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Preface

The Conference on Uncertainty in Artificial Intelligence (UAT) is the premier international conference on research
related to representation, inference, learning and decision making in the presence of uncertainty within the field
of Artificial Intelligence. This volume contains all papers that were accepted for the 30th UAI Conference, held in
Quebec City, Quebec, Canada, from July 23rd to 27th 2014. Papers appearing in this volume were subjected to
a rigorous review process. 292 papers were submitted to the conference and each was peer-reviewed by 3 or more
reviewers with the supervision by one Senior Program Committee member. A total of 94 papers were accepted,
24 for oral presentation and 70 for poster presentation, for an acceptance rate of 32%. We are very grateful to
the program committee and senior program committee members for their diligent efforts. We are confident that
the proceedings, like past UAI conference proceedings, will become an important archival reference for the field.

We are pleased to announce that the Microsoft Best Paper Award was given to Dougal Maclaurin and Ryan
Adams for their paper “Firefly Monte Carlo: Exact MCMC with Subsets of Data”. The IBM Best Student
Paper Award was given to Benito van der Zander (co-authored with Maciej Liskiewicz and Johannes Textor)
for their paper “Constructing Separators and Adjustment Sets in Ancestral Graphs”. The Google Best Student
Paper Award was given to Nguyen Viet Cuong (co-authored with Wee Sun Lee and Nan Ye) for their paper
“Near-optimal Adaptive Pool-based Active Learning with General Loss”. The Facebook Best Student Paper
Award was given to Krishnamurthy Dvijotham (co-authored with Maryam Fazel and Emanuel Todorov) for their
paper “Universal Convexification via Risk-Aversion”. And the Best Paper Runner-Up was “Optimal Resource
Allocation with Semi-Bandit Feedback” by Tor Lattimore, Koby Crammer, and Csaba Szepesvari.

In addition to the presentation of technical papers, we were very pleased to have five distinguished invited
speakers at UAI 2014: David M. Blei (Columbia University), Craig Boutilier (University of Toronto), Michael L.
Littman (Brown University), Andrew Ng (Stanford University), and, as Banquet Speaker, Yann LeCun (Facebook
and NYU). Another interesting addition to the conference program was the Fifth UAI Probabilistic Inference
Competition, organized by Vibhav Gogate.

The UAI 2014 tutorials program, chaired by Vibhav Gogate, consisted of four tutorials: “Random Perturba-
tions for Inference” by Tamir Hazan, “Learning Tractable Probabilistic Models” by Pedro Domingos and Daniel
Lowd, “Probabilistic Programming” by Avi Pleffer, and “Probabilistic Inference in Relational Models” by Dan
Suciu and Guy Van den Broeck.

UAI 2014 also hosted two one-day workshops (organized by workshops chair John Mark Agosta): “11th
Bayesian Applications Workshop” and “Causal Inference: Learning and Prediction”.

Jin Tian and Nevin L. Zhang (Program Co-Chairs)
Ann Nicholson (General Chair)
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MEMR: A Margin Equipped Monotone Retargeting Framework for
Ranking
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Abstract

We bring to bear the tools of convexity, mar-
gins and the newly proposed technique of
monotone retargeting upon the task of learn-
ing permutations from examples. This leads
to novel and efficient algorithms with guaran-
teed prediction performance in the online set-
ting and on global optimality and the rate of
convergence in the batch setting. Monotone
retargeting efficiently optimizes over all pos-
sible monotone transformations as well as the
finite dimensional parameters of the model.
As a result we obtain an effective algorithm
to learn transitive relationships over items.
It captures the inherent combinatorial char-
acteristics of the output space yet it has a
computational burden not much more than
that of a generalized linear model.

1 INTRODUCTION

Many applications require items to be ordered cor-
rectly. Prototypical examples of such applications are
information retrieval and recommender systems. In
most cases, however, the quality measure that actu-
ally defines the transitive relation of interest can be
accessed only through examples. This lack of direct
access to the ordering relation motivates learning the
quality measure from the covariates of the items. We
distinguish this task from a related and easier one of
learning binary pairwise relations where transitivity is
not required by the application.

Existing techniques of learning to rank (LETOR) fall
under 3 categories: (i) point-wise methods, (ii) pair-
wise methods and (iii) list-wise methods. In point-
wise methods, higher ranked items are assigned higher
target scores. The method ignores the combinatorial

Authors acknowledge NSF grant 11S-1017614

Joydeep Ghosh
Dept. of Electrical Engineering
University of Texas Austin.

structure of the output space and regresses the scores
directly. Pair-wise methods capture some structure by
trying to classify for a pair whether the first item in the
pair out-ranks the second. Their predictions need not
be transitive and an order-reconciliation step is neces-
sary to enforce it. This is NP hard [8], necessitating
approximations and heuristics. Finally, there are list-
wise methods that model the full combinatorial struc-
ture and need to solve formidable optimization prob-
lems. They have to cut corners for scalability. Notable
approaches include sampling [25], approximations [2],
and resorting to point-wise methods [6] .

An ideal LETOR formulation should (i) capture com-
binatorial structure like list-wise methods, but with
(ii) algorithms as simple as point-wise methods. While
this seems too much to ask, the recently proposed
monotone retargeting (MR) technique is one way how
this may be approached [1]. MR outperforms sev-
eral state of the art ranking algorithms such as List-
net [6] and RankCosine, even after improving those
algorithms for statistical consistency as proposed by
Ravikumar et. al. [21].

MR efficiently reduces, the LETOR problem to a gen-
eralized linear model (GLM) with no loss in gener-
ality. It subsumes statistically consistent methods of
[21]. The distinguishing characteristic of MR is its “re-
targeting” paradigm, where instead of fitting training
scores exactly, it tries to fit any score that captures
the desired order. Recall that our task is to retrieve
the correct order and not the training scores. In this
setting, retrieving the specified training scores are an
unnecessary burden. The specified training scores may
be particularly difficult to fit for the chosen family of
regression function class, but there might exist score
assignments that capture the desired order and also
simultaneously lie in the range space of the regression
function class being used. The MR framework tries
to find such score assignments by formulating it as a
Bregman divergence minimization problem.

In this paper we push the retargeting idea further.



This is facilitated by (i) a remarkably efficient finite
time optimization over the infinite space of all mono-
tonic transformations and (ii) properties of Bregman
divergences particularly suited for learning orders.

Let us draw a few analogies from classification. A
pointwise approach to a {—1,1} encoded classification
problem would try to fit the {—1,1} training scores
exactly, possibly enriching the approximating function
class till the quality of the fit is acceptable. Most suc-
cessful classifiers, however, fit values that are discrim-
inable, ignoring, entirely, whether they are close to the
training scores of {—1,1} in value.

The MR cost function consists of two parts: a loss and
a regularization. Similar to perceptrons, the moment
MR predictions retrieve the training ranks, its loss
drops to zero. Experience in classification has taught
us that losses that continue to be active after training
error has dropped to zero yield better accuracy, for ex-
ample, SVMs, logistic regression and boosting. In our
paper we equip MR with such a margin-like property.
This can be done in a few different ways. Our intent is
not to champion one over another. This paper is not
about advocacy, but about exploring how margin may
be incorporated into the “retargeting” paradigm.

In this paper (i) we introduce large and fixed margin
variants of the MR approach. Without margins the
MR cost function is degenerate, an aspect that is not
developed in the previous work [1]. Unlike the previ-
ous approach, we model the requirement of a margin
explicitly in this paper. (ii) Unlike [1] we are able to
model the notion that ordering errors at the top are
worse than those at the bottom. (iii) It was shown
that MR cost function is jointly convex iff the Breg-
man divergence chosen is squared Euclidean. We ex-
tend the formulation to enable joint convexity to all
strongly convex Bregman divergence, not to advocate
non-Euclidean divergences but to explore them.

Joint convexity has two important ramifications: one
affects ease of evaluation of the technique, the other
affects efficiency of training. The initialization inde-
pendence of the optimum, gained as a result of con-
vexity induced uniqueness, makes comparing different
Bregman divergences easier, eliminating the need for
multiple initializations during training. (iv) On the
other hand for training, joint convexity allows us to
replace exact coordinate-wise updates that were used
in [1] with more efficient gradient updates with guar-
antees on global optimality. (v) This yields efficient
online algorithms with regret bounds over permuta-
tions. Finally, (vi) we provide rates of convergence
guarantees, an aspect missing from the previous work.

To date many cost functions have been designed to
evaluate rankings, for example, discounted cumula-

tive gain (DCG), normalized discounted cumulative
gain (NDCGQG) [13], expected reciprocal rank (ERR) [7],
mean average precision (MAP) [3]. They are functions
of permutations and capture the notion that positional
accuracy at the top is more important than at the
bottom. They are reasonably easy to compute given
a ranking, but to optimize them in training is notori-
ously intractable. Our formulation, on the other hand,
introduces a family of cost functions that have charac-
teristics desired in ranking: dependence on order not
on scores and the ability to capture the importance of
non-uniform positional accuracy, but at the same time
optimized globally with ease. These aspects set our
work apart from other approaches of learning to rank.

We follow the notation used in the MR paper. Vec-
tors are denoted by bold lower case letters, matrices
are capitalized. @' is @ transposed and ||z|| its Lo
norm. Adj-Diff(-) is the adjacent difference operator,
and Cum-Sum(Adj-Diff(x)) = z.  is in descending
order if x; > x; when ¢ > j. the set of such vectors is
R|. x is isotonic with y if z; > z; implies y; > y;.
A denotes an unit simplex and A, its subset with
members component-wise bounded away from 0 by e.
R % is the positive orthant and R its subset similarly
bounded away from 0 by e. Interior is denoted by int .

2 BACKGROUND

We will use Bregman Divergences to construct our
cost function. Let ¢ : © = R, © = dom¢ C R?
be a strictly convex, closed function, differentiable
on int®. The corresponding Bregman divergence

D¢(H) : dom(¢p) x int(dom(¢p)) — Ry is defined

as Dy(a|[y) 2 $(z) ~ $(y) — (@ — v, V(y)) . From
y) > 0 and

strict convexity it follows that Dg (a:‘

Dy (:I;Hy) = 0 iff * = y. Bregman divergences are

(strictly) convex in their first argument, but not nec-
essarily convex in their second.

In this paper we only consider functions ¢(-) : R™ >
x — Y wio(x;) that are weighted sums of identi-
cal scalar convex functions applied to each component,
the former referred to as weighted, identically separable
(WIS) or IS if the weights are equal. [1] and [21] iden-
tify this class to have properties particularly suited for
ranking. The MR approach, in concert with Bregman
divergences can provide compelling guarantees that in-
cludes convergence, parallelizability, statistical consis-
tency, and avoids solving a linear assignment problem
in every iteration of their training loop. Many LETOR
algorithms [24], [25] fall prey to the latter.

Monotone Retargeting: The ranking problem in-



volves set of queries @ = {q1,¢;i...q |} and a set of
training items V. For every query ¢;, the elements of
V; C V are ordered based on their relevance to the
query. This ordering is expressed through a rank score
vector 7#; € RIVil whose components 7;; correspond
to items in V;. Beyond establishing the order, the ac-
tual values are irrelevant. In our formulation, however,
one may choose whether to treat these as irrelevant or
incorporate them in the retargeting step, making the
formulation more flexible.

For a query g; the index j of 7;; is local to V; and
assigned such that 7;; are in descending order for any
V;. For every pair {¢g;, v;;} a feature vector R" > a;; =
F(g;,vi;) is an input to the algorithm, A; is a matrix
whose ;" row is aijT. The following formulation seems
suitable for ranking:

wr{melM D; (rl,T Of(Al,w)) (1)

where D; : RVil x RVil i R, is some distance-like
loss function, f : RIVilx" x R™ — RIVil is some para-
metric form with the parameter w and Y; : RVil —
RVl is a mapping that transforms the components
by a scalar, strictly monotonic increasing function Y,
and M is the class of all such functions. Formulation
(1) avoids the problem that adversely affects point-
wise-methods: solving an unnecessarily hard problem
of matching the scores by value.

To avoid working in the space of M which is infinite
dimensional, MR solves a qualitative equivalent

min Y Dy(ri, f(As, w)) s.b. RY, = {r|af(egh )
w,r€ER|; 7 i)
(2)

Let us take a closer look at the constraint set used
in formulation (2): Instead of considering all strictly
increasing monotonic transforms Y; of the right ar-
gument, MR considers all inverse monotonic transfor-
mations of the left argument. This, remarkably, is a
finite dimensional optimization problem because Ri,,,
the set of all vectors isotonic with »; is a finitely char-
acterizable convex cone. Motivated by convexity, MR

chooses D;(+,) to be a Bregman divergence Dd)(H)
and f(A;,w) to be (Vo)™ ' (A;w) to obtain®

1

1 —1
. oD (ri||(V
ﬁi,w,g?el%imsi ; Vil 47(”' (Vo)

(Asw + B;1))

C
+Slwl?. ()

'We take a shortcut of writing D¢(-H(V¢)71 (1) in-

stead of Dy, (-, (V¢) ') where ¢; indicates a separable
convex function of an input dimension d; built from
component-wise sum of scalar function ¢(-).

P} = Argmin Dy (rf||(V6) " (A’ + 51)) Vi
(4)
i = Argmin Dy (r H Vo)~ IPHIA w' +57)) ¥
rERLNS;
(5)
w™{B ) = ©

]

Arg{r;u}nZD¢ tHH(V(ﬁ) (IPZ“Aiw—f—ﬁf))%HwHQ
w K3 =1
(7)

Figure 1: Updates of Monotone Retargeting

where (ng)_1 is the inverse of the gradient mapping,
S; is a convenient convex set excluding 0, that is nec-
essary only for technical reasons.

In practice, even if V; is totally ordered, it is common
to have a part of that information erased by quanti-
zation in the scores . MR deals with this by opti-
mizing over block diagonal permutation matrices P;
that permute contiguous blocks of indices that corre-
spond to items whose relative order have been erased.
The model is trained by iterating over the updates (4),
(5) and (7) shown in Figure 1. Tt has been shown
that these exact coordinate-wise minimizations up-
dates converge to a local minimum(or global for square
loss [1]) of function (3). Update (4) is accomplished
by sorting. This turns out to be so because of special
properties of separable Bregman divergences (see [1]
for details). Update (5) uses the exponentiated gradi-
ent algorithm [15] and (7) is the same problem as es-
timating the parameters of a generalized linear model
[19]. A quasi-Newton method ( LBFGS [17]) was used
to solve (7). In the rest of the paper the block diago-
nal permutation matrices IP; will be suppressed. Our
extensions continue to be effective for partial order via
updates that correspond to (4), but this is not elabo-
rated further for brevity.

3 FORMULATION

The rest of the paper describes our contribution. Its
prominent features are: (i) formulation of fixed and
large margin aspects, (ii) joint convexity of the cost
function in the targets r and the parameters w, which
yields (iii) guarantees on performance in the online set-
ting and super-linear convergence in the batch setting.

Since there are multiple moving parts in our formula-
tion, it is easy to get lost in the details. To preempt
that we lay out the flow of our arguments. We explain
the formulation by modifying the cost function (3) suc-



cessively. We conclude each subsection with summary
of what has been achieved in the subsection so far.

Convexity: We equip the cost function with strong
and joint convexity, aspects missing in the original
work. We pick a matching form of the regularizer
so that it adds no extra computational burden and
quantify the amount of regularization that is sufficient
to guarantee joint convexity. It may not be surprising
that regularization extends convexity properties to MR,
losses other than squared Euclidean. What is surpris-
ing, however, is that this convexity applies jointly to
r and w although the regularizers themselves are sep-
arated. Strong joint convexity and smoothness thus
gained lead to the performance and convergence guar-
antees. This is the topic of section 3.1.

Margins: Second we plug a loophole in the MR cost
function by ensuring margins between all adjacent tar-
get scores 7 j,7; j+1. Without this, the cost function
(3) is degenerate: one can achieve zero loss by setting
w, B = 0. We provide different ways of ensuring this:
(i) directly by setting constraints, and (ii) indirectly by
rewarding margins. Since both the constraints and the
rewards are linear, this does not disrupt joint convex-
ity. The key is to optimize the modified cost function
efficiently. This is the topic of section 3.3.

3.1 Convexity, Smoothness and Optimization

MR ensures joint convexity only if squared Euclidean
distance is used. We incorporate joint convexity into
the cost function (3). This benefits us in two ways:
(i) it removes initialization dependence of the training
method and (ii) as we shall see, allows for a more effi-
cient method of training, both online and batch with
excellent convergence rates. We know that strong con-
vexity together with smooth gradients (and Hessians
for second order methods) admit efficient minimiza-
tion: gradient descent achieves linear rate of conver-
gence, quasi-Newton (truncated-Newton) achieves su-
perlinear rates. We examine conditions under which
our ranking formulations have these properties.

3.1.1 Joint Convexity

Let ¢(-) be s strongly convex [5]. Consider the term:

' (Aw))
ST

Slwl,) ®)

Regularization terms

Fi(rj,w) = ﬁ(l)(p (r4||(Vo)~

+ CTquﬁ (T‘i

q;) +

using which we modify cost function (3) to

[l

Flfrow) = 3 Rirw) + Gl 0)

The f terms of equation (3) may be absorbed into A;
by augmenting the features by vectors of ones, so no
generality is lost in equation (9).

Let us pause to take note of the extra terms in the cost
function (9). There is a term regularizing w towards
0 and another regularizing r; towards q,. Vector g; is
a “center” of regularization for the targets r;. If C};
are nonzero we set these to 7; when training scores
are available, otherwise we use q; = Argmin, ¢,(x)
when only ordering is available (this corresponds to 0
for square loss and uniform distribution for KL loss).
This allows one to bias the targets towards the training
scores when C,.; is high and focus on order otherwise.

Proposition 1. Let ¢ be s
ver with L  Lipschitz  continuous  gradients,
and o; be the smallest singular value of A;,

then the cost function (9) is jointly convex if
1Q( i)?

strongly  con-

(T,(Cw—‘rl/l/) C
LT T >0
Vi 2 1+Cr;
[Vil s> T
lo] 1 [(1+Cri)Hg —I .
PT’OOf Zi:l A -7 AiT(Hw'f‘Cwi)Ar‘rcglgl‘I 18

the Hessian of the cost function (9) where ¢ is the
Legendre conjugate of ¢ and Hg, Hy the correspond-
ing diagonal. Recall that ¢(-) and consequently 1 (-)
are separable. The smallest eigenvalue of the Hessian
may be bounded as the value of the following opti-
mization problem:

Cui + )+C>—2 2,y Zl‘Q‘

(1+Cri) st (mx)+(y,y) =1 (10)
where o; is the smallest singular value of A;. Invoking
Cauchy-Schwarz inequality and treating the expression
as a quadratic function in 4/(x, ) we can see that con-

(C. . 42 7)?
vexity is implied by 701(01&{?1@) 5 = 7(51‘3:33 =
‘ s Vil

0

Corollary 1. The cost function (9) is jointly convex

ch 9(1+C )(Z ﬁ)a Zf CM = Cr Vl

Corollary 1 gives practitioners an easy thumb rule to
ensure joint convexity.

These additional regularization terms do not come at
an extra computational burden. Estimating r,w re-
main just as easy. We show that the result of the
additional terms are that the r; updates (5) need to
be computed with respect to the deflected predicted

score (V) '(adAw + (1 — a)V(g;)), as opposed to
the predicted score (ng)_l(A'w)
Lemma 1. Let o; = 1+C , then  Argmin F;(r;, w)

T €RL;NS;

= Argmin Dg(r; (Vd))_l (o Aiw + (1 — a;)Vé(q,))).

T Emiﬁsi




Proof. Use E [D¢(ccHS)] = E [Daﬁ(‘”HN)] +

x~TT T~TT

Dis(uf|s) [4]. 0

3.1.2 Marginal Strong Convexity and
Smoothness

Recall our motivations for pursuing joint convexity:
(i) initialization independence of the training and (ii)
more efficient training algorithms. In light of Proposi-
tion 1 and Corollary 1, the reader should be convinced
of the former. In this section we explore how joint
convexity may be exploited to provide an efficient op-
timization algorithm for training, as well as guarantees
of convergence rates. Previous work on MR [1] come
with no guarantees on rates of convergence.

The MR cost function was minimized in [1] using ezact
coordinate-wise minimizations. This can be expensive
for the w, 8 updates (7) because they are iterative in
nature. Further since a single w, S update is equiv-
alent to solving a generalized linear model (GLM), it
is clear that the MR procedure would be slower than
solving for a GLM because typically multiple iterations
of GLM update are required for convergence.

Here we will replace exact coordinate-wise minimiza-
tions over r,w by inexact gradient descent updates
that satisfy any of the standard “sufficient descent” cri-
teria [5] (for example Armijo’s criteria) used in gradi-
ent based methods. Joint convexity will play a crucial
role in making this possible.

Joint convexity of F({r;}, w) allows us to work with
the marginal function

G(w) = %{EE?F({"'Z'}’ w) (11)

without losing convexity. This luxury is not available
in MR. The marginal function is guaranteed to be con-
vex when the joint function is convex [23]. Recall con-
vexity is always preserved under pointwise mazimiza-
tion, however if the function is jointly convezr it is also
preserved under pointwise minimization as in equation

(11).
The gradient VG(w) of the marginal is obtained as

|Q] Q]

VG(w) =Y Gilw) =Y VE({rihw)  (12)

where v} = Argmin,. g Fi(ri, w).

Now we can make a few observations: for a choice
of a closed form of ¢(-) we know VF; in closed form.
Hence the moment we are able to compute r} we can
also compute the gradient of the function G(w) and
hence minimize it using any gradient based minimiza-
tion methods. Also observe that this gradient compu-

tation trivially parallelizes because the r;s are all in-
dependent and can be computed simultaneously. We
shall show that 7} can be computed very efficiently in
not only finite time but also linear in the number of
training points per query. This is covered in Section
3.5.

If in addition to just convexity of the marginal function
G(w) we also had strong convexity, not only would
it facilitate super-linear convergence of quasi-Newton
methods, but it will also guarantee logarithmic regret
in the online setting [11]. With these motivations in
mind we investigate the conditions for strong convexity
of G(w). We do so by examining the Hessian V2G(w).
Note however that G(w) is not obtained in closed form
but by equation (11), which we now need to differen-
tiate twice to find the Hessian.

Differentiating Twice Under the Minimization
Sign: A prominent role is played in the analysis by
the ability to differentiate under the minimization sign.
We do not know the function G(w) in closed form but
are able to compute its Hessian in terms of ;. Using
assumptions of continuous second order differentiabil-
ity and the shorthand F* = F;(r}, w) we obtain

V2G,(w) = V2F; — VVEN (V2 E) T VVES =

w,Ti w,Tq

h
Ail [Hw + Cuwi —

—1 C
o (Ho) "' A+ 151 (13)

|

by differentiation twice under the min operator. Ex-
pression (13) will be useful because it allows to deter-
mine when is G(w) strongly convex (see Lemma 2) and
also because it gives us a way to compute the Hessian
that is important for Newton methods that we employ.

1
1+C,

Lemma 2. If ¢ is s strongly convex with L-Lipschitz
continuous gradient and o; s the principal singu-
lar value of A;, then G(w) is C strongly convex if

Zi (% + (Ticwi — m) > 0.

Strong convexity and Lipschitz continuity of the gra-
dient ensures that a gradient descent method will have
linear rate of convergence [5]. Lemma 2 gives the prac-
titioner a way to choose Cy,; and C,; appropriately.

Can the convergence rates be pushed further ? Can
we obtain locally quadratic convergence 7 We answer
in the affirmative in the next section.

3.1.3 Lipschitz Continuity of Hessian

In order to enjoy local quadratic convergence, quasi-
Newton methods require that the objective function
(i) be twice differentiable, (ii) be strongly convex and
(iii) have Lipschitz continuous Hessians [5]. The first
two have already been established, now we explore



the third. Observe from equation (13) that we only
need to be concerned about the sensitivity of the term
[Hy + Cuwi — 1+C (H¢) 1] to variations in w. We
make the notation more precise about dependency on
w. Let r}(w) = Argmin,, .z Fi(r;, w) and the paren-
thesis indicate where the Hessians are evaluated in the
expression: [Hy(w) + Cyy; — 1+C¢ (Hy(rk(w )))—1]

Lemma 3. Let ¢(-) be the Legendre conjugate of ¢(-)
that defines the cost function G(w) in equation (11).
Then if ¥(-) has a Lipschitz continuous Hessian then
G(w) has a Lipschitz continuous Hessian.

Proof. [Hy(w) + Cui — rr (Ho(ri(w))) '] =

[Hy(w) + Cu; e Hy(Vo(ri(w)))]  using
Legendre duality. Further the vector Vo(r;(w))
turns out to be the FEuclidean projection of the
vector A;w on the set R|; (see Proposition2).
Since projection is a non-expansive operator,
Hy(Vo(r;(w))) is Lipschitz continuous in w. O

3.1.4 Summary: Impact on Optimization

Let us take stock of what have we achieved so far.
Lemmas 1 through 3 led to quantitative guarantees
on rate of convergence in the batch setting. They al-
low selecting the regularization parameters Cgy,, Cy;
based on desired convergence performance. The pa-
per [1] could not provide any such quantitative guar-
antees, because their cost function was not proven to
be jointly convex. Note that the nested minimization
in the gradient computation trivially parallelizes. We
shall see that each parallel task completes in finite time
(Section 3.6). Batch gradient descent on the marginal
with (12) evaluated in parallel converges linearly as
a result of strong marginal convexity and smoothness
[5]. Stochastic gradient descent by sampling an index
from (12) also has linear rate of convergence (in an ex-
pected sense) [20]. Quasi-Newton (and truncated New-
ton) methods with parallel evaluation of gradients use
the gradient computation (12) (and explicit Hessian
(13) which has a simple diagonal structure) have su-
perlinear convergence [5].

3.2 Online Algorithm for Learning
Permutations

In this section we propose an online model for learn-
ing to rank where we have a varying set of items that
need to be ordered in each round. The adversary, at
round ¢ provides the feature matrix A; of d; items
that it has ranked, but that order is not revealed till
the learner responds with a “scoring vector” w;. The
learner is then charged a cost of Gi(w;) as defined in
(11) according to any twice differentiable o strongly

convex function ¢, with L Lipschitz continuous gradi-
ent. The order and the function ¢; is then revealed for
the learner to use. The objective is to minimize the
cumulative loss >, G¢(wy).

For the t*" gradient update we use the tt" term of the
gradient (12) with a learning rate of 2 as

1
Wit = Wy — EFt({TI}aw)

where r; = Argmin, cp ns, Fi(r, w) and Fy is de-
fined in (9).

Theorem 1. [11] The online gradient algorithm ap-
plied in an online setting to a s strongly function
that has L Lipschitz continuous gradients has regret
O(%Qlog T).

Neither the algorithm nor the bound is new, what is
novel though is that the ranking problem of such com-
binatorial nature can be transformed into a form, with-
out loss in generality, that this algorithm can exploit.

Summary: This concludes what we have to say about
the implications joint convexity of the cost function
we propose. One can see that it leads to quantitative
guarantees on rate of convergence in the batch setting
and performance guarantees in the online and the ad-
versarial setting. Now we turn our attention the next
topic of this paper: large margins.

3.3 Margins

Performant classification loss functions such as hinge
loss [22], logistic loss and exponential loss [9] continue
to be active even after training error has fallen to zero.
For MR such a margin like property is not only ben-
eficial but also essential because otherwise the cost
function is degenerate as may be verified by setting
w, B = 0. The necessity of this margin property is not
mentioned in [1]. Here we take an explicit approach.

By controlling the margin we can also model the no-
tion that errors at the top of the list are more severe
than at the bottom. We achieve this by adding lin-
ear inequalities and terms. Therefore the properties of
strong convexity and Lipschitz continuity of the gra-
dient established in Section 3.1 continue to hold.

We incorporate the margin property in two alternative
ways. We augment the cost function (9) by introducing
a fixed margin (14) and alternatively a large margin
variant (15). In addition to enforcing order in the tar-
get vector r; it enforces (for the fixed margin formula-
tion) or encourages (for the large margin formulation)
a gap between the target values of adjacently ordered
items 7; j, r; j+1. In the formulations (14), (15), the
components of t; denote the gap between the adjacent



targets. In (14) the gaps are pre-specified. It is natural
to specify a comparatively higher gap at the top. In
(15) the gaps are not specified explicitly, but a reward
c; is awarded per unit gap.

The fixed margin formulations is posed in terms of
positive pre-prescribed margins ¢; ; as follows:

|Q|
minZFi(ri,w)
v
Vi e[0,d; —1],Vi € [1,|Q]]
vie [l ]Q|] (14)

Tij+1 = Tij 2 tij
73,0 = tio

The large margin formulations are posed in terms
of a vector of rewards ¢; associated with the vector of
gaps t; > 0 as follows: for every query ¢;i € Q, solve:

12|
min Fi(’l"i, w) — <Ci, ti>
Ti,w,t;
i=1
Tij41 = Ty = ti; >0 Vje[0,d; —1],Vi € [1,]|Q]]
rio > tio Vi€ [1,]Q]], (15)
Note that the r; optimization is a Bregman projection
problem. Furthermore, the 7;s are independent and
therefore can be projected in parallel. Readers familiar
with generalized linear models (GLM) will recognize
that the optimization over w is penalized maximum
likelihood parameter estimation for GLMs. Since this
procedure is standard, we focus on r and ¢ only in the
interest of space.

3.4 Bregman Projection on R|,

Both the formulations (14) and (15) involve Bregman
projections on R|,. Elements of R}, C R™ are not
only sorted but also have separation between adja-
cent components, given by the vector ¢. In this sec-
tion we reduce it to a square Euclidean projection
on Argminyemt, hence removing the need to solve a
non-linear optimization problem. It is quite remark-
able that this is possible. For the reduction to hold
we need additional assumptions of strong convexity
and/or Lipschitz continuity. Consider the problem:

min Dy (rH(v(z))*l(Aw)) s.t. Adj-Diff (r) < t. (16)

If t = 0 this is mi%Dd,(rH(V(b)_l(Aw)). When ¢ is
re

component-wise strictly positive it imposes strict mar-
gin between adjacent components of .

Proposition 2. Let ¢(-) be s strongly convez, then

(V)™ (") = Argmin, Dy (r||(V6) ™" (Aw))+(v,r)
s.t. Adj-Diff (v) <t (17)

where z*

= Argmin
Adj-Diff(z) < st.

|z — Aw|| + (v,7r) s.L

-

Proof. For the moment let us ignore the term (v, 7).
Let the set of points satisfying the KKT conditions for

(16) be A= {;\ ‘ v‘i’(rrd?_g;f?gj;iﬂ(’\) } , let us denote

the KKT points of the optimization problem

min ||z — Aw|| s.t. Adj-Diff(z) < st by B =

{

From 741 —r; > t; and strong convexity we have
Vé(rjz1) — Vo(r;) > stj thus A C B. Complemen-
tary slackness conditions are also verified thus A, B
are unique minimizers. The term (v, r) maintains the
relation between A and B proving that the minima of
the two problems coincide. O

z=Aw—Adj-Diff(\) } — {WW)
Adj-Diff(z)<st [T A

V$(r)=Aw—Adj-Diff(X)
Adj-Diff(V(r))<st

Proposition 3. Let ¢(-) be strictly convez, t < 0 and
V() % Lipschitz continuous, then minimizer z* of
(17) is

z" = Argmin,, ||z— Aw||+(v, r) s.t. Adj-Diff(z) < Lt.

Proof. Define A and B as before. From Ve (r;41) —
Vo(r;) > Lt; and Lipschitz continuity we have ;11 —
r; > t; therefore B C A, but A and B are unique
minimizers. Therefore the proposition holds. O

The implications: of the propositions are, of course,
that, for the optimization over r, one only needs to
implement the square loss variants of (14) and (15) be-
cause they are in correspondence with other Bregman
divergences as long as the convex function is strongly
convex or its gradient is Lipschitz continuous.

The final piece is to show that the reduced quadratic
program (QP) is efficiently solvable. This is critical
because it is required for the numerical evaluating the
gradient (and Hessian) of G(w) where we cannot afford
the expense of a generic QP solver. We now show how
the QP can be solved in linear time.

3.5 Pool Adjacent Violators Algorithm
The pool adjacent violators algorithm [10] solves

mzin||z — Awl| s.t. Adj-Diff (z) <0 (18)
called the isotonic regression problem. PAV is essen-
tially a block coordinate ascent of the dual of (18). It
runs in finite time and a straight-forward implementa-
tion scales as O(d?) in the dimensions. Subsequently
[10] observed that if implemented carefully it remark-
ably has complexity that is linear in d.



The nonlinear optimization problems (14) and (15)
from (18). Fortunately, by a series of non-linear and
linear change of variables one can reduce these prob-
lems to variations of the isotonic regression problem.

3.6 Decomposing the Margin Formulation

For a fixed w, a plausible way to optimize (15) is to fix
t; and optimize r; and alternate, keeping w fixed. One
may update w once t; and r; converge. This clearly
fails because the constraints couple r; and t;. How-
ever, we show that an affine transformation can not
only correctly decompose the problem, but also that it
separates out the problem out into versions of isotonic
regression problems: namely isotonic regression with
a lower-bound on the smallest . Thus it adds another
(scalar) constraint to the system Adj-Diff(r) < —t¢,
where Adj-Diff is the adjacent-difference operator.

Because of the reduction properties shown in Proposi-
tions 2 and 3 to estimate 7; in (15) one only needs to
consider the problem of the form:

1
mitn§||ri—yi\|2—<ci,ti> s.t. Adj-Diff(r;) < —t;, t; > 0.
it

Substituting t; = — Adj-Diff(d;), z; = r; — d; we ob-
tain

1 .-
5”21 +d; — y7||2 + (ci, Adj-Diff (d;))

st.  Adj-Diff(z;) <0, Adj-Diff(d;) <0. (19)

The variables z; and d; are completely decoupled, the
constraints are the ordering constraints, and if either
z; or d; fixed, the formulation reduces to an isotonic
problem in the other (for d; some simple algebraic ma-
nipulation is necessary to expose the PAV form). Thus,
one may alternate over z; and d; as follows:

z§+1 = PAV(y, - di) (20)
dit! = PAV(y, - 2I™' - AdjDifff(¢)  (21)

and obtain the large margin solution by recovering
T, t; from converged z; and d;.

Problem (14) can be decomposed similarly using
propositions 2, 3 and the exact same affine transfor-
mation ¢; = — Adj-Diff(d;) and z, = r; — d;. Here
however d; is immediately determined, so no iteration
over the variables z; and d; is necessary and solving
z; = PAV (y, — d;) is sufficient to recover the optimal
r;. Since this requires a single instance of PAV, it is
obuvious that this converges in finite time, linear in the
number of items.

4 EXPERIMENTS

We evaluated the ranking performance of the proposed
margin equipped monotone retargeting (MEMR) ap-

i(gpl\é];MR ?F(g(%EMB Sqr MR | RankSVM
[ MQ07 [ 0.166s [ 0.101s [ 26.396s | 17.187s |
KLMEMR[ KLMEMR| |~ ]
LBFGS | TRON
[ MQ07 | 0.326s [ 0.199s [ 54.15s | \

Table 1: CPU time of MEMR and Baselines

HyperThreads 1 2 3 4 8
Sqr.MEMR

LBFGS.ms 166 | 91 | 72 | 59 | 46
Speedup 1 1.8 123|281 3.6

Table 2: MEMR speedup with parallelism

proach on the benchmark LETOR 4.0 datasets [18]
as well as the OHSUMED dataset [12]. Each of
these datasets are pre-partitioned into five-fold val-
idation sets for easy comparison across algorithms.
We focus on the variants that use Sqr-loss and KL-
divergence because these are strongly convex Bregman
divergences. We compare the performance of MEMR
against the following strong baselines (i) The MR al-
gorithm as reported in [1] (Recall that the MR algo-
rithm has been shown to outperform many of the cur-
rent state of the art techniques [1]), (ii) NDCG consis-
tent generalized linear models that also use different
Bregman divergences [21] and (iii) max-margin based
pairwise learning to rank method RankSVM as imple-
mented by SVMPerf [14] (Note RankSVM as imple-
mented by SVMPerf is a factor of 20 faster than its
original implementation in SVMLight). MEMR is im-
plemented in C++ as a minimization method on the
function G(w). PAV algorithm is used to compute the
gradient, and the Hessian. We tried two strategies (i)
quasi-Newton using LBFGS [17] and (ii) Trust region
truncated Newton (TRON) [16]. While both were an
order of magnitude faster than our baselines the lat-
ter gave the fastest convergence. The CPU timings of
serial implementations on a 2.8 Ghz Intel Quad core
processor are reported in Table 1. We parallelized the
LBFGS based implementation. The timings and cor-
responding speedups are shown in Table 2. We found
that overprovisioning of threads (8 threads on a quad-
core) was necessary to reach full speedup supported by
the hardware.

In our experiments the fixed margin constraints (see
equation (14)) were set using different non-increasing
functions of the rank. In Figure 2 we show the effect of
margins set to different constant values. In Figure 3 we
show the effect of margins set by different polynomi-
ally decaying functions. The regularization parameter
C was selected on the basis of maximum NDCG on



[ MQ 2007: Mean NDCG (non-truncated) |

SQ KL Hinge
MEMR 0.7491 | 0.7564 -
MR 0.7398 | 0.6978 -
NDCG consistent
QLM [21] 0.7344 | 0.7399 -
RankSVM - - 0.6528

Table 3: Test NDCG on MQ2007 Dataset

| OHSUMED: Mean NDCG (non-truncated) |

SQ KL Hinge
MEMR 0.7115 | 0.7146 -
MR 0.6878 | 0.6997 -
NDCG consistent
QLM [21] 0.6892 | 0.6947 -
RankSVM - - 0.6571

Table 4: Test NDCG on OHSUMED Dataset.

the validation set.Figure 4 shows the behavior of the
same margin function but for the loss measured by KL
divergence.
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Figure 2: Truncated NDCG@N obtained on MQ2007 us-
ing Sqr-loss MEMR with margin between adjacent targets
set to {0.0625e — 3,0.125¢ — 3,0.25¢ — 3, .5e — 3,1le — 3}
respectively showing improved rank quality as margins in-
crease. The plot labeled “Sqr-Loss” represents pointwise
NDCG consistent Sqr loss proposed by [21]. Plot labeled
“Sqr-MR?” corresponds to MR [1] with Sqr-loss.Performance
of RankSVM is also shown

5 CONCLUSION

In this paper we presented a margin based monotone
retargeting framework for learning to rank. Pointwise
ranking methods search for optimal parameters of a
regression function to fit the training scores that were
specified to define the correct ranking order. MEMR
on the other hand searches not only for optimal param-
eters of a regression function but also over all order-
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Figure 3: Truncated NDCG@N obtained on MQ2007 us-
ing Sqr-loss MEMR with margin between adjacent targets
set by function % on the rank associated with the tar-
get. Plots shown for values of C' € {0.0625¢ — 3,0.125e —
3,0.25¢—3,.5e—3}. The baselines are the same as in Figure
2.
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Figure 4: Truncated NDCG@N obtained on MQ2007 us-
ing KL-loss MEMR with margin between adjacent targets
set by the function % for values of C' € {le—1,2e—1,3e—
1,4e —1}. The plot labeled "KL-Loss” corresponds KL loss
minimizing NDCG consistent GLM [21].

preserving transformations of the training score vec-
tors such that its adjacent components are well sepa-
rated. The separation property leads to state of the
art performance as compared to MR and other max-
margin based ranking formulations. Moreover its joint
convexity and second order smoothness properties per-
mit efficient algorithms that lead to running times that
are a small fraction of competing algorithms, giving al-
most the best of both worlds: ranking accuracy better
than pairwise methods and running times comparable
to simple pointwise methods.
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On Convergence and Optimality of Best-Response Learning
with Policy Types in Multiagent Systems

Stefano V. Albrecht
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Abstract

While many multiagent algorithms are designed
for homogeneous systems (i.e. all agents are iden-
tical), there are important applications which re-
quire an agent to coordinate its actions without
knowing a priori how the other agents behave.
One method to make this problem feasible is to as-
sume that the other agents draw their latent policy
(or type) from a specific set, and that a domain ex-
pert could provide a specification of this set, albeit
only a partially correct one. Algorithms have been
proposed by several researchers to compute poste-
rior beliefs over such policy libraries, which can
then be used to determine optimal actions. In this
paper, we provide theoretical guidance on two cen-
tral design parameters of this method: Firstly, it is
important that the user choose a posterior which
can learn the true distribution of latent types, as
otherwise suboptimal actions may be chosen. We
analyse convergence properties of two existing
posterior formulations and propose a new poste-
rior which can learn correlated distributions. Sec-
ondly, since the types are provided by an expert,
they may be inaccurate in the sense that they do
not predict the agents’ observed actions. We pro-
vide a novel characterisation of optimality which
allows experts to use efficient model checking al-
gorithms to verify optimality of types.

1 INTRODUCTION

Many multiagent algorithms are developed with a homoge-
neous setting in mind, meaning that all agents use the same
algorithm and are a priori aware of this fact. However, there
are important applications for which this assumption may
not be adequate, such as human-machine interaction, robot
search and rescue, and financial markets. In such problems,
it is important that an agent be able to effectively coordinate
its actions without knowing a priori how the other agents
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behave. The importance of this problem has been discussed
in works such as [Albrecht and Ramamoorthy, 2013, Stone
et al., 2010, Bowling and McCracken, 2005].

This problem is hard since the agents may exhibit a large
variety of behaviours. General-purpose algorithms for mul-
tiagent learning are often impracticable, either because they
take too long to produce effective policies or because they
rely on prior coordination of behaviours [Albrecht and Ra-
mamoorthy, 2012]. However, it has been recognised (e.g.
[Albrecht and Ramamoorthy, 2013, Barrett et al., 2011]) that
the complexity of this problem can often be reduced by as-
suming that there is a latent set of policies for each agent
and a latent distribution over these policies, and that a do-
main expert can provide informed guesses as to what the
policies might be. (These guesses could also be generated
automatically, e.g. using some machine learning method on
a corpus of historical data.)

One algorithm that takes this approach is Harsanyi-Bellman
Ad Hoc Coordination (HBA) [Albrecht and Ramamoorthy,
2013]. This algorithm maintains a set of user-defined types
(by “type”, we mean a policy or programme which specifies
the behaviour of an agent) over which it computes posterior
beliefs based on the agents’ observed actions. The beliefs
are then used in a planning procedure to compute expected
payoffs for all actions (a procedure combining the concepts
of Bayesian Nash equilibrium and Bellman optimality) and
the best action is chosen. HBA was implemented as a rein-
forcement learning procedure and shown to be effective in
both simulated and human-machine problems [Albrecht and
Ramamoorthy, 2013]. Similar algorithms were studied in
[Barrett et al., 2011, Carmel and Markovitch, 1999].

While works such as [Albrecht and Ramamoorthy, 2013,
Barrett et al., 2011, Carmel and Markovitch, 1999] demon-
strate the practical usefulness of such methods, they provide
no theoretical guidance on two central design parameters:
Firstly, one may compute the posterior beliefs in various
ways, and it is important that the user choose a posterior for-
mulation which is able to accurately approximate the latent
distribution of types. This is important as otherwise the ex-
pected payoffs may be inaccurate, in which case HBA may



choose suboptimal actions. In this paper, we analyse the con-
vergence conditions of two existing posterior formulations
and we propose a new posterior which can learn correlated
type distributions. These theoretical insights can be applied
by the user to choose appropriate posteriors.

Secondly, since the types are provided by the user (or gen-
erated automatically), they may be inaccurate in the sense
that their predictions deviate from the agents’ observed ac-
tions. This raises the need for a theoretical analysis of how
much and what kind of inaccuracy is acceptable for HBA to
be able to solve its task, by which we mean that it drives the
system into a terminal state. (A different question pertains to
payoff maximisation; we focus on task accomplishment as
it already includes many practical problems.) We describe
a methodology in which we formulate a series of desirable
termination guarantees and analyse the conditions under
which they are met. Furthermore, we provide a novel char-
acterisation of optimality which is based on the notion of
probabilistic bisimulation [Larsen and Skou, 1991]. In ad-
dition to concisely defining what constitutes optimal type
spaces, this allows the user to apply efficient model checking
algorithms to verify optimality in practice.

2 RELATED WORK

Opponent modelling methods such as case-based reason-
ing [Gilboa and Schmeidler, 2001] and recursive modelling
[Gmytrasiewicz and Durfee, 2000] are relevant to the extent
that they can complement the user-defined types by creating
new types (the opponent models) on the fly. For example,
[Albrecht and Ramamoorthy, 2013] used a variant of case-
based reasoning and [Barrett et al., 2011] used a tree-based
classifier to complement the user-defined types.

Plays and play books [Bowling and McCracken, 2005] are
similar in spirit to types and type spaces. However, plays
specify the behaviour of an entire team, with additional struc-
ture such as applicability and termination conditions, and
roles for each agent. In contrast, types specify the action
probabilities of a single agent and do not require commit-
ment to conditions and roles.

Plans and plan libraries [Carberry, 2001] are conceptually
similar to types and type spaces. However, the focus of plan
recognition has been on identifying the goal of an agent (e.g.
[Bonchek-Dokow et al., 2009]) and efficient representation
of plans (e.g. [Avrahami-Zilberbrand and Kaminka, 2007]),
while types are used primarily to compute expected payoffs
and can be efficiently represented as programmes [Albrecht
and Ramamoorthy, 2013, Barrett et al., 2011].

I-POMDPs [Gmytrasiewicz and Doshi, 2005] and I-DIDs
[Doshi et al., 2009] are related to our work since they too
assume that agents have a latent type. These methods are
designed to handle the full generality of partially observ-
able states and latent types, and they explicitly model nested
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beliefs. However, this generality comes at a high computa-
tional cost and the solutions are infeasible to compute in
many cases. In contrast, we remain in the setting of fully ob-
servable states, and we implicitly allow for complex beliefs
within the specification of types. This allows our methods
to be computationally more tractable.

To the best of our knowledge, none of these related works di-
rectly address the theoretical questions considered in this pa-
per. While our results apply to [Albrecht and Ramamoorthy,
2013, Barrett et al., 2011, Carmel and Markovitch, 1999], we
believe they could be generalised to account for some of the
other related works as well. This includes the methodology
described in Section 5.

3 PRELIMINARIES

3.1 MODEL

Our analysis is based on the stochastic Bayesian game [Al-
brecht and Ramamoorthy, 2013]:

Definition 1. A stochastic Bayesian game (SBG) consists of

e discrete state space S with initial state s € S and
terminal states S C S

e players N = {1,...,n} and for each i € N:

set of actions A; (where A = A x ... x A,)

type space ©; (where © = ©1 X ... X O,

payoff function u; : S x A x ©; - R

strategy m; : H x A; x ©; — [0, 1]

e state transition function T : S x A x S — [0, 1]
e type distribution A : © — [0, 1]

where H contains all histories H' = (s°,a°, s, a', ..., s%)

witht >0, (s7,a”) € S x Afor0 <7 <t and s! € S.

Definition 2. A SBG starts at time ¢ = 0 in state s°:

1. In state s?, the types 6%, ..., 0 are sampled from © with
probability A(6%, ..., 0%), and each player i is informed
only about its own type 6.

. Based on the history H?, each player 4 chooses an action
at € A; with probability m;(H?, at, 6%), resulting in the
joint action a’ = (af, ..., al).

. The game transitions into a successor state s'*! € §
with probability T'(s?, a’, s'™1), and each player i re-
ceives an individual payoff given by u;(s’, a*, 6%).

This process is repeated until a terminal state s* € S is
reached, after which the game stops.

3.2 ASSUMPTIONS
We make the following general assumptions in our analysis:

Assumption 1. We control player %, by which we mean that
we choose the strategies 7; (using HBA). Hence, player ¢
has only one type, ;, which is known to us.



We sometimes omit ; in u; and m; for brevity, and we use j
and —1 to refer to the other players (e.g. A_; = X j; Aj).

Assumption 2. Given a SBG I, we assume that all elements
of I' are known except for the type spaces ©; and the type
distribution A, which are latent variables.

Assumption 3. We assume full observability of states and
actions. That is, we are always informed of the current his-
tory H'? before making a decision.

Assumption 4. For any type 6; and history H*, there exists
a unique sequence (xq,)a,ca, such that 7;(H' a;,0;) =
Xa; forall a; € A;.

We refer to this as external randomisation and to the oppo-
site (when there is no unique ) as infernal randomisation.
Technically, Assumption 4 is implied by the fact that 7; is a
function, which means that any input is mapped to exactly
one output. However, in practice this can be violated if ran-
domisation is used “inside” a type implementation, hence it
is worth stating it explicitly. Nonetheless, it can be shown
that under full observability, external randomisation is equiv-
alent to internal randomisation. Hence, Assumption 4 does
not limit the types we can represent.

Example 1. Let there be two actions, A and B, and let the
expected payoffs for agent ¢ be E(A) > E(B). The agent
uses e-greedy action selection [Sutton and Barto, 1998] with
€ > 0. If agent 7 randomises externally, then the strategy m;
will assign action probabilities (1 — €/2, ¢/2). If the agent
randomises internally, then with probability e it will assign
probabilities (0.5,0.5) and with probability 1 — e it will
assign (1, 0), which is equivalent to external randomisation.

3.3 ALGORITHM

Algorithm 1 gives a formal definition of HBA (based on
[Albrecht and Ramamoorthy, 2013]) which is the central al-
gorithm in this analysis. (Section 1 provides an informal
description.) Throughout this paper, we will use ©7 and
Pr;, respectively, to denote the user-defined type space and
posterior for player j, where Pr; (67 |H") is the probability
that player j has type ¢ € ©7 after history H ¢, Further-
more, we will use Pr to denote the combined posterior, with
Pr(0*;|H") = [, Pr;(07|H"), and we sometimes refer
to this simply as the posterior.

Note that the likelihood L in (1) is unspecified at this point.
We will consider two variants for L in Section 4. The prior
probabilities P;(07) in (1) can be used to specify prior be-
liefs about the distribution of types. It is convenient to spec-
ify Pr;(05|H") = P;(6;) fort = 0. Finally, note that (2)/(3)
define an infinite regress. In practice, this may be imple-
mented using stochastic sampling (e.g. as in [Albrecht and
Ramamoorthy, 2013, Barrett et al., 2011]) or by terminating
the regress after some finite amount of time. In this analysis,
we assume that (2)/(3) are implemented as given.

14

Algorithm 1 Harsanyi-Bellman Ad Hoc Coordination (HBA)
[Albrecht and Ramamoorthy, 2013]

Input:

SBG I, player ¢, user-defined type spaces ©7,
history H ¢, discount factor 0 < v<1

Output: Action probabilities ; (H*, a;)
1. For each j # i and 6] € O, compute posterior probability

L(H'|07) P;(67)

Pr, (031 H') = )
Zé;ﬁe@; L(H ‘ej)Pj( j)

ey

2. For each a; € A;, compute expected payoff £/ (H") with

ZQgiﬁi

a_;€EA_;

B3 (H) = Pr(0";|H") () [[mi(H, a;,05)
0r €0 J#i
@)

Qi(H) =

Z T(s,a,s’) {ui(s, a) + ymax B/ ((ﬁ, a, s'))}
s'eS :
3)

where Pr(0* ;|H") = [, Pr;(0;|H") and ai,—; = (ai, a—;)

J#i

3. Distribute 7;(H"*, -) uniformly over arg max,, E7; (H")

4 LEARNING THE TYPE
DISTRIBUTION

This section is concerned with convergence and correctness
properties of the posterior. The theorems in this section tell
us if and under what conditions HBA will learn the type
distribution of the game. As can be seen in Algorithm 1, this
is important since the accuracy of the expected payofts (2)
depends crucially on the accuracy of the posterior (1).

However, for this to be a well-posed learning problem, we
have to assume that the posterior Pr can refer to the same
elements as the type distribution A. Therefore, the results in
this section pertain to a weaker form of ad hoc coordination
[Albrecht and Ramamoorthy, 2013] in which the user knows
that the latent type space ©; must be a subset of the user-
defined type space ©7. Formally, we assume:

Assumption 5.Vj # i : ©; C O

Based on this assumption, we simplify the notation in this
section by dropping the * in §7 and ©}. The general case in
which Assumption 5 does not hold is addressed in Section 5.

We consider two kinds of type distributions:

Definition 3. A type distribution A is called pure if there
is 6 € O such that A(f) = 1. A type distribution is called
mixed if it is not pure.

Pure type distributions can be used to model the fact that
each player has a fixed type throughout the game, e.g. as in
[Barrett et al., 2011]. Mixed type distributions, on the other
hand, can be used to model randomly changing types. This



was shown in [Albrecht and Ramamoorthy, 2013], where a
mixed type distribution was used to model defective agents
and human behaviour.

4.1 PRODUCT POSTERIOR

We first consider the product posterior:

Definition 4. The product posterior is defined as (1) with

H% ,

L(H'|6;) a7, b;) 4

This is the standard posterior formulation used in Bayesian
games (e.g. [Kalai and Lehrer, 1993]) and was used in [Al-
brecht and Ramamoorthy, 2013, Barrett et al., 2011].

Our first theorem states that the product posterior is guaran-
teed to converge to any pure type distribution:

Theorem 1. Let " be a SBG with a pure type distribution A.
If HBA uses a product posterior, and if the prior probabilities
P are positive (i.e.VQ;‘ S @;f 1P (9;‘) > 0), then, for t — oo:
Pr(0_;|H") = A(6_;) forall 0_; € O_,.

Proof. The proof is not difficult, but tedious. In the interest
of space, we give a proof sketch.! [Kalai and Lehrer, 1993]
studied a model which can be equivalently described as a
single-state SBG (|.S| = 1) with pure A and proved that the
product posterior converges to the type distribution of the
game. Their convergence result can be extended to multi-
state SBGs by translating the multi-state SBG I into a single-
state SBG I which is equivalent to I' in the sense that the
players behave identically. Essentially, the trick is to remove
the states in I" by introducing a new player whose action
choices correspond to the state transitions in I'. O

Theorem 1 states that the product posterior will learn any
pure type distribution. However, it does not necessarily learn
mixed type distributions, as shown in the following example:

Example 2. Consider a SBG with two players. Player 1 is
controlled by HBA using a product posterior while player 2
has two types, 04 and 6, which are assigned by a mixed
type distribution A with A(64) = A(fp) = 0.5. The type
0 4 always chooses action A while 05 always chooses action
B. In this case, there will be a time ¢ after which both types
have been assigned at least once, and so both actions A and
B have been played at least once by player 2. This means
that from time ¢ and all subsequent times 7 > ¢, we have
Pra(04|H™) = Pra(6p|H™) = 0 (since each type plays
only one action), so the posterior will never converge to A.

4.2 SUM POSTERIOR
We now consider the sum posterior:

'A full proof of Theorem 1 can be found at:
http://rad.inf.ed.ac.uk/data/publications/2014/uail4proof.pdf
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Definition 5. The sum posterior is defined as (1) with

L(H'|05) ZTFJH al,0;)

) ]7

&)

The sum posterior was introduced in [Albrecht and Ra-
mamoorthy, 2013] to allow HBA to recognise changed types.
In other words, the purpose of the sum posterior is to learn
mixed type distributions. It is easy to see that a sum posterior
would indeed learn the mixed type distribution in Example 2.
However, we now give an example to show that without ad-
ditional requirements the sum posterior does not necessarily
learn any (pure or mixed) type distribution:

Example 3. Consider a SBG with two players. Player 1 is
controlled by HBA using a sum posterior while player 2
has two types, 04 and 64 g, which are assigned by a pure
type distribution A with A(6,4) = 1. The type 04 always
chooses action A while 8 4 chooses actions A and B with
equal probability. The product posterior converges to A,
as predicted by Theorem 1. However, the sum posterior

converges to probabilities <3, 3> which is incorrect.

Note that this example can readily be modified to use a
mixed type distribution, with similar results. Therefore, we
conclude that the sum posterior does not necessarily learn
any type distribution.

Under what condition is the sum posterior guaranteed to
learn the true type distribution? Consider the following two
quantities, which can be computed from a given history H?:

Definition 6. The average overlap of player j in H' is

t—1

AOj(Ht):%Z[|A;|22]1 S w(HT, a7,

=0 0;€0;

)16,

(6)

A;:{ejégj“ﬂ'j( s >O}

] 7
where [b]; = 1if b is true, else 0.

Definition 7. The average stochasticity of player j in H is

t—1
1 _ m;(H",a7,0;)
ASj(Hf’):¥Z\@j| ! Z —|AJ| Jl Q)
7=0 QJEGJ

AT ) T . .
where a7 € argmax,, 7;(HT,a;,0;).

Both quantities are bounded by 0 and 1. The average overlap
describes the similarity of the types, where AO,;(H") = 0
means that player j’s types (on average) never chose the
same action in history H*, whereas AO;(H") = 1 means
that they behaved identically. The average stochasticity de-
scribes the uncertainty of the types, where AS;(H') = 0
means that player j’s types (on average) were fully de-
terministic in the action choices in history H?, whereas
AS,;(H") = 1 means that they chose actions randomly with
uniform probability.



We can show that, if the average overlap and stochasticity of
player j converge to zero as t — oo, then the sum posterior
is guaranteed to learn any pure or mixed type distribution:

Theorem 2. Let I' be a SBG with a pure or mixed type dis-
tribution A. If HBA uses a sum posterior, then, for ¢ — oo:
If AO,;(H") = 0 and AS;(H") = 0 for all players j # 1,
then Pr(6_;|H') = A(f_;) forall 6_, € ©_,.

