
MEMR: A Margin Equipped Monotone Retargeting Framework for
Ranking

Sreangsu Acharyya ∗

Dept. of Electrical Engineering
University of Texas Austin.

Joydeep Ghosh
Dept. of Electrical Engineering

University of Texas Austin.

Abstract

We bring to bear the tools of convexity, mar-
gins and the newly proposed technique of
monotone retargeting upon the task of learn-
ing permutations from examples. This leads
to novel and efficient algorithms with guaran-
teed prediction performance in the online set-
ting and on global optimality and the rate of
convergence in the batch setting. Monotone
retargeting efficiently optimizes over all pos-
sible monotone transformations as well as the
finite dimensional parameters of the model.
As a result we obtain an effective algorithm
to learn transitive relationships over items.
It captures the inherent combinatorial char-
acteristics of the output space yet it has a
computational burden not much more than
that of a generalized linear model.

1 INTRODUCTION

Many applications require items to be ordered cor-
rectly. Prototypical examples of such applications are
information retrieval and recommender systems. In
most cases, however, the quality measure that actu-
ally defines the transitive relation of interest can be
accessed only through examples. This lack of direct
access to the ordering relation motivates learning the
quality measure from the covariates of the items. We
distinguish this task from a related and easier one of
learning binary pairwise relations where transitivity is
not required by the application.

Existing techniques of learning to rank (LETOR) fall
under 3 categories: (i) point-wise methods, (ii) pair-
wise methods and (iii) list-wise methods. In point-
wise methods, higher ranked items are assigned higher
target scores. The method ignores the combinatorial

∗Authors acknowledge NSF grant IIS-1017614

structure of the output space and regresses the scores
directly. Pair-wise methods capture some structure by
trying to classify for a pair whether the first item in the
pair out-ranks the second. Their predictions need not
be transitive and an order-reconciliation step is neces-
sary to enforce it. This is NP hard [8], necessitating
approximations and heuristics. Finally, there are list-
wise methods that model the full combinatorial struc-
ture and need to solve formidable optimization prob-
lems. They have to cut corners for scalability. Notable
approaches include sampling [25], approximations [2],
and resorting to point-wise methods [6] .

An ideal LETOR formulation should (i) capture com-
binatorial structure like list-wise methods, but with
(ii) algorithms as simple as point-wise methods. While
this seems too much to ask, the recently proposed
monotone retargeting (MR) technique is one way how
this may be approached [1]. MR outperforms sev-
eral state of the art ranking algorithms such as List-
net [6] and RankCosine, even after improving those
algorithms for statistical consistency as proposed by
Ravikumar et. al. [21].

MR efficiently reduces, the LETOR problem to a gen-
eralized linear model (GLM) with no loss in gener-
ality. It subsumes statistically consistent methods of
[21]. The distinguishing characteristic of MR is its “re-
targeting” paradigm, where instead of fitting training
scores exactly, it tries to fit any score that captures
the desired order. Recall that our task is to retrieve
the correct order and not the training scores. In this
setting, retrieving the specified training scores are an
unnecessary burden. The specified training scores may
be particularly difficult to fit for the chosen family of
regression function class, but there might exist score
assignments that capture the desired order and also
simultaneously lie in the range space of the regression
function class being used. The MR framework tries
to find such score assignments by formulating it as a
Bregman divergence minimization problem.

In this paper we push the retargeting idea further.

This is facilitated by (i) a remarkably efficient finite
time optimization over the infinite space of all mono-
tonic transformations and (ii) properties of Bregman
divergences particularly suited for learning orders.

Let us draw a few analogies from classification. A
pointwise approach to a {−1, 1} encoded classification
problem would try to fit the {−1, 1} training scores
exactly, possibly enriching the approximating function
class till the quality of the fit is acceptable. Most suc-
cessful classifiers, however, fit values that are discrim-
inable, ignoring, entirely, whether they are close to the
training scores of {−1, 1} in value.

The MR cost function consists of two parts: a loss and
a regularization. Similar to perceptrons, the moment
MR predictions retrieve the training ranks, its loss
drops to zero. Experience in classification has taught
us that losses that continue to be active after training
error has dropped to zero yield better accuracy, for ex-
ample, SVMs, logistic regression and boosting. In our
paper we equip MR with such a margin-like property.
This can be done in a few different ways. Our intent is
not to champion one over another. This paper is not
about advocacy, but about exploring how margin may
be incorporated into the “retargeting” paradigm.

In this paper (i) we introduce large and fixed margin
variants of the MR approach. Without margins the
MR cost function is degenerate, an aspect that is not
developed in the previous work [1]. Unlike the previ-
ous approach, we model the requirement of a margin
explicitly in this paper. (ii) Unlike [1] we are able to
model the notion that ordering errors at the top are
worse than those at the bottom. (iii) It was shown
that MR cost function is jointly convex iff the Breg-
man divergence chosen is squared Euclidean. We ex-
tend the formulation to enable joint convexity to all
strongly convex Bregman divergence, not to advocate
non-Euclidean divergences but to explore them.

Joint convexity has two important ramifications: one
affects ease of evaluation of the technique, the other
affects efficiency of training. The initialization inde-
pendence of the optimum, gained as a result of con-
vexity induced uniqueness, makes comparing different
Bregman divergences easier, eliminating the need for
multiple initializations during training. (iv) On the
other hand for training, joint convexity allows us to
replace exact coordinate-wise updates that were used
in [1] with more efficient gradient updates with guar-
antees on global optimality. (v) This yields efficient
online algorithms with regret bounds over permuta-
tions. Finally, (vi) we provide rates of convergence
guarantees, an aspect missing from the previous work.

