ← Y , and (b) W = S or W is an ancestor of S.

Proof.
Sufficiency: Follows trivially, as conditioning on S d-
connects X and Y through W .

Necessity: We will show this by contradiction. Assume
that there is no W satisfying both conditions. From
Corollary 2 we know that for some Z satisfying both
Ind(X;Y |Z) and Dep(X;Y |Z, S = 1), there is a path
U between X and Y with at least one collider V on U that
is also an ancestor of S. The only case were this holds is if
there is at least one node between X and V or Y and V on
U . But then at least one of those nodes has to be a noncol-
lider and we could d-separate X and Y by conditioning on
any such noncollider, contradicting our assumptions.

In words, this theorem characterizes all cases where two
variables X and Y can be d-separated in the population
graph, but cannot d-separated by any set after conditioning
on S. We will later use this to learn Bayesian networks
from case-control data.

5 CONDITIONAL INDEPENDENCE
TESTING

As we saw in the previous section, conditioning on S may
introduce spurious dependencies in the data. Because of
that, one cannot use independence tests designed for i.i.d.
data. In this section we will describe various conditional
independence tests for case-control data.

5.1 TEST STATISTIC

As a test statistic we consider the conditional mutual infor-
mation (CMI) I(X;Y |Z), which is defined as:

I(X;Y |Z) =
∑
x,y,z

P (x, y, z) log
P (x, y, z)P (z)

P (x, z)P (y, z) (2)

Assuming that we know the distribution of T, we can use
Equation 1 to compute I(X;Y |Z) for any variables X , Y
and Z. For the case of i.i.d. data the CMI is closely related
to the G-statistic used by the G-test:

G(X;Y |Z) = 2 ·N · I(X;Y |Z) (3)



where N is the sample size. Under the null hypothesis
this statistic is asymptotically χ2 distributed with (|X| −
1)(|Y | − 1)|Z| degrees of freedom.

Unfortunately, the G-test cannot be trivially applied to
case-control data. Intuitively, the reason is that N case-
control samples are not always equivalent to N samples
from an i.i.d. dataset. We will show the intuition behind
this with an example 1.

Example 1. Assume that T contains a single binary vari-
able T and we sample N = 1000 samples, 500 for each
value of T , and that P (T = 0) = 0.2. The proba-
bility of X given by Equation 1 is P (X) = P (X|T =
0) ·0.2+P (X|T = 1) ·0.8. If we use N as our sample size,
we essentially assume that we have estimated P (X|T = 0)
and P (X|T = 1) using 200 and 800 samples respectively
even though we used 500 for each of them. As a result, we
overestimate and underestimate the variance in the esti-
mation of P (X|T = 1) and P (X|T = 0) respectively,
which can lead to false results.

Next we consider various strategies to deal with this.

5.2 UNDERSAMPLING

The trivial approach is to use a subset of the samples such
that the proportion of values of T in the resulting dataset
coincides with the distribution of T. For Example 1 we
could use 125 samples with T = 0 and 500 samples with
T = 1, as 125/625 = 0.2 and 500/625 = 0.8, and perform
a standard independence test. In general, one can use at
most N = min

t
N(T = t)/P (T = t) samples, where

N(T = t) is the number of samples with T = t (proof
omitted).

There are several downsides to this approach. First, un-
dersampling often ignores a significant amount of samples
(375 in the previous example), possibly reducing the power
of the test. Second, the result may vary a lot, depending on
the selected samples. One possibility to reduce this vari-
ance is to create multiple datasets by undersampling, per-
form a test on each such dataset and combine the results
somehow (e.g. taking the median p-value). Finally, under-
sampling may be problematic if the marginal distribution
of T contains extreme values. In the previous example, if
P (X|T = 0) was 0.01, only 5 samples with T = 0 could
be used to (approximately) satisfy the marginals. In prac-
tice, those values will often be even more extreme.

