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Abstract

Probabilistic latent variable models have been
successfully used to capture intrinsic character-
istics of various data. However, it is nontrivial to
design appropriate models for given data because
it requires both machine learning and domain-
specific knowledge. In this paper, we focus on
data with nested structure and propose a method
to automatically generate a latent variable model
for the given nested data, with the proposed
method, the model structure is adjustable by its
structural parameters. Our model can represent
a wide class of hierarchical and sequential la-
tent variable models including mixture models,
latent Dirichlet allocation, hidden Markov mod-
els and their combinations in multiple layers of
the hierarchy. Even when deeply-nested data are
given, where designing a proper model is diffi-
cult even for experts, our method generate an ap-
propriate model by extracting the essential infor-
mation. We present an efficient variational in-
ference method for our model based on dynamic
programming on the given data structure. We ex-
perimentally show that our method generates cor-
rect models from artificial datasets and demon-
strate that models generated by our method can
extract hidden structures of blog and news article
datasets.

1 INTRODUCTION

Probabilistic latent variable models have been successfully
used for analyzing and capturing intrinsic characteristics
of a wide variety of datasets. They are applied to various
tasks such as dimension reduction, clustering, visualization
and cluster matching [14, 28, 16, 15]. However, design-
ing appropriate models for given data is difficult because it
requires machine learning knowledge to formulate models
and derive algorithms, and also domain-specific knowledge

to introduce appropriate latent variables and their depen-
dencies.

In this paper, we focus on data with a nested structure and
aim to automatically generate a latent variable model that is
appropriate to the given nested data. Many data have nested
structures such as hierarchies. A document contains sen-
tences and each of the sentences contains words. Purchase
data consist of purchase histories of many users, where a
user history contains multiple shopping events and a shop-
ping event is represented as a basket containing items that
are purchased at the same time. Also music shows such
hierarchy; many musicians compose music scores by com-
bining multiple phrases, where each of the phrases consists
of musical notes. Such nested data sometimes contain not
only hierarchical information but also sequential informa-
tion, that is, the order of elements in nested groups such as
word order in a sentence. Even though such rich structural
information is given, we do not need to incorporate all of
the information in models. For example, a latent Dirich-
let allocation (LDA) model [7], which is a widely-used
Bayesian latent variable model for text data, assumes a doc-
ument is a bag of words; it ignores word order. In contrast,
a hidden Markov model (HMM), which is the most famous
latent variable model for sequential data, assumes a doc-
ument is a sequence of words but ignores its hierarchical
information. When we design models for such structured
data, we have to extract essential information and reflect
that into models by introducing several modeling assump-
tions.

The main contribution of this paper is threefold. First,
we propose a latent variable model based on a hierarchi-
cal and sequential structure of the given data, where our
model can adjust its model structure by structural param-
eters. By changing the values of structural parameters, it
can represent various models including mixture models,
LDA models, HMMs and their combinations. Second, we
propose a universal variational inference algorithm for our
model based on dynamic programming on the given data
structure. Even if model structures and data structures are
changed, we can efficiently compute variational free energy



(VFE), which is used for a model scoring function [5], by
our universal algorithm. Third, we formulate the model
generation task as an optimization problem for maximiz-
ing VFE with respect to structural parameters. No matter
how deep the input nested data are, our method extracts
the essential information by adjusting model structure. Our
method can generate complex models if necessary. Other-
wise, it generates simple models.

The remainder of this paper is organized as follows. We
first briefly review related work in Section 2. We then intro-
duce an ordered tree representation for nested data in Sec-
tion 3. In Section 4 we propose our latent variable model
and our model generation method. We describe its efficient
variational inference algorithm in Section 5. In Section 6,
we illustrate our method by experiments using artificial and
real-world datasets. Finally, we summarize this paper in
Section 7.

2 RELATED WORK

A number of methods for automatically generating model
strictures from data have been proposed. Structure learn-
ing for Bayesian networks (BNs) [22] is one such example.
A BN defines a joint distribution over random variables by
a directed acyclic graph (DAG) and model parameters. A
DAG defines conditional independencies over random vari-
ables and model parameters define their conditional dis-
tributions. BN structure learning (BNSL) [17] is a prob-
lem to find the DAG that maximizes a scoring function
from a model class. Unfortunately, the problem is gener-
ally NP-hard [8, 9]. Most existing BNSL methods assume
no latent variable or limit the number of latent variables
[5, 24, 26, 27, 20]. Whereas our aim is to obtain appropriate
latent variable models for the given data, the aim of BNSL
is to obtain the exact dependencies of observable variables.
It is intractable to naively apply existing BNSL methods to
our aim because introducing latent variables exponentially
increases the number of candidate model structures and the
computation time of a scoring function. Our method avoids
such intractability by restricting our model class based on
the given nested structure and by introducing a universal
algorithm for efficient score computation on the restricted
model class.

