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Abstract

The identification of eigenvalues and eigenfunc-
tions from simulation or experimental data is
a fundamental and important problem for anal-
ysis of metastable systems, because the domi-
nant spectral components usually contain a lot
of essential information of the metastable dy-
namics on slow timescales. It has been shown
that the dynamics of a strongly metastable sys-
tem can be equivalently described as a hidden
Markov model (HMM) under some technical as-
sumptions and the spectral estimation can be
performed through HMM learning. However,
the spectral estimation with unknown number
of dominant spectra is still a challenge in the
framework of traditional HMMs, and the infi-
nite HMMs developed based on stick-breaking
processes cannot satisfactorily solved this prob-
lem either. In this paper, we analyze the diffi-
culties of spectral estimation for infinite HMMs,
and present a new nonparametric model called
stick-breaking half-weighted model (SB-HWM)
to address this problem. The SB-HWM defines
a sparse prior of eigenvalues and can be applied
to Bayesian inference of dominant eigenpairs of
metastable systems in a nonparametric manner.
We demonstrate by simulations the advantages of
applying SB-HWM to spectral estimation.

1 INTRODUCTION

In a variety of scientific areas, we are confronted with the
task of analyzing and modeling a complex system which
can be described as a Markov process {x;} with time evo-
lution equation
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where z; denotes the system state at time ¢, € is the state
space, p; represents the probability density function of zy,
and P represents the Markov propagator. For many real-
world physical and chemical systems, e.g., conformational
transitions in macromolecules (Noé and Fischer, 2008), au-
tocatalytic chemical reactions (Biancalani et al., 2012) and
climate changes (Berglund and Gentz, 2002), it is com-
mon and natural to further assume that {z;} is a time-
reversible and metastable process. The reversibility means
that p(z; = o', 244r = @) = plar = 2,044, = 2)
and generally arises from the time symmetries of classi-
cal mechanics, thermodynamics and quantum mechanics,
and the metastability of a dynamical system means that the
state space of the system can be decomposed into a set of
macrostates called metastable states so that the local equi-
librium within a metastable state can be reached quickly
and the transitions between different metastable states can
only be observed on slow timescales. A large number of
recent studies in statistical physics indicate that the dom-
inant spectral components (or called dominant eigenpairs,
i.e., the largest eigenvalues and the associated eigenfunc-
tions) of the Markov propagator is a key to understand and
characterize such a process, because they can provide a lot
of essential and useful information for the computation of
ensemble averages and correlation functions (Noé et al.,
2011), detection of spatial structures of metastable states
(Deuflhard and Weber, 2005), choice of reaction coordi-
nates (Rohrdanz et al., 2011; Perez-Hernandez et al., 2013),
and construction of low-dimensional approximate models
(Kube and Weber, 2007; Noé and Niiske, 2013).

However, directly solving the eigenvalue problem of the
Markov propagator is generally impossible except for some
extremely simple cases (e.g., Ornstein-Uhlenbeck process),
and the dominant spectral components can only be esti-
mated from simulation or experimental data through sta-
tistical inference and numerical computation. The most



popular and successful method for the spectral estimation
is the Markov state model (MSM) method (Prinz et al.,
2011; Djurdjevac et al., 2010), which discretizes the state
space into a set of discrete bins and calculates the dom-
inant spectral components in a finite element manner by
assuming transitions between the bins are Markovian. Ob-
viously, the main difficulty of this method is the choice of
the discretization. On the one hand the Markov assump-
tion will be severely violated if the discretization is too
coarse, and on the other hand too many bins may cause
the problem of “curse of dimensionality” in the estimation
of transition probabilities. A more general method is the
variational method (Noé and Niiske, 2013; Niiske et al.,
2013), which allows one to perform the spectral estima-
tion by using “soft bins” defined by a set of smooth basis
functions instead of the “crisp bins” used in MSMs. Nu-
merical experiments show that the variational method can
achieve more accurate estimation than the MSM method
with the same number of bins. However, there is no sys-
tematic algorithm for the choice of basis functions, and the
basis function set can only be determined by trial and er-
ror in practice. Moreover, in some literature, the diffusion
maps is used to identify dominant spectral components in
a nonparametric manner by treating each sample point as a
discrete bin (Rohrdanz et al., 2011; Ferguson et al., 2011),
but this method is applicable only if the Markov propagator
is defined by a Brownian dynamics.