To date many cost functions have been designed to
evaluate rankings, for example, discounted cumula-

tive gain (DCG), normalized discounted cumulative
gain (NDCG) [13], expected reciprocal rank (ERR) [7],
mean average precision (MAP) [3]. They are functions
of permutations and capture the notion that positional
accuracy at the top is more important than at the
bottom. They are reasonably easy to compute given
a ranking, but to optimize them in training is notori-
ously intractable. Our formulation, on the other hand,
introduces a family of cost functions that have charac-
teristics desired in ranking: dependence on order not
on scores and the ability to capture the importance of
non-uniform positional accuracy, but at the same time
optimized globally with ease. These aspects set our
work apart from other approaches of learning to rank.

We follow the notation used in the MR paper. Vec-
tors are denoted by bold lower case letters, matrices
are capitalized. x† is x transposed and ||x|| its L2

norm. Adj-Diff(·) is the adjacent difference operator,
and Cum-Sum(Adj-Diff(x)) = x. x is in descending
order if xi ≥ xj when i > j. the set of such vectors is
R↓. x is isotonic with y if xi ≥ xj implies yi ≥ yj .
∆ denotes an unit simplex and ∆ε its subset with
members component-wise bounded away from 0 by ε.
R+

d is the positive orthant and Rdε its subset similarly
bounded away from 0 by ε. Interior is denoted by int .

2 BACKGROUND

We will use Bregman Divergences to construct our
cost function. Let φ : Θ 7→ R, Θ = domφ ⊆ Rd

be a strictly convex, closed function, differentiable
on int Θ. The corresponding Bregman divergence

Dφ

(
·
∣∣∣∣∣∣·) : dom(φ) × int(dom(φ)) 7→ R+ is defined

as Dφ

(
x
∣∣∣∣∣∣y) , φ(x) − φ(y) − 〈x− y,∇φ(y)〉 . From

strict convexity it follows that Dφ

(
x
∣∣∣∣∣∣y) ≥ 0 and

Dφ

(
x
∣∣∣∣∣∣y) = 0 iff x = y. Bregman divergences are

(strictly) convex in their first argument, but not nec-
essarily convex in their second.

In this paper we only consider functions φ(·) : Rn 3
x 7→

∑
i wiφ(xi) that are weighted sums of identi-

cal scalar convex functions applied to each component,
the former referred to as weighted, identically separable
(WIS) or IS if the weights are equal. [1] and [21] iden-
tify this class to have properties particularly suited for
ranking. The MR approach, in concert with Bregman
divergences can provide compelling guarantees that in-
cludes convergence, parallelizability, statistical consis-
tency, and avoids solving a linear assignment problem
in every iteration of their training loop. Many LETOR
algorithms [24], [25] fall prey to the latter.

Monotone Retargeting: The ranking problem in-

volves set of queries Q = {q1, qi . . . q|Q|} and a set of
training items V. For every query qi, the elements of
Vi ⊂ V are ordered based on their relevance to the
query. This ordering is expressed through a rank score
vector r̃i ∈ R|Vi| whose components r̃ij correspond
to items in Vi. Beyond establishing the order, the ac-
tual values are irrelevant. In our formulation, however,
one may choose whether to treat these as irrelevant or
incorporate them in the retargeting step, making the
formulation more flexible.

For a query qi the index j of r̃ij is local to Vi and
assigned such that r̃ij are in descending order for any
Vi. For every pair {qi, vij} a feature vector Rn 3 aij =
F (qi, vij) is an input to the algorithm, Ai is a matrix
whose jth row is aij

†. The following formulation seems
suitable for ranking:

min
w,Υi∈M

∑
i

Di

(
r̃i,Υi ◦ f(Ai,w)

)
, (1)

where Di : R|Vi| × R|Vi| 7→ R+ is some distance-like
loss function, f : R|Vi|×n × Rn 7→ R|Vi| is some para-
metric form with the parameter w and Υi : R|Vi| 7→
R|Vi| is a mapping that transforms the components
by a scalar, strictly monotonic increasing function Υi,
and M is the class of all such functions. Formulation
(1) avoids the problem that adversely affects point-
wise-methods: solving an unnecessarily hard problem
of matching the scores by value.

To avoid working in the space of M which is infinite
dimensional, MR solves a qualitative equivalent

min
w,r∈R↓i

∑
i

Di(ri, f(Ai,w)) s.t. R↓i = {r| ∃M∈MM(r̃i)=r}.

(2)
Let us take a closer look at the constraint set used
in formulation (2): Instead of considering all strictly
increasing monotonic transforms Υi of the right ar-
gument, MR considers all inverse monotonic transfor-
mations of the left argument. This, remarkably, is a
finite dimensional optimization problem because R↓i,
the set of all vectors isotonic with r̃i is a finitely char-
acterizable convex cone. Motivated by convexity, MR

chooses Di(·, ·) to be a Bregman divergence Dφ

(
·
∣∣∣∣∣∣·)

and f(Ai,w) to be (∇φ)
−1

(Aiw) to obtain1

min
βi,w,ri∈R↓i∩Si

|Q|∑
i=1

1

|Vi|
Dφ
(
ri

∣∣∣∣∣∣(∇φ)
−1

(Aiw + βi1)
)

+
C

2
||w||2. (3)

1We take a shortcut of writing Dφ
(
·
∣∣∣∣∣∣(∇φ)−1 (·)

)
in-

stead of Dφi(·, (∇φ)
−1) where φi indicates a separable

convex function of an input dimension di built from
component-wise sum of scalar function φ(·).