A hierarchical latent class (HLC) model [28] is a tree-
structured BN with latent variables, where its leaf nodes
are observable variables and the others are latent variables.
Learning HLC model structure is similar to our aim, how-
ever, it differs in the following two points. First, our
method assumes that data have nested structure and ex-
ploits the data structure to generate appropriate models.
Second, our method considers both hierarchical and se-
quential dependencies of latent variables. Model structure
generated by our method includes, but are not limited to,
tree structures.

A model generation method based on matrix factorization
has been proposed [12]. The method defines its model class
by using context-free grammar of which grammatical rules
correspond to matrix factorization processes. A sentence
generated by the grammar represents a hierarchical matrix
factorization model. The method assumes that given data
are represented as a single matrix whereas our method uses
data together with its nested structure.

Several latent variable models for nested data have been
proposed. The segmented topic model (STM) [11], which
is a variant of probabilistic topic models [6], assumes that
a document is a collection of segments and each of the seg-
ments is a collection of words. The STM captures cor-
relations of topics over segments and segments over doc-
uments by introducing segment-level and document-level
topic probabilities. The tree-informed LDA (tiLDA) [18],
which is a multi-level LDA model, exploits another type of
hierarchical structure of documents. The tiLDA model as-
sumes that documents are grouped into categories and each
of the categories are also grouped into another categories.
Those models exploit inner-document and outer-document
nested structures, respectively. Our model also copes with
both inner and outer document hierarchies. It additionally
exploits sequential information such as the word and seg-
ment order. By automatically extracting the essential part
of such hierarchical and sequential structures, it generates
appropriate models for the given nested data.

Similarly, latent variable models for sequential data have
been proposed. A hidden Markov topic model (HMTM)
[3], which is a natural extension of LDA models for the
nonexchangeable setting, assumes that word topics are gen-
erated by a Markov chain. Each document has its own
topic Markov chain, however, word emission probabilities
of topics are shared by all documents. A hidden topic
Markov model (HTMM) [13] introduces a Markov chain
to LDA models with a different fashion from HMTM. The
HTMM assumes that words in the same sentence share a
common topic and each of the sentence topics is generated
by a Markov chain. Similar to those methods, our method
can combine LDA models and HMMs. Additionally, our
method automatically chooses appropriate levels in which
Markov chains should be introduced.

3 ORDERED TREE FOR NESTED DATA

We here introduce an ordered tree representation of nested
data. Suppose that nested data D is represented as a pair
(x,T ), where x ≡ (xn)

N
n=1 is a sequence of observ-

able variables and T is an ordered tree representing its
nested structure. An ordered tree T is defined by a triplet
(N, par, sib), where N={0, . . . , N} is node indexes in the
breadth first order (i.e., 0 is a root node), and par : N→N
and sib : N→N define the parent and the previous sibling
of each node, respectively. Thus, par(n) denotes the n’s
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Figure 1: An ordered tree representation of a 3-layered
nested structure.

parent and sib(n) denotes the n’s previous sibling, where
sib(n)=0 denotes that n has no previous sibling. Let D be
the depth of T and dn be that of n. Also let Nd (1≤d≤D)
be a set of nodes n such that dn = d. An observable vari-
able xn is associated with each node n, where variables in
the same depth are assumed to share the same domain. For
simplicity, we focus on the case that xn (n ∈ Nd) has a
discrete domain {1, . . . , Vd}, although our method can be
extended easily to the continuous case, where Vd = 0 de-
notes that n∈Nd has no observation.

We illustrate the ordered tree representation of a collection
of documents with a 3-layered nested structure in Figure 1.
Suppose that the collection contains A documents, where
each document contains B sentences and each sentence
consists of C words. A node in the first layer n∈N1 corre-
sponds to a document, and n∈N2 and n∈N3 correspond
to a sentence and a word, respectively. The tree depth is
D=3 and the tree size is N =A+AB+ABC. Each leaf
node n∈N3 has a corresponding observation xn which is
a term in V3-term vocabulary. Each inter node n ∈ N\N3

have no observation that is denoted by V1=V2=0.

When we design a latent variable model for the above
nested data, we choose essential structural information and
reflect it in the model. In LDA models, for example, only
document-level information is preserved and the other in-
formation (the sentence and word order) is ignored. In
this paper, we aim to automatically extract important infor-
mation in T and generate an appropriate model for given
nested data D.