In (Noé et al., 2013; Prinz et al., 2014), a novel frame-
work call projected Markov model (PMM) is proposed
for spectral analysis of metastable processes without the
Markov assumption on discrete bins. Within this frame-
work, it is shown that if a metastable Markov process con-
tains only m nonzero eigenvalues then the corresponding
coarse-grained dynamics on the space of discrete bins is
equivalent to an m-state hidden Markov model (HMM),
and the equivalence is independent of the choice of the dis-
cretization. Then HMM learning methods can be utilized
to identify dominant eigenvalues and projected eigenfunc-
tions efficiently and effectively even in the case that the
investigated system is only experimentally observable and
some important dimensions of the system state cannot be
directly observed. (See more details in Subsection 2.1.)
The main disadvantage of the PMM approach is that the
estimation performance strongly depends on the choice of
m, and a small change of the value of m may lead to a great
error on the estimation of spectral components because of
the orthogonality of eigenfunctions (Noé et al., 2013).

The aim of this paper is to propose an infinite HMM
based method to solve the spectral estimation problem of
metastable processes with unknown dominant spectra. In-
finite HMMs (Teh et al., 2006; Teh and Jordan, 2010; Pais-
ley and Carin, 2009; Fox et al., 2011) are a generalization
of classical HMMs, which contains infinite hidden states
and provide a powerful tool for nonparametric dynami-

cal modeling of sequential data. In contrast with classi-
cal HMM:s, infinite HMMs encourage sparse utilization of
infinite state sets through defining suitable prior models,
and can be used to infer both model parameters and state
numbers from observation data in a pure Bayesian man-
ner. However, our investigation (see Section 3) shows that
a sparse prior on hidden states cannot guarantee that the
eigenvalue set also has a sparse structure, and the spec-
tral estimation is an “ill-posed” problem for the existing
infinite HMMSs. In this paper, we construct a new infi-
nite HMM named stick-breaking half-weighted model (SB-
HWM), which has a sparse prior distribution on eigenval-
ues and tends to approximate the underlying dynamics of
an unknown system with a small number of dominant spec-
tral components. Moreover, we develop a sampling infer-
ence algorithm for applying SB-HWMs to Bayesian non-
parametric inference of spectral components.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the relevant mathematical background
on PMMs and infinite HMMs, then Section 3 outlines the
Bayesian nonparametric framework for solving the spectral
estimation problem and explains the reason why the exist-
ing infinite HMMs cannot be directly applied. In Section
4 we introduce the SB-HWM and its sampling inference
algorithm. Section 5 demonstrates through simulations the
effectiveness of the proposed model and algorithm.

2 BACKGROUND

2.1 COARSE-GRAINED DYNAMICS AND
PROJECTED MARKOV MODELS

Let {2} be a Markov process with propagator P and state
space Q as in (1) and {y; } is the corresponding observation
process obtained from the spatial coarse-graining

Pr(y=klzy=2)=xx(x), k€O (2)

where O = {1,..., K} denotes the discrete observation
space and i () denotes the observation probability func-
tion for the observed value k. Often, the coarse-graining
is employed by the Galerkin discretization and {x (z)} is
a set of indicator functions with each k representing a fi-
nite element space {z|x € Q, xx (x) = 1}. But in some
practical cases, e.g. where {y;} obtained from noisy mea-
surements, each Xy (x) is a continuous probability density
function and characterizes a soft finite element space.

It is obvious that (1) and (2) is in fact an HMM, but it is in-
feasible to reconstruct P from {y;} by direct statistical in-
ference because of the continuity of €2 and the complexity
of the dynamics of {x;} in general cases. In order to over-
come this difficulty, the PMM (Noé et al., 2013) provides a
low-dimensional approximation of the coarse-grained dy-
namics based on the following metastability assumption:

Assumption 1. {x;} is ergodic and reversible w.rt. the



unique stationary distribution p (x), and there is a T’ such
that P (') has only m eigenvalues which are not close to
0.