5.3 A PERMUTATION TEST

Permutation tests are non-parametric procedures for statis-
tical significance testing. The basic idea is that, under the

1We have also conducted several, anecdotal simulations which
confirm this problem.

null hypothesis, one can permute the data in an appropri-
ate way to generate another, permuted dataset. Specifically,
for a permutation test to be exact, the permutation has to
be performed in a way that preserves the distribution of
the observations under the null hypothesis [Good, 2004].
Then, the test statistic computed on that dataset is a sample
from its null distribution. Because the number of all permu-
tations is usually astronomically large, making complete
enumeration infeasible, one usually resorts to Monte Carlo
approximations that sample a relatively small number of
permutations (usually between 1000 and 10000). The p-
value is computed as the proportion of permutation statis-
tics that are at least as extreme as the statistic on the original
data.

Permutation Testing for Discrete Data. For conditional
independence testing the null hypothesis is that X and Y
are conditionally independent given Z. This means that
conditional independence holds for any value z of Z. A
permuted dataset can be created by randomly permuting the
columns of X and Y for each value z of Z [Tsamardinos
and Borboudakis, 2010]. For example, if Z is a binary vari-
able, a permuted dataset is created by splitting the original
dataset D into two datasets, DZ=0 and DZ=1, randomly
permuting the columns of X and Y on each of them and
then combining the resulting datasets. This results in an
exact test, as the conditional distribution of X and Y for
each value of Z remains fixed.

We use the same procedure for discrete case-control data
using the CMI as our test statistic. It is important to
note that this permutation approach does not always pre-
serve the distribution of X and Y under the null when
applied to case-control data. We show this with the fol-
lowing example. Let X be a discrete variable, T a bi-
nary variable and P (T = 0) = 0.2. Now, assume that
for some value x of X we have 100 samples with T = 0
and 50 samples with T = 1 in the original dataset, and
50 and 100 respectively for some permuted dataset. Then,
P (x) = 100/500·0.2+50/500·0.8 = 0.12 for the original
dataset but P (x) = 50/500 · 0.2 + 100/500 · 0.8 = 0.18
for the permuted dataset. Let Y be another discrete variable
with the same marginals as X . Then, the joint distribution
of X and Y under the null is P (x, y) = 0.12 · 0.12 in the
original dataset and P (x, y) = 0.18 · 0.18 in the permuted
dataset. Thus, their joint distribution under the null is not
invariant for this type of permutations.

We conducted various simulations to investigate the behav-
ior of this test and, although this approach does not result
in an exact test, they suggest that it works reasonably well
in practice; the results are presented in Section 7.

5.4 AN ASYMPTOTIC TEST

An interesting observation that we made is that, under
the null hypothesis, the permutation distribution of the G-



Algorithm 1 Estimate Effective Sample Size
Input: P (T), N(T), N , K
Output: NESS

1: for i← 1 : K do
2: X ← Random(Uniform, Binary, N )
3: Y ← Random(Uniform, Binary, N )
4: Statsi ←MutualInformation(X,Y,N(T), P (T))
5: end for
6: Stats← Sort(Stats, Ascending)
7: Stats′ ← Inverse-χ2-Cdf(0:1/(K-1):1, DoF = 1)
8: NESS ←Median(1/2 · Stats′/Stats)
9: NESS ←Min(NESS , N )

statistic computed on the case-control data, for some un-
known number of samples N , seems to also follow a χ2

distribution with (|X|−1)(|Y |−1)|Z| degrees of freedom.
We observed this behavior for a large number of different:
(i) conditional and unconditional tests, (ii) probability dis-
tributions of T, and (iii) types of discrete variables X , Y
and Z. We conjecture that this is always the case.

Conjecture 1. The G-statistic G(X;Y |Z) as defined by
Equation 3 and computed for case-control data using
Equations 1 and 2 is asymptotically distributed as a χ2 ran-
dom variable with (|X|−1)(|Y |−1)|Z| degrees of freedom
for some unknown number of samples N .

We will call this unknown number of samples the effective
sample size and denote it as NESS . Based on this conjec-
ture, we will devise a simple procedure to estimate NESS .