P
t+1
i = Argmin

π
Dφ
(
rti

∣∣∣∣∣∣(∇φ)−1 (πAiw
t + βti

))
∀i

(4)

rt+1
i = Argmin

r∈R↓i∩Si
Dφ
(
r
∣∣∣∣∣∣(∇φ)−1 (

P
t+1
i Aiw

t + βti
))
∀i

(5)

wt+1, {βt+1
i } = (6)

Argmin
w,{βi}

|Q|∑
i=1

Dφ
(
rt+1
i

∣∣∣∣∣∣(∇φ)−1 (
P
t+1
i Aiw + βti

))C
2
||w||2

(7)

Figure 1: Updates of Monotone Retargeting

where (∇φ)
−1

is the inverse of the gradient mapping,
Si is a convenient convex set excluding 0, that is nec-
essary only for technical reasons.

In practice, even if Vi is totally ordered, it is common
to have a part of that information erased by quanti-
zation in the scores r̃. MR deals with this by opti-
mizing over block diagonal permutation matrices Pi
that permute contiguous blocks of indices that corre-
spond to items whose relative order have been erased.
The model is trained by iterating over the updates (4),
(5) and (7) shown in Figure 1. It has been shown
that these exact coordinate-wise minimizations up-
dates converge to a local minimum(or global for square
loss [1]) of function (3). Update (4) is accomplished
by sorting. This turns out to be so because of special
properties of separable Bregman divergences (see [1]
for details). Update (5) uses the exponentiated gradi-
ent algorithm [15] and (7) is the same problem as es-
timating the parameters of a generalized linear model
[19]. A quasi-Newton method (LBFGS [17]) was used
to solve (7). In the rest of the paper the block diago-
nal permutation matrices Pi will be suppressed. Our
extensions continue to be effective for partial order via
updates that correspond to (4), but this is not elabo-
rated further for brevity.

3 FORMULATION

The rest of the paper describes our contribution. Its
prominent features are: (i) formulation of fixed and
large margin aspects, (ii) joint convexity of the cost
function in the targets r and the parameters w, which
yields (iii) guarantees on performance in the online set-
ting and super-linear convergence in the batch setting.

Since there are multiple moving parts in our formula-
tion, it is easy to get lost in the details. To preempt
that we lay out the flow of our arguments. We explain
the formulation by modifying the cost function (3) suc-

cessively. We conclude each subsection with summary
of what has been achieved in the subsection so far.

Convexity: We equip the cost function with strong
and joint convexity, aspects missing in the original
work. We pick a matching form of the regularizer
so that it adds no extra computational burden and
quantify the amount of regularization that is sufficient
to guarantee joint convexity. It may not be surprising
that regularization extends convexity properties to MR
losses other than squared Euclidean. What is surpris-
ing, however, is that this convexity applies jointly to
r and w although the regularizers themselves are sep-
arated. Strong joint convexity and smoothness thus
gained lead to the performance and convergence guar-
antees. This is the topic of section 3.1.

Margins: Second we plug a loophole in the MR cost
function by ensuring margins between all adjacent tar-
get scores ri,j , ri,j+1. Without this, the cost function
(3) is degenerate: one can achieve zero loss by setting
w, β = 0. We provide different ways of ensuring this:
(i) directly by setting constraints, and (ii) indirectly by
rewarding margins. Since both the constraints and the
rewards are linear, this does not disrupt joint convex-
ity. The key is to optimize the modified cost function
efficiently. This is the topic of section 3.3.

3.1 Convexity, Smoothness and Optimization

MR ensures joint convexity only if squared Euclidean
distance is used. We incorporate joint convexity into
the cost function (3). This benefits us in two ways:
(i) it removes initialization dependence of the training
method and (ii) as we shall see, allows for a more effi-
cient method of training, both online and batch with
excellent convergence rates. We know that strong con-
vexity together with smooth gradients (and Hessians
for second order methods) admit efficient minimiza-
tion: gradient descent achieves linear rate of conver-
gence, quasi-Newton (truncated-Newton) achieves su-
perlinear rates. We examine conditions under which
our ranking formulations have these properties.

3.1.1 Joint Convexity

Let φ(·) be s strongly convex [5]. Consider the term:

Fi(ri,w) =
1

|Vi|

(
Dφ
(
ri

∣∣∣∣∣∣(∇φ)
−1

(Aiw)
)

+ CriDφ

(
ri

∣∣∣∣∣∣qi)+
Cwi

2
||w||2Ai︸ ︷︷ ︸

Regularization terms

)
(8)

using which we modify cost function (3) to

F ({ri},w) =

|Q|∑
i

Fi(ri,w) +
C

2
||w||2. (9)

The β terms of equation (3) may be absorbed into Ai

by augmenting the features by vectors of ones, so no
generality is lost in equation (9).

Let us pause to take note of the extra terms in the cost
function (9). There is a term regularizing w towards
0 and another regularizing ri towards qi. Vector qi is
a “center” of regularization for the targets ri. If Cri
are nonzero we set these to r̃i when training scores
are available, otherwise we use qi = Argminx φi(x)
when only ordering is available (this corresponds to 0
for square loss and uniform distribution for KL loss).
This allows one to bias the targets towards the training
scores when Cri is high and focus on order otherwise.

Proposition 1. Let φ be s strongly con-
vex with L Lipschitz continuous gradients,
and σi be the smallest singular value of Ai,
then the cost function (9) is jointly convex if∑ σi(Cwi+1/L)

|Vi| + C
2 −

4Q(
∑

1
|Vi|

)2

s
∑ 1+Cri

|Vi|
≥ 0

Proof.
∑|Q|
i=1

1
|Vi|

[
(1+Cri)Hφ −I
−I Ai

†(Hψ+Cwi)Ai+
C|Vi|
2|Q| I

]
, is

the Hessian of the cost function (9) where ψ is the
Legendre conjugate of φ and Hφ, Hψ the correspond-
ing diagonal. Recall that φ(·) and consequently ψ(·)
are separable. The smallest eigenvalue of the Hessian
may be bounded as the value of the following opti-
mization problem:

min 〈y,y〉

(∑
i

σi
|Vi|

(Cwi +
1

L
) +

C

2

)
−2 〈x,y〉

∑
i

|Q|
|Vi|

+ 〈x,x〉
∑
i

s

|Vi|
(1 + Cri) s.t. 〈x,x〉+ 〈y,y〉 = 1 (10)

where σi is the smallest singular value of Ai. Invoking
Cauchy-Schwarz inequality and treating the expression
as a quadratic function in

√
〈x,x〉 we can see that con-

vexity is implied by
∑ σi(Cwi+1/L)

|Vi| + C
2 −

4(
∑ Q

|Vi|
)2

s
∑ 1+Cri

|Vi|
≥

0

Corollary 1. The cost function (9) is jointly convex
if C ≥ 8Q

s(1+Cr) (
∑

1
|Vi|), if Cri = Cr ∀i.