Note that this assumption holds for most practical
metastable systems and m is usually a small number de-
pends on the number of metastable states in €2.! Under this
assumption, we can conclude that P (7) is a compact and
self-adjoint operator w.r.t. the inner product inner product
(,+) 1 defined by

<u1’“2>,rl :/de 3)

and the dynamics of {x;} can be decomposed as

m
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with
i (1) = exp (—K;T) (5)

Here \; (7) denotes the i-th largest magnitude eigenvalue
of P (7) with eigenfunction ¢; and decay rate k; > 0 (k1 =
0 < K2 and ¢1 = p due to the ergodicity). The operator
Prast (7) consists of spectral components of P (7) which
decay to zero quickly and || Prst (7)|| = 0 for 7 > 7.
Omitting the second term on the r.h.s. of (4), the correlation
matrix C (n7) = [¢;; (n7)] = [Pr(ye = ¥, Ytgnr = J)] of
{y+} can be decomposed as

C(nt)=QA(1)" QT (6)

where A (7) = diag(A (7),..., A\ (7)) contains the
dominant eigenvalues of P (7), and the i-th column of
Q € REX™ g the i-th projected eigenfunction

ai = / xi (@) i (2) de, .., / yi () i (2) dx)T(7)

Therefore, we can characterize the coarse-grained dynam-
ics of {y;} by low-dimensional PMM variables {Q, A (7)}
on a large timescale 7 > 7'.

It is important to point out that we can also get a sim-
ilar approximation of C (n7) by using a m-state HMM.
Assume that {y;} are observations of an HMM with hid-
den states {s:}, state set {1,...,m}, transition matrix
A = [a;5] = [Pr(si4- = j|s¢+ = 1)] and observation ma-
trix B = [b;;] = [Pr (y: = j|s; = 1)), then C (n7) can be

!Generally speaking, a stochastic system with m metastable
states only has m eigenvalues which are significantly larger than
zero on a large timescale. It is worth pointing out that this assump-
tion of sparse spectrum is a very important basis in the research of
metastability (see, e.g., (Deuflhard and Weber, 2005; Djurdjevac
etal., 2010; Noé and Niiske, 2013; Prinz et al., 2014))), and a large
number of studies have shown the validity of this assumption for
common physical processes which exhibits metastability.

expressed as

C (n1) BTdiag (7w) A"B

(BTL) A" (BTL)" (8)

under the condition? that A is a reversible transiNtion

matrix w.r.t. the stationary distribution 7, where A is
a diagonal matrix containing eigenvalues of A, L con-
sists of left eigenvectors of A with LTA = ALT and
L7diag () 'L = I, and I denotes the identity matrix.
Based on the similarity between (6) and (8), the PMM the-
ory provides the following conclusion: Under the metasta-
bility assumption (Assumption 1) with || Pgast (7)]| = 0 and
some technical assumptions, the dynamics of {y: } is equiv-
alent to a m-state HMM with a reversible transition ma-
trix. Thus, if a suitable m is given, we can utilize HMM
learning algorithms to efficiently estimate the dominant
eigenvalues and projected eigenfunctions of P (7) from
{y;} with Q = BTL and A(7) = A. However, the
choice of m is still an unsatisfactorily solved problem for
the PMM method, and the numerical experiments in (Noé
et al., 2013) show that the estimation results of the PMM
method is very sensitive to the value of m.

2.2 STICK-BREAKING PROCESSES AND
INFINITE HIDDEN MARKOV MODELS

Roughly speaking, a stick-breaking process (SBP) (Ish-
waran and James, 2001) is a prior for discrete distribu-
tions, and the realization of an SBP with parameters o', «
and base distribution Gy can be expressed by the following
probability density function:

G = i wi(Sgi (9)
i=1

where dy denotes the Dirac point measure concentrated
on 6, 6; is the i-th component of the discrete distribu-

tion with 6; id Go, and w; denotes the corresponding
weight which are drawn by w; = V; H;;ll (1-V;) and
v, i Beta (a/, ). Obviously, the SBP model is a gen-
eralization of the finite-dimensional Dirichlet distribution
(Gelman et al., 2003), and allows one to easily construct
discrete distributions with infinite components. For conve-
nience of computation and notation, in this paper we only
consider a special class® of SBPs with o = 1, and denote
by DP (a, Gp) and GEM («) the prior distributions of G
and {w;} defined in (9).