4 OUR MODEL

In this section, we first describe our latent variable model
M of which dependencies among latent variables are ad-
justable by its structural parameters. We then propose a
local search method to optimize the parameters for given
nested data D. The method generates an appropriate model
structure of M that captures intrinsic characteristics of D.

Table 1: An assumption variable Ad and dependencies.
Ad Explanation Dependency

I-det Index-deterministic zn=n
P-det Parent-deterministic zn=zℓ
N-dep Non-dependent zn ⊥⊥ zℓ, zn ⊥⊥ zm
P-dep Parent-dependent zn ̸⊥⊥ zℓ, zn ⊥⊥ zm
S-dep Sibling-dependent zn ⊥⊥ zℓ, zn ̸⊥⊥ zm
B-dep Both-dependent zn ̸⊥⊥ zℓ, zn ̸⊥⊥ zm

4.1 MODEL DEFINITION

We here describe our model M which is a Bayesian latent
variable model for nested data D = (x,T ). Our model
M is defined by a quadruplet (T ,A,α,β), where T is
the given ordered tree, A is structural parameters which
control dependencies among latent variables, and α and β
are model parameters.

We first introduce latent variables z ≡ (zn)
N
n=1 and struc-

tural parameters A≡ (Ad)
D
d=1, where Ad is an assumption

variable which defines dependencies among latent vari-
ables in the dth layer. Our model M assumes that each
node n∈Nd has a discrete latent variable zn∈{1, . . . ,Kd}.
We define z0=0 for denoting the root 0 has no latent vari-
able. Each observable variable xn is generated by depend-
ing only on the corresponding latent variable zn. Each la-
tent variable zn is generated by depending on latent vari-
ables of n’s parent and sibling zpar(n) and zsib(n). For
simplicity, let ℓ = par(n) and m = sib(n) in this pa-
per. An assumption variable Ad with a discrete domain
{I-det, P-det,N-dep, P-dep, S-dep,B-dep} controls the de-
pendency of zn (n ∈ Nd) as shown in Table 1. I-det and
P-det denote that zn deterministically takes a value n and
zℓ, respectively. N-dep denotes that zn is independent of
other latent variables. P-dep, S-dep and B-dep denote that
zn depends on zℓ, zm and the both, respectively. The struc-
tural parameters A control the entire model structure of M
which represents dependencies among all latent variables
z.

We next introduce model parameters α ≡ (αd)
D
d=1 and

β ≡ (βd)
D
d=1, where αd ≡ (αd,k)

Kd

k=1 and βd ≡ (βd,v)
Vd

v=1
are parameters of Dirichlet distributions for generating
θd,i,j ≡ (θd,i,j,k)

Kd

k=1 and ϕd,k ≡ (ϕd,k,v)
Vd

v=1, respectively.
Here, θd,i,j is a parameter of a categorical distribution for
generating zn (n∈Nd) and ϕd,k is that for generating xn,
that is, θd,i,j,k is a probability of zn = k given zℓ = i
and zm = j and ϕd,k,v is a probability of xn = v given
zn=k. The generation process of (x, z,θ,ϕ) given model
M≡(T ,A,α,β) is as follow.

1. For each depth d = 1, . . . , D and hidden class i =
1, . . . ,Kd−1 and j, k=1, . . . ,Kd

(a) Draw θd,i,j ∼ Dir(αd)
(b) Draw ϕd,k ∼ Dir(βd)



2. For each depth d=1, . . . , D and node n∈Nd

(a) Choose a class zn by

case Ad

when I-det : zn := n

when P-det : zn := zℓ

when N-dep : zn ∼ Cat(θd,0,0)

when P-dep : zn ∼ Cat(θd,zℓ,0)

when S-dep : zn ∼ Cat(θd,0,zm)

when B-dep : zn ∼ Cat(θd,zℓ,zm)

(b) Draw an observation xn ∼ Cat(ϕd,zn)

Here, θd,i,j is a parameter for generating zn (n∈Nd) given
zℓ = i and zm = j, however, we set i= 0 and j = 0 when
zn is independent of zℓ and zm, respectively. The joint
probability p(x, z,θ,ϕ | M) factorizes into

p(x, z,θ,ϕ|M) = p(x|z,ϕ) p(z|A,θ) p(θ|α) p(ϕ|β) ,

and each probability is computed as

p(θ | α) =

D∏
d=1

Kd−1∏
i=0

Kd∏
j=0

Dir(θd,i,j ;αd) , (1)

p(ϕ | β) =
D∏

d=1

K∏
k=1

Dir(ϕd,k;βd) , (2)

p(z | A,θ) =

D∏
d=1

Kd−1∏
i=0

Kd∏
j=0

Kd∏
k=1

θ
cd,i,j,k(A,z)
d,i,j,k , (3)