Corollary 1 gives practitioners an easy thumb rule to
ensure joint convexity.

These additional regularization terms do not come at
an extra computational burden. Estimating r,w re-
main just as easy. We show that the result of the
additional terms are that the ri updates (5) need to
be computed with respect to the deflected predicted
score (∇φ)

−1
(αAw + (1 − α)∇φ(qi)), as opposed to

the predicted score (∇φ)
−1

(Aw).

Lemma 1. Let αi = 1
1+Cφi

, then Argmin
ri∈R↓i∩Si

Fi(ri,w)

= Argmin
ri∈R↓i∩Si

Dφ
(
ri

∣∣∣∣∣∣(∇φ)
−1

(αiAiw + (1− αi)∇φ(qi))
)
.

Proof. Use E
x∼π

[
Dφ
(
x
∣∣∣∣∣∣s)] = E

x∼π

[
Dφ
(
x
∣∣∣∣∣∣µ)] +

Dφ
(
µ
∣∣∣∣∣∣s) [4].

3.1.2 Marginal Strong Convexity and
Smoothness

Recall our motivations for pursuing joint convexity:
(i) initialization independence of the training and (ii)
more efficient training algorithms. In light of Proposi-
tion 1 and Corollary 1, the reader should be convinced
of the former. In this section we explore how joint
convexity may be exploited to provide an efficient op-
timization algorithm for training, as well as guarantees
of convergence rates. Previous work on MR [1] come
with no guarantees on rates of convergence.

The MR cost function was minimized in [1] using exact
coordinate-wise minimizations. This can be expensive
for the w, β updates (7) because they are iterative in
nature. Further since a single w, β update is equiv-
alent to solving a generalized linear model (GLM), it
is clear that the MR procedure would be slower than
solving for a GLM because typically multiple iterations
of GLM update are required for convergence.

Here we will replace exact coordinate-wise minimiza-
tions over r,w by inexact gradient descent updates
that satisfy any of the standard“sufficient descent”cri-
teria [5] (for example Armijo’s criteria) used in gradi-
ent based methods. Joint convexity will play a crucial
role in making this possible.

Joint convexity of F ({ri},w) allows us to work with
the marginal function

G(w) = min
{ri}

F ({ri},w) (11)

without losing convexity. This luxury is not available
in MR. The marginal function is guaranteed to be con-
vex when the joint function is convex [23]. Recall con-
vexity is always preserved under pointwise maximiza-
tion, however if the function is jointly convex it is also
preserved under pointwise minimization as in equation
(11).

The gradient ∇G(w) of the marginal is obtained as

∇G(w) =

|Q|∑
i

Gi(w) =

|Q|∑
i

∇Fi({r∗i },w) (12)

where r∗i = Argminri∈R↓ Fi(ri,w).

Now we can make a few observations: for a choice
of a closed form of φ(·) we know ∇Fi in closed form.
Hence the moment we are able to compute r∗i we can
also compute the gradient of the function G(w) and
hence minimize it using any gradient based minimiza-
tion methods. Also observe that this gradient compu-

tation trivially parallelizes because the ris are all in-
dependent and can be computed simultaneously. We
shall show that r∗i can be computed very efficiently in
not only finite time but also linear in the number of
training points per query. This is covered in Section
3.5.

If in addition to just convexity of the marginal function
G(w) we also had strong convexity, not only would
it facilitate super-linear convergence of quasi-Newton
methods, but it will also guarantee logarithmic regret
in the online setting [11]. With these motivations in
mind we investigate the conditions for strong convexity
of G(w). We do so by examining the Hessian ∇2G(w).
Note however that G(w) is not obtained in closed form
but by equation (11), which we now need to differen-
tiate twice to find the Hessian.

Differentiating Twice Under the Minimization
Sign: A prominent role is played in the analysis by
the ability to differentiate under the minimization sign.
We do not know the function G(w) in closed form but
are able to compute its Hessian in terms of r∗i . Using
assumptions of continuous second order differentiabil-
ity and the shorthand F ∗i = Fi(r

∗
i ,w) we obtain

∇2Gi(w) = ∇2

w
F ∗i −∇∇

w,ri
F ∗i
†(∇2

ri
F ∗i)

−1∇∇
w,ri

F ∗i =

Ai
†

|Vi|
[
Hψ + Cwi −

1

1 + Cri
(Hφ)

−1]
Ai +

C

|Q|
I (13)

by differentiation twice under the min operator. Ex-
pression (13) will be useful because it allows to deter-
mine when is G(w) strongly convex (see Lemma 2) and
also because it gives us a way to compute the Hessian
that is important for Newton methods that we employ.

Lemma 2. If φ is s strongly convex with L-Lipschitz
continuous gradient and σi is the principal singu-
lar value of Ai, then G(w) is C strongly convex if∑
i

(
σi
L + σiCwi − σi

s(1+Cri)

)
> 0.