Let D be a dataset obtained from case-control sampling,
P (T) be the joint distribution of T, N(T) be the number
of samples in D for each value of T, and N be the to-
tal number of samples in D. Suppose that we generate a
large number K of independent random variables X and
Y , each of N samples, assuming that the first N(T = t0)
samples correspond to T = t0, the next N(T = t1) to
T = t1 and so on, and then compute their mutual informa-
tion. Let Stats contain all statistics in ascending order. If
K is large enough we would expect the i-th value in Stats,
Statsi, to correspond to a p-value of i/(K − 1). Accord-
ing to Conjecture 1 the G-statistic for some NESS of any
two independent random variables follows a χ2 distribu-
tion. Thus, for each such p-value, we can use the inverse
χ2 cumulative distribution to compute its corresponding
statistic Stats′. We know that Statsi = I(Xi;Yi) and
that Stats′i ≃ 2 ·NESS · I(Xi;Yi). Thus, we can estimate
NESS as NESS ≃ 1/2 · Stats′i/Statsi. Because the pro-
cedure is not exact, we suggest to compute this value for
each pair of Stats and Stats′ values, and use the median
value as an estimate for NESS . Naturally, this value cannot
be larger than N , so we use the minimum of those values.
The procedure is shown in Algorithm 1.

The method only needs to be applied once before analyzing

a dataset, adding only a constant computational overhead.
As a result, the cost of analyzing a case-control dataset is
essentially identical to analyzing any other dataset, up to a
constant additive factor.

6 BAYESIAN NETWORK LEARNING

We propose two different strategies for learning Bayesian
networks from case-control data.

One is to use a test suited for case-control data with any
existing constraint-based method. This strategy also al-
lows one to learn other graphs such as Maximal Ances-
tral Graphs [Richardson and Spirtes, 2002], or to perform
feature selection using a conditional independence based
method [Tsamardinos et al., 2006].

Another approach is to learn a network using an inde-
pendence test suited for i.i.d. data and perform a post-
processing step to correct the graph by identifying and re-
moving spurious dependencies using an independence test
for case-control data. Theorem 1 characterizes all cases
where a spurious dependence will be identified. Of course,
we cannot directly apply Theorem 1 as we do not know the
real DAG. Instead, we will use the skeleton of the DAG
without any orientations. The next corollary characterizes
all potentially spurious edges in a skeleton.
Corollary 3. Let GS be the skeleton of a DAG G. An edge
between variables X and Y is potentially spurious, if and
only if there is a node W such that (a) X,Y and W are
adjacent and form a triangle, and (b) W = S or there is a
potentially directed path from W to S (the path cannot go
through X or Y ). As S will not be in G we have to check if
W ∈ T or if W is a potential ancestor of any variable in
T.

This result follows from Theorem 1 and is stated without
proof. This directly suggests how to use it with existing
learning algorithms. After identifying G, take its skele-
ton GS , check for triples X,Y,W that satisfy those crite-
ria, and finally try to remove potentially spurious edges by
performing a series of independence tests with an appro-
priate method. Note that W never has to be conditioned on
in those tests as it either is a collider and would d-connect
X and Y or, if not, the edge between X and Y can not be
spurious and should not be removed. The second condi-
tion can be checked by removing all edges at X and Y and
checking whether W and T are connected by a path.

We have to point out that this approach may not be opti-
mal. Instead of the skeleton, there may be a way to partially
orient the graph and further narrow down the cases where
Corollary 3 applies. For example, if the edge from W to
X is oriented towards X , then the edge between X and
Y cannot be due to a spurious dependence, but applying
Corollary 3 on the skeleton will try to remove it. However,
this is not trivial; a naive application of the PC rules may



Figure 2: (a) Graphical representation of noisy model. (b)
Collider model for the first set of experiments.

result in false orientations due to the presence of spurious
edges. We did not further investigate this possibility.