The SBP model provides a powerful and flexible tool for
nonparametric estimation of multi-modal mixture mod-
els, and can be applied to building HMMs with infinite

This condition means diag (7) A is a symmetric matrix,
which is a sufficient condition for reversibility of {y:}.

3An SBP with o/ = 1 is equivalent to a Dirichlet process
(Ferguson, 1973).



states for sequential statistical modeling. The most com-
monly used infinite HMM is the HDP-HMM (Teh et al.,
2006), which constructs prior distributions of the infinite-
dimensional transition matrix A = [a;;] and observation
matrix B = [b;;] by organizing multiple SBPs in a hierar-
chical structure as

Gi = Z;}il aijéb,i lfl\(‘i DP (04, Go)

where b; denotes the ¢-th row of B and represents the ob-
servation probability distribution of the i-th state, H rep-
resents the prior distribution of each b; and is usually a
Dirichlet distribution, and «,~ are hyperparameters. In
(Fox et al., 2011), a modified HDP-HMM called “sticky
HDP-HMM?” is proposed to encourage large self-transition
probabilities and and avoids “unphysically” fast switching
between different states, which can be expressed as

Go = 220:1 Brdb,  ~
ind
Gi = Zjoil aij(gb,; ~

DP (v,H)
DP <a+/<;,G((f’)> an

with
aGo + Kp,

G(i) _
0 a+ kK

(12)
where x > 0 is the sticky factor and lim,_, o, a;; = 1. Fur-
thermore, it is worthwhile to point out that for most of the
SBP based infinite HMMs, including HDP-HMM, sticky
HDP-HMM and stick-breaking HMM proposed in (Paisley
and Carin, 2009), the infinite-dimensional prior distribu-
tions can be approximated by high- but finite-dimensional
ones for convenience of implementing sampling inference.

3 BAYESIAN NONPARAMETRIC
FRAMEWORK FOR SPECTRAL
ESTIMATION

The main purpose of this paper is to develop a
Bayesian nonparametric framework for spectral estimation
of metastable Markov processes with unknown number m
of dominant eigenpairs. In the rest of paper, unless other-
wise stated, the lagtime 7 is set to be fixed, and {z;} and
{y;} are separately defined as {x,,, }_, and {y,, }]_,.

Suppose that {z;} is a metastable process with the avail-
able observation process {y;} as described in Subsection
2.1 and {z;} satisfies Assumption 1. Based on the discus-
sion in Section 2, the Bayesian estimation of the ¢-th largest
eigenvalue \; and the corresponding projected eigenfunc-
tion q; of the Markov propagator P (7) of {z;} can be
achieved by the following steps with m not given a pri-
ori: First, the dynamics of {y;} is described by an infinite
HMM consisting of a infinite-dimensional transition matrix
A and observation matrix B with prior p (A, B). Second,
a large number of samples {(A*) B(*))} of (A, B) are

drawn from the posterior distribution

p (A, B[{y:})

o p(A,B) Y p({s:}A)p ({ye}l{s:},B) (13)
{s:}

where s; denotes the discrete hidden state of the infinite
HMM at time ¢. Finally, the i-th eigenvalue )\Ek) and left

eigenvector lgk)T of A (%) are calculated for each k such that
the posterior distribution of (\;,q;) can be approximated

by the ensemble {()\Z(-k), qz(-k))} with qz(-k) = B(k)le('k)~

It is natural for us to utilize one of infinite HMMs such as
the HDP-HMM and sticky HDP-HMM mentioned in Sub-
section 2.2 to design the prior distribution of (A, B) within
the above framework. However, the following simple ex-
ample shows that the existing SBP based infinite HMMs
are not applicable to the spectral estimation problem.