Proof. Throughout this proof, let ¢ — co. The sum poste-
rior is defined as (1) where L is defined as (5). Given the
definition of L, both the numerator and the denominator in
(1) may be infinite. We invoke L"Hopital’s rule which states
that, in such cases, the quotient ul) g equal to the quo-

u'(t)

v(t)
tient D)

of the respective derivatives with respect to t. The
derivative of L with respect to ¢ is the average growth per
time step, which in general may depend on the history H*
of states and actions. The average growth of L is

L'(H'6;) = Y Fla;|H")m;(H',a;,0;)  (8)
aj€EA;
where
F(aj|H") = Y A0;)7;(H',a;,6;) 9)

0;€0;

is the probability of action a; after history H*, with A(6;)
being the marginal probability that player j is assigned
type 6;. As we will see shortly, we can make an asymp-
totic growth prediction irrespective of H®. Given that
AO;(H") = 0, we can infer that whenever 7; (H*, a;, 0;) >
0 for action a; and type 6, then 7;(H*, a;,0) = 0 for all
other types 0 # 0. Therefore, we can write (8) as

L'(H'10;) = A(0;) > mi(H',a5,6;)

aj€A;

(10)

Next, given that AS;(H") = 0, we know that there exists
an action a; such that 7;(H*, a;,0;) = 1, and therefore
we can conclude that L'(H'|6;) = A(6;). This shows that
the history H? is irrelevant to the asymptotic growth rate
of L. Finally, since >y .o A(6;) = 1, we know that the
denominator in (1) will be 1, and we can ultimately conclude
that Prj(ﬁj\Ht) = A(Gj) ]

Theorem 2 explains why the sum posterior converges to the
correct type distribution in Example 2. Since the types 6 4
and 6 always choose different actions and are completely
deterministic (i.e. the average overlap and stochasticity are
always zero), the sum posterior is guaranteed to converge
to the type distribution. On the other hand, in Example 3
the types 04 and 6 4 5 produce an overlap whenever action
A is chosen, and 0 4 g is completely random. Therefore, the
average overlap and stochasticity are always positive, and
an incorrect type distribution was learned.
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Error
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Figure 1: Example run in random SBG with 2 players, 10 ac-
tions, and 100 states. Player j has 3 reinforcement learning types
with e-greedy action selection (decreasing linearly from € = 0.7
att = 1000,to ¢ = 0 att = 2000). The error at time ¢ is
Eej |Pr; (60;|H") — A(6;)| where Pr; is the sum posterior.

The assumptions made in Theorem 2, namely that the av-
erage overlap and stochasticity converge to zero, require
practical justification. First of all, it is important to note that
it is only required that these converge to zero on average as
t — oo. This means that in the beginning there may be arbi-
trary overlap and stochasticity, as long as these go to zero
as the game proceeds. In fact, with respect to stochasticity,
this is precisely how the exploration-exploitation dilemma
[Sutton and Barto, 1998] is solved in practice: In the early
stages, the agent randomises deliberately over its actions in
order to obtain more information about the environment (ex-
ploration) while, as the game proceeds, the agent becomes
gradually more deterministic in its action choices so as to
maximise its payoffs (exploitation). Typical mechanisms
which implement this are e-greedy and Softmax/Boltzmann
exploration [Sutton and Barto, 1998]. Figure 1 demonstrates
this in a SBG in which player j has 3 reinforcement learning
types. The payoffs for the types were such that the average
overlap would eventually go to zero.

Regarding the average overlap converging to zero, we be-
lieve that this is a property which should be guaranteed by
design, for the following reason: If the user-defined type
space ©7 is such that there is a constantly high average over-
lap, then this means that the types 67 € ©7 are in effect very
similar. However, types which are very similar are likely
to produce very similar trajectories in the planning step of
HBA (cf. Hin (2)) and, therefore, constitute redundancy in
both time and space. Therefore, we believe it is advisable to
use type spaces which have low average overlap.

4.3 CORRELATED POSTERIOR

An implicit assumption in the definition of (1) is that
the type distribution A can be represented as a product
of n independent factors (one for each player), so that
A(#) =TI, A;(0;). Therefore, since the sum posterior is
in the form of (1), it is in fact only guaranteed to learn in-
dependent type distributions. This is opposed to correlated
type distributions, which cannot be represented as a product



of n independent factors. Correlated type distributions can
be used to specify constraints on type combinations, such
as “player j can only have type 6; if player & has type 0;,”.
The following example demonstrates how the sum posterior
fails to converge to a correlated type distribution:

Example 4. Consider a SBG with 3 players. Player 1 is
controlled by HBA using a sum posterior. Players 2 and
3 each have two types, 4 and 6p, which are defined
as in Example 2. The type distribution A chooses types
with probabilities A(04,05) = A(f0p,04) = 0.5 and
A(0a,04) = A(0p,05) = 0. In other words, player 2 can
never have the same type as player 3. From the perspective
of HBA, each type (and hence action) is chosen with equal
probability for both players. Thus, despite the fact that there
is zero overlap and stochasticity, the sum posterior will even-
tually assign probability 0.25 to all constellations of types,
which is incorrect. This means that HBA fails to recognise
that the other players never choose the same action.

In this section, we propose a new posterior which can learn
any correlated type distribution:

Definition 8. The correlated posterior is defined as

t—1

Pr(6_,|H) = nP(O-) Y ] m(H"

7=0 9]'6‘977;

T
7aj7

0;) (11

where P specifies prior probabilities (or beliefs) over ©_;
(analogous to P;) and 7 is a normalisation constant.

The correlated posterior is closely related to the sum poste-
rior. In fact, in converges to the true type distribution under
the same conditions as the sum posterior:

Theorem 3. Let I' be a SBG with a correlated type distri-
bution A. If HBA uses the correlated posterior, then, for
t — oo: If AO;(H") = 0 and AS;(H") = 0 for all players
J 75 1, then Pr(H,i\Ht) = A(O,l) forall0_; € ©_,.

Proof. Proof is analogous to proof of Theorem 2. O

It is easy to see that the correlated posterior would learn
the correct type distribution in Example 4. Note that, since
it is guaranteed to learn any correlated type distribution, it
is also guaranteed to learn any independent type distribu-
tion. Therefore, the correlated posterior would also learn the
correct type distribution in Example 2. This means that the
correlated posterior is complete in the sense that it covers the
entire spectrum of pure/mixed and independent/correlated
type distributions. However, this completeness comes at a
higher computational complexity. While the sum posterior is
in O(nmax; |©;|) time and space, the correlated posterior
is in O(max; |©;|™) time and space. In practice, however,
the time complexity can be reduced drastically by comput-
ing the probabilities 7;(H",a},0;) only once for each j
and 0; € O, (as in the sum posterior), and then reusing
them in subsequent computations.
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S INACCURATE TYPE SPACES

Each user-defined type 67 in ©7 is a hypothesis by the user
regarding how player j might behave. Therefore, ©] may
be inaccurate in the sense that none of the types therein
accurately predict the observed behaviour of player j. This
is demonstrated in the following example:

Example 5. Consider a SBG with two players and actions
L and R. Player 1 is controlled by HBA while player 2
has a single type, 01z, which chooses L,R,L,R, etc. HBA is
provided with ©% = {03, 07 p }, where 07, always chooses
R while 67 5 chooses L,R,R,L,R,R etc. Both user-defined
types are inaccurate in the sense that they predict player 2’s
actions in only ~ 50% of the game.

Two important theoretical questions in this context are how
closely the user-defined type spaces ©7 have to approximate
the real type spaces ©; in order for HBA to be able to (1)
solve the task (i.e. bring the SBG into a terminal state), and
(2) achieve maximum payoffs. These questions are closely
related to the notions of flexibility and efficiency [ Albrecht
and Ramamoorthy, 2013] which, respectively, correspond
to the probability of termination and the average payoff per
time step. In this section, we are primarily concerned with
question 1, and we are concerned with question 2 only in so
far as that we want to solve the task in minimal time. (Since
reducing the time until termination will increase the average
payoff per time step, i.e. increase efficiency.) This focus is
formally captured by the following assumption, which we
make throughout this section:

Assumption 6. Let player ¢ be controlled by HBA, then
ui(s,a,60;) = 1iff. s € S, else 0.

Assumption 6 specifies that we are only interested in reach-
ing a terminal state, since this is the only way to obtain a
none-zero payoff. In our analysis, we consider discount fac-
tors «y (cf. Algorithm 1) with v = 1 and v < 1. While all
our results hold for both cases, there is an important distinc-
tion: If v = 1, then the expected payoffs (2) correspond to
the actual probability that the following state can lead to (or
is) a terminal state (we call this the success rate), whereas
this is not necessarily the case if v < 1. This is since vy < 1
tends to prefer shorter paths, which means that actions with
lower success rates may be preferred if they lead to faster
termination. Therefore, if ¥ = 1 then HBA is solely inter-
ested in termination, and if v < 1 then it is interested in fast
termination, where lower ~y prefers faster termination.

5.1 METHODOLOGY OF ANALYSIS

Given a SBG I', we define the ideal process, X, as the pro-
cess induced by I' in which player ¢ is controlled by HBA
and in which HBA always knows the current and all future
types of all players. Then, given a posterior Pr and user-
defined type spaces O for all j # i, we define the user
process, Y , as the process induced by I' in which player ¢



is controlled by HBA (same as in X)) and in which HBA
uses Pr and ©7 in the usual way. Thus, the only difference
between X and Y is that X can always predict the player
types whereas Y approximates this knowledge through Pr
and ©. We write E; (H*|C) to denote the expected pay-
off (as defined by (2)) of action a; in state st after history
H',in process C € {X,Y}.

The idea is that X constitutes the ideal solution in the sense
that E%¢ (H"|X) corresponds to the actual expected payoff,
which means that HBA chooses the truly best-possible ac-
tions in X. This is opposed to EZ; (H"'|Y"), which is merely
the estimated expected payoff based on Pr and ©7, so that
HBA may choose suboptimal actions in Y. The methodol-
ogy of our analysis is to specify what relation Y must have
to X to satisfy certain guarantees for termination.

We specify such guarantees in PCTL [Hansson and Jonsson,
1994], a probabilistic modal logic which also allows for the
specification of time constraints. PCTL expressions are in-
terpreted over infinite histories in labelled transition systems
with atomic propositions (i.e. Kripke structures). In order to
interpret PCTL expressions over X and Y, we make the fol-
lowing modifications without loss of generality: Firstly, any
terminal state 5 € S is an absorbing state, meaning that if a
process is in s, then the next state will be 5 with probability
1 and all players receive a zero payoff. Secondly, we intro-
duce the atomic proposition term and label each terminal
state with it, so that term is true in s if and only if s € S.

We will use the following two PCTL expressions:
FSt <oo
—pterm, FX ¥term
wheret € N, p € [0,1], and -€ {>,>}.

Ffzfterm specifies that, given a state s, with a probability
of = p a state s’ will be reached from s within ¢ time steps
such that s satisfies term. The semantics of F.5°term
are similar except that s’ will be reached in arbitrary but
finite time. We write s =¢ ¢ to say that a state s satisfies
the PCTL expression ¢ in process C' € {X,Y'}.

5.2 CRITICAL TYPE SPACES

In the following section, we sometimes assume that the
user-defined type spaces ©7 are uncritical:

Definition 9. The user-defined type spaces O are critical

if there is S¢ C S\ S which satisfies:

1. For each H' € H with st € S¢, there is a; € A; such
that ES (H'|Y') > 0 and ES (H'|X) >0

There is a positive probability that Y may eventually get
into a state s¢ € S¢ from the initial state s°

If Y is in a state in S¢, then with probability 1 it will
always be in a state in S° (i.e. it will never leave S¢)

We say ©] are uncritical if they are not critical.
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Intuitively, critical type spaces have the potential to lead
HBA into a state space in which it believes it chooses the
right actions to solve the task, while other actions are actu-
ally required to solve the task. The only effect that its actions
have is to induce an infinite cycle, due to a critical inconsis-
tency between the user-defined and true type spaces. The
following example demonstrates this:

Example 6. Recall Example 5 and let the task be to choose
the same action as player j. Then, ©7 is uncritical because
HBA will always solve the task at ¢ = 1, regardless of the
posterior and despite the fact that © is inaccurate. Now, as-
sume that @}‘ = {0%,} where 6%,; chooses actions R,L,R,L
etc. Then, @;f is critical since HBA will always choose the
opposite action of player 7, thinking that it would solve the
task, when a different action would actually solve it.

A practical way to ensure that the type spaces O are (even-
tually) uncritical is to include methods for opponent mod-
elling in each ©7 (e.g. as in [Albrecht and Ramamoorthy,
2013, Barrett et al., 2011]). If the opponent models are guar-
anteed to learn the correct behaviours, then the type spaces
O7 are guaranteed to become uncritical. In Example 6, any
standard modelling method would eventually learn that the
true strategy of player j is 07 . As the model becomes
more accurate, the posterior gradually shifts towards it and
eventually allows HBA to take the right action.

5.3 TERMINATION GUARANTEES

Our first guarantee states that if X has a positive probability
of solving the task, then so does Y":

Property 1. s =x FS°term = s =y FSg°term

We can show that Property 1 holds if the user-defined type
spaces O7 are uncritical and if Y only chooses actions for
player ¢ with positive expected payoff in X.

Let A(H!|C) denote the set of actions that process C' may
choose from in state s after history H', i.e. A(H!|C) =
arg max,, E% (H'|C) (cf. step 3 in Algorithm 1).

Theorem 4. Property 1 holds if ©7 are uncritical and

VH'€ HVa; € A(H'|Y) : EG(H'IX) >0 (12
Proof. Assume s9 Ex F><§°term. Then, we know that X
chooses actions a; which may lead into a state s’ such that
s Ex F><5’° term, and the same holds for all such states
s'. Now, given (12) it is tempting to infer the same result
for Y, since Y only chooses actions a; which have positive
expected payoff in X and, therefore, could truly lead into a
terminal state. However, (12) alone is not sufficient to infer
s' py F$g°term because of the special case in which Y
chooses actions a; such that E% (H*|X) > 0 but without
ever reaching a terminal state. This is why we require that the
user-defined type spaces O are uncritical, which prevents
this special case. Thus, we can infer that s’ =y F ><(;>° term,
and hence Property 1 holds. O



The second guarantee states that if X always solves the task,
then so does Y:

Property 2. s° =x FSterm = s |5y FS term

We can show that Property 2 holds if the user-defined type
spaces O are uncritical and if Y only chooses actions for
player ¢ which lead to states into which X may get as well.

Let u(H?, s|C) be the probability that process C' transitions
into state s from state s’ after history H',i.e. u(H®, s|C) =
ﬁZaieA Za,i T(Sta <ai7 a’—i>a 5) Hj Ty (Htv aj, 9;) with
A= A(H'|C),and let u(H',5'|C) = 3 oo (H', s|C)
for S’ C S.

Theorem 5. Property 2 holds if ©7 are uncritical and

VH'e HVs € S:pu(H' s|Y)>0= pu(H" s|X)>0
(13)

Proof. The fact that s° |y FS term means that,
throughout the process, X only transitions into states s with
s Ex FSterm. As before, it is tempting to infer the
same result for Y based on (13), since it only transitions
into states which have maximum success rate in X. How-
ever, (13) alone is not sufficient since Y may choose actions
such that (13) holds true but Y will never reach a terminal
state. Nevertheless, since the user-defined type spaces ©7
are uncritical, we know that this special case will not occur,
and hence Property 2 holds. O

We note that, in both Properties 1 and 2, the reverse direction
holds true regardless of Theorems 4 and 5. Furthermore, we
can combine the requirements of Theorems 4 and 5 to ensure
that both properties hold.

The next guarantee subsumes the previous guarantees by
stating that X and Y have the same minimum probability
of solving the task:

Property 3. s° |=x F5term = 50 =y FS tern

We can show that Property 3 holds if the user-defined type
spaces O are uncritical and if Y only chooses actions for
player ¢ which X might have chosen as well.

Let R(a;, H!|C) be the success rate of action a;, formally
R(a;, H'|C) = E$(H'|C) with v = 1 (so that it corre-
sponds to the actual probability with which a; may lead
to termination in the future). Define X i, and X, to
be the processes which for each H? choose actions a; €
A(H?|X) with, respectively, minimal and maximal success
rate R(a;, H'|X).

Theorem 6. If @; are uncritical and

VH'e H: A(H'|Y) C A(H|X) (14)
then

(1) for v = 1: Proposition 3 holds in both directions
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i . <0 <oo 0 <o
(i) fory < 1: 8" px FS%term = s” |y FSPterm

with pin < ¢ < Pmax for ¢ € {p,p’}, where puin
and ppax are the highest probabilities such that s0 Ex

<oo 0 <oo
szmmterm and 5" [=x >Pmax CS LM

min

max

Proof. (i): Since v = 1, all actions a; € A(H'|X) have the
same success rate for a given H?, and given (14) we know
that Y’s actions always have the same success rate as X'’s
actions. Provided that the type spaces ©7 are uncritical, we
can conclude that Property 3 must hold, and for the same
reasons the reverse direction must hold as well.

(ii): Since v < 1, the actions a; € A(H!|X) may have
different success rates. The lowest and highest chances that
X solves the task are precisely modelled by Xy, and X ax,
and given (14) and the fact that @; are uncritical, the same
holds for Y. Therefore, we can infer the common bound
Pmin < {P, '} < Pmax as defined in Theorem 6. O

Properties 1 to 3 are indefinite in the sense that they make
no restrictions on time requirements. Our fourth and final
guarantee subsumes all previous guarantees and states that
if there is a probability p such that X terminates within t
time steps, then so does Y for the same p and ¢:

Property 4. s° =x FE;term = ' =y FE;term

We believe that Property 4 is an adequate criterion of op-
timality for the type spaces O] since, if it holds, ©} must
approximate ©; in a way which allows HBA to plan (al-
most) as accurately — in terms of solving the task — as the
“ideal” HBA in X which always knows the true types.

What relation must Y have to X to satisfy Property 4? The
fact that Y and X are processes over state transition systems
means we can draw on methods from the model checking
literature to answer this question. Specifically, we will use
the concept of probabilistic bisimulation [Larsen and Skou,
1991], which we here define in the context of our work:

Definition 10. A probabilistic bisimulation between X and
Y is an equivalence relation B C S x .S such that

(i) (s,s%) € B
(i) sx ':X term < Sy ':y term for all (SX7Sy) €eB

(iii) u(HY, S|X) = p(HL, S|Y') for any histories HY,, HL
with (s, s%,) € B and all equivalence classes S under B.

Intuitively, a probabilistic bisimulation states that X and Y
do (on average) match each other’s transitions. Our defini-
tion of probabilistic bisimulation is most general in that it
does not require that transitions are matched by the same
action or that related states satisfy the same atomic proposi-
tions other than termination. However, we do note that other
definitions exist that make such additional requirements, and
our results hold for each of these refinements.

The main contribution of this section is to show that the



optimality criterion expressed by Property 4 holds in both
directions if there is a probabilistic bisimulation between X
and Y. Thus, we offer an alternative formal characterisation
of optimality for the user-defined type spaces ©7:

Theorem 7. Property 4 holds in both directions if there is a
probabilistic bisimulation between X and Y.

Proof. First of all, we note that, strictly speaking, the stan-
dard definitions of bisimulation (e.g. [Baier, 1996, Larsen
and Skou, 1991]) assume the Markov property, which means
that the next state of a process depends only on the current
state of the process. In contrast, we consider the more gen-
eral case in which the next state may depend on the history
H! of previous states and joint actions (since the player
strategies 7; depend on H*). However, one can always en-
force the Markov property by design, i.e. by augmenting
the state space .S to account for the relevant factors of the
past. In fact, we could postulate that the histories as a whole
constitute the states of the system, i.e. S = H. Therefore,
to simplify the exposition, we assume the Markov property
and we write (s, S|C) to denote the cumulative probability
that C' transitions from state s into any state in S.

Given the Markov property, the fact that B is an equivalence
relation, and u(sx, S|X) = u(sy, S|Y) for (sx, sy) € B,
we can represent the dynamics of X and Y in a common
graph, such as the following one:

The nodes correspond to the equivalence classes under B. A
directed edge from S, t0 S specifies that there is a positive
probability fiap = p(sx, S| X) = pu(sy,Sp|Y) that X and
Y transition from states sx, sy € S, to states sy, sy € Sy
Note that sx, sy and sy, s} need not be equal but merely
equivalent, i.e. (sx,sy) € B and (s, s}) € B. There is
one node (S’o) that contains the initial state s° and one node
(§6) that contains all terminal states S and no other states.
This is because once X and Y reach a terminal state they
will always stay in it (i.e. u(s, S|X) = u(s, S|Y) = 1 for
s € S) and since they are the only states that satisfy term.
Thus, the graph starts in S’o and terminates (if at all) in Sﬁ.

Since the graph represents the dynamics of both X and Y,
it is easy to see that Property 4 must hold in both directions.
In particular, the probabilities that X and Y are in node S
at time ¢ are identical. One simply needs to add the prob-
abilities of all directed paths of length ¢ which end in S
(provided that such paths exist), where the probability of
a path is the product of the (4, along the path. Therefore,
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X and Y terminate with equal probability, and on average
within the same number of time steps. O

Some remarks to clarify the usefulness of this result: First
of all, in contrast to Theorems 4 to 6, Theorem 7 does not
explicitly require ©7 to be uncritical. In fact, this is implicit
in the definition of probabilistic bisimulation. Moreover,
while the other theorems relate Y and X for identical his-
tories H?, Theorem 7 relates Y and X for related histories
Hl, and H%, making it more generally applicable. Finally,
Theorem 7 has an important practical implication: it tells
us that we can use efficient methods for model checking
(e.g. [Baier, 1996, Larsen and Skou, 1991]) to verify opti-
mality of ©7. In fact, it can be shown that for Property 4
to hold (albeit not in the other direction) it suffices that
Y be a probabilistic simulation [Baier, 1996] of X, which
is a coarser preorder than probabilistic bisimulation. How-
ever, algorithms for checking probabilistic simulation (e.g.
[Baier, 1996]) are computationally much more expensive
(and fewer) than those for probabilistic bisimulation, hence
their practical use is currently limited.

6 CONCLUSION

This paper complements works such as [Albrecht and Rama-
moorthy, 2013, Barrett et al., 2011, Carmel and Markovitch,
1999] — with a focus on HBA due to its generality — by
providing answers to two important theoretical questions:
“Under what conditions does HBA learn the type distribution
of the game?” and “How accurate must the user-defined type
spaces be for HBA to solve its task?” With respect to the
first question, we analyse the convergence properties of two
existing posteriors and propose a new posterior which can
learn correlated type distributions. This provides the user
with formal reasons as to which posterior should be chosen
for the problem at hand. With respect to the second question,
we describe a methodology in which we analyse the require-
ments of several termination guarantees, and we provide a
novel characterisation of optimality which is based on the
notion of probabilistic bisimulation. This gives the user a
formal yet practically useful criterion of what constitutes
optimal type spaces. The results of this work improve our
understanding of how a method such as HBA can be used
to effectively solve agent interaction problems in which the
behaviour of other agents is not a priori known.

There are several interesting directions for future work. For
instance, it is unclear what effect the prior probabilities P;
have on the performance of HBA, and if a criterion for
optimal P; could be derived. Furthermore, since our con-
vergence proofs in Section 4 are asymptotic, it would be
interesting to know if useful finite-time error bounds exist.
Finally, our analysis in Section 5 is general in the sense
that it applies to any posterior. This could be refined by an
analysis which commits to a specific posterior.
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Abstract

Parallel predictive prefetching is a new frame-
work for accelerating a large class of widely-
used Markov chain Monte Carlo (MCMC) algo-
rithms. It speculatively evaluates many potential
steps of an MCMC chain in parallel while ex-
ploiting fast, iterative approximations to the tar-
get density. This can accelerate sampling from
target distributions in Bayesian inference prob-
lems. Our approach takes advantage of whatever
parallel resources are available, but produces re-
sults exactly equivalent to standard serial execu-
tion. In the initial burn-in phase of chain evalu-
ation, we achieve speedup close to linear in the
number of available cores.

INTRODUCTION

Probabilistic modeling is one of the mainstays of mod-
ern machine learning, and Bayesian methods are partic-
ularly appealing due to their ability to represent uncer-
tainty in parameter estimates and latent variables. Unfor-
tunately, Bayesian inference can be difficult in the real
world. Many problems are not amenable to exact inference,
and so require approximate inference in the form of Monte
Carlo estimates or variational approximations. These pro-
cedures require many evaluations of a target posterior den-
sity, and each evaluation can be expensive, especially on
large data sets. Our work accelerates Markov chain Monte
Carlo (MCMC) but, in contrast to other recent proposals,
we arrive at a method in which the stationary distribution is
exactly the target posterior. This method exploits approxi-
mations to the target density to speculatively evaluate many
potential future steps of the chain in parallel.

The increasing availability of multi-core machines, and
many-core cluster deployments, led to our focus on paral-
lelism. Unfortunately, the execution of MCMC algorithms
such as Metropolis-Hastings (MH) is inherently serial. One
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can run many independent chains at once, but this does not
change the mixing time for any single chain. Since mixing
time can be prohibitively large, especially when the target
function is high-dimensional and multi-modal, this embar-
rassingly parallel approach tends not to reduce the time to
achieve a useful estimator. Sometimes the target function
evaluation can be parallelized, or multiple chains in an en-
semble method can be run in parallel, but these strategies
are not available in general.

We instead use speculative execution to parallelize a large
class of MCMC methods. This approach, sometimes called
prefetching, has received some attention in the past decade,
but does not seem to be widely recognized. Speculative ex-
ecution is the general technique of optimistically perform-
ing computational work that might be eventually useful. To
understand speculative execution in the context of MCMC,
consider the MH algorithm in Algorithm 1, in which each
iteration consists of a proposal that is stochastically ac-
cepted or rejected (Metropolis et al., 1953). MH uses ran-
domness in two ways: to generate uniform random vari-
ables and to generate proposals. Given a random stream
and an initial state, all possible future states of the chain
can be thought of as the nodes of a binary tree (Figure 1).
Serial execution of MH yields a sequence of states that
maps to a single path of nodes through the tree. Starting
at the root, each transition stochastically chooses between
the current state (left child) and the proposal (right child).
This requires evaluating the target density at the root and
each subsequent proposal. The main goal of prefetching is
to perform these evaluations in parallel. However, only the
immediate transition that compares the root of the tree to
the first proposal is known a priori to be on the true com-
putational path. Prefetching schemes use parallel cores to
evaluate these two nodes and also speculatively evaluate
additional nodes further down the tree.

An effective prefetching implementation must overcome
several challenges. Some involve correctness; for example,
care is required in the treatment of pseudo-randomness lest
bias be introduced (i.e., each node’s source of randomness
must produce exactly the same results as it would in a serial



Algorithm 1 Metropolis-Hastings

Input: initial state 6p, number of iterations T, tar-
get 7(0), proposal ¢(6'| 6)
Output: samples 6y,...,0r
fortr=0,...,T—1do
6" ~q(6'16)
u ~ Unif(0, 1)

if 7(0")q(6:16")

!
w(o)q(0'0) then

61=26
else
6t+1 =6
end if
end for

execution). But the key challenge is performance. A naive
scheduling scheme always requires ~ 2° parallel cores to
achieve a speedup of s. Less naive schemes improve on
this speedup using the average proposal acceptance rate: if
most proposals are rejected, a prefetching implementation
should prefetch more heavily among the right children of
the left-most branch, i.e., the path representing a sequence
of rejected proposals. Although in practice the optimal ac-
ceptance rate is less than 0.5 (Gelman et al., 1996), tiny
acceptance rates, which lead to good speedup, cause less
effective mixing. If the acceptance rate is set near the 0.234
value of Gelman et al., speedup is still at most logarithmic.

We evaluate a new scheduling approach that uses local in-
formation to improve speedup relative to other prefetch-
ing schemes. We adaptively adjust speculation based not
only on the local average proposal acceptance rate (which
changes as evaluation progresses), but also on the actual
random deviate used at each state. Even better, we make use
of any available fast approximations to the transition oper-
ator. Though these approximations are not required, when
they are available or learnable, we leverage them to make
better scheduling decisions.

We present results using a series of increasingly expensive
but more accurate approximations. These decisions are fur-
ther improved by modeling the error of these approxima-
tions, and thus the uncertainty of the scheduling decisions.
Performance depends critically on how we model the ap-
proximations, and a key insight is in our error model for
this setting; much smaller error, and therefore more pre-
cise prediction, is obtained by modeling the error of the
difference between two proposal evaluations, rather than
evaluating the errors of the proposals separately. Our cur-
rent implementation uses approximations that correspond
to incremental evaluation of the target distribution, but our
framework does not require this. We could use other exam-
ples of target density approximation, including exploiting
closed form approximations such as Taylor series (Chris-
ten and Fox, 2005) and fitting linear or Gaussian Process
regressions (Conrad et al., 2014).
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Motivated by large-scale Bayesian inference, we present
results using incremental approximations that arise from
evaluating a subset of factors in a larger product. As we
show on inference problems using both real and synthetic
data, our system takes advantage of parallelism to speed up
the wall-clock time of serial Markov chain evaluation. Un-
like prior systems, we achieve near-linear speedup during
burn-in on up to 64 cores spread across two or more ma-
chines. As evaluation progresses, speedup eventually de-
creases to logarithmic in the number of cores; we show why
this is hard to avoid.

2 RELATED WORK

In this section, we summarize existing parallel strate-
gies for accelerating MCMC, motivated by the computa-
tional cost of MCMC. This cost is most often determined
by evaluation of the target density relative to mixing. In
Metropolis—Hastings, it is incurred when the target is evalu-
ated to determine the acceptance ratio of a proposed move;
in slice sampling (Neal, 2003) an expensive target slows
both bracket expansion and contraction. We focus on the
increasingly common case where the target is expensive
and the dominant computational cost. This evaluation can
sometimes be parallelized directly, e.g., when the target
function is a product of many individually expensive terms.
This can arise in Bayesian inference if the target easily de-
composes into one likelihood term for each data item. Prac-
tically achievable speedup in this setting is limited by the
communication and computational costs associated with
aggregating the partial evaluations. In general, the target
function cannot be parallelized; we divide methods that ac-
celerate MCMC via other sources of parallelism into two
classes: ensemble sampling and prefetching.

Other work speeds up MCMC evaluation using approxi-
mation. Stochastic variational inference techniques achieve
scalable approximate inference via randomized approxima-
tions of gradients (Hoffman et al., 2013), while recent de-
velopments in MCMC have implemented efficient transi-
tion operators that lead to approximate stationary distribu-
tions (Welling and Teh, 2011; Korattikara et al., 2014; Bar-
denet et al., 2014). Recent other work uses a lower bound
on the local likelihood factor to simulate from the exact
posterior distribution while evaluating only a subset of the
data at each iteration (Maclaurin and Adams, 2014). Un-
like such prior work, we speed up exact evaluation of many
existing MCMC algorithms.

2.1 ENSEMBLE SAMPLERS

Ensemble (or population) methods for sampling run multi-
ple chains and accelerate mixing by sharing information
between the chains. The individual chains can be simu-
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Figure 1: Schematic of a MH simulation superimposed on
the binary tree of all possible chains. Each level of the tree
represents an iteration, where branching to the right/left in-
dicates accepting/rejecting a proposal. Random variates (on
right) are shared across each layer. Thick red arrows high-
light one simulated chain starting at the root 8’; the first
proposal is accepted and the next two are rejected, yield-
ing as output: 0/, 02 6!!5. Dark filled circles indicate
states where the target density is evaluated during simula-
tion. Those not on the chain’s path correspond to rejected
proposals. Their siblings are pale filled circles on this path;
since each is a copy of its parent, the target density does not
need to be reevaluated to compute the next transition.

lated in parallel; any information sharing between chains
requires communication. Examples include parallel tem-
pering (Swendsen and Wang, 1986), the emcee implemen-
tation (Foreman-Mackey et al., 2012) of affine-invariant
ensemble sampling (Goodman and Weare, 2010), and a
parallel implementation of generalized elliptical slice sam-
pling (Nishihara et al., 2014).

2.2 PREFETCHING

The second class of parallel MCMC algorithms uses paral-
lelism through speculative execution to accelerate individ-
ual chains. This idea is called prefetching in some of the lit-
erature. To the best of our knowledge, prefetching has only
been studied in the context of MH-style algorithms where,
at each iteration, a single new proposal is drawn from a pro-
posal distribution and stochastically accepted or rejected.
The typical body of an MH implementation is a loop con-
taining a single conditional statement and two associated
branches. One can then view the possible execution paths
as a binary tree, as illustrated in Figure 1. The vanilla ver-
sion of prefetching speculatively evaluates all paths in this
binary tree (Brockwell, 2006). The correct path will be ex-
actly one of these, so with J cores, this approach achieves
a speedup of log, J with respect to single core execution,
ignoring communication and bookkeeping overheads.

Naive prefetching can be improved by observing that the
two branches are not taken with equal probability. On av-
erage, the left-most branch, corresponding to a sequence of
rejected proposals, tends to be more probable; the classic
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result for the optimal MH acceptance rate is 0.234 (Roberts
et al., 1997), so most prefetching scheduling policies have
been built around the expectation of rejection. Let o < 0.5
be the expected probability of accepting a proposal. Byrd
et al. (2008) introduced a procedure, called “speculative
moves,” that speculatively evaluates only along the “reject”
branch of the binary tree; in Figure 1, this corresponds to
the left-most branch. In each round of their algorithm, only
the first k out of J—1 extra cores perform useful work,
where k is the number of rejected proposals before the first
accepted proposal, starting from the root of the tree. The
expected speedup is then:

- 1- 1
1+Ek) <14 Y k(1-a)fa <1+ ¢
k=0

Note that the first term on the left is due to the core at
the root of the tree, which always performs useful com-
putation in the prefetching scheme. When o = 0.23, this
scheme yields a maximum expected speedup of about 4.3;
it achieves an expected speedup of about 4 with 16 cores.
If only a few cores are available, this may be a reason-
able policy, but if many cores are available, their work is
essentially wasted. In contrast, the naive prefetching pol-
icy achieves speedup that grows as the log of the num-
ber of cores. Byrd et al. (2010) later considered the special
case where the evaluation of the likelihood function occurs
on two timescales, slow and fast. They call this method
“speculative chains”; it modifies “speculative moves” so
that whenever the evaluation of the likelihood function is
slow, any available cores are used to speculatively evaluate
the subsequent chain, assuming the slow step resulted in an
accept.

In work closely related to ours, Strid (2010) extend the
naive prefetching scheme to allocate cores according to
the optimal “tree shape” with respect to various assump-
tions about the probability of rejecting a proposal, i.e., by
greedily allocating cores to nodes that maximize the depth
of speculative computation expected to be correct (Strid,
2010). Their static prefetching scheme assumes a fixed ac-
ceptance rate; versions of this were proposed earlier in the
context of simulated annealing (Witte et al., 1991). Their
dynamic scheme estimates acceptance probabilities, e.g., at
each level of the tree by drawing empirical MH samples
(100,000 in the evaluation), or at each branch in the tree
by computing min{f3,r} where 8 is a constant (f =1 in
the evaluation) and r is an estimate of the MH ratio based
on a fast approximation to the target function. Alterna-
tively, Strid proposes using the approximate target function
to identify the single most likely path on which to perform
speculative computation. Strid also combines prefetching
with other sources of parallelism to obtain a multiplicative
effect. To the best of our knowledge, these methods have
been developed for MH algorithms and evaluated on up to
64 cores, although usually many fewer.



3 PREDICTIVE PREFETCHING

We propose predictive prefetching, an improved scheduling
approach that accelerates exact MCMC. Like Strid’s dy-
namic prefetching procedure, we also exploit inexpensive
but approximate target evaluations. However, there are sev-
eral fundamental differences between our approach and ex-
isting prefetching methods. We combine approximate tar-
get evaluation with the fact that the random stream used by
a MCMC algorithm can be generated in advance and thus
incorporated into the estimates of the acceptance probabil-
ities at each branch in the binary tree. Critically, we also
model the error of the target density approximation, and
thus the uncertainty of whether a proposal will be accepted.
In addition, we identify a broad class of MCMC algorithms
that could benefit from prefetching, not just MH, and we
show how prefetching can exploit a series of approxima-
tions, not just a single one.

3.1 MATHEMATICAL SETUP

Consider a transition operator T (6 — 6’) which has 7(0)
as its stationary distribution on state space ®. Simulation
of such an operator typically proceeds using an “external”
source of pseudo-random numbers that can, without loss
of generality, be assumed to be drawn uniformly on the
unit hypercube %/. The transition operator is then a de-
terministic function 7 : @ x % — ©. Most practical transi-
tion operators — Metropolis—Hastings, slice sampling, efc.
— are actually compositions of two such functions, how-
ever. The first function produces a countable set of can-
didate points in ©, here denoted Q:® x %y — £ (0),
where (@) is the power set of ®. The second func-
tion R: P (@) x g — © then chooses one of the can-
didates for the next state in the Markov chain. Here we
have used %y and % to indicate the orthogonal parts
of % relevant to each part of the operator. In this setup,
the basic Metropolis—Hastings algorithm uses Q(-) to pro-
duce a tuple of the current point and a proposed point,
while multiple-try MH (Liu et al., 2000) and delayed-
rejection MH (Tierney and Mira, 1999; Green and Mira,
2001) create a larger set that includes the current point. In
the exponential-shrinkage variant of slice sampling (Neal,
2003), O(-) produces an infinite sequence of candidates that
converges to, but does not include, the current point.

This setup is a somewhat more elaborate treatment than
usual, but this is intended to serve two purposes: 1) make
it clear that there is a separation between generating a set
of possible candidates via Q(-) and selecting among them
with R(-), and 2) highlight that both of these functions
are deterministic functions, given the pseudo-random vari-
ates. Others have pointed out this “deterministic given the
randomness” view, and used it to construct alternative ap-
proaches to MCMC (Propp and Wilson, 1996; Neal, 2012).
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Figure 2: Schematic of the same MH simulation as in Fig-
ure 1, this time superimposed on the jobtree. This tree in-
cludes only those nodes in the original MH tree where a
new state is introduced and thus the target density must
be evaluated when comparing such a state to another. The
filled circles, corresponding to states where the target den-
sity is evaluated in a serial MH execution, are now directly
connected by a single path.

We separately consider Q(-) and R(-) because it is gen-
erally the case that Q(-) is inexpensive to evaluate and
does not require computation of the target density 7(0),
while R(-) must compare the target density at the can-
didate locations and so represents the bulk of the com-
putational burden. Parallel predictive prefetching observes
that, since Q(-) is cheap and the pseudo-random variates
can be produced in any order, the tree of possible future
states of the Markov chain can be constructed before any
of the R() functions are evaluated, as in Figure 1. The se-
quence of R(+) evaluations simply chooses a path down this
tree. Parallelism can be achieved by speculatively choos-
ing to evaluate R({6;},u) for some part of the tree that has
not yet been reached. If this node in the tree is eventually
reached, then we achieve a speedup.

For clarity, we henceforth focus on the straightforward
random-walk Metropolis—Hastings operator. In this special
case, Q(-) produces a tuple of the current point and a pro-
posal, and the function R: ® x ® x (0,1) — O takes these
two points, along with a uniform random variate u in (0, 1),
and selects one of the two inputs via:

1 e q(87]6) 7(6')
R(G,G’,u): 0 lf”q(ﬂ\?’) < () (D
0 otherwise

where g(-|-) is the proposal density corresponding to Q(-).
We write the acceptance ratio in this somewhat unusual
fashion to highlight the fact that the left-hand side of the
inequality does not require evaluation of the target density
and is easy to precompute.

3.2 THE JOBTREE

While the MH state tree in Figure 1 effectively repre-
sents a simulated chain as a path, it yields an awkward



representation of the computation necessary to produce a
chain. Specifically, transitions to right children (when a
proposal is accepted) align with this path but transitions
to left children (when a proposal is rejected) branch off it.
For our prefetching framework, we wanted a better repre-
sentation of this computation. To this end, we introduced
the Metropolis—Hastings jobtree, depicted in Figure 2. It
contains the same information as the MH state tree but rep-
resents only those states where new computation occurs,
i.e., where the target density must be evaluated in order to
compare such a state to another. Like the original tree, the
jobtree is generally binary, except that the root has only
one child. It includes the root node and all right children
of the MH state tree, corresponding to the current state and
all possible subsequent proposals — together, these specify
the possible distinct states and at what iteration each would
first appear. Paths on the jobtree represent computation in
the sense that they map to sequences of states where the
target density is evaluated during serial MH simulation; we
call any such path a computation path.

3.3 EXPLOITING PREDICTIONS

Consider a prefetching framework with J cores that uses
one core to compute the immediate transition and the oth-
ers to precompute transitions for possible future iterations.
If each precomputation falls along the actual Markov chain,
the framework will achieve the ideal linear speedup propor-
tional to J. If some of them do not fall along the chain, the
framework will fail to scale perfectly with the available re-
sources. For instance, recall that the naive framework that
evaluates transitions based on breadth-first search of the
prefetching state tree (Figure 1) will achieve speedup pro-
portional to log, J. Good speedup thus depends on making
good predictions of what path will be taken on the tree,
which is in turn determined by our prediction of whether
the threshold will be exceeded in Eq. 1.

Let p denote a node on the tree, 6, indicate the current state
at p, and 9,; indicate the proposal. We define

q(6p 6p)
R TCAT ?
where up is the MH threshold variate for node p. The
Markov chain’s steps are determined by iterations of com-
puting the indicator function 1, =1(rp < 7(6,)/7(6p)),
where a proposal is accepted iff 1, =1. The quanti-
ties 6, 9,’,, and rp can be inexpensively computed at any
time from the stream of pseudo-random numbers, without
examining the expensive target 77(-). The random variate u,
depends only on the depth (iteration) of p.

The precomputation schedule should maximize expected
speedup, which corresponds to the expected number of pre-
computations along the true computation path in the job-
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tree. To maximize this quantity, the framework needs to an-
ticipate which branches of the jobtree are likely to be taken.
The root node and its only child are always evaluated. We
associate with each remaining node p in the jobtree a pre-
dictor Y, that models the probability that the proposal is
accepted, given approximate or partial information. For ex-
ample, suppose that 7(-) is an approximation to the target
density 7(-), and assume that in log space, the error of this
approximation relative to the target density is normally dis-
tributed with some variance o2. Then, we could write the
predictor as:

Y, =Pr (logrp < 10g7t(9,’3) —logm(6p) ‘ 7%(-),02) 3)

oo

JV(z‘ log(6)) —log#(6,),07 ) dz. (4

logrp

As more information becomes available in the form
of better approximators, the predictor y, will change.
When 7(-) = 7(-), the predictor equals the indicator 1,. We
label the edges in the jobtree with branch probabilities: the
edge from a node p to its right child has branch probability
equal to the predictor Y, and the edge to its left child has
branch probability 1 — y,. Assuming that the predictions
at each node are independent, the probability that a node’s
computation is used is the product of the branch probabil-
ities along the path connecting the root to p; we call this
quantity the node’s expected utility. Those nodes with max-
imum expected utility should be scheduled for precompu-
tation. (The immediate transition will always be chosen: it
has no ancestors and utility 1.)

A predictor is always available — for instance, one can use
the recent acceptance probability — but many problems can
improve predictions using computation. To model this, we
define a sequence of predictors

(m)

"I/P %va m:0a1727"'7N7 (5)
where increasing m implies increasing accuracy,
and w,SN) =1p. Workers move through this sequence

until they perform the exact computation. The predictor
sequence affects scheduling decisions: once it becomes
sufficiently certain that a worker’s branch will not be taken,
that worker and its descendants should be reallocated to
more promising branches. Ultimately, every true step
of the Markov chain is computed to completion. The
approach simulates from the true stationary distribution,
not an approximation thereof. The estimators are used only
in prefetching.

There are several schemes for producing this estimator se-
quence, and predictive prefetching applies to any Markov
chain Monte Carlo problem for which approximations are
available. We focus on the important case where improved
estimators are obtained by including more and more of the
data in the posterior target distribution.



3.4 LARGE-SCALE BAYESIAN INFERENCE

In Bayesian inference with MCMC, the target density is
a (possibly unnormalized) posterior distribution. In most
modeling problems, such as those using graphical mod-
els, the target density can be decomposed into a product of
terms. If the data are conditionally independent given the
model parameters, there is a factor for each of the N data:

(6 [x) o< mo(6) w(x|6) = 70(6) INTﬂ(xn 16). ()

n=1

Here my(6) is a prior distribution and 7(x, | 6) is the likeli-
hood term associated with the nth datum. The logarithm of
the target distribution is a sum of terms

Z(0) =logm(6|x) =logm(0)+ ilogn(xn |10)+c,

n=1

where ¢ is an unknown constant that does not depend on 6
and can be ignored. Our predictive prefetching algorithm
uses this to form predictors ¥, as in Eq. 3; we again re-
frame Y, using log probabilities as

v, ~Pr(logr, < £(68")—£(0)), @)
where r, is the precomputed random MH threshold of
Eq. 2. One approach to forming this predictor is to use
a normal model for each .Z(6), as in Korattikara et al.
(2014). However, we can achieve a better estimator with
lower variance by modeling .Z(0) and £ (6’) together,
rather than separately. Expanding each log likelihood gives:

N
Z(0")— £L(0) =logmy(0') —logm(0) + Y A, (8)

n=1
A, =logm(x,|0") —logm(x,|0). )
In Bayesian posterior sampling, the proposal 6’ is usually a
perturbation of 8 and so we expect log 7t(x, | 6') to be cor-
related with log(x,|0). In this case, the differences A,
occur on a smaller scale and have a smaller variance com-
pared to the variance due to log w(x, | 6) across data terms.

A concrete sequence of estimators is obtained by subsam-
pling the data. Let {A,}"" | be a subsample of size m <N,
without replacement, from {A,, }51\7:1 . This subsample can be
used to construct an unbiased estimate of .Z(0") — .Z(6).
We model the terms of this subsample as i.i.d. from a nor-
mal distribution with bounded variance o2, leading to:

$<9/) _g(9> ~ W(ﬁmzé_r%z) . (10

The mean estimate [1,,, is empirically computable:

m

N N
Qi = log 7m9(0") — log 71(6) + - Y A

n=1

(1)
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The error estimate G, may be derived from s, //m,
where s, is the empirical standard deviation of the m sub-
sampled A, terms. To obtain a confidence interval for the
sum of N terms, we multiply this estimate by N and the
finite population correction /(N —m)/N, giving:

. N(N—m)
m = SmA| —————.
m

12)

We can now form the predictor W‘()m) by considering the tail
probability for logr,:

oo

v = | N (], 63 dz (13)
logrp
1 log,am—logrpﬂ
=—|l+ef| ——- . 14
s e ( V260 o
3.5 SYSTEM

Our system is fully parallel and runs on network clusters
of computers, each of which may comprise multiple cores.
We do not perform any affinity scheduling, so all cores
are treated identically whether they co-reside on the same
machine or not. Our system does not use shared memory;
rather, cores communicate via message passing. Note that
we assign one thread to each core. To date, the largest in-
stallation on which we have run is a shared cluster of 5
machines with a total of 160 cores, on which we have used
in parallel at least 64 cores spanning a minimum of 2 ma-
chines.

Our system executes predictive prefetching as follows. A
master node manages the jobtree and distributes a different
node in the jobtree to each worker. When a worker receives
a message to compute on node p, it first computes the cor-
responding proposal 6, (which may consume values from
the random sequence). It asynchronously transmits the pro-
posal and the new point in the random sequence back to
the master. It then starts evaluating the target density, pro-
ducing progressively improved approximations to the tar-
get that it periodically reports back to the master. Mean-
while, the master uses estimates of Z(6,) —£(6p) val-
ues, the appropriate rp constants, and an adaptive estimate
of the current acceptance probability to calculate the pre-

dictor l//,()m) for each node in the evaluation tree. To assign a
worker to a node, the master stochastically traverses down
the jobtree from the root, following branches according to
their branch probabilities, until it finds a node that is in-
active, i.e., no other worker is currently working on it. In
this way, the master stochastically assigns workers to those
nodes with highest expected utility. During computation,
expected utilities change. When the master notices that the
expected utility of a worker’s node falls below that of other
inactive nodes, the master tells the worker to abandon its
work. If the abandoned proposal becomes likely again, a
worker will pick it up where the earlier worker left off.



Burn-in

J i1 = 9575 ip = 24000 iz = 50000
1 16674 — 41978 — 87500 —
16 2730 6.1x 8678 4.3x 20318 4.3x
32 1731 9.6x 7539 5.6% 19046 4.6x
64 989 16.8x 5894 7.1x 15146 5.8x

Table 1: Cumulative time (in seconds) and speedup for
evaluating the Gaussian mixture model with different num-
bers of workers J.

In our implementation, the target posteriors log (6 |x)
and log7m(6’|x) are evaluated by separate workers. Our
normal model for the MH ratio based on a subsample of
size m depends on the empirical mean and standard devia-
tion of the differences A,, but we use an approximation to
avoid the extra communication required to keep track of all
these differences. The worker for 6 calculates

Gn(0) :1ogn0(e)+% Y logm(x,|6)  (15)
n=1

rather than the difference mean f1,, from Eq. 11. The master
can then compute fl,,, = G,,(0’) — G,,(0), but the empirical
standard deviation of differences, s,, in Eq. 12, must be es-
timated. We set

S = /Sn(0)2 +5(6')2 ~285,,(0)Sw(6"),  (16)
where S,,(6) denotes the empirical standard deviation of
the m logmw(x, | 6) terms, and ¢ approximates the correla-
tion between log 7(x,, | 0) and log 7 (x,, | 8'). We empirically
observe this correlation to be very high; in all experiments
we set ¢ = 0.9999. Note that this approximation only af-
fects the quality of our speculative predictions; it does not
affect the actual decision to accept or reject the proposal 6’.

Our implementation requires at least two cores, one master
and one worker. Note that when there is only one worker, it
is always performing useful computation for the immediate
transition at the root, leaving the master with essentially
nothing to do besides some bookkeeping.

4 EXPERIMENTS

Our evaluation focuses on MH for large-scale Bayesian in-
ference using the approximations described above (though
our framework can use any approximation scheme for the
target distribution). Our implementation is written in C++
and Python, and uses MPI for communication between the
master and worker cores.! We evaluate our implementa-
tion on up to 64 cores in a multicore cluster environment in
which machines are connected by 10GB ethernet and each

"https://github.com/elaine84/fetching
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Figure 3: Cumulative speedup relative to our baseline, as
a function of the number of MH iterations, for the mixture
of Gaussians problem. The different curves correspond to
different numbers of workers.

machine has 32 cores (four 8-core Intel Xeon E7-8837 pro-
cessors). We report speedups relative to serial computation
with one worker.

We evaluate our system on both synthetic and real Bayesian
inference problems. First, we consider the posterior den-
sity of the eight-component mixture of eight-dimensional
Gaussians used by Nishihara et al. (2014), where the like-
lihood involves 10° samples drawn from this model. Next,
we consider the posterior density of a Bayesian Lasso re-
gression (Park and Casella, 2008) that models molecu-
lar photovoltaic activity. The likelihood involves a dataset
of 1.8 x 10% molecules described by 56-dimensional real-
valued cheminformatic features (Olivares-Amaya et al.,
2011; Amador-Bedolla et al., 2013); each response is real-
valued and corresponds to a lengthy density functional the-
ory calculation (Hachmann et al., 2011, 2014).

In our experiments, we use a spherical Gaussian for the pro-
posal distribution. A simple adaptive scheme sets the scale
of this distribution, improving convergence relative to stan-
dard MH. Our approach falls under the provably conver-
gent adaptive algorithms studied by Andrieu and Moulines
(2006); we easily incorporated them into our framework.

We expect predictive prefetching to perform best when the
densities at a proposal and corresponding current point are
significantly different, which is common in the initial burn-
in phase of chain evaluation. In this phase, early estimates
based on small subsamples effectively predict whether the
proposal is accepted or rejected. When the density at the
proposal is very close to that at the current point — for exam-
ple, as the proposal distribution approaches the target distri-
bution — the outcome is inherently difficult to predict; early
estimates will be uncertain or even wrong. Incorrect esti-
mates could destroy speedup (no precomputations would
be useful). We hope to do better than this worst case, and
to at least achieve logarithmic speedup.



standard

mean deviation min max
nesg 3405 7253 50 26000
R 1.005 0.006 1.000 1.020

Table 2: Convergence statistics after burn-in (over itera-
tions ip—i3) for the Gaussian mixture model, computed over
the 64 dimensions of the model.

0 10000 20000 30000

iteration

40000 50000

Figure 4: Cumulative speedup relative to our baseline, as
a function of the number of MH iterations, for the mixture
of Gaussians problem. The different curves correspond to
different initial conditions; all curves are for 64 workers.

In our experiments, we divide the evaluation of the target
function into 100 batches. Thus, for the mixture problem,
each subsample contains 10* data items.

Table 1 shows the results for the Gaussian mixture model.
We run the model with the same initial conditions and
pseudorandom sequences with varying numbers of worker
threads. All experiments produce identical chains. We eval-
uate the cumulative time and speedup obtained at three
different iteration counts. The first, i1 = 9575 iterations,
are burn-in. After i; iterations, all dimensions of samples
achieve the Gelman-Rubin statistic R < 1.05, computed us-
ing two independent chains, where the first #; /2 samples
have been discarded (Gelman and Rubin, 1992). We then
run the model further to i3 iterations. Iterations i, = 24000
through i3 = 50000 are used to compute an effective num-
ber of samples nes. (Table 2 shows convergence statistics
after i3 iterations.) The results are as we hoped. The ini-
tial burn-in phase obtains better-than-logarithmic speedup
(though not perfect linear speedup). With 64 workers, the
chain achieves burn-in 16.8 x faster than with one worker.
After burn-in, efficiency drops as expected, but we still
achieve logarithmic speedup (rather than sub-logarithmic).
At 50000 iterations, speedup for each number of workers J
rounds to log, J.

Figure 3 explains these results by graphing cumulative
speedup over the whole range of iterations. The initial
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Figure 5: Example predictor trajectories for the mixture of
Gaussians. We show the predictor wf(,m) as a function of
subsample size m. Different colors indicate different pro-

posals. Burn-in is much easier to predict than convergence.

speedup is close to linear — we briefly achieve more than
40x speedup at J = 64 workers. As burn-in proceeds, cu-
mulative speedup falls off to logarithmic in J. Figure 4
shows cumulative speedup for the Gaussian mixture model
with several different initial conditions. We see a range of
variation due to differences in the adaptive scheme dur-
ing burn-in. The overall pattern is stable, however: good
speedup during burn-in followed by logarithmic speedup
later. Also note that speedup does not necessarily decrease
steadily, or even monotonically. At some initial conditions,
the chain enters an easier-to-predict region before truly
burning in; while in such a region, speedup is maintained.
Our system takes advantage of these regions effectively.

Figure 5 shows how our predictors behave both during and
after burn-in. During burn-in, estimates are effective, and
the predictor converges quite quickly to the correct indica-
tor. After burn-in, the new proposal’s target density is close
to the old proposal’s, and the estimates are similarly hard
to distinguish. Sometimes the random variate rp is small
enough for the predictor to converge quickly to 1; more
often, the predictor varies widely over time, and does not
converge to 0 or 1 until almost all data are evaluated. This
behavior makes logarithmic speedup a best case. Luckily,
the predictor is more typically uncertain (with an interme-
diate value) than wrong (with an extreme value that eventu-
ally flips to the opposite value): incorrect predictors could
lead to sublogarithmic speedup.

Figure 6 shows that good speedups are achievable for real
problems. The speedup distribution for the Bayesian Lasso
problem for molecular photovoltaic activity appears similar
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Figure 6: Cumulative speedup relative to our baseline, as a function of the number of MH iterations, for the Bayesian Lasso
problem. Different curves indicate different numbers of workers. Each figure corresponds to a different initial condition.

to that of the mixture of Gaussians. There are differences,
however: Lasso evaluation did not converge by 50000 it-
erations according to standard convergence statistics. On
several initial conditions, the chain started taking small
steps, and therefore dropped to logarithmic speedup, be-
fore achieving convergence. Overall performance might be
improved by detecting this case and switching some specu-
lative resources over to other initial conditions, an idea we
leave for future work.

S CONCLUSIONS

We presented parallel predictive prefetching, a general
framework for accelerating many widely used MCMC al-
gorithms that are inherently serial and often slow to con-
verge. Our approach applies to MCMC algorithms whose
transition operator can be decomposed into two functions,
one that produces a countable set of candidate proposal
states and a second that selects the best candidate. Predic-
tive prefetching uses speculative computation to exploit the
common setting in which (1) generating candidates is com-
putationally fast compared to the evaluation required to se-
lect the best candidate, and (2) this evaluation can be ap-
proximated quickly. Our first focus has been on the MH
algorithm, in which predictive prefetching exploits a se-
quence of increasingly accurate predictors for the decision
to accept or reject a proposed state. Our second focus has
been on large-scale Bayesian inference, for which we iden-
tified an effective predictive model that estimates the like-
lihood from a subset of data. The key insight is that we
model the uncertainty of these predictions with respect to
the difference between the likelihood of each datum eval-
uated at the proposal and current state. As these evalua-
tions are highly correlated, the variance of the differences
is much smaller than the variance of the states evaluated
separately, leading to significantly higher confidence in our
predictions. This allows us to justify more aggressive use of
parallel resources, leading to greater speedup with respect
to serial execution or more naive prefetching schemes.