7 EXPERIMENTAL EVALUATION

We performed simulations to investigate the behavior of
the proposed independence tests in different situations. We
consider only a single selection variable T . When we gen-
erate data, we select an equal number of samples for each
value of T (that is, T is uniformly distributed in the case-
control data). For a given Bayesian network we compute
the marginal distribution of T using an exact inference al-
gorithm implemented in the Bayes Net toolbox [Murphy,
2001]. We used K = 100000 to estimate the effective sam-
ple size.

First, we evaluate the tests in simple Noisy-MAX and
Noisy-SUM scenarios. Then, we investigate the sensitiv-
ity of the tests with respect to the prior distribution of
T . Finally, we compare the proposed Bayesian network
learning strategies on the INSURANCE network [Binder
et al., 1997]. We used MATLAB to conduct the sim-
ulations and create the figures (the code is available at
http://www.mensxmachina.org/).

7.1 NOISY-MAX AND NOISY-SUM

We use the model proposed by [Srinivas, 1993], a gen-
eralization of the Noisy-OR model [Pearl, 1988], to gen-
erate data from a Noisy-MAX or Noisy-SUM distribu-
tion. Those models are members of the family of indepen-
dence of causal influences (ICI) models [Heckerman and
Breese, 1994]. A graphical representation of noisy models
is shown in Figure 2. The nodes X ′

i are called inhibitor
nodes and are used to introduce noise in the model. Noisy-
MAX distributions in particular are interesting as they have
been shown to be very common in practice [Zagorecki and
Druzdzel, 2006].

7.1.1 Setup

In all our experiments the inhibitor nodes take the same
number of values as their parents and their distribution is:
P (X ′

i = 0|Xi = 0) = 1, P (X ′
i = k|Xi = k) = 1− e and

P (X ′
i = k|Xi ̸= k) = e/(|Xi| − 1), where e is the noise

parameter. The value of W is a deterministic function of
its parent values (MAX or SUM).

We use two different cases for our evaluation. The first is
a simple collider graph (see Figure 2 (b)). Here we test
whether X and Y are unconditionally independent. We
use this to evaluate the ability of the tests to handle the
case of spurious dependencies. The second is a chain graph
(X → X ′ → T → T ′ → Y ), with two additional nodes
– inhibitor node pairs, one into T and one into Y . For this
case we test whether X and Y are unconditionally and con-
ditionally independent given T . This is done to investigate
the behavior of the tests in case no spurious dependencies
are present.

For the collider case we generated data from the Noisy-
MAX and Noisy-SUM distributions, and for the chain
graph we generated data from the Noisy-MAX distribution.
The parameters we used are: noise e ∈ {0, 0.3, 0.7}, sam-
ple size N ∈ {250, 1000}, range of values r ∈ {2, 4} for X
and Y . We used 6 independence tests: G2 test, Permutation
G2 test, G2

cc test for case-control data, Permutation G2
cc test

for case-control data, Undersampling G2
u test, Bootstrap-

ping and Undersampling G2
u test using the median p-value.

For the permutation tests we used 1000 permutations, and
for the bootstrapping test we used 500 samples.

7.1.2 Results

The results for the collider and chain graphs are shown
in Figures 3 and 4. In each figure we show the empiri-
cal CDF function of the p-values. In case independence
holds, the p-values should be uniformly distributed and the
CDF should be on the diagonal. In case of dependence, we
would ideally have low p-values only. We use Test(X;Y )
and Test(X;Y |T ) to refer to the unconditional and condi-
tional tests of X and Y . The first and last two columns of
each group of figures correspond to data with r = 2 and
r = 4 respectively.

G2 and Permutation G2. For the collider graph both tests
identify a spurious dependence, as expected, unless the
noise is too high or the sample size is too low. For the chain
graph, where case-control sampling does not affect the in-
dependencies, both tests perform well. The asymptotic test
does not always produce calibrated p-values for the test
Test(X;Y |T ), agreeing with previous results [Tsamardi-
nos and Borboudakis, 2010]. The simulations confirm that
tests designed for i.i.d. data should not be applied on case-
control data.