p(x | z,ϕ) =
D∏

d=1

Kd∏
k=1

Vd∏
v=1

ϕ
cd,k,v(z,x)
d,k,v , (4)

where cd,i,j,k(A, z) and cd,k,v(z,x) are define as

cd,i,j,k(A, z) ≡

|{n∈Nd | zn=k}| Ad=N-dep, i=j=0

|{n∈Nd | zℓ= i, zn=k}| Ad=P-dep, j=0

|{n∈Nd | zm=j, zn=k}| Ad=S-dep, i=0

|{n∈Nd | zℓ= i, zm=j, zn=k}| Ad=B-dep
0 otherwise,

cd,k,v(z,x) ≡ |{n∈Nd | zn=k, xn=v}|.

Here, cd,k,v(z,x) is the count of ϕd,k,v used in the gener-
ating process and cd,i,j,k(A,z) is that of θd,i,j,k.

Our model M includes a variety of well-known existing
models. Given text data x and ordered tree T shown in
Figure 1 as its nested structure, we can represent various
models by adjusting structural parameters A as shown in
Table 2, where the corresponding plate notations are shown
in Figure 2.

Table 2: Example models for 3-layered text data. MMM
denotes a multinomial mixture model. dX, sX and wX de-
note document-level X, sentence-level X and word-level X,
respectively.

A=(A1, A2, A3) Corresponding Model
(1) N-dep, P-det, P-det dMMM
(2) I-det, P-det, P-dep dLDA
(3) I-det, I-det, S-dep wHMM
(4) I-det, S-dep, P-dep sHMM + wMMM
(5) I-det, P-det, B-dep dLDA + wHMM
(6) I-det, B-dep, P-dep dLDA+sHMM+wMMM

4.2 MODEL GENERATION

Given nested data D = (x,T ), we aim to generate the
“best” model M = (T ,A,α,β) for D by optimizing A,
α and β. To define the “best”, a criterion for compar-
ing multiple models is needed. A log marginal likelihood
L[M ] ≡ ln p(x | M) is one of such criteria which mea-
sures how model M fits to the given data x [19, 10]. How-
ever, computing L[M ] is intractable because it requires an
intractable summation

∑
z p(x, z | M). We instead em-

ploy the variational free energy (VFE) [5] F [M ], which
is a lower bound of L[M ]. The definition and an efficient
computation algorithm of F [M ] are described in Section 5.
The algorithm is also used for optimizing model parame-
ters α and β given D and A. Even though VFE F [M ] is
computable, it is still intractable to maximize F [M ] with
respect to A because it requires evaluation of F [M ] for
all possible instantiations for A. We avoid such intractable
evaluation by employing the following local search:

1. Let A s.t. Ad=P-det for all d and evaluate F [M ]
2. Let t := 0 and Bt := {A}
3. Let NBt := all neighbors of A∈Bt

4. Evaluate F [M ] for all A∈NBt

5. Let Bt+1 := the w best structures w.r.t. VFE
6. Terminate if Bt+1=Bt and return 3. otherwise

We initialize the first candidate A as the simplest structure
which contains only deterministic latent variables that is
equivalent to no latent variable model. We then repeat gen-
erating neighbors of current candidates and choosing the
w best structures as new candidates while VFE increases,
where w is the search bandwidth. Here, A′ is a neighbor of
A if there exists exactly one d such that Ad ̸=A′

d.

The above method automatically generates an appropriate
latent variable model M for the given nested data D by
optimizing its structural parameters A and its model pa-
rameters α and β. It can also automatically select an ap-
propriate Kd, which is the number of clusters in the d-th
layer, by running with different Kd and choosing M with
the highest VFE. In the case we have a condition on mod-
els, our method can generate only expected models by skip-
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ping violated models in the search. For example, a model
for the document clustering task should have a latent vari-
able which indicates the cluster index of each document.
Our method can generate a such model by excepting mod-
els which have no latent variable in the document-layer.

5 VARIATIONAL INFERENCE

We here define a variational free energy F [M ] which is
used as a measure how model M fits to given nested data
D. We propose an efficient method for computing F [M ]
that employs a dynamic programming algorithm on T as its
building block. The method is universal because it does not
require change even if model structure A and data structure
T are changed.