Example 2. Let {s;} = {s,.}%% be a realization of a
reversible 3-state Markov chain with transition matrix

0.8462 0.0769 0.0769
0.1250 0.7500 0.1250 (14)
0.1818 0.1818 0.6364

Ay =

It is clear that {s;} is a Markov chain with large self-
transition probabilities and has only three nonzero eigen-
values. We use the prior models of infinite-dimensional
transition matrices defined in the HDP-HMM and sticky
HDP-HMM to approximate the first 5 eigenvalues of {s;}
based on the posterior distribution

p(Al{st}) o p(A)p({si}|A)
1000
< p(A) [[ asp s, (15)

Fig. 1a illustrates the estimation results obtained by the
Markov chain Monte Carlo (MCMC) sampling. It can be
observed that both the HDP-HMM and the sticky HDP-
HMM give poor estimates of eigenvalues and fail to detect
the spectral gap between A3 and 4.

In a strict sense, the estimation problem in Example 2 is
not an “HMM problem” since the hidden state sequence
{s:} is exactly known, rather, it is an effective toy example
for illustrating the difficulty of nonparametric spectral esti-
mation for the existing infinite HMMs. Roughly speaking,
each infinite HMM provides a “sparse” prior distribution
of the stationary distribution 7w = [;] of the transition ma-
trix A, which means for most samples of 7 we can find a
small set S of hidden states such that Zl ¢s i 0. Thus,
there are only a small number of distinct hidden states that
can be detected by the Bayesian inference in general al-
though the prior model contains infinite states. However,
the sparsity of 7r cannot guarantee the sparsity of the eigen-
value set, because the transition dynamics between hidden
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Figure 1: Estimation results of the first 5 eigenvalues of
{s:} based on different prior models of A, where error bars
represent one standard deviation confidence intervals, and
dashed lines represent the estimation results obtained by as-
suming that A is a transition matrix with size 3 x 3 and the
prior of each row of A is Dir(1/3,1/3,1/3). Truncated-
model-based samplers (see Subsection 4.3 and (Fox et al.,
2008)) are applied to sampling A of infinite HMMs, which
approximate A by a finite-dimensional matrix with size
20 x 20, and the posterior means and standard deviations
are calculated from 5000 MCMC samples with 5000 burn-
in samples.

states with small stationary probabilities may also contain
large eigenvalues. This is also the reason why the infinite
HMMs overestimate the eigenvalues in Example 2. (In fact,
for any stationary distribution 7t and = > 0 we can con-
struct a sequence of matrices {A(¥)} which are reversible
w.r.t. v and satisfy limg_, o /\Ek) — 1. See the supple-
mentary material for details.) Note that in contrast with
the HDP-HMM, the sticky HDP-HMM encourages longer
residence time for each state and tends to generate more
“pseudo-dominant eigenvalues”, so it performs worse than
the HDP-HMM in this example. Furthermore, it is difficult
for both HDP-HMM and sticky HDP-HMM to incorporate
the reversibility constraint.

In order to overcome disadvantages of existing infinite
HMMs in the application of spectral estimation, we present
in next section a novel infinite HMM, which approximates
the “half-weighted matrix” instead of the transition matrix
in a nonparametric way and can provide a sparse prior for
eigenvalues.

4 STICK-BREAKING HALF-WEIGHTED
MODELS

4.1 HALF-WEIGHTED MATRICES

Before developing our infinite HMM for spectral estima-
tion, we first introduce the definition and some important
properties of half-weighted matrices for the purpose of self-
containedness. For a Markov chain with transition matrix
A = [a;;] and stationary distribution 7w = [m;], the half-

weighted matrix H = [h;;] is defined by*
H = diag (ﬂ')% Adiag (71')7% (16)

(Note dimensions of A, 7 and H may be infinite here.)

The following two theorems summarize important proper-
ties of the half-weighted matrix and provide a criterion for
checking if a matrix is a valid half-weighted matrix. (The
proofs are in the supplementary material.)

Theorem 3. If A is a reversible and positive transition
matrix and all eigenvalues {\;} of A are square summable,
then (1) H is a positive and symmetric matrix. (2) |H|| . <
oo. (3) H and A have the same eigenvalues, and the
i-th eigenvector ; of H and the i-th left eigenvector 1;

of A satisfy v; = diag (71')7% L. (4) X2, A\ <
2

Zi>mvj>m, h3; for all m > 1.