The best speedup that is realistically achievable for this
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problem is sublinear in the number of cores but better than
logarithmic, and our results achieve this. Our approach gen-
eralizes both to schemes that learn an approximation to the
target density and to other MCMC algorithms with more
complex structure, such as slice sampling and more sophis-
ticated adaptive techniques.
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Abstract

We introduce a new convex formulation for
stable principal component pursuit (SPCP)
to decompose noisy signals into low-rank and
sparse representations. For numerical solu-
tions of our SPCP formulation, we first de-
velop a convex variational framework and
then accelerate it with quasi-Newton meth-
ods. We show, via synthetic and real data
experiments, that our approach offers advan-
tages over the classical SPCP formulations in
scalability and practical parameter selection.

1 INTRODUCTION

Linear superposition is a useful model for many appli-
cations, including nonlinear mixing problems. Surpris-
ingly, we can perfectly distinguish multiple elements
in a given signal using convex optimization as long as
they are concise and look sufficiently different from
one another. Popular examples include robust prin-
cipal component analysis (RPCA) where we decom-
pose a signal into low rank and sparse components
and stable principal component pursuit (SPCP), where
we also seek an explicit noise component within the
RPCA decomposition. Applications include alignment
of occluded images (Peng et al., 2012), scene trian-
gulation (Zhang et al., 2011), model selection (Chan-
drasekaran et al., 2012), face recognition, and docu-
ment indexing (Candeés et al., 2011).

The SPCP formulation can be mathematically stated
as follows. Given a noisy matrix Y € R™*™, we de-
compose it as a sum of a low-rank matrix L and a

*Author’s work is supported in part by the European
Commission under the grants MIRG-268398 and ERC Fu-
ture Proof, and by the Swiss Science Foundation under the
grants SNF 200021-132548, SNF 200021-146750 and SNF
CRSII2-147633.
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sparse matrix S via the following convex program

minimize ||L||, + Asum||S]1
L.s (SPCPyum)
subject to [L+ S =Y | p <e,

where the 1-norm ||-||; and nuclear norm |[|-||, are given
by 1Sl = ., si, 1Ll = 3, 02(L). where (L) is
the vector of singular values of L. In (SPCPgyy,), the
parameter Agumm > 0 controls the relative importance
of the low-rank term L vs. the sparse term .S, and the
parameter € accounts for the unknown perturbations
Y — (L +S5) in the data not explained by L and S.

When e = 0, (SPCPy,p,) is the “robust PCA” problem
as analyzed by Candes et al. (2011); Chandrasekaran
et al. (2009), and it has perfect recovery guarantees
under stylized incoherence assumptions. There is even
theoretical guidance for selecting a minimax optimal
regularization parameter Mg, (Candes et al., 2011).
Unfortunately, many practical problems only approxi-
mately satisfy the idealized assumptions, and hence,
we typically tune RPCA via cross-validation tech-
niques. SPCP further complicates the practical tuning
due to the additional parameter €.

To cope with practical tuning issues of SPCP, we pro-
pose the following new variant called “max-SPCP”:

minimize max (|| L], Amax|S]1)
L.s (SPCP ax)
subject to [L+ S —Y|p <e,

where A\pax > 0 acts similar to Agum. Our work shows
that this new formulation offers both modeling and
computational advantages over (SPCPg,,).

Cross-validation with (SPCP,,,.x) to estimate (Apax, €)
is significantly easier than estimating (Asum,€) in
(SPCPgum). For example, given an oracle that pro-
vides an ideal separation Y =~ Liacle + Soracle, W€ can
use € = || Loracle+Soracle — Y || F in both cases. However,
while we can estimate Amax = || Loracte ||+ /|| Soracle|| 1, it
is not clear how to choose Agum from data. Such cross



validation can be performed on a similar dataset, or it
could be obtained from a probabilistic model.

Our convex approach for solving (SPCPgy,,,) gener-
alizes to other source separation problems (Baldas-
sarre et al., 2013) beyond SPCP. Both (SPCP,,,.x) and
(SPCPgum) are challenging to solve when the dimen-
sions are large. We show in this paper that these prob-
lems can be solved more efficiently by solving a few
(typically 5 to 10) subproblems of a different functional
form. While the efficiency of the solution algorithms
for (SPCPyum) relies heavily on the efficiency of the
1-norm and nuclear norm projections, the efficiency of
our solution algorithm (SPCP,,.y) is preserved for ar-
bitrary norms. Moreover, (SPCP,,.x) allows a faster
algorithm in the standard case, discussed in Section 6.

2 A PRIMER ON SPCP

The theoretical and algorithmic research on SPCP for-
mulations (and source separation in general) is rapidly
evolving. Hence, it is important to set the stage first
in terms of the available formulations to highlight our
contributions.

To this end, we illustrate (SPCPy,,) and (SPCP,.x)
via different convex formulations. Flipping the objec-
tive and the constraints in (SPCP .y ) and (SPCPyum ),
we obtain the following convex programs

o1 2
mininize §||L—|—S—YHF

(fip-SPCP,,,)
s.t. H|L|H* + )\sumHS”1 S Tsum
T | 9
minimize —||L+ S -Y||%
Ls 2 (fip-SPCP,,,...)
s.t. maX('HLM*?)‘maXHSHI) S Tmax
Remark 2.1. The solutions of (flip-SPCP,,)

and (flip-SPCP,...) are related to the solutions
of (SPCPgum) and (SPCPy.x) via the Pareto fron-
tier by Aravkin et al. (2013a, Theorem 2.1). If the
constraint |L + S = Y|| < € is tight at the solution,
then there exist corresponding parameters Tsum(e) and
Tmaz(€), for which the optimal value of (flip-SPCP
and (flip-SPCP
mal solutions (Ss, L) and (S, L) are also optimal
for (SPCPgum) and (SPCP,.x).

SUTII)
is €, and the corresponding opti-

IIl}lX)

For completeness, we also include the Lagrangian for-
mulation, which is covered by our new algorithm:

1
minimize Au[[|Z], + As[|Slh + SlIE+ S = Y%
(Lag-SPCP)
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Problems (flip-SPCP,,.) and (flip-SPCP_,,) can be
solved using projected gradient and accelerated gradi-
ent methods. The disadvantage of some of these for-
mulations is that it may not be clear how to tune the
parameters. Surprisingly, an algorithm we propose in
this paper can solve (SPCP,.x) and (SPCPg,,,) us-
ing a sequence of flipped problems that specifically ex-
ploits the structured relationship cited in Remark 2.1.
In practice, we will see that better tuning also leads
to faster algorithms, e.g., fixing ¢ ahead of time to an
estimated ‘noise floor’ greatly reduces the amount of
required computation if parameters are to be selected
via cross-validation.

Finally, we note that in some cases, it is useful to
change the ||L 4+ S — Y| term to [|A(L + S - Y)|Fr
where A is a linear operator. For example, let Q be a
subset of the indices of a m x n matrix. We may only
observe Y restricted to these entries, denoted Pq(Y),
in which case we choose A = Pg. Most existing
RPCA/SPCP algorithms adapt to the case A = Pq
but this is due to the strong properties of the projec-
tion operator Pg. The advantage of our approach is
that it seamlessly handles arbitrary linear operators
A. In fact, it also generalizes to smooth misfit penal-
ties, that are more robust than the Frobenius norm,
including the Huber loss. Our results also generalize
to some other penalties on S besides the 1-norm.

The paper proceeds as follows. In Section 3, we de-
scribe previous work and algorithms for SPCP and
RPCA. In Section 4, we cast the relationships be-
tween pairs of problems (flip-SPCP_ . ), (SPCPgum)
and (flip-SPCP_,...), (SPCP.x) into a general varia-
tional framework, and highlight the product-space reg-
ularization structure that enables us solve the formula-
tions of interest using corresponding flipped problems.
We discuss computationally efficient projections as op-
timization workhorses in Section 5, and develop new
accelerated projected quasi-Newton methods for the
flipped and Lagrangian formulations in Section 6. Fi-
nally, we demonstrate the efficacy of the new solvers
and the overall formulation on synthetic problems and
a real cloud removal example in Section 7, and follow
with conclusions in Section 8.

3 PRIOR ART

While problem (SPCPg.,) with e = 0 has several
solvers (e.g., it can be solved by applying the widely
known Alternating Directions Method of Multipli-
ers (ADMM)/Douglas-Rachford method (Combettes
& Pesquet, 2007)), the formulation assumes the data
are noise free. Unfortunately, the presence of noise we
consider in this paper introduces a third term in the
ADMM framework, where the algorithm is shown to



be non-convergent (Chen et al., 2013). Interestingly,
there are only a handful of methods that can handle
this case. Those using smoothing techniques no longer
promote exactly sparse and/or exactly low-rank solu-
tions (Aybat et al., 2013). Those using dual decom-
position techniques require high iteration counts. Be-
cause each step requires a partial singular value de-
composition (SVD) of a large matrix, it is critical that
the methods only take a few iterations.

As a rough comparison, we start with related solvers
that solve (SPCPy,y,) for e = 0. Wright et al. (2009a)
solves an instance of (SPCPg,,,) with ¢ = 0 and a
800 x 800 system in 8 hours. By switching to the
(Lag-SPCP) formulation, Ganesh et al. (2009) uses
the accelerated proximal gradient method (Beck &
Teboulle, 2009) to solve a 1000 x 1000 matrix in un-
der one hour. This is improved further in Lin et al.
(2010) which again solves (SPCPgyy,) with € = 0 us-
ing the augmented Lagrangian and ADMM methods
and solves a 1500 x 1500 system in about a minute. As
a prelude to our results, our method can solve some
systems of this size in about 10 seconds (c.f., Fig. 1).

In the case of (SPCPgy,,,) with € > 0, Tao & Yuan
(2011) propose the alternating splitting augmented La-
grangian method (ASALM), which exploits separabil-
ity of the objective in the splitting scheme, and can
solve a 1500 x 1500 system in about five minutes.

The partially smooth proximal gradient (PSPG) ap-
proach of Aybat et al. (2013) smooths just the nuclear
norm term and then applies the well-known FISTA al-
gorithm (Beck & Teboulle, 2009). Aybat et al. (2013)
show that the proximity step can be solved efficiently
in closed-form, and the dominant cost at every iter-
ation is that of the partial SVD. They include some
examples on video, lopsided matrices: 25000 x 300 or
50, in about 1 minute). solving 1500 x 1500 formula-
tions in under half a minute.

The nonsmooth adaptive Lagrangian (NSA) algorithm
of Aybat & Tyengar (2014) is a variant of the ADMM
for (SPCPgum), and makes use of the insight of Aybat
et al. (2013). The ADMM variant is interesting in that
it splits the variable L, rather than the sum L + S or
residual L + 5 — Y. Their experiments solve a 1500 x
1500 synthetic problems in between 16 and 50 seconds
(depending on accuracy) .

Shen et al. (2014) develop a method exploiting low-
rank matrix factorization scheme, maintaining L =
UVT. This technique has also been effectively used in
practice for matrix completion (Aravkin et al., 2013b;
Lee et al., 2010; Recht & Ré, 2011), but lacks a full
convergence theory in either context. The method
of (Shen et al., 2014) was an order of magnitude faster
than ASALM, but encountered difficulties in some ex-
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periments where the sparse component dominated the
low rank component in some sense. Mansour & Vetro
(2014) attack the SPCPy,,, formulation using a fac-
torized approach, together with alternating solves be-
tween (U,V) and S. Non-convex techniques also in-
clude hard thresholding approaches, e.g. the approach
of Kyrillidis & Cevher (2014). While the factorization
technique may potentially speed up some of the meth-
ods presented here, we leave this to future work, and
only work with convex formulations.

4 VARIATIONAL FRAMEWORK

Both of the formulations of interest (SPCPgyupy,)
and (SPCP,,,x) can be written as follows:

min¢(L,S) st. p(L+S-Y)<e. (4.1)

Classic formulations assume p to be the Frobenius
norm; however, this restriction is not necessary, and
we consider p to be smooth and convex. In particular,
p can be taken to be the robust Huber penalty (Huber,
2004). Even more importantly, this formulation allows
pre-composition of a smooth convex penalty with an
arbitrary linear operator A, which extends the pro-
posed approach to a much more general class of prob-
lems. Note that a simple operator is already embedded
in both formulations of interest:

Lis=[1 I H

g (4.2)

Projection onto a set of observed indices € is also a
simple linear operator that can be included in p. Op-
erators may include different transforms (e.g., Fourier)
applied to either L or S.

The main formulations of interest differ only in the
functional ¢(L, S). For (SPCPg,), we have

Gsum (L, S) = [ L]l + Asum S]],
while for (SPCPax),
Gmax(L,S) = maX(\HL\H*’ Amax || S[]1)-

The problem class (4.1) falls into the class of problems
studied by van den Berg & Friedlander (2008, 2011) for
p(-) = ||-1|? and by Aravkin et al. (2013a) for arbitrary
convex p. Making use of this framework, we can define
a value function

o(T) = Iiliélp (A(L,S)-Y) st. ¢(L,S) <7, (4.3)
and use Newton’s method to find a solution to v(7) =
€. The approach is agnostic to the linear operator A
(it can be of the simple form (4.2); include restriction
in the missing data case, etc.).



For both formulations of interest, ¢ is a norm defined
on a product space R™*™ x R™*™_ since we can write

L

sum L7S = 5 4.4
DL, S) ‘Asumwnll (1.49)
Izl
max L,S = * . 45
b (L, S) \AW”SHW (4.5)

In particular, both ¢gum(L,S) and @max(L,S) are
gauges. For a convex set C' containing the origin, the
gauge 7 (z | C) is defined by

~ (x| C)Zi?f{/\iIG)\C}. (4.6)
For any norm || - ||, the set defining it as a gauge is sim-
ply the unit ball B). = {z : ||z| < 1}. We introduce

gauges for two reasons. First, they are more general (a
gauge is a norm only if C' is bounded with nonempty
interior and symmetric about the origin). For exam-
ple, gauges trivially allow inclusion of non-negativity
constraints. Second, definition (4.6) and the explicit
set C' simplify the exposition of the following results.

In order to implement Newton’s method for (4.3), the
optimization problem to evaluate v(7) must be solved
(fully or approximately) to obtain (L, S). Then the 7
parameter for the next (4.3) problem is updated via

o(T) — T
v'(7)

Given (L, S), v'(7) can be written in closed form using
(Aravkin et al., 2013a, Theorem 5.2), which simplifies
to

K+l _ ok

(4.7)

V(1) = =¢°(ATVp(A(L, §) ~ Y)), (4.8)
with ¢° denoting the polar gauge to ¢. The polar
gauge is precisely v (z | C°), with

C°={v:{v,z) <1 VexeCl}. (4.9)

In the simplest case, where A is given by (4.2), and p
is the least squares penalty, the formula (4.8) becomes

— g L+S-Y
o L+S-Y|)"
The main computational challenge in the approach

outlined in (4.3)-(4.8) is to design a fast solver to eval-
uate v(7). Section 6 does just this.

v'(7)

The key to RPCA is that the regularization functional
¢ is a gauge over the product space used to decompose
Y into summands L and S. This makes it straightfor-
ward to compute polar results for both ¢gum and ¢ ax.

Theorem 4.1 (Max-Sum Duality for Gauges on Prod-
uct Spaces). Let v1 and 2 be gauges on R™ and R™2,
and consider the function

g(xa y) = max{’yl (1.)7 72(2/)}-
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Then g is a gauge, and its polar is given by
9°(21,22) = 77 (21) + 73 (22)-

Proof. Let C7 and Cs denote the canonical sets corre-
sponding to gauges y; and y,. It immediately follows
that g is a gauge for the set C = C; x (s, since

inf{\ > 0|(z,y) € A\C} = inf{\|x € AC; and y € A\C>}
= max{y1(z),72(y)}.
By (Rockafellar, 1970, Corollary 15.1.2), the polar of

the gauge of C' is the support function of C, which is
given by

((@,9), (21, 22)) = sup (x,z1) + sup (y,22)
zeCq yeCs

=71 (21) + 75 (22).

sup
zeCq,yeCs

O

This theorem allows us to easily compute the polars
for ¢sum and @max in terms of the polars of |||-||, and
I ]l1, which are the dual norms, the spectral norm and
infinity norm, respectively.

Corollary 4.2 (Explicit variational formulae
for (SPCPyym) and (SPCP.x)). We have
o 1
Foum(Z1, Z2) = max ¢ | Z1lly, 37— 22l
sum (4.10)

o 1
Pomaz(Z1, Z2) = | Z1]ll5 + PV [1Z2 |0
max

where || X ||, denotes the spectral norm (largest eigen-
value of XTX ).

This result was also obtained by (van den Berg &
Friedlander, 2011, Section 9), but is stated only for
norms. Theorem 4.1 applies to gauges, and in partic-
ular now allows asymmetric gauges, so non-negativity
constraints can be easily modeled.

We now have closed form solutions for v'(7) in (4.8)
for both formulations of interest. The remaining chal-
lenge is to design a fast solver for (4.3) for formula-
tions (SPCPguy,) and (SPCPp.x). We focus on this
challenge in the remaining sections of the paper. We
also discuss the advantage of (SPCP,.y) from this
computational perspective.

5 PROJECTIONS

In this section, we consider the computational issues
of projecting onto the set defined by ¢(L,S) < 7. For
Pmax(L, S) = max(||L]|l,, Amax||S]/1) this is straight-
forward since the set is just the product set of the



nuclear norm and ¢; norm balls, and efficient pro-
jectors onto these are known. In particular, project-
ing an m x n matrix (without loss of generality let
m < n) onto the nuclear norm ball takes O(m?n) op-
erations, and projecting it onto the ¢1-ball can be done
on O(mn) operations using fast median-finding algo-
rithms (Brucker, 1984; Duchi et al., 2008).

For ¢gum (L, S) = || L], + Asum|lS]|1, the projection is
no longer straightforward. Nonetheless, the following
lemma shows this projection can be efficiently imple-
mented.

Proposition 5.1. (van den Berg € Friedlander, 2011,
Section 5.2) Projection onto the scaled £1-ball, that is,
{z e RY | Zle aglz;| < 1} for some o > 0, can be
done in O(dlog(d)) time.

The proof of the proposition follows by noting that the
solution can be written in a form depending only on a
single scalar parameter, and this scalar can be found
by sorting (|z;|/c;) followed by appropriate summa-
tions. We conjecture that fast median-finding ideas
could reduce this to O(d) in theory, the same as the
optimal complexity for the ¢;-ball.

Armed with the above proposition, we state an impor-
tant lemma below. For our purposes, we may think of
S as a vector in R™" rather than a matrix in R™*".

Lemma 5.2. (van den Berg & Friedlander, 2011,
Section 9.2) Let L = UXVT and ¥ diag(o),
and let (S;)™% be any ordering of the elements of
S.  Then the projection of (L,S) onto the ¢sum
ball is (U diag(8)VT,S), where (6,5) is the projec-
tion onto the scaled £1-ball {(o,S) | Zr.nin(m’n) loj| +

j=1
Zi:l )‘Sum‘Sz| S 1}

Sketch of proof. We need to solve

1
Sl

2 1 2
SIE = Ll + 218" = S

min
{(L',8")| psum (L’,S7)<1}
Alternatively, solve

1

2 1 2
I — LIS 28— S|

min min
S AL LN, S1=Asum 1S (11}

The inner minimization is equivalent to projecting
onto the nuclear norm ball, and this is well-known to
be soft-thresholding of the singular values. Since it
depends only on the singular values, recombining the
two minimization terms gives exactly a joint projection
onto a scaled ¢;-ball. O

Remark 5.1. All the references to the £1-ball can be
replaced by the intersection of the {1-ball and the non-
negative cone, and the projection is still efficient. As
noted in Section 4, imposing non-negativity constraints
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is covered by the gauge results of Theorem 4.1 and
Corollary 4.2. Therefore, both the variational and ef-
ficient computational framework can be applied to this
interesting case.

6 SOLVING THE SUB-PROBLEM
VIA PROJECTED
QUASI-NEWTON METHODS

In order to accelerate the approach, we can use quasi-
Newton (QN) methods since the objective has a sim-
ple structure.! The main challenge here is that for
the || L], term, it is tricky to deal with a weighted
quadratic term (whereas for ||S||1, we can obtain a
low-rank Hessian and solve it efficiently via coordinate
descent).

We wish to solve (flip-SPCP_,.). Let X = (L, S) be
the full variable, so we can write the objective function
as f(X) = 3|l A(X)—Y||%. To simplify the exposition,
we take A = (I, ) to be the mn x 2mn matrix, but the
presented approach applies to general linear operators
(including terms like Pg). The matrix structure of L
and S is not important here, so we can think of them

as mn X 1 vectors instead of m x n matrices.

The gradient is Vf(X) = AT(A(X) — Y). For conve-
nience, we use r(X) = A(X) — Y and

vico = (34960)

11

I 1

neously project (L, S) onto their constraints with this
Hessian scaling (doing so would solve the original prob-
lem!), since the Hessian removes separability. Instead,
we use (Ly, Sk) to approximate the cross-terms.

The Hessian is AT A = . We cannot simulta-

The true function is a quadratic, so the following

1 We use “quasi-Newton” to mean an approximation
to a Newton method and it should not be confused with
methods like BFGS



quadratic expansion around Xy = (Lg, Sg) is exact:

e, = s+ { (09 (52 2))

(
((s78) v (579))
=1+ (1) (5751))
G20 D GEDE)
=+ () (575))

" L-7L; L—Lp,+8S—5
S-S, /)  \L—L,+5-5;

The coupling of the second order terms, shown in
bold, prevents direct 1-step minimization of f, sub-
ject to the nuclear and 1-norm constraints. The
FISTA (Beck & Teboulle, 2009) and spectral gradi-
ent methods (SPG) (Wright et al., 2009b) replace
§ §> with the upper bound 2 (é ?),
which solves the coupling issue, but potentially lose
too much second order information. After comparing
FISTA and SPG, we use the SPG method for solving
(flip-SPCPy,,,). However, for (flip-SPCP,,,.) (and for
(Lag-SPCP), which has no constraints but rather non-
smooth terms, which can be treated like constraints
using proximity operators), the constraints are uncou-
pled and we can take a “middle road” approach, re-

placing
L-Ly L—Liy+S—-S5k
S-S, ) \L—Lp,+5—-5
with

L— L L—L;+Sx—Sk_1
<<S—Sk> ’ (Lk+1—Lk+S—Sk)>'
The first term is decoupled, allowing us to update Ly,
and then this is plugged into the second term in a
Gauss-Seidel fashion. In practice, we also scale this
second-order term with a number slightly greater than
1 but less than 2 (e.g., 1.25) which leads to more robust

behavior. We expect this “quasi-Newton” trick to do
well when Si41 — Sk is similar to Sk — Sk—1.

the Hessian

7 NUMERICAL RESULTS

The numerical experiments are done with the algo-
rithms suggested in this paper as well as code from
PSPG (Aybat et al., 2013), NSA (Aybat & Iyengar,
2014), and ASALM (Tao & Yuan, 2011)%. We modi-

2PSPG, NSA and ASALM available from the experi-
ment package at http://www2.ie.psu.edu/aybat/codes.
html
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fied the other software as needed for testing purposes.
PSPG, NSA and ASALM all solve (SPCPgy,y,), but
ASALM has another variant which solves (Lag-SPCP)
so we test this as well. All three programs also use
versions of PROPACK from Becker & Candes (2008);
Larsen (1998) to compute partial SVDs. Since the cost
of a single iteration may vary among the solvers, we
measure error as a function of time, not iterations.
When a reference solution (L*,S*) is available, we
measure the (relative) error of a trial solution (L,.S)
as || L= L*||p/IIL*]|r + S = §*[|/||S*|| - The bench-
mark is designed so the time required to calculate this
error at each iteration does not factor into the reported
times. Since picking stopping conditions is solver de-
pendent, we show plots of error vs time, rather than
list tables. All tests are done in Matlab and the dom-
inant computational time was due to matrix multipli-
cations for all algorithms; all code was run in the same
quad-core 1.6 GHz i7 computer.

For our implementations of the (flip-SPCP . .),
(flip-SPCPy,,,) and (Lag-SPCP), we use a random-
ized SVD (Halko et al., 2011). Since the number of
singular values needed is not known in advance, the
partial SVD may be called several times (the same is
true for PSPG, NSA and ASALM). Our code limits the
number of singular values on the first two iterations in
order to speed up calculation without affecting conver-
gence. Unfortunately, the delicate projection involved
in (flip-SPCP,,,,) makes incorporating a partial SVD
to this setting more challenging, so we use Matlab’s
dense SVD routine.

7.1 Synthetic test with exponential noise

We first provide a test with generated data. The ob-
servations Y € R"™*" with m = 400 and n = 500 were
created by first sampling a rank 20 matrix Yy with
random singular vectors (i.e., from the Haar measure)
and singular values drawn from a uniform distribution
with mean 0.1, and then adding exponential random
noise (with mean equal to one tenth the median ab-
solute value of the entries of Yp). This exponential
noise, which has a longer tail than Gaussian noise, is
expected to be captured partly by the S term and
partly by the |[L+ S — Y|/ F term.

Given Y, the reference solution (L*, S*) was generated
by solving (Lag-SPCP) to very high accuracy; the val-
ues A\, = 0.25 and A\g = 102 were picked by hand tun-
ing (AL, As) to find a value such that both L* and S*
are non-zero. The advantage to solving (Lag-SPCP) is
that knowledge of (L*,S*, A\, \g) allows us to gener-
ate the parameters for all the other variants, and hence
we can test different problem formulations.

With these parameters, L* was rank 17 with nuclear



norm 6.754, S* had 54 non-zero entries (most of them
positive) with ¢; norm 0.045, the normalized residual
was |[L* +S* = Y| g/||Y|lF = 0.385, and ¢ = 1.1086,
Asum = 0.04, Apax = 150.0593, Tgum = 6.7558 and
Tmax = 6.7540.

—p— this paper* (flip~-SPCP-max, QN

—— this paper (flip-SPCP-sum)

—A— this paper* (lag-SPCP, QN)

—&— this paper* (SPCP-max, QN)

—+&— this paper (SPCP-sum)
NSA* (SPCP-sum)

§ —%— PSPG* (SPCP-sum)

—oe— ASALM* (SPCP-sum)

—+— ASALM* (lag-SPCP)

Error

Figure 1: The exponential noise test. The asterisk in
the legend means the method uses a fast SVD.

Results are shown in Fig. 1. Our methods for
(flip-SPCP,,.) and (Lag-SPCP) are extremely fast,
because the simple nature of these formulations allows
the quasi-Newton acceleration scheme of Section 6. In
turn, since our method for solving (SPCP,,.x) uses
the variational framework of Section 4 to solve a se-
quence of (flip-SPCP,,.) problems, it is also compet-
itive (shown in cyan in Figure 1). The jumps are due
to re-starting the sub-problem solver with a new value
of 7, generated according to (4.7).

Our proximal gradient method for (flip-SPCP,,,,),
which makes use of the projection in Lemma 5.2, con-
verges more slowly, since it is not easy to accelerate
with the quasi-Newton scheme due to variable cou-
pling, and it does not make use of fast SVDs. Our
solver for (SPCPyg,,,), which depends on a sequence of
problems (flip-SPCP converges slowly.

sum ) )

The ASALM performs reasonably well, which was un-
expected since it was shown to be worse than NSA
and PSPG in Aybat et al. (2013); Aybat & Iyengar
(2014). The PSPG solver converges to the wrong an-
swer, most likely due to a bad choice of the smoothing
parameter u; we tried choosing several different values
other than the default but did not see improvement
for this test (for other tests, not shown, tweaking u
helped significantly). The NSA solver reaches mod-
erate error quickly but stalls before finding a highly
accurate solution.

7.2 Synthetic test from Aybat & Iyengar
(2014)

We show some tests from the test setup of Aybat &
Iyengar (2014) in the m = n = 1500 case. The de-
fault setting of Agym = 1/4/max(m,n) was used, and
then the NSA solver was run to high accuracy to ob-
tain a reference solution (L*,S*). From the knowledge
of (L*, 5%, Asum), one can generate Amax, Tsums Tmax, €5
but not Ag and A, and hence we did not test the
solvers for (Lag-SPCP) in this experiment. The data
was generated as Y = Lo + So + Zy, where Ly
was sampled by multiplication of m X r and r X n
normal Gaussian matrices, Sy had p randomly cho-
sen entries uniformly distributed within [—100, 100],
and Z; was white noise chosen to give a SNR of
45 dB. We show three tests that vary the rank from
{0.05,0.1} - min(m, n) and the sparsity ranging from
p = {0.05,0.1} - mn. Unlike Aybat & Iyengar (2014),
who report error in terms of a true noiseless signal
(Lo, Sp), we report the optimization error relative to
(L*,8™).

For the first test (with » = 75 and p = 0.05 x mn),
L* had rank 786 and nuclear norm 111363.9; S* had
75.49% of its elements nonzero and ¢; norm 5720399.4,
and [|[L* + S* — Y*||r/||Y||F = 1.5-10~%. The other
parameters were € = 3.5068, Agum = 0.0258, Ajax =
0.0195, Toum = 2.5906 - 10° and Tyax = 1.1136 - 10°.
An interesting feature of this test is that while Lg is
low-rank, L* is nearly low-rank but with a small tail
of significant singular values until number 786. We
expect methods to converge quickly to low-accuracy
where only a low-rank approximation is needed, and
then slow down as they try to find a larger rank highly-
accurate solution.
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—_— |
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Error
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Figure 2: The 1500 x 1500 synthetic noise test.

The results are shown in Fig. 2. Errors barely dip
below 0.01 (for comparison, an error of 2 is achieved



by setting L = S 0). The NSA and PSPG
solvers do quite well. In contrast to the previ-
ous test, ASALM does poorly. Our methods for
(flip-SPCP,,,,), and hence (SPCPg,,), are not com-
petitive, since they use dense SVDs. We imposed
a time-limit of about one minute, so these methods
only manage a single iteration or two. Our quasi-
Newton method for (flip-SPCP,..) does well initially,
then takes a long time due to a long partial SVD
computation. Interestingly, (SPCP,,.x) does better
than pure (flip-SPCP,,.). One possible explanation
is that it chooses a fortuitous sequence of 7 values,
for which the corresponding (flip-SPCP, . .) subprob-
lems become increasingly hard, and therefore bene-
fit from the warm-start of the solution of the eas-
ier previous problem. This is consistent with empiri-
cal observations regarding continuation techniques, see
e.g., (van den Berg & Friedlander, 2008; Wright et al.,
2009b).

J?' x
A\
v
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—A— this paper* (flip-SPCP-max, Q
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—+— ASALM* (SPCP-sum)

Error

107 L L L L
0 50 100 150 200

time (s)

250

Figure 3: Second 1500 x 1500 synthetic noise test.

Figure 3 is the same test but with » = 150 and p =
0.1 - mn, and the conclusions are largely similar.

7.3 Cloud removal

Figure 4 shows 15 images of size 300 x 300 from the
MODIS satellite,® after some transformations to turn
images from different spectral bands into one grayscale
images. Each image is a photo of the same rural lo-
cation but at different points in time over the course
of a few months. The background changes slowly and
the variability is due to changes in vegetation, snow
cover, and different reflectance. There are also outly-
ing sources of error, mainly due to clouds (e.g., major
clouds in frames 5 and 7, smaller clouds in frames 9,
11 and 12), as well as artifacts of the CCD camera on

3Publicly available at http://ladsweb.nascom.nasa.
gov/
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Figure 5: Showing frames 4, 5 and 12. Leftmost col-
umn is original data, middle column is low-rank term
of the solution, and right column is sparse term of the
solution. Data have been processed slightly to enhance
contrast for viewing.

the satellite (frame 4 and 6) and issues stitching to-
gether photos of the same scene (the lines in frames 8
and 10).

There are hundreds of applications for clean satellite
imagery, so removing the outlying error is of great
practical importance. Because of slow changing back-
ground and sparse errors, we can model the prob-
lem using the robust PCA approach. We use the
(flip-SPCP,,,) version due to its speed, and pick pa-
rameters (Amax, Tmax) Dy using a Nelder-Mead simplex
search. For an error metric to use in the parameter
tuning, we remove frame 1 from the data set (call it
y1) and set Y to be frames 2-15. From this training
data Y, the algorithm generates L and S. Since L is
a 300% x 14 matrix, it has far from full column span.
Thus our error is the distance of y; from the span of

L,ie., Hy1 - 7)spam(L) (yl)HQ

Our method takes about 11 iterations and 5 seconds,
and uses a dense SVD instead of the randomized
method due to the high aspect ratio of the matrix.
Some results of the obtained (L,S) outputs are in
Fig. 5, where one can see that some of the anoma-
lies in the original data frames Y are picked up by the
S term and removed from the L term. Frame 4 has
what appears to be a camera pixel error; frame 6 has
another artificial error (that is, caused by the camera
and not the scene); and frame 12 has cloud cover.



Figure 4: Satellite photos of the same location on different days

8 CONCLUSIONS

In this paper, we reviewed several formulations and
algorithms for the RPCA problem. We intro-
duced a new denoising formulation (SPCP,,.y) to
the ones previously considered, and discussed model-
ing and algorithmic advantages of denoising formula-
tions (SPCP,,.x) and (SPCPy,,,) compared to flipped
versions (flip-SPCP,,,.) and (flip-SPCP,,,,). In par-
ticular, we showed that these formulations can be
linked using a variational framework, which can be
exploited to solve denoising formulations using a se-
quence of flipped problems. For (flip-SPCP, .. ), we
proposed a quasi-Newton acceleration that is compet-
itive with state of the art, and used this innovation to
design a fast method for (SPCP,,.y) through the vari-
ational framework. The new methods were compared
against prior art on synthetic examples, and applied
to a real world cloud removal application application
using publicly available MODIS satellite data.
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Abstract

Real world systems typically feature a variety
of different dependency types and topologies
that complicate model selection for probabilistic
graphical models. We introduce the ensemble-of-
forests model, a generalization of the ensemble-
of-trees model of Meila and Jaakkola (2006).
Our model enables structure learning of Markov
random fields (MRF) with multiple connected
components and arbitrary potentials. We present
two approximate inference techniques for this
model and demonstrate their performance on
synthetic data. Our results suggest that the
ensemble-of-forests approach can accurately re-
cover sparse, possibly disconnected MRF topolo-
gies, even in presence of non-Gaussian depen-
dencies and/or low sample size. We applied
the ensemble-of-forests model to learn the struc-
ture of perturbed signaling networks of immune
cells and found that these frequently exhibit
non-Gaussian dependencies with disconnected
MRF topologies. In summary, we expect that
the ensemble-of-forests model will enable MRF
structure learning in other high dimensional real
world settings that are governed by non-trivial
dependencies.

1 INTRODUCTION

This work presents the ensemble-of-forests model for ap-
proximate structure learning in Markov random fields
(MRF). As opposed to most existing MRF structure learn-
ers that either work with specific types of potentials (e.g.
discrete, Gaussian) or assume connected MRF topology
(Lin et al., 2009), our approach is applicable for MRFs with
arbitrary potentials and topology, including disconnected
topologies, and is therefore suited to accommodate a wide
range of real world settings.
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Markov random fields (MRF) are undirected probabilis-
tic graphical models specifying conditional independence
relations among a set of random variables. Learning
MREFs involves parameter inference and model selection,
i.e. learning the underlying graph structure. For general
MRFs, exact parameter inference is difficult due to the ne-
cessity to evaluate the intractable partition sum and there-
fore is addressed by approximate inference approaches.
Structure learning is an even more difficult task. The
naive method of enumerating all possible topologies is pro-
hibitively expensive and, thus, alternative approaches have
been proposed based on independence tests or approximate
score-based methods Koller and Friedman (2009).

Currently, the prevalent approach to model continuous ran-
dom variables is to assume Gaussianity. Under this hypoth-
esis, the Gaussian Markov random field (GMRF) struc-
ture can be directly read from the inverse covariance ma-
trix (Koller and Friedman, 2009): zero entries exactly
correspond to conditional independence statements of the
Markov random field. Sparse inverse covariance selection
constitutes a convex relaxation of the structure learning
task for GMRFs that can be solved efficiently (Banerjee
et al., 2006; Friedman et al., 2008).

Random variables of real world systems typically exhibit
unusual dependency types (Trivedi and Zimmer, 2005;
Berkes et al., 2008) that are not appropriately captured
by the Gaussian potentials of GMRFs. Copula poten-
tials constitute a more general and expressive alternative
to deal with non-Gaussian dependency types. Copulas
are multivariate distributions that encode the dependencies
among random variables. Copula models are very flexi-
ble, as they enable researchers to independently specify the
marginal distributions of random variables and their de-
pendency structure. Liu et al. (2009) define MRFs with
semi-parametric Gaussian copula potentials. Approximate
structure learning in this model is tractable because the de-
pendency type is Gaussian and, thus, parameter inference
is easy and model selection can also be efficiently approxi-
mated by resorting to sparse inverse covariance estimation.
However, in MRFs with general copula potentials, even



parameter estimation is difficult because of the intractable
partition sum. This situation entails that structure learning
is also difficult.

The intractability of exact inference for MRFs with gen-
eral copula potentials has motivated alternative approaches
based on approximate inference. Meild and Jaakkola
(2006) introduced the ensemble-of-trees (ET) model that
enables approximate inference for both parameter estima-
tion and structure learning of general MRFs. A Markov
network is represented as a mixture model whose compo-
nents are tree-structured distributions defined over all pos-
sible spanning trees of the underlying graph. Despite the
super-exponential number of such trees, the model remains
tractable by defining conveniently decomposable priors
over the structure and parameters of tree-distributions. Re-
cently, Kirshner (2008) presented a tree-averaged density
model based on tree structured MRFs with copula poten-
tials. The tasks of parameter estimation and structure learn-
ing are jointly expressed as a single (non-convex) objective,
which is optimized via Expectation-Maximization. Lin
et al. (2009) utilize the ET model for structure learning of
GMRFs and empirically demonstrate superior performance
compared to sparse inverse covariance selection for limited
sample size. Above considerations render copula MRFs as
attractive models because they are more general than GM-
RFs and efficient learning approaches exist for them.

Real world systems with many random variables are fre-
quently best represented by MRFs that decompose into
several connected components. In biology, for instance,
a specific stimulus might activate competing, independent
signaling pathways each including its own MRF compo-
nent (Johnstone et al., 2008). However, the ET struc-
ture learning approach is not able to recover disconnected
topologies since it is averaging over ensembles of spanning
trees. It is desirable to generalize the ET approach in order
to overcome this limitation and, thereby, still benefit from
the expressiveness of copula MRFs in these real world set-
tings.

The main contribution of this work is the generalization of
the ET model to the ensemble-of-forests (EF) model that
explicitly accounts for graph topologies with multiple con-
nected components. In the proposed model, a Markov net-
work is represented as a mixture of forests, i.e. collections
of tree-structured MRFs. An implementation of the ex-
act model is intractable, as the averaging over all possible
forests results in a hard combinatorial problem. Instead, we
present approximate formulations of the structure learning
task. The rest of this paper is organized as follows. In Sec-
tions 2 — 3 we formally introduce the methods that we build
upon. Then, in Sections 4 — 6 we describe the ensemble-of-
forests model and present benchmark results on synthetic
datasets. In Sections 7 — 8 we apply our method to plant mi-
croarray and immune cell perturbation data. Finally, Sec-
tion 9 concludes with a short discussion.
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2 COPULA MODELS

This section reviews the application of copulas to de-
scribe general multivariate distributions and/or potentials
in MRFs. Copulas are multivariate continuous distri-
butions defined on the unit hypercube, C' : [0,1]¢ —
[0, 1], with uniform univariate marginals. Let X5,..., X,
be real random variables with joint cumulative distribu-
tion function (cdf) F(x) and marginally distributed as
Fi(x1),...,Fq(xq) respectively. Then, the random vari-
ables U; Fi(z1),...,Uq Fy(xq) are uniformly
distributed on [0,1]. This property forms the basis for
Sklar’s theorem, according to which any joint distribution
F(z1,...,xq) with continuous marginals can be uniquely
expressed as

F(xy,...,xq) = C(Fi(x1),..., Fa(zq)). (1)
The converse is also true: arbitrary univariate marginals
{F;} can be combined using a copula function C to
uniquely construct a valid joint distribution with marginals
{F;}. The copula function C exclusively encodes the de-

pendencies among random variables.

Furthermore, copula density functions
oiC
clu) = o) can be expressed in terms of
ouy . ..0ug
probability density functions as
s, ug) = Lo 2) @)

H?:l fi(z:) .

A large number of copula functions have been proposed
in the literature (Nelsen, 1999), especially for the bivariate
case. Commonly used examples are the Clayton, Gumbel,
Frank, Gaussian and Student’s t parametric copula families.
In Figure 1, we present contour plots of six distributions
with standard Gaussian marginals but different types of de-
pendencies between the marginals. In each case, the depen-
dency structure is specified via a different copula function.

Clayton Copula Gumbel Copula

3 2 4 0 1 2 a3
P S
3 2 4 0 1 2 a3
3 2 4 0 1 2 a3
P S

3 2 4 0 1 o2 3 3 2 a4 0 12 3 3 2 4 0o 1 2 3

Normal Copula Student’s t Copula (df = 1) Student’s t Copula (df = 4)

(i

3 02 4 0 1 2 a3
P S
3 02 4 0 1 2 a3
3 02 4 0 1 2 a3
P S

E T 3 2 4 0o 1 2 3

Figure 1: Contour plots of six joint distributions defined using
standard Gaussian marginals and different dependency structures
specified by different copulas.



Bivariate copulas are typically used to model strong
extreme-value dependencies in financial data (Embrechts
et al., 2003; Trivedi and Zimmer, 2005). Recently, the
probabilistic graphical model framework has been success-
fully employed for the construction of copula-based high-
dimensional models. A review on this topic can be found
in (Elidan, 2013).

3 ENSEMBLE-OF-TREES MODELS

Here we introduce the ensemble-of-trees (ET) method for
approximate parameter inference and structure learning of
MRFs. This method forms the basis for the ensemble-of-
forests method, the main conceptual contribution of this
paper. From here on, we adopt the following notation:
we consider a Markov network encoded by a graph G =
(V, &), where V is the set of nodes corresponding to ran-
dom variables X = {X1,..., X4} and € is the set of edges.

The ensemble-of-trees model of Meili and Jaakkola (2006)
is an approximate inference approach to carry out structure
learning for MRFs with “inconvenient” potentials. It con-
stitutes a mixture model over all possible spanning trees of
the complete graph over the nodeset V. A prior distribution
over spanning tree structures 7' is defined as

3)

where each parameter (5, = [y, > 0, for all u # v,
u,v € )V can be interpreted as a weight for edge e, di-
rectly proportional to the probability of appearance of that
edge.

Zs =Y r1l.,, er Buv is anormalizing constant, ensuring
that the prior constitutes a valid probability distribution. It
turns out that Zg can be efficiently computed. Defining the
matrix Q(3) as the first d — 1 rows and columns of the
Laplacian matrix

_ﬂuv
Luv =
{Z k Buk

Meild and Jaakkola (2006) generalize Kirchhoff’s Matrix-
Tree theorem for binary weights and show that

T euw€T

if u # v,

ifu=wv

4)

®)

This result makes the averaging over all possible (d9~?)
spanning tree structures computationally tractable.

Assuming a prior tree structure 7, the conditional distribu-
tion of a data sample x can be expressed as

HG:EUHO

veV

v fcu,xv)

0, xv)

p(x|T, 6) (6)
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where the parameter vector 8 consists of univariate 6, (z,)
and bivariate 0., (x,,x,) marginal densities defined, re-
spectively, over the nodes and the edges of the tree (Meila
and Jaakkola, 2006). These distributions are assumed in-
variant for all tree structures.

Finally, after introducing the notation
Ouo (Tu, To)
Wyp(X) = W, wo(x) = [l,ep bu(y) and

applying twice the generalized Matrix-Tree theorem we
have

ZPB p(x|T,0)
QB E W)
=w)=aqm P

where the symbol ® denotes element-wise multiplication.

The structure learning task in the ET model can be approx-
imated by an empirical estimation of 3, as in (Lin et al.,
2009), where 3 is used to approximate the MRF adjacency
matrix: non-zero entries [(3,, correspond to edges in the
graph. In our model, we adopt this interpretation of 3.

3.1 ET MODELS WITH DISCONNECTED
SUPPORT GRAPH

A mixture model over spanning trees is based on the im-
plicit assumption that the support graph of the model is
connected. The support graph is a graph that contains ex-
actly the edges corresponding to positive entries in 3. The
case of disconnected support graphs is considered by Meila
and Jaakkola (2006) only for a priori defined connected
components. That is, certain patterns of zero entries in
the parameter set 3 predefine a partitioning of nodes into
different connected components and these assignments to
components cannot be changed e.g. during the course of a
structure learning procedure. In this case, each connected
component can be treated independently from all others.
Assuming k connected components that partition ) into
{V1,...,V*} and introducing the notation

ﬁV’i = {5uva u 7£ v, U,V € Vl}

equation (7) is generalized as

15, 1Q(8y: © wy: (x))]
1%, 1QBv)

4 ENSEMBLE-OF-FORESTS MODELS

(%)

pp(x) = wo ®)

Here we introduce the main contribution of our work, that
is the ensemble-of-forests (EF) model. This model con-
stitutes an approximate inference approach for structure



learning of MRFs with multiple connected components that
are not known a priori. We assume a nodeset V of size d
and a partition thereof V. = {V! ... V*}. Then, a maxi-
mal forest or forest of size k is a collection of spanning trees
{T"}i1... k., one for each V. Extending the ensemble-of-
trees model, we introduce a mixture model over all possible
forests up to a certain size, i.e. allowing for disconnected
structures with a maximal number of k£ connected compo-
nents. The limiting cases are k = 1, corresponding to the
ET model, and k = d, corresponding to a model that allows
for any possible arrangement of connected components.

The prior probability of a collection of spanning trees F :=
{T*, ..., T*} is defined as

1

TEF ey, €T?

ps(F) (€))

where By, = By > 0, for all u # v, u,v € V. Now, in
order to normalize over all possible forests that consist of
at most k connected components, the partition function is

computed via

> > I 1II #w

Vepart(V) FEf(V) TIEF ey €T

> I Qv o)

Vepart(V) Viev

Zg =

where the outer summation ), part(v) 18 performed over
all possible partitions of V into k subsets and the inner sum-
mation )z (v 1s performed over all maximal forests de-
fined on a specific node partition V. Partitions where some
of the subsets V' are empty are allowed and correspond to
graphs with less than k connected components. For exam-
ple, the partition {V, (), ..., 0} represents a fully connected
graph. In order to treat such partitions without changing
our notation, we define Q(3y) = 1.

Ignoring the constant term wg(x), the nega-
tive log-likelihood of the model given a dataset
D = {z®, ... (M} is written as

> 11 1eBv)

Vepart(V) Viev

N
~SNwog > T 1Qew)

Jj=1 Vepart(V) Viev

L(D;B) = Nlog

(1)

where [)’wgz is a shorthand for By, @ wy: (xU)).

S LEARNING IN THE EF MODEL

In this section, we describe two approaches for struc-
ture learning of Markov networks based on the EF model,
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namely the EF-cuts and EF-)\ methods. Additionally, we
describe common features of the two methods, such as the
choice of MRF potentials and the optimization algorithm
used for minimizing the learning objective.

5.1 SELECTION OF EDGE POTENTIALS

The first step in learning the EF model is concerned with
the choice of the edge potentials w,,(x). Here, we con-
sider continuous distributions as edge potentials. Although
we do not explicitly consider discrete distributions in the
following, we want to emphasize that learning in the EF
model easily extends to this class of potentials. In order to
keep our model as generic as possible, we have chosen to
use copula-based potentials. Note from Equation (2) that
the potentials w,,, (x) exactly correspond to bivariate cop-
ula densities. In our analysis, we have used the bivariate
Clayton, Frank, Gumbel, Gaussian and Student’s ¢ copula
as candidate parametric families. These copulas have one
single parameter to be estimated.

In order to fit a single-parameter copula family to data,
we follow a two-step procedure. As a first step, the
marginal cdf for each random variable is estimated in a
non-parametric approach (Kojadinovic and Yan, 2010) and
the obtained estimators, known as pseudo-observations, are
plugged into the copula function. Subsequently, the depen-
dence parameter is computed by maximizing the pseudo-
likelihood

log L(0) = Zlog c(u;; 0) (12)
i=1

where ﬁi is the vector of estimators for the marginals and
n is the sample size. The best-fitting copula for each vari-
able pair is selected via cross-validation, where the cross-
validation score is based on the pseudo-likelihood of the
left-out samples.

5.2 THE EF-cuts HEURISTIC

Graphs with two connected components constitute an im-
portant subclass of disconnected networks. Even when re-
stricting ourselves to a maximum of two connected com-
ponents, it is computationally prohibitive to use the ex-
act ensemble-of-forests model of Equation (11) for sets
of random variables of non-trivial size due to the super-
exponential number of possible node partitions part(V).
Therefore, we resort to heuristic approaches for choosing
partitions that are most likely to allow us to recover the
true graph structure. For a given parameter configuration
3, we aim to identify a number of high scoring partitions
of the nodeset and then average over these partitions only.

Our heuristic is based on the intuition that edges e,,, with
small (3, are assigned a low prior probability and, there-
fore, are expected to be most likely not present in the true



MREF. Therefore, we would like to prioritize partitions gen-
erated by dropping these low-weight edges. Following that
intuition, we derive a scoring system based on systematic
enumeration of minimum cuts.

A cut of a graph G = (V,€) is a partition of V into sub-
sets A, B = V — A. The weight of a cut is the sum of
the weights of all edges crossing the cut. Starting with
the minimum-weight cut, we want to enumerate a ranked
set of graph cuts of increasing weight. An efficient algo-
rithm (Vazirani and Yannakakis, 1992) exists for this task.
In our case, edge weights correspond to the structural pa-
rameters 3. Let (A, B) denote a cut and let C denote the
set of M minimum-weight cuts in the graph. Since we are
only considering graphs with at most two connected com-
ponents, a forest F consists of two spanning trees T4, Tp.
To simplify our notation, we include the case of connected
graphs as a special case where A = V and B = (). This
is a special cut of zero weight and is always included in
C. We perform structure learning by minimizing the neg-
ative log-likelihood of the model with respect to 3. The
respective objective is derived from Equation (11) by set-
ting £ = 2 and only considering partitions that belong to
the set C. The optimization problem can be formulated as

minNlog > [Q(8,)/1Q(B5)|

(A,B)eC

N
~Y g > lQew)lQ(BwS)

(A,B)eC
st. Buw >0 wu,veV,

j=1

uF#v. (13)

Let us denote C’ the set of partitions where nodes u, v be-
long to the same connected component. The set of par-
titions where u, v belong to different components has no
contribution to the gradient (Vg f),,. Without loss of gen-
erality, we will assume that if nodes u,v belong to the
same partition set, then this is set A and the other set is
B =V — A. Then the gradient of the objective (13) fol-
lows as
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where M is defined as in (Meild and Jaakkola, 2006)

Qua + Qui —2Q;,
—1
uu
—1
vU

0

if u £ v,u# w,v#w,
M,, = %fu;év,vzw,
ifu#v,u=w,
if u=w.

15)
With w we denote the index of the row and column that
are removed from the Laplacian matrix of Equation (4) in
order to obtain Q).

The min-cut heuristic is a feasible approximation to struc-
ture learning of MRFs with disconnected topologies. How-
ever, it is practically restricted to graph structures with at
most two connected components. Furthermore, the ap-
proach does not scale with increasing node or sample size
due to the complicated objective and gradient functions.
These considerations limit its applicability to real world
scenarios.

5.3 THE EF-) HEURISTIC

In the following, we introduce the EF-A heuristic that
scales well with dimensionality and number of connected
components of the underlying MRE. The starting point
is again equation (11), but now we drop the summation
2 Vepart(v) Over possible node partitions. Instead, we
only consider a single partition V. Additionally, we im-
pose an L penalty term on the structural parameters 3 to
encourage sparse solutions. The new optimization task is
expressed as

N
min N 3" log |Q(By)| =Y - log|Q(Bw) 48]
Viev Jj=1Vviev

St Buy >0 w,v eV, utv. (16)

An iterative optimization procedure is employed to mini-

mize the objective (16). At each iteration step, summation

is performed over maximal forests defined for the single

node partition V that is induced by the current iterate 3.

The number of connected components does not need to be

fixed. The penalty term has the critical role of controlling

sparsity and, thus, allowing structures with multiple con-
nected components to be considered.

A similar L;-regularized approach cannot be employed for
the ET model, because the ET objective is not defined for
all sparsity patterns in 3. Therefore, there is effectively no
sparsity induction by an L; penalty in ET. Furthermore, for
some iterative optimization procedures, numerical instabil-
ities might occur if 3 is temporarily set to an invalid value.

The gradient of the objective for the EF-\ takes a simple
form. Considering the non-negativity of 3, the L;-norm
[1Bl1 is equal to 3, , ¢y 4, Buv- Thus, the objective is
differentiable at all points. Assuming that 3 induces a par-



titioning of V into {V1, ...
tive can be expressed as

, V1, the gradient of the objec-

N
(Voo = NMuw(Byi) — > wi) My (Bwl) +
Jj=1

a7
for u,v € V* and is equal to 0 otherwise.

The choice of the regularization parameter A is an impor-
tant aspect of the EF-\ approach. We optimize the EF-\
objective using different penalty parameters A\ = exp(—p),
where p takes values in the interval [3, 6] with a step of 0.1.
The optimal A is selected so as to minimize the extended
Bayesian Information Criterion (eBIC) (Foygel and Drton,
2010) defined as

eBIC = 2L + |E|logn + 4|E|vlogd (18)
is
the number of non-zero predicted 3 entries, n is the sample
size, d is the number of nodes and + is an additional penalty
term imposed on more complex structures. The classical
Bayesian Information Criterion is obtained as a subcase for
v = 0. We performed simulations with different values of
7 in the interval [0, 1] and resulted in using v = 0.5.

5.4 OPTIMIZATION OF THE LEARNING
OBJECTIVE

The objectives (13) and (16) to fit the EF model are non-
convex functions. Therefore, there is no guarantee of con-
vergence to a global optimum and the initial point for op-
timization has to be carefully chosen. Lin et al. (2009)
initialize B with an upper-bound obtained by optimizing
a convex sub-expression of the full objective. Our prelim-
inary experiments confirmed that this method yielded sig-
nificantly better optima than random initializations. There-
fore, we adopted this choice for initialization. As for the
main optimization task, we have used the Spectral Pro-
jected Gradient (SPG) algorithm (Varadhan and Gilbert,
2009), a gradient-based method that allows for simple box
constraints.

6 BENCHMARK ON SIMULATED DATA

In this section, we evaluate the empirical performance of
our proposed EF approximations via comparison to the
ET (Lin et al., 2009) and glasso (Friedman et al., 2008)
algorithms on synthetic Gaussian and non-Gaussian data.
We use the glasso implementation from the R-package
huge (Zhao et al., 2012). The glasso regularization term
is obtained via Stability Approach to Regularization Se-
lection (StARS) (Liu et al., 2010), a criterion based on
variability of the graphs estimated by overlapping subsam-
plings. We employ this criterion, since it achieves the best
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performance in our simulations. For the ET and EF ap-
proaches we use Gaussian copula or Student’s t-copula po-
tentials and optimize the corresponding objective via SPG.
For the EF-cuts method, we consider the first 50 minimum-
weight cuts.

6.1 RESULTS ON GAUSSIAN MRF DATA

We first aim at confirming that the EF model achieves com-
parable performance to state-of-the-art methods for MRF
structure learning. To this end, we generated Gaussian
MREF data following the procedure described in (Lin et al.,
2009). The off-diagonal entries of the precision matrix
Q) = %! are sampled from £(0.1 + 0.2|n|), where n is
drawn from N ~ (0, 1). The diagonal entries are selected
via Gershgorin’s circle theorem to ensure that the matrix is
positive definite. Given = £ 7!, data can be easily sam-
pled from a multivariate Gaussian distribution N ~ (0, X2).

We first generate random connected graphs of d = 25
nodes with an average of 2 neighbours/node. For a
given graph, we draw 500 samples from the correspond-
ing GMREF distribution and then compare the ability of dif-
ferent methods to retrieve the graph structure when a dif-
ferent sample size is available. Performance metrics for
this setting, obtained from 100 repetitions, are reported in
Figure 2A, while the average runtime for each method is
given in Table 1. We can see that the EF-)\ and EF-cuts
approaches have similar accuracy as the ET, as the corre-
sponding Hamming distances to the ground truth (i.e. num-
ber of misclassified edges) are on the same level. Notably,
the number of false positive edges predicted by the EF-\
method is zero in most cases. Thus, precision is always
very close to one. As a trade-off, recall is limited, espe-
cially for lower sample sizes. When 500 samples are avail-
able, recall reaches levels comparable to the baseline meth-
ods. The EF-cuts method performs very similar to the ET,
while exhibiting a much higher runtime. The reported run-
times for EF-\ and glasso correspond to a complete run
with 32 A-values. The runtime for glasso is not dependent
on the sample size and is mostly consumed for choosing
the optimal A. On the other hand, the runtime for EF-) in-
creases with sample size. However, we argue that the added
runtime constitutes a reasonable trade-off for achieving su-
perior structure learning performance.