G2
cc and Permutation G2

cc For the collider graph, both
tests produce p-values close to the ideal uniform distribu-
tion (black diagonal line), or overestimate the p-value; this
can be seen especially in the noiseless Noisy-SUM case.
Although this is not ideal, it is still useful, as the signifi-
cance level upper bounds the actual type I error. Unfortu-
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Figure 3: Results for the collider graph.

nately, we were not able to identify the circumstances un-
der which this happens. For the chain graph, both tests
perform reasonably well. In comparison to the G2 and Per-
mutation G2 tests, the specialized tests have less power.
Nevertheless, they will still be useful for network learning
using the post-processing method, as it combines the best
of both worlds. Again, the permutation test produces cali-
brated p-values for Test(X;Y |T ), whereas the asymptotic
one does not.

G2
u and Bootstrapping G2

u. Again, both tests perform sim-
ilarly to the other specialized tests. However, undersam-
pling exhibits a large variance, as it highly depends on the
selected samples. The bootstrapping version reduces this
variance, but its distribution has a heavy tail close to one.
This bias may be the result of taking the median p-value.
We discourage the use of the bootstrapping method, but
there may be other similar approaches that do not exhibit
this behavior.

Comparison of G2
cc and Permutation G2

cc Figure 5 (a,b)
shows that the G2

cc and Permutation G2
cc produce almost

identical p-values on the unconditional tests. In Figure 5
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Figure 4: Results for the chain graph.

(c,d) we compare the asymptotic and permutation tests for
the conditional case with noisy data and r = 4 (Figure 4,
bottom right). We see that in this case the G2

cc does not pro-
duce the same p-values as the permutation G2

cc test. How-
ever, the same behavior can be observed for the standard
G2 test and the permutation G2 test. Also, for both cases,
the p-values of the asymptotic tests are highly correlated
with the ones of the permutation tests. The results suggest
that the G2

cc test is a reasonable approximation to the per-
mutation version.

7.2 SENSITIVITY TO P (T)

We conducted a small experiment to investigate the sensi-
tivity of the tests to the distribution of T . We simulated
1000 datasets from a Noisy-MAX collider graph with bi-
nary variables X and Y , with e = 0 and N ∈ {250, 1000}.
The distribution of T is P (T = 0) = 0.25 and P (T =
1) = 0.75 and we selected 500 samples for each value of
T . In order to measure the sensitivity of the methods to the
specified marginal distribution we computed the area un-
der the empirical CDF of the p-values. Values close to 0.5



(a) (b)

(c) (d)

Figure 5: Comparison of the p-values from the G2
cc and

Permutation G2
cc tests (a) on all tests for the collider graph

(b) on the unconditional tests for the chain graph. Compar-
ison on noisy data with r = 4 of (c) G2

cc vs Permutation
G2

cc (d) G2 vs Permutation G2.

Marginal probability P(T = 0)
0 0.1 0.2 0.3 0.4 0.5

A
re

a 
un

de
r 

th
e 

C
D

F
 c

ur
ve

0.4

0.5

0.6

0.7

0.8

0.9

1
Sensitivity for different priors (N = 250)

G2
cc

Perm. G2
cc

G2
u

Boot. G2
U

Marginal probability P(T = 0)
0 0.1 0.2 0.3 0.4 0.5

A
re

a 
un

de
r 

th
e 

C
D

F
 c

ur
ve

0.4

0.5

0.6

0.7

0.8

0.9

1
Sensitivity for different priors (N = 1000)

G2
cc

Perm. G2
cc

G2
u

Boot. G2
U

Figure 6: Sensitivity of methods to prior distribution.

indicate that the p-values are uniformly distributed (this is
not always true, but should be reasonable in our case due
to the convexity/concavity and monotonicity of the CDF;
see Figure 3 for e = 0 and N = 1000). The results
are summarized in Figure 6. We only show results from
P (T = 0) = 0 to 0.5. We see that the methods are sen-
sitive to the correct specification of the prior distribution,
and that their sensitivity highly depends on the sample size.
For N = 250, small deviations are acceptable, whereas
for N = 1000 even deviations of 0.05 significantly reduce
the ability of the tests to detect spurious dependencies. Of
course, this can not be generalized and it may highly vary
for different distributions, but it indicates that those meth-
ods have to be used with care.