Theorem 4. If H is a positive and symmetric matrix with

|H|| . < oo, and the spectral radius of H is 1, then H is a
half-weighted matrix of a Markov chain.

According to (16), the likelihood of a half-weighted matrix
H of a given state sequence {s;} = {sn 1 is

N

p({s}H) = p(s0) /225 T] by (D)

S0

n=1

From the above, it can be seen that the half-weighted ma-
trix H can be used to describe the dynamics of state tran-
sitions instead of A, and H is more numerically stable for
eigenvalue decomposition than A due to the symmetry of
H. Moreover, it is interesting to observe that (17) is in fact
a Boltzmann chain model (Saul and Jordan, 1995) with the
transition energy from state 4 to state j being — In h;;.

4.2 MODEL DEFINITION

From the fourth property of half-weighted matrices stated
in Theorem 3, it can be seen that if a Markov chain has
a half-weighted matrix with all elements except the ones
in a small number of rows and columns are close to zero,
then there are only a few eigenvalues of the Markov chain
that can be significantly larger than zero. This suggests a
natural way of constructing a prior distribution over infinite
HMMs which encourages the sparsity of eigenvalue sets
and satisfies the reversibility.

Based on the above discussion, we now propose the fol-
lowing infinite HMM called stick-breaking half-weighted
model (SB-HWM) for spectral estimation:

1._
H = -H

T
B = (bl,b],..)T (18)

“The definition of half-weighted matrix is in fact a discrete

version of the “half-weighted correlation density” proposed in
(Noé and Niiske, 2013) for analysis of Markov processes.



with

w=[w;] ~ GEM(ay)
Vi % Gamma (ay,By), fori>j
Yii = Yijs fori < j
wd % Gamma (ova, Ba)
H=[hy] = [yj(ww+ww! 1L,-;)] (19
and
b; < Dir (ay, ..., @) (20)

where r denotes the spectral radius of the “unnormalized
half-weighted matrix” H, (v, @y, By, @ta, Ba, ) are hy-
perparameters, and it is easy to verify by Theorem 4 that the
realization of H is a valid half-weighted matrix with prob-
ability 1. Note that H can be expressed in a more compact
form as

H=To (WwT + diag (W o Wd)) 2D

where T' = [v;], w? = [wd] and o denotes the element-
wise product. It can be seen that w employs a “tem-
plate vector” to encourage rows and columns of the half-
weighted matrix to have the similar sparse structures’. Fur-
thermore, it is known that for a metastable Markov pro-
cess, the hidden states of the equivalent HMM mentioned in
Subsection 2.1 often have long residence times since they
arise from metastable states of the original process (Noé
etal., 2013). So we use w to enhance probabilities of self-
transitions of hidden states, which plays the similar role as
the sticky factor « in (11). The following theorem gives a
theoretical description of the sparsity of 7r and eigenvalue
set {\;} in the SB-HWM (see the supplementary material
for the proof):

Theorem 5. For an SB-HWM (H,B) generated by the
prior defined by (18)-(20), the i-th largest magnitude eigen-
value \; and the stationary probability m; of the i-th

hidden satisfy E[|\;|] = C)<(ﬁﬁ@)

3) and E[m;] =
O((lj_‘aw)é> as i — oc.

As a comparison, we also apply the SB-HWM to the data in
Example 2 and the estimation results are shown in Fig. 1b.
(See Subsection 4.3 for the sampling algorithm.) It can
be seen that the SB-HWM achieves the similar estimation
performance as the HMM with state number given, and the
correct number of dominant spectral components can be
easily obtained from samples of the SB-HWM.

SFor example, if w; is about zero, the elements in the i-th row
and column of H will also be close to zero with high probabilities.