5.1 VARIATIONAL FREE ENERGY

Using Jensen’s inequality, we obtain the following lower
bound of log marginal likelihood L[M ],

ln p(x | M) ≥ Eq[ln p(x | z,ϕ)] + Eq[ln p(z | A,θ)]

+ Eq[ln p(θ | α)] + Eq[ln p(ϕ | β)]−H[q]

≡ F [q,M ] ,

where q is a variational distribution such that q(z,θ,ϕ)=
q(z) q(θ) q(ϕ) and H[q] is its entropy. By using the Euler-
Lagrange equation, we obtain

q(z) ∝ exp
(
Eq(ϕ)[ln p(x|z,ϕ)]+Eq(θ)[ln p(z|θ)]

)
, (5)

q(θ) ∝ p(θ | α) exp
(
Eq(z)[ln p(z | A,θ)]

)
, (6)

q(ϕ) ∝ p(ϕ | β) exp
(
Eq(z)[ln p(x | z,ϕ)]

)
. (7)

By iteratively updating q, we can maximize F [q,M ] w.r.t.
q. We can also maximize it w.r.t. model parameters α and
β by fixed point iteration [21]. We use F [M ] to denote
F [q,M ] which is computed by estimated q, α and β.

We next detail these q updates. Because q(θ) and q(ϕ) are
approximations of (1) and (2), we define

q(θ) ≡
D∏

d=1

Kd∏
i=0

Kd∏
j=0

Dir(θd,i,j ;ad,i,j) ,

q(ϕ) ≡
D∏

d=1

K∏
k=1

Dir(ϕd,k; bd,k) ,

where ad,i,j≡(ad,i,j,k)
Kd

k=1 and bd,k≡(bd,k,v)
Vd

v=1 are vari-
ational parameters. By substituting (1)-(4) into (6)(7), their
updates are obtained by

ad,i,j,k = αd,k + Eq(z)[cd,i,j,k(A, z)] , (8)
bd,k,v = βd,v + Eq(z)[cd,k,v(z,x)] . (9)

We also obtain the following updates of q(z):

q(z) ∝

 D∏
d=1

Kd−1∏
i=0

Kd∏
j=0

Kd∏
k=1

θ∗d,i,j,k
cd,i,j,k(A,z)


×

(
D∏

d=1

Kd∏
k=1

Vd∏
v=1

ϕ∗
d,k,v

cd,k,v(z,x)

)
,

where

θ∗d,i,j,k ≡ exp

(
Ψ(ad,i,j,k)−Ψ

(
Kd∑
k′=1

ad,i,j,k′

))
,

ϕ∗
d,k,v ≡ exp

(
Ψ(bd,k,v)−Ψ

(
Vd∑

v′=1

bd,k,v′

))
,

and Ψ(·) is a digamma function. Here, q(z) =
p(z | x,θ∗,ϕ∗)1 holds by the definitions of (3) and (4).

1Even ϕ∗
d,k and θ∗

d,i,j are not a probability vector,
p(z | x,θ∗,ϕ∗) is a probability through the effect of a normaliz-
ing factor p(x | θ∗,ϕ∗)=

∑
z p(x,z | θ∗,ϕ∗).



Thus, expectations in (8) and (9) are computed as

Eq(z)[cd,i,j,k(A, z)] =
∑
n∈Nd

P i,j,k
ℓ,m,n[x,θ

∗,ϕ∗] (10)

Eq(z)[cd,k,v(z,x)] =
∑

n∈Nd:xn=v

Kd−1∑
i=0

Kd∑
j=0

P i,j,k
ℓ,m,n[x,θ

∗,ϕ∗]

(11)

P i,j,k
ℓ,m,n[x,θ,ϕ] ≡ p(zℓ= i, zm=j, zn=k | x,θ,ϕ) .

We propose an efficient dynamic programming method for
computing P i,j,k

ℓ,m,n[x,θ,ϕ] in Section 5.2.

5.2 EFFICIENT PROBABILITY COMPUTATION

For efficient computation of P i,j,k
ℓ,m,n[x,θ,ϕ], we define

Ri,j,k
ℓ,m,n[x,θ,ϕ] ≡ p(zℓ= i, zm=j, zn=k,x | θ,ϕ) .

(12)

Using the above, P i,j,k
ℓ,m,n[x,θ,ϕ] is computed as

P i,j,k
ℓ,m,n[x,θ,ϕ] =

Ri,j,k
ℓ,m,n[x,θ,ϕ]

p(x | θ,ϕ)
, (13)

p(x | θ,ϕ) =
Kd−1∑
i=0

Kd∑
j=0

Ri,j,k
ℓ,m,n[x,θ,ϕ] . (14)

Computing Ri,j,k
ℓ,m,n[x,θ,ϕ] by naively summarizing out

zn′ (n′∈N\{ℓ,m, n}) requires exponential time in N .