Table 1: Average runtime (in seconds) for the experiments pre-
sented in Figure 2. For EF-)\ and glasso the reported runtime
corresponds to a complete run with 32 A-values and choice of the
optimal .

Sample Size: 25 50 100 250 500
ET 6 9 13 28 57
EF-\ 32 39 56 110 188
EF-cuts 1166 2088 3512 8151 14435
glasso 31 31 31 31 31
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Figure 2: Comparison of the EF-\, EF-cuts, ET and glasso algorithms on recovering the structure of (A) connected (B) disconnected
sparse GMRFs from different sample sizes. Simulated graphs comprise 25 nodes with 2 neighbours/node on average. The boxplots

contain results from 100 repetitions.

In a next step, we evaluated the performance of the EF
model in a situation where the data is drawn from a Gaus-
sian MRF with multiple connected components. Therefore,
we generated data from GMRFs with no restriction on the
number of connected components. Again, each graph com-
prises d = 25 nodes with an average of 2 neighbours/node.
Performance metrics for this setting, obtained from 100
repetitions, are reported in Figure 2B. We can observe that
the EF-\ approach outperforms the other three in terms of
accuracy, as it achieves the lowest Hamming distance. As
in the one-component setting, the number of false positive
edges predicted by this method is zero in most cases. Thus,
there are no inter-cluster false positive edges (i.e. edges that
are falsely predicted to connect nodes belonging to differ-
ent clusters) and precision is always very close to one. The
recall achieved is inferior to the other methods. However,
as the sample size grows, recall also reaches competitive
levels. Again in this setting, the EF-cuts approach performs
very similar to the original ET method.

We have seen that the EF-cuts method performs very sim-
ilar to the original ET method, but exhibits much higher
runtimes. On the other hand, the EF-)\ heuristic performs
very well for both connected and disconnected MRFs and
is additionally faster and more generic than the the EF-cuts.
Thus, we only include EF-) in the next simulations and re-
fer to it as simply EF.

6.2 RESULTS ON NON-GAUSSIAN MRF DATA

Here we explore the ability to learn the structure of MRFs
with non-Gaussian potentials. The EF, as well as the ET
approach, are applicable for arbitrary potentials and are,
therefore, expected to well adapt to this situation.

We now perform simulations for a Markov network whose
data dependencies are no longer Gaussian. More specifi-
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cally, we generate random graphs consisting of 25 nodes
that are organized in small cliques of size 3 or 4. For each
clique we draw data samples of pseudo-observations (Ko-
jadinovic and Yan, 2010) from a Student’s t-copula with
1 degree of freedom. The dependencies among random
variables in each clique are clearly non-Gaussian. Sub-
sequently, we apply the Gaussian quantile function to the
pseudo-observations of each random variable and, thereby,
we obtain data that is marginally normally distributed. In
this setting, we compare the EF approach to the ET, glasso
and, additionally, to the non-paranormal model (npn) of Liu
et al. (2009). The latter utilizes Gaussian copulas for struc-
ture learning. Its implementation is also available via the
R-package huge.

The results of 100 simulations are summarized in the box-
plots of Figure 3.The Hamming distances produced by
the EF approach are considerably smaller than those pro-
duced by competing approaches. Moreover, no false posi-
tive edges are predicted by the EF method. Precision and
also recall are very high. In contrast, the glasso and non-
paranormal methods, that assume Gaussian dependency
structures, achieve limited recall. The ET method produces
higher Hamming distances and also low precision, since
it introduces false positive edges that connect the cliques.
Note that the Hamming distance for this method is almost
equal to the number of inter-cluster false positive edges. In
such a setting, the EF approach performs significantly bet-
ter than all alternative methods since it naturally deals with
t-copula dependencies and disconnected MRF topologies.

6.3 A HIGH-DIMENSIONAL SETTING WITH
VERY LOW SAMPLE SIZE

Here, we explore structure learning on the basis of an ex-
tremely low number of samples from a comparably high
dimensional MRF. This situation commonly arises in many
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Figure 3: Comparison of the EF, ET, glasso and non-paranormal
algorithms on recovering the structure of sparse MRFs with Stu-
dent’s t-copula (df = 1) potentials. Simulated graphs comprise
25 nodes organized in small cliques of size 3 or 4. The boxplots
contain results from 100 repetitions.

real world applications, as for instance in biology where
typically only few observations are available. In this situa-
tion, we do not expect to comprehensively recover the un-
derlying MREF structure. Instead, we aim to maximize the
number of recovered true MRF edges at high precision, i.e.
without accumulating false positive relationships. There-
fore, we generate 50 data samples from an 80-dimensional
GMRE, where each node has on average 3 neighbours. The
ROC curves in Figure 4 compare the performance of the
EF and glasso approaches. We can see that, for very low
sample sizes, the EF method recovers almost a double num-
ber of edges at a tolerance level of 1% FDR. In Table 2 we
present the average runtime for EF and glasso when run
with a single A value.
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Figure 4: Comparison of the EF and glasso algorithms in a high-
dimensional setting (80-node graph) with very low sample size.
ROC curves for different numbers of available data replicates are
presented, averaged over 100 repetitions. The curves are trun-
cated at a tolerance level of 1% FDR.

Table 2: Average runtime (in seconds) for the simulations pre-
sented in Figure 4. Runtime is averaged over repetitions and A
values.

Sample Size: 10 15 20 25 30 50

EF-\ 107 153 163 182 185 248
glasso <l <1 <1 <1 <1 1

7 RESULTS ON MICROARRAY DATA

Here we demonstrate the performance of the EF approach
on a microarray dataset (Wille et al., 2004) from the iso-
prenoid biosynthesis pathways in Arabidopsis thaliana.
Expression levels of 39 genes (variables) are quantified un-
der n = 118 conditions (observations). EF is evaluated
via comparison to glasso (Friedman et al., 2008), the state-
of-the-art algorithm for learning the structure of continuous
MRFs. For the EF analysis, we used the Gaussian, Gumbel,
Clayton, Frank and Student’s ¢ copula as candidate para-
metric families. A summary of the copula selection results
is presented in Table 4, where we can observe that a variety
of different dependency types is present.

For both methods, a decreasing sequence of 40 A-values
was used. The optimal regularization parameter A\ for EF
was obtained via eBIC (Foygel and Drton, 2010), result-
ing in a sparse MRF whose graph structure is depicted in
Figure 5A. On the contrary, the use of information criteria
(eBIC, StARS (Liu et al., 2010)) for glasso yielded very
dense networks, as depicted in Figure 5B. In order to addi-
tionally compare both approaches with respect to results at
similar sparsity levels, we also selected the glasso graph
with the smallest Hamming distance with respect to the
graph learned via EF. To evaluate the performance of the
algorithms, we used a 5-fold cross validation setting and
evaluated the best-fitting model on the basis of the aver-
age per-sample held-out log-likelihood. Results are shown
in Table 3 and demonstrate that the MRF learned via EF
has better cross validation performance. Besides the per-
formance advantage, we note that the sparse structure of
EF model selection enables straightforward interpretation
and further hypothesis generation by domain experts.
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Figure 5: Optimal MRF graph structure recovered via (A) EF, (B)
glasso for the microarray data. The numbering scheme legend is
provided as Supplementary Material.



Table 3: Average per-sample held-out log-likelihood for the mi-
croarray data.

Log-likelihood  Std. error

EF-)\ 9.694 0.526
glasso (StARS) 8.522 0.418
glasso (sparse) 8.995 0.455

8 RESULTS ON IMMUNE CELL
PERTURBATION DATA

Finally we apply the EF model to study the occurrence
of MRFs with multiple connected components in a pro-
teomics setting. Specifically, we analyze mass cytome-
try data from human peripheral blood mononuclear cells
(PBMC), essentially representing all immune cells resid-
ing in the blood stream (Bodenmiller et al., 2012). Mass
cytometry allows for proteomic profiling of molecular sig-
naling events at single-cell resolution. The considered pub-
licly available dataset recapitulates the response of PBMC
populations to various molecular stimuli under several dif-
ferent pharmacological interventions. Signaling response
has been measured by quantifying 14 phosphorylation sites
(variables). For each intervention and cell type, 96 condi-
tions were considered, where a condition consisted of an
intervention strength setting and a specific stimulus.

Here we present results for interventions with the drug
dasatinib. Again we observe the occurrence of a variety
of non-Gaussian dependencies in this real world dataset
(Table 4). We evaluate the performance of EF by com-
paring it to glasso, as we did for the microarray data. The
average held-out log-likelihood per dataset is reported in
the boxplots of Figure 6A. Different PBMC datasets are
grouped together according to the stimulus used in each
experiment. We can see that EF achieves constantly supe-
rior performance. Furthermore, in Figure 6B, separate his-
tograms of the number of connected components for each
stimulus are presented. For specific stimuli, MRF topolo-
gies with multiple components are common, reflecting the
molecular impact of the intervention on the respective cel-
lular signaling event. The EF approach is able to adapt
to and recover underlying disconnected topologies even in
the presence of unusual dependencies and, thus, we expect
this approach to enable the probabilistic characterization of
cellular signaling events and, thus, to enable molecular in-
sights of possibly pathologically altered responses and to
generate hypotheses for clinical interventions.

9 DISCUSSION

We have introduced the ensemble-of-forests model to ap-
proximate structure learning for MRFs with arbitrary po-
tentials and connected components. Additionally, we have

50

Table 4: Frequencies of selected copula families during the anal-
ysis of plant microarray and PBMC mass cytometry data.

Gumbel  Frank  Clayton  Gaussian t (df=1)
Micro. 0.28 0.06 0.13 0.51 0.02
PBMC 0.20 0.06 0.35 0.23 0.16
(A) (B)
. dasatinib 1
MR ¢S ;;( «»V«‘\Q @m (RN w @ o: § RS :j;\ &

Figure 6: (A) Comparison of the EF and glasso algorithms. Box-
plots of average held-out log-likelihood for different cell-type /
stimulus combinations. (B) Histograms of the number of MRF
connected components predicted by EF when applied to PBMC
mass cytometry data. Separate histograms are given for each stim-
ulus, indicated on the x-axis. Frequencies on the y-axis are nor-
malized to sum up to 1 for each stimulus.

presented two approximate inference techniques for this
model and compared their structure learning performance
with state-of-the-art methods on a comprehensive set of
synthetic data.

ET and EF models are appealing structure learning ap-
proaches when unusual MRF potentials are to be expected.
Indeed, our simulation results confirm that the EF method
can accurately reconstruct non-Gaussian dependencies that
are a priori accounted for.

Disconnected dependency structures frequently arise in
real world applications. However, the ET model is con-
ceptually not able to handle such cases. We have extended
the ET to the EF model to the end of accommodating
multiple-component situations. Our simulation results con-
firm that we are able to faithfully recover MRF topologies
with one as well as with multiple connected components.
The study of the plant microarray and PBMC mass cytom-
etry data furthermore confirms the ubiquitous occurrence
of the multiple-component situation in cell biology and fur-
ther emphasizes the need for structure learning approaches
that are able to deal with this situation.

We also assessed how the EF model performs for limited
sample size, again a typical case for real world applications.
Our approach seems ideal for low-sample situations, where
we aim to maximize the number of recovered true MRF
edges at high precision.

In summary, we expect the EF model to enable MRF struc-
ture learning for many real world applications since this
approach naturally deals with low sample size, unusual de-
pendency types and disconnected dependency topologies.
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Abstract

The BDI architecture, where agents are modelled
based on their beliefs, desires and intentions, pro-
vides a practical approach to develop large scale
systems. However, it is not well suited to model
complex Supervisory Control And Data Acquisi-
tion (SCADA) systems pervaded by uncertainty.
In this paper we address this issue by extending
the operational semantics of CAN(PLAN) into
CAN(PLAN)+. We start by modelling the beliefs
of an agent as a set of epistemic states where each
state, possibly using a different representation,
models part of the agent’s beliefs. These epis-
temic states are stratified to make them commen-
surable and to reason about the uncertain beliefs
of the agent. The syntax and semantics of a BDI
agent are extended accordingly and we identify
fragments with computationally efficient seman-
tics. Finally, we examine how primitive actions
are affected by uncertainty and we define an ap-
propriate form of lookahead planning.

1 INTRODUCTION

SCADA (Supervisory Control And Data Acquisition)
systems are known for their large scale processes in
a wide variety of domains, including production pro-
cesses [Zhi et al., 2000] and energy and transportation sys-
tems [Boyer, 2009]. One way of modelling such systems is
by means of the BDI architecture [Bratman, 1987] which
allows us to decompose a complex system into a set of
autonomous and interacting agents, where an agent is de-
fined by its (B)eliefs, (D)esires and (I)ntentions. Agent-
based programming languages based on the BDI frame-
work have been proposed [Ingrand et al., 1992, Rao, 1996,
Dastani, 2008] and have been used to some extent to model
SCADA systems (e.g. [McArthur et al., 2007]).

However, current BDI implementations are not well-suited
to model the next generation of complex SCADA systems.
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The reason for this is two-fold. On the one hand, current
BDI implementations are not able to deal with uncertainty
associated with the beliefs of an agent (e.g. due to noisy
sensing) or the uncertain effects of actions (e.g. due to ac-
tuator malfunctions). This limits the ability of a BDI agent
to react in a satisfactory way in an uncertain environment.
On the other hand, and closely related, is that most BDI
implementations do not provide any mechanisms for looka-
head planning to guide (part of) the BDI execution in this
uncertain setting.

Figure 1: Scenario for a train agent with an unreliable sig-
nal (1), a dangerous junction (2) and a goal station (3).

To illustrate these issues, consider the running example in
Figure 1. A train agent is moving along a track with a sig-
nal (1). The signal, which is green or orange, informs the
agent if it violates the safe distance (with uncertainty due
to e.g. mist, conflicting signals ...). Once the agent has
passed the signal, the agent decides on how to approach
the junction (2). The speed of the train is not known ex-
actly, yet the agent needs to decide whether it wants to keep
speeding (as it is running late) or slow down (resp. 75%
and 50% chance of reaching the junction in time). Once
at the junction, the action to take the junction only has
a 30% chance of succeeding when speeding (e.g. due to
derailment). Otherwise, the junction can safely be taken.
For simplicity, the station is reached on time only when the
junction is safely taken. Clearly, an agent should be able to
reason about the uncertainty and be able to plan ahead, e.g.
foresee that slowing down is the best action.

Not a lot of work in the literature on BDI tackled the
problem of representing, and reasoning about, uncertain
information. A notable exception is the recent work
in [Chen et al., 2013], which incorporates uncertain per-
ceptions in the epistemic state of an agent after which



it is mapped to a classical belief base, thus ignoring
the other information. The work on graded BDI sys-
tems [Casali et al., 2005, Casali et al., 2011] similarly dis-
cusses how uncertainty can pervade the beliefs, desires and
intentions. However, the graded BDI framework is mainly
of theoretical interest and has not led to actual implemen-
tations, contrary to how AgentSpeak and CAN have helped
to advance the state-of-the-art in BDI implementations.

Planning in a BDI agent, where the agent reflects on
its actions before executing them, has been considered
in numerous works. While the BDI model does not
prevent planning, most BDI implementations resort to
simple plan selection strategies to avoid the computa-
tional cost associated with declarative planning. This pre-
vents them from acting optimally when needed, e.g. when
important resources are consumed during the execution
of plans. A formal approach to planning in BDI,
called CANPLAN, was presented in [Sardifa et al., 2006].
CANPLAN is based on the Conceptual Agent Notation
(CAN) [Winikoff et al., 2002], a high-level agent language
in the spirit of BDI [Rao and Georgeff, 1991]. It is closely
related to AgentSpeak [Rao, 1996] but allows for declara-
tive goals alongside procedural steps (i.e. we can state what
we want to achieve, not just how to achieve it). CANPLAN
extends this work by introducing a Plan(-) action, making
planning on-demand an integral part of the BDI framework.
Nevertheless, none of the approaches to BDI address the
issues that arise when dealing with actions with uncertain
effects, or uncertain beliefs in general.

In this paper we propose the CAN+ and CANPLAN+ frame-
works, which extend CAN and CANPLAN to provide for-
mal approaches for dealing with uncertain beliefs and
(planning for) actions with uncertain effects. The beliefs of
an agent are modelled as a set of epistemic states, with each
local epistemic state representing a distinct part of the be-
liefs held by the agent. Each epistemic state can deal with a
different form of uncertainty (e.g. possibilities or infinites-
imal probabilities) and includes its own revision strategy.
Such a set of local epistemic states will be called a Global
Uncertain Belief set (GUB) and allows the agent to rea-
son about different forms of uncertainty in a uniform way,
as long as these can be expressed using epistemic states
that are equivalent to Definition 1. This is achieved in two
steps. Firstly, a stratification of each local epistemic state
allows for commensurability, along with the ability to rea-
son about the uncertain beliefs. In other words: it enables
an agent to reason about those beliefs it currently does not
assume to be true (in the sense of beliefs in classical log-
ics). Nevertheless, an agent commonly still considers some
outcomes to be more plausible than others. The agent thus
gains the ability to reflect on its own uncertainty. Secondly,
an agent will be able to revise a GUB directly, with the
GUB ensuring that only the information relevant to a spe-
cific local epistemic state is used to revise it. This idea of
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a GUB will be introduced in the CAN framework to obtain
CAN+. CANPLAN+ further extends upon it by adding the
ability to execute and plan for non-deterministic actions, all
while dealing with uncertain beliefs.

The remainder of this paper is organised as follows. Some
preliminary notions are discussed in Section 2. We explore
how we can efficiently model and reason about uncertain
beliefs in Section 3, where we introduce the idea of epis-
temic states and how they can be applied in a BDI setting.
In Section 4 we extend CAN to enable us to deal with un-
certain beliefs, while uncertain actions and planning under
uncertainty are addressed in Section 5. Related work is dis-
cussed in Section 6 and conclusions are drawn in Section 7.

2 PRELIMINARIES

An agent in the BDI framework is defined by its beliefs,
desires and intentions. The beliefs encode the agent’s un-
derstanding of the environment, the desires are those goals
that an agent would like to accomplish and the intentions
those desires that the agent has chosen to act upon.

CAN, and its extension CANPLAN, formalise the behaviour
of a classical BDI agent, which is defined by a belief base
B and a plan library II. The belief base of an agent is a
set of formulas over some logical language that supports
entailment (i.e. B |= b, b a belief), belief addition and be-
lief deletion (resp. B U {b} and B\ {b}). The plan library
is a set of plans of the form e : 1 < P where e is an
event, ¢ is the context and P is a plan body. Events can
either be external (i.e. from the environment in which the
agent is operating) or internal (i.e. sub-goals that the agent
itself tries to accomplish). The plan body P is applicable
to handle the event e when B |= ), i.e. the context evalu-
ates to true. The event and context differ in that the context
is lazily evaluated; it is checked right before the execution
of the plan body. The language used in the plan body P is
defined in Backus-Naur Form (BNF) as:

Pu=nil|4+b|=blact|?%|le| Pi; Py | P | P2 |
P> Py | (|A]) | Goal(¢s, P,¢¢) | Plan(P)

with nil an empty or completed program, +b and —b be-
lief addition and deletion, act a primitive action, 7¢ a test
for ¢ in the belief base, and le a subgoal, i.e. an (internal)
event. Actions, tests and subgoals can fail, e.g. when the
preconditions are not met. Composition is possible through
Py; P, for sequencing, Py || P, for parallelism (i.e. a non-
deterministic ordering) and P; > P» to execute P2 only on
failure of P1. (JA|) is used to denote a set of guarded plans,
with A of the form 1 : P, ..., ¥, : P,,, which intuitively
states that the plan body P; is guarded by the context ;,
i.e. the context needs to be true to execute the plan body.
The plan form Goal(¢s, P, ¢) is a distinguishing feature
of CAN that allows to model both declarative and procedu-
ral goals. It states that we should achieve the (declarative)



goal ¢ using the (procedural) plan P, where the goal fails
if ¢; becomes true during the execution. CANPLAN fur-
thermore introduces the Plan(P) construct, which is used
for offline lookahead planning. This construct will be dis-
cussed in more detail in Section 5.

The operational semantics of CANPLAN are defined in
terms of configurations. A basic configuration is a tuple
(B, A, P) with B a belief base, A the sequence of primitive
actions that have been executed so far and P the remainder
of the plan body to be executed (i.e. the current intention).
An agent (configuration) is a tuple (N, D, 11, B, A, T') with
N the name of the agent, D the action description li-
brary, II the plan library, I" the set of current intentions
of the agent and 55 and A as before. For each action act
the action description library contains a rule of the form
act : 1 < ¢~ ;¢T. We have that ¢ is the precondition,
while ¢~ and ¢T denote respectively a delete and add set
of belief atoms, i.e. propositional atoms.

A transition relation — on (both types of) configura-
tions is defined by a set of derivation rules. A transition
C — (' denotes a single step execution from C' yielding
C’. We write C — to state there exists a C’ such that
C — C" and C' +/— otherwise. We use — to denote the
transitive closure over —. A derivation rule consists of a
(possibly empty) set of premises p; and a single transition
conclusion c. Such a derivation rule is denoted as
J2! P2 Pn I

c

with [ a label attached to the derivation rule for easy ref-
erence. Transitions over basic configurations (resp. agent
configurations) define what it means to execute a single in-
tention (resp. the agent as a whole). For example, the tran-
sition for belief addition and a primitive action are:

B.A. 1) — (BUY, Anil)

(a:p ¢ 50T)eD a = act B E 0
(B, A, acty — ((B\ ¢=0)U ¢T0, A act,nil)

where the latter states that when the unified precondi-
tion )0 is true in the belief base B, the effect of the action is
the application of the add and delete atom lists to the belief
base. We refer the reader to [Sardifia and Padgham, 2011]
for a full overview of the semantics of CANPLAN.

act

Finally, a preorder < 4 defined on any set A is a reflexive
and transitive relation over A x A. We say that < 4 is fotal
iff for all a,b € A we have that either a <4 bor b <y4
a. A strict order <4 and an indifference relation =4 can
conventionally be induced from < 4.

3 MODELLING AND REASONING
ABOUT UNCERTAIN BELIEFS

As discussed in Section 2, a belief base in CAN is de-
fined over a logic for which operations are available to add,

o4

delete and entail beliefs. This classical setting allows for
an easy approach to belief revision. However in this pa-
per we are concerned with the modelling of, and reasoning
over, uncertain information. To deal with uncertainty we
will need more elaborate ways to both represent the beliefs
and to revise the beliefs when new information becomes
available. To this end, we will use epistemic states instead
of a belief base as in CAN.

3.1 MODELLING UNCERTAIN BELIEFS AS

EPISTEMIC STATES

To define epistemic states, we first start by considering a fi-
nite set At of propositional atoms. For a set of atoms A C
At we define the set of literals that can be constructed using
the atoms in A as lit(A) = {a|a € A} U {-a|a € A}.
A proposition ¢ is defined in BNF as ¢ ::=
(1 A @2) | (1 V ¢2), i.e. all propositions are in Negation
Normal Form (NNF). This does not affect the expressive-
ness of our language as arbitrary formulas can be efficiently
converted into NNF. It will, however, make the definition
of our semantics easier. We will denote this language as L.
Now we introduce the concept of an epistemic state:

Definition 1. (from [Ma and Liu, 2011]) Let 2 be a set
of possible worlds. An epistemic state is a mapping
®:Q— ZU{—0c0,+00}.

a | —a |

An epistemic state will be used to represent the mental
state of an agent, where the value ®(w) associated with
a possible world w, called the weight of w, is understood
as the degree of belief in the possible world w. Through-
out the paper we will denote epistemic states using capi-
tal Greek letters. For w,w’ € Q and ®(w) > ®(w’) the
intuition is that w is more plausible than w’. Two epis-
temic states ® and U are semantically equivalent iff
FeZ -YweQ: P(w) = V(w) + k, ie. the value asso-
ciated with the possible worlds only has a relative meaning.
In the remainder of this paper we assume that epistemic
states have 24 as their domain with A C At. The strength
of preference on a propositional formula ¢ is defined as
®(¢) — ®(—¢) with ®(¢) = max,q(P(w)). We use
maxg to denote maxe = gléié((@(w)) - Lnelg(q)(w)) +1,
i.e. the weight stronger than any of the strengths associated
with information in ®, and ming = 1 — maxg .! The val-
ues maxg and ming are only needed in Section 4 when
considering belief additions and deletions as in CAN.

Before we provide an example, it is important to clar-
ify that the definition of an epistemic state from Defi-
nition 1 allows for the construction of a general frame-
work. Indeed, this definition does not impose any restric-
tions on the values associated with the possible worlds,
other than that they are weights. As such, it is the

!These values only change when the epistemic state is revised
and can be computed as a by-product of revision.



most general way in which we can talk about an epis-
temic state, regardless of the actual representation. Other
representations for epistemic states, which attach more
specific meaning to the values, have been shown to be
equivalent to the one from Definition 1. For exam-
ple, Definition 1 induces an Ordinal Conditional Func-
tion (OCF) [Spohn, 198812, which in turn can be trans-
formed into other representations, e.g. those based on in-
finitesimal probabilities [Darwiche and Goldszmidt, 1994]
and possibility theory [Dubois and Prade, 1995]. The rep-
resentation from Definition 1 can thus be instantiated us-
ing any of the other representations to best suit the nature
of the uncertainty. After developing all main concepts, we
will show in Section 4 that this will allow us to work with
these different forms of uncertainty in a uniform way.

We now give an example of such an epistemic state.

Example 1. Consider a signal that can be (o)range or
(g)reen (but never both on). When the signal is orange it
usually indicates that the agent is about to violate the safe
distance (sd). The agent believes that the light is green
and that there is still a safe distance with the train in front.
Even when the signal would turn out not to be green, the
agent still believes that there would be a safe distance with
the train in front of it. An epistemic state Y could be:

®({o,9,sd}) = —0
®({0,g,sd}) = —o0
®({o,—g,sd}) =7

®({o,~g,—sd}) =6

®({~0,9,sd}) =10
(I)({ﬁov 9, ﬁSd}) =-2
({0, ng,sd}) =7
(I)({_‘Oa -9, _‘Sd}) =-2
where maxe = 400 and ming = —oo. The weight as-
sociated with e.g. {o, g, sd} means that we strongly disbe-
lieve this possible world, while the weight associated with
{—o0, g, sd} implies that we believe this possible world to
be more plausible than any of the other possible worlds.

The belief set, i.e. the sentences that an agent is committed
to believe, is commonly defined as the set that has all the
most plausible worlds as its models.

Definition 2. (from [Ma and Liu, 2011]) Let ® be an epis-
temic state. The belief set of ®, denoted as Bel(®), is
defined as Bel(®) = ¢ with ¢ any propositional formula
such that Mod(¢) = min(Q, <g). Here Mod(¢) is the set
of models of ¢ and <4 is a total preorder relation over 2
such that w <g W' iff ®(w) > P(w').

The model of the belief set thus only contains those possi-
ble worlds with the highest weight. In this paper we extend
on this idea by also taking the other possible worlds into
account. These other possible worlds constitute the uncer-
tain information, i.e. they define the preferences the agent
has over the outcomes that are currently not believed to be
true.

2Compared to OCFs, the representation from Definition 1
avoids the normalisation step.
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To clearly identify these preferences, irrespective of the ac-
tual values of these weights in different representations of
the epistemic states, we consider a stratification of the set
of possible worlds. The highest stratum (containing those
possible worlds with the strongest associated belief) corre-
sponds to the set of models of the belief set, i.e. that what
the agent believes to be true. The other strata constitute the
uncertain information, with information in a higher stratum
believed/preferred over information in a lower stratum.

Definition 3. Let ® be an epistemic state. The stratification
A of the domain ) from ® induced by the total preorder
relation <g is defined as:

w € min(Q, <g)

1
)\ =
@) {nJr 1 wemin(\{w]| AMw) <n},<s)
In Example 1 we obtain A({—0,g9,sd}) = 1,
A{o,7g,8d}) = A{—-o0,—g,sd}) = 2, etc. This

idea of a stratification readily corresponds with the more
common notion of a stratification over propositional
formulas as any subset of possible worlds can trivially be
represented by a single propositional formula.

Notice that the models of the belief set (see Definition 2)
correspond to those possible worlds w for which A(w) = 1,
i.e. information on all the other strata is ignored. Instead
of simply ignoring this information, we want to make it
possible for a BDI agent to reason about the preferences
expressed throughout the stratification. To this end we ex-
tend the language £ with the connectives > and >. The
intuition of a > b (resp. a > b) is that the agent believes a
to be at least as plausible as b (resp. a is strictly more plau-
sible than b). These new connectives are taken to have the
lowest precedence. The resulting language £, or the con-
text language, can be defined in BNF as:

pu=al-al it ANda | PV o2 | d1 > P2 | 1 > ¢

where formulas with connectives such as — and <+ can
easily be transformed into logically equivalent statements
in the language L. Notice that this definition is the equiv-
alent of NNF for propositional formulas. Any proposition
using the connectives =, A, V, > and > can be turned
into an equivalent formula in £ in the usual way and by
rewriting —(y1 > g) as (Y2 > 1) and —(¢v1 > o)
as (2 > 11). We assume that this has been done when
needed throughout paper.

By extending the mapping A we can define the semantics
of L> over arbitrary formulas. We have:

_Jmin{A\(w) |w = ¢}
N = {Mpmw))

with min(() oo.  Before defining the function
pare, we point out that X\ is closely related to a pos-
sibility measure [Dubois et al., 1994] for propositional

ifp e L
otherwise



formulas ¢,1) € L.  We readily establish some inter-
esting properties such as A(¢ V ¢) = min(A(¢), A(¥)),
A¢ A ) > max(A(¢), A1), A(T) = 1, A(L) = oo and
min(A(¢), A\(—¢)) = 1.

When ¢ is not a propositional statement (i.e. ¢ & L), we

need to pare down the formula until the formula is a classi-
cal propositional statement. This is done by:

pare(¢ A1) = check(¢) A check(v)
pare(¢ V 1) = check(p) V check(1))

T A=) > M)
pare(¢p > ) = { L otherwise
o ifpel
check(¢) - {pm’e(gb) otherwise

with pare(¢ > 1) equivalently defined as pare(¢ > ).
The intuition of paring down is straightforward: for each
operand of the operators A and V we verify whether it is
an expression in the language £ (for which the A-value can
readily be determined). Otherwise, we need to further pare
it down. When the operator is > or >, we define it as a
plausibility ordering with an expression such as ¢ > ) read
as “¢@ is more plausible than 1) or, alternatively, “we have
less reason to believe —¢ than —)”.> Such an expression
can always be evaluated to true or false, i.e. T or L.

Finally, we can define when a formula ¢ is entailed.
Definition 4. Let O be an epistemic state and ¢ a formula
in L>. We say that ¢ is entailed by ®, written as ® |= ¢, if
and only if \N(¢) < A\(—¢).

Example 2. Consider A of ® from Example 1. We have:

AMgAsd)=1 MoAsd)=2 MgA-g)=o0
AMoVvg)>-sd)=1 XNg>o0)=1 Ao>g) =0

For example, \(g N sd) 1 since AM{—o,g,sd} = 1
and {—o0,g9,sd} | g A sd. An expression such as
(oV g) > —sd, which is also believed to be true, states that
the agent does not care about the colour of the light as long
as the agent is not violating the safe distance.

Note that in Definition 4 it is insufficient to state that a for-
mula is entailed when A(¢)) = 1. Indeed, for a € At we
can have that A(a) = A(—a) = 1, which occurs when we
are ignorant about the value of a. As such, we need to en-
sure that both expressions are mapped onto strictly distinct
strata. This notion of entailment (assuming ¢ € L) corre-
sponds exactly to those formulas that can be derived from
the belief base Bel(P).

Proposition 1. Let ¢ € L be a propositional formula, ® an
epistemic state with domain ) and X the stratification of ().
We have that ® |= ¢ iff for all w € Q such that A\(w) = 1
we have that w |= ¢, i.e. Bel(®) = ¢.

*In terms of possibilistic theory: we want N(¢) > N(3),
i.e. we want II(—¢) < II(—) (with X a reversed order).
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3.2 SEMANTICS BASED ON LITERAL MAPPING

While the semantics we presented thus far allows us to rea-
son about the uncertain information, they are computation-
ally expensive for evaluating a context because they rely
on an exponential structure. A tractable way to evaluate
contexts can be obtained by restricting ourselves to a frag-
ment of the language £, allowing us to determine the truth
of a context based on the A-value associated with the con-
stituent literals.

Example 3. Consider the stratification A of ® from Ex-

ample 1. We have \(o) = 2, A\(—o0) 1, Mg) = 1,
A(—g) =2, A(sd) = 1 and \(—sd) = 3.

Due to the way we defined A over arbitrary formu-
las, we know that A(¢ V ) is decomposable, while
A(¢ A 1) is not. Indeed, recall that we only have that
A(d A1) > max(A(¢), A(¢)). Therefore, we cannot al-
low A in our restricted language. Furthermore, it affects our
ability to verify whether for a given expression 1) we have
that A(¢) < A(—%)). Indeed, we can only allow disjunction
as part of an operand of the operators > or > as otherwise
its negation would turn it into a conjunction, which we do
not allow. As such, we obtain the fragment L, defined in
BNF as:
d:::a\—'a|d1\/d2 ¢:::a\ﬂa|d12d2|d1>d2
Contexts in this language can easily be evaluated, once we
have the A-values of the literals lit(A):

A6V ) = min(A(6), A1)
Ap > ) = {1 A=) = A(~)

oo otherwise

and equivalently for A\(¢ > ). As before, we say that ¢ is
true iff A\(¢) < A(—¢). Even though enforcing tractability
carries a penalty in terms of the expressive power, we still
retain a language that takes advantage of the new connec-
tives we have introduced, thus allowing us to reason over
the plausibility of statements.

3.3 EFFICIENTLY MODELLING ISOLATED
UNCERTAIN BELIEFS

As a final step in the representation of uncertain beliefs for
a BDI agent, we introduce the concept of a global uncertain
belief set (GUB) which applies to both Section 3.1 and 3.2.

Definition 5. A global uncertain belief set G is a set
{®y, ..., D, } with each ®; an epistemic state over the do-
main A; C At such that { Ay, ..., A, } is a partition of At.

Each local (or isolated) epistemic state models beliefs that
are semantically related, e.g. the colour of the signal or the
condition of the track, and that are governed by the same



form of uncertainty. A GUB then groups a set of such lo-
cal epistemic states. A GUB is therefore a representation
of the overall beliefs of an agent, yet it differs in three sig-
nificant ways from a global epistemic state. First, it avoids
the exponential representation of a global epistemic state
by partitioning the beliefs. Second, it allows for a general
framework where each local epistemic state can use a dif-
ferent representation. Third, it does not include a revision
strategy (as each local epistemic state can have a distinct
revision strategy), i.e. it is not itself an epistemic state.

Despite these differences, we can use a GUB to determine
if a context ¢ is true according to the agent’s collective be-
liefs. Intuitively, ¢ can be evaluated directly if it applies to
a single local epistemic state ®,, i.e. we can verify whether
D, = ¢. Otherwise, we need to break ¢ apart up until the
point where we can evaluate it directly. An expression can
be split when the connective is either A or V. Since both
operands will either be true or false such a decomposition
is trivial. However, this also implies that we cannot decom-
pose > or >, since in this paper we require both operands to
be from the same local epistemic state. Indeed, in general,
stratifications of different formulas in different local epis-
temic states are incomparable due to the varying underlying
structures. The problem of comparing the plausibilities of
different local epistemic states is left for future work.

To formalise this intuition, we use E‘;l" to denote the lan-
guage L limited to atoms a € A;, i.e. the language corre-
sponding to the epistemic state ®;. A formula ¢ is broken
apart by (simp)lifying it, which returns the evaluation of ¢
by evaluating the operands (or it returns L if the connec-
tive is > or > and both operands are incomparable). We
can then define val gyp(9) as:

T if ¢ € L35, = ¢
valgup(é) = { L if ¢ € L3, ®; [~ ¢
simp(¢) otherwise
simp(¢ A ) = valqup () ANvalgus (V)
simp(¢ V1Y) = valqup(¢) V valgus ()

simp(¢ > ) = L

and simp(¢ > 1)) equivalently defined as simp(¢ > ).
Definition 6. Let G be a GUB and ¢ a formula in L.
We say that ¢ is entailed by G, written as G = ¢, if and
only ifvalgup(¢) = T.

A visual representation of a GUB is given in Figure 2.

4 DEALING WITH UNCERTAIN
BELIEFS IN A BDI AGENT

In the previous section we discussed how the beliefs of an
agent can be represented as a set of local epistemic states.
We also discussed how a GUB, and the underlying strat-

GUB

Figure 2: A GUB models the belief of an agent as a set of epis-
temic states ®;, each having its own representation (Definition 5).
Commensurability is obtained by stratifying the possible worlds,
with each stratum constituting an (uncertain) belief set (Defini-
tion 3). These stratifications can be combined to compute the
A-value of any arbitrary propositional formula. When new input
is received, the local epistemic states are revised by ignoring (or
forgetting) irrelevant information, as discussed in Section 4.

ification of the local epistemic states, can be used to en-
sure commensurability. In this section, we extend CAN to
CAN+ by adding to it a GUB to represent uncertain be-
liefs and by extending its syntax so that a CAN+ agent can
reason about its uncertain beliefs. After Definition 8, we
introduce how a GUB can be revised directly, thus allow-
ing an agent to revise its beliefs irrespective of the various
forms of uncertainty that govern those beliefs. In our exten-
sion CAN+, a context 1) is taken to be a sentence from the
language £>. We assume the language for a plan body to
be defined as in CAN, where we will gradually modify the
language throughout this section. First though, we redefine
the concept of configurations in CAN+. Rather than con-
sidering a belief base to model the knowledge, we will thus
use a GUB to represent the uncertain beliefs of the agent.
We have:

Definition 7. A basic configuration is a tuple (G, A, P)
with G a GUB, A the list of executed actions and P a plan
body being executed (i.e. the current intention). An agent
(configuration) is a muple (N, D,11,G, A, T') with N the
name of the agent, D the action description library (de-
fined in Section 5), 11 the plan library, I the set of current
intentions of the agent and G and A as before.

With the configurations redefined we can extend the first
set of rules from CAN, i.e. the rule for a test goal (7¢) and
the rule for plan selection (select):

G E ¢0
(G, A, 7¢) — (G, A, nil)

¢

VP €A G it
(G, A, (IA]) — (G, A, Bb> (AN Bi))

select

We retain the notation as used in [Sardifia et al., 2006] to
denote unification as e.g. ¢, i.e. variables are dealt with in
the customary way. The modified rules make clear that ver-
ifying whether a belief or context holds is now done against



the GUB. The language has implicitly been extended in
both cases, since test goals and contexts can now include
statements to reason over uncertain beliefs, i.e. ¢, ¢; € L.

So far we have looked at how we can reason about the
agent’s (uncertain) beliefs, but we also want to revise these
beliefs. When new input is presented (e.g. due to an in-
ternal belief change or the effects of an action), a naive
approach would be to compute the global epistemic state
as the Cartesian product of the local epistemic states, apply
the input and then marginalise the outcome. However, such
an approach is computationally too expensive. Instead, we
will apply the input directly to the relevant epistemic states.
First though, we define the notion of an uncertain belief.

Definition 8. Let ¢ be a sentence in the language L4
with Ay, € A, Let p € (Z U {—00,+00}). We say that
b = (¢, u) is an uncertain belief.

An input b, which is an uncertain belief, corresponds to a
sequence of inputs refine(b, ;) for any given local epis-
temic state ®; € G. We have:

forget(b, ®;)
()

with forget(b,®;) a sequence of inputs defined as
((m! 1) | b= (¢, ), m € Mod(¢),m’ =mnNlit(A4;))

and m/ in (m’, p) treated as a conjunction of literals. When
A C A; we could equivalently take forget(b, ®;) = (b).

otherwise

refine(b, ®;) = {

By G o b we denote that we want to revise the cur-
rent beliefs of the agent with the input b, such that
Gob={®; orefine(b,®;) | v®; € G} with o a revision
operator. That is, revising a global uncertain belief
set is taken as revising the local epistemic states with
the given input. Each input (m/, ) in the sequence
refine(b, ®;) corresponds to a simple epistemic state
from [Ma and Liu, 2011], i.e. to an epistemic state P,
with the domain 24¢ such that ®,,(w) = p iff w = m/
and ®;,(w) = 0 otherwise. An epistemic state & can be
revised by a simple epistemic state &’ with the same do-
main €, denoted as ® o ', as Vw € Q, (P o ¢')(w)
®(w) + ®'(w).* As such, when the input has been trans-
formed to refine(b, ®;) for a given local epistemic state
®,;, the revision is equivalent to iterated revision using
the simple epistemic states in refine(b, ®;). The final
output of this iterated revision is unique regardless of
the order in which we revise ®; with simple epistemic
states @, in forget(b, ®;) based on postulates BS and B6
in [Ma and Liu, 2011] (i.e. weights are cumulative and the
order of updating does not affect the result).

Now we can introduce the ob rule to CAN+ for belief
change. The intuition of this new rule is clear; we want to
change the beliefs encoded in the GUB with the uncertain
belief b. We have:

*For other epistemic states these values can be extrapolated.

98

(G. A ob) — (Gob Amil)

The rule for belief change can serve as a template to define
the rules for classical belief addition +¢ and deletion —¢.
Those rules would become:

G, A 19) — (Go (6, maxg), Anil) 0
G, A —3) — (G o (6 ming), Anil)
with maxg = max{maxg, | ®; € G} and ming analo-

gously defined. Notice that we transform the formula ¢
into an uncertain belief by assigning to it the weight maxg
(ming). This ensures that ¢ will be true (false) after re-
vision. We can also define belief addition and deletion as
syntactic sugar on top of the belief change semantics. In-
deed, a statement such as +¢ is nothing more than a short-
hand for the statement o(¢, maxg). Similarly, —¢ can be
considered a shorthand for o(¢, ming). As we try to keep
the semantics as concise as possible, we opt to define these
operators in the latter way. Such a choice will also need to
be made in the next section, where we will directly present
the approach based on syntactic sugar.

In conclusion, the new language for a plan body in CAN+
is given in BNF as:

P:u=nil|ob|act|?|'e| Pi;Pa| P1 | P2
Pre Py | (JA]) | Goal(¢s, P, )

with b an uncertain belief and ¢, ¢, ¢r € L>. We also
modified the rules for 7¢ and select, while dropping the
rules for +¢ and —¢ and introducing a new rule for ob. The
rules in CAN dealing with program flow do not require any
changes and can be integrally applied to the CAN+ seman-
tics. The rules on declarative goals do need to be modified,
but in a straightforward way similar to 7¢, i.e. we need to
verify ¢, and ¢ against G.

S DEALING WITH UNCERTAIN
ACTIONS IN A BDI AGENT

The primitive actions of a BDI agent are affected by uncer-
tainty in a variety of ways. Usually described in a STRIPS-
like style such as act : 1 < ¢~ ; ¢, an action act can have
uncertainty in the precondition ), uncertainty as to a spe-
cific effect (where the effect will change the epistemic state
and possibly the belief set) or uncertainty as to the outcome
of an action (with a probability for each outcome).

The first form of uncertainty is the easiest to incorporate.
Similar to how the rule select for plan selection allows us
to consider uncertain information, we can take ¢ € L£> and
verify whether this context, or precondition, is satisfied.

Next, ¢~ and ¢T are usually taken to be delete and add
lists of atoms. Nothing in the semantics for CAN+ prevents



us from instead considering a list of uncertain beliefs ¢
as the results of an action. Not only does this consider-
ably increases the expressive powers of action effects, but
it also allows to define ¢~ and ¢* as special cases of ¢“
with each being a list of propositions ¢ € L to which the
weight ming and maxg is assigned, respectively. As we
did before, we assume hereafter that ¢~ and ¢ are forms
of syntactic sugar for which we will not explicitly define
the semantics.

Finally, the effects of an action may not be known in ad-
vance. This form of uncertainty has already been ex-
tensively considered in the literature, leading to varia-
tions of the STRIPS language that consider various out-
comes with associated probabilities. Rather than a sin-
gle outcome ¢~ ;¢" we consider a set of outcomes

{(p1, 07,07 )s s (s by, &) } With D07 pi=1.

By adopting a STRIPS-like probabilistic action library D,
populated by probabilistic action description rules — each
representing a single independent action — we can model
these three forms of uncertainty with rules of the form:

act : Paet {<p1,¢7f>7 ceos {Pns ?)}

such that p; > 0, > | p; = 1 with 9, an uncertain
belief and ¢;' a list of uncertain beliefs.

Example 4. Consider the running example from the intro-
duction and Figure 1. We can model the actions to slow
down and to continue at the same speed as

0.4, [(junc, maxg), (sp, —20)]),
0.6, [(late, maxg), (sp, —20)])}
0.75, [(junc, maxg)]),
0.25, [(late, maxg)]) }

The first action can always be applied and has two out-
comes. With 40% chance the junction is reached in time
and with 60% the train is late. In both cases the (sp)eed is
reduced. The second action encodes an agent in a hurry:
the agent will not wait until there is a safe distance, i.e. the
agent continues whenever he thinks it is at least more plau-
sible that there is still a safe distance (or when the agent is
ignorant and doesn’t care).

slow : true + {

cont : sd > —sd + {

o~ o~~~

While we already know how to correctly deal with un-
certain beliefs, we do not yet have the machinery in
the operational semantics to deal with probabilistic ef-
fects. To model a probabilistic action we use the notion
of a probabilistic transition C' —, C’ where p repre-
sents the transition probability between the configurations
C and C' [Di Pierro and Wiklicky, 1998]. Notice that all
the transition rules used thus far are special cases of prob-
abilistic transition rules where the probability of the tran-
sition is 1. As such we assume in CAN+ that all transition
rules are probabilistic transition rules, where the probabil-
ity is 1 unless explicitly specified. The act derivation rule
can then be defined as:
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(a: 1) « effects) € D af = act G E o
(G, A, act) —,. (G o ¢10, A - act,nil)

act

with effects the set {(p1, @%), ..., (Dn, d%) }. As expected,
the transition will depend on the probabilities of the differ-
ent effects associated with the action act.

Thus far we have only discussed how CAN+, which extends
CAN, adds the ability to model and reason about uncertain
information. A parallel endeavour is to extend CANPLAN
into CANPLAN+. The main difference between CAN and
CANPLAN is the ability of the latter to perform lookahead
planning by means of the Plan(-) action. A similar idea
can be incorporated in CAN+ to arrive at CANPLAN+.

We know from the way we extended the act rule that, dur-
ing the BDI execution, it is the probability of the transition
that determines the effect of a primitive action. Further-
more, when a BDI agent tries to achieve some intention,
this may involve the execution of a large number of plans.
However, merely selecting the plan with the highest prob-
ability of reaching the next state without taking future ac-
tions into account may lead to poor performance. Indeed,
this single step may not be on the same path that offers
the highest overall chance of achieving our goal. Such is-
sues can be addressed by using lookahead planning. During
planning performed through the Plan(-) action we can take
the probability of the different transitions into account and
thus maximise the probability of achieving our intention.

To formalise this idea, we introduce the notion of maximis-
ing the overall transition probability. Intuitively, given two
configurations C' and C"”, there may be more than one op-

. | .. .

tion such that C' =% C”. When a transition is labelled
with ‘plan’ or ‘bdi’, the transition is resp. only valid in the
planning context or during BDI execution. We want to take

. [ .
the transition C' =% C” such that C is the next configura-
tion on the path which offers us the highest overall chance

of reaching our goal, which we will denote as C n%? c”.

Definition 9. Ler C and C” be configurations such

|
that C 225 C".  Furthermore, let p be such that

n plan ; Plan plan 7
p [lizopi and C ==, C *pa pn C7
max

We say that C = C" when there does not exist a

configuration D' that is different from C' in either its
belief base, executed actions or plan body such that

| | | .
C m% D’ mpé m% C"” and p' > p with
/ /
p —Hi:opi-

In other words: C” is the next configuration on the most
probable path to reach C”’. Using Definition 9 we can ex-
tend the operational semantics of the Plan(-) construct to
take into account that we are dealing with uncertain actions.
In CANPLAN the rule for Plan(-) is as follows:

c™ o o o
(B, A, Plan(P)) 2% (B', A’, Plan(P"))

plan
—

plan



with the configurations C, C’ and C" defined as (B, A, P),
(B',A’, P’y and (B", A", nil), respectively. Intuitively,
this rule states that the next action to execute is the one
that, according to our lookahead planning; will eventually
lead us to achieving our goal.

The rule in CANPLAN+ for Plan(-), which not only en-
sures that we reach our goal but also maximises the chances
of reaching our goal, is then defined as:

plan

c = ¢ cm? c”

o plan

(G, A, Plan(P)) == (G', A’, Plan(P"))
with C, C’ and C” defined as (G, A, P), (G, A’, P') and
(G", A" nil), respectively.

Example 5. Consider the running example from Figure 1.
Assume we are at the decision point just after reaching the
signal. An agent that plans ahead for the goal of reaching
the station in time, will make the rational choice to slow
down. If the agent did not perform lookahead planning and
only looked at the highest chance to reach the junction, then
continuing at the same speed would be preferred.

6 RELATED WORK

The BDI framework [Rao and Georgeff, 1991] is notable
for treating beliefs and intentions as two distinct ideas in an
agent-based setting. However, due to the complex tempo-
ral modal logic being used and the assumption of unlimited
resources there was a disconnect between the theory and
implementations based on BDI. This problem was mostly
resolved in [Rao, 1996] where an abstract agent-based lan-
guage, called AgentSpeak, was proposed. This language
was strongly related to the original BDI theory, while be-
ing easily implementable.

CAN [Winikoff et al., 2002] follows up on this approach of
AgentSpeak and provides operational semantics for deal-
ing with declarative goals. Such goals allow more flexi-
bility, e.g. plans can be stopped when the goal is reached
instead of being blindly executed until the end. Declar-
ative goals also make it easier to define semantics for
planning in a BDI setting. Most approaches on plan-
ning [de Silva and Padgham, 2005, Walczak et al., 2006,
Meneguzzi et al., 2007] had been ad-hoc approaches with-
out a semantical background for the integration of plan-
ning in BDI. Such a semantical background was provided
in [Sardifia et al., 2006, Sardifia and Padgham, 2011] with
the introduction of CANPLAN, an extension of CAN with a
Plan(-) action that allows for offline lookahead planning.

Notable work on the integration of uncertainty in a
BDI context has been done in the setting of graded
BDI [Casali et al., 2005]. In graded BDI it is assumed that
the beliefs, desires and intentions have a degree of uncer-
tainty. While of theoretical interest, their framework uses a
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complex modal logic axiomatisation which makes it hard to
implement the work directly. Later, in [Criado et al., 2014],
the graded BDI system was further extended to incorporate
norms, i.e. patterns of behaviour that should be adhered to
in given circumstances. These norms are acquired and en-
forced in an uncertain environment. To accommodate this,
norms have an associated salience to reflect their impor-
tance in the given uncertain environment.

Implementations that deal with uncertain percepts in a
BDI setting [Chen et al., 2013] have not been based on
the graded BDI framework but approached the problem
more pragmatically. Our work extends upon the ideas of
graded beliefs (i.e. what the agent knows), where we allow
more fine-grained control by dividing the beliefs into iso-
lated parts, each with their own representation and revision
strategies. Contrary to graded BDI, our work has a vested
interest in the feasibility of implementations while still pro-
viding strong theoretical underpinnings. In that sense, our
work is close to the spirit of CANPLAN.

7 CONCLUSIONS

In this paper we showed how operational semantics for a
BDI agent can be devised to deal with uncertain beliefs and
actions affected by various forms of uncertainty. We intro-
duced CANPLAN+, an extension of CANPLAN, in which
we introduce a novel way of representing the agent’s beliefs
as a set of epistemic states. We furthermore introduced the
idea of stratifying the domains of epistemic states. This al-
lows an agent to reason about the plausibility of his beliefs
within a local epistemic state and allows commensurabil-
ity over the evaluation of these local results. As such, an
agent can select more appropriate plans and can revise his
current beliefs with uncertain information from the envi-
ronment. In addition, it gives a BDI agent system designer
the freedom to choose the best representation for the beliefs
at hand. We also established a way to model actions trig-
gered by uncertain beliefs, have uncertain effects and have
effects that may introduce extra uncertainty into the beliefs.
Finally, we extended the Plan(-) action from CANPLAN
to allow a BDI agent to plan for the most optimal plan,
i.e. with the highest chance of achieving the goal.

For future work, we plan to develop complete algorithms
as well as approximate/tractable algorithms to use in BDI
implementations that model and allow to reason about the
uncertain beliefs of an agent. Moreover, we want to ex-
plore how existing planners under uncertainty can be ex-
tended to deal with the various forms of uncertainty faced
in a SCADA environment.
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Abstract

Dual decomposition provides the opportunity to
build complex, yet tractable, structured predic-
tion models using linear constraints to link to-
gether submodels that have available MAP infer-
ence routines. However, since some constraints
might not hold on every single example, such
models can often be improved by relaxing the
requirement that these constraints always hold,
and instead replacing them with soft constraints
that merely impose a penalty if violated. A dual
objective for the resulting MAP inference prob-
lem differs from the hard constraint problem’s
associated dual decomposition objective only in
that the dual variables are subject to box con-
straints. This paper introduces a novel primal-
dual block coordinate descent algorithm for min-
imizing this general family of box-constrained
objectives. Through experiments on two nat-
ural language corpus-wide inference tasks, we
demonstrate the advantages of our approach over
the current alternative, based on copying vari-
ables, adding auxiliary submodels and using tra-
ditional dual decomposition. Our algorithm per-
forms inference in the same model as was previ-
ously published for these tasks, and thus is capa-
ble of achieving the same accuracy, but provides
a 2-10x speedup over the current state of the art.

1 INTRODUCTION

We often need complex structured prediction models that
encode rich global and local dependencies and constraints
among the outputs, but this can render efficient predic-
tion difficult. Therefore, dual decomposition is quite use-
ful, since it enables efficient inference in models composed
of various submodels with available black-box MAP infer-
ence routines (Komodakis ef al., 2007; Sontag et al., 2011;
Rush & Collins, 2012).
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In some cases, the flexibility and robustness of such models
can be improved by using soft constraints, where the model
imposes a cost if a constraint is violated, but does not re-
quire that it is satisfied. In natural language processing, for
example, soft constraints have enabled accuracy gains for
named entity recognition (Finkel et al., 2005; Sutton & Mc-
Callum, 2006), parsing (Smith & Eisner, 2008; Rush et al.,
2012), and citation field segmentation (Chang et al., 2012;
Anzaroot et al., 2014). Using soft constraints is reason-
able in these applications because the constraints are not
required in order to define feasible outputs, but are instead
a modeling layer imposed to improve predictive accuracy.
Soft constraints are advantageous over hard constraints be-
cause they allow the model to trade off evidence for and
against a constraint being satisfied.

In all of these examples besides Rush ef al. (2012) and An-
zaroot et al. (2014), inference is performed using standard
techniques for inference in loopy graphical models such as
belief propagation or MCMC. However, these have poor
optimality guarantees and can also be difficult to general-
ize to prediction problems that are not graphical models.
An alternative method for handling soft constraints is to
make copies of variables participating in soft constraints,
constrain each variable to equal its copy, and apply dual de-
composition (Rush et al., 2012). While this exhibits better
flexibility, scalability, and guarantees, it requires inference
in auxiliary submodels and copying variables prevents the
feasibility of the output during intermediate iterations be-
fore convergence, since the two copies of a variable may
have different values.

Recently, Anzaroot et al. (2014) employed an attractive
alternative algorithm for performing MAP subject to soft
constraints that offers the optimality guarantees and gen-
erality of dual decomposition, but avoids variable copying
and auxiliary models completely. Their algorithm requires
an extremely straightforward modification to existing dual
decomposition objectives: if the model penalizes the viola-
tion of a constraint with a penalty of c, then the dual vari-
able is subject to a box constraint, where it can not exceed
c. They minimize this objective with projected subgradient



descent.

While this projected subgradient algorithm is simple, its
convergence can be slow and sensitive to a choice of step
size schedule. On the other hand, block coordinate de-
scent algorithms, such as MPLP (Globerson & Jaakkola,
2007), are parameter-free and often converge much faster
than subgradient descent for dual decomposition objec-
tives, subject to our ability to obtain max-marginals from
the subproblems (Sontag et al., 2011).

In response, we contribute the following:

1. An extension of the projected subgradient algorithm
of Anzaroot et al. (2014) to general pairwise soft con-
straints (Section 5) that are capable of modeling arbi-
trary pairwise graphical model factors (Section 8).

. An adaptation of the MPLP algorithm beyond graph-
ical models to alternative structured prediction prob-
lems with certain structure (Section 6).

3. Box-MPLP, a primal-dual message passing algorithm
for solving the box-constrained dual decomposition
objective for soft constraints (Section 7). Its update
rule and derivation differ substantially from MPLP.

. Experiments on two corpus-wide prediction tasks
from natural language processing (Section 2) demon-
strating both the advantages of using Box-MPLP
v.s. projected subgradient and of using a box-
constrained dual objective v.s. variable copying and
hard-constraint dual decomposition (Section 10).