4.3 SAMPLING INFERENCE

For convenience of computation, we first construct a trun-
cated model to approximate the SB-HWM by replacing the
prior distribution of w in (19) with the following truncated
SBP prior (Ishwaran and James, 2002):

1—1
w =V, [[(1-y) (22)
j=1
with )
VilflvdBeta(l,oz), i<L 23)
V=1, i=1L

The truncated model is obviously a finitt HMM with L
states since w; = 0 for ¢ > L, and according to The-
orem 5, the influence of the truncation on the dynamics
of SB-HWM is slight if L is sufficiently large®. Then
the Markov chain Monte Carlo approach can be utilized
to draw samples of (H,B) from the posterior distribu-
tion p (H,B|{y:}) based on the truncated prior. Con-
sidering that the presented prior distribution of H is not
a conjugate distribution for the state sequence, here we
combine the Metropolis-within-Gibbs algorithm with the
block sampling algorithm of classical HMMs to generate
samples (see the supplementary material for details) based
on the assumption that {s;} is a stationary process, i.e.,

p (50) = Tsg-
5 APPLICATIONS

In this section, we demonstrate the performance of the SB-
HWM based Bayesian spectral estimation method on three
examples of stochastic systems including an HMM, a dif-
fusion process governed by a Brownian dynamics and the
molecular dynamics of alanine dipeptide. The detailed set-
tings of simulations and estimation algorithms are provided
in the supplementary material.

5.1 HMM DATA

Here we apply the SB-HWM to the simulation data gener-
ated by a 3-state HMM with lagtime 7 = 1 and 8, and com-
pare its performance with HDP-HMM and sticky HDP-
HMM. Estimation results are summarized in Fig. 2. Ob-
viously, both HDP-HMM and sticky HDP-HMM severely
overestimate the eigenvalues and result in large errors in es-
timation of projected eigenfunctions, because their samples
contain a lot of “pseudo-dominant spectral components” as
mentioned in Section 3. (All the three models achieve small

8 According to our experience, the empirical performance of
truncated SB-HWMs is not sensitive to the choice of L if it is
larger than twice or three times of the number of the dominant
eigenvalues. We simply set L to be 20 in experiments of this
paper, and the theoretical analysis of the truncation error will be
published elsewhere.
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Figure 2: Infinite HMMs applied to data from an HMM.
(a,b) Estimates of the first 6 eigenvalues with 7 = 1 and
8, where error bars represent one standard deviation confi-
dence intervals. (c,d) Estimation errors of the first 3 pro-
jected eigenfunctions with 7 = 1 and 8, where the error
between the estimate q; and the true value q; is defined by

Héli _qi“'

estimation errors on q; as it can easily be estimated as the
stationary distribution of {y; }.) Of the above three models,
only the SB-HWM provides accurate estimates of eigenval-
ues and dominant eigenfunctions, which allows us to cor-
rectly detect the spectral gap and total number of dominant
spectral components. Furthermore, we apply a specific SB-
HWM with w¢ = 0 for all i to the HMM data in order to
verify the usefulness of the sticky term in (19), and the esti-
mates obtained by the non-sticky SB-HWM are also shown
in Fig. 2 (see green lines and bars). It can be observed that
the estimates of projected eigenfunctions obtained by the
non-sticky SB-HWM are much worse than that obtained by
the proposed SB-HWM and the non-sticky SB-HWM fails
to identify the third dominant spectral component when ap-
plied to the HMM data with 7 = 8. The main reason for
the poor performance of the non-sticky SB-HWM is that
it tends to underestimate residence times of hidden states
which are key parameters affecting the spectral properties
especially for HMMs of metastable systems. (Note that
a;; = O(w?) as i — oo in the non-sticky SB-HWM,
whereas a;; = O(w;) in the SB-HWM.)

5.2  BROWNIAN DYNAMICS DATA

In this subsection, we consider a two-dimensional system
of Brownian dynamics on the domain 2 = [-2,2] x

[
N N (2]

o

Figure 3: Illustration of the potential function and obser-
vation model of a Brownian dynamics system, where each
grid represents a bin of the observation model.
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Figure 4: Infinite HMMs and an MSM applied to data from
a Brownian dynamics simulation. (a) Estimates of the first
6 eigenvalues, where error bars represent one standard de-
viation confidence intervals. (b) Estimation errors of the
first 3 projected eigenfunctions.