We here describe an efficient dynamic programming algo-
rithm for computing Ri,j,k

ℓ,m,n[x,θ,ϕ]. Let Dec(n) be all
descendants of n in T . Also let Sib−(n) and Sib+(n) be
all younger and older siblings of n, respectively. We then
introduce the following four sets, inside set I(n), outside
set O(n), forward set F(n) and backward set B(n):

I(n) ≡ {n} ∪Dec(n) , F(n) ≡
∪

m∈{n}∪Sib−(n)

I(m) ,

O(n) ≡ N\Dec(n) , B(n) ≡
∪

m′∈{n}∪Sib+(n)

I(m′) .

Figure 3 shows examples of those sets of a 3-layered or-
dered tree. Using those sets, a set of all nodes N factorizes
into N=O(ℓ) ∪ F(m) ∪ B(n). For a set C⊆N, we define
xC ≡ (xn)n∈C and zC ≡ (zn)n∈C . Then, Ri,j,k

ℓ,m,n[x,θ,ϕ]
factorizes into

Ri,j,k
ℓ,m,n[x,θ,ϕ] = p

(
xO(ℓ), zℓ= i | θ,ϕ

)
p
(
xF(m), zm=j | zℓ= i,θ,ϕ

)
p
(
xB(n), zn=k | zℓ= i, zm=j,θ,ϕ

)
.

To compute the above, we introduce the following four
probabilities, inside probability In[k], outside probability

On[k], forward probability Fn[i, k] and backward proba-
bility Bn[i, j, k]:

In[k] ≡ p
(
xI(n) | zn=k,θ,ϕ

)
,

On[k] ≡ p
(
xO(n), zn=k | θ,ϕ

)
,

Fn[i, k] ≡ p
(
xF(n), zn=k | zℓ= i,θ,ϕ

)
,

Bn[i, j, k] ≡ p
(
xB(n), zn=k, | zℓ= i, zm=j,θ,ϕ

)
.

The above probabilities can be computed in the following
dynamic programming manner:

In[k] = ϕd,k,vBc[k, 0] , (15)

On[k] =

Kd−1∑
i=0

Kd∑
j=0

On[i, j, k] , (16)

Fn[i, k] = In[k]

Kd∑
j=1

Fm[i, j] θd,i,j,k, (17)

Bn[i, j, k] = In[k]Bm′ [i, k] θd,i,j,k, (18)

where v= xn, d= dn, c is the oldest child of n, m′ is the
next sibling of n and

On[i, j, k] ≡ Oℓ[k]Fm[i, j]Bm′ [i, j]ϕd,k,vθd,i,j,k,

Bn[i, j] ≡
Kd∑
k=1

Bn[i, j, k] .

Finally, the target probability is computed by

Ri,j,k
ℓ,m,n[x,θ,ϕ] = Oℓ[i]Fm[i, j]Bn[i, j, k] . (19)

In summary, the variational free energy F [M ] is computed
by Algorithm 1. When Kd = K for all d, the complex-
ity of this algorithm is O(NK3), however, it decreases ac-
cording to structural parameters A. For example, it be-
comes O(NK2) if A represents an HMM, and also be-
comes O(NK) if A represents an LDA model. Note that
the naive computation for Ri,j,k

ℓ,m,n[x,θ,ϕ] requires expo-
nential time in N but our method is polynomial.

6 EMPIRICAL RESULTS

6.1 ARTIFICIAL DATASETS

We here illustrate that our method is feasible for generat-
ing structures of latent variable models by using artificial
datasets, where correct models which generate the datasets
are known. We designed 12 models with the 3-layered
nested structure T shown in Figure 1 and generated 12
datasets from these models. Each dataset contains L docu-
ments, each document contains L sentences and each sen-
tence contains L words. We set the cluster size of each
depth as K1 = K2 = K3 = 5 and the vocabulary size as
V1=V2=0 and V3=500.
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Figure 3: Inside set I(n), outside set O(ℓ), forward set
F(m) and backward sets B(m′) of a 3-layered ordered tree,
where m′ is the next sibling of n.

Algorithm 1 Variational Free Energy F [M ]

repeat
for n=1, . . . , N do

Compute In[k] for each k by (15)
Compute Bn[i, j, k] for each i, j, k by (18)

end for
for n=N, . . . , 1 do

Compute Fn[i, k] for each i, k by (17)
Compute On[k] for each k by (16)

end for
Compute Ri,j,k

ℓ,m,n[x,θ
∗,ϕ∗] for each i, j, k by (19)

Compute P i,j,k
ℓ,m,n[x,θ

∗,ϕ∗] for each i, j, k by (13)
Compute Eq(z)[cd,i,j,k(z)] for each d, i, j, k by (10)
Compute Eq(z)[cd,k,v(z)] for each d, k, v by (11)
Update ad,i,j,k for each d, i, j, k by (8)
Update bd,k,v for each d, k, v by (9)
Update α and β by fixed point iteration [21]

until a, b, α and β converge
Return F [q,M ] computed by estimated a, b,α,β

We applied our method for the 12 datasets with search
bandwidth w = 3. Table 3 shows the correct models and
generated models. Our method generated the correct mod-
els for all dataset with L = 50. Even the dataset size is
small, it correctly estimated simple models such as MMMs.