2 CORPUS-WIDE INFERENCE

We first motivate the use of soft constraints by describing
the application that we will explore in our experiments.
In natural language processing, it is common to part-of-
speech (POS) tag and dependency parse every sentence in
a corpus of documents. Both tasks can be posed as effi-
cient MAP inference, but a drawback of these algorithms is
that they process each sentence in isolation, despite the fact
that there is discriminative information shared across the
corpus. In response, Rush et al. (2012) performed corpus-
wide inference. Specifically, for word types that did not
appear in the training data, they introduced global model
terms that encouraged every occurrence of the word in the
test corpus to receive the same POS tag, or to be assigned a
dependency parent with the same POS tag. A similar model
appeared in Chieu & Teow (2012).

Rush ef al. (2012) model these cross-sentence relationships
among sets of occurrences that are encouraged to agree, by
introducing one consensus structure, described in the Fig-
ure 1 caption, per set. There is a soft constraint between
every variable at the bottom of the consensus set, and the
one at the top. If the underlying sentence-level models are
graphical models, the corpus-wide inference problem could
be posed as a large loopy graphical model and we can per-
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Figure 1: One consensus set. The circles at the bottom
represent words of the same type, and the boxes represent
arbitrary sentence-level prediction problems that they are
contained in. The circle at the top is a consensus variable
introduced to encourage consensus among the bottom cir-
cles, where the squares are soft constraints penalizing dis-
agreement. The corpus is linked together by a web of con-
sensus structures.

it
Hei[kel]ien

Figure 2: The variable-copying version of Fig. 1, where
dashed lines denote equality constraints.
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form approximate MAP using standard techniques. An al-
ternative solution, depicted in Figure 2, is to copy variables
that participate in consensus sets, introduce an auxiliary
tree-structured subproblem, and use dual decomposition
for corpus-wide MAP. This has superior optimality guar-
antees and flexibility to use sentence-level problems that
are not graphical models. In practice, this algorithm can
be slow to converge, however. In response, we introduce
a new approach for performing MAP subject to soft con-
straints that when applied to corpus-wide inference allows
us to work directly in the soft constraint problem of Fig-
ure 1, yet yields the same flexibility and optimality guaran-
tees as Rush et al. (2012) and substantially faster runtimes.
The techniques are general and apply to a wide range of
additional applications.

3 NOTATION AND STRUCTURED
LINEAR MODELS

Bold-faced lower-case letters, such as x, represent column
vectors, and bold-faced upper case letters, such as A, rep-
resent matrices. The i-th coordinate of vector x is x(4) and
the ¢, jth coordinate of a matrix is A is A(4,7). Lower-
case greek letters such as A represent either vector-valued
or matrix-valued dual variables. We use x(*) for x at iter-
ation t. The term ’constraint’ either refers to a constraint
between scalars or a set of coordinate-wise constraints be-
tween vectors (or matrices). In the latter case, the associ-
ated dual variable is a vector (or matrix).

We consider structured prediction problems defined by



structured linear models such as conditional random fields
(Lafferty et al., 2001) and maximum spanning tree parsers
(McDonald et al., 2005). These assign a score to each pos-
sible output labeling by decomposing each candidate out-
put into a collection of parts, each of which can be active
or inactive in a given labeling. For example, in first-order
dependency parsing, each part corresponds to a single de-
pendency arc (Smith, 2011). In a conditional random field,
there is a part for each possible setting of each clique.

We write the indicator vector for the parts of a specific la-
beling of a datacase k as xj. It is a binary vector with
one coordinate per possible part, which is zero if the part
is not present in the structured output and one if it is. The
model for candidate outputs is called linear because the
score of a given labeling is the dot product (wy,xy) of a
weight vector wy, and the indicator vector over the parts. In
many models, such as conditional random fields, the score
of each part is a function of some observed features, and in
many cases this mapping from features to weights is also
linear. We focus only on inference, however, and make no
assumptions about how the weights are set. In non-trivial
structured linear models, not all assignments of values to
these parts are valid, since they typically represent some
over-complete view of the structured output or are subject
to global structural constraints, such as projectivity for de-
pendency parsing (Smith, 2011). For an instance k we refer
to the set of valid assignments to parts as (/.

We refer to the problem of finding the highest-scoring valid
collection of parts as MAP inference:

max (Wg,Xg) St xi € Uy.

Xk

4 DUAL DECOMPOSITION

Following Sontag ez al. (2011); Rush & Collins (2012); Ko-
modakis et al. (2007), we consider the problem:

max Z (Wi, Xk) ()
k

s.t. Vk  xi € Uy (2)

(3)

Z Apxyp =0,
%

where each x;, represents the vector of parts for a specific
structured linear submodel.” The formulation can easily
be adapted to account for a nonzero right hand side of (3).
If (3) did not exist, the problem would reduce to indepen-
dent MAP inference in each subproblem.

Dualizing the linear constraints in (3), but not the x5 € Uy,
constraints, results in the Lagrange dual problem:

4)

m}%n D(A) = Z max (wy, + AE/\,xk>.

= X €U
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Algorithm 1 Dual Decomposition with Subgradient De-
scent

I: A«0

2: while has not converged do

3: for submodel i do

4: X, ¢ MaXx, cuy, <Wk + AkT.)\, xk>
5 A= A=, Arx;,

The dual objective D() is convex and piece-wise linear,
as it is the sum of the supremum of linear functions of A,
and hence can be solved with known convex optimization
techniques, including subgradient methods. Any particular
element of the subgradient of the dual function with respect
to A can be written as

OD(A) = > Apxj, (5)
k

where each xj, is some maximizer of a MAP inference
problem with shifted weights:

xj, € argmax (wy, + AT, Xk) -
Xk EUR

(6)

We consider cases, where these MAP subproblems are
tractable and solving their linear programming relaxations
returns an integral value for any weight vector. Therefore,
one can use subgradient descent, Algorithm 1, to minimize
the dual problem. Subject to conditions on the sequence of
step sizes 7(*) and the feasibility of the constraints that link
the subproblems, the subgradient method is guaranteed to
converge to the optimum, where (3) will be satisfied (Nes-
terov, 2003; Sontag et al., 2011).

S SOFT DUAL DECOMPOSITION

5.1 PROBLEM STATEMENT

This paper focuses on applications of dual decomposition
where the underlying prediction problem has at least two
distinct sets of outputs x; € U; and xo € Us, and linear
constraints are imposed between them not as a requirement
to define feasible outputs, but as an extra layer of modeling
to encourage global regularity of the outputs. This contrasts
with problems with a single output x subject to the linear
constraints x € Uy NUs, and while these are unmanageable
directly, U/, and Us can each be handled in isolation. Here,
dual decomposition can be employed via a copy variable
Xo, and constraints x € Uy, X9 € Us, and x; = X5 (Koo
et al., 2010; Rush & Collins, 2012). The first family is pre-
cisely where it can make sense to employ soft constraints,
since they will not threaten the output’s feasibility.

Anzaroot et al. (2014) recently performed MAP with soft
constraints by performing projected gradient descent in a
box-constrained dual objective. Our message passing algo-
rithm requires using a slightly more restrictive set of global



constraint structures to be converted into soft constraints
than what they considered, which are of the form (3).
Specifically, we assume the global constraints decompose
into sets of pairwise equality constraints between compo-
nents of submodels:

max Z (Wi, Xk) @)
k
s.t. Vk xi €U (8

V(ApopaplaPQ) € P Apxpl = BPXP2'(9)

A given product A,x,, or B,x,, is allowed to appear in
multiple p € P, so P effectively defines a collection of
linear measurements of the structured output and a graph
of equality constraints among them. These can be defined
over differently-size mapping matrices. Define s, to be the
length of the vector A, x,,, (also the length of B,x,,).

Defining a dual variable A, € R®» for every p € P, we
have the following convex dual decomposition objective:

Zmax<wk—|— dSTOAIN - Y BgA”,xk>.
P

pp1=k p:p2=k
(10)

A soft constraint formulation of (7) with penalty matrices
¢, € R°»*°r subtracts a penalty of c, (¢, j) from the score
of the global MAP problem whenever A,x,, is set to value
© and B,x,, is not set to value j. In the subsequent expo-
sition, we leave the constraints x; € U}, implicit, since we
assume we have available black-box algorithms for maxi-
mizing over these constraint sets. Therefore, we have:

mfxz (W, Xk) — Z Zcp(iaj) [Apxp, (i) — Bpxp, (])h
t an

where [-], = max(0,-). Using a matrix-valued penalty is
important in order to support a mapping between arbitrary
graphical model factors and soft constraints (see Section 8).
In Section 7.1, we consider diagonal c,, which are suffi-
cient for the model to penalize when certain components of
the structured output do not take on the same value.

An alternative to (11) for expressing soft constraints is to
create copies of both of the terms appearing in each p € P
and enforce the constraints that terms equal their copy:

max 3 (Wi, Xpe) =22, 3% 5 €p(6,7) [Va (i) — up(5)]

s.t. VpeP Apxp, = Vp, BpXp, = u,. (12)

Here, the second term is not a structured linear model, but
it is concave, can be handled efficiently in isolation, and
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has integral optima. Therefore, we can apply standard dual
decomposition techniques. In Figure 2, we demonstrate
how Rush et al. (2012) similarly use variable copying to
make MAP tractable with dual decomposition. Rather than
employing pairwise hinge losses as auxiliary submodels,
they introduce a single tree-structured graphical model with
pairwise factors that encourage agreement. In Section (10)
we use this as a baseline to demonstrate the deficiencies of
using variable copying to implement soft constraints.

5.2 DUAL OBJECTIVE AND BOX CONSTRAINTS

Problem (11) can be rewritten as a linear program by intro-
ducing matrices of auxiliary variables z, € R%»*%r:

max Yy (Wi xk) = 25, 355 5 ¢p(0,)2p(05) - (13)
st V(i 7), 2p(0,) 2 Apxp, (i) = Bpap, (7) (14)

z, > 0

This problem is well-defined only if ¢, is non-negative in
every coordinate. In this case, we have that problems (11)
and (13) have the same optimal value and maximizing x.

We defer a full derivation of the associated Lagrange dual
problem for (13) to Appendix 1, since it parallels Anza-
root et al. (2014). The dual is similar to (10) , but imposes
coordinate-wise box constraints:

min Zmax<wk+ Z Bgugl— Z Agupl,xk>
v k T p:po=k p:p1=k
s.t. 0<v, <cp. (15)

Unlike for hard constraints, we have a matrix-valued dual
variable v, € R ™" for every p € P, where 1,,(4, j) cor-
responds to the constraint in (14) for a particular (4, j), and
R denotes the non-negative real numbers. We use 1 to be
a column vector of all ones, where its length is determined
by the context.

These box constraints exist for the same reason that they
occur in the dual problem for soft-margin SVMs (Cortes
& Vapnik, 1995), since the second term in (11) is a sum
of negative hinge losses. The box constraints on the dual
variables v can be interpreted as the Lagrangian penalizing
the violation of constraints, but only so much as the primal
problem would penalize their violation.

The only qualitative difference between the dual problems
in (15) and (4) is the box constraints. Therefore, we can
employ the projected subgradient method, shown in Algo-
rithm 2, which will converge to the global MAP optimum if
‘P is feasible. At the end of Appendix 1, we derive the fol-
lowing complementary slackness criteria used for detecting
convergence. These will hold for every p € P and ev-
ery coordinate pair (¢, 7) when maximizing over the primal
variables:



Algorithm 2 Projected subgradient soft dual decomposi-
tion for general matrix-valued soft constraint penalties.

I: v+ 0
2: while has not converged do
3: for submodel k do

4: Wi < Wi + Z BZVPTI — Z AZVpl
p:p2=k p:p1=Fk
5: e W
Xjo ¢ max (W, Xg)
6: for soft constraint p € P do
7: Vp(iaj) <~ min(cp(i,j),max((), Vp(iyj) -

1O (A, (1) — Byxia (1))

either Apxy (i) = Bypx,, (j)

or Apyxy (i) = Land v, (i, j) = 0

(16)

or Apyxy (i) = 0and vy, (7, ) = ¢, (4, 7).

6 MAX-MARGINALS AND MPLP

Using the subgradient method in Algorithm 2 is undesir-
able due to its sensitivity to step-size schedule and slow
convergence in practice. In response, we now revisit hard-
constraint dual objectives of the form (10) in order to ex-
plore previous use of block coordinate descent, which is
parameter-free. We introduce an adaptation of the MPLP
algorithm (Globerson & Jaakkola, 2007) to problems with
general structured linear models as subproblems, and em-
phasize a primal-dual interpretation of the algorithm’s up-
dates, which we will draw on when we derive our new al-
gorithm in the following section.

MPLP is a convergent alternative to max-product belief
propagation that was shown in Sontag et al. (2011) to be
performing block coordinate descent in a dual decompo-
sition objective for a certain instance of (10). Specifically,
there is a submodel for every node and every factor in a fac-
tor graph, and an element p € P between every node and
every factor that it touches. MPLP generalizes to additional
cases (10) when the elements of P satisfy the following
condition, and when the subproblems admit efficient com-
putation of max-marginals, defined below.

Definition Let e; denote the vector that is all zeros, except
for a one in the jth coordinate. We say that the product
Ax;, is a projection variable if it satisfies the following

property:

VX € Uy, 37 s.t. Axy =ej. a7

Unlike the previous subgradient algorithms, MPLP re-
quires every element of P to be defined between projec-
tion variables, which can be used to represent any set of
mutually-exclusive states of the structured output. This is
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not a strong restriction, as they can be used, for example, to
zoom in on a specific graphical model node or dependency
parse arc and to optionally further coarsen the values of
these individual outputs. Also, the hinge loss of the previ-
ous section and 0-1 loss are equivalent for projection vari-
ables, so we are truly penalizing the event that a constraint
is violated, and not imposing a linear penalty on the de-
gree to which it is violated. Defining projection variables
is necessary because MPLP requires max-marginals, and
the following definition is only well-posed for projection
variables:

Definition For a given projection variable Ax; and weight
vector w, the max-marginals mé are a vector where the jth
component is given by best possible score achievable by a
valid structured output when the projection variable takes

on value j, i.e.,

max (w,x;) s.t. Axp =e;. (18)

X EUR

m ()

For a MAP assignment x* with respect to w, we have

Ax" = e+, where i* = argmax mi(i).  (19)
In other words, locally maximizing max-marginals is
equivalent to finding a globally-optimal value (unless there
are ties in the max-marginals).

Furthermore, max-marginals change linearly with respect
to changes to w in the direction of their projection variable:

m? 7, () = ma (i) + ai). (20)

For example, if we shift the scores for a given factor in
a graphical model by a vector «, and otherwise leave the
model’s potentials unchanged, then the max-marginals for
this factor increase by exactly «. This fact, proven in Ap-
pendix 2, applies to arbitrary projection variables, and is
crucial in deriving both MPLP and our new algorithm in
the next section.

In Algorithm 3, we consider a version of MPLP where
block coordinate descent is performed by iteratively se-
lecting an element p € P and updating the vector-valued
dual variable A,. Note this differs from the algorithms
in Globerson & Jaakkola (2007) and Sontag et al. (2011)
slightly because we pass messages (i.e., dual variables) di-
rectly between submodels, rather than from submodels to
primal variables and from primal variables to submodels.
This results from the fact that we pose (10) via equality
constraints between different parts of the structured output,
not between variables and their copies (Werner, 2008).

We discuss the optimality of this choice of A, in more de-
tail in Appendix 3, which presents a different primal-dual
argument than Sontag et al. (2011), in order to motivate
the techniques used by the new algorithm that we will in-
troduce later. The high level idea is to invoke (20) to ob-
serve that the chosen value for A, shifts the subproblems’



Algorithm 3 An adaptation of the MPLP algorithm of Son-
tag et al. (2011) to dual decomposition with pairwise con-
straints between general structured linear submodels.

I: A«+0
2: converged < false
3: while (! converged) and (iteration < maxIterations) do

4: converged <— true
5 for equality constraint p € P do
- T T
6: Wy, < Wp + > APy — > Bpy
p':p1=p1 p’:ph=p1
p'#p p'#p
7: m; < MaxMargs (Wp, )
- T T
8: Wpy < Wp, —+ Z Ap/ >‘p’ — Z Bp’Ap’
p’:p|=p2 p’:ph=p2
p'#p p'#p
9: m; < MaxMargs (Wp, )
10: if (argmax; m; (¢) N argmax; m(7) = () then
11: converged < false
12: Ap + = (m1 —my)

2

weights such that max-marginals for the two projection
variables in p become identical in all coordinates. There-
fore, with this setting of the dual variables, it is feasible to
achieve the equality A,x, = Bp,x,, when maximizing
over the primal variables. As a result, by strong duality, the
dual of (7) is minimized with respect to A, since the primal
constraints for this block are satisfied. Algorithm 3 moni-
tors convergence by checking if all constraints are satisfied
when maximizing over the primal variables. See Sontag
et al. (2011) for a discussion of the convergence guarantees
of MPLP and Meshi et al. (2012) for its convergence rate.

The algorithm may require multiple passes to converge,
since updates for one A, may break the above optimality
condition for other p € P. Furthermore, every time the
dual variables are updated for some p € P, max-marginals
need to be recalculated for subproblems p; and ps. MPLP,
and the algorithm in the next section, can not be applied for
constraints between projection variables in the same sub-
model, since their max-marginals interact with each other.
Therefore, it could not have been applied in the hard con-
straint experiments of Anzaroot et al. (2014), since they im-
pose constraints within a chain-structured graphical model.

7 MESSAGE PASSING FOR SOFT
CONSTRAINT DUAL
DECOMPOSITION

We now introduce the primary contribution of the paper: a
general dual block coordinate descent framework for min-
imizing the box-constrained dual objective (15) and Box-
MPLP, a novel algorithm for solving a common special
case of the problem. Naively applying the MPLP updates
may violate the box constraints, and we can not simply fol-
low them with a projection step, as this will not guarantee
a decrease in the dual objective.

67

Analogous to Algorithm (3), our block coordinate descent
steps update one vector v, at a time. Since we now focus on
a specific p € P, we define y, 1= Apx,, y2 = Bpxp,.
While MPLP is a purely dual algorithm, i.e., the update
to A, in Algorithm 3 line 12 does not require reasoning
about optimal settings of the corresponding primal vari-
ables, Box-MPLP requires explicitly constructing a primal-
dual pair.

The algorithm has two overall steps (a) fixing all dual vari-
ables besides v, define a small block-specific optimization
problem, and efficiently determine what the optimal values
y1 and y3 should be for it, and (b) construct a value for v
for which maximizing over the primal variables yields the
values determined in step (a) and satisfies the complemen-
tary slackness conditions (16) (a). Therefore, by construc-
tion of a primal-dual certificate, V;‘ minimizes the block
coordinate descent objective.

In step (a), we seek primal optimizers y; and y5. With all
dual variables besides v, fixed, MAP inference in the sub-
problems p; and ps is with respect to shifted weight vectors
Wy, and Wy, as defined in Algorithm 3 lines 6 and 8 (which
doesn’t include v, in the shift). Using (19) we can reduce
the choice of y] and y3 to a local optimization problem
by obtaining max-marginals m; and ms for the subprob-
lems, as in Algorithm 3 lines 7 and 9. With these, we have

(¥y1,y3) = (e, ej+), where

(i*,7%) = argr(na);ml(i) +mo(j) — E cp(i,5"). 21)
0. vy
J'#I

Step (b) constructs a v, that satisfies (16) and for which

optimizing over the primal variables yields (y1,y2) =
(#*,7*). Invoking the ‘linearity’ of max-marginals (20),
this can be expressed as the following conditions on v,,:

>

Vi, ml(i*)—ZVp(i*,j) > ml(i)—Zup(i,j) (22)

>

i ma(57) 4D vp(ig”) = ma(i)+ Y we (i) 23)

Satisfying (16) along with (22) and (23) ensures that
the independent maximizations of the reweighted problems
will have the same score and same maximizing values as
the joint maximization in equation (21), and thus we have
a primal-dual pair for the coordinate descent subproblem.

Solving the maximization in (21) can be done, in the worst
case, by enumerating all sf, possible i and j. Selecting v,
that satisfies conditions (16), (22), and (23) requires solv-
ing a linear feasibility problem, however. While this can
be done in time polynomial in s,,, we focus in the next sec-
tion on an important special case where it is particularly
tractable, and leave exploration of general algorithms for
this feasibility problem to future work.



7.1 AGREEMENT FACTORS

Next, we focus on a particular structure of c,, that is both
reasonable for applications and for which finding v, satis-
fying (16), (22), and (23) can be done in time O(s,,). This
results in the block coordinate descent Algorithm 4.

Definition Let y; and y5 be two projection variables with
values ¢ and j, and define vector o € ]Rff. An agreement
factor between y; and ys is a structured linear model that
assigns a score of 0 if they agree and a score of —«(i) if
they disagree. This is equivalent to a penalty matrix:

tivd) = {

For many applications, it is sufficient to use agreement fac-
tors rather than full matrix penalties c, (4, j), since they al-
low the model to impose a penalty if two components of the
structured output are not equal. This, for example, supports
the soft constraints of Rush et al. (2012) that we employ in
our experiments. However, we show in Section 8 that ma-
trix penalties are important to support a mapping between
general graphical model factors and soft constraints.

ifi = j

otherwise. (24)

Given the structure (24) on the penalties, there are effec-
tively only s, dual variables in the matrix v, as the off-
diagonal elements are constrained to be equal to 0 by the
box constraints (15). We refer to the dual variable and costs
as vp(4) and ¢, (), and equations (22) and (23) reduce to

Vi, 5 (25)
Vi, j (26)

my (i) — vp(2)

my(j) + vp(4)

AVANY,

In Appendix 4 we derive an O(s,) method for choosing
v, that satisfies (16), (22), and (23). The overall insight
is that (25) and (26) can be manipulated to yield simple
upper and lower bounds on feasible values of v,(¢) for
i # i, j*, for which we choose the midpoint of the fea-
sible interval (Algorithm 4, line 22). Also, if i* # j*, then
v, (i*) and v, (j*) are determined by complementary slack-
ness (line 18) and otherwise, we can set them by similarly
taking the mid-point of a feasible interval obtained from
(25) and (26) (line 15). If we make the further restriction
that the agreement factor uniformly penalizes disagreement
between values of y; and y», i.e. ¢, is « in all coordinates,
then we have the added benefit that Algorithm 4 line 11 can
be solved in O(s,,) time. See the end of Appendix 4.

8 SOFT CONSTRAINTS V.S. FACTORS

As identified in the introduction, a traditional way to model
soft constraints is to add global factors to a graphical
model. In this case, the factors contribute scores when
variables are set to certain values, which differs from our
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Algorithm 4 Box-MPLP: block coordinate descent for soft
dual decomposition with agreement factors.

1: converged < false

2: while !converged do

3: converged <— true

4. for constraint p € P do

5

~ T T
Wp, < Wp, —+ E Bp/ljpl — E Ap/l/p/

p'ip1=p1

P :py=p1
p'#p p'#p
6: m; < MaxMargs (Wp, )
7 Wpy 4= Wpy + Z B, vy — Z Ay
p":ph=p2 p':p1=p2
p'#p v'#p
8: m;y < MaxMargs (0p, )
9: if (16) not satisfied then
10: converged < false
11: i*,j" « argmaxm; (i) + m(j) — cp(2)d(i#£5)
i
12: if i* = j* then
13: U + min; ;= mi(3*) — mq ()
14: L+ max;z;+ ma(j) — m2(j") + ¢, (j)
15: vp(i*) « (U + L)
16: else
17: vp(i*) -0
18: vp(i*) < cp(j")
19: for all i such that i # ", i # j* do
20: L+ —mi(i) + my(3") + vp(*)
21: U<+ ma(j") —ma(j) +vp(i")
22: vp(i) « 5(U + L)

use of penalties that contribute negative score when vari-
ables are not set to certain values. We prove in Appendix
5 that the expressivity of factors and our soft constraints
are equivalent, though, as long as the soft constraints are
defined between projection variables. Specifically, any ta-
ble of factor scores can be mapped into a penalty matrix c,,
by solving an associated linear system. This may require
using Algorithm 2 for inference, though, since Box-MPLP
only applies to diagonal c,,.

Though the two formulations are similar, soft constraints
have attractive properties compared to factors. For exam-
ple our algorithms maintain primal feasibility during inter-
mediate iterations and avoid variable copying, which frac-
tures the evidence for variables’ MAP values across sub-
models and requires an entire dual decomposition iteration
for information to travel between output variables and their
copies. Our experiments support the desirability of avoid-
ing variable copying. In future work, we will explore solv-
ing problems that are natively expressed using factors by
first mapping them to problems with soft constraints.

9 RELATED WORK

There is a precedent for constructing message passing
schemes for inference problems by minimizing an asso-
ciated dual problem that decomposes into local interac-
tions (Wainwright e al., 2005; Komodakis et al., 2007,



Globerson & Jaakkola, 2007; Ravikumar et al., 2010; Mar-
tins et al., 2012; Schwing et al., 2012). Many of these
are based on block coordinate descent. The generaliza-
tions we make in Section 6, such as working in terms of
projection variables to make MPLP apply to more gen-
eral structured prediction problems than graphical models,
could also be applied to a variety of these other algorithms,
where the requirement that the subproblems yield max-
marginals would be replaced with other requirements, such
as the ability to perform MAP in the presence of additional
strongly-convex terms. Our algorithm, particularly in the
context of the application we consider in the next section,
can also be seen as an example of special-case handling of
factors that have a specific combinatorial structure (Duchi
et al., 2007; Martins et al., 2012; Mezuman et al., 2013).

Our message passing algorithm has the same optimality
guarantees as those for MPLP discussed in Sontag et al.
(2011). Unlike (projected) subgradient descent, block co-
ordinate descent may return sub-optimal outputs because
our objective is non-smooth and not strongly convex (Luo
& Tseng, 1992). Analysis of the convergence rate for
smoothed versions of MPLP (Meshi et al., 2012) is doable,
however, and we encourage exploration of (smoothed) par-
allel versions of Box-MPLP (Richtéarik & Takac, 2012).

10 EXPERIMENTS

We evaluate soft constraint algorithms that vary along two
dimensions: whether they solve box-constrained dual de-
composition objectives or unconstrained ones based on
variable copying and whether they employ (projected) sub-
gradient descent or block coordinate descent. The first di-
mension is captured by the distinction between Figure 1,
where the consensus variable at the top is an isolated struc-
tured linear model and there are soft constraints between
this and the variables in the sentences, and Figure 2, which
requires variable copying and an auxiliary tree-structured
submodel. While Rush ez al. (2012) did not employ MPLP,
max-marginals can be obtained for the CRF tagger and pro-
jective parser they used (Smith, 2011). Also, note that the
soft constraint penalties of Rush ef al. (2012) used in both
figures take the form of agreement factors. Therefore, we
can apply Box-MPLP. We compare:

e Subgradient: Algorithm 1 applied to Figure 2

e Box-Subgradient: Algorithm 2 applied to Figure 1
o MPLP: Algorithm 3 applied to Figure 2

e Box-MPLP: Algorithm. 4 applied to Figure 1

The specific problem considered by Anzaroot ef al. (2014)
problem does not admit a baseline algorithm that uses
variable copying and hard-constraint dual decomposition.
Therefore, besides providing experimental evidence for the
effectiveness of Box-MPLP, we also seek to demonstrate
the overall effectiveness of using a box-constrained objec-
tive for soft dual decomposition as an alternative to variable
copying, regardless of what inference algorithm is used for
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minimizing the box-constrained objective. Finally, note
that all algorithms provide an O(%) convergence rate, so
they can only be compared empirically.

We mirror the experimental setup of Rush ez al. (2012) for
both tagging and parsing. To measure the speed of the
algorithms, we record the total number of calls to infer-
ence in sentence-level problems, which we normalize by
the number of sentences in the corpus to facilitate com-
parison across experiments. After the first pass, we only
perform inference when relevant dual variables change.

Measuring inference calls rather than wall-clock time
yields a more reliable experimental setting for the follow-
ing two reasons: (1) it is independent of the implementa-
tion used, and (2) it allows us to be generous to the base-
line algorithms we seek to outperform. First, we ignore the
cost of running MAP inference in the tree-structured auxil-
iary problem in Figure 2. Second, we assign a pessimistic
multiplier of two for all inference calls that require max-
marginals. For NLP models with millions of features, this
is an exaggeration because computing the model’s score
vector w is typically the most costly step.

10.1 POS TAGGING

Figure 3: Accuracy (top) and dual objective (bottom) v.s.
runs of sentence-level inference for WSJ-200 POS tagging.
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Following Rush et al. (2012), we learn models on subsets
of 50, 100, 200, and 500 sentences from the first chapter
of the Penn Treebank and test on the Penn Treebank chap-
ters test set (Marcus et al., 1993). We use a bigram CRF
tagger (Lafferty et al., 2001). For all experiments, we re-
port average sentence-level accuracy and the gains we ob-
tain from corpus-wide inference in Appendix 6. Both are
consistently comparable to Table 4 of Rush et al. (2012).



Table 1: Normalized number of inference runs for each al-
gorithm to attain quantiles of the best dual solution in the
WSJ-200 tagging experiment. If a quantile was not reached
during 100 iterations, we show ‘na’.

Accuracy quantile | 80% | 85% | 90% | 95%
Subgradient 70 92 na na
MPLP 22 23 25 30
Box-Subgradient 20 35 40 54
Box-MPLP 8 9 10 10
Dual Quantile 80% | 85% | 90% | 95%
Subgradient 24 34 56 na
MPLP 21 22 23 35
Box-Subgradient 30 35 40 54
Box-MPLP 7 7 8 9

We present results from where we train on 200 sentences,
but they are representative of the others, given in Appendix
6.1. Figure 3 shows the corpus-wide tagging accuracy and
dual objective as a function of the sentence-level MAP
calls. Recall that we double-count all calls to max-marginal
routines. Table 1 shows how much inference is neces-
sary to reach various percentile gains in accuracy and per-
centile reductions in the dual objective. Box-MPLP sub-
stantially outperforms both Box-Subgradient and MPLP,
and the box-constrained versions of both algorithms out-
perform their variable-copying-based counterparts. Com-
pared to the baseline subgradient algorithm used by Rush
et al. (2012), we require 10x fewer MAP calls.

10.2 DEPENDENCY PARSING

Table 2: Iteration costs for the parsing experiments.

PTB to QTB

Accuracy quantile | 80% | 85% | 90% | 95%
Subgradient 4.1 43 5.2 6.1
MPLP 4.3 43 43 ‘na’
Box-Subgradient 2.1 2.1 24 2.8
Box-MPLP 2.6 2.8 3 ‘na’
Dual quantile 80% | 85% | 90% | 95%
Subgradient 3.0 32 34 39
MPLP 4.2 44 4.9 49
Box-Subgradient 1.6 1.7 1.8 2.0
Box-MPLP 2.5 2.5 2.5 2.6
QTB to PTB

Dual quantile 80% | 85% | 90% | 95 %
Subgradient 15 16 18 22
MPLP 14 15 16 17
Box-Subgradient 8.1 9.2 10 12
Box-MPLP 6.9 74 7.9 8.6

Our corpus-wide parsing experiments present a character-
istically different regime for comparing the four algorithms
because the graph of connections between the subproblems
is much more sparse and the overall number of necessary
iterations for the algorithms to converge is much lower.

Following Rush et al. (2012), each set of POS tags around
a token defines a context, and identical contexts are encour-
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aged to have parents with similar POS tags by introducing
various consensus structures. We mirror their domain adap-
tation experiments, training on the Penn Treebank (PTB)
and testing on the Question Treebank (QTB), and vice-
versa (Judge et al., 2006). We parse with a first-order pro-
jective arc-factored parser (McDonald et al., 2005) using
dynamic programming for inference, which has lower ac-
curacy than the second-order projective parser used in Rush
et al. (2012). Table 2 summarizes our results.

In the PTB-to-QTB experiment, the box-constrained algo-
rithms uniformly outperform their counterparts based on
variable copying. Unlike our POS experiments, however,
Box-MPLP does not outperform Box-Subgradient. Since
all the algorithms converge so quickly, the extra computa-
tion to obtain max-marginals is too costly (in the factor-
2 scheme). Box-MPLP is still about 2x faster than Sub-
gradient, which is what Rush et al. (2012) used, though.
For the QTB-to-PTB experiment we were unable to repro-
duce accuracy increases as reported in Rush et al. (2012);
none of the optimization algorithms managed to improve
the accuracy for any setting of the penalties. This is prob-
ably due to our simpler parser. However, regarding dual
optimization, each coordinate descent method outperforms
its corresponding subgradient method, and the boxed al-
gorithms outperform their variable-copying alternatives.
Again, Box-MPLP was about 2x faster than Subgradient.
See Appendix 6.2 for accuracy and dual figures.

11 CONCLUSION AND FUTURE WORK

Soft constraints can be easily modeled by imposing box
constraints on an associated dual decomposition objective.
This yields fast, simple-to-implement algorithms. Box-
MPLP, a block coordinate descent algorithm, provides a
competitive alternative to projected subgradient descent.

Future work will explore ways to adapt the alternative mes-
sage passing algorithms discussed in Section 9 to handle
box constraints and consider additional combinatorial fac-
tors besides soft constraints that can be ‘optimized out’ by
imposing constraints in an associated dual problem.
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Abstract

Even swaps is a method for solving de-
terministic multi-attribute decision problems
where the decision maker iteratively simpli-
fies the problem until the optimal alterna-
tive is revealed (Hammond et al. 1998, 1999).
We present a new practical decision support
system that takes a Bayesian approach to
guiding the even swaps process, where the
system makes queries based on its beliefs
about the decision maker’s preferences and
updates them as the interactive process un-
folds. Through experiments, we show that it
is possible to learn enough about the decision
maker’s preferences to measurably reduce the
cognitive burden, i.e. the number and com-
plexity of queries posed by the system.

1 INTRODUCTION

In deterministic multi-attribute problems, the decision
maker (or DM, for short) chooses among N alterna-
tives, each of which has M attributes. An alternative
x is a vector of consequences for each attribute:

) M}7 (1)
where x; is the consequence for attribute 7. This is
often represented as a consequence table such as the
one illustrated in Fig 1(a), which displays alternatives
and attributes for a hiring problem along its columns
and rows respectively.

z={z;:i=1,...

The DM’s preferences for the various attributes can
be modeled using a value function v(x). Additive
value functions are a popular choice, mainly due to the
ease with which they can be elicited:

M
v(x) = Z w;v; (),
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where attribute weights w = {w; : i = 1,..., M} are
non-negative and sum to 1 and the v;(z;) represent
one-dimensional marginal value functions. Note that
we make a distinction between value and utility func-
tions, following Keeney and Raiffa (1976), who reserve
the term ‘utility function’ to characterize preferences
under uncertainty.

There are several well-known approaches to eliciting
additive value functions. The most popular ones tackle
direct elicitation, where the DM reveals their trade-
offs by answering questions pertaining to the weights
and marginal value functions. von Winterfeldt and
Edwards (1986) and Belton and Stewart (2002) re-
view some well known weighting techniques. An al-
ternate approach is that of even swaps, which is an
indirect preference elicitation method that simultane-
ously solves a specific decision problem (Hammond et
al. 1998, 1999). Here the DM answers a few simple
and pointed queries to iteratively reduce the num-
ber of columns and rows in the consequence table
until the optimal alternative is revealed. Mustajoki
and Hamaéldinen (2005, 2007) coined the term smart
swaps to refer to guided even swaps, i.e. using a de-
cision support system to provide process suggestions.

In this paper, we propose a Bayesian approach to guid-
ing the even swaps process, whereby the system makes
queries based on its beliefs about the DM’s preferences
and updates them as the interactive process unfolds.
The literature on Bayesian techniques for learning a
DM’s preferences is vast and varied, spanning domains
such as management science, artificial intelligence, ex-
pert systems and machine learning (e.g. Eliashberg
and Hauser 1985, Jimison et al. 1992, Poh and Horvitz
1993, Chajewska et al. 2000, Anderson and Hobbs
2002, Boutilier 2002, Scott and Shachter 2005).

We review the even swaps method in Section 2. The
subsequent three sections summarize our main contri-
butions. In Section 3, we present some properties of
even swaps, providing conditions under which they are
feasible. In Section 4, we describe our swaps algorithm
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Figure 1: The even swaps method applied to a hiring problem.

in detail. In Section 5, we discuss the results of some
experiments that study the effect of problem size and
Bayesian learning on the number and type of queries
made to the DM. We are not aware of any previous
work with computer experiments that explores the ef-
fect of smart swaps on a set of consequence tables and
DMs. Finally, we conclude in Section 6.

2 EVEN AND SMART SWAPS

We will explain the even swaps method with the help
of the following illustrative example:

A Hiring Example. Figure 1(a) presents the conse-
quence table for a manager Zoe who faces a hiring deci-
sion and must choose among four candidates — Alice,
Bob, Chris and Diane — across four attributes: Ex-
perience (in # of years) and qualitative measures such
as Technical Skills, Communication Skills and Refer-
ences, all scored on a scale of 1 (worst) to 5 (best).

Zoe chooses to pursue the even swaps method to deter-
mine the optimal hire. First, she recognizes that Chris
scores at least as well as Diane on all attributes, and
therefore removes Diane from consideration in 1(b).
This is an example of absolute dominance. Next,
she observes that Alice fares better on most attributes
as compared to Bob, except for Technical Skills where
Bob scores 1 point higher. Feeling that Alice com-
pensates for this deficit along the other attributes, i.e.
that Alice exhibits practical dominance over Bob,
Zoe removes Bob from consideration in 1(c).!

'The original even swaps literature introduced practical
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Zoe then notices that the remaining candidates, Alice
and Chris, have the same score (3) on Communication
Skills. Reasoning that she need not be concerned with
this attribute in subsequent iterations, as she can make
subsequent value judgments conditional on this com-
mon score, she greys this attribute out in 1(d). In the
even swaps literature, this task is referred to as identi-
fying an irrelevant attribute; for reasons explained in
the next section, we prefer the term equal attribute,
and say that this attribute has become inactive.

Now Zoe makes the move that gives the even swap
method its name. She observes that Alice fares worse
on Technical Skills, but better on the remaining active
attributes. She answers the following question, indi-
cated by the three boxes in 1(e): how many years of
Experience would she be willing to give up for Alice
to improve her Technical Skills score from 3 to 4?7 An
even swap produces a hypothetical equivalent alterna-
tive in which a change in the consequences of one at-
tribute balances the change in the consequences of an-
other, and is a specific kind of matching query (Delquié
1993). The DM’s response is determined by her value
judgments; in this case, she determines that Alice’s
Experience should change from 6 to 5 years. She then
replaces Alice with her hypothetical clone in the con-
sequence table in 1(f). In the final step, she recognizes
that Alice absolutely dominates Chris, thereby reveal-
ing Alice to be the optimal candidate. O

dominance as an intuitive but vague notion. Subsequent
work on smart swaps proposed a definition with some prac-
tical drawbacks. A major contribution of our work is a
precise definition and demonstration of its practicality.



The key idea that differentiates indirect methods like
even swaps from direct elicitation techniques is that
the analyst /system need not have a complete picture of
the DM’s preferences to find the optimal alternative for
a particular decision. It is therefore often beneficial to
use such techniques for reducing elicitation burden and
potential inaccuracies, as people are highly susceptible
to cognitive biases (Lichtenstein and Slovic 2006).

The even swaps method appears to be suitable for
small problems where the interactive nature of the
method, the access to the alternatives and the (almost)
instant gratification from solving the problem appeal
to the DM. It is particularly useful for DMs who ei-
ther find it difficult to answer questions about their
trade-offs in terms of weight ratios, or who need to
view/consider the alternatives to construct their pref-
erences. Kajanus et al. (2001) provide an application
to strategy selection in rural enterprises.

Even swaps was originally intended to be self-guided;
Mustajoki and Haméldinen (2005, 2007) propose a de-
cision support system for smart swaps using preference
programming, i.e. by recognizing the feasible region
of weights for fixed bounds on marginal value func-
tions. Their model makes the practical dominance
notion precise by recommending it through pairwise
dominance, which occurs when there is no way an al-
ternative can be most preferred, based on the feasible
weight region and bounds. Their method however has
several limitations. For instance, there is little the sys-
tem can do if it proposes a practical dominance query
and the DM rejects it, aside from changing bounds
midway through the process. Crucially, they are un-
able to recognize swaps that are not feasible.

Here we propose a Bayesian approach that exploits
prior information about the feasible weight region as
represented by a prior probability distribution. We in-
troduce the notion of probable dominance as well as a
heuristic that recommends even swaps through proba-
bilistic computations. The system easily handles rejec-
tion of practical dominance queries. We also present
new results about feasibility conditions for even swaps,
using them to recognize and adapt to declarations of
infeasible swaps. Our approach is particularly adept
at providing inexperienced users with specific recom-
mendations. However, as discussed in the conclusions,
our method possesses its own set of limitations.

3 PROPERTIES OF EVEN SWAPS

The overarching even swaps method gets its name from
the even swap query, which is crucial towards reducing
the size (and therefore complexity) of the consequence
table. In this section, we specify our assumptions for
the class of multi-attribute problems under considera-
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tion, and then present some results pertaining to the
properties of even swaps.

3.1 ASSUMPTIONS

We address multi-attribute problems where the DM
has an additive value function, i.e. of the form in equa-
tion (2). This is applicable only when attributes are
mutually preferentially independent. As noted by pre-
vious authors, this is a common assumption and is
widely applied in practice (Keeney and Raiffa 1976,
Stewart 1996, Belton and Stewart 2002).

In theory, the even swaps method is applicable for all
value functions and is not restricted to the additive
form. However, the method can be challenging to ap-
ply when there is value dependence, in which case the
DM would have to consider consequence levels of all at-
tributes while making a judgment about an even swap.
In that sense, no attribute would be ‘irrelevant’ when
the DM makes the even swap based on their trade-offs.
It is difficult to imagine the method being implemented
successfully in such a situation without an analyst in
the room to guide the DM. The additive assumption
therefore makes an automated decision support system
more likely to be used (and perhaps misused).

We also assume that the one-dimensional marginal
value functions are continuous, bounded and mono-
tonic. Since they are bounded, these functions can
be normalized such that 0 < v;(z;) < 1, v;(2;°) = 0
and v;(x;*) = 1 for all attributes, where z;° and z;*
represent the least and most preferred consequences
for attribute ¢. The domain of an attribute is de-
noted D;, therefore for an attribute where more is pre-
ferred to less, D; = [xio,aci*]. Monotonic attributes
are common in practice; non-monotonic attributes can
sometimes be redefined so as to render them mono-
tonic. Furthermore, a discrete attribute can often be
approximated as continuous. For instance, in the hir-
ing problem in Figure 1, three of the four attributes
are measured as integers on a scale of 1 to 5, but they
could easily be approximated as continuous attributes.
These assumptions are therefore not too restrictive.

3.2 NOTATION AND PROPERTIES

The even swaps method attempts to guide the DM by
simplifying the consequence table. During this inter-
active process, the DM must carefully consider pairs of
alternatives and their consequences along specific at-
tributes. A consequence z; is deemed to be preferred
over y; if it has higher marginal value:

3)

Any pair of alternatives « and y can therefore be as-
sociated with the following three sets of attributes:

xi =y & vi(x) > vi(ya)-



dominating set D(z,y) {i:z; =y}, mon-
dominating set N(x,y) = {i:x; < y;}, and equal
set E(x,y) = {i:x; =vy;}. Note that N(z,y) =
D(y,x).

The task with perhaps the lowest cognitive load for the
DM and the lowest computational load for a system is
identifying equal attributes. While somewhat more
complex for a DM, it is also trivial for a system to
discover absolute dominance, denoted = >4 y, using
non-dominating attribute sets:

x ="y Nz,y) =0 (4)
For a replicate pair of solutions, i.e. where both
N(z,y) = 0 and D(x,y) = 0, either & or y can be
removed from the table at random.

Practical dominance comes under consideration when
one of the sets N(x,y) and D(x,y) has many more
elements than the other. While practical dominance
claims help remove some solutions, the DM may even-
tually have to perform an even swap to manipulate
the consequence table and make further progress. We
denote an even swap as s(z; — ¥}, x; — ), where
the alternative x is modified by the DM, such that the
change from z; to z along attribute ¢ is compensated
by the change from x; to x; along attribute j.

Consider the even swap in the hiring example, where
the DM provided a response to a change from the score
3 to 4 on Technical Skills, along Experience. Note that
the swap performed was specifically designed to make
consequences identical for Technical Skills. This type
of swap is relatively cognitively comfortable for the
DM, since they are able to observe the numbers along
a specific row. Moreover, ensuring equal consequences
simplifies the table and allows for potential ease of
elicitation in future tasks. We refer to such a swap as
an equalizing even swap, defined as an even swap
that makes the consequences of two alternatives equal
along an attribute. For any two alternatives x and
Y, s(vi = yi,x; — z}) is an equalizing even swap
because it makes attribute i’s consequences for both
alternatives equal, thereby increasing the set E(z,y).

Is an even swap always possible? No. The follow-
ing proposition provides the conditions under which
an even swap is feasible, assuming that the DM’s re-
sponse is consistent with their value function.

Proposition 1 (Even Swap Feasibility). The even
swap s(x; — @}, x5 — o), 0 F j, xi, 2} € D; is feasible
only if:

(1) When x} = x;: vj(z;) > %; [vi(z}) — vi(x;)]

(i) When x % [vi(zi) — vi(z})]

<xz;: 1 —vi(zy) >
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Proof. If z; > x;, the swap is not feasible when

even a response of x; = xJ cannot compensate for
the change, which occurs when w; [v;(z;) — vj(:rg)} <
wy [vi(2F) — vi(x;)]. The result follows after recogniz-

ing v;(29) = 0. The other case is similar. O

The fact that not all swaps are feasible is potentially
problematic for a system attempting to guide the pro-
cess by recommending equalizing even swaps. Since
the system is not exactly aware of the DM’s prefer-
ences during the process, it is possible for the system
to propose a swap that is infeasible for the DM. For-
tunately, as determined in the following proposition, if
the swap s(z; — yi, x; — z) is not feasible, its con-
Jjugate swap s(x; — y;,x; — ;) must be feasible.

Proposition 2 (Equalizing Even Swap Feasibility).
For any two alternatives © and y that do not dominate
each other over attributes i and j, at least one of the
equalizing even swaps s(x; — i, x; — :E;) or s(z; —
Yj, i — ) is feasible.

Proof. Suppose that y; > x;. If the swap s(z; —
Yi, ¥j — ;) is not feasible, then from Proposition 1(i),
vj(x;) < F [i(yi) — vi(wi)]. Rearranging, wivi(x;) +
w;v;(x;) < w;v;(y;). For the conjugate swap, by defi-
nition, w;v;(z;) +w;v;(x;) = wiv;(2}) +w;v;i(y;). Us-
ing the condition from the infeasibility of the original
swap, w;v;(x}) + w;vi(y;) < wivi(y;) = wivi(z) <
w;v;(y;) = =} < y;. The conjugate swap is therefore
indeed feasible. The other case is similar. O

The implication of these results is that a feasible swap
can always be found: if the DM declares that a given
even swap is infeasible, then the conjugate swap will
be feasible, and the system can recommend it.

Note that both propositions assume that a DM’s re-
sponse is consistent with their value function. How-
ever, behavioral research on bi-matching suggests peo-
ple may provide inconsistent responses between queries
pertaining to a swap vs. its conjugate (Delquié 1997,
Willemsen and Keren 2003). In the algorithm de-
scribed in the next section, we assume the DM is will-
ing to make either a swap or its conjugate, but we
allow for noise in the response to an even swap query.

4 BAYESIAN SMART SWAPS

In our formulation of guiding an interactive even swap,
we assume the system has prior beliefs p(w) about
the DM’s weights in their additive value function. If
there is no a priori information available, the system
may choose a uniform prior over the weight simplex:
p(w) ~ Dirichlet(a) where « is a vector of 1s.
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the two-attribute example when w; ~ Uniform(0, 1).

We also assume for now that the system knows the
DM’s marginal value functions, perhaps through prior
assessments. Since these are one-dimensional func-
tions, they are usually easier to elicit than weights that
reflect trade-offs. In sub-section 4.4 we briefly outline
how our algorithm may be extended to the case of un-
known marginal functions.

We explore how a system can cope with uncertainty
about the DM’s weights, incorporating responses to
recommended practical dominance and even swap
queries from the DM. In our algorithm, the system
gradually learns the user’s preferences and exploits it
for the sole purpose of reaching the optimal alternative
as soon as possible. In the following sub-sections, we
describe various aspects of our overall approach.

4.1 ABSOLUTE VS. PROBABLE
DOMINANCE

One of the central notions of the original even swaps
method is that of practical dominance, according to
which an alternative can be discarded if it appears
to be nearly absolutely dominated by another. In
this section, we view practical dominance through a
Bayesian lens, with the intent of reducing the cogni-
tive burden of DMs. To motivate our approach, let us
first study absolute dominance.

Consider an alternative & whose consequences have
been normalized; therefore it lies somewhere in the
unit cube. & dominates a proportion of other alterna-
tives given by the volume sz\il x;, and is dominated
by a proportion H;‘il(l — ;). Note that if a family of
problems is built by generating alternatives uniformly
over the consequence domains, then the probability
that any particular alternative dominates another de-
creases exponentially with the number of attributes
M. Therefore absolute dominance does not occur with
sufficient frequency to be a basis for a practical deci-
sion support algorithm. Moreover, in real-world set-
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the two-attribute example when w; ~ Uniform(0.4, 0.6).

tings, absolutely dominated alternatives would likely
be shelved before reaching the conference room.

A relationship that might be more useful is that of
probable dominance, which measures the system’s
beliefs about whether the DM prefers an alternative to
another. The probability that alternative & dominates
y is denoted pgy, where:

M
Day = / (Z w; [vi(x) — vilys)] > 0) p(w)dw.
- (5)

If the system believes that the DM is likely to pre-
fer an alternative over another, perhaps it can rec-
ommend them as a candidate pair for practical dom-
inance. Although the DM makes the eventual judg-
ment, the system recommends the pair in the hope
that it will simplify the problem. We therefore pro-
pose probable dominance above a certain threshold pr
to recognize potential practical dominance, pzy > pr.

Let us study the following simple example to compare
the occurrence of absolute and probable dominance:

A Two-attribute Example. Suppose M = 2 and
that the DM’s marginal value functions are linear and
normalized to between 0 and 1. As a reference, sup-
pose that the DM’s trade-offs are accurately captured
by weights w; = 0.5 and wy = 0.5.

Figure 2 illustrates the regions of absolute and prac-
tical dominance with respect to a chosen alternative
x = (0.2,0.6) (represented as a purple dot) when the
system believes that w; ~ Uniform(0,1). Alternatives
that absolutely dominate @ are shown in dark red,
while those that are absolutely dominated by x are
shown in dark blue. The regions of potential practical
dominance (as determined by probable dominance) for
various values of the probability p appear as bands of
lighter red and blue, in increments of 0.1, ranging from
p=0.9 to 1.0 (almost deep red) down to p =0 to 0.1
(almost deep blue).



Figure 3 illustrates almost the same situation except
now the system believes that w; ~ Uniform(0.4,0.6),
possibly by learning from responses to previous
queries. It is immediately apparent that the reduced
uncertainty yields enlarged regions in which there is
a high certainty that = dominates or is dominated.
These regions now appear as large triangles flanking
the rectangular regions of absolute dominance. From
a practical perspective, such regions are effectively
equivalent to those of absolute dominance.

Relative to Fig. 2, the region of uncertainty is much
more tightly clustered around the diagonal line =1 +
x9 = 0.8 that represents the boundary between x > y
and y > x. This is due to the reduced uncertainty
about the true value of w, and illustrates the bene-
fits of reducing the uncertainty: it allows the system
to be more confident in suggesting potential practical
dominance to the DM. O

The simple example illustrates that a pair of alterna-
tives chosen at random is more likely to exhibit prob-
able rather than absolute dominance, making it more
useful in practice. Further numerical simulations were
performed, demonstrating that the probability for a
given vector x to practically dominate a given vec-
tor y above a given threshold pr is insensitive to the
number of attributes M. This suggests that probable
dominance may be a useful concept in practice.

Algorithm 1 summarizes the system’s approach to rec-
ommending practical dominance and updating beliefs.
We assume that the DM responds accurately to this
query based on their preferences, since this is a com-
parison question that is typically associated with low
cognitive load. This implies that the polytope of the
weight region can be updated to incorporate the fol-
lowing condition:

M
Zwi [vi(z;) —vi(ys)] > (L) 0, (6)

depending on whether the user responds ‘yes’ or ‘no’
to the question: do you prefer & over y? The implica-
tions and potential limitations of assuming an accurate
response to this query are discussed in the conclusions.

4.2 EVEN SWAPS

Recommending an effective even swap is more chal-
lenging than computing practical dominance. In Sec-
tion 3, we explored some properties, discovering that
not all swaps are feasible. The notion of an equal-
izing even swap was introduced as a practical means
of forming a simpler consequence table. To make an
equalizing even swap s(x; — y;,z; — ), the system
needs an alternative pair @, y and an attribute pair i,

7

Algorithm 1 Practical Dominance Query

Input: N alternatives, threshold pr, prior p(w)
Initialize p73** = 0
for each pair of vectors  and y do

Compute pg, from equation (5)

if ppy > max(pr, pi*”) then

Store pair «, Y; P15 = Pay
end if
end for

if p3*® # 0 then
Recommend potential practical dominance for
x,y, inquiring whether x > y
Update p(w) in accordance with DM’s response,
using equation (6)

else
There is no candidate pair

end if

j. Moreover, the system should be able to handle an
infeasible swap.

We present a heuristic for recommending an even swap
that identifies the most suitable alternative and at-
tribute pairs. There are two main steps involved. In
the first step, the system identifies alternatives x, y
where it believes & might be preferred over y. It is
natural to use probable dominance to quantify this
belief. In the second step, the system identifies at-
tributes ¢ € N(z,y) and j € D(x,y) such that swap
s(zi = yi,zj; — o) is likely to decrease |N(z,y)|.

The intuition behind the heuristic is that an even swap
query potentially pushes a pair of alternatives towards
dominance of some sort, making it eventually evident
to both the system and the DM. Focusing on a pair
where one is likely to dominate the other and reducing
the non-dominated attribute set ensures that this oc-
curs. As shown in Section 3, an infeasible swap always
possesses a feasible conjugate swap, so the heuristic is
guaranteed to make progress (from a normative per-
spective). Note that the cognitive effort expended by
the user in trying to respond to the original (failed)
swap will be helpful in responding to its conjugate.
Note also that the heuristic is myopic in that it at-
tempts to find the ‘best’ swap at the current moment,
without regard to long-term savings. It can be viewed
as a dominance-focused heuristic, as it tries to drive
alternative pairs towards dominance.

Suppose that the system is considering the equalizing
even swap s(r; — y;,z; — ;) based on the afore-
mentioned heuristic. By definition:

oy(a) = w; (vi(x;) — wi}?f)) + wjvj(z;)

(7

if it is feasible, i.e. satisfies Proposition 1.



Algorithm 2 Even Swap Query

Algorithm 3 Bayesian Smart Swaps

Input: N alternatives, swap response noise §, prior
p(w)
Set threshold pr = 0 and find alternative pair x,y
from Algorithm 1
Initialize p&** =0
for each pair of attributes ¢ in N(z,y) and j in
D(z,y) do

Compute pg from equation (8)

if ps > pg** then

Store pair 7, j; pg** = ps
end if
end for

Recommend the swap s(z; = y;, z; — 77)

if Response is z; then
Update p(w) with conditions from equation (9)

else if DM declares swap is infeasible then
Recommend conjugate swap s(z; — yj,x; — ;)
Update p(w) using equation (9), after swapping 4
and j

end if

Input: N alternatives, threshold pr, swap response
noise 4, prior p(w)
while more than 1 solution and 1 active attribute
remain in table do
Remove absolutely dominated solutions, if any
Mark any attributes with equal consequences
across alternatives as inactive, if any
Identify potential practical dominance using Al-
gorithm 1
if practical dominance detected then
Recommend it and update p(w) from response
else
Recommend an even swap using Algorithm 2
and update p(w) from response
end if
end while
if single attribute remains then
Find the optimal alternative x
end if
Return

Suppose that i and j are both attributes where more
is preferred to less. Then z; is increased to y; for the
swap (because i € N(z,y)), therefore x; is decreased
to :c; if the swap is feasible. The probability that this
swap will decrease the non-dominated set pg is:

ps = P(z} > y;) = P(v;(a}) = v;(y;))
Z wi (v (k) — vi(yr)] > 0 | p(w)dw,

/“’ k=i,
(8)

where the final step is a result of integration after re-
arranging (7). For the sake of brevity, we have nota-
tionally omitted specifying that pg is a function of the
swap; it should be inferred that it is associated with
swap s(v; — yi,z; — 7). Also, note that although
equation (8) applies only when 7 and j have monoton-
ically increasing marginal value functions, it is easy to
generalize it to include all other cases.