7.3 INSURANCE NETWORK

We evaluated our methods on the INSURANCE network
[Binder et al., 1997]. It contains 27 nodes and 52 edges.
This network is appropriate for our purposes as it has many
nodes for introducing spurious dependencies that also have

Table 1: Characteristics of the selection variables. The sec-
ond row shows the number of spurious dependencies in-
duced by selecting on those variables. The last four rows
show their marginal distribution.

Node 18 19 20 21 25 26
Spurious 6 13 6 14 9 5
P(T = 0) 0.001 0.788 0.844 0.541 0.888 0.965
P(T = 1) 0.999 0.09 0.08 0.286 0.054 0.018
P(T = 2) - 0.09 0.077 0.12 0.036 0.011
P(T = 3) - 0.032 1.2e-05 0.052 0.023 0.007

relatively extreme distributions.

7.3.1 Setup

We selected 6 nodes from the INSURANCE network as
selection variables. The selection variables as well as their
characteristics are shown in Table 1.

Algorithms. For Bayesian network learning we used the
PC algorithm with Heuristic 3, as described in [Spirtes
et al., 2000] (Section 5.4.2), except with an additional mod-
ification that sets an upper limit on the size of the condition-
ing set for each test. This is necessary especially for lower
sample sizes, as conditioning on many variables tends to
give very high p-values. In our simulations we set that pa-
rameter to 3 (maximum in-degree in the network). The sig-
nificance level was set to 0.05 for all tests. We used 5 dif-
ferent methods to learn the network from case-control data:
(a) G2 test, (b) G2

cc test for case-control data, (c) Under-
sampling G2

u test, (d) G2 test + post-processing with G2
cc

and (e) G2 test + post-processing with G2
u. Methods (a-c)

did not apply the post-processing step. Whenever the G2
u

test was used, undersampling was performed only once for
each dataset. In addition, we also ran the PC algorithm with
the G2 test on i.i.d. data to compare our methods against
(Reference). The reference results should be close to the
best achievable performance for a given sample size.

Data. Again, we generated data with equal proportions of
each value of T . For each selection variable, as well as for
the reference case, we generated 100 datasets for each of
three different sample sizes N ∈ {1000, 10000, 100000}.

7.3.2 Results

The results are summarized in Table 2. For each method
we report the extra edges (“+”) and missing edges (“-”),
averaged over all 100 runs.

PC with G2 test. We observe that ignoring the sampling
and using PC with the standard G2 test performs very well
for N = 1000 and does not identify many spurious edges.
However, as expected, it identifies a significant amount of
extra edges with larger sample sizes.

PC with G2
cc and G2

u tests. The case-control tests with-



Table 2: Results on the INSURANCE network. Extra edges are denoted with “+” and missing edges with “-”.

Method T = 18 T = 19 T = 20 T = 21 T = 25 T = 26 Reference
+ - + - + - + - + - + - + -