[—1.5,2.5] with a three-well potential and a Galerkin dis-
cretization observation model which are depicted in Fig. 3.
The three potential wells implies that the system contains
the same number of metastable states and dominant spec-
tral components. Fig. 4 plots spectral estimation results ob-
tained by the SB-HWM, HDP-HMM and MSM, where the
MSM estimates spectral components by simply assuming
that each bin in Fig. 3 is a discrete state in a Markov chain.
It is obvious that the discrete bins cannot accurately cap-
ture boundaries between the metastable states in this exam-
ple, and the poor coarse-graining causes large estimation
errors of eigenvalues. (The detailed theoretical analysis on
the relationship between the spectral estimation error and
the choice of the discretization is reported in (Sarich et al.,
2010).) From Fig. 4, we can also see that the HDP-HMM
performs even much worse than the simple MSM, which
again demonstrates the difficulty of spectral estimation for
the existing infinite HMMs. The SB-HWM significantly
outperforms the other two models on the spectral estima-
tion in this example.



Figure 5: Illustration of the structure of alanine dipeptide

5.3 MOLECULAR DYNAMICS DATA

Alanine dipeptide (sequence acetyl-alanine-methylamide)
is a small molecule which consists of two alanine amino
acid units. The structural and dynamical properties of
this molecule have been thoroughly studied, and it is well
known that the configuration space of the alanine dipep-
tide can be conveniently described by two backbone dihe-
dral angles (see Fig. 5) and contains three metastable states
(see Fig. 6). We utilize the SB-HWM, HDP-HMM, 5-state
MSM and 23-state MSM to perform the spectral estima-
tion based on a molecular dynamics simulation with length
0.05 millisecond, where the discretization of all models
are designed by using the kmeans algorithm and the first
three models share the same discretization shown in Fig. 6.
Moreover, for convenience of comparison, we construct a
very finely discretized MSM with 129 states to estimate
spectral components from a molecular dynamics simula-
tion with length 1 millisecond, and use the correspond-
ing estimates as “true values” in this example. It can be
observed from Fig. 7 that the HDP-HMM cannot provide
any valuable information on spectral components in this
example except the first component, and the SB-HWM
with observation space {1,...,5} obviously outperforms
the MSMs with 5 states and 23 states.

Fig. 8 shows the estimated eigenfunctions calculated ac-
cording to the estimated projected eigenfunctions provided
by the SB-HWM and 129-state MSM respectively. (The
calculation details are give in the supplementary material.)
By comparing them, it is interesting to note that the SB-
HWM is able to well reconstruct dominant eigenfunctions
in a low-dimensional function space, which also demon-
strates the effectiveness of the proposed spectral estimation
method.

6 CONCLUSION

We introduce in this paper a novel infinite HMM, “stick-
breaking half-weighted model” (SB-HWM) for identifica-
tion of dominant spectral components of metastable sys-
tems. The main idea is to construct a SBP based infinite-
dimensional half-weighted matrix to describe transition dy-
namics of hidden states. In contrast with the other infinite
HMMs, the SB-HWM provides a sparse prior on eigen-
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Figure 6: Free energy landscape in the state space of ala-
nine dipeptide, where each grid represents a bin of the ob-
servation model.
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Figure 7: Infinite HMMs and MSMs applied to molecu-
lar dynamics data. (a) Estimates of the first 6 eigenval-
ues, where error bars represent one standard deviation con-
fidence intervals. (Note the 5-state MSM has at most 5
nonzero eigenvalues.) (b) Estimation errors of the first 3
projected eigenfunctions.
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Figure 8: Estimates of the first three eigenfunctions

l1,12,13. (ac,e) Estimates obtained by the SB-HWM.
(b,d,f) Estimates obtained by the 129-state MSM.

values so that both the values and the numbers of dominant
spectral components can be estimated by the Bayesian non-
parametric inference. Furthermore, a truncated approxima-
tion based sampling inference algorithm for SB-HWMs is
developed. Interesting directions of future research include
developing a more efficient sampling algorithm and extend-
ing the algorithm to non-reversible systems.
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