Algorithm 2 summarizes the system’s approach to rec-
ommending even swaps and updating beliefs. Since
an even swap is associated with a significant cognitive
load, the system treats the response to lie within a
noise band measured using the swap response noise
6. For instance, if a user responds to an even swap
query with normalized consequence 0.6 and § = 0.2,
then the system forms a lower bound Ls = 0.5 and
upper bound Us = 0.7. This noise band is subject to
the other constraints posed on a response, i.e. it must
lie within the domain. Therefore a response of 0.05
with 6 = 0.2 results in Ls = 0 and Us = 0.15. If
more of attribute j is preferred to less, the polytope
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of the weight region can be updated with conditions
from two inequalities involving w; and wj:

!
T — ]
T —aj

=}

Ls < < Us,

(9)

Slole

where Ls and Us are bounds on normalized conse-
quences (Ls, Us € [0,1]) that depend on the DM’s re-
sponse and 4§ as described above, and z; is a function
of the weights and marginal values as in equation (7).
This equation could be easily modified for the case
where less of attribute j is preferred.

4.3 HIGH-LEVEL ALGORITHM

Now that we have outlined the two main sub-routines
— practical dominance and even swaps — Algorithm 3
provides the high-level routine for our proposed in-
teractive even swaps method. The algorithm identifies
absolute dominance and equal attributes, recommends
practical dominance when it is confident enough, and
recommends an equalizing even swap based on a dom-
inance focused heuristic. The algorithm terminates
when the optimal alternative is revealed.

4.4 EXTENSION: UNKNOWN
MARGINAL VALUE FUNCTIONS

In the algorithm described here, we assumed that the
system already knew the marginal value functions,
perhaps through initial assessments. There is a nat-
ural extension to the case of unknown marginal value
functions along the lines of Mustajoki and Hamaéldinen
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Figure 4: The effect of learning upon the number and
type of queries and events. Average number of absolute
dominance and equal attribute events, as well as probable
dominance and even swap queries per scenario, for M =
{3,5} x N ={2,8}, with learning turned on (L) and off.

(2005, 2007), using previously determined lower and
upper bounds on the marginal value functions. Subse-
quently, for all probabilistic computations — in this
case those pertaining to computing probable domi-
nance and the probability that the swap will decrease
the non-dominated set — the system could use proba-
bility bounds for making recommendations and update
its beliefs based on inequalities from these bounds.
The current algorithm could be updated to incorpo-
rate these changes.

5 EXPERIMENTAL RESULTS

A first set of experiments were conducted to assess the
degree to which learning reduces the number and com-
plexity of queries directed to the DM. The high-level
algorithm described in Section 4 was applied to a set
of 100 randomly generated scenarios, each involving a
randomly generated set of N alternatives with M at-
tributes. Each of the NM values in the consequence
table was generated from a Uniform distribution (0, 1).
The user’s true weights were drawn uniformly from the
(M — 1)-dimensional unit simplex, and the prior was
the same uniform distribution over the simplex. For
simplicity, the marginal value functions were assumed
to be linear and ranging from 0 to 1.

For each scenario, the probability threshold for a prob-
able dominance query was set relatively high (0.9) to
ensure that the queries might not be too onerous for
real humans to answer. The probability that > y
for the DM was computed by randomly generating at
least 10000 weight vectors uniformly in the (M — 1)-
dimensional unit simplex. First, rejection sampling
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Figure 5: Same data as in Figure 4, except that the scales
are normalized to 1 to illustrate the relative contributions
of the different types queries and events.

was employed, i.e. the randomly generated weight vec-
tors were reduced to a set that satisfied any constraints
introduced during the interactive process. Then the
probable dominance probability was computed as the
fraction of weight vectors for which > y. Partic-
ularly in cases where several even swaps had been
applied, the weights were pinned down so precisely
that the number of samples satisfying the constraints
dropped below 100, in which case more points were
generated to ensure that the probable dominance prob-
ability was computed from reasonable statistics. To
simulate the DM answering a probable dominance or
even swaps query, the true weight vector was used to
generate the response that the DM would have gener-
ated. The DM’s noise about the swap value was mod-
eled using a modest swap response noise of § = 0.2.

For each scenario, the number of absolute domi-
nance and equal-attribute events (accomplished purely
through system computations) were recorded. The
number of probable dominance and even swap queries
(including both regular and conjugate swaps) were
recorded as well; these are queries that must be an-
swered by the DM and therefore entail some cognitive
burden. Eight sets of 100 scenarios were run, with the
number of attributes set to M = {3, 5}, the number of
solutions set to N = {2,8}, and the method’s learning
element both turned on and turned off. The results
are summarized in Figure 4.

For the smallest scenarios ((M,N) = (3,2)), an aver-
age of just two queries and/or events is required, and
typically there is one absolute dominance event and
one even swap, with probable dominance and elimina-
tion by virtue of equal attributes playing a relatively
minor role. Due to the small number of queries and/or



events, learning has little impact. The average num-
ber of queries and/or events decreases from 2.33+0.11
to 1.96 + 0.11 — a drop that is of marginal statisti-
cal significance. On the other hand, when the num-
ber of solutions is increased from 2 to 8, the average
number of queries and/or events rises to 8.22 4+ 0.34
without learning and 6.7 £ 0.23 with learning — a sta-
tistically significant decrease of 18%. When the num-
ber of attributes is increased from 3 to 5, a similar
trend is observed. For N = 2 solutions, the number of
queries and/or events is 3.63 &+ 0.27 without learning
and 3.35 £+ 0.24 with learning — an insignificant dif-
ference — whereas for N = 8 solutions the number of
queries and/or events is 14.37 £ 0.57 and 11.51 + 0.41
— a statistically significant drop of 20%.

Figure 5 provides another view of the same data, in
which the relative contribution of the various types
of queries and events is obtained by normalization.
As anticipated, the impact of absolute dominance de-
creases as the number of solutions N increases from 2
to 8. This is a consequence of the exponential decrease
in the probability for any given vector to absolutely
dominate another with the number of attributes. An-
other trend evident here is that as NN increases, the
relative impact of probable dominance queries grows
stronger. Moreover, for larger problems, the effect of
learning is to further increase the relative importance
of probable dominance over even swap queries.

Having established that learning can substantially re-
duce the number of queries and/or events required to
identify the optimal alternative, and moreover that it
shifts the balance more from even swaps to probable
dominance queries as the problem size grows, a sec-
ond series of experiments were conducted with learn-
ing turned on. The objective of these experiments was
to chart in greater detail how the number and type
of queries and/or events change as the number of at-
tributes and alternatives are varied. The results de-
picted in Figure 6 demonstrate the same basic trends,
including the waning importance of absolute domi-
nance as the number of attributes M grows and the
ascendancy of probable dominance as N grows.

6 CONCLUSIONS

In this paper, we have presented a method for guid-
ing the DM through the even swaps process using an
overall Bayesian approach with a dominance focused
heuristic. We have demonstrated through experiments
that one can effectively learn about the DM’s prefer-
ences in the course of a single session to guide them
quickly to a final choice. A potential next step is to
implement a tool and test its efficacy through experi-
ments with real human subjects. Belton et al. (2005)
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Figure 6: The effect of M and N on the number and type
of queries and events. Average number of queries/events
of each type, from left to right, for M = {2,3,4,5} and
N ={2,3,4,5,6,7,8}.

conduct some user experiments involving even swap
queries but such studies remain few and far between.

Our approach appears to be practical for modest-sized
decision problems (N < 10). One could argue that
direct elicitation techniques might be appropriate for
large N (~ 100); however, if the DM prefers to use
even swaps (for reasons highlighted in Section 2), it
may be prudent to focus on learning the DM’s prefer-
ences rather than myopically trying to find the most
likely pair of alternatives such that one might domi-
nate the other.

Here we used a simple model for incorporating poten-
tial noise in a DM’s response to an even swap query;
it was chosen to enable conditions represented as in-
equalities. In future research, we envision more nu-
anced noise models accounting for cognitive effects
such as attribute conflict (e.g. Fischer et al. 2000,
Delquié 2003). Also, although we have used proba-
ble dominance to measure practical dominance, it re-
mains unclear how the metric would work for large
problems because it may be difficult for a DM to com-
pare any two arbitrary alternatives; note that compar-
ison queries are also subject to various cognitive biases
in general (e.g. Tversky et al. 1988, Tversky and Kah-
neman 1991). Finally, regarding the computations for
simulation, rejection sampling is sufficient when only
a few queries are asked in a single setting. If several
queries are asked back-to-back, efficient methods such
as hit and run sampling may be more effective.
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Abstract

Crowdsourcing services like Amazon’s Mechan-
ical Turk have facilitated and greatly expedited
the manual labeling process from a large number
of human workers. However, spammers are often
unavoidable and the crowdsourced labels can be
very noisy. In this paper, we explicitly account
for four sources for a noisy crowdsourced label:
worker’s dedication to the task, his/her expertise,
his/her default labeling judgement, and sample
difficulty. A novel mixture model is employed
for worker annotations, which learns a prediction
model directly from samples to labels for effi-
cient out-of-sample testing. Experiments on both
simulated and real-world crowdsourced data sets
show that the proposed method achieves signifi-
cant improvements over the state-of-the-art.

1 INTRODUCTION

Supervised learning requires labels. However, the collec-
tion of labeled data from users is often expensive, tedious
and time-consuming. Recently, the use of crowdsourcing
allows this mundane process of obtaining manual labels
from a great number of human workers to be greatly expe-
dited. For example, in Amazon’s Mechanical Turk (AMT),
a “requester” can pose tasks known as HITs (Human In-
telligence Tasks). Workers then choose to complete any of
the existing HITs and get rewarded by a certain amount of
monetary payment set by the requester. Researchers in dif-
ferent areas, such as computer vision (Sorokin and Forsyth,
2008) and natural language processing (Snow et al., 2008),
have benefited from these crowdsourcing services and ac-
quired labels for large data sets.

However, in practice, the crowdsourced labels are often
noisy. On one hand, their quality depends on the labeling
task. For example, if the labeling task is not well designed
or not clearly described by the requester, the worker’s mo-
tivation to participate may decrease, and the noisy level of
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the crowdsourced labels will increase (Zheng et al., 2011).
Moreover, different labeling tasks can have different diffi-
culties. If samples in one task are very challenging to anno-
tate, the obtained crowdsourced labels may be less reliable
(Whitehill et al., 2009; Yan et al., 2010; Zhou et al., 2012).
On the other hand, workers’ qualities can vary drastically
and lead to different noise levels in their annotations. For
example, their expertise differs due to their diverse knowl-
edge backgrounds (Whitehill et al., 2009; Welinder et al.,
2010). Moreover, their dedications to performing the task
can also greatly affect their annotation accuracies. In the
worst case, some workers may just randomly guess the
labels without actually looking at the samples (Welinder
et al., 2010). In particular, it is common to have “spam-
mers”, who provide wrong labels most of the time. The ex-
traction of “true” labels from a large pool of crowdsourced
labels is thus very important.

A popular and simple approach is to perform a majority
vote on workers. However, it implicitly assumes that all
workers are equally accurate, which is rarely the case in
practice. It can also be misleading when there is a sig-
nificant portion of spammers. To obtain a more accurate
consensus, a number of algorithms have been proposed
that model different aspects of the labeling noise (such as
worker expertise and sample difficulty) (Whitehill et al.,
2009; Welinder et al., 2010; Raykar and Yu, 2012; Liu
et al., 2012; Zhou et al., 2012). Interested readers are re-
ferred to the recent survey in (Sheshadri and Lease, 2013).
Yet, these models can only make estimations for samples
with crowdsourced labels. For out-of-sample testing (i.e.
prediction on an unseen test sample), the user has to first
crowdsource its labels before these algorithms can be run.

To alleviate this problem, one can build a prediction model
directly from the sample to the label. A popular approach
is the two-coin model (Raykar et al., 2010). It assumes that
each worker generates its label by flipping the ground-truth
label with a certain probability. Depending on whether the
true label being zero or one, the flipping probabilities are
in general different. A prediction model is then built on
the hidden “denoised” labels. This is further extended in



Table 1: Comparison between the existing methods and ours.

prediction model

method from samples to labels | worker expertise | sample difficulty | worker dedication
majority voting X X X X
Whitehill et al. (2009) X v v X
Welinder et al. (2010) X v X X
Liu et al. (2012) X v X X
Zhou et al. (2012) X v v X
Raykar and Yu (2012) X v X X
Raykar et al. (2010) v v X X
Yan et al. (2010) v v v X
Kajino et al. (2012) v v X X
Kajino et al. (2013) v v X X
proposed method v v v v

(Yan et al., 2010) by allowing the flipping probability to be
different from sample to sample. Another approach is to
formulate the crowdsourcing problem as a multitask learn-
ing problem (Evgeniou and Pontil, 2004). Each worker is
considered a task, and the final prediction model is a lin-
ear combination of the worker models (Kajino et al., 2012,
2013). However, this may not be robust when many work-
ers are spammers or incompetent.

In this paper, we propose a novel model for the generation
of crowdsourced labels. Specifically, we assume that the
label noise can come from four sources: (i) the worker is
not an expert; (ii) the worker is not dedicated to the task;
(iii) the worker’s default label judgement is incorrect; and
(iv) the sample is difficult. Note that some of these have
been considered in the literature (Table 1). Moreover, they
can be highly inter-correlated. For example, if a sample is
easy, even an uncommitted non-expert can output the cor-
rect label. On the other side, if the sample is very difficult,
even a dedicated expert can only rely on his default judge-
ment. If his prior knowledge happens to be incorrect, the
label will be wrong.

With these various factors, we employ a mixture model
for the worker annotation of the crowdsourced data. If the
worker is dedicated to the labeling task or if he considers
the sample as easy, the corresponding label is generated ac-
cording to his underlying decision function. Otherwise, the
label is generated based on his default labeling judgement.
To model sample difficulty, we use the usual intuition that
a sample is difficult if it is close to the worker’s underly-
ing decision boundary, and vice versa. Obviously, we do
not know in which way the worker generates the label of a
sample. For inference, we use the expectation maximiza-
tion (EM) algorithm (Dempster et al., 1977).

The rest of this paper is organized as follows. Sec-
tion 2 presents our worker annotation model, and Section 3
presents the inference procedure. Experiments are pre-
sented in Section 4, and the last section gives some con-
cluding remarks.
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2 PROPOSED MODEL

In this paper, we assume that the crowdsourced task is a
binary classification problem, with 7" workers and NV query
samples. The ith sample x(*) € R? is annotated by the set
of workers S; C {1,2,...,T}. The annotation provided

by the tth worker (with ¢ € S;) is denoted (" € {0,1}.

2.1 GENERATION OF GROUND TRUTH

We assume that for each sample x, its ground truth la-
bel y*( € {0,1} is generated by a logistic regression
model with parameter w*. In other words, y*(i) follows
the Bernoulli distribution

where 0(z) = 1/(1+ exp(—z)) is the logistic function. To
avoid over-fitting, we assume a normal prior on w*:

1
w¥y ~ N (0, I) ,
Y

where v > 0 is a constant (in the experiments, this is tuned
by the validation set). Other priors can also be readily
added. For example, if w* is expected to be sparse, the
Laplace prior can be used instead.

As will be seen later, training the model only requires ac-
cess to the features but not the ground-truth labels. This
is more realistic in many crowdsourced applications, as the
features can often be readily extracted using standard un-
supervised feature extraction.

2.2 WORKER ANNOTATION: EXPERTISE AND
DEDICATION

For worker ¢, we assume that his failure in correctly anno-
tating x(*) is due to two reasons according to his dedica-
tion to the queried sample x(*). First, he may have tried
to annotate with the best effort, but still fails because his
expertise is not strong enough. We model this by assuming



that worker ¢’s annotation yt(i) follows a similar Bernoulli
distribution as (1):

2

where w; is the worker’s “estimation” of w*, and is sam-
pled from the following normal distribution

wi|w*, 8 ~ N(w*, 671).

Pyt = 1wy, x?) = o(wl'x®),

3)

A small §; means that wy is likely to be close to w*, and
thus worker ¢ is an expert, and vice versa. When no ad-
ditional information on the worker’expertise is available, a
uniform hyperprior on {d;}7_, can be used.

The second reason for worker t¢’s failure in correctly anno-
tating x(¥) is simply that he is not dedicated to the task and
has not even looked at x(*). In this case, he randomly an-
notates according to some default judgement. This can be
modeled by another Bernoulli distribution:

p(y) = 1[be) = by, “4)

where b, € [0, 1]. Again, when no additional information
on the worker’s default labeling judgement are available, a
uniform prior on {b;}Z_; will be used.

Combining these two causes, we have
p(y)gl) IX(l)v Wi, bt7 2152))

D1 (i o) : L@
= p(yxD, we)* p(yt b)) 5D, (5)

where zgi) € {0, 1} determines whether (3) or (4) should be

used to generate y,gi). Intuitively, an expert worker should

have an accurate prediction model (J; is small), and be ded-

icated to the task (zgi) = 1 on most x(i)’s); whereas a

spammer either has a large J; or zt(i) = 0 most of the time.

2.3 INCORPORATING SAMPLE DIFFICULTY

The difficulty of a sample can greatly affect the annotation
quality (Whitehill et al., 2009; Yan et al., 2010; Zhou et al.,
2012). If a sample is vaguely described or too hard, even
an expert may have to make a random guess and thus acts
as if he has not looked at the sample. On the contrary, if
a sample is very easy, even a spammer (especially the lazy
ones) can quickly make a correct decision.

To model this effect on worker ¢, we incorporate the diffi-

culty of x(*) into the modeling of zt(i). Intuitively, if x(*) is

difficult to annotate, zt(z) should be close to 0. From (5), the
annotation made is then independent of the decision model
of worker ¢. To measure sample difficulty, we use the pop-
ular notion that worker ¢ will perceive x(¥) as difficult if it
is close to his decision boundary (Tong and Koller, 2002;
Dong et al., 2013; Welinder et al., 2010). Thus, we arrive
at the following Bernoulli distribution on zt(l):
[[w,"x |2

p - 1 X W 2(7 1
(Zt | 3 ty )\f) <)\f H tHQ ) (6)
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llw, x|
lIwell
cision boundary w;7x = 0, and \; > 0 models the sen-
sitivity of worker ¢’s annotation to sample difficulty. De-
pending on each worker’s expertise (as reflected by his w),
one worker may consider sample x(*) difficult while an-

other worker may consider it easy. Moreover, a small )\,

Here, is the distance of x(¥ from worker ¢’s de-

makes an easy sample (with a large W) look diffi-
cult and worker ¢ will rely more on his default judgement,

and vice versa. As we are only interested in the value of
s Hw‘f,Tx(” 112

’ [we[?
ize (6) as

in (6), to simplify inference, we reparameter-
p(z = 11xD, wy, M) = 20(Ae[[w: TxP2) = 1. (D)

After obtaining w, the sensitivity of worker ¢’s annotation
to sample difficulty can be recovered as \¢ ||w||%.

A graphical model representation for the complete model
is shown in Figure 1.

Workers

Figure 1: The proposed model incorporating sample diffi-
culty and two sources for worker annotation.

2.4 EXTENSIONS

When the crowdsourced task is a multiclass classification
problem, one can simply replace the Bernoulli distribution
with a multinomial distribution. Similarly, for regression
problems, the normal distribution can be used instead.

For ease of exposition, we use the linear logistic regres-
sion model in (1) and (2). This has also been used in
most previous works (Raykar et al., 2010; Kajino et al.,
2012). It can be easily replaced by any binary classifier.
For example, to use a nonlinear kernelized version, one
can replace w*”x(® in (1) by Zjvzl a* g (x) x(@),
where k(-,-) is an appropriate kernel function. Similarly,
w]x( in (2) is replaced by Zjvzl ol k(x@), x)), where
(N

1 L
o = [ag ) oy )} serves as worker ¢’s “estimation”



of the ground truth o* = [a*M) ... o*™)]T  Analo-
gous to (3), we can assume that each o is sampled from

N(a*, 671).

3 INFERENCE

In this section, we wuse the Expectation Max-
imization (EM) algorithm (Dempster et al.,
1977) to obtain the model parameters ! © =
{W*7{Wt}?:h{6t}tT:17{bt}Z:1>{)‘t tT:1}- Let the
samples X = {x( ... . x(™1 be independent. By

treating Y = {yy)} as the observed data and Z = {zt(l)}
as the missing data, the complete data likelihood can be
written as

L(Y,Z)
= p(Y|Z, X, {Wta bt}?:1>p(Z‘X, {Wt’ At}?:l)

N
= H Hp(yt(l) |Z§Z)’ Wi, X(i)’ bt)p(2’§ )

i
|we, x
i=1teS;

R ) )‘t ) 7(8)

by assuming that the workers annotate independently. The
posterior of © is then

W*> {Wt}’thla {5t}$:1’ {)‘t}?:h {bt}?:l |Xa Y7 Z)
T

w*) [T p(wilw*, 6:)p(80)p(A\e)p(be) (9)

3.1 E-STEP

Taking the log of (8), we have

log L(Y Z)

SS9 ok s X = 1 x
i=1tes;

+(1— 27) log ply,

)7 >\t)

Ybop(z’

The expected value of zf( ),

) = 0wy, x? )\t))

denoted z( )

(i 1
2= -5
Qy

Py we, xD)p(2?

(i)v At)a

= 1wy, x

where Q() = p(z () _ 1|wt x A)p(y gi)\whx(i)) +
Pz = 01w, xO, 2)p(ui” [be)-

As can be seen, whether Et(l) is close to 1 is affected by

both the sample difficulty (i.e., p(z\” = 1|wy,x@, )

(@)

and the confidence of y; ’ generated from the current esti-

mated function w; (i.e., p(yt(i) lwy, x(1)).

'In the kernelized version, e
{a, {ou} iy, {631, {b:} 71, {\+}i—1} and the EM proce-
dure is similar. In particular, the M-step updates a* and {ou }i—;
as w* and {w;}i_;.
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3.2 M-STEP

Here, we use alternating minimization. At each step, one
variable is minimized while the other variables are fixed.

e w;’s: From (9), the various w;’s can be learned inde-
pendently. The optimization subproblem for w; is

1 i
S5 llwemw 237 (27,
t

©:t€S;

mingy, log o (wix®)

+zt( 2

(1= 4" log(1 — o (wi %)
+7" log(20 (Al we"x %) 1)
(1= 27 log(2 — 20 (Al wi "xD[2))
This can be maximized by gradient descent, and the
gradient w.r.t. wy is

2 . G ;
2w (00
¢ i:t€S;

(Zgi) _QU(Ut(i))+1)U(U£i)>)\tWtTX(i)X(i)

20(vt(i)) -1

— U(W?X(i)))x( )

)

_|_

where v{? = X\, ||w, Tx®||2.

e w*: The optimization subproblem for w* is

T
min 3 Sllw — w2 4w,

t=1

+7(w

with the closed-form solution
23:1 5L2Wt
wh = 7;1 (10)
v+ Zt:l 32

Note that w* is a weighted average of all the w,’s,
with contributions from the experts (those with small
d¢’s) weighted heavier.

e §;: The optimization subproblem for 6; is
1
rr(lsin 5—2Hwt — w*||? + log det(62T)
t O

— w*||? + 2dlog §;,

o1 i
= min —||w
5 62!
where I is the d x d identity matrix, and d is the num-

ber of input features. By setting its derivative w.r.t. J;
to 0, we obtain

1
0 = ﬁHWt —wr.

e b,: The optimization subproblem is

max (1= %) (4 log brH(1 — y(”)log(1 = b,)).

be itteS;



By setting its derivative w.r.t. b; to 0, we have

_ (@)
> (-7 <yt >=0.
. by
i:teS;
Rearranging gives the closed-form solution

Zi:tESi (1
Zi:tESi (1

-y

1—b,

S

—Z

bt:

Recall that Zt(i) € [0, 1] is the expectation of yt(i) gen-

erated by worker ¢’s default judgement. Hence, b, is
simply the average of worker ¢’s labels that are gener-
ated by his default judgement.

e {)\;}L_,: The optimization subproblem is

max,\tz Zﬁi) log (20 (A]|w, Tx@))?) — 1)
P:tES;

+(1-2")log(2-20 (e [w"x V%)),

Again, this can be solved by projected gradient (as
A¢ > 0), with the gradient w.r.t. A\; given by

>

P:tES;

(2 =20 (i) + D)o () w, %D |2
20(v{") — 1

4 EXPERIMENTS

In this section, we perform two sets of experiments to
evaluate the performance of the proposed method. Sec-
tion 4.2 simulates a crowdsourced environment with syn-
thetic workers using a standard benchmark data set; while
Section 4.3 uses data sets with real labels crowdsourced
from the AMT.

4.1 SETUP

The proposed model will be compared with the following
groups of algorithms:

1. Algorithms that learn prediction models directly from
samples to labels (Table 1). In particular, we will com-
pare with

e MTL: The multitask formulation in (Kajino et al.,
2012). Each worker is considered as a task, and
the prediction model is a rescaled average of all
the learned worker models.

e RY: The two-coin model in (Raykar et al., 2010).
It considers the annotation generated by flipping
the ground truth label with a certain biased prob-
ability.
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e YAN: This model is proposed in (Yan et al.,
2010), and an extension of (Raykar et al., 2010).
Its flipping probability is sample-specific and
varies with sample difficulty. However, unlike
ours, it does not have a clear connection with the
worker’s decision function.

2. Algorithms that do not learn a prediction model from
samples to labels (Table 1). In particular, we will com-
pare with

o GLAD (Whitehill et al., 2009) 2: It models each
sample’s difficulty level and each worker’s exper-
tise.

e CUBAM (Welinder et al., 2010) 3:: It considers
sample competence, worker expertise and bias.

e MV : Majority voting, a popular baseline which
essentially treats all the workers as equally accu-
rate.

For prediction on an unseen test sample, these algo-
rithms have to first crowdsource its labels. To avoid
this problem, we will proceed as follows: (i) Estimate
the “true” labels of the training samples using each
of these algorithms; (ii) Use the estimated labels to
train a logistic regression model; (iii) Use the trained
regression model to make predictions on the test sam-
ples.

3. We also include an ideal baseline (Ideal), which is
a logistic regression model trained using the training
samples with ground truth labels.

For performance evaluation, we follow (Raykar et al.,
2010) and report the area under ROC curve (AUC). The
ROC curve is obtained by varying the prediction thresh-
old. Parameters in all the models are tuned by a valida-
tion set (which is constructed by using 20% of the training
data). With the chosen parameters, a prediction model is
then learned using all the training data.

4.2 UCIDATA SET

Following (Kajino et al., 2012), we use the red wine data in
the UCI Wine-Quality data set*. There are a total of 1,599
samples, each with 11 features. The original multiclass la-
bels are binarized such that samples with quality levels be-
low 7 are labeled as 0, and 1 otherwise. 70% of the samples
are randomly chosen for training, and the remaining 30%
for testing. To reduce statistical variability, results are av-
eraged over 5 repetitions.

Code is from http://mplab.ucsd.edu/ - jake/

3Code is from http://www.vision.caltech.edu/
welinder/cubam.html

*nttp://archive.ics.uci.edu/ml/datasets/
Wine+Quality



Table 2: Testing AUCs on the wine data set. The best results and those that are not statistically worse (according to the

paired t-test with p-value less than 0.05) are in bold.

#workers| proposed MTL RY YAN GLAD CUBAM MV Ideal
cet 1 20  |0.81 +0.01|0.79 £ 0.04]0.38 + 0.04]0.49 + 0.03|0.52 + 0.02|0.66 + 0.05]0.48 £ 0.06(|0.87 + 0.02
40 ]0.79 £0.01]0.75 + 0.07|0.51 £ 0.01{0.53 £ 0.03]0.51 £ 0.03|0.58 £ 0.04|0.34 + 0.02(|0.87 £ 0.03
set 2 20 |0.81 £ 0.01]0.80 £ 0.01]|0.50 £ 0.03|0.49 £ 0.03|0.49 £ 0.05|0.52 £ 0.04|0.49 £ 0.01{(0.87 £ 0.01
40 |0.73 £ 0.04]0.76 + 0.02|0.49 + 0.01|0.50 + 0.03]0.50 £ 0.03|0.54 + 0.03|0.50 + 0.03||0.79 £ 0.02
set 3 20 |0.80 £ 0.01]0.82 £ 0.01]0.80 £ 0.03|0.78 £+ 0.03|0.84 + 0.05/0.84 + 0.04|0.48 £ 0.03](0.84 £+ 0.01
40  |0.80 £ 0.04/0.82 4 0.02|0.80 £ 0.01|0.76 4 0.04(0.84 4+ 0.05[0.84 4+ 0.03]0.59 £+ 0.03||0.85 % 0.02

4.2.1 Generation of Labels

We generate three sets of simulated crowdsourced labels
based on different model assumptions:

e Set 1: The crowdsourced labels are generated using
the proposed annotation process. The “optimal” w*
is obtained by training a logistic regression model on
all the training and test samples. We generate differ-
ent numbers (20 and 40) of noisy workers. For each
worker, we generate w; as in (3) with different set-
tings of d;’s:

1. i of the workers have ; = 10 (high expertise);

2. % of the workers have ¢; = 100 (moderate exper-
tise); and

3. i of the workers have §; = 1000 (low expertise).

Sample difficulty is generated as in Section 2.3:

1. For the expert workers, we set A; = 10, 000, and
so most of the samples appear easy;

For workers with moderate expertise, set \; =
100; and

3. For workers with low expertise, set A, = 1 (and
so most of the samples appear difficult).

For each sample 7, we set zgi)

given in (7). If zt@ =1, yt(i)

= 1 with probability
is labeled 1 with proba-

(@)

bility defined in (2); otherwise, ¥,

1(.e., b;in (4)is setto 1).
In summary, % of the workers are experts, % of them

are non-experts but not very noisy; while the remain-
ing % are very noisy workers.

is always labeled

e Set 2: The crowdsourced labels are generated using
the MTL assumption in (Kajino et al., 2012). Specif-
ically, from the w, generated in Set 1, we generate

y! =

1 with probability o (w] x(*).

e Set 3: The crowdsourced labels are generated using
the two-coin assumption in (Raykar et al., 2010). For
worker ¢, let oy (resp. ;) be the probability that a
ground truth label with value 1 (resp. 0) is flipped.
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1. For % of the workers, we set a; = B; = 0.05
(experts);

2. For % of the workers, set a; = 3; = 0.25 (non-
experts but not very noisy); and

3. For i of the workers, set oy = 8; = 0.55 (very
noisy workers).

4.2.2 Results on ROC Curves

Figure 2 shows the obtained testing ROC curves (with each
point averaged over the five repetitions). The correspond-
ing averaged AUC values are shown in Table 2. As can
be seen, the proposed model performs well under various
noise generation scenarios.

On Set 1, since the labels are generated using the proposed
annotation process, the proposed method performs signifi-
cantly better than the others as expected. MTL is the second
best, as it also builds a prediction model for each worker.
RY, YAN, GLAD, CUBAM and MV perform poorly, as
their model assumptions are very different from the under-
lying data generation process.

On Set 2, MTL is the best. The proposed model also yields
comparable performance; while the others do not perform
well.

On Set 3, MTL, RY, GLAD, CUBAM and the proposed
method have comparable performance. Their performance
gaps with Ideal are also quite small, which is consistent
with the results in (Kajino et al., 2012). As various methods
can perform well here, it suggests that the noise generated
by the two-coin model is easier to remove than those in the
previous two settings.

4.2.3 Separating Experts from Noisy Workers

In this section, we examine the proposed model’s ability to
separate experts from noisy workers using the two criteria:
worker expertise and worker dedication. Because of the
lack of space, we will only show results (averaged over the
5 repetitions) on Set 1.

First, we check if the proposed model can detect workers
with high expertise. Figures 3(a) and 3(b) show the contri-



bution of wy in w* in (10) (i.e., 32 /(7 + Z] 3 )). As can

be seen, all the nonzero contributions are from the experts,
while the other workers are barely used.

Next, we check if the proposed model can find the dedi-

Recall that for experts, most of his zt(i)’s
should be close to 1; while most of the zt(z)’s for non-

dedicated workers are close to 0. Figures 3(c) and 3(d)

show the value of 2, = 7, g 2&') for each worker. As
expected, the Z’s of experts are large; while those of the
others are usually much smaller (especially for the noisy

workers).

cated workers.
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Figure 2: Testing ROC curves on the wine data set.

4.3 DATA SETS CROWDSOURCED FROM AMT
4.3.1 Data Collection and Feature Extraction

For better performance evaluation, it is desirable for the
data set to satisfy the following three conditions: (i) It is
labeled by a sufficient number of workers so that workers
with different expertise and dedications are all involved;
(i) Each worker labels a sufficient amount of data so that
one can reliably model the annotating behavior of each
worker ; (iii) The ground truth labels are provided. To
our best knowledge, very few crowdsourced data sets meet
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Figure 3: Worker expertise and worker dedication on the
Set 1 data. 3(a) and 3(b): Contribution of each worker ¢
towards w* (%/(’y +2; 5%_)). 3(c) and 3(d): Average 2’s
of the workers. Columns in red/blue/green correspond to
experts/non-experts/noisy workers. In 3(a) and 3(c): work-
ers 1-5 are experts; 6-15 are non-experts; and 16-20 are
noisy workers. In 3(b) and 3(d): workers 1-10 are experts;
11-30 are non-experts ; and 31-40 are noisy workers.

all these requirements. Thus, in the following, we build a
crowdsourced data set based on the Stanford Dog data set®
(Khosla et al., 2011). It contains images of 120 breeds (cat-
egories) of dogs collected from the ImageNet® (Deng et al.,
2009).

For an image, its raw pixel representation is very high-
dimensional and also sensitive to image changes such as
scales, object locations, illuminations. Consequently, vari-
ous image features have been studied by the computer vi-
sion community to better represent the image from low
level (e.g. SIFT (Lowe, 1999)) to mid-level descriptors
(Wang et al., 2012). In this experiment, we extract 4,096-
dimensional features from images using the DeCAF (deep
convolutional activation feature) algorithm (Donahue et al.,
2014). These features are outputs from the intermediate
layers of a pre-trained deep convolutional neural network
(Krizhevsky et al., 2012). It has been shown that they can
be used as generic representations for various vision tasks,
and have achieved good performance even when combined
with simple linear classifiers (Donahue et al., 2014).

Shttp://vision.stanford.edu/aditya86/
ImageNetDogs/

*http://www.image-net.org/



Pekinese Shih-Tzu

Chihuahua Japanese spaniel Maltese dog

4.3.2 Setup

We select the 10 categories that are most difficult to classify
(Khosla et al., 2011) (Figure 4). For each category, images
belonging to this category are taken as positive samples;
while images from the other categories are treated as nega-
tive samples. Some statistics of the data sets are shown in
Table 3. The constructed data sets are then randomly split
into HITs on the AMT. Each HIT contains 50 images and
is labeled by 6 workers. There are a total of 65 HITS and
21 workers over the 10 categories.

Table 3: Statistics on the dog data sets.

data set #positive | #negative | avg #samples
sample | sample per worker

Chihuahua 142 157 85
Japanese spaniel 142 157 85
Maltese dog 142 163 85
Pekinese 142 163 85
Shih-Tzu 142 157 83
Blenheim spaniel 142 207 89
Papillon 142 175 92
Toy terrier 142 175 86
Rhodesian ridgeback 142 207 88
Afghan hound 142 207 89

For each category, we randomly use 50% of the samples
for training, and the rest for testing. To reduce statistical
variability, results are averaged over 5 repetitions.

4.3.3 Results on ROC Curves

The ROC curves are shown in Figure 5, and the correspond-
ing AUC values in Table 4. As can be seen, the proposed
method yields the highest AUC on all 10 categories. It is
then followed by CUBAM, GLAD, RY and YAN, which are
very competitive on some categories. MTL can sometimes
achieve good performance (e.g., Blenheim spaniel), but are
often much inferior. Overall, the simple MV is the worst.

4.3.4 Experts vs Noisy Workers

As in Section 4.2.3, we examine the obtained d;’s and z;’s
on the Chihuahua, Japanese spaniel and Maltese dog cat-
egories. As the real experts and noisy workers are not
known, we assume that workers with high overall accura-
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Figure 5: Testing ROC curves of the dog data sets.



Table 4: Testing AUCs on the dog data sets. The best results and those that are not statistically worse (according to the
paired t-test with p-value less than 0.05) are in bold.

data set proposed MTL RY YAN GLAD CUBAM MV Ideal
Chihuahua 0.92 £ 0.02|0.67 +0.01|0.88 £ 0.04 | 0.74 £ 0.08 | 0.76 4+ 0.06 | 0.90 £ 0.02 | 0.58 = 0.11 || 0.94 £ 0.02
Japanese spaniel | 0.83 & 0.01 [ 0.57 £ 0.01{0.80 = 0.03 | 0.84 + 0.04 | 0.75 £ 0.04 | 0.85 & 0.03 | 0.60 = 0.05 || 0.92 =+ 0.01
Maltese dog 0.90 £ 0.01 | 0.62 4+ 0.05|0.85 £ 0.02 | 0.82 £ 0.03|0.76 4+ 0.05|0.87 £ 0.03 | 0.43 £ 0.02 || 0.93 £ 0.02
Pekinese 0.73 £0.05]0.53 +0.02|0.60 £ 0.03 | 0.58 £ 0.04 | 0.72 £+ 0.05 | 0.72 £ 0.03 | 0.56 £ 0.09 || 0.92 £ 0.01
Shih-Tzu 0.90 £ 0.02|0.85 4+ 0.03|0.87 £ 0.04 | 0.93 £ 0.03 | 0.77 4+ 0.03| 0.88 £ 0.03 | 0.35 £ 0.08 || 0.94 £ 0.03
Blenheim spaniel |0.78 4+ 0.03 | 0.78 £ 0.03 | 0.74 £ 0.02 | 0.69 % 0.05 | 0.69 £ 0.07 | 0.77 4+ 0.03 | 0.45 £ 0.03 || 0.93 £+ 0.03
Papillon 0.83 £ 0.03]0.74 + 0.07|0.70 + 0.05 | 0.74 £ 0.04 | 0.66 4+ 0.04 | 0.72 £ 0.04 | 0.53 £ 0.06 || 0.90 £ 0.03
Toy terrier 0.79 £0.02|0.75 £ 0.01|0.76 £ 0.03 | 0.76 £ 0.03 | 0.73 + 0.02 | 0.79 £ 0.04 | 0.51 = 0.05 |/ 0.89 £ 0.03
Rhodesian ridgeback | 0.86 £ 0.04 | 0.85 4+ 0.03 | 0.79 £ 0.02 | 0.78 4 0.02 | 0.73 &+ 0.05 | 0.79 £ 0.04 | 0.50 4 0.05 || 0.92 £ 0.01
Afghan hound 0.85 £0.02|0.83 £ 0.02|0.76 £ 0.01 | 0.77 £ 0.01 | 0.73 = 0.04 | 0.81 £ 0.04 | 0.47 £ 0.05 || 0.93 £ 0.01
cies (that are computed based on both the training and test 1 . LI e
samples) are experts. In Figures 6(a),(c) and (e), we first o] °°°° ° 08"' . y '
plot the overall accuracies versus average weighting of the
workers (% ACED 6%)) over five repetitions. As can be gﬂ-ﬁ . pos
seen, workers with high weights, which are detected as ex- Soar  ° S04
perts in our model, generally have high overall accuracies. o o '
Next, we plot the overall accuracies versus average ;s of o
the workers over five repetitions (Figures 6(b),(d) and (e)). % 0065 01 0% 02 % 02 04 06 08
Workers with high average Z;’s are detected as dedicated (@) C}firf{flahua (b) Chiﬁuahua
workers and those with low average Z,’s as lazy workers.
As shown, the detected dedicated workers generally have I 0 ® T )
high overall accuracies. 0; o 0 ." o '
08 208
S CONCLUSION
8 04 04
In this paper, we proposed a new model for crowdsourced 03 02
labels that can perform out-of-sample prediction effec-
tively. We observe that the worker’s expertise and dedica- 0w 020 04 o2 os L0808
tion to the task greatly affect the labeling process. We em- (c) Japanese spaniel (d) Japanese spaniel
ployed a mixture of distributions to model the annotation
process: one models the worker’s expertise and the other ! *o . 8 ! oy
one depicts worker’s labeling judgement with his random og 0 08 .

guess. We showed that this model can be easily extended
to account for sample difficulty. The proposed model can
be solved by the simple EM algorithm. Experiments on
both UCI and real-world crowdsourced data sets demon-
strate that the proposed method has significant improve-
ments over other state-of-the-art approaches.
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Abstract

We analyze variational inference for highly sym-
metric graphical models such as those arising
from first-order probabilistic models. We first
show that for these graphical models, the tree-
reweighted variational objective lends itself to a
compact lifted formulation which can be solved
much more efficiently than the standard TRW
formulation for the ground graphical model.
Compared to earlier work on lifted belief prop-
agation, our formulation leads to a convex op-
timization problem for lifted marginal inference
and provides an upper bound on the partition
function. We provide two approaches for im-
proving the lifted TRW upper bound. The
first is a method for efficiently computing maxi-
mum spanning trees in highly symmetric graphs,
which can be used to optimize the TRW edge ap-
pearance probabilities. The second is a method
for tightening the relaxation of the marginal poly-
tope using lifted cycle inequalities and novel ex-
changeable cluster consistency constraints.

1 Introduction

Lifted probabilistic inference focuses on exploiting sym-
metries in probabilistic models for efficient inference [5,
2, 3,10, 17, 18, 21]. Work in this area has demonstrated
the possibility to perform very efficient inference in highly-
connected, large tree-width, but symmetric models, such as
those arising in the context of relational (first-order) proba-
bilistic models and exponential family random graphs [19].
These models also arise frequently in probabilistic pro-
gramming languages, an area of increasing importance as
demonstrated by DARPA’s PPAML program (Probabilistic
Programming for Advancing Machine Learning).

Even though lifted inference can sometimes offer order-of-
magnitude improvement in performance, approximation is
still necessary. A topic of particular interest is the interplay
between lifted inference and variational approximate infer-
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ence. Lifted loopy belief propagation (LBP) [13, 21] was
one of the first attempts at exploiting symmetry to speed
up loopy belief propagation; subsequently, counting be-
lief propagation (CBP) [16] provided additional insights
into the nature of symmetry in BP. Nevertheless, these
work were largely procedural and specific to the choice of
message-passing algorithm (in this case, loopy BP). More
recently, Bui et al., [3] proposed a general framework for
lifting a broad class of convex variational techniques by
formalizing the notion of symmetry (defined via automor-
phism groups) of graphical models and the corresponding
variational optimization problems themselves, independent
of any specific methods or solvers.

Our goal in this paper is to extend the lifted variational
framework in [3] to address the important case of approxi-
mate marginal inference. In particular, we show how to lift
the tree-reweighted (TRW) convex formulation of marginal
inference [28]. As far as we know, our work presents the
first lifted convex variational marginal inference, with the
following benefits over previous work: (1) a lifted con-
vex upper bound of the log-partition function, (2) a new
tightening of the relaxation of the lifted marginal poly-
tope exploiting exchangeability, and (3) a convergent infer-
ence algorithm. We note that convex upper bounds of the
log-partition function immediately lead to concave lower
bounds of the log-likelihood which can serve as useful sur-
rogate loss functions in learning and parameter estimation
[29, 13].

To achieve the above goal, we first analyze the symmetry
of the TRW log-partition and entropy bounds. Since TRW
bounds depend on the choice of the edge appearance prob-
abilities p, we prove that the quality of the TRW bound
is not affected if one only works with suitably symmet-
ric p. Working with symmetric p gives rise to an explicit
lifted formulation of the TRW optimization problem that is
equivalent but much more compact. This convex objective
function can be convergently optimized via a Frank-Wolfe
(conditional gradient) method where each Frank-Wolfe it-
eration solves a lifted MAP inference problem. We then
discuss the optimization of the edge-appearance vector p,
effectively yielding a lifted algorithm for computing maxi-



mum spanning trees in symmetric graphs.

As in Bui et al.’s framework, our work can benefit from
any tightening of the local polytope such as the use of cy-
cle inequalities [1, 23]. In fact, each method for relaxing
the marginal polytope immediately yields a variant of our
algorithm. Notably, in the case of exchangeable random
variables, radically sharper tightening (sometimes even ex-
act characterization of the lifted marginal polytope) can be
obtained via a set of simple and elegant linear constraints
which we call exchangeable polytope constraints. We pro-
vide extensive simulation studies comparing the behaviors
of different variants of our algorithm with exact inference
(when available) and lifted LBP demonstrating the advan-
tages of our approach. The supplementary material [4] pro-
vides additional proof and algorithm details.

2 Background

We begin by reviewing variational inference and the tree-
reweighted (TRW) approximation. ~We focus on in-
ference in Markov random fields, which are distribu-
tions in the exponential family given by Pr(x;6)
exp {(®(x),0) — A(6)}, where A(f) is called the log-
partition function and serves to normalize the distribution.
We assume that the random variables x € X'™ are discrete-
valued, and that the features (®;), ¢ € Z factor according
to the graphical model structure G; ® can be non-pairwise
and is assumed to be overcomplete. This paper focuses
on the inference tasks of estimating the marginal proba-
bilities p(z;) and approximating the log-partition function.
Throughout the paper, the domain & is the binary domain
{0, 1}, however, except for the construction of exchange-
able polytope constraints in Section 6, this restriction is not
essential.

Variational inference approaches view the log-partition
function as a convex optimization problem over the
marginal polytope A(f) = sup,,c aq(g) (1, 0) — A* () and
seek tractable approximations of the negative entropy A*
and the marginal polytope M [27]. Formally, —A*(u) is
the entropy of the maximum entropy distribution with mo-
ments . Observe that —A* () is upper bounded by the en-
tropy of the maximum entropy distribution consistent with
any subset of the expected sufficient statistics ;. To arrive
at the TRW approximation [26], one uses a subset given
by the pairwise moments of a spanning tree'. Hence for
any distribution p over spanning trees, an upper bound on
— A* is obtained by taking a convex combination of tree en-
tropies —B*(7,p) = > _scv(q) H(Ts) =X cepc) L(Te)pe-
Since p is a distribution over spanning trees, it must belong
to the spanning tree polytope T(G) with p. denoting the
edge appearance probability of e. Combined with a relax-
ation of the marginal polytope OUTER O M, an upper

'If the original model contains non-pairwise potentials, they
can be represented as cliques in the graphical model, and the
bound based on spanning trees still holds.
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bound B of the log-partition function is obtained:

A(0) < B(0,p) = (r,0) = B*(1,p) (1)

sup
TEOUTER(G)

We note that B* is linear w.r.t. p, and for p € T(G), B* is
convex w.r.t. 7. On the other hand, B is convex w.r.t. p and
0.

The optimal solution 7*(p, #) of the optimization problem
(1) can be used as an approximation to the mean param-
eter p(0). Typically, the local polytope LOCAL given by
pairwise consistency constraints is used as the relaxation
OUTER; in this paper, we also consider tightening of the
local polytope.

Since (1) holds with any edge appearance p in the spanning
tree polytope T, the TRW bound can be further improved
by optimizing p

f B
,,el%c;) (0, p)

@)
The resulting p* is then plugged into (1) to find the
marginal approximation. In practice, one might choose to
work with some fixed choice of p, for example the uniform
distribution over all spanning trees. [14] proposed using
the most uniform edge-weight arginf,cr(q) > .cp(pe —
”‘/]‘3_‘1 )2 which can be found via conditional gradient where
each direction-finding step solves a maximum spanning
tree problem.

Several algorithms have been proposed for optimizing the
TRW objective (1) given fixed edge appearance probabil-
ities. [27] derived the tree-reweighted belief propagation
algorithm from the fixed point conditions. [8] show how
to solve the dual of the TRW objective, which is a geomet-
ric program. Although this algorithm has the advantage of
guaranteed convergence, it is non-trivial to generalize this
approach to use tighter relaxations of the marginal poly-
tope, which we show is essential for lifted inference. [14]
use an explicit set of spanning trees and then use dual de-
composition to solve the optimization problem. However,
as we show in the next section, to maintain symmetry it is
essential that one not work directly with spanning trees but
rather use symmetric edge appearance probabilities. [23]
optimize TRW over the local and cycle polytopes using a
Frank-Wolfe (conditional gradient) method, where each it-
eration requires solving a linear program. We follow this
latter approach in our paper.

To optimize the edge appearance in (2), [26] proposed us-
ing conditional gradient. They observed that 83(9 P —

W = —I(7}) where 7* is the solution of(l) The
d1rect10n finding step in conditional gradient reduces to
solving sup peT< p, I), again equivalent to finding the maxi-
mum spanning tree with edge mutual information I(7}) as
weights. We discuss the corresponding lifted problem in
section 5.



3 Lifted Variational Framework

We build on the key element of the lifted variational frame-
work introduced in [3]. The automorphism group of a
graphical model, or more generally, an exponential family
is defined as the group A of permutation pairs (7, ) where
7 permutes the set of variables and vy permutes the set of
features in such a way that they preserve the feature func-
tion: @771(3:”) = ®(x). Note that this construction of A
is entirely based on the structure of the model and does not
depend on the particular choice of the model parameters;
nevertheless the group stabilizes” (preserves) the key char-
acteristics of the exponential family such as the marginal
polytope M, the log-partition A and entropy —A*.

As shown in [3] the automorphism group is particularly
useful for exploiting symmetries when parameters are tied.
For a given parameter-tying partition A such that 6; = 6,
for 4, j in the same cell® of A, the group A gives rise to
a subgroup called the lifting group A that stabilizes the
tied-parameter vector € as well as the exponential family.
The orbit partition of the the lifting group can be used to
formulate equivalent but more compact variational prob-
lems. More specifically, let ¢ = ¢(A) be the orbit parti-
tion induced by the lifting group on the feature index set
Z={1l...m},let R{) denote the symmetrized subspace
{r € R™s.t. r; = r; Vi, j in the same cell of ¢} and de-
fine the lifted marginal polytope M, as M N R, then
(see Theorem 4 of [3])

sup (0, ) — A™(n)
neM

sup (0, ) — A*(n)
HEM e

3)

In practice, we need to work with convex variational ap-
proximations of the LHS of (3) where M is relaxed to an
outer bound OUTER(G) and A* is approximated by a con-
vex function B*(u). We now state a similar result for lift-
ing general convex approximations.

Theorem 1. If B*(u) is convex and stabilized by the lift-
ing group Ap, i.e., forall (m,7v) € Aa, B*(u") = B*(p),
then o is the lifting partition for the approximate varia-
tional problem

sup =
pEOUTER(G)

sup
HEOUTER [

(0, ) — B* (1) (0,1) — B* (1)

“4)

The importance of Theorem 1 is that it shows that it is
equivalent to optimize over a subset of OUTER(G) where
pseudo-marginals in the same orbit are restricted to take
the same value. As we will show in Section 4.2, this will
allow us to combine many of the terms in the objective,
which is where the computational gains will derive from. A

Formally, G stabilizes x if 29 = x forall g € G.
A = {A1... Ak} is a partition of S, then each subset
Ag C S iscalled a cell.
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sketch of its proof is as follows. Consider a single pseudo-
marginal vector p. Since the objective value is the same for
every u” for (m,7y) € Aa and since the objective is con-
cave, the average of these, @ > (r)ehn 175 must have
at least as good of an objective value. Furthermore, note
that this averaged vector lives in the symmetrized subspace.
Thus, it suffices to optimize over OUTER).

4 Lifted Tree-Reweighted Problem

4.1 Symmetry of TRW Bounds

We now show that Theorem 1 can be used to lift the TRW
optimization problem (1). Note that the applicability of
Theorem 1 is not immediately obvious since B* depends
on the distribution over trees implicit in p. In establishing
that the condition in Theorem 1 holds, we need to be care-
ful so that the choice of the distribution over trees p does
not destroy the symmetry of the problem.

The result below ensures that with no loss in optimality,
p can be assumed to be suitably symmetric. More specifi-
cally, let ¥ = P (A) be the set of G’s edge orbits induced
by the action of the lifting group A ; the edge-weights p.
for every e in the same edge orbits can be constrained to be
the same, i.e. p can be restricted to T[wE].

Theorem 2. For any p € T, there exists a symmetrized
p € Ty that yields at least as good an upper bound, i.e.

B(6,5) < B(6,p) V8 € Oy,

As a consequence, in optimizing the edge appearance, p
can be restricted to the symmetrized spanning tree polytope

Tipe)

inf B(6,p)

Vo € @[A], ;IequrB(e,p) = el

Proof. Let p be the argmin of the LHS, and define p =
@ Y orenn PToso that p € Ty, ey Forall (7,7) € Aa
and for all tied-parameter 6 € O}, 0™ = 0,50 B(0,p") =
B(8™, p™). By theorem 1 of [3], # must be an automor-
phism of the graph G. By lemma 7 (see supplementary ma-
terial), B(67,p™) = B(6,p). Thus B(6,p™) = B(0,p).

Since B is convex w.r.t. p, by Jensen’s inequality we have
that B(0, p) < 7 Yonenn B(0, ™) = B(0. p). O

Using a symmetric choice of p, the TRW bound B* then
satisfies the condition of theorem 1, enabling the applica-
bility of the general lifted variational inference framework.

Theorem 3. For a fixed p € T, 5, ¢ is the lifting partition
for the TRW variational problem
(1,0)—B*(1,p) = (1,0)—B*(1,p)

&)

sup
TEOUTER(G)

sup
TEOUTER|,



4.2 Lifted TRW Problems

We give the explicit lifted formulation of the TRW opti-
mization problem (5). As in [3], we restrict 7 to OUTER |
by introducing the lifted variables 7; for each cell ¢;, and
for all ¢ € ¢;, enforcing that ; = 7;. Effectively, we sub-
stitute every occurrence of 7;, ¢ € ¢; by 7;; in vector form,
T is substituted by DT where D is the characteristic matrix
of the partition : D;; = 1if i € ; and 0 otherwise. This
results in the lifted form of the TRW problem

sup <f, §> — B*(7,p)
D7€OUTER

(6)
where 6 = DTH; B* is obtained from B* via the
above substitution; and p is the edge appearance per edge-
orbit: for every edge orbit e, and for every edge e € e,
Pe = Pe. Using an alternative but equivalent form B*

- Zvev(l - Zeer(v) pe)H(T’U) - ZeEE peH(Te), we
obtain the following explicit form for

B0 = =y [Iv[= Y leld(v,e)pe | H(7)
vev eeEN(v)
~ 3" lelpeH (7o) ™
ecE

Intuitively, the above can be viewed as a combination of
node and edge entropies defined on nodes and edges of the
lifted graph G. Nodes of G are the node orbits of G while
edges are the edge-orbits of G. G is not a simple graph: it
can have self-loops or multi-edges between the same node
pair (see Fig. 1). We encode the incidence on this graph as
follows: d(v,e) = 0 if v is not incident to e, d(v,e) = 1
if v is incident to e and e is not a loop, d(v,e) = 2 if e
is a loop incident to v. The entropy at the node orbit v is

defined as
H(’T_v) - - Z Tv:t 111(7_'\,—;,5)
teXx
and the entropy at the edge orbit e is

H(’]_—e) - = Z 7__{61Zt,€22h} 1Il(’l_—{el:t,eg:h})
thEX

where {e1,es} for e;, e € V is a representative (any el-
ement) of e, {e;:t,ea:h} is an assignment of the ground
edge {e1,e2}, and {e;:t,ea:h} is the assignment orbit.
As in [3], we write {e;:t,eq:t} as eit, and for t < h,
{e1:t, ea:h} as a:(t, h) where a is the arc-orbit (eq, e3).

When OUTER is the local or cycle polytope, the con-
straints D7 € OUTER yield the lifted local (or cycle) poly-
tope respectively. For these constraints, we use the same
form given in [3]. In section 6, we describe a set of addi-
tional constraints for further tightening when some cluster
of nodes are exchangeable.

Example. Consider the MRF shown in Fig. 1 (left) with 10
binary variables that we denote B; (for the blue nodes) and
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Figure 1: Left: ground graphical model. Same colored nodes and
edges have the same parameters. Right: lifted graph showing 2
node orbits (b and r), and 3 edge orbits. Numbers on the lifted
graph representing the incidence degree d(v, e) between an edge
and a node orbit.

R; (for the red nodes). The node and edge coloring denotes
shared parameters. Let 6, and 6, be the single-node poten-
tials used for the blue and red nodes, respectively. Let 6,
be the edge potential used for the red edges connecting the
blue and red nodes, 6, for the edge potential used for the
blue edges (B;, Bi+1), and 0y, for the edge potential used
for the black edges (B;, Bi+2).