Strong convexity and Lipschitz continuity of the gra-
dient ensures that a gradient descent method will have
linear rate of convergence [5]. Lemma 2 gives the prac-
titioner a way to choose Cwi and Cri appropriately.

Can the convergence rates be pushed further ? Can
we obtain locally quadratic convergence ? We answer
in the affirmative in the next section.

3.1.3 Lipschitz Continuity of Hessian

In order to enjoy local quadratic convergence, quasi-
Newton methods require that the objective function
(i) be twice differentiable, (ii) be strongly convex and
(iii) have Lipschitz continuous Hessians [5]. The first
two have already been established, now we explore

the third. Observe from equation (13) that we only
need to be concerned about the sensitivity of the term[
Hψ + Cwi − 1

1+Cφi
(Hφ)

−1]
to variations in w. We

make the notation more precise about dependency on
w. Let r∗i (w) = Argminri∈R↓ Fi(ri,w) and the paren-
thesis indicate where the Hessians are evaluated in the
expression:

[
Hψ(w) + Cwi − 1

1+Cφi
(Hφ(r∗i (w)))

−1]
.

Lemma 3. Let ψ(·) be the Legendre conjugate of φ(·)
that defines the cost function G(w) in equation (11).
Then if ψ(·) has a Lipschitz continuous Hessian then
G(w) has a Lipschitz continuous Hessian.

Proof.
[
Hψ(w) + Cwi − 1

1+Cφi
(Hφ(r∗i (w)))

−1]
=[

Hψ(w) + Cwi − 1
1+Cφi

Hψ(∇φ(r∗i (w)))
]

using

Legendre duality. Further, the vector ∇φ(r∗i (w))
turns out to be the Euclidean projection of the
vector Aiw on the set R↓i (see Proposition2).
Since projection is a non-expansive operator,
Hψ(∇φ(r∗i (w))) is Lipschitz continuous in w.

3.1.4 Summary: Impact on Optimization

Let us take stock of what have we achieved so far.
Lemmas 1 through 3 led to quantitative guarantees
on rate of convergence in the batch setting. They al-
low selecting the regularization parameters Cφi, Cwi
based on desired convergence performance. The pa-
per [1] could not provide any such quantitative guar-
antees, because their cost function was not proven to
be jointly convex. Note that the nested minimization
in the gradient computation trivially parallelizes. We
shall see that each parallel task completes in finite time
(Section 3.6). Batch gradient descent on the marginal
with (12) evaluated in parallel converges linearly as
a result of strong marginal convexity and smoothness
[5]. Stochastic gradient descent by sampling an index
from (12) also has linear rate of convergence (in an ex-
pected sense) [20]. Quasi-Newton (and truncated New-
ton) methods with parallel evaluation of gradients use
the gradient computation (12) (and explicit Hessian
(13) which has a simple diagonal structure) have su-
perlinear convergence [5].

3.2 Online Algorithm for Learning
Permutations

In this section we propose an online model for learn-
ing to rank where we have a varying set of items that
need to be ordered in each round. The adversary, at
round t provides the feature matrix At of dt items
that it has ranked, but that order is not revealed till
the learner responds with a “scoring vector” wt. The
learner is then charged a cost of Gt(wt) as defined in
(11) according to any twice differentiable σ strongly

convex function φt with L Lipschitz continuous gradi-
ent. The order and the function φt is then revealed for
the learner to use. The objective is to minimize the
cumulative loss

∑
tGt(wt).

For the tth gradient update we use the tth term of the
gradient (12) with a learning rate of 1

σt as

wt+1 = wt −
1

σt
Ft({r∗t },w)

where r∗t = Argminrt∈R↓∩St Fi(rt,w) and Ft is de-
fined in (9).

Theorem 1. [11] The online gradient algorithm ap-
plied in an online setting to a s strongly function
that has L Lipschitz continuous gradients has regret

O(L
2

σ log T).

Neither the algorithm nor the bound is new, what is
novel though is that the ranking problem of such com-
binatorial nature can be transformed into a form, with-
out loss in generality, that this algorithm can exploit.

Summary: This concludes what we have to say about
the implications joint convexity of the cost function
we propose. One can see that it leads to quantitative
guarantees on rate of convergence in the batch setting
and performance guarantees in the online and the ad-
versarial setting. Now we turn our attention the next
topic of this paper: large margins.

3.3 Margins

Performant classification loss functions such as hinge
loss [22], logistic loss and exponential loss [9] continue
to be active even after training error has fallen to zero.
For MR such a margin like property is not only ben-
eficial but also essential because otherwise the cost
function is degenerate as may be verified by setting
w, β = 0. The necessity of this margin property is not
mentioned in [1]. Here we take an explicit approach.

By controlling the margin we can also model the no-
tion that errors at the top of the list are more severe
than at the bottom. We achieve this by adding lin-
ear inequalities and terms. Therefore the properties of
strong convexity and Lipschitz continuity of the gra-
dient established in Section 3.1 continue to hold.

We incorporate the margin property in two alternative
ways. We augment the cost function (9) by introducing
a fixed margin (14) and alternatively a large margin
variant (15). In addition to enforcing order in the tar-
get vector ri it enforces (for the fixed margin formula-
tion) or encourages (for the large margin formulation)
a gap between the target values of adjacently ordered
items ri,j , ri,j+1. In the formulations (14), (15), the
components of ti denote the gap between the adjacent

targets. In (14) the gaps are pre-specified. It is natural
to specify a comparatively higher gap at the top. In
(15) the gaps are not specified explicitly, but a reward
ci is awarded per unit gap.