6.2 REAL-WORLD DATASETS

To demonstrate its applicability to real data, we applied our
method for two real-world datasets, a Japanese blog dataset
and an English news dataset. In both experiments, we ran
our method with different K = 10, 20, 30 and chose the
model with the highest VFE. We set search bandwidth w=
3 and excluded models of which complexity is O(NK3)
for tractability. We also applied LDA models for the same
datasets with different K = 10, 20, . . . , 100 and compared
VFEs of LDA models and those of generated models.

Table 4: VFEs for the Japanese blog dataset.
Model VFE

user-LDA −5.239×106

article-LDA −5.284×106

Generated model −5.222×106

Table 6: VFEs for the English news dataset.
Model First dataset Second dataset

day-LDA −8.739×106 −4.891×106

article-LDA −8.299×106 −4.609×106

sentence-LDA −8.554×106 −4.842×106

Generated model −7.658×106 −4.555×106

JAPANESE BLOG DATASET. The dataset is a collec-
tion of 100 users’ goo blog [1] articles from April 7th to
June 27th in 2007, where each article is extracted as a se-
quence of nouns and verbs. We filtered out the 100 most
frequent terms as stop words and used the top 5,000 terms
to construct a 3-layered nested dataset consisted of 100
users, 7,687 articles and 731,065 words.

For this dataset, our method generated the same model as
(5) in Figure 2, which is equivalent to an HMTM [3] that is
a combination of a user-level LDA and word-level HMM.
The model is better than LDA models from the aspect of
VFE as shown in Table 4. In the generated model, each
user has a corresponding topic transition matrix but top-
ics are shared by all users. Table 5 shows the ten most
frequent topics and their five most probable words, where
words were translated from Japanese to English. We manu-
ally gave a topic name for each topic. The table shows that
the generated model captured latent topics in the Japanese
blog dataset.

ENGLISH NEWS DATASET. The dataset is a collection
of Reuters’ news articles in 1987 [2]. We extracted articles
from March 1st to 31st and constructed a 4-layered nested
dataset consisting of 29 days, 10,535 articles, 79,155 sen-
tences and 31,057 terms in the vocabulary, where words in-
cluding 0-9 were replaced to “NUM”. We then created two
datasets by extracting the 5,000 most frequent terms: the
first dataset that we did not filter out any words but the sec-
ond one that we filtered the first 100 terms as stop words.
Those datasets contained 1,369,888 and 626,316 words, re-
spectively.

Figure 4 shows plate representations of models generated
by our method. Our method generated a word-level HMM
for the first dataset and a 3-layered MMM for the second
one. Table 6 shows VFEs of the generated models and LDA
models. As shown, our method found better models than
LDA in terms of VFE.

Figure 5 shows the ten most frequent topics, their five most
probable words and the five most probable topic transi-



Table 3: Correct models and generated models with L=10, 30, 50. Incorrect assumptions are colored in red.
Correct Model L=10 L=30 L=50

1. dMMM N-dep, P-det, P-det N-dep, P-det, P-det N-dep, P-det, P-det
2. sMMM I-det, N-dep, P-det I-det, N-dep, P-det I-det, N-dep, P-det
3. dLDA I-det, P-det, P-dep I-det, P-det, P-dep I-det, P-det, P-dep
4. sLDA I-det, I-det, P-det I-det, S-dep, P-det I-det, I-det, P-dep
5. dHMM I-det, P-det, P-dep S-dep, P-det, P-det S-dep, P-det, P-det
6. sHMM I-det, S-dep, P-det I-det, S-dep, P-det I-det, S-dep, P-det
7. wHMM P-det, P-det, P-det N-dep, P-det, B-dep N-dep, P-det, B-dep
8. dHMM + wMMM I-det, P-det, P-dep I-det, P-det, P-dep S-dep, P-det, P-dep
9. sHMM + wMMM P-det, P-det, P-det N-dep, B-dep, P-dep I-det, S-dep, P-dep
10. dLDA + sHMM P-det, S-dep, P-det S-dep, B-dep, P-det I-det, P-det, B-dep
11. dLDA + wHMM P-det, P-det, P-det S-dep, P-det, B-dep I-det, B-dep, P-det
12. sLDA + wHMM + wMMM P-det, P-det, P-det S-dep, B-dep, P-det I-det, B-dep, P-dep