There are two node orbits: b = {Bj,...,Bs} andr =
{R1,...,R5}. There are three edge orbits: re for the
red edges, be for the blue edges , and ke for the black
edges. The size of the node and edge orbits are all 5
(e.g., |b| = |be] = 5), and d(b,rs) = d(r,re) = 1,
d(b,be) = d(b,ke) = 2. Suppose that p corresponds to
a uniform distribution over spanning trees, which satisfies
the symmetry needed by Theorem 2. We then have p,_ =1
and p,_ = p_ = % Putting all of this together, the lifted
TRW entropy is given by B*(7, p) = 8H (T,) —5H (T, ) —
2H(Tp,) — 2H (Tx.). We illustrate the expansion of the
entropy of the red edge orbit H(7.. ). This edge orbit
has 2 corresponding arc-orbits: rb, = {(R;,B;)} and
br, = {(Bl,RZ)} Thus, H(ﬂ-e) = —Tr.:00 N Ty .00 —
Tre:11 M Trg:11 = Trba:01 N Trba:01 = Tora:01 10 Tor,:01-

Finally, the linear term in the objective is given by
<7_—7 9> =5 <7_—b; 9b> +95 <7__ra 0r> +5 <7_—rea 0re>+5 <7_—be7 9b6> +
5(7k,,0k,) where, as an example, (7,0, )
’T—re:OOQ're,OO + 7ix‘e:llere,ll + 7ibra:Olere,Ol + 77—rba:0197‘5,10

4.3 Optimization using Frank-Wolfe

What remains is to describe how to optimize Eq. 6. Our
lifted tree-reweighted algorithm is based on Frank-Wolfe,
also known as the conditional gradient method [7, 11].
First, we initialize with a pseudo-marginal vector corre-
sponding to the uniform distribution, which is guaranteed
to be in the lifted marginal polytope. Next, we solve the lin-
ear program whose objective is given by the gradient of the
objective Eq. 6 evaluated at the current point, and whose
constraint set is OUTER. When using the lifted cycle re-
laxation, we solve this linear program using a cutting-plane
algorithm [3, 23]. We then perform a line search to find the
optimal step size using a golden section search (a type of bi-
nary search that finds the maxima of a unimodal function),
and finally repeat using the new pseudo-marginal vector.
We warm start each linear program using the optimal basis
found in the previous run, which makes the LP solves ex-



tremely fast after the first couple of iterations. Although we
use a generic LP solver in our experiments, it is also possi-
ble to use dual decomposition to derive efficient algorithms
specialized to graphical models [24].

5 Lifted Maximum Spanning Tree

Optimizing the TRW edge appearance probability p re-
quires finding the maximum spanning tree (MST) in the
ground graphical model. For lifted TRW, we need to per-
form MST while using only information from the node and
edge orbits, without referring to the ground graph. In this
section, we present a lifted MST algorithm for symmetric
graphs which works at the orbit level.

Suppose that we are given a weighted graph (G, w), its au-
tomorphism group A = Aut(G) and its node and edge
orbits. We aim to derive an algorithm analogous to the
Kruskal’s algorithm, but with complexity depends only on
the number of node/edge orbits of G. However, if the algo-
rithm has to return an actual spanning tree of G then clearly
its complexity cannot be less than O(|V]). Instead, we con-
sider an equivalent problem: solving a linear program on
the spanning-tree polytope

sup (p, w) ®)

p€eT(G)
The same mechanism for lifting convex optimization prob-
lem (Lemma 1 in [3]) applies to this problem. Let ¥ be
the edge orbit partition, then an equivalent lifted problem
problem is
(©))

sup (p, w)

PET |,
Since p, is constrained to be the same for edges in the same
orbit, it is now possible to solve (9) with complexity de-
pending only on the number of orbits. Any solution p of
the LP (8) can be turned into a solution p of (9) by letting

ple) = 5 Yucaple) .
5.1 Lifted Kruskal’s Algorithm

The Kruskal’s algorithm first sorts the edges according
to their decreasing weight. Then starting from an empty
graph, at each step it greedily attempts to add the next edge
while maintaining the property that the used edges form a
forest (containing no cycle). The forest obtained at the end
of this algorithm is a maximum-weight spanning tree.

Imagine how Kruskal’s algorithm would operate on a
weighted graph G with non-trivial automorphisms. Let
e, ..., e be the list of edge-orbits sorted in the order of
decreasing weight (the weights w on all edges in the same
orbit by definition must be the same). The main question
therefore is how many edges in each edge-orbit e; will be
added to the spanning tree by the Kruskal’s algorithm. Let
G; be the subgraph of G formed by the set of all the edges
and nodes in eq, ... e;. Let V(G) and C'(G) denote the set
of nodes and set of connected components of a graph, re-
spectively. Then (see the supplementary material for proof)
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Lemma 4. The number of edges in e; appearing in the
MST found by the Kruskal’s algorithm is 6‘(}) - 5(63) where
0y = V(G| ~ |V (Gim)| and 5¢) = C(G:)|~|C(Gi—i)|
Thus a solution for the linear program (9) is p(e;)
50 5

les] -

5.2 Lifted Counting of the Number of Connected
Components

We note that counting the number of nodes can be done
simply by adding the size of each node orbit. The remain-
ing difficulty is how to count the number of connected com-
ponents of a given graph* G using only information at the
orbit level. Let G be the lifted graph of G. Then (see sup-
plementary material for proof)

Lemma 5. If G is connected then all connected compo-
nents of G are isomorphic. Thus if furthermore G' is a con-
nected component of G then |C(G)| = |V (G)|/|V(G')].

To find just one connected component, we can choose an
arbitrary node u and compute G|u], the lifted graph fixing
u (see section 8.1 in [3]), then search for the connected
component in G[u] that contains {u}. Finally, if G is not
connected, we simply apply lemma 5 for each connected
component of G.

The final lifted Kruskal’s algorithm combines lemma 4 and
5 while keeping track of the set of connected components
of G; incrementally. The full algorithm is given in the sup-
plementary material.

6 Tightening via Exchangeable Polytope
Constraints

One type of symmetry often found in first-order probabilis-
tic models are large sets of exchangeable random variables.
In certain cases, exact inference with exchangeable vari-
ables is possible via lifted counting elimination and its gen-
eralization [17, 2]. The drawback of these exact methods
is that they do not apply to many models (e.g., those with
transitive clauses). Lifted variational inference methods do
not have this drawback, however local and cycle relaxation
can be shown to be loose in the exchangeable setting, a po-
tentially serious limitation compared to earlier work.

To remedy this situation, we now show how to take advan-
tage of highly symmetric subset of variables to tighten the
relaxation of the lifted marginal polytope.

We call a set of random variables x an exchangeable cluster
iff x can be arbitrary permuted while preserving the prob-
ability model. Mathematically, the lifting group A acts
on x and the image of the action is isomorphic to S(x),

4Since we are only interested in connectivity in this subsec-
tion, the weights of G play no role. Thus, orbits in this subsec-
tion can also be generated by the automorphism group of the un-
weighted version of G.



the symmetric group on . The distribution of the random
variables in Y is also exchangeable in the usual sense.

Our method for tightening the relaxation of the marginal
polytope is based on lift-and-project, wherein we introduce
auxiliary variables specifying the joint distribution of a
large cluster of variables, and then enforce consistency be-
tween the cluster distribution and the pseudo-marginal vec-
tor [20, 24, 27]. In the ground model, one typically works
with small clusters (e.g., triplets) because the number of
variables grows exponentially with cluster size. The key
(and nice) difference in the lifted case is that we can make
use of very large clusters of highly symmetric variables:
while the grounded relaxation would clearly blow up, the
corresponding lifted relaxation can still remain compact.

Specifically, for an exchangeable cluster y of arbitrary size,
one can add cluster consistency constraints for the entire
cluster and still maintain tractability. To keep the exposi-
tion simple, we assume that the variables are binary. Let €
denote a x-configuration, i.e., a function € : y — {0,1}.
The set {7y | V configuration €} is the collection of x-
cluster auxiliary variables. Since x is exchangeable, all
nodes in y belong to the same node orbit; we call this node
orbit v (). Similarly, e(x) and a(’y) denote the single edge
and arc orbit that contains all edges and arcs in x respec-
tively. Let w1, us be two distinct nodes in . To enforce
consistency between the cluster x and the edge {u1,us} in
the ground model, we introduce the constraints

>

Cs.t. C(u;)=s;

X

ETX : T¢ = Tultsl,ufzisz vsi € {O? 1} (10)

These constraints correspond to using intersection sets of
size two, which can be shown to be the exact characteri-
zation of the marginal polytope involving variables in y if
the graphical model only has pairwise potentials. If higher-
order potentials are present, a tighter relaxation could be
obtained by using larger intersection sets together with the
techniques described below.

The constraints in (10) can be methodically lifted by re-
placing occurrences of ground variables with lifted vari-
ables at the orbit level. First observe that in place of the
grounded variables 7,5, u,:s,, the lifted local relaxation
has three corresponding lifted variables, Te(y):00, Te(x):11
and Ta(y):01. Second, we consider the orbits of the set of
configurations €. Since X is exchangeable, there can be
only |x| + 1 x-configuration orbits; each orbit contains all
configurations with precisely k£ 1’s where & = 0...]|x|.
Thus, instead of the 2/X! ground auxiliary variables, we
only need |x| + 1 lifted cluster variables. Further manip-
ulation leads to the following set of constraints, which we
call lifted exchangeable polytope constraints.

Theorem 6. Let x be an exchangeable cluster of size n;
e(x) and a(x) be the single edge and arc orbit of the
graphical model that contains all edges and arcs in x re-
spectively; T be the lifted marginals. Then there exist

97

n(n —1) Ck = Te(x):00
k=0
S EEDEE2)
Z Wcmz = Te(x):11
k=0
”in—k—n(kﬂ)cx .
o n(n — 1) k+1  — a(x):01

Proof. See the supplementary material. U

In contrast to the lifted local and cycle relaxations, the num-
ber of variables and constraints in the lifted exchangeable
relaxation depends linearly on the domain size of the first-
order model. From the lifted local constraints given by [3],
Te(x):00 T Te(x):11 T 2Ta(y):00 = 1. Substituting in the
expression involved ¢, we get Y ;_ c¢f = 1. Intuitively,
¢ represents the approximation of the marginal probability
Pr(3_;c, @i = k) of having precisely k ones in .

As proved by [2], groundings of unary predicates in
Markov Logic Networks (MLNs) gives rise to exchange-
able clusters. Thus, for MLNs, the above theorem imme-
diately suggests a tightening of the relaxation: for every
unary predicate of a MLN, add a new set of constraints
as above to the existing lifted local (or cycle) optimiza-
tion problem. Although it is not the focus of our paper,
we note that this should also improve the lifted MAP infer-
ence results of [3]. For example, in the case of a symmetric
complete graphical model, lifted MAP inference using the
linear program given by these new constraints would find
the exact k that maximizes Pr(z, ), hence recover the same
solution as counting elimination. Marginal inference may
still be inexact due to the tree-reweighted entropy approxi-
mation. We re-emphasize that the complexity of variational
inference with lifted exchangeable constraints is guaran-
teed to be polynomial in the domain size, unlike exact
methods based on lifted counting elimination and variable
elimination.

7 Experiments

In this section, we provide an empirical evaluation of our
lifted tree reweighted (LTRW) algorithm. As a baseline
we use a dampened version of the lifted belief propagation
(LBP-Dampening) algorithm from [21]. Our lifted algo-
rithm has all of the same advantages of the tree-reweighted
approach over belief propagation, which we will illustrate
in the results: (1) a convex objective that can be conver-
gently solved to optimality, (2) upper bounds on the parti-
tion function, and (3) the ability to easily improve the ap-
proximation by tightening the relaxation. Our evaluation
includes four variants of the LTRW algorithm correspond-
ing to using different outer bounds: lifted local polytope
(LTRW-L), lifted cycle polytope (LTRW-C), lifted local



Figure 2: An example of the ground graphical model for the
Clique-Cycle model (domain size = 3).

polytope with exchangeable polytope constraints (LTRW-
LE), and lifted cycle polytope with exchangeable con-
straints (LTRW-CE). The conditional gradient optimization
of the lifted TRW objective terminates when the duality gap
is less than 10~* or when a maximum number of 1000 it-
erations is reached. To solve the LP problem during condi-
tional gradient, we use Gurobi’.

We evaluate all the algorithms using several first-order
probabilistic models. We assume that no evidence has been
observed, which results in a large amount of symmetry.
Even without evidence, performing marginal inference in
first-order probabilistic models can be very useful for max-
imum likelihood learning [13]. Furthermore, the fact that
our lifted tree-reweighted variational approximation pro-
vides an upper bound on the partition function enables us
to maximize a lower bound on the likelihood [29], which
we demonstrate in Sec. 7.5. To find the lifted orbit parti-
tion, we use the renaming group as in [3] which exploits
the symmetry of the unobserved contants in the model.

Rather than optimize over the spanning tree polytope,
which is computationally intensive, most TRW implemen-
tations use a single fixed choice of edge appearance prob-
abilities, e.g. an (un)weighted distribution obtained using
the matrix-tree theorem. In these experiments, we initial-
ize the lifted edge appearance probabilities p to be the most
uniform per-orbit edge-appearance probabilties by solv-
. L . _V]=1\2

ing the optimization problem infzer . (p— ¥ )* us-
ing conditional gradient. Each direction-finding step of
this conditional gradient solves a lifted MST problem of

| V]=1y . .
the form sup eT,5, <72( — W)’ p > using our lifted
Kruskal’s algorithm, where p is the current solution. After
this initialization, we fix the lifted edge appearance proba-
bilities and do not attempt to optimize them further.

7.1 Test models

Fig. 3 describes the four test models in MLN syntax. We
focus on the repulsive case, since for attractive models, all
TRW variants and lifted LBP give similar results. The pa-
rameter W denotes the weight that will be varying during
the experiments. In all models except Cligue-Cycle, W
acts like the “local field” potential in an Ising model; a
negative (or positive) value of W means the correspond-
ing variable tends to be in the O (or 1) state. Complete-

Shttp://www.gurobi.com/
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Graph is equivalent to an Ising model on the complete
graph of size n (the domain size) with homogenous param-
eters. Exact marginals and the log-partition function can
be computed in closed form using lifted counting elimina-
tion. The weight of the interaction clause is set to —0.1
(repulsive). Friends-Smokers (negated) is a variant of the
Friends-Smokers model [21] where the weight of the fi-
nal clause is set to -1.1 (repulsive). We use the method in
[2] to compute the exact marginal for the Cancer predicate
and the exact value of the log-partition function. Lovers-
Smokers is the same MLN used in [3] with a full transi-
tive clause and where we vary the prior of the Loves pred-
icate. Clique-Cycle is a model with 3 cliques and 3 bipar-
tite graphs in between. Its corresponding ground graphical
model is shown in Fig. 2.

7.2 Accuracy of Marginals

Fig. 4 shows the marginals computed by all the algo-
rithms as well as exact marginals on the Complete-Graph
and Friends-Smokers models. We do not know how to effi-
ciently perform exact inference in the remaining two mod-
els, and thus do not measure accuracy for them. The result
on complete graphs illustrates the clear benefit of tight-
ening the relaxation: LTRW-Local and LBP are inaccu-
rate for moderate W, whereas cycle constraints and, es-
pecially, exchangeable constraints drastically improve ac-
curacy. As discussed earlier, for the case of symmetric
complete graphical models, the exchangeable constraints
suffice to exactly characterize the marginal polytope. As a
result, the approximate marginals computed by LTRW-LE
and LTRW-CE are almost the same as the exact marginals;
the very small difference is due to the entropy approxima-
tion. On the Friends-Smokers (negated) model, all LTRW
variants give accurate marginals while lifted LBP even with
very strong dampening (0.9 weight given to previous itera-
tions’ messages) fails to converge for W < 2. We observed
that LTRW-LE gives the best trade-off between accuracy
and running time for this model. Note that we do not com-
pare to ground versions of the lifted TRW algorithms be-
cause, by Theorem 3, the marginals and log-partition func-
tion are the same for both.

7.3 Quality of Log-Partition Upper bounds

Fig. 5 plots the values of the upper bounds obtained by
the LTRW algorithms on the four test models. The re-
sults clearly show the benefits of adding each type of con-
straint to the LTRW, with the best upper bound obtained
by tightening the lifted local polytope with both lifted cy-
cle and exchangeable constraints. For the Complete-Graph
and Friends-Smokers model, the log-partition approxima-
tion using exchangeable polytope constraints is very close
to exact. In addition, we illustrate lifted LBP’s approxima-
tion of the log-partition function on the Complete-Graph
(note it is non-convex and not an upper bound).



Complete Graph

Friends-Smokers (Negated)

w V(x) w [z # y A = Friends(z, y)]
—0.1 [z#yA(V(iz)e V(y)] 1.4 —Smokes(x)
2.3 —Cancer(zx)
1.5 Smokes(xz) = Cancer(x)
—1.1 [z # y A Smokes(x) A Friends(z,y) = Smokes(y)]
Lovers-Smokers
w [z # y A Loves(z, y)] Clique-Cycle
100 Male(z) <!Female(z) W z#yAN(Ql(x) & —Q2(y))
2 Male(z) A Smokes(x) Wz #yAN(Q2z) & -Q3(y))
1 Female(xz) A Smokes(x) Wz #yAN(Q3(z) e -Ql(y))
0.5 [z # y A Male(z) N Female(y) A Loves(x, y)] -w z#y N (Ql(zx) & Ql(y))
1 [z # y A Loves(z,y) A (Smokes(z) < Smokes(y))] W xz#y N (Q2z) & Q2(y))
—100 [z #yAy#zAz#axzA Loves(z,y) A Loves(y, z) A Loves(z, z)] -Ww x # y AN (Q3(z) & Q3(y))

Figure 3: Test models
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Figure 5: Approximations of the log-partition function on the four test models from Fig. 3 (best viewed in color).
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Figure 4: Left: marginal accuracy for complete graph
model.  Right: marginal accuracy for Pr(Cancer(z)) in

Friends-Smokers (neg). Lifted TRW variants using differ-
ent outer bounds: L=local, C=cycle, LE=local+exchangeable,
CE=cycle+exchangeable (best viewed in color).

7.4 Running time

As shown in Table 1, lifted variants of TRW are order-of-
magnitudes faster than the ground version. Interestingly,
lifted TRW with local constraints is observed to be faster
as the domain size increase; this is probably due to the fact
that as the domain size increases, the distribution becomes
more peak, so marginal inference becomes more similar to
MAP inference. Lifted TRW with local and exchangeable
constraints requires a smaller number of conditional gradi-
ent iterations, thus is faster; however note that its running
time slowly increases since the exchangeable constraint set
grows linearly with domain size.

LBP’s lack of convergence makes it difficult to have a
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Domain size 10 20 30 100 200
TRW-L 138370 | 609502 1525140 - -
LTRW-L 3255 3581 3438 1626 1416
LTRW-LE 681 703 721 1033 1307

Table 1: Ground vs lifted TRW runtime on Complete-Graph (mil-
liseconds)

meaningful timing comparison with LBP. For example,
LBP did not converge for about half of the values of W
in the Lovers-Smokers model, even after using very strong
dampening. We did observe that when LBP converges,
it is much faster than LTRW. We hypothesize that this is
due to the message passing nature of LBP, which is based
on a fixed point update whereas our algorithm is based on
Frank-Wolfe.

7.5 Application to Learning

We now describe an application of our algorithm to the
task of learning relational Markov networks for inferring
protein-protein interactions from noisy, high-throughput,
experimental assays [12]. This is equivalent to learning the
parameters of an exponential family random graph model
[19] where edges in the random graph represent the protein-
protein interactions. Despite fully observed data, maxi-
mum likelihood learning is challenging because of the in-
tractability of computing the log-partition function and its
gradient. In particular, this relational Markov network has
over 330K random variables (one for each possible inter-
action of 813 variables) and tertiary potentials. However,
Jaimovich et al. [13] observed that the partition function in
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Figure 6: Log-likelihood lower-bound obtained using lifted TRW
with the cycle and exchangeable constraints (CE) for the same
protein-protein interaction data used in [13] (left) (c.f. Fig. 7
in [13]). Improvement in lower-bound after tightening the local
constraints (L) with CE (right).
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relational Markov networks is highly symmetric, and use
lifted LBP to efficiently perform approximate learning in
running time that is independent of the domain size. They
use their lifted inference algorithm to visualize the (approx-
imate) likelihood landscape for different values of the pa-
rameters, which among other uses characterizes the robust-
ness of the model to parameter changes.

We use precisely the same procedure as [13], substituting
lifted BP with our new lifted TRW algorithms. The model
has three parameters: 6, used in the single-node potential
to specify the prior probability of a protein-protein interac-
tion; 0111, part of the tertiary potentials which encourages
cliques of three interacting proteins; and 6y11, also part of
the tertiary potentials which encourages chain-like struc-
tures where proteins A, B interact, B, C interact, but A and
C do not (see supplementary material for the full model
specification as an MLN). We follow their two-step esti-
mation procedure, first estimating 6, in the absence of the
other parameters (the maximum likelihood, BP, and TRW
estimates of this parameter coincide, and estimation can be
performed in closed-form: 67 —5.293). Next, for each
setting of #1171 and Ap11 we estimate the log-partition func-
tion using lifted TRW with the cycle+exchangeable vs. lo-
cal constraints only. Since TRW is an upper bound on the
log-partition function, these provide lower bounds on the
likelihood.

Our results are shown in Fig. 6, and should be compared
to Fig. 7 of [13]. The overall shape of the likelihood land-
scapes are similar. However, the lifted LBP estimates of the
likelihood have several local optima, which cause gradient-
based learning with lifted LBP to reach different solutions
depending on the initial setting of the parameters. In con-
trast, since TRW is convex, any gradient-based procedure
would reach the global optima, and thus learning is much
easier. Interestingly, we see that our estimates of the likeli-
hood have a significantly smaller range over these parame-
ter settings than that estimated by lifted LBP. Moreover, the
high-likelihood parameter settings extends to larger values
of 6111. For all algorithms there is a sudden decrease in the
likelihood at 6p11; > 0 (not shown in the figure).

8 Discussion and Conclusion

Lifting partitions used by lifted and counting BP [21, 16]
can be coarser than orbit partitions. In graph-theoretic
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terms, these partitions are called equitable partitions. If
each equitable partition cell is thought of as a distinct node
color, then among nodes with the same color, their neigh-
bors must have the same color histogram. It is known that
orbit partitions are always equitable, however the converse
is not always true [9].

Since equitable partition can be computed more efficiently
and potentially leads to more compact lifted problems, the
following question naturally arises: can we use equitable
partition in lifting the TRW problem? Unfortunately, a
complete answer is non-trivial. We point out here a the-
oretical barrier due to the interplay between the spanning
tree polytope and the equitable partition of a graph.

Let € be the coarsest equitable partition of edges of G.
We give an example graph in the supplementary mate-
rial (see example 9) where the symmetrized spanning tree
polytope corresponding to the equitable partition €, T

T(G) ﬂRl[gl is an empty set. When T| is empty, the conse-
quence is that if we want p to be within T so that B(., p) is
guaranteed to be a convex upper bound of the log-partition
function, we cannot restrict p to be consistent with the eq-
uitable partition. In lifted and counting BP, p = 1 so it
is clearly consistent with the equitable partition; however,
one loses convexity and upper bound guarantee as a result.
This suggests that there might be a trade-off between the
compactness of the lifting partition and the quality of the
entropy approximation, a topic deserving the attention of
future work.

In summary, we presented a formalization of lifted
marginal inference as a convex optimization problem and
showed that it can be efficiently solved using a Frank-
Wolfe algorithm. Compared to previous lifted variational
inference algorithms, in particular lifted belief propagation,
our approach comes with convergence guarantees, upper
bounds on the partition function, and the ability to im-
prove the approximation (e.g. by introducing additional
constraints) at the cost of small additional running time.

A limitation of our lifting method is that as the amount of
soft evidence (the number of distinct individual objects)
approaches the domain size, the behavior of lifted infer-
ence approaches ground inference. The wide difference in
running time between ground and lifted inference suggests
that significant efficiency can be gained by solving an ap-
proximation of the orignal problem that is more symmetric
[25, 15, 22, 6]. One of the most interesting open questions
raised by our work is how to use the variational formula-
tion to perform approxiate lifting. Since our lifted TRW
algorithm provides an upper bound on the partition func-
tion, it is possible that one could use the upper bound to
guide the choice of approximation when deciding how to
re-introduce symmetry into an inference task.

Acknowledgements: Work by DS supported by DARPA
PPAML program under AFRL contract no. FA8750-14-C-
000s5.
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Abstract

This paper presents an approximate method for
performing Bayesian inference in models with
conditional independence over a decentralized
network of learning agents. The method first
employs variational inference on each individual
learning agent to generate a local approximate
posterior, the agents transmit their local poste-
riors to other agents in the network, and finally
each agent combines its set of received local pos-
teriors. The key insight in this work is that, for
many Bayesian models, approximate inference
schemes destroy symmetry and dependencies in
the model that are crucial to the correct appli-
cation of Bayes’ rule when combining the lo-
cal posteriors. The proposed method addresses
this issue by including an additional optimization
step in the combination procedure that accounts
for these broken dependencies. Experiments on
synthetic and real data demonstrate that the de-
centralized method provides advantages in com-
putational performance and predictive test likeli-
hood over previous batch and distributed meth-
ods.

1 INTRODUCTION

Recent trends in the growth of datasets, and the methods
by which they are collected, have led to increasing interest
in the parallelization of machine learning algorithms. Par-
allelization results in reductions in both the memory usage
and computation time of learning, and allows data to be
collected by a network of learning agents rather than by a
single central agent. There are two major classes of paral-
lelization algorithms: those that require a globally shared
memory/computation unit (e.g., a central fusion processor
that each learning agent is in communication with, or the
main thread on a multi-threaded computer), and those that
do not. While there is as of yet no consensus in the litera-
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ture on the terminology for these two types of paralleliza-
tion, in this work we refer to these two classes, respectively,
as distributed and decentralized learning.

Some recent approaches to distributed learning have in-
volved using streaming variational approximations (Brod-
erick et al., 2013), parallel stochastic gradient descent
(Niu et al., 2011), the Map-Reduce framework (Dean and
Ghemawat, 2004), database-inspired concurrency control
(Pan et al., 2013), and message passing on graphical mod-
els (Gonzalez et al., 2009). When a reliable central learning
agent with sufficient communication bandwidth is avail-
able, such distributed learning techniques are generally pre-
ferred to decentralized learning. This is a result of the con-
sistent global model shared by all agents, with which they
can make local updates without the concern of generating
conflicts unbeknownst to each other.

Decentralized learning is a harder problem in general, due
to asynchronous communication/computation, a lack of a
globally shared state, and potential network and learning
agent failure, all of which may lead to inconsistencies in
the model possessed by each agent. Addressing these is-
sues is particularly relevant to mobile sensor networks in
which the network structure varies over time, agents drop
out and are added dynamically, and no single agent has the
computational or communication resources to act as a cen-
tral hub during learning. Past approaches to decentralized
learning typically involve each agent communicating fre-
quently to form a consensus on the model over the net-
work, and are often model-specific: particle filtering for
state estimation (Rosencrantz et al., 2003) involves send-
ing particle sets and informative measurements to peers;
distributed EM (Wolfe et al., 2008) requires communica-
tion of model statistics to the network after each local it-
eration; distributed Gibbs sampling (Newman et al., 2007)
involves model synchronization after each sampling step;
robust distributed inference (Paskin and Guestrin, 2004)
requires the formation of a spanning tree of nodes in the
network and message passing; asynchronous distributed
learning of topic models (Asuncion et al., 2008) requires
communication of model statistics to peers after each local



sampling step; and hyperparameter consensus (Fraser et al.,
2012) requires using linear network consensus on exponen-
tial family hyperparameters.

The method proposed in the present paper takes a differ-
ent tack; each agent computes an approximate factorized
variational posterior using only their local datasets, sends
and receives statistics to and from other agents in the net-
work asynchronously, and combines the posteriors locally
on-demand. Building upon insights from previous work on
distributed and decentralized inference (Broderick et al.,
2013, Rosencrantz et al., 2003), a naive version of this
algorithm based on Bayes’ rule is presented. It is then
shown that, due to the approximation used in variational
inference, this algorithm leads to poor decentralized pos-
terior approximations for unsupervised models with inher-
ent symmetry. Next, building on insights gained from the
results of variational and Gibbs sampling inference on a
synthetic example, an approximate posterior combination
algorithm is presented that accounts for symmetry struc-
ture in models that the naive algorithm is unable to cap-
ture. The proposed method is highly flexible, as it can
be combined with past streaming variational approxima-
tions (Broderick et al., 2013, Lin, 2013), agents can share
information with only subsets of the network, the network
may be dynamic with unknown toplogy, and the failure of
individual learning agents does not affect the operation of
the rest of the network. Experiments on a mixture model,
latent Dirichlet allocation (Blei et al., 2003), and latent fea-
ture assignment (Griffiths and Ghahramani, 2005) demon-
strate that the decentralized method provides advantages in
model performance and computational time over previous
approaches.

2 APPROXIMATE DECENTRALIZED
BAYESIAN INFERENCE

2.1 THE NAIVE APPROACH

Suppose there is a set of learning agents ¢, 7 = 1,..., N,
each with a distribution on a set of latent parameters 6,
j = 1,..., K (all parameters ; may generally be vec-
tors). Suppose a fully factorized exponential family distri-
bution has been used to approximate each agent’s posterior
q;(01,...,0K). Then the distribution possessed by each
agent 7 is

qi(017"'70K):Hq}\1:j(9j)7 (1
J

where )\;; parameterizes agent ¢’s distribution over 0;.
Given the prior

q(01,...,0k) = Hq,\oj(9j)a 2
J

is known by all agents, and the conditional independence
of data given the model, the overall posterior distribu-
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tion g(61,...,0k) may be approximated by using Bayes’
rule (Broderick et al., 2013) and summing over the A;;:

q(+) < go()' N H 0!

1—

N
= quo] (6;) HHQA,,j(Qj)
= H ax; (6‘])

where )‘j = (1 — N))\()j + Z )\”

3)
soq(e)

The last line follows from the use of exponential family dis-
tributions in the variational approximation. This procedure
is decentralized, as each agent can asynchronously com-
pute its individual posterior approximation, broadcast it to
the network, receive approximations from other agents, and
combine them locally. Furthermore, this procedure can be
made to handle streaming data by using a technique such
as SDA-Bayes (Broderick et al., 2013) or sequential vari-
ational approximation (Lin, 2013) on each agent locally to
generate the streaming local posteriors g;.

As an example, this method is now applied to decentralized
learning of a Gaussian model with unknown mean p = 1.0
and known variance o2 = 1.0. The prior on y is Gaussian
with mean o = 0.0 and variance 0 = 2.0. There are
10 learning agents, each of whom receives 10 observations
y ~ N (u,0?). Because the Gaussian distribution is in the
exponential family, the variational approximation is exact
in this case. As shown in Figure 1, the decentralized pos-
terior is the same as the batch posterior. Note that if the
approximation is used on a more complicated distribution
not in the exponential family, then the batch posterior may
in general differ from the decentralized posterior; however,
they will both approximate the same true posterior distri-
bution.

2.2 FAILURE OF THE NAIVE APPROACH
UNDER PARAMETER PERMUTATION
SYMMETRY

As a second example, we apply decentralized inference to
a Gaussian mixture model with three components having
unknown means x4 = (1.0,—1.0,3.0) and cluster weights
7 = (0.6,0.3,0.1) with known variance 02 = 0.09. The
prior on each mean p,; was Gaussian with mean o = 0.0
and variance 0 = 2.0, while the prior on the weights 7
was Dirichlet with parameters (1.0, 1.0, 1.0). First, the true
posterior, shown in Figure 2a, was formed using 30 data-
points that were sampled from the generative model. Then,
the decentralized variational inference procedure in (3) was
run with 10 learning agents, each of whom received 3 of the
datapoints, resulting in the approximate decentralized pos-
terior in Figure 2b.
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Figure 1: (1a): Batch posterior of 1 in black, with histogram of observed data. (1b): Decentralized posterior of 1 in black, individual posteriors in color and correspondingly

colored histogram of observed data.

The decentralized posterior, in this case, is a very poor ap-
proximation of the true batch posterior. The reason for this
is straightforward: approximate inference algorithms, such
as variational inference with a fully factorized distribution,
often do not capture parameter permutation symmetry in
the posterior. Parameter permutation symmetry is a prop-
erty of a Bayesian model in which permuting the values
of some subset of the parameters does not change the pos-
terior probability. For example, in the Gaussian mixture
model, the true posterior over 7, p given data y is invariant
to transformation by any permutation matrix P:

p(Pr, Puly) = p(m, ply). 4)

Indeed, examining the true posterior in Figure 2a, one can
identify 6 differently colored regions; each of these regions
corresponds to one of the possible 3! = 6 permutation ma-
trices P. In other words, the true posterior captures the in-
variance of the distribution to reordering of the parameters
correctly.

To demonstrate that approximate inference algorithms typ-
ically do not capture parameter permutation symmetry in
a model, consider the same mixture model, learned with
30 datapoints in a single batch using Gibbs sampling and
variational Bayesian inference. Samples from 5 random
restarts of each method are shown in Figure 3. Both al-
gorithms fail to capture the permutation symmetry in the
mixture model, and converge to one of the 6 possible order-
ings of the parameters. This occurs in variational Bayesian
inference and Gibbs sampling for different reasons: Gibbs
sampling algorithms often get stuck in local posterior like-
lihood optima, while the variational approximation explic-
itly breaks the dependence of the parameters on one an-
other.

In a batch setting, this does not pose a problem, because
practitioners typically find the selection of a particular pa-
rameter ordering acceptable. However, in the decentralized
setting, this causes problems when combining the poste-
riors of individual learning agents. If each agent effec-
tively picks a parameter ordering at random when per-
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forming inference, combining the posteriors without con-
sidering those orderings can lead to poor results (such
as that presented in Figure 2b). Past work dealing with
this issue has focused primarily on modifying the samples
of MCMC algorithms by introducing “identifiability con-
straints” that control the ordering of parameters (Jasra et al.,
2005, Stephens, 2000), but these approaches are generally
model-specific and restricted to use on very simple mixture
models.

2.3 MERGING POSTERIORS WITH
PARAMETER PERMUTATION SYMMETRY

This section presents a method for locally combining
the individual posteriors of decentralized learning agents
when the model contains parameter permutation symme-
try. Formally, suppose that the true posterior probability of
01, ...,0K is invariant to permutations of the components
of one or more ¢;. In general, there may be subsets of
parameters which have coupled symmetry, in that the true
posterior is only invariant if the components of all parame-
ters in the subset are permuted in the same way (for exam-
ple, the earlier Dirichlet mixture model had coupled permu-
tation symmetry in p and 7). It is assumed that any such
coupling in the model is known beforehand by all agents.
Because the exponential family variational approximation
is completely decoupled, it is possible to treat each coupled
permutation symmetry set of parameters in the model inde-
pendently; therefore, we assume below that 64, ..., 0k all
have coupled permutation symmetry, for simplicity in the
notation and exposition.

In order to properly combine the approximate posterior
produced by each learning agent, first the individual poste-
riors are symmetrized (represented by a tilde) by summing
over all possible permutations as follows:

@i(+) o Z H aprx,; (05),
P j

where the sum is taken to be over all permutation matrices

&)
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Figure 2: (2a): Samples from the true posterior over p, . Each particle’s position on the simplex (with 73 = 1 — 71 — 72) represents the sampled weights, while RGB
color coordinates of each particle represent the sampled position of the three means. (2b): Samples from the naively constructed decentralized approximate posterior, with the

same coloring scheme. Note the disparity with Figure 2a.
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Figure 3: Batch Gibbs sampling (3a) and variational Bayes (3b) approximate posterior samples from 5 random restarts. Comparison to Figure 2a shows that both approximate
inference algorithms tend to converge to a random component of the permutation symmetry in the true posterior.

P with the same dimension as \;;. This process of approxi-
mating the true single-agent posterior is referred to as sym-
metrization because §; has the same parameter permutation
symmetry as the true posterior, i.e. for all permutation ma-
trices P,

G(POy,.......,POg) = ql...). (6)

To demonstrate the effect of this procedure, the mixture
model example was rerun with batch variational Bayesian
inference (i.e. all 30 datapoints were given to a single
learner) followed by symmetrization. Samples generated
from these new symmetrized posterior distributions over 5
random restarts of the inference procedure are shown in
Figure 4. This result demonstrates that the symmetrized
distributions are invariant to the random permutation to
which the original approximate posterior converged.

It is now possible to combine the individual (symmetrized)
posteriors via the procedure outlined in (3):

q(-) < qo(-)* ™V Héiz-(-)
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{Pi}: J

where the outer sum is now over unique combinations of
the set of permutation matrices { P;}; used by the learning
agents.

24 AMPS - APPROXIMATE MERGING OF
POSTERIORS WITH SYMMETRY

The posterior distribution in (7) is unfortunately intractable
to use for most purposes, as it contains a number of terms
that is factorial in the dimensions of the parameters, and
exponential in the number of learning agents. Therefore,
we approximate this distribution by finding the component
with the highest weight — the intuitive reasoning for this is
that the component with the highest weight is the one for
which the individual posteriors have correctly aligned per-
mutations, thus contributing to each other the most and rep-
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Figure 4: Samples from the symmetrized batch variational Bayes approximate posterior from 5 random restarts. Comparison to Figure 2a shows that symmetrization reintro-

duces the structure of the true posterior to the approximate posteriors.

resenting the overall posterior the best. While the resulting
distribution will not be symmetric, it will appear as though
it were generated from variational Bayesian inference; this,
as mentioned before, is most often fine in practice.

In order to compute the weight of each component, we
need to compute its integral over the parameter space. Sup-
pose that each approximate posterior component gy, (¢;)
has the following form:

) etr[)\g; T(6;

0, (0) =)

hy (0 (®)
where h;(-) and A;(-) are the base measure and log-
partition functions for parameter j, respectively. The trace
is used in the exponent in case \;; is specified as a ma-
trix rather than as a single column vector (such as in the
example presented in Section 3.1). Thus, given a set of
permutation matrices { P, };, the factor of the weight for the

component due to parameter j is

W (Ph) = [ 0,0

J

)N Tapas (05)- (9

The overall weight of the component is the product over the
parameters, so finding the maximum weight component of
(7) is equivalent to finding the set of permutation matrices
P? that maximizes the product of the W,

{P/}; + argmax

Due to the use of exponential family distributions in the
variational approximation, the optimization (10) can be
posed as a combinatorial optimization over permutation
matrices with a closed-form objective:

max A [ (1 —=N)Xo; + P
Py <( Phos Z J) (11)
st.PeS Vi

where S is the symmetric group of order equal to the row
dimension of the matrices A;;. Using the convexity of the
log-partition function A; (-), the fact that the objective is
affine in its arguments, and the fact that the vertices of the
Birkhoff polytope are permutation matrices, one can refor-
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mulate (10) as a convex maximization over a polytope:
max Aj

A <(1 ~ Mot Z PiAij)

st.P'1=1,

12)

P1=1 P >0 Vi

where 1 is a vector with all entries equal to 1. Global op-
timization routines for this problem are intractable for the
problem sizes presented by typical Bayesian models (Ben-
son, 1985, Falk and Hoffman, 1986). Thus, the optimiza-
tion must be solved approximately, where the choice of the
approximate method is dependent on the particular form of
A; ().

As mentioned earlier, this optimization was formulated as-
suming that all the §; were part of a single coupled permu-
tation symmetry set. However, if there are multiple subsets
of the parameters 61, . .. 6 that have coupled permutation
symmetry, an optimization of the form (12) can be solved
for each subset independently. In addition, for any param-
eter that does not exhibit permutation symmetry, the origi-
nal naive posterior merging procedure in (3) may be used.
These two statements follow from the exponential family
mean field assumption used to construct the individual ap-
proximate posteriors g;.

3 EXPERIMENTS

All experiments were performed on a computer with an In-
tel Core i7 processor and 12GB of memory.

3.1 DECENTRALIZED MIXTURE MODEL
EXAMPLE REVISITED

The AMPS decentralized inference scheme was applied
to the Gaussian mixture model example from earlier,
with three components having unknown means p
(1.0,—-1.0,3.0) and cluster weights 7 (0.6,0.3,0.1),
and known variance 0> = 0.09. The prior on each mean ;
was Gaussian, with mean py = 0.0 and variance 03 = 2.0,
while the prior on the weights m was Dirichlet, with pa-
rameters (1.0,1.0,1.0). The dataset consisting of the same
30 datapoints from the earlier trial was used, where each
of 10 learning agents received 3 of the datapoints. Each
learning agent used variational Bayesian inference to find
their individual posteriors ¢;(u, ), and then used AMPS



to merge them. The only communication required between
the agents was a single broadcast of each agent’s individual
posterior parameters.

In this example, the AMPS objective! was as follows:

3
Jamps = —logT’ Z (B +1)

, (13)
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where «;; was agent ¢’s posterior Dirichlet variational pa-
rameter for cluster j, and p;; / o;; were agent 4’s posterior
normal variational parameter for cluster 5. The objective
was optimized approximately over the 3 X 3 permutation
matrices P; by proposing swaps of two rows in P;, accept-
ing swaps that increased Janpg, and terminating when no
possible swaps increased Janps-

The individual posteriors for 3 of the learning agents are
shown in Figure 5, while the decentralized posterior over
all the agents is shown in Figure 6 alongside its sym-
metrization (for comparison to the true posterior — this fi-
nal symmetrization is not required in practice). The AMPS
posterior is a much better approximation than the naive de-
centralized posterior shown in Figure 2b; this is because
the AMPS posterior accounts for parameter permutation
symmetry in the model prior to combining the individual
posteriors. It may be noted that the decentralized posterior
has slightly more uncertainty in it than the batch posterior,
but this is to be expected when each learning agent indi-
vidually receives little information (as demonstrated by the
uncertainty in the individual posteriors shown in Figure 5).

'"The AMPS objective for each experiment was constructed
using the log-partition function A;(-) of the relevant exponen-
tial family models, which may be found in (Nielsen and Garcia,
2011).

3.2 DECENTRALIZED LATENT DIRICHLET
ALLOCATION

The next experiment involved running decentralized varia-
tional inference with AMPS on the LDA document cluster-
ing model (Blei et al., 2003). The dataset in consideration
was the 20 newsgroups dataset, consisting of 18,689 doc-
uments with 1,000 held out for testing, and a vocabulary
of 11,175 words after removing stop words and stemming
the remaining words. Algorithms were evaluated based
on their approximate predictive likelihood of 10% of the
words in each test document given the remaining 90%, as
described in earlier literature (Wang et al., 2011). The vari-
ational inference algorithms in this experiment were ini-
tialized using smoothed statistics from randomly selected
documents.

In LDA, the parameter permutation symmetry lies in the
arbitrary ordering of the global word distributions for each
topic. In particular, for the 20 newsgroups dataset, decen-
tralized learning agents may learn the 20 Dirichlet distribu-
tions with a different ordering; therefore, in order to com-
bine the local posteriors, we use AMPS with the following
objective to reorder each agent’s global topics:

K
Jamps = Z JAMPS.k =
k=1
K W w 15
> logT (arw) — logT (Z akw>
k=1w=1 w=1

N
:(1—N)a0+ZPiozi, o, o e REXW
i=1

10 e 9,

Qokw = 777 W =11,175

where o, s agent ¢’s posterior Dirichlet variational pa-
rameter for topic k and word w, and the optimization is
over K x K permutation matrices P;,7 = 1,..., N. For
the LDA model, the AMPS objective Janmps is additive
over the topics k; therefore, Janpg can be optimized ap-
proximately by iteratively solving maximum-weight bipar-
tite matching problems as follows:

1. Initialize the decentralized posterior parameter o <—
(1-N)ao + vazl P,«; with a set of P; matrices

2. For each agent 7 until Janpg stops increasing:

P

(b) Form a bipartite graph with decentralized topics
k on one side, agent ¢’s topics &’ on the other, and
edge weights wys equal to Jamps,x if agent ¢’s
topic k' is assigned to the decentralized topic k

(a) Deassign agent ¢’s posterior: o <— « —

(c) P; + Maximum weight assignment of agent ¢’s
topics
(d) Reassign agent ¢’s posterior: a <— a + P«
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Figure 5: Samples from the individual posterior distributions from variational Bayesian inference for 3 of the learning agents. Note the high level of uncertainty in both the

weights (position) and cluster locations (colour) in each posterior.
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Figure 6: (6a): Samples from the decentralized posterior output by AMPS. Comparison to Figure 5 shows that the AMPS posterior merging procedure improves the posterior
possessed by each agent significantly. (6b): Samples from the symmetrized decentralized posterior. This final symmetrization step is not performed in practice; it is simply

done here for comparison with Figure 2a.
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in the interior, and whiskers show the maximum and minimum values.

First, the performance of decentralized LDA with AMPS
was compared to the batch approximate LDA posterior
with a varying number of learning agents. Figure 7 shows
the test data log likelihood and computation time over 20
trials for the batch posterior, the AMPS decentralized pos-
terior, and each individual agent’s posterior for 5, 10, and
50 learning agents. The results mimic those of the syn-
thetic experiment — the posterior output by AMPS signif-
icantly outperforms each individual agent’s posterior, and
the effect is magnified as the number of agents increases.
Further, there is a much lower variance in the AMPS poste-
rior test log likelihood than for each individual agent. The
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batch method tends to get stuck in poor local optima in
the variational objective, leading to relatively poor perfor-
mance, while the decentralized method avoids these pitfalls
by solving a number of smaller optimizations and com-
bining the results afterwards with AMPS. Finally, as the
number of agents increases, the amount of time required to
solve the AMPS optimization increases; reducing this com-
putation time is a potential future goal for research on this
inference scheme.

The next test compared the performance of AMPS to SDA-
Bayes (Broderick et al., 2013), a recent streaming, dis-
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Figure 8: Comparison with SDA-Bayes. The A X B in the legend names refer to
using A learning agents, where each splits their individual batches of data into B
subbatches.

tributed variational inference algorithm. The algorithms
were tested on 20 trials of each of three settings: one with
1 agent and 10 subbatches of data per agent; one with 10
agents and 1 subbatch of data per agent; and finally, one
with 10 agents and 10 subbatches of data per agent. Each
agent processed its subbatches in serial. For SDA-Bayes,
each agent updated a single distributed posterior after each
subbatch. For the decentralized method, each agent used
AMPS to combine the posteriors from its own subbatches,
and then used AMPS again to combine each agent’s result-
ing posterior.

Figure 8 shows the results from this procedure. AMPS out-
performs SDA-Bayes in terms of test log likelihood, and
is competetive in terms of the amount of time it takes to
perform inference and then optimize the AMPS objective.
This occurs because AMPS takes into account the arbi-
trary ordering of the topics, while SDA-Bayes ignores this
when combining posteriors. An interesting note is that the
AMPS10x10 result took less time to compute than the time
for 50 agents in Figure 7c, despite the fact that it effectively
merged 100 posterior distributions; this hints that develop-
ing a hierarchical optimization scheme for AMPS is a good
avenue for further exploration. A final note is that using
AMPS as described above is not truely a streaming proce-
dure; however, one can rectify this by periodically merging
posteriors using AMPS to form the prior for inference on
subsequent batches.

3.3 DECENTRALIZED LATENT FEATURE
ASSIGNMENT

The last experiment involved running decentralized varia-
tional inference with AMPS on a finite latent feature as-
signment model (Griffiths and Ghahramani, 2005). In this
model, a set of K feature vectors ur € RP are sampled
from a Gaussian prior y;, ~ N(0,021), and a set of fea-
ture inclusion probabilities are sampled from a beta prior
7, ~ Beta(ay, Bx). Finally, for each image 4, a set of
features z; are sampled independently from the weights
2ix ~ Be(m,), and the image y; € RP is sampled from
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a Gaussian likelihood y; ~ N'(3°, puxzik, 0°1).

Two datasets were used in this experiment. The first was a
synthetic dataset with K = 5 randomly generated D = 10-
dimensional binary feature vectors, feature weights sam-
pled uniformly, and 1300 observations sampled with vari-
ance 02 = 0.04, with 300 held out for testing. For this
dataset, algorithms were evaluated based on the error be-
tween the means of the feature posteriors and the true set
of latent features, and based on their approximate predic-
tive likelihoods of a random component in each test obser-
vation vector given the other 9 components. The second
dataset was a combination of the Yale (Belhumeur et al.,
1997) and Caltech? faces datasets, with 581 32 x 32 frontal
images of faces, where 50 were held out for testing. The
number of latent features was set to K = 10. For this
dataset, algorithms were evaluated based on their approxi-
mate predictive likelihood of 10% of the pixels in each test
image given the remaining 90%, and the inference algo-
rithms were initialized using smoothed statistics from ran-
domly selected images.

The parameter permutation symmetry in the posterior of
the latent feature model lies in the ordering of the features
pr and weights 7. Therefore, to combine the local poste-
riors, we use AMPS with the following objective to reorder
each agent’s set of features and weights:

K
Jamps = g Jamps ik =
k=1

K
g logT(a) +logT'(Bk) — log T(ak + Br)  (16)
k=1
T
e D
kT P o
o 9 og(—2vy)

where o, 3 € RX are the combined posterior beta natural
parameters, and € RP*K 1 ¢ R are the combined
posterior normal natural parameters (combined using the
(1 = N) %o + >, P;*; rule as described in the foregoing).
The priors were agg = PBro = 1, mo = 0 € RP, and
vio was estimated from the data. As in the LDA model,
the AMPS objective for the latent feature model is addi-
tive over the features k; therefore the optimization was per-
formed using iterative maximum-weight bipartite match-
ings as described in Section 3.2.

Figure 9 shows the results from the two datasets using batch
learning and decentralized learning. For the decentralized
results, the posteriors of 5 learning agents were combined
using AMPS or the naive approach (equivalent to SDA5x 1
in the notation of Figure 8). Figure 9a shows that AMPS
discovers the true set of latent features with a lower 2-norm

2Available  online:
files/archive.html
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Figure 9: (9a): 2-norm error between the discovered features and the true set for the synthetic dataset. (9b): Test log likelihood for the synthetic dataset. (9c): Test log
likelihood on the faces dataset. All distributed/decentralized results were generated using 5 learning agents.

error than both the naive posterior combination and the in-
dividual learning agents, with a comparable error to the
batch learning case. However, as shown in Figures 9b (syn-
thetic) and 9c (faces), AMPS only outperforms the naive
approach in terms of predictive log likelihoods on the held-
out test set by a small margin. This is due to the flexibil-
ity of the latent feature assignment model, in that there are
many sets of latent features that explain the observations
well.

4 DISCUSSION

This work introduced the Approximate Merging of Poste-
riors with Symmetry (AMPS) algorithm for approximate
decentralized variational inference. AMPS may be used
in ad-hoc, asynchronous, and dynamic networks. Experi-
ments demonstrated the modelling and computational ad-
vantages of AMPS with respect to batch and distributed
learning. Motivated by the examples in Section 3, there
is certainly room for improvement of the AMPS algorithm.
For example, it may be possible to reduce the computa-
tional cost of AMPS by using a hierarchical optimization
scheme, rather than the monolithic approach used in most
of the examples presented in the foregoing. Further, ex-
tending AMPS for use with Bayesian nonparametric mod-
els is of interest for cases when the number of latent param-
eters is unknown a priori, or when there is the possibility
that agents learn disparate sets of latent parameters that are
not well-combined by optimizing over permutations. Fi-
nally, while the approximate optimization algorithms pre-
sented herein work well in practice, it would be of interest
to find bounds on the performance of such algorithms with
respect to the true AMPS optimal solution.
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Abstract

One of the goals of probabilistic inference is
to decide whether an empirically observed
distribution is compatible with a candidate
Bayesian network. However, Bayesian net-
works with hidden variables give rise to
highly non-trivial constraints on the ob-
served distribution. Here, we propose an
information-theoretic approach, based on
the insight that conditions on entropies of
Bayesian networks take the form of simple
linear inequalities. We describe an algorithm
for deriving entropic tests for latent struc-
tures. The well-known conditional indepen-
dence tests appear as a special case. While
the approach applies for generic Bayesian
networks, we presently adopt the causal view,
and show the versatility of the framework by
treating several relevant problems from that
domain: detecting common ancestors, quan-
tifying the strength of causal influence, and
inferring the direction of causation from two-
variable marginals.

1 Introduction

Inferring causal relationships from empirical data is
one of the prime goals of science. A common sce-
nario reads as follows: Given n random variables
X1, ..., X, infer their causal relations from a list of n-
tuples i.i.d. drawn from P(Xq,...,X,). To formalize
causal relations, it has become popular to use directed
acyclic graphs (DAGs) with random variables as nodes
(c.f. Fig. 1) and arrows meaning direct causal influ-
ence [23, 28]. Such causal models have been called
causal Bayesian networks [23], as opposed to tradi-
tional Bayesian networks that formalize conditional
independence relations without having necessarily a
causal interpretation. One of the tasks of causal infer-
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ence is to decide which causal Bayesian networks are
compatible with empirically observed data.

The most common way to infer the set of possible
DAGs from observations is based on the Markov con-
dition (c.f. Sect. 2) stating which conditional statisti-
cal independencies are implied by the graph structure,
and the faithfulness assumption stating that the joint
distribution is generic for the DAG in the sense that no
additional independencies hold [28, 23]. Causal infer-
ence via Markov condition and faithfulness has been
well-studied for the case where all variables are ob-
servable, but some work also refers to latent structures
where only a subset is observable [23, 27, 1]. In that
case, we are faced with the problem of characterizing
the set of marginal distributions a given Bayesian net-
work can give rise to. If an observed distribution lies
outside the set of marginals of a candidate network,
then that model can be rejected as an explanation
of the data. Unfortunately, it is widely appreciated
that Bayesian networks involving latent variables im-
pose highly non-trivial constraints on the distributions
compatible with it [31, 33, 20, 21].

These technical difficulties stem from the fact that the
conditional independencies amount to non-trivial alge-
braic conditions on probabilities. More precisely, the
marginal regions are semi-algebraic sets that can, in
principle, be characterized by a finite number of poly-
nomial equalities and inequalities [14]. However, it
seems that in practice, algebraic statistics is still lim-
ited to very simple models.

In order to circumvent this problem, we propose an
information-theoretic approach for causal inference.
It is based on an entropic framework for treating
marginal problems that, perhaps surprisingly, has re-
cently been introduced in the context of Bell’s The-
orem and the foundations of quantum mechanics
[12, 7]. The basic insight is that the algebraic con-
dition p(x,y) = p1(z)p2(y) for independence becomes
a linear relation H(X,Y) = H(X) + H(Y) on the
level of entropies. This opens up the possibility of us-



ing computational tools such as linear programming to
find marginal constraints — which contrasts pleasantly
with the complexity of algebraic methods that would
otherwise be necessary.

1.1 Results

Our main message is that a significant amount of infor-
mation about causation is contained in the entropies of
observable variables and that there are relatively sim-
ple and systematic ways of unlocking that information.
We will make that case by discussing a great variety
of applications, which we briefly summarize here.

After introducing the geometric and algorithmic
framework in Sections 2 & 3, we start with the applica-
tions in Section 4.1 which treats instrumentality tests.
There, we argue that the non-linear nature of entropy,
together with the fact that it is agnostic about the
number of outcomes of a random variable, can greatly
reduce the complexity of causal tests.

Two points are made in Sec. 4.2, treating an exam-
ple where the direction of causation between a set
of variables is to be inferred. Firstly, that marginal
entropies of few variables can carry non-trivial infor-
mation about conditional independencies encoded in
a larger number of variables. This may have practi-
cal and statistical advantages. Secondly, we point out
applications to tests for quantum non-locality.

In Sec. 4.3 we consider the problem of distinguish-
ing between different hidden common ancestors causal
structures. While most of the entropic tests in this
paper have been derived using automated linear pro-
gramming algorithms, this section presents analytic
proofs valid for any number of variables.

Finally, Sec. 4.4 details three conceptually important
realizations: (1) The framework can be employed to
derive quantitative lower bounds on the strength of
causation between variables. (2) The degree of vio-
lation of entropic inequalities carries an operational
meaning. (3) Under some assumptions, we can ex-
hibit novel conditions for distinguishing dependencies
created through common ancestors from direct causa-
tion.

2 The information-theoretic
description of Bayesian networks

In this section we introduce the basic technical con-
cepts that are required to make the present paper self-
contained. More details can be found in [23, 12, 7].

2.1 Bayesian networks

Here and in the following, we will consider n jointly
distributed discrete random variables (X7i,...,X,).
Uppercase letters label random variables while low-
ercase label the values taken by these variables, e.g.
p(Xz = .%‘i7Xj = xj) = p(l‘i,.’L‘j).

Choose a directed acyclic graph (DAG) which has the
X;’s as its vertices. The X;’s form a Bayesian network
with respect to the graph if every variable can be ex-
pressed as a function of its parents PA; and an un-
observed noise term N;, such that the V;’s are jointly
independent. That is the case if and only if the distri-
bution is of the form

p(x) = [] p(xilpa,).
=1

Importantly, this is equivalent to demanding that the
X; fulfill the local Markov property: Every X; is condi-
tionally independent of its non-descendants N D; given
its parents PAz Xz AL NDZ|PA1

We allow some of the nodes in the DAG to stand
for hidden wvariables that are not directly observable.
Thus, the marginal distribution of the observed vari-
ables becomes

p)=>_ [ pilpa) ]I

u 1=1,..., j=1,....n—m

p(ujlpay), (1)

where V = (V1,...,V,,) are the observable variables
and U = (Uy,...,Up—y,) the hidden ones.

2.2 Shannon Entropy cones

Again, we consider a collection of n discrete random
variables X1,...,X,,. We denote the set of indices
of the random variables by [n] = {1,...,n} and its
power set (i.e., the set of subsets) by 2. For ev-
ery subset S € 20" of indices, let Xg be the ran-
dom vector (X;);es and denote by H(S) := H(Xg)
the associated Shannon entropy given by H(Xg) =
— > e, P(x5) logy p(xs). With this convention, entropy
becomes a function

H:2" SR, S H(S)

on the power set. The linear space of all set functions
will be denoted by R,. For every function h € R,
and S € 2", we use the notations h(S) and hg inter-
changeably.