The fixed margin formulations is posed in terms of
positive pre-prescribed margins ti,j as follows:

min
ri,w

|Q|∑
i=1

Fi(ri,w)

ri,j+1 − ri,j ≥ ti,j ∀j ∈ [0, di − 1],∀i ∈ [1, |Q|]
ri,0 ≥ ti,0 ∀i ∈ [1, |Q|] (14)

The large margin formulations are posed in terms
of a vector of rewards ci associated with the vector of
gaps ti > 0 as follows: for every query qii ∈ Q, solve:

min
ri,w,ti

|Q|∑
i=1

Fi(ri,w)− 〈ci, ti〉

ri,j+1 − ri,j ≥ ti,j ≥ 0 ∀j ∈ [0, di − 1],∀i ∈ [1, |Q|]
ri,0 ≥ ti,0 ∀i ∈ [1, |Q|], (15)

Note that the ri optimization is a Bregman projection
problem. Furthermore, the r′is are independent and
therefore can be projected in parallel. Readers familiar
with generalized linear models (GLM) will recognize
that the optimization over w is penalized maximum
likelihood parameter estimation for GLMs. Since this
procedure is standard, we focus on r and t only in the
interest of space.

3.4 Bregman Projection on R↓t

Both the formulations (14) and (15) involve Bregman
projections on R↓t. Elements of R↓t ⊂ Rn are not
only sorted but also have separation between adja-
cent components, given by the vector t. In this sec-
tion we reduce it to a square Euclidean projection
on Argminy∈R↓t , hence removing the need to solve a
non-linear optimization problem. It is quite remark-
able that this is possible. For the reduction to hold
we need additional assumptions of strong convexity
and/or Lipschitz continuity. Consider the problem:

min
r
Dφ

(
r
∣∣∣∣∣∣(∇φ)

−1
(Aw)

)
s.t. Adj-Diff (r) ≤ t. (16)

If t = 0 this is min
r∈R↓

Dφ

(
r
∣∣∣∣∣∣(∇φ)

−1
(Aw)

)
. When t is

component-wise strictly positive it imposes strict mar-
gin between adjacent components of r.

Proposition 2. Let φ(·) be s strongly convex, then

(∇φ)
−1

(z∗) = ArgminrDφ

(
r
∣∣∣∣∣∣(∇φ)

−1
(Aw)

)
+〈v, r〉

s.t. Adj-Diff (r) ≤ t (17)

where z∗ = Argminz ||z − Aw|| + 〈v, r〉 s.t.
Adj-Diff(z) ≤ st.

Proof. For the moment let us ignore the term 〈v, r〉 .
Let the set of points satisfying the KKT conditions for

(16) be A=
{
r
λ

∣∣∣∇φ(r)=Aw−Adj-Diff(λ)
Adj-Diff(r)≤t

}
, let us denote

the KKT points of the optimization problem

min
z
||z −Aw|| s.t. Adj-Diff(z) ≤ st by B =

{
z
λ

∣∣∣ z=Aw−Adj-Diff(λ)
Adj-Diff(z)≤st

}
=
{
∇φ(r)
λ

∣∣∣∇φ(r)=Aw−Adj-Diff(λ)
Adj-Diff(∇φ(r))≤st

}
.

From rj+1 − rj ≥ tj and strong convexity we have
∇φ(rj+1) − ∇φ(rj) ≥ stj thus A ⊂ B. Complemen-
tary slackness conditions are also verified thus A,B
are unique minimizers. The term 〈v, r〉 maintains the
relation between A and B proving that the minima of
the two problems coincide.

Proposition 3. Let φ(·) be strictly convex, t ≤ 0 and
∇φ(·) 1

L Lipschitz continuous, then minimizer z∗ of
(17) is

z∗ = Argminz ||z−Aw||+〈v, r〉 s.t. Adj-Diff(z) ≤ Lt.

Proof. Define A and B as before. From ∇φ(rj+1) −
∇φ(rj) ≥ Ltj and Lipschitz continuity we have rj+1−
rj ≥ tj therefore B ⊂ A, but A and B are unique
minimizers. Therefore the proposition holds.

The implications: of the propositions are, of course,
that, for the optimization over r, one only needs to
implement the square loss variants of (14) and (15) be-
cause they are in correspondence with other Bregman
divergences as long as the convex function is strongly
convex or its gradient is Lipschitz continuous.

The final piece is to show that the reduced quadratic
program (QP) is efficiently solvable. This is critical
because it is required for the numerical evaluating the
gradient (and Hessian) ofG(w) where we cannot afford
the expense of a generic QP solver. We now show how
the QP can be solved in linear time.

3.5 Pool Adjacent Violators Algorithm

The pool adjacent violators algorithm [10] solves

min
z
||z −Aw|| s.t. Adj-Diff∗(z) ≤ 0 (18)

called the isotonic regression problem. PAV is essen-
tially a block coordinate ascent of the dual of (18). It
runs in finite time and a straight-forward implementa-
tion scales as O(d2) in the dimensions. Subsequently
[10] observed that if implemented carefully it remark-
ably has complexity that is linear in d.

The nonlinear optimization problems (14) and (15)
from (18). Fortunately, by a series of non-linear and
linear change of variables one can reduce these prob-
lems to variations of the isotonic regression problem.

3.6 Decomposing the Margin Formulation

For a fixed w, a plausible way to optimize (15) is to fix
ti and optimize ri and alternate, keeping w fixed. One
may update w once ti and ri converge. This clearly
fails because the constraints couple ri and ti. How-
ever, we show that an affine transformation can not
only correctly decompose the problem, but also that it
separates out the problem out into versions of isotonic
regression problems: namely isotonic regression with
a lower-bound on the smallest r. Thus it adds another
(scalar) constraint to the system Adj-Diff(r) ≤ −t,
where Adj-Diff is the adjacent-difference operator.

Because of the reduction properties shown in Proposi-
tions 2 and 3 to estimate ri in (15) one only needs to
consider the problem of the form:

min
ri,ti

1

2
||ri−yi||2−〈ci, ti〉 s.t. Adj-Diff(ri) ≤ −ti, ti > 0.

Substituting ti = −Adj-Diff(di), zi = ri − di we ob-
tain

1

2
||zi + di − yi||2 + 〈ci,Adj-Diff(di〉)

s.t. Adj-Diff(zi) ≤ 0, Adj-Diff(di) ≤ 0. (19)

The variables zi and di are completely decoupled, the
constraints are the ordering constraints, and if either
zi or di fixed, the formulation reduces to an isotonic
problem in the other (for di some simple algebraic ma-
nipulation is necessary to expose the PAV form). Thus,
one may alternate over zi and di as follows:

zt+1
i = PAV (yi − d

t
i) (20)

dt+1
i = PAV (yi − zt+1

i −Adj-Diff†(c)) (21)

and obtain the large margin solution by recovering
ri, ti from converged zi and di.

Problem (14) can be decomposed similarly using
propositions 2, 3 and the exact same affine transfor-
mation ti = −Adj-Diff(di) and zi = ri − di. Here
however di is immediately determined, so no iteration
over the variables zi and di is necessary and solving
zi = PAV (yi−di) is sufficient to recover the optimal
ri. Since this requires a single instance of PAV, it is
obvious that this converges in finite time, linear in the
number of items.

4 EXPERIMENTS

We evaluated the ranking performance of the proposed
margin equipped monotone retargeting (MEMR) ap-

Sqr.MEMR

LBFGS

Sqr.MEMR
TRON

Sqr MR RankSVM

MQ’07 0.166s 0.101s 26.396s 17.187s
KL.MEMR

LBFGS

KL.MEMR

TRON
KL MR -

MQ’07 0.326s 0.199s 54.15s

Table 1: CPU time of MEMR and Baselines

HyperThreads 1 2 3 4 8
Sqr.MEMR
LBFGS,ms

166 91 72 59 46

Speedup 1 1.8 2.3 2.8 3.6

Table 2: MEMR speedup with parallelism

proach on the benchmark LETOR 4.0 datasets [18]
as well as the OHSUMED dataset [12]. Each of
these datasets are pre-partitioned into five-fold val-
idation sets for easy comparison across algorithms.
We focus on the variants that use Sqr-loss and KL-
divergence because these are strongly convex Bregman
divergences. We compare the performance of MEMR
against the following strong baselines (i) The MR al-
gorithm as reported in [1] (Recall that the MR algo-
rithm has been shown to outperform many of the cur-
rent state of the art techniques [1]), (ii) NDCG consis-
tent generalized linear models that also use different
Bregman divergences [21] and (iii) max-margin based
pairwise learning to rank method RankSVM as imple-
mented by SVMPerf [14] (Note RankSVM as imple-
mented by SVMPerf is a factor of 20 faster than its
original implementation in SVMLight). MEMR is im-
plemented in C++ as a minimization method on the
function G(w). PAV algorithm is used to compute the
gradient, and the Hessian. We tried two strategies (i)
quasi-Newton using LBFGS [17] and (ii) Trust region
truncated Newton (TRON) [16]. While both were an
order of magnitude faster than our baselines the lat-
ter gave the fastest convergence. The CPU timings of
serial implementations on a 2.8 Ghz Intel Quad core
processor are reported in Table 1. We parallelized the
LBFGS based implementation. The timings and cor-
responding speedups are shown in Table 2. We found
that overprovisioning of threads (8 threads on a quad-
core) was necessary to reach full speedup supported by
the hardware.

In our experiments the fixed margin constraints (see
equation (14)) were set using different non-increasing
functions of the rank. In Figure 2 we show the effect of
margins set to different constant values. In Figure 3 we
show the effect of margins set by different polynomi-
ally decaying functions. The regularization parameter
C was selected on the basis of maximum NDCG on

MQ 2007: Mean NDCG (non-truncated)

SQ KL Hinge

MEMR 0.7491 0.7564 -
MR 0.7398 0.6978 -

NDCG consistent

GLM [21]
0.7344 0.7399 -

RankSVM - - 0.6528

Table 3: Test NDCG on MQ2007 Dataset

OHSUMED: Mean NDCG (non-truncated)

SQ KL Hinge

MEMR 0.7115 0.7146 -
MR 0.6878 0.6997 -

NDCG consistent

GLM [21]
0.6892 0.6947 -

RankSVM - - 0.6571

Table 4: Test NDCG on OHSUMED Dataset.

the validation set.Figure 4 shows the behavior of the
same margin function but for the loss measured by KL
divergence.

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 1 2 3 4 5 6 7 8 9 10

N
D

C
G

sq-loss
sq-MR

1
2
3
4
5

RankSVM

Figure 2: Truncated NDCG@N obtained on MQ2007 us-
ing Sqr-loss MEMR with margin between adjacent targets
set to {0.0625e − 3, 0.125e − 3, 0.25e − 3, .5e − 3, 1e − 3}
respectively showing improved rank quality as margins in-
crease. The plot labeled “Sqr-Loss” represents pointwise
NDCG consistent Sqr loss proposed by [21]. Plot labeled
“Sqr-MR”corresponds to MR [1] with Sqr-loss.Performance
of RankSVM is also shown

5 CONCLUSION

In this paper we presented a margin based monotone
retargeting framework for learning to rank. Pointwise
ranking methods search for optimal parameters of a
regression function to fit the training scores that were
specified to define the correct ranking order. MEMR
on the other hand searches not only for optimal param-
eters of a regression function but also over all order-

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 1 2 3 4 5 6 7 8 9 10

N
D

C
G

sq-loss
sq-MR

1
2
3
4

RankSVM

Figure 3: Truncated NDCG@N obtained on MQ2007 us-
ing Sqr-loss MEMR with margin between adjacent targets
set by function C√

· on the rank associated with the tar-

get. Plots shown for values of C ∈ {0.0625e − 3, 0.125e −
3, 0.25e−3, .5e−3}. The baselines are the same as in Figure
2.

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 1 2 3 4 5 6 7 8 9 10

N
D

C
G

KL-loss

KL-MR

1

2

3

RankSVM

Figure 4: Truncated NDCG@N obtained on MQ2007 us-

ing KL-loss MEMR with margin between adjacent targets

set by the function C√
· for values of C ∈ {1e−1, 2e−1, 3e−

1, 4e− 1}. The plot labeled ”KL-Loss” corresponds KL loss

minimizing NDCG consistent GLM [21].

preserving transformations of the training score vec-
tors such that its adjacent components are well sepa-
rated. The separation property leads to state of the
art performance as compared to MR and other max-
margin based ranking formulations. Moreover its joint
convexity and second order smoothness properties per-
mit efficient algorithms that lead to running times that
are a small fraction of competing algorithms, giving al-
most the best of both worlds: ranking accuracy better
than pairwise methods and running times comparable
to simple pointwise methods.

References

[1] S. Acharyya, O. Koyejo, and J. Ghosh. Learning
to rank with Bregman divergences and monotone
retargeting. In Uncertainty in Artificial Intelli-
gence, UAI, 2012.

[2] Nir Ailon and Mehryar Mohri. An efficient reduc-
tion of ranking to classification. In Conference on
Learning Theory, COLT 2008, pages 87–98, 2008.

[3] Ricardo A. Baeza-Yates and Berthier Ribeiro-
Neto. Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc., 1999.

[4] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh.
Clustering with Bregman divergences. Journal of
Machine Learning Research, 6:1705–1749, 2005.

[5] Stephen Boyd and Lieven Vandenberghe. Convex
Optimization. Cambridge University Press, 2004.

[6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai,
and Hang Li. Learning to rank: from pairwise ap-
proach to listwise approach. In 24th international
conference on Machine learning, ICML’07, 2007.

[7] Olivier Chapelle, Donald Metlzer, Ya Zhang, and
Pierre Grinspan. Expected reciprocal rank for
graded relevance. In 18th ACM conference on
Information and knowledge management, CIKM
’09, pages 621–630, 2009.

[8] William. Cohen, Robert Schapire, and Yoram
Singer. Learning to order things. Journal of Ar-
tificial Intelligence Research, 10:243–270, 1999.

[9] Michael Collins, Robert Schapire, and Yoram
Singer. Logistic regression, adaboost and Breg-
man distances. In Nicolo Cesa-Bianchi and Sally
Goldman, editors, COLT, pages 158–169, 2000.

[10] S.J. Grotzinger and C. Witzgall. Projections onto
order simplexes. Applied Mathematics and Opti-
mization, 12:247–270, 1984.

[11] Elad Hazan, Amit Agarwal, and Satyen Kale.
Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69:169–192,
2007.

[12] William Hersh, Chris Buckley, T. J. Leone, and
David Hickam. OHSUMED: an interactive re-
trieval evaluation and new large test collection for
research. SIGIR ’94, pages 192–201, 1994.

[13] Kalervo Järvelin and Jaana Kekäläinen. IR eval-
uation methods for retrieving highly relevant doc-
uments. In 23rd ACM SIGIR conference on Re-
search and development in information retrieval,
SIGIR ’00, pages 41–48, 2000.

[14] T. Joachims. Training linear SVMs in linear
time. In KDD’06 Proceedings of the ninth ACM
SIGKDD international conference on Knowledge
discovery and data mining, 2006.

[15] Jyrki Kivinen and Manfred K. Warmuth. Ex-
ponentiated gradient versus gradient descent for
linear predictors. Information and Computation,
132, 1995.

[16] Chih-Jen Lin, Ruby C. Weng, and S. Sathiya
Keerthi. Trust region newton method for logis-
tic regression. J. Mach. Learn. Res., 9:627–650,
June 2008.

[17] Dong C. Liu, Jorge Nocedal, Dong C. Liu, and
Jorge Nocedal. On the limited memory bfgs
method for large scale optimization. Mathemati-
cal Programming, 45:503–528, 1989.

[18] Tie-Yan Liu, Jun Xu, Tao Qin, Wenying Xiong,
and Hang Li. LETOR: Benchmark dataset for
research on learning to rank for information re-
trieval. In SIGIR 2007 Workshop on Learning to
Rank for Information Retrieval, 2007.

[19] C. E. McCulloch and S. R. Searle. Generalized
Linear and Mixed Models. John Wiley & Sons,
2001.

[20] Alexander Rakhlin, Ohad Shamir, and Karthik
Sridharan. Making gradient descent optimal
for strongly convex stochastic optimization. In
ICML, 2012.

[21] Pradeep Ravikumar, Ambuj Tewari, and Eunho
Yang. On NDCG consistency of listwise rank-
ing methods. In Proceedings of 14th International
Conference on Artificial Intelligence and Statis-
tics, AISTATS, 2011.

[22] Mark Reid and Robert C Williamson. Informa-
tion, divergence and risk for binary experiments.
Journal of Machine Learning Research, 12:731–
817, 2011.

[23] R T. Rockafellar. Convex Analysis (Princeton
Landmarks in Mathematics and Physics). Prince-
ton University Press, December 1996.

[24] Markus Weimer, Alexandros Karatzoglou,
Quoc V. Le, and Alex J. Smola. CoFi RanK
- maximum margin matrix factorization for
collaborat ive ranking. In NIPS, 2007.

[25] Jason Weston and John Blitzer. Latent structured
ranking. In Uncertainty in Artificial Intelligence,
UAI 2012, 2012.