Table 5: The ten most frequent topics and their five most probable words obtained from the Japanese blog data.
zuaw Topic name The five most probable words

24 Verbs 1 sleep, go, try, mind, no
5 Stock market stock, management, company, proportion, market
16 News book, ads, news, US, company
9 Research psychology, perception, research, knowledge, description
28 Animation version, animation, appearance, track, purchase
27 Travel (urban) bus, station, Rahmen, father, taste
12 Travel (nature) blossom, weather, Japanese cherry, park, wind
25 Software case, screen, data, process, layout
19 International news dictionary, multimedia, phraseology, terrorism, high concept
8 Verbs 2 receive, book, visit, try, time

tions over those topics. The generated model captured
frequently-appearing grammatical patterns. A topic tran-
sition (18 → 7) describes a pattern (number → unit), and
({29, 13} → 26 → {17, 22}) describes a pattern (Preposi-
tion (1) & (2)→Article→{Objects, Adjective}). Because
such grammatical patterns commonly appear in every sen-
tences, our method extracted the word-layer and removed
the other layers.

In contrast, our method generated a 3-layered MMM (day-
article-sentence) for the second dataset. This is because
grammatical patterns in the dataset were destroyed by filter-
ing out stop words. The model performed day, article and
sentence clustering; days were grouped into two clusters
and articles and sentences were grouped into 30 clusters.
Table 7 shows the three most probable article and sentence
clusters and the five most probable words. The day clus-
ters shared neither article cluster nor sentence cluster in the
table. Sentence clusters in day cluster 3 describe periodic
financial reports, budgets of IT companies and shareholder
meeting, respectively. Those in day cluster 26 describe
policies of executives, domestic economy and economic re-
lations between Japan and US, respectively. It seems that
day cluster 3 tends to mention about periodical events.

7 CONCLUSION

We proposed a method for generating latent variable mod-
els from nested data. We presented a latent variable model
of which structure is adjustable by its structural parameters.
Our model attempts to optimize the parameters by maxi-
mizing the variational free energy. We derived a universal
variational inference method for our model based on dy-
namic programming on the given data structure. No matter
how deep the input nested data are, our method extracts its
essential information and generates a model with an appro-
priate complexity. We empirically showed that our method
correctly generated model structures by synthetic datasets
and also showed that it extracted hidden structures of blog
and news datasets.

We note a potential direction for future work. We can ex-
tend our model to non-parametric Bayesian setting by re-
placing Dirichlet distributions by HDPs [23]. To the best
of our knowledge, it seems difficult to provide an effi-
cient variational inference method for the extended model
because it subsumes the infinite hidden Markov model
(iHMM) [4] which is a non-parametric Bayesian extension
of HMM. However, we can easily derive a Gibbs sampling
in the same way as that of iHMM. The beam sampling [25]
is an efficient sampling method for iHMM, which com-
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Figure 4: Plate representations of generated models from two English News datasets.

zdasw Topic Name The five most probable words
26 Articles the, a, its, an, this
29 Prepositions (1) in, to, for, on, by
22 Objects company, year, bank, week, government
18 Numbers NUM, two, one, five, three
17 Adjective new, us, first, common, united
14 Verb (1) will, is, would, has, was
13 Prepositions (2) of, in, for, and, from
4 Economic words oil, foreign, trade, exchange, economic
7 Units mln, pct, billion, cts, dlrs
19 Verb (2) said, that, told, added, but
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Figure 5: Obtained topics and topic translations by word-level HMM from the English news dataset.

Table 7: Obtained topics by 3-layered MMM from the English news dataset.
The three most probable clusters The five most probable words

day cluster zd article cluster zda sentence cluster zdas
3 25 6 prior, record, div, pay, qtly

19 revs, oper, note, avg, shrs
29 quarter, earnings, reported, ended, tax

26 27 management, plant, unit, selling, underwriting
22 computer, system, products, software, data
20 owned, subsidiary, unit, plc, agreed

23 5 common, shareholders, dividend, board, record
1 offer, proceeds, stake, common, capital
27 management, plant, unit, selling, underwriting

26 28 16 buffer, strike, minister, party, union
2 president, chief, executive, chairman, officer
11 there, think, don’t, no, do

19 26 world, loans, payments, economic, countries
11 there, think, don’t, no, do
3 tax, growth, rate, budget, deficit

27 9 industry, companies, financial, markets, business
28 japan, japanese, minister, president, reagan
26 world, loans, payments, economic, countries

bines slice sampling and dynamic programming. It would
be interesting to extend it for the extended model by intro-

ducing our dynamic programming algorithm.
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