N
=

1K
G2 1.00 26.83 0.10 29.10 0.22 28.81 0.15 29.54 0.49 28.59 0.10 28.91 0.14 28.73
G2

cc 0.35 32.19 0.28 33.51 0.23 34.20 0.36 30.97 0.21 34.44 0.31 35.11
G2

u 0.33 32.15 0.28 34.15 0.23 34.41 0.21 32.51 0.32 34.82 0.30 34.94
G2 +G2

cc 1.00 26.84 0.09 29.10 0.22 28.88 0.15 29.54 0.49 28.65 0.10 28.94
G2 +G2

u 1.00 26.84 0.09 29.14 0.22 28.92 0.15 29.54 0.49 28.66 0.10 28.94

N
=

10
K

G2 6.44 11.24 3.04 14.33 1.84 14.15 0.85 14.54 3.70 14.70 1.61 13.65 0.23 14.35
G2

cc 0.00 16.96 0.00 18.89 0.00 19.81 0.00 16.38 0.00 20.82 0.01 21.90
G2

u 0.00 16.93 0.00 20.20 0.02 20.66 0.00 17.19 0.10 21.18 0.00 22.08
G2 +G2

cc 0.50 13.07 0.18 16.51 0.00 16.72 0.00 16.32 1.09 16.72 0.07 16.13
G2 +G2

u 0.50 13.07 0.18 17.06 0.02 17.42 0.00 16.44 1.09 16.79 0.06 16.17

N
=

10
0K

G2 7.00 5.00 5.21 7.09 3.97 6.17 4.84 7.66 4.67 8.10 2.74 7.75 0.01 8.65
G2

cc 0.01 10.96 0.01 11.01 0.00 11.03 0.01 10.97 0.02 11.14 0.02 11.43
G2

u 0.01 10.96 0.01 11.08 0.00 11.10 0.00 10.99 0.00 11.26 0.01 11.44
G2 +G2

cc 0.00 5.00 0.16 8.89 0.15 8.78 0.00 7.66 0.44 9.09 0.49 8.76
G2 +G2

u 0.00 5.00 0.16 9.31 0.15 8.94 0.00 7.73 0.43 9.15 0.49 8.76

out post-processing identify fewer extra edges at the cost of
missing some edges. This happens both, because they are
conservative and because of lower power than their i.i.d.
counterparts, as we saw in previous experiments. Again,
this improves with more samples but they do not seem to
significantly outperform the G2 test, at least in those exper-
iments. Increasing the significance level may improve the
situation.

PC with G2 test + post-processing with G2
cc and G2

u

tests. The best results, in terms of total number of er-
rors, are achieved when post-processing is applied. For
N = 1000 they perform similarly to the G2 method with-
out post-processing. This is expected, as the first step does
not identify many extra edges and thus, post-processing is
rarely applied. For larger sample sizes almost no spurious
edges are identified, but a few more edges than G2 without
post-processing are missed. This happens because the post-
processing rule is erroneously applied to edges that are not
due to spurious dependencies and removes them.

Compared to the previous two methods without post-
processing, slightly more edges are found but fewer edges
are missed. This agrees with the simulations on the simple
collider and chain graphs, which showed that the G2 test is
more powerful and therefore misses fewer edges than the
G2

u and G2
cc tests.

Finally, the results are similar to the reference results,
demonstrating the effectiveness of the proposed methods.

Comparison of G2
u and G2

cc. In all simulations the G2
u test

performs very similar to the G2
cc test, with the latter being

marginally better on average. Note however that averaging
may hide the variance of the G2

u test. In any case, under-
sampling is an alternative that can be generalized to other
types of data, and should be further investigated.

8 CONCLUSION

We proposed methods to learn Bayesian networks from dis-
crete, unmatched case-control data. We showed that one
can first learn a network by ignoring the case-control sam-
pling and then apply a post-processing step to remove spu-
rious edges using a specialized test for case-control data.
To do this the joint distribution of the selection variables
must be available. In case it is not correctly specified the
tests may fail to remove spurious edges. Finally, the trivial
approach of undersampling seems to be a reasonable alter-
native, with the advantage that it easily generalizes to other
types of data, such as continuous data with discrete selec-
tion variables. A drawback however is that it exhibits a
large variance as it highly depends on the selected samples.

There is a lot of room for improvement and extensions.
First, the proposed post-processing method could be im-
proved to reduce the number of false removals of edges.
Second, it is important to investigate additional case-
control samplings, such as those from matched or nested
studies. Finally, devising methods for other types of data,
such as continuous data, would further broaden the scope.
One possible approach would be to use or extend the ideas
by Kuroki and Cai [2006] for recovering the population co-
variance matrix. Another possibility is to find a way to
perform undersampling multiple times and combine the re-
sults appropriately.
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