The region
{h € R, |hg = H(S) for some entropy function H}

of vectors in R,, that correspond to entropies has been
studied extensively in information theory [35]. Its clo-
sure is known to be a convex cone, but a tight and



explicit description is unknown. However, there is a
standard outer approximation which is the basis of our
work: the Shannon cone I',,. The Shannon cone is the
polyhedral closed convex cone of set functions h that
respect the following set of linear inequalities:

h([nJ\{i}) < h([n]) (2)
h(S)+h(SU{ij}) < h(SU{i})+h(SU{j})
h(®) = 0

for all S C [n] \ {4,4}, i # j and 4,5 € [n]. These in-
equalities hold for entropy: The first relation — known
as monotonicity — states that the uncertainty about a
set of variables should always be larger than or equal
to the uncertainty about any subset of it. The sec-
ond inequality is the sub-modularity condition which
is equivalent to the positivity of the conditional mutual
information I(X; : X;|Xs) = H(Xsu:) + H(Xsuj) —
H(Xsugi,53) — H(Xs) > 0. The inequalities above are
known as the elementary inequalities in information
theory or the polymatroidal azioms in combinatorial
optimization. An inequality that follows from the ele-
mentary ones is said to be of Shannon-type.

The elementary inequalities encode the constraints
that the entropies of any set of random variables are
subject to. If one further demands that the ran-
dom variables are a Bayesian network with respect to
some given DAG, additional relations between their
entropies will ensue. Indeed, it is a straight-forward
but central realization for the program pursued here,
that CI relations faithfully translate to homogeneous
linear constraints on entropy:

XUYZ & IX:Y|Z)=0. (3

The conditional independencies (CI) given by the local
Markov condition are sufficient to characterize distri-
butions that form a Bayesian network w.r.t. some fixed
DAG. Any such distribution exhibits further CI rela-
tions, which can be algorithmically enumerated using
the so-called d-separation criterion [23]. Let T'. be
the subspace of R,, defined by the equality (3) for all
such conditional independencies. In that language, the
joint distribution of a set of random wvariables obeys
the Markov property w.r.t. to Bayesian network if and
only if its entropy vector lies in the polyhedral convex
cone I'S =Ty, NI, that is, the distribution defines
a valid entropy vector (obeying (2)) that is contained
in I'.. The rest of this paper is concerned with the
information that can be extracted from this convex
polyhedron.

We remark that this framework can easily be gener-
alized in various directions. E.g., it is simple to in-
corporate certain quantitative bounds on causal influ-
ence. Indeed, small deviations of conditional indepen-
dence can be expressed as I[(X : Y|Z) < € for some
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€ > 0. This is a (non-homogeneous) linear inequality
on R,. One can add any number of such inequalities
to the definition of I'¢, while still retaining a convex
polyhedron (if no longer a cone). The linear program-
ming algorithm presented below will be equally appli-
cable to these objects. (In contrast to entropies, the
set of probability distributions subject to quantitative
bounds on various mutual informations seems to be
computationally and analytically intractable).

Another generalization would be to replace Shannon
entropies by other, non-statistical, information mea-
sures. To measure similarities of strings, for instance,
one can replace H with Kolmogorov complexity, which
(essentially) also satisfies the polymatroidal axioms
(2). Then, the conditional mutual information mea-
sures conditional algorithmic dependence. Due to
the algorithmic Markov condition, postulated in [19],
causal structures in nature also imply algorithmic in-
dependencies in analogy to the statistical case. We
refer the reader to Ref. [30] for further information
measures satisfying the polymatroidal axioms.

2.3 Marginal Scenarios

We are mainly interested in situations where not all
joint distributions are accessible. Most commonly, this
is because the variables X1, ..., X,, can be divided into
observable ones Vi,...,V,, (e.g. medical symptoms)
and hidden ones Us,...,U,_,, (e.g. putative genetic
factors). In that case, it is natural to assume that
any subset of observable variables can be jointly ob-
served. There are, however, more subtle situations
(c.f. Sec. 4.2). In quantum mechanics, e.g., position
and momentum of a particle are individually measur-
able, as is any combination of position and momentum
of two distinct particles — however, there is no way to
consistently assign a joint distribution to both position
and momentum of the same particle [4].

This motivates the following definition: Given a set
of variables X1, ..., X,, a marginal scenario M is the
collection of those subsets of X1,...,X,, that are as-
sumed to be jointly measurable.

Below, we analyze the Shannon-type inequalities that
result from a given Bayesian network and constrain
the entropies accessible in a marginal scenario M.

3 Algorithm for the entropic
characterization of any DAG

Given a DAG consisting of n random variables and a
marginal scenario M, the following steps will produce

all Shannon-type inequalities for the marginals:

Step 1: Construct a description of the unconstrained



Shannon cone. This means enumerating all n +
(g) 2"~2 elementary inequalities given in (2).

Step 2: Add causal constraints presented as in (3).
This corresponds to employing the d-separation
criterion to construct all conditional independence
relations implied by the DAG.

Step 3: Marginalization. Lastly, one has to eliminate
all joint entropies not contained in M.

The first two steps have been described in Sec. 2. We
thus briefly discuss the marginalization, first from a
geometric, then from an algorithmic perspective.

Given a set function h : 2"l — R, its restriction
hjapg 2 M — R is trivial to compute: If h is expressed
as a vector in R,, we just drop all coordinates of h
which are indexed by sets outside of M. Geometri-
cally, this amounts to a projection Py : R?" — RIMI,
The image of the constrained cone I'§, under the pro-
jection Py, is again a convex cone, which we will refer
to as I'M. Recall that there are two dual ways of repre-
senting a polyhedral convex cone: in terms of either its
extremal rays, or in terms of the inequalities describing
its facets [2]. To determine the projection '™, a natu-
ral possibility would be to calculate the extremal rays
of I'S and remove the irrelevant coordinates of each
of them. This would result in a set of rays generating
I'M. However, Steps 1 & 2 above give a representation
of I'S in terms of inequalities. Also, in order to obtain
readily applicable tests, we would prefer an inequality
presentation of T™. Thus, we have chosen an algo-
rithmically more direct (if geometrically more opaque)
procedure by employing Fourier-Motzkin elimination —
a standard linear programming algorithm for eliminat-
ing variables from systems of inequalities [34].

In the remainder of the paper, we will discuss appli-
cations of inequalities resulting from this procedure to
causal inference.

4 Applications

4.1 Conditions for Instrumentality

An instrument Z is a random variable that under cer-
tain assumptions helps identifying the causal effect
of a variable X on another variable Y [16, 22, 5].
The simplest example is given by the instrumentality
DAG in Fig. 1 (a), where Z is an instrumental vari-
able and the following independencies are implied: (i)
I(Z:Y|X,U)=0and (ii) I(Z : U) = 0. The variable
U represents all possible factors (observed and unob-
served) that may effect X and Y. Because conditions
(i) and (ii) involve an unobservable variable U, the use
of an instrument Z can only be justified if the observed
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Figure 1: DAG (a) represents the instrumental sce-
nario. DAG (b) allows for a common ancestor between
Z and Y: unless some extra constraint is imposed (e.g.
I(Y,Us) < ¢€) this DAG is compatible with any proba-
bility distribution for the variables X, Y and Z.

distribution falls inside the compatibility region im-
plied by the instrumentality DAG. The distributions
compatible with this scenario can be written as

Zp

Note that (4) can be seen as a convex combination of
deterministic functions assigning the values of X and
Y [22, 5, 25]. Thus, the region of compatibility asso-
ciated with p(z,y|z) is a polytope and all the proba-
bility inequalities characterizing it can in principle be
determined using linear programming. However, as
the number of values taken by the variables increases,
this approach becomes intractable [5] (see below for
further comments). Moreover, if we allow for vari-
ations in the causal relations, e.g. the one shown in
DAG (b) of Fig. 1, the compatibility region is not
a polytope anymore and computationally challenging
algebraic methods would have to be used [15]. For
instance, the quantifier elimination method in [15] is
unable to deal with the instrumentality DAG even in
the simplest case of binary variables. We will show
next how our framework can easily circumvent such
problems.

(]2, u)

(4)

(z,y|2) p(ylz,u)

Proceeding with the algorithm described in Sec. 3, one
can see that after marginalizing over the latent variable
U, the only non-trivial entropic inequality constraining
the instrumental scenario is given by

LY : ZIX)+ I(X : Z) < H(X). (5)

By “non-trivial”, we mean that (5) is not implied by
monotonicity and sub-modularity for the observable
variables. The causal interpretation of (5) can be
stated as follows: Since Z influence Y only through
X, if the dependency between X and Z is large, then
necessarily the dependency between Y and Z condi-
tioned on knowing X should be small.

We highlight the fact that, irrespective of how many
values the variables X, Y and Z may take (as long as
they are discrete), (5) is the only non-trivial entropic
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Figure 2: A comparison between the entropic and
the probabilistic approach. The squares represent the
polytope of distributions compatible with the instru-
mental DAG. Each facet in the square corresponds to
one of the 4 non-trivial inequalities valid for binary
variables [22, 5]. The triangles over the squares repre-
sent probability distributions that fail to be compat-
ible with the instrumental constraints. Distributions
outside the dashed curve are detected by the entropic
inequality (5). Due to its non-linearity in terms of
probabilities, (5) detects the non-compatibility associ-
ated with different probability inequalities. See [8] for
more details.

constraint bounding the distributions compatible with
the instrumentality test. This is in stark contrast
with the probabilistic approach, for which the num-
ber of linear inequalities increases exponentially with
the number of outcomes of the variables [5]. There is,
of course, a price to pay for this concise description:
There are distributions that are not compatible with
the instrumental constraints, but fail to violate (5). In
this sense, an entropic inequality is a necessary but
not sufficient criterion for compatibility. However, it
is still surprising that a single entropic inequality can
carry information about causation that is in princi-
ple contained only in exponentially many probabilistic
ones. This effect stems from the non-linear nature of
entropy'! and is illustrated in Fig. 2.

Assume now that some given distribution p(z,y|z) is
incompatible with the instrumental DAG. That could
be due to some dependencies between Y and Z me-
diated by a common hidden variable Us as shown in
DAG (b) of Fig. 1. Clearly, this DAG can explain any

We remark that the reduction of descriptional com-
plexity resulting from the use of non-linear inequalities oc-
curs for other convex bodies as well. The simplest example
along these lines is the Euclidean unit ball B. It requires
infinitely many linear inequalities to be defined (namely
B ={z|(z,y) < 1Vy,|lyll2 < 1}). These can, of course, all
be subsumed by the single non-linear condition ||z|]2 < 1.
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distribution p(z,y|z) and therefore is not very infor-
mative. Notwithstanding, with our approach we can
for instance put a quantitative lower bound on how de-
pendent Y and U, need to be. Following the algorithm
in Sec. 3, one can see that the only non-trivial con-
straint on the dependency between Y and U, is given
by I(Y : Uz) < H(Y|X). This inequality imposes a
kind of monogamy of correlations: if the uncertainty
about Y is small given X, their dependency is large,
implying that Y is only slightly correlated with Us,
since the latter is statistically independent of X.

4.2 Inferring direction of causation

As mentioned before, if all variables in the DAG are
observed, the conditional independencies implied by
the graphical model completely characterize the pos-
sible probability distributions [24]. For example, the
DAGs displayed in Fig. 3 display a different set of Cls.
For both DAGs we have I(X : Z|Y,W) = 0, however
for DAG (a), it holds that I(Y : W|X) = 0 while for
DAG (b) I(Y : W|Z) = 0. Hence, if the joint distribu-
tions of (Y, W, X) and (Y, W, Z) are accessible, then CI
information can distinguish between the two networks
and thus reveal the “direction of causation”.

In this section, we will show that the same is possible
even if only two variables are jointly accessible at any
time. We feel this is relevant for three reasons.

First — and somewhat subjectively — we believe the
insight to be interesting from a fundamental point of
view. Inferring the direction of causation between two
variables is a notoriously thorny issue, hence it is far
from trivial that it can be done from information about
several pairwise distributions.

The second reason is that there are situations where
joint distributions of many variables are unavailable
due to practical or fundamental reasons. We have al-
ready mentioned quantum mechanics as one such ex-
ample — and indeed, the present DAGs can be related
to tests for quantum non-locality. We will briefly dis-
cuss the details below. But also purely classical situ-
ations are conceivable. For instance, Mendelian ran-
domization is a good example where the joint distri-
bution on all variables is often unavailable [10].

Thirdly, the “smoothing effect” of marginalizing may
simplify the statistical analysis when only few sam-
ples are available. Conditioning on many variables
or on variables that attain many different values of-
ten amounts to conditioning on events that happened
only once. Common y>-tests for CI [32] involve di-
visions by empirical estimates of variance, which lead
to nonsensical results if no variance is observed. Test-
ing for CI in those situations requires strong assump-
tions (like smoothness of dependencies) and remains
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Figure 3: DAGs with no hidden variables and opposite
causation directions. The DAGs can be distinguished
based on the CIs induced by them. However, if only
pairwise information is available one must resort to the
marginalization procedure described in Sec. 3.

a challenging research topic [13, 36]. Two-variable
marginals, while containing strictly less information
than three-variable ones, show less fluctuations and
might thus be practically easier to handle. This ben-
efit may not sound spectacular as long as it refers to
2- versus 3-variable marginals. However, in general,
our formalism can provide inequality constraints for
k-variable marginals from equality constraints that in-
volve £-variable marginals for £ > k.

We note that causal inference schemes using only pair-
wise mutual information is already known for trees,
i.e., DAGs containing no undirected cycles. The data
processing inequality implies that for every node, the
mutual information to a direct neighbor cannot be
smaller than the one with the neighbor of this neigh-
bor. Hence one can find adjacencies based on pairwise
mutual information only. This has been used e.g. for
phylogenetic trees [17, 9]. In that sense, our results
generalize these ideas to DAGS with cycles.

The non-trivial constraints on two-variable entropies
given by our algorithm for the DAG (a) of Fig. 3 are:

Hy —Hxy —Hyw +Hxw <0 (6)
Hy —Hx —Hyw + Hxy <0

Hwz —Hyw —Hxz + Hxy <0

Hyz —Hyw —Hxz + Hxw <0

Hy —Hx +Hw —Hwz —Hyz + Hxz <0

Hy —Hx —Hyw — Hxz + Hxw + Hxy <0
Hz + Hx

+Hyw +Hxz — Hxw — Hxy — Hwz — Hyz < 0.

The ones for DAG (b) are obtained by the substitu-
tion X < Z. Invariant under this, the final inequality
is valid for both scenarios. In contrast, the first six
inequalities can be used to distinguish the DAGs.

As an example, one can consider the following struc-
tural equations compatible only with the DAG (b): Z
is a uniformly distributed m-valued random variable,
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Y=W=2Z and X =Y & W (addition modulo m).
A direct calculation shows that the first inequality in
(6) is violated, thus allowing one to infer the correct
direction of the arrows in the DAG.

As alluded to before, we close this section by mention-
ing a connection to quantum non-locality [4]. Using
the linear programming algorithm, one finds that the
final inequality in (6) is actually valid for any distribu-
tion of four random variables, not only those that con-
stitute Bayesian networks w.r.t. the DAGs in Fig. 3.
In that sense it seems redundant, or, at best, a san-
ity check for consistency of data. It turns out, how-
ever, that it can be put to non-trivial use. While the
purpose of causal inference is to check compatibility
of data with a presumed causal structure, the task of
quantum non-locality is to devise tests of compatibil-
ity with classical probability theory as a whole. Thus,
if said inequality is violated in a quantum experiment,
it follows that there is no way to construct a joint dis-
tribution of all four variables that is consistent with
the observed two-variable marginals — and therefore
that classical concepts are insufficient to explain the
experiment.

While not every inequality which is valid for all clas-
sical distributions can be violated in quantum experi-
ments, the constraints in (6) do give rise to tests with
that property. To see this, we further marginalize over
H(X,Z) and H(Y,W) to obtain

Hxy +Hxw +Hyz —Hwz —Hy —Hx <0 (7)

(and permutations thereof). These relations have been
studied as the “entropic version of the CHSH Bell in-
equality” in the physics literature [6, 12, 7], where it
is shown that (7) can be employed to witness that cer-
tain measurements on quantum systems do not allow
for a classical model.

4.3 Inference of common ancestors in
semi-Markovian models

In this section, we re-visit in greater generality the
problem considered in [29]: using entropic conditions
to distinguish between hidden common ancestors.

Any distribution of a set of n random variables can
be achieved if there is one latent parent (or ancestor)
common to all of them [23]. However, if the dependen-
cies can also be obtained from a less expressive DAG
— e.g. one where at most two of the observed vari-
ables share an ancestor — then Occam’s Razor would
suggest that this model is preferable. The question
is then: what is the simplest common ancestor causal
structure explaining a given set of observations?

One should note that unless we are able to intervene
in the system under investigation, in general it may



be not possible to distinguish direct causation from a
common cause. For instance, consider the DAGs (a)
and (c) displayed in Fig. 4. Both DAGs are compat-
ible with any distribution and thus it is not possible
to distinguish between them from passive observations
alone. For this reason and also for simplicity, we re-
strict our attention to semi-Markovian models where
all the observable variables are assumed to have no di-
rect causation on each other or on the hidden variables.
Also, the hidden variables are assumed to be mutually
independent. It is clear then that all dependencies be-
tween the observed quantities can only be mediated by
their hidden common ancestors. We refer to such mod-
els as common ancestors (CM) DAGs. We reinforce,
however, that our framework can also be applied in the
most general case. As will be explained in more de-
tails in Sec. 4.4, in some cases, common causes can be
distinguished from direct causation. Our framework
can also be readily applied in these situations.

We begin by considering the simplest non-trivial case,
consisting of three observed variables [29, 11, 7]. If no
conditional independencies between the variables oc-
cur, then the graphs in Fig. 4 (a) and (b) represent
the only compatible CM DAGs. Applying the algo-
rithm described in Sec. 3 to the model (b), we find
that one non-trivial class of constraints is given by

I(Vi: Vo) +1(Vi 2 V3) < H(VA) (8)

and permutations thereof [11, 7].

It is instructive to pause and interpret (8). It states,
for example, that if the dependency between V; and V5,
is maximal (I(V; : Va) = H(V1)) then there should be
no dependency at all between Vi and V3 (I(V; : Va) =
0). Note that I(Vy : Vo) = H(V1) is only possible if
V1 is a deterministic function of the common ancestor
Uis alone. But if V; is independent of Uiz, it cannot
depend on V3 and thus I(Vy : V3) = 0.

Consider for instance a distribution given by

1/2
0

, if v1 = vy = v3
, otherwise

plonon,ea) = { )

This stands for a perfect correlation between all the
three variables and clearly cannot be obtained by pair-
wise common ancestors. This incompatibility is de-
tected by the violation of (8).

We now establish the following generalization of (8) to
an arbitrary number of observables:

Theorem 1 For any distribution that can be ex-
plained by a CM DAG where each of the latent an-
cestors influences at most m of the observed variables,
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Figure 4: Models (a) and (b) are CM DAGs for three
observable variables Vi, Va, V3. Unlike (b), DAG (a) is
compatible with any observable distribution. DAG (c)
involves a direct causal influence between the observ-
able variable V7 and V5.

we have

> IV V)
=1, ,n

i#]

< (m-DHV).  (10)

We present the proof for the case m = 2 while the gen-
eral proof can be found in the supplemental material.

Lemma 1 In the setting of Thm. 1 for m = 2:

N
) > (N =2)H(V;)+ H(V; | JUj). (11)
1=2

> H(V;U;;

=2

Proof. (By induction) We treat the case j = 1 w.l.o.g.
For n = 2 equality holds trivially. Now assuming the
validity of the inequality for any n:

ity HVWUw) = (n = 2)H(Vi) (12)

+H(Vi ULy Uii) + HViUs(n41))
>[(n+1)—20HWV) + HVi U Uy). (13)
From (12) to (13) we have used sub-modularity. O

Proof of Theorem 1. Apply the data processing
inequality to the left-hand side of (10) to obtain

Do T(Ar s Ay) <300, I(Ay = Uyy)
= (n— D)H (A1) + Xy H(Ai) — 2000 H(A ).
With Lemma 1, we get

Yoo I(Vi: Vi) < (n—1)H (Vi) + Y7, H(Uy,)
—[(n—=2)H(WV1) + H(V1 Uiy U1s)]

The mutual independence of hidden variables yields
S, H(Uy) = H(U!_, Uy;) implying that

D ALE
=2

Vi) < H(V1) — H(VA| LnJ Uri) < H(V1).
i=2



We highlight the fact that Ineq. (10) involves only
pairwise distributions — the discussion in Sec. 4.2 ap-
plies. Following our approach, one can derive further
entropic inequalities, in particular involving the joint
entropy of all observed variables. A more complete
theory will be presented elsewhere.

4.4 Quantifying causal influences

Unlike conditional independence, mutual information
captures dependencies in a quantitative way. In this
section, we show that our framework allows one to de-
rive non-trivial bounds on the strength of causal links.
We then go on to present two corollaries of this result:
First, it follows that the degree of violation of an en-
tropic inequality often carries an operational meaning.
Second, under some assumptions, the finding will allow
us to introduce a novel way of distinguishing depen-
dence created through common ancestors from direct
causal influence.

Various measures of causal influence have been stud-
ied in the literature. Of particular interest to us is
the one recently introduced in [18]. The main idea is
that the causal strength Cx_,y between a variable X
on another variable Y should measure the impact of
an intervention that removes the arrow between them.
Ref. [18] draws up a list of reasonable postulates that
a measure of causal strength should fulfill. Of spe-
cial relevance to our information-theoretic framework
is the axiom stating that

Cx_y > I(X : Y|PAY), (14)

where PA3* stands for the parents of variable Y other
than X. We focus on this property, as the quantity
I(X : Y|PAY) appears naturally in our description
and thus allows us to bound any measure of causal
strength Cx_,y for which (14) is valid.

To see how this works in practice, we start by aug-
menting the common ancestor scenario considered in
the previous section. Assume that now we do allow
for direct causal influence between two variables, in
addition to pairwise common ancestors — c.f. Fig. 4
(c). Then (14) becomes Cy, v, > I(V; : Va|Uia, Uss).
We thus re-run our algorithm, this time with the un-
observable quantity I(V; : V2|Ui2, Uss) included in the
marginal scenario. The result is

I(Vy : VUi, Urz) > I(Vy : Vo) + I(V1 2 V3) — H(V1),

(15)
which lower-bounds the causal strength in terms of
observable entropies.

The same method yields a particularly concise and rel-
evant result when applied to the instrumental test of
Sec. 4.1. The instrumental DAG may stand, for ex-
ample, for a clinical study about the efficacy of some
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drug where Z would label the treatment assigned, X
the treatment received, Y the observed response and
U for any observed or unobserved factors affecting
X and Y. In this case we would be interested not
only in checking the compatibility with the presumed
causal relations but also the direct causal influence of
the drug on the expected observed response, that is,
Cx_yy. After the proper marginalization we conclude
that Cx_y > I(Y : Z), a strikingly simple, but non-
trivial bound that can be computed from the observed
quantities alone. Likewise, if one allows the instru-
mental DAG to have an arrow connecting Z and Y,
one finds

Croy 2I(Y: Z|X)+ (X : Z) — H(X).  (16)

The findings presented here can be re-interpreted in
two ways:

First, note that the right hand side of the lower bound
(15) is nothing but Ineq. (8), a constraint on distribu-
tions compatible with DAG 3 (b). Similarly, the r.h.s.
of (16) is just the degree of violation of the entropic
instrumental inequality (5).

We thus arrive at the conceptually important realiza-
tion that the entropic conditions proposed here offer
more than just binary tests. To the contrary, their de-
gree of violation is seen to carry a quantitative mean-
ing in terms of strengths of causal influence.

Second, one can interpret the results of this sections as
providing a novel way to distinguish between DAGs (a)
and (c) in Fig. 4 without experimental data. Assume
that we have some information about the physical pro-
cess that could facilitate direct causal influence from
V1 to V3 in (c), and that we can use that prior infor-
mation to put a quantitative upper bound on Cy, _,v,.
Then we must reject the direct causation model (c) in
favor of a common ancestor explanation (a), as soon
as the observed dependencies violate the bound (15).
As an illustration, the perfect correlations exhibited
by the distribution (9) is incompatible with DAG (c),
as long as Cy, v, is known to be smaller than 1.

5 Statistical Tests

In this section, we briefly make the point that
inequality-based criteria immediately suggest test
statistics which can be used for testing hypotheses
about causal structures. While a thorough treatment
of statistical issues is the subject of ongoing research
[3, 26], it should become plain that the framework al-
lows to derive non-trivial tests in a simple way.

Consider an inequality I := ) ¢ om csH(S) < 0 for
suitable coefficients cg. Natural candidates for test



statistics derived from it would be T7 := ) ¢ csH(S)
4 where H(S) is the entropy of the

\/var(Tr)’

empirical distribution of Xg, and var is some consis-
tent estimator of variance (e.g. a bootstrap estimator).
If the inequality [ is fulfilled for some DAG G, then a
test with null hypothesis “data is compatible with G”
can be designed by testing T; < ¢ or Ty < t, for some
critical value ¢ > 0. In an asymptotic regime, there
could be reasonable hope to analytically characterize
the distribution of Tj. However, in the more relevant
small sample regime, one will probably have to resort
to Monte Carlo simulations in order to determine ¢ for
a desired confidence level. In that case, we prefer to
use T7, by virtue of being “less non-linear” in the data.

[A—
or T} =

We have performed a preliminary numerical study us-
ing the DAG given in Fig. 4 (b) together with Ineq. (8).
We have simulated experiments that draw 50 samples
from various distributions of three binary random vari-
ables Vi, V5, V3 and compute the test statistic T7. To
test at the 5%-level, we must choose t large enough
such that for all distributions p compatible with 4(b),
we have a type-I error rate Pry,[T7 > t] below 5%. We
have employed the following heuristics for finding t:
(1) It is plausible that the highest type-I error rate oc-
curs for distributions p that reach equality E, [1] = 0;
(2) This occurs only if V; is a deterministic function
of V5 and V3. From there, it follows that V; must be a
function of one of V5 or V3 and we have used a Monte
Carlo simulation with (V2, V3) uniformly random and
Vi = V5 to find ¢ = .0578. Numerical checks failed to
identify distributions with higher type-I rate (though
we have no proof). Fig. 5 illustrates the resulting test.

0.02 0.04 0.06

flip prob.

0.08 0.10

Figure 5: Power (1 minus type-II error) of the test
T; > t for the DAG Fig. 4(b) derived from Ineq. (8)
using 50 samples. The test was run on a distribution
obtained by starting with three perfectly correlated
binary random variables as in (9) and then inverting
each of the variables independently with a given “flip
probability” (z axis). Every data point is the result of
10000 Monte Carlo simulations.
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6 Conclusions

Hidden variables imply nontrivial constraints on ob-
servable distributions. While we cannot give a com-
plete characterization of these constraints, we show
that a number of nontrivial constraints can be ele-
gantly formulated in terms of entropies of subsets of
variables. These constraints are linear (in)equalities,
which lend themselves well to algorithmic implemen-
tation.

Remarkably, our approach only requires the polyma-
troidal axioms, and thus also applies to various infor-
mation measures other than Shannon entropy. Some
of these may well be relevant to causal inference and
structure learning and may constitute an interesting
topic for future research.
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Abstract

We consider adaptive pool-based active learning
in a Bayesian setting. We first analyze two com-
monly used greedy active learning criteria: the
maximum entropy criterion, which selects the
example with the highest entropy, and the least
confidence criterion, which selects the example
whose most probable label has the least probabil-
ity value. We show that unlike the non-adaptive
case, the maximum entropy criterion is not able
to achieve an approximation that is within a con-
stant factor of optimal policy entropy. For the
least confidence criterion, we show that it is able
to achieve a constant factor approximation to the
optimal version space reduction in a worst-case
setting, where the probability of labelings that
have not been eliminated is considered as the ver-
sion space. We consider a third greedy active
learning criterion, the Gibbs error criterion, and
generalize it to handle arbitrary loss functions be-
tween labelings. We analyze the properties of
the generalization and its variants, and show that
they perform well in practice.

1 INTRODUCTION

We study pool-based active learning (McCallum and
Nigam, 1998) where the training data are sequentially se-
lected and labeled from a pool of unlabeled examples, with
the aim of having good performance after only a small
number of examples are labeled. In practice, the selection
of the next example to be labeled is usually done by greedy
optimization of some appropriate objective function.

In this paper, we consider adaptive algorithms for pool-
based active learning with a budget of k£ queries in a
Bayesian setting. We examine three commonly used
greedy criteria and their performance guarantees. We also
generalize one of the criteria, study its properties and show
that it performs well in practice.
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One of the most commonly used criteria is the maximum
entropy criterion: select the example with maximum label
entropy given the observed labels (Settles, 2010). In the
non-adaptive case where the set of examples must be se-
lected before any label is observed, the analogue of this
greedy criterion selects the example that maximally in-
creases the label entropy of the selected set. This greedy
criterion in the non-adaptive case is well-known to be near-
optimal: the label entropy of the selected examples is at
least (1 — 1/e) of the optimal set. This follows from a
property satisfied by the entropy function called submodu-
larity. Selecting a set with large label entropy is desirable,
as the chain rule of entropy implies that maximizing the la-
bel entropy of the selected set will minimize the conditional
label entropy of the remaining examples. It would be desir-
able to have a similar near-optimal performance guarantee
for the adaptive case where the label is provided after every
example is selected. Whether the greedy maximum entropy
criterion provides such a guarantee was not known (Cuong
et al., 2013), although it was suspected that it does not. In
this paper, we show that the greedy algorithm, indeed, does
not provide a constant factor approximation in the adaptive
case.

Another commonly used greedy criterion is the least confi-
dence criterion: select the example whose most likely label
has the smallest probability (Lewis and Gale, 1994; Culotta
and McCallum, 2005). In this paper, we show that this cri-
terion provides a near-optimal adaptive algorithm for max-
imizing the worst-case version space reduction, where the
version space is the probability of labelings that are consis-
tent with the observed labels. This will be derived as the
consequence of a more general result which shows such
near-optimal approximation holds for utility functions that
satisfy pointwise submodularity and minimal dependency.
Pointwise submodular functions were previously studied in
(Guillory and Bilmes, 2010) for active learning, but with a
different objective function which focuses on identifying
the true function.

The Gibbs error criterion was proposed in (Cuong et al.,
2013) as an alternative uncertainty measure suitable for ac-



Table 1: Theoretical Properties of Greedy Criteria for Adaptive Active Learning

Criterion Objective

Near-optimality Property

Maximum entropy Policy entropy

Worst-case
version space reduction

Least confidence

Maximum Gibbs error Policy Gibbs error
(expected version

space reduction)

No constant

factor approximation (this paper)

approximation (this paper)

approximation (Cuong et al., 2013)

Pointwise monotone
submodular

(1-1/e) factor

(1-1/e) factor Adaptive monotone

submodular

tive learning. The criterion selects the example with the
largest Gibbs error for labeling. The Gibbs error is the ex-
pected error of the Gibbs classifier, which predicts the label
by sampling from the current label distribution. Gibbs error
is a special case of Tsallis entropy, introduced in statistical
mechanics (Tsallis and Brigatti, 2004) as a generalization
of the Shannon entropy (which is used in the maximum en-
tropy criterion). In (Cuong et al., 2013), Gibbs error was
used as a lower bound to the Shannon entropy and was
maximized in order to minimize the posterior conditional
entropy. It was shown in (Cuong et al., 2013) that using
the Gibbs error criterion achieves at least (1 — 1/e) of the
optimal policy Gibbs error, a performance measure for this
criterion, given k queries in the adaptive case. This relies
on the property that the version space reduction function is
adaptive submodular (Golovin and Krause, 2011).

The results for the three commonly used greedy criteria are
shown in Table 1.

The Gibbs error criterion can be seen as a greedy algo-
rithm for sequentially maximizing the Gibbs error over the
dataset. The Gibbs error of the dataset is the expected er-
ror of a Gibbs classifier that predicts using an entire label-
ing sampled from the prior label distribution for the entire
dataset. Here, a labeling is considered incorrect if any ex-
ample is incorrectly labeled by the Gibbs classifier. Pre-
dicting an entirely correct labeling of all examples is often
unrealistic in practice, particularly after only a few exam-
ples are labeled. This motivates us to generalize the Gibbs
error to handle different loss functions between labelings,
e.g. Hamming loss which measures the Hamming distance
between two labelings. We call the greedy criterion that
uses general loss functions the average generalized Gibbs
error criterion.

The corresponding performance measure for the average
generalized Gibbs error criterion is the generalized policy
Gibbs error, which is the expected value of the general-
ized version space reduction function. The generalized ver-
sion space reduction function is an extension of the version
space reduction function with general loss functions. We
investigate whether the generalized version space reduction
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function is adaptive submodular, as this property would
provide a constant factor approximation for the average
generalized Gibbs error criterion. Unfortunately, we can
show that the generalized version space reduction function
is not necessarily adaptive submodular, although it is adap-
tive submodular for the special case of the version space re-
duction function. Despite that, we show in our experiments
that the average generalized Gibbs error criterion can per-
form well in practice, even when we do not know whether
the corresponding utility function is adaptive submodular.

As in the case for the least confidence criterion, we also
consider a worst-case setting for the generalized Gibbs er-
ror. The worst case against a target labeling can be se-
vere, so we consider a variant: the total generalized version
space reduction function. This function targets the sum
of the remaining losses over all the remaining labelings,
rather than against a single worst-case labeling. We call the
corresponding greedy criterion the worst-case generalized
Gibbs error criterion. It selects the example with maximum
worst-case total generalized version space reduction as the
next query. As the total generalized version space reduction
function is pointwise submodular and satisfies the minimal
dependency property, the method is guaranteed to be near-
optimal. Our experiments show that the worst-case gener-
alized Gibbs error criterion performs well in practice. For
binary problems, the maximum entropy, least confidence,
and Gibbs error criteria are all equivalent, and the worst-
case generalized Gibbs error criterion outperforms them for
most problems in our experiments.

2 PRELIMINARIES

Let X be a finite set of items (or examples), and let ) be
a finite set of labels (or states). A labeling of X is a func-
tion from & to )V, and a partial labeling is a partial function
from & to ). Each labeling of X can be considered as a hy-
pothesis in the hypothesis space # = Y. In the Bayesian
setting, there is a prior probability po[h] on H, and an un-
known true hypothesis Ay is initially drawn from pg[h].
After observing a labeled set (i.e. a partial labeling) D,



we can obtain the posterior pp[h] = po[h|D] using Bayes’
rule.

For any S C X and any distribution p on H,
we write py;S] to denote the probability that a ran-
domly drawn hypothesis from p assigns labels in the
sequence y to items in the sequence S.  That is,
ply; S] < > cq PIM P[R(S) = y|h], where we use the
notation 2(S) to denote the sequence (h(z1),...,h(z;))
whenever S is a sequentially constructed set (z1,...,z;),
or simply the set {h(x) : € S} if the items in .S are not
ordered. In our setting, h is a deterministic hypothesis, so
P[h(S) = y|h] = 1(h(S) = y), where 1(-) is the indicator
function. Note that p[-; S] is a probability distribution on
the set of all label sequences y of S. Forx € X andy € ),

we also write ply; «] for p[{y}; {z}].

In practice, we often consider probabilistic models (like the
naive Bayes models) which are used to generate labels for
examples, and a prior is imposed on these models instead of
on the labelings. In this case, we can follow the construc-
tion in the supplementary material of (Cuong et al., 2013)
to construct an equivalent prior on the labelings and work
with this induced prior.

We consider pool-based active learning with a fixed bud-
get: given a budget of k queries, we aim to adaptively se-
lect from the pool X the best k£ examples with respect to
some objective function.! A pool-based active learning al-
gorithm corresponds to a policy for choosing training ex-
amples from X. A policy is a mapping from a partial la-
beling to the next unlabeled example to query. When the
active learning policy chooses an unlabeled example, its
label according to hyy,. Will be revealed.

A policy can be represented by a policy tree in which each
node corresponds to an unlabeled example to query, and
edges below a node correspond to its labels. In this paper,
we use policy and policy tree interchangeably. A policy can
be non-adaptive or adaptive. In a non-adaptive policy, the
observed labels are not taken into account when the policy
chooses the next example. An adaptive policy, on the other
hand, can use the observed labels to determine the next ex-
ample to query. We will focus on adaptive policies in this

paper.

Let ITy, be the set of policy trees of height k. Note that IT| x|
contains full policy trees, while IT;, with & < |X| contains
partial policy trees. Following the insight in (Cuong et al.,
2013), for any (full or partial) policy 7, we define a prob-
ability distribution p{[-] over the paths from the root to a
leaf of 7. Intuitively, pf [p] is the probability that the policy
m follows the path p during its execution. This probabil-
ity distribution is induced by the randomness of Ay and is

! In our setting, the usual objective of determining the true
hypothesis hyue is infeasible unless the support of po is small.
When po[h] > 0O for all h, we need to query the whole pool X in
order to determine Aue.
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defined as p§[p] Lf poly,; x,], where x, (resp. y,) is the
sequence of examples (resp. labels) along path p. Some
objective functions for pool-based active learning can be
defined using this probability distribution.

3 SUBMODULARITY

Our objective in active learning can often be stated as max-
imizing some average or worst-case performance with re-
spect to some utility function f(S) in the non-adaptive
case, or f(S,h) in the adaptive case, where S is the set
of chosen examples. When f(S) is submodular or f(S, h)
is adaptive submodular, greedy algorithms are known to be
near-optimal (Nemhauser et al., 1978; Golovin and Krause,
2011). We shall briefly summarize some results about
greedy optimization of submodular functions and adaptive
submodular functions, then prove a new result about the
worst-case near-optimality of a greedy algorithm for maxi-
mizing a pointwise submodular function.?

3.1 NEAR-OPTIMALITY OF SUBMODULAR
MAXIMIZATION

A set function f : 2% — R is submodular if it satisfies the
following diminishing return property: forall A C B C X
andz € X'\ B,

f(Au{z}) — f(4) = f(BU{z}) — f(B).

The function f is called monotone if f(A) < f(B) for all
ACB.

To select a set of size k that maximizes a monotone sub-
modular function, one greedy strategy is to iteratively se-
lect the next example x* that satisfies

v = argmax(f(SU ) - f(8)) ()
where S is the previously selected examples. The follow-
ing theorem by Nembhauser et al. (1978) states the near-
optimality of this greedy algorithm when maximizing a
monotone submodular function.

Theorem 1 (Nemhauser et al. 1978). Let f be a monotone
submodular function such that f(0) = 0, and let Sy, be the
set of examples selected up to iteration k using the greedy
criterion in Equation (1). Then for all k > 0, we have

f(Sk) = (1 = 1/e) max|g— f(S5).

3.2 NEAR-OPTIMALITY OF ADAPTIVE
SUBMODULAR MAXIMIZATION

Adaptive submodularity (Golovin and Krause, 2011) is an
extension of submodularity to the adaptive setting. For a
partial labeling D and a full labeling h, we write h ~ D to

2 Note that our result can also be applied to settings other than
active learning.



denote that D is consistent with A. That is, D C h when
we view a labeling as a set of (z,y) pairs. For two par-
tial labelings D and D’, we call D a sub-labeling of D', if
DCTD.

We consider a utility function f:2% x Y* — Rxg

which depends on the examples selected and
the true labeling of AX. For a partial labeling
D and an example xz, we define A(z|D) &

Ep [f(dom(D) U{x}, h) — f(dom(D), )| h ~ D],
where the expectation is with respect to po[h | A ~ D] and
dom(D) is the domain of D.

From the definitions in (Golovin and Krause, 2011), f is
adaptive submodular with respect to pg if for all D and D’
such that D C D', and for all z € X’ \ dom(D’), we have
A(z|D) > A(z|D’). Furthermore, f is adaptive monotone
with respect to py if for all D with pg[h ~ D] > 0 and for
all z € X, we have A(z|D) > 0.

Let 7 be a policy for selecting the examples and x} be the
set of examples selected by 7 under the true labeling h. We
define the expected utility of 7 as fue(m) < E[f (27, k)],
where the expectation is with respect to po[h]. To adap-
tively select a set of size k that maximizes f,g, one greedy
strategy is to iteratively select the next example z* that sat-
isfies

¥ = argmax A(z|D), (2)
where D is the partial labeling that has already been ob-
served. The following theorem by Golovin and Krause
(2011) states the near-optimality of this greedy policy when
f is adaptive monotone submodular.

Theorem 2 (Golovin and Krause 2011). Let f be an adap-
tive monotone submodular function with respect to pg, T
be the adaptive policy selecting k examples using Equa-
tion (2), and ©* be the optimal policy with respect t0 fq,q
that selects k examples. Then for all k > 0, we have

favg(m) > (L = 1/€) fave(7*).

3.3 NEAR-OPTIMALITY OF POINTWISE
SUBMODULAR MAXIMIZATION

Theorem 2 gives near-optimal average-case performance
guarantee for greedily optimizing an adaptive monotone
submodular function. We now give a new near-optimal
worst-case performance guarantee for greedily optimizing
a pointwise monotone submodular function. A utility func-
tion f: 2% x Y* — R is said to be pointwise submod-
ular if the set function f5,(S) %f f(S, k) is submodular for
all h. Similarly, f is pointwise monotone if f3,(.5) is mono-
tone for all h.

When f is pointwise monotone submodular, the aver-
age utility fog(S) = Ep~p,[f(S,h)] is monotone sub-
modular, and thus the non-adaptive greedy algorithm is a
near-optimal non-adaptive policy for maximizing fay,(.5)
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(Golovin and Krause, 2011). However, we are more inter-
ested in the adaptive policies in this section.

For any partial labeling D, any z € X \ dom(D), and any
y € Y, we write DU {(x, y)} to denote the partial labeling
D with an additional mapping from z to y.

We assume that for any S C X and any labeling h, the
value of f(S, h) does not depend on the labels of examples
in X\ \S. We call this the minimal dependency property. Let
us extend the definition of f so that its second parameter
can be a partial labeling. The minimal dependency prop-
erty implies that for any partial labeling D and any labeling
h ~ D, we have f(dom(D),h) = f(dom(D),D). With-
out this minimal dependency property, the theorem in this
section may not hold. We will see some examples of func-
tions that satisfy or do not satisfy the minimal dependency
property in Section 4 and 5.

For a partial labeling D and an example x, define
0(2[D) = min{f(dom(D) U{z}, DU {(x,y)})
Y
—f(dom(D), D)}.

We consider the adaptive greedy strategy that iteratively se-
lects the next example z* satisfying

¥ = arg max o(x|D), 3)
where D is the partial labeling that has already been ob-
served. For any policy , let fyorse(7) 2 miny, f(2F, h) be
the worst-case objective function. The following theorem
states the near-optimality of the above greedy policy with
respect to fyorse When f is pointwise monotone submodu-
lar.?

Theorem 3. Let f be a pointwise monotone submodu-
lar function such that f(0,h) = 0 for all h, and | sat-
isfies the minimal dependency property. Let m be the
adaptive policy selecting k examples using Equation (3),
and " be the optimal policy with respect to fors that
selects k examples. Then for all k > 0, we have

fworst(’fr) > (]- - 1/6)fwor.vt(7r*)-

The main idea in proving this theorem is to show that at
every step, the greedy policy can cover at least (1/k)-
fraction of the optimal remaining utility. This property can
be proven by replacing the current greedy step with the op-
timal policy and considering the adversary’s path for this
optimal policy. See Appendix A for a proof of this theo-
rem.

We note that in the worst-case setting, Golovin and Krause
(2011) also considered the problem of minimizing the num-
ber of queries needed to achieve a target utility value. How-
ever, their results mainly rely on the condition that the

3 Note that in the definition of fworst(7), h has to range over
the set Y of all possible labelings. Otherwise, Theorem 3 does
not necessarily hold.



utility function is adaptive submodular, not the pointwise
submodular condition considered in this section. It is also
worth noting that our new greedy criterion in Equation (3)
is different from the greedy criterion considered by Golovin
and Krause (2011), which is essentially Equation (2). Thus,
our result does not follow from their result and is developed
using a different argument.

4 PROPERTIES OF GREEDY ACTIVE
LEARNING CRITERIA

We now briefly introduce three greedy criteria that have
been used for active learning: maximum entropy, maxi-
mum Gibbs error, and least confidence. These criteria are
equivalent in the binary-class case (i.e. they all choose the
same examples to query), but they are different in the multi-
class case. We will prove some new properties of the max-
imum entropy and the least confidence criteria.

4.1 MAXIMUM ENTROPY

The maximum entropy criterion chooses the next exam-
ple whose posterior label distribution has the maximum
Shannon entropy (Settles, 2010). Formally, this criterion
chooses the next example z* that satisfies

¥ = arg max Eyppy:al [— Inpply; x]], )
where pp is the posterior obtained after observing the par-

tial labeling D. From (Cuong et al., 2013), it is desirable to
maximize the policy entropy

Hent(”) def Epwpg [7 lnpg [p]]v

where the expectation is over all the paths in the policy tree
of 7, as maximizing the policy entropy will minimize the
expected label entropy given the observations. Criterion
(4) can be viewed as a greedy algorithm for maximizing
the policy entropy.

Due to the monotonicity and submodularity of Shannon en-
tropy (Fujishige, 1978), we can construct a non-adaptive
greedy policy that achieves near-optimality with respect to
the objective function H.y in the non-adaptive setting. In
the adaptive setting, however, it was previously unknown
whether the maximum entropy criterion is near-optimal
with respect to Hepe (Cuong et al., 2013).

We now show that, in general, the maximum entropy crite-
rion may not be near-optimal with respect to the objective
function H,, (Theorem 4).

Theorem 4. Let 7 be the adaptive policy in 11}, selecting
examples using Equation (4), and 7 be the optimal adap-
tive policy in Iy, with respect to Hy. Forany 0 < a < 1,
there exists a problem where H () | Hon(7%) < .
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The main idea in proving this theorem is to construct a set
of independent distractor examples that have highest en-
tropy but provide no information about the true hypothe-
sis. The greedy criterion is tricked to choose only these
distractor examples. On the other hand, there is an identi-
fier example which gives the identity of the true hypothesis
but has a lower entropy than the distractor examples. Once
the label of the identifier example is revealed, there will be
a number of high entropy examples to query, so that the
policy entropy achieved is higher than that of the greedy
algorithm. See the supplement for a proof of this theorem.

4.2 MAXIMUM GIBBS ERROR

The maximum Gibbs error criterion chooses the next ex-
ample whose posterior label distribution has the maximum
Gibbs error (Cuong et al., 2013). Formally, this criterion
chooses the next example x* that satisfies

= arg ngX EprD [y;x] [1 — P [y§ J}]] (5)
This criterion attempts to greedily maximize the policy
Gibbs error

Hgipps () < Epupr [1 = pg [p]],

which is a lower-bound of the policy entropy Hep (7).

It has been shown by Cuong et al. (2013, sup.) that the pol-
icy Gibbs error Hgipps corresponds to the expected version
space reduction in /. Furthermore, the maximum Gibbs
error criterion in Equation (5) corresponds to the algorithm
that greedily maximizes the expected version space reduc-
tion. For S C X and h € H, the version space reduction
function is defined as f (S, h) &' 1 — po[h(S); S].

Since the version space reduction function is adaptive
monotone submodular (Golovin and Krause, 2011), the
maximum Gibbs error criterion is near-optimal with respect
to the objective function Hgjpps in both the non-adaptive and
adaptive settings. That is, the greedy policy using Equation
(5) has the policy Gibbs error within a factor (1 — 1/e) of
the optimal policy (Cuong et al., 2013).

4.3 LEAST CONFIDENCE

The least confidence criterion chooses the next example
whose most likely label has minimal posterior probabil-
ity (Lewis and Gale, 1994; Culotta and McCallum, 2005).
Formally, this criterion chooses the next examples =* that
satisfies

(6)

x* = arg min{max pp[y; =]}
z yey

Note that z* = argmax,{l — max, pp[y;z]}. Thus,

the least confidence criterion greedily optimizes the error

rate of the Bayes classifier on the distribution pp[-;z]|. In

this section, we use the result in Section 3.3 to prove that



the least confidence criterion near-optimally maximizes the
worst-case version space reduction.

For a policy 7, we define the worst-case version space re-
duction objective as

Hie(m) * min f (27, h)

where f is the version space reduction function defined in
Section 4.2. We note that f satisfies the minimal depen-
dency property. It can also be shown that f is pointwise
monotone submodular, and the least confidence criterion is
equivalent to the criterion in Equation (3). Thus, it follows
from Theorem 3 that the least confidence criterion is near-
optimal with respect to the objective function H). (Theorem
5). See the supplement for a proof.

Theorem 5. Let m be the adaptive policy in 11}, selecting
examples using Equation (6), and 7 be the optimal adap-
tive policy in 11y with respect to H;.. For all k > 0, we
have Hy.(m) > (1 — 1/e)H;.(7%).

S ACTIVE LEARNING WITH GENERAL
LOSS

In this section, let us focus on the maximum Gibbs error
criterion in Section 4.2. The policy Gibbs error objec-
tive Hyipps can be written as Hipns (1) = Epp, [f (2], 1)),
where f is the version space reduction function (Cuong
et al., 2013, sup.). Note that f(z7,h) is the expected 0-1
loss that a random labeling drawn from p, differs from h
on 7. Because of the nature of 0-1 loss, even if the ran-
dom labeling only differs from . on one element of x7, it
is counted as an error.

To overcome this disadvantage, we formulate a new ob-
jective function that can handle an arbitrary general loss
function L : Y* x Y* — R satisfying the following
two properties: L(h,h') = L(k/, h) for any two labelings
hand b’ of X, andif h = b/ then L(h,h’) = 0. For S C X
and h € H, we define the generalized version space reduc-
tion function

fL(S, h) 4 B oy [ L(h, BY) 1 (R(S) # 1'(S))]-

Note that fL(S, h) = Zh’:h(S);ﬁh’(S) po[h,]L(h,h/),
which can be written as

Y wolWIL(h ) = Y
h/

R':h(S)=h'(S)

polh1L(h, h').

If L is the 0-1 loss, i.e. L(h,h’) = 1(h # k'), we have
fo1(S,h) = 320 n(s)2n(s) Poll'], which is equal to the
version space reduction function f(S, h).

Our new objective is to maximize the expected value of the
generalized version space reduction

Hp*(m) & Bpop, [fL (27, 1))

When L is the 0-1 loss, this objective function is equal to
the policy Gibbs error Hginps (7). Thus, we call Hy # () the
generalized policy Gibbs error.

5.1 AVERAGE-CASE CRITERION

To maximize H; °(7), a natural algorithm is to greedily
maximize f7 at each step. Let D be the previously ob-
served partial labeling, this greedy criterion chooses the
next example z* that satisfies

" = arg m;xthNpD [fr(dom(D) U {x}, h)
— fr(dom(D), h)] 7

We call this criterion the average generalized Gibbs error
criterion.

From the result in Section 3.2, if f;, is adaptive monotone
submodular, then using the average generalized Gibbs er-
ror criterion is near-optimal. Theorem 6 below states this

result, which is a direct consequence of Theorem 2.
avg

Theorem 6. Let 7} ° be the adaptive policy in 11, selecting
examples using Equation (7), and 7* be the optimal adap-
tive policy in 11, with respect to H}'®. If fr, is adaptive
monotone submodular with respect to the prior pg, then
HES(x8%) > (1— 1/e) HE ().

Note that if L is 0-1 loss, then fr, is adaptive monotone
submodular with respect to any prior. Unfortunately, in
general, f; may not be adaptive submodular with respect
to a prior py (Theorem 7). See the supplement for a proof.

Theorem 7. Let py be a prior with polh] > 0 for all h.
There exists a loss function L such that fr, is not adaptive
submodular with respect to pg.

In the supplementary material, we also discuss a sufficient
condition for f7, to be adaptive monotone submodular with
respect to pg, and hence satisfy the precondition in The-
orem 6. However, it remains open whether this sufficient
condition is true for any interesting loss function other than
0-1 loss.

5.2 WORST-CASE CRITERION

We have shown in Theorem 7 that f; may not be adaptive
submodular, and thus we may not always have a theoretical
guarantee for the average generalized Gibbs error criterion.
In this section, we will reconsider our objective in the worst
case instead of the average case.

In the worst case, we may want to maximize the objective
function H}°™'(7) 4 miny, fr(z},h). However, using
this objective function may be too conservative since the
generalized version space reduction is computed only from
the losses between the surviving labelings* and the worst-

* The surviving labelings in f1,(S, k) are the labelings consis-
tent with b on S.



case labeling. Instead, we propose a less conservative ob-
jective function based on the losses among all the surviving
labelings. Formally, we define the following fotal general-
ized version space reduction function

tr(S,h) S po[h'| L(W, 1") po[h”]
h' R
> >

Rk (S)=h(S) h':h'(S)=h(S)

p()[h/] L(hl, h//)po[hll}.

Our new objective is to maximize the following function
called the worst-case total generalized policy Gibbs error
TE/orst( 71')

def

m}}ntL(;vZ, h).

To maximize T}, we propose a greedy algorithm that
maximizes the worst-case total generalized version space
reduction at every step. Note that ¢, (.5, h) satisfies the min-
imal dependency property, i.e. its value does not depend on
the labels of X' \ S in h. So, for a partial labeling D, we
have t7,(dom(D),h) = tr(dom(D),D) for any h ~ D.
Using this notation, the greedy criterion for choosing the
next example x* can be written as

x* = arg mgx{gréiarjl[tL(dom(D) U{z},DU{(z,9)})
—tr(dom(D), D)]} (8)

where D is the previously observed partial labeling. We
call this criterion the worst-case generalized Gibbs error
criterion. It can be shown that ¢7 is pointwise monotone
submodular and satisfies the minimal dependency prop-
erty for any loss function L. Furthermore, the criterion
in Equation (8) is equivalent to the criterion in Equation
(3). Thus, it follows from Theorem 3 that this greedy cri-
terion is near-optimal with respect to the objective function
Ty () (Theorem 8). See the supplement for a proof.

Theorem 8. Let w7 be the adaptive policy in IIj, se-
lecting examples using Equation (8), and ©* be the opti-
mal adaptive policy in 11, with respect to T}°™'. We have
Tz’omt(ﬂzorst) > (1 _ 1/6) lel'orst(ﬂ.*)'

It is worth noting that, like ¢, the function f7, is also point-
wise submodular for any loss function L. The proof for the
pointwise submodularity of fy is essentially similar to the
proofs that f and ¢, are pointwise submodular in Theorem
5 and Theorem 8 (see the supplement for a proof of this
claim). However, f; does not satisfy the minimal depen-
dency property. Besides, Theorem 7 also shows that fr,
may not be adaptive submodular. Thus, this is an exam-
ple that a pointwise submodular function is not necessar-
ily adaptive submodular, and we may not be able to use
Golovin and Krause (2011)’s result to obtain a result in the
average case for pointwise submodular functions.

5.3 COMPUTING THE CRITERIA

In this section, we discuss the computations of the crite-
ria in Equation (7) and Equation (8). First, we give two
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propositions below regarding these equations. See the sup-
plement for proofs.

Proposition 1. The selected example x* in Equation (7) is
equal to

argmin Yy Eppipp [L(h, 1) L(h(2) = I (2) = y)].

Proposition 2. The selected example x* in Equation (8) is
equal to

arg min{max Ey, p/pp [L(h, 1)1 (h(z)
=y

From these two propositions, we can compute Equa-
tion (7) and Equation (8) by estimating the expectation
En p~pp [L(R, h') 1(h(z) = B (z) = y)] for each y € V.
This estimation can be done by sampling from the poste-
rior.

We can sample directly from pp two sets H and H' which
contain samples of h and h’ respectively. Then, the ex-
pectation Ep, 1,/ pp [L(R, h') L(h(z) = 1/ (x) = y)] can be
approximated by

] 3 3, M 0106) =

heH h'eH’

Y)-

Note that this approximation only requires samples of the
labelings from the posterior, and we do not need to explic-
itly maintain the set of all labelings which may be exponen-
tially large. In the case when the labelings are generated
by probabilistic models following some prior distribution,
sampling from pp may be difficult. A simple approxima-
tion is to sample H and H' from the MAP model.

6 EXPERIMENTS

Experimental results comparing the maximum entropy cri-
terion, the maximum Gibbs error criterion, and the least
confidence criterion were reported in (Cuong et al., 2013).
In this section, we only focus on the active learning criteria
with general loss functions, and conduct experiments with
two common loss functions used in practice: the Hamming
loss and the F} loss. For two labelings h and k' (viewing
them as label vectors), the Hamming loss is the Hamming
distance between them, and the F} loss is 1 — Fy(h, h’)
where Fy(h, h') € [0,1] is the F; score between h and /’.

We experiment with various binary-class tasks from the
UCI repository (Bache and Lichman, 2013) and the
20Newsgroups dataset (Joachims, 1996). We use the
binary-class logistic regression as our model, and compare
the active learners using the greedy criteria in Section 5.1
and 5.2 with the passive learner (Pass) and the maximum
Gibbs error active learner (Gibbs). The maximum Gibbs er-
ror criterion is estimated from Equation (5) using the MAP



Table 2: AUC for Accuracy and F3; on UCI Datasets

Dataset Accuracy F
Pass Gibbs WorstH AvgH Pass Gibbs WorstF  AvgF
Adult 7481 7394 7781 77.72 82.00 81.12 85.15 84.57
Breastcancer 89.81 8890  90.66 89.96 9342 9280 94.09 9491
Diabetes 64.59 