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Abstract

Assessing the causal effect of a treatment
variable X on an outcome variable Y is
usually difficult due to the existence of un-
observed common causes. Without further
assumptions, observed dependences do not
even prove the existence of a causal effect
from X to Y . It is intuitively clear that
strong statistical dependences between X
and Y do provide evidence for X influenc-
ing Y if the influence of common causes is
known to be weak. We propose a framework
that formalizes effect versus confounding in
various ways and derive upper/lower bounds
on the effect in terms of a priori given bounds
on confounding. The formalization includes
information theoretic quantities like informa-
tion flow and causal strength, as well as other
common notions like effect of treatment on
the treated (ETT). We discuss several sce-
narios where upper bounds on the strength of
confounding can be derived. This justifies to
some extent human intuition which assumes
the presence of causal effect when strong (e.g.
close to deterministic) statistical relations are
observed.

1 INTRODUCTION

In many situations one wants to estimate the causal
effect from an observable X to an observable Y , e.g.
if/to what extent smoking causes lung cancer. It is
widely agreed that randomized experiments constitute
the gold standard for inferring the causal effect. The
reason for this is that an ideal randomized experi-
ment excludes the possibility of a (partially) unob-
served confounding cause U . However, in many cases
conducting randomized experiments would be very ex-
pensive or impossible. In these cases, if we do not have

any additional knowledge on the setting, then infer-
ence of the (precise or approximate) causal effect is
generally deemed impossible. In case we have addi-
tional knowledge however, it may be possible to esti-
mate the causal effect, i.e. derive (upper and/or lower)
bounds for it. For instance it is well known that if we
observe an instrumental variable Z together with X
and Y , those bounds can be derived (see e.g. [Pearl,
2000]).

1.1 THE FORMAL FRAMEWORK

To make our discussion as precise as possible we will
from this point on use the framework for causality de-
veloped in [Pearl, 2000]. Particularly we will make use
of the do-calculus formalizing interventions on vari-
ables. (It should be mentioned though that we slightly
deviate from Pearl’s definition of the do-operator as we
will further explicate in Section 2.1.)
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Figure 1: Causal DAG for the confounding scenario
(gray means unobserved).

The causal DAG in Figure 1 formalizes the causal
structure underlying U,X, Y . Note that we allow U
and in some cases also X,Y to be multivariate. Fur-
thermore keep in mind that in some scenarios discussed
in the paper we assume U to be partially observed.
Our general goal is to estimate the causal effect from
X to Y . Formally, this means that we want to esti-
mate P (Y |doX=x) or related quantities such as the
effect of treatment on the treated (ETT) [Pearl, 2000]
or the causal strength from X to Y [Janzing et al.,
2013]. Without further assumptions, these quantities
are impossible to estimate. To give an extreme ex-
ample, one can imagine observing the deterministic



relationship P (y|x) = δyx, with δyx denoting the Kro-
necker delta. This observation can be induced by two
completely different underlying causal structures, the
first one being that Y in fact is produced by copying
X, the second one being that both X and Y are copied
from U without X having any causal effect on Y .

1.2 RELATED WORK

Several approaches have been developed to identify or
estimate causal effects in spite of hidden confounders.

Back-door/front-door criterion (see [Pearl, 2000,
2009]): This approach applies for the case where some
variables on the confounding path or between X and Y
are measured and we know the causal structure under-
lying all variables together. There are several criteria
that allow to decide whether the causal effect from X
to Y is identifiable. Furthermore, formulas are avail-
able to calculate the effect in these cases. Besides the
natural limitation namely requiring a lot of informa-
tion on additional variables and structures, one draw-
back of this method is that it cannot be used if X is
deterministically coupled to the back-door variable.

Instrumental variables (see e.g. [Pearl, 2000, Angrist
et al., 1996, Efron and Feldman, 1991]): In the sim-
plest case, the causal DAG in Figure 1 is augmented
by a parentless node Z with an arrow to X. An im-
portant example are clinical trials with partial compli-
ance. The additional Z allows to infer bounds on the
average causal effect. One drawback of this method is
that it yields a convex optimization problem with the
number of equations growing exponentially with the
cardinality of X. Furthermore, to apply this method
one needs to know p(X,Y |Z) while in Section 4.2 we
present a scenario where p(Z) (additional to p(X,Y ))
helps to estimate the causal effect.

Regression discontinuity design (see e.g. [Thistlewaite
and Campbell, 1960, Imbens and Lemieux, 2008, Lee
and Lemieux, 2010]): This framework is applicable to
cases where an additional observable Z mediating be-
tween U and X is measured and X is a determinis-
tic function of Z that contains a discontinuity. Under
the assumption of linearity of the remaining structural
equations, the effect from X to Y , i.e. the linear coeffi-
cient, can be identified. One limitation of this method
is that it needs the discontinuity and a high slope alone
does not suffice.

1.3 OUR APPROACH

The approach we suggest to estimate causal effects in
spite of confounding consists of two parts: In the first
part (Section 3) we propose various possibilities to for-
malize the following notions:

• Observed dependence: the dependence of Y on X
that we can observe based on p(X,Y ).

• Back-door dependence: the “spurious association”
[Pearl, 2000] between X and Y due to the con-
founder U .

• Causal effect: what happens to Y upon inter-
vening on X; this includes notions of conditional
causal effect such as the ETT.

For all formalizations we present inequalities (see Ta-
ble 1 for an overview) which turn out to always have
the following prototypical form:[

back-door
dependence

]
≥ d

([
observed
dependence

]
,

[
causal
effect

])
(where the d(·, ·) stands for deviation measure). In
some of these results, observed dependence, back-door
dependences, and causal effect are real numbers and
d(·, ·) simply stands for the usual difference which al-
lows us to convert the prototypical form into[

causal
effect

]
≥
[

observed
dependence

]
−
[

back-door
dependence

]
,

which may be more convenient for applications.

In order to draw conclusions on the true causal ef-
fect using the inequalities from the first part, one
needs to have knowledge on the back-door dependence.
Therefore, in the second part (Section 4), we demon-
strate how in various situations one can come up with
bounds on the back-door dependence. Based on these
together with the observed dependence one can then
infer bounds on the true causal effect.

Before getting started, in Section 2, we present several
definitions which are needed throughout the paper.

2 PREREQUISITES

Keep in mind the following definitions and results
throughout the paper.

2.1 DEFINITION OF CAUSAL MODEL
AND do-OPERATOR

As already mentioned we essentially use the framework
developed in [Pearl, 2000] to discuss causal relations.
Let V = {X1, . . . , Xn} be a set of random variables.
A causal model M w.r.t. V consists of a DAG G, noise
variables Ni for each i with a joint distribution P that
makes them jointly independent, and structural equa-
tions Xi := fi(PAG

i , Ni) for each i, where PAG
i denotes

the parents of Xi in G.



Table 1: Formalizing observed dependence (O), back-
door dependence (B), causal effect (C) and deviation
measure (d). CX→Y denotes the strength of the influ-
ence of X on Y in the sense of [Janzing et al., 2013],
I(X → Y |doU) is the information flow by [Ay and
Polani, 2008], D[·‖·] denotes Kullback-Leibler diver-
gence [Cover and Thomas, 1991]. The symbol do is
the do-operator defined by [Pearl, 2000].

Sec. O/B/C/d formalized by ...

3.1 O I(X : Y )
B I(U : X), CU→X

C CX→Y

d difference
3.2 O I(X : Y )

B I(U : X)
C I(X → Y |doU)
d difference

3.3 O p(Y |X=x)
B I(X : U), min{CU→X ,CU→Y }
C p(Y |doX=x)
d D[·‖·]

3.4 O E[dx log p(Y |X=x)2]
B E[∂2 log p(Y |X=x,doX=x))2]
C E[∂1 log p(Y |X=x,doX=x))2]
d difference

3.5 O E[Y |X=x′]− E[Y |X=x]
B E[Y |X=x′,doX=x]
−E[Y |X=x, doX=x]

C E[Y |X=x′,doX=x′]
−E[Y |X=x′,doX=x]

d difference
3.6 O dxE[Y |X=x]

B ∂1E[Y |X = x, doX=x]
C ∂2E[Y |X = x, doX=x]
d difference

Now we define the do-operator. Given any Xi ∈ V
the post-intervention causal model MdoXi=x′ is ob-
tained from M in the following way: For each child
Xj of Xi, we replace the structural equation Xj =

fj(PAG
j \Xi, Xi, Nj) by Xj = fj(PAG

j \Xi, x
′, Nj). Note

that the random variable Xi stays in the model it just
no longer has children. (This is the point where we de-
viate from [Pearl, 2000]. Note the analogy to the split-
ting of nodes in [Richardson and Robins, 2013, Robins
et al., 2007], where Xi is replaced with two determin-
istically coupled variables, one being adjacent to the
parents of Xi and one to the children of Xi. Then we
refer to an intervention on the latter one while the first
one is kept.)

The new set of structural equations of MdoXi=x′

together with the noise variables Ni for all i in-
duce a new joint distribution on X1, . . . , Xn which
we denote by P (X1, . . . , Xn|doX=x′). In particular,
given M contains the variables X and Y , quantities
such as P (Y |X=x, doX=x′) are well defined. (Note
that P (Y |X=x, doX=x′), based on our definition of
MdoX=x′ , coincides with the counterfactual distribu-
tion P (Yx′ |X=x) as defined in [Pearl, 2000].)

2.2 DISTRIBUTIONS AND DENSITIES

Throughout the paper we will work with U,X, Y with
discrete as well as with continuous ranges.

Unless noted otherwise we make the following funda-
mental assumption regarding the distributions of the
random variables in a causal model M with causal
DAG G: for each Xj ∈ V , the random variable
fj(paj , Nj) has a density w.r.t. the Lebesgue measure
(in the continuous case) or w.r.t. the counting mea-
sure (in the discrete case) respectively, denoted by
qj(xj ; paj) for each value paj of PAj (note that we
have to slightly deviate from this assumption in Sec-
tion 4.1 though). This assumption implies the follow-
ing simple lemma, which is only formulated for the
case n = 3, since we only need this case in the present
paper. A proof can be found in the supplement.

Lemma 1. Under the assumption made above, the
joint distribution of X1, X2, X3 induced by a causal
model M or any post-interventional model MdoXi=x

has a density w.r.t. the Lebesgue measure (in the con-
tinuous case) or counting measure (in the discrete
case), respectively. Moreover, this density factorizes
according to the causal DAG belonging to the respec-
tive model.

Regarding any causal model M with causal DAG as
depicted in Figure 1, also the following simple state-
ment holds true. The proof is obvious but we present
it in the supplement anyway. Note that the lemma
is similar to [Pearl, 2000, Corollary 7.3.2], but better
tailored for our definition of MdoX=x.

Lemma 2. For all x we have

p(Y |X = x, doX=x) = p(Y |X = x),

E[Y |X = x, doX=x] = E[Y |X = x].

3 THE RELATION BETWEEN
OBSERVED DEPENDENCE,
BACK-DOOR DEPENDENCE
AND CAUSAL EFFECT

In this section we present various possibilities to for-
malize the notions of observed dependence, back-door
dependence and causal effect. For all formalizations



we prove that the back-door dependence is equal to
or upper bounds the deviation between the observed
dependence and the actual causal effect.

Subsections 3.1, 3.2 apply to X,Y, U with finite range.
Subsections 3.3, 3.5 apply to X,Y, U with arbitrary
range. Subsections 3.4 and 3.6 apply to X with con-
tinuous range.

Keep in mind that H(·) denotes the Shannon entropy,
I(· : ·) (I(· : ·|·)) the (conditional) mutual information,
and D[·‖·] the Kullback-Leibler divergence, all based
on logarithms with base 2. For details see [Cover and
Thomas, 1991].

3.1 ESTIMATING THE CAUSAL
STRENGTH FROM X TO Y

The basic quantities in this section are:
- observed dep.: I(X : Y ),
- back-door dep.: I(X : U), CU→X ,
- causal effect: CX→Y .

We consider the case of U,X, Y having finite range.
[Janzing et al., 2013] proposed a definition for the
causal strength of a set of arrows in a causal DAG.

We briefly want to repeat this definition for the special
case of measuring the strength of a single arrow. For
a set of observables V = {X1, . . . , Xn}, a DAG G′

with V as the set of nodes and a joint distribution
p(X1, . . . , Xn) and for any arrow Xi → Xj in G′ we
first define the distribution pXi→Xj

corresponding to
deleting Xi → Xj from the graph and feeding Xj with
an independent copy of Xi instead, see also [Ay and
Krakauer, 2007]:

pXi→Xj
(xj |pa

Xi→Xj

Xj
) :=

∑
x′
i

p(x′i)p(y|x′i,pa
Xi→Xj

Xj
),

pXi→Xj
(xk|pa

Xi→Xj

Xk
) := p(xk|paXk

), for all k 6= j,

pXi→Xj (x1, . . . , xn) :=

n∏
k=1

pXi→Xj (xk|pa
Xi→Xj

Xk
),

where pa
Xi→Xj

Xk
denotes (values of) the set of parents of

Xk in the modified graph G′ without arrow Xi → Xj

(obviously this actually only makes a change for paXj
).

Now we are able to define the causal strength CXi→Xj

by the impact of the edge deletion:

CXi→Xj
:= D[p(X1, . . . , Xn)‖pXi→Xj

(X1, . . . , Xn)].

Let us get back to our specific confounding scenario
(the causal DAG in Figure 1). For general DAGs,
[Janzing et al., 2013] shows CX→Y ≥ I(X : Y |PAY \
X), that is, the information Y contains about X
given its other parents is a lower bound for causal

strength (they argue that this property would be desir-
able for other information-theoretic measures of causal
strength as well). Hence in our confounding scenario
(Figure 1) we have CX→Y ≥ I(X : Y |U). Also keep in
mind that CU→X = I(U : X) in our setting.

Lemma 3. We have

I(X : Y |U) ≥ I(X : Y )− I(X : U). (1)

Proof. The statement follows from the fact that
I(X : Y |U) + I(X : U) = I(X : U, Y ) ≥ I(X : Y ).

We consider I(X : Y ) as a measure of observed depen-
dence between X and Y . The following theorem shows
that the back-door dependence CU→X bounds the dif-
ference between the observed dependence and the true
causal effect CX→Y .

Theorem 1. We have

CU→X ≥ I(X : Y )− CX→Y . (2)

Proof. This follows from Lemma 3 together with the
fact that CX→Y ≥ I(X : Y |U) and CU→X = I(X : U)
in our confounding scenario (i.e. the DAG in Figure
1).

3.2 ESTIMATING THE INFORMATION
FLOW FROM X TO Y

The basic quantities in this section are:
- observed dep.: I(X : Y ),
- back-door dep.: I(X : U),
- causal effect: I(X → Y |doU).

Another information theoretic quantity to measure the
causal effect of X on Y is the information flow pro-
posed by [Ay and Polani, 2008]. In our setting (the
causal DAG in Figure 1) it is defined as

I(X → Y |doU) :=∑
u

p(u)
∑
x

p(x|doU=u)
∑
y

p(y|doX=x, doU=u)

× log
p(y|doX=x, doU=u)∑

x′ p(y|doX=x′,doU=u)p(x′|doU=u)
.

Since p(y|doX=x, doU=u) = p(y|x, u) in our setting,
we simply have I(X → Y |doU) = I(X : Y |U).

So we can establish a theorem for the information flow
similar to the one for the causal strength. it follows
immediately from Lemma 3.

Theorem 2. We have

I(X : U) ≥ I(X : Y )− I(X → Y |doU). (3)



3.3 BOUNDING THE
KULLBACK-LEIBLER DIVERGENCE
BETWEEN p(Y |X=x) AND p(Y |doX=x)

The basic quantities in this section are:
- observed dep.: p(Y |X=x),
- back-door dep.: I(X : U), min{CU→X ,CU→Y },
- causal effect: p(Y |doX=x).

In some sense, p(Y |doX=x) is the most fundamental
characterization of the causal effect fromX to Y , while
p(Y |X=x) can be seen as the corresponding character-
ization of their observed dependence. In this section we
show that the deviation between these two objects can
be bounded by quantities which measure the back-door
dependence, I(X : U) and min{CU→X ,CU→Y }. We
formalize the notion of deviation here by

D[p(Y |X)‖p(Y |doX)]

:=
∑
x

p(x)D[p(Y |x)‖p(Y |doX=x)].

Theorem 3. We have

D[p(Y |X)‖p(Y |doX)] ≤ min{CU→X ,CU→Y }
≤ I(X : U).

Proof. First note that
pU→X(u, x, y) = p(u)p(x)p(y|u, x) and
pU→Y (u, x, y) = p(u)p(x|u)

∑
u′ p(y|u, x)p(u′).

This implies
p(y|doX=x) = pU→X(y|X=x) and
p(y|doX=x) = pU→Y (y|X=x).

Therefore, using the chain rule for Kullback-Leibler
divergence,

D[p(Y |X)‖p(Y |doX)] = D[p(Y |X)‖pU→X(Y |X)]

≤ D[p(X,Y )‖pU→X(X,Y )] = CU→X(= I(U : X)).

Similarly one can derive D[p(Y |X)‖p(Y |doX)] ≤
CU→Y .

The above theorem makes a statement w.r.t. the di-
vergence between p(Y |x) and p(Y |doX=x) averaged
over all values x of X. But it is also possible to derive
a pointwise version:

Theorem 4. For all x

D[p(Y |x)‖p(Y |dox)] ≤ D[p(U |x)‖p(U)],

with equality iff p(u|x) = p(u) for all u.

Proof. By the log sum inequality we have

p(y|x) log
p(y|x)

p(y|dox)

=

(∑
u

p(y|x, u)p(u|x)

)
log

∑
u p(y|x, u)p(u|x)∑
u p(y|x, u)p(u)

≤
∑
u

p(y|x, u)p(u|x) log
p(y|x, u)p(u|x)

p(y|x, u)p(u)
(4)

=
∑
u

p(y, u|x) log
p(u|x)

p(u)
.

Equality holds in (4) iff p(y|x, u)p(u|x) =
cp(y|x, u)p(u) for all u and some constant c, i.e.
iff p(u|x) = p(u) for all u. Summing over all y yields
the claimed inequality.

Note that taking the average w.r.t. X in Theorem 4
is another way to prove the first part of Theorem 3.
With a similar proof we can also derive the follow-
ing inequality w.r.t. the “inverse mutual information”
D[p(U)p(X)‖p(U,X)] (as opposed to the usual mutual
information I(U : X) = D[p(U,X)‖p(U)p(X)]). For
this purpose let us define

D[p(Y |doX)‖p(Y |X)]

:=
∑
x

p(x)
∑
y

p(y|doX=x) log
p(y|doX=x)

p(y|X=x)
.

Corollary 1. We have

D[p(Y |doX)‖p(Y |X)] ≤ D[p(U)p(X)‖p(U,X)].

To assess which bound is relevant for a scenario, we re-
call that for two distributions p and q, D[p‖q] diverges
when q = 0 and p > 0 on a set of Lebesgue measure
greater than 0. If the observed dependence p(Y |X) is
deterministic, p(Y |doX) needs to be deterministic if
D[p(Y |doX)‖p(Y |X)] is finite.

3.3.1 An example for bounding the average
causal effect from X to Y

Often one is interested in estimating the average causal
effect E[Y |doX=x′]−E[Y |doX=x] for two values x, x′

of X [Pearl, 2000], in particular because this quantity
is easy to interpret. In what follows, we want to give
an example how one can derive bounds on this quan-
tity based on Theorem 3. It is important to mention
however, that the assumptions we make are very re-
strictive. The purpose of the example is only to show
that information theoretic bounds on the back-door
dependence can, under appropriate assumptions, im-
ply bounds for the average causal effect.



Let X be binary, p(Y |x) = N (µx, σ
2), and

p(Y |doX=x) = N (µdo x, σ
2
do ), for x = 0, 1 (hence par-

ticularly E[Y |doX=x] = µdo x).1

In this case we can calculate (have in mind that ln is
the natural logarithm)

p(X=0)(µ0 − µdo 0)2 + p(X=1)(µ1 − µdo 1)2

= 2σ2
do

(
D[p(Y |X)‖p(Y |doX)]− ln

σ2
do

σ2
− σ2

2σ2
do

+
1

2

)
≤ 2σ2

do

(
min{CU→X ,CU→Y } − ln

σ2
do

σ2
− σ2

2σ2
do

+
1

2

)
.

(5)

Now assume we fix min{CU→X ,CU→Y } and σ2
do . Keep

in mind that µ0, µ1, σ
2 are observed. Then we can de-

rive upper and lower bounds on the average causal
effect µdo 1 − µdo 0 by maximizing and minimizing
it, respectively, under the constraints on the pair
(µdo 1, µdo 0) imposed by inequality (5).

3.4 ESTIMATING THE FISHER
INFORMATION

The basic quantities in this section are:
- observed dep.: FY |X(x),
- back-door dep.: F1

Y |X,doX(x, x),

- causal effect: F2
Y |X,doX(x, x).

In the following, ∂if(x, x′), i = 1, 2, denotes the par-
tial derivative w.r.t. the ith argument of f evaluated
at position (x, x′). And dxg(x) denotes the total
derivative of g(x) w.r.t. x at position x, in particu-
lar dxf(x, x) = dxg(x) for g(x) := f(x, x).

Given a family of distributions depending on continu-
ous parameters, Fisher information provides a natural
way to quantify the sensitivity of a probability distri-
bution to infinitesimal parameter changes. It plays an
important role for the error made when estimating the
true parameter value from empirical data [Rao, 1945].
Here we quantify causal influence by the sensitivity
of p(Y |dox) to small changes of x. This can be con-
sidered as a “local” measure of causal strength in the
neighborhood of x. We introduce the following nota-
tion:

FY |X(x) :=

∫
(dx log p(y|X=x))2p(y|X=x)dy,

F i
Y |X,doX(x, x′) :=∫
(∂i log p(y|X=x,doX=x′))2p(y|X=x,doX=x′)dy,

1Note, however, that both p(Y |X=0) and p(Y |X=1)
being Gaussian actually provides some evidence for the ab-
sence of confounding since a confounder will often destroy
this simple structure of P (Y |X) [Janzing et al., 2011].

for i = 1, 2.

Theorem 5. For all x√
FY |X(x)−

√
F2

Y |X,doX(x, x) ≤
√
F1

Y |X,doX(x, x).

A proof can be found in the supplement.

3.5 ESTIMATING THE EFFECT OF
TREATMENT ON THE TREATED
FROM X TO Y

The basic quantities in this section are:
- observed dep.:
E[Y |X=x′]− E[Y |X=x],

- back-door dep.:
E[Y |X=x′,doX=x]− E[Y |X=x,doX=x],

- causal effect:
E[Y |X=x′,doX=x′]− E[Y |X=x′,doX=x].

Following [Pearl, 2000], we define the quantity

E[Y |X=x′,doX=x′]− E[Y |X=x′,doX=x]

as the effect of treatment on the treated. As the name
already suggests, the idea behind this quantity is to
measure the deviation between the average response
of the treated subjects and the average response of
these same subjects had they not been treated. The
following result w.r.t. the effect of treatment on the
treated follows from Lemma 2.

Theorem 6. We have for all x, x′

E[Y |X=x′]− E[Y |X=x]

= E[Y |X=x′,doX=x′]− E[Y |X=x′,doX=x]

+ E[Y |X=x′,doX=x]− E[Y |X=x,doX=x].

Note that in mediation analysis [Pearl, 2001, Avin
et al., 2005, Robins and Greenland, 1992] a similar
splitting into direct and indirect effect is used. How-
ever mediation analysis addresses the problem of defin-
ing direct and indirect causal effects and not back-door
dependences.

We briefly want to discuss the other quantities that
appear in the theorem. Obviously, E[Y |X=x′] −
E[Y |X=x] measures the observed dependence of Y on
X. Now keep in mind that in MdoX=x, X has no
causal effect on Y anymore and hence Y statistically
depends on X solely via U . Therefore the difference

E[Y |X=x′,doX=x]− E[Y |X=x,doX=x]

measures the strength of the back-door dependence of
Y on X.



3.6 ESTIMATING THE DIFFERENTIAL
EFFECT OF TREATMENT ON THE
TREATED FROM X TO Y

The basic quantities in this section are:
- observed dep.: dxE[Y |X=x],
- back-door dep.: ∂1E[Y |X = x, doX=x],
- causal effect: ∂2E[Y |X = x, doX=x].

First note that by ∂iE[Y |X=x, doX=x′] we mean
∂if(x, x′) for f(x, x′) := E[Y |X=x,doX=x′] (recall
that ∂i denotes the partial derivative w.r.t. the ith ar-
gument). In the case of continuous random variables
U,X, Y we want to consider the following quantity (if
it exists i.e. if the conditional expectation is differen-
tiable)

∂2E[Y |X=x, doX=x],

which we call differential effect of treatment on the
treated or simply differential effect in cases where this
does not lead to confusions. It is the analog to the
discrete effect of treatment on the treated (see Section
3.5) for the case of infinitesimal interventional changes
on X; we simply replaced a difference by a derivative.

Similar to Theorem 6 we can establish the following
result. It follows from the chain rule for derivatives
together with Lemma 2.

Theorem 7. For all x

dxE[Y |X=x] = ∂1E[Y |X=x, doX=x]

+ ∂2E[Y |X=x, doX=x].

The interpretation of this theorem is similar to the
one for Theorem 6. Obviously, dxE[Y |X=x] is the
observed dependence, whereas the quantity ∂1E[Y |X =
x, doX=x] measures the back-door dependence of Y on
X. So the observed dependence of Y on X splits into
the causal effect plus the back-door dependence.

4 PROTOTYPICAL SCENARIOS
WITH BOUNDS ON THE
BACK-DOOR DEPENDENCE

In this section we present several prototypical scenar-
ios where bounds on the back-door dependence be-
tween X and Y can be derived. Together with our
results from Section 3 these bounds help to estimate
causal effect from X to Y .

4.1 A QUALITATIVE TOY EXAMPLE

We want to give an example that demonstrates how
human intuition concerning observed dependence and
causal effect relates to the theorems from Section 3.

Assume there is a drug that is indicated for a spe-
cific disease. We observe some not too small number
of people with the disease and see that some of them
take the drug and some do not. We find that all per-
sons who took the drug recovered on the same day
whereas none of the persons not taking the drug re-
covered that fast. For each sick person let X denote
the date he or she takes the drug and Y the date he
or she recovers. Since these are only observations, we
cannot exclude that there is a confounder U , i.e. we
assume the usual causal DAG (Figure 1). We esti-
mate the distribution of Y given X by the empirical
distribution, i.e. p(y|x) = δyx, where δyx denotes the
Kronecker delta.

Given the above setting probably most people would
argue that there has to be some effect from the drug
to the immediate healing of those people who took
it. However, formally and without further assump-
tions p(Y |x) alone does not even tell us if there is a
causal link from X to Y at all. With the help of The-
orem 3 though, we can formally reason as follows. We
make the weak additional assumption that X cannot
be completely determined by U which we formalize by
I(U : X) < H(X). It seems implausible that there
exists a common cause of X and Y that determines
both, the exact date X a person takes the drug and
the recovering date Y . E.g. the wealth of a person
may strongly influence both, the treatment he or she
takes and how quickly he or she recovers (via the gen-
eral health condition), however it seems not plausible
that the wealth determines the exact day of taking the
drug and of recovering.

For a proof by contradiction we may assume that there
is no causal effect from X to Y , i.e. p(Y |doX=x) =
p(Y |doX=x′) for all x, x′. Then

D[p(Y |X)‖p(Y |doX=x)]

=
∑
x

p(x)D[p(Y |X=x)‖p(Y |doX=x)]

=
∑
x

p(x)
∑
y

δyx log
δyx

P (Y = y|doX=x)

=
∑
x

p(x) log
1

p(Y=x|doX=0)
≥ H(X),

where the last inequality is due to Gibb’s inequality
[Cover and Thomas, 1991].

On the other hand, due to Theorem 3 we have

D[p(Y |X)‖p(Y |doX)] ≤ I(X : U) < H(X),

which yields the contradiction. Hence we could for-
mally show that there has to be some causal effect
from X to Y , p(Y |doX=x) 6= p(Y |doX=x′) for some
x, x′. Note that the above argumentation completely



transfers to any other situation where p(y|x) = δyx,
particularly any other range of X and Y .

4.2 PARTIAL RANDOMIZATION
SCENARIO

We first discuss a formal scenario, then an application
example, and afterwards we discuss how the scenario
and our result is related to the instrumental variable
design [Pearl, 2000].

YX

UW

Figure 2: The partial randomization causal DAG.

4.2.1 THE FORMAL PROTOTYPE

We consider a scenario where we have measured X and
Y , and where hidden variables U and W are present
and we know the distribution of W . The underlying
causal structure of all variables looks like the causal
DAG depicted in Figure 2. We assume that W is bi-
nary. Furthermore we assume that in this scenario
I(U : X|W = 0) = 0. The intuition behind this as-
sumption is that W decides whether X is influenced by
U (W = 1) or not. This scenario implies the following
inequality. A proof can be found in the supplement.

Proposition 1. In the given scenario we have
I(U : X) ≤ H(X)p(W=1).

Now we can employ our results from Sections 3.1
through 3.3. We obtain the following bounds:

I(X : Y )− CX→Y ≤ H(X)p(W=1), (6)

I(X : Y )− I(X → Y |doU) ≤ H(X)p(W=1), (7)

D[p(Y |X)‖p(Y |doX)] ≤ H(X)p(W=1). (8)

Note that under strong assumptions, one can also ap-
ply the result from Section 3.3.1 to estimate the aver-
age causal effect E[Y |doX=x′]−E[Y |doX=x] for two
values x, x′ of X.

4.2.2 ADVERTISEMENT LETTER
EXAMPLE

Assume we are managers of a mail order company,
and want to know the effect of sending advertise-
ment letters on the ordering behavior of the recipients.
We have a data set of (X,Y ) pairs with X denoting
whether a letter was sent to a specific person and let Y
denote the total costs of the products ordered by this

person afterwards (within some fixed time span). As-
sume we have enough data to estimate p(X,Y ). Fur-
thermore, assume that so far there were already im-
perfect guidelines based on rough intuition on whom
to send letters and whom not. These guidelines in-
troduce a potential confounder U since letters were
more likely send to potential customers with proper-
ties that made them also more likely to order some-
thing (if the guidelines were not complete nonsense).
It is known however that only some employees sticked
to these guidelines. Let W denote whether a letter was
sent out in compliance with these guidelines (W = 1)
or not.

Based on an estimate of how many employees com-
plied with the guidelines, we also have an estimate of
p(W = 1), i.e. the fraction of letters that was sent out
in compliance with the guidelines. Based on Proposi-
tion 1, we know that I(U :X) ≤ H(X)p(W=1). Hence
we have an upper bound on the back-door dependence
of Y on X. Particularly we can apply inequalities
(6) to (8) and, under strong additional assumptions,
the result w.r.t. the average causal effect from Section
3.3.1.

For example by (6) we have I(X:Y )−H(X)p(W=1) ≤
CX→Y . Now assume H(X)≈1 (we sent a letter to
roughly every second person in our register) and
p(W=1)≈0.5 (only half the employees sticked to the
guidelines). Then if we observe a strong dependence
of Y on X, say I(X:Y )≈0.75, then we can conclude
that CX→Y &0.25, i.e. our advertisement letters have
a significant effect on the potential customers.

4.2.3 DIFFERENCE TO INSTRUMENTAL
VARIABLE DESIGN

We already mentioned the instrumental variable de-
sign [Pearl, 2000] in Section 1. In this design it is as-
sumed that an additional variable W is observed such
that the causal structure of all variables together is
as depicted in Figure 2, except that W is not hid-
den. The prototypical application scenario for this de-
sign are clinical trials with partial compliance. [Pearl,
2000] describes a method to derive bounds on the av-
erage causal effect E[Y |doX=1]−E[Y |doX=0]. This
analysis heavily depends on the range of X, Y , and
W and involves convex optimization in 15-dimensional
space already for the case where all variables are bi-
nary (since U can be assumed to attain 16 different
values).

The advantage of our approach lies in the fact that
the ranges of the variables may be arbitrary with-
out increasing the complexity – for the cost of getting
less tight bounds than an explicit modeling, of course.
One can get bounds for the case where neither X nor



Y are binary, e.g., in a drug testing scenario with
different doses and descriptions of health conditions
that are more complex than just reporting recovery or
not. Moreover, we do not need complete knowledge of
p(Y,X|W ) provided that we have some knowledge on
W that provides upper bounds on I(X:U).

4.3 A VARIANT OF THE REGRESSION
DISCONTINUITY DESIGN

We already mentioned the regression discontinuity de-
sign (RDD) [Thistlewaite and Campbell, 1960, Imbens
and Lemieux, 2008, Lee and Lemieux, 2010] in Section
1. It is a quasi-experimental design that can help to
estimate the causal effect from X to Y in cases where
an additional variable Z is measured and the underly-
ing causal DAG of all variables together is as depicted
in Figure 3. The design usually requires that X is a
deterministic function of Z that contains a discontinu-
ity, that all remaining structural equations are linear,
and that E[U |Z = z] is continuous in z. (Note that the
causal DAG in Figure 3 is a special case of the general
confounding scenario depicted in Figure 1, which can
be seen by replacing U in Figure 1 by U ′ := (U,Z).)

YXZ

U

Figure 3: The causal DAG for the RDD and our vari-
ant of it.

We now want to consider a scenario inspired by the
RDD, which allows to bound the back-door depen-
dence in the sense of Section 3.6 and thus makes
Theorem 7 applicable to estimate the causal effect
∂2E[Y |X=x, doX=x], i.e. the differential effect of
treatment on the treated. The scenario differs from
the RDD in that neither a discontinuity in the struc-
tural equation for X, nor linearity of the remaining
structural equations is required.

Assume the causal DAG in Figure 3. Furthermore
assume that X = fX(Z) for a function fX that is
differentiable. (This is the point where our scenario
differs from RDD.) Suppose fX is invertible, g := f−1X .
It can easily be seen that this implies

∂1E[Y |X=x, doX=x]

= ∂1E[Y |Z=g(x),doX=x]g′(x).

Note that ∂1E[Y |Z=g(x),doX=x] means the deriva-

tive of E[Y |Z=z,doX=x] w.r.t. z at position (g(x), x).
Applying Theorem 7 yields

dxE[Y |X=x]− ∂2E[Y |X=x, doX=x]

= ∂1E[Y |Z=g(x),doX=x]g′(x).

Hence if for any position x0 ofX we assume a bound on
the strength of the “back-door” dependence of Y on Z,
∂1E[Y |Z=g(x0),doX=x0], and if |g′(x0)| is compara-
bly small (which is the case when |f ′X(g(x0))| is big),
then we can bound the difference between observed
dependence and causal effect at position x0.

For instance, if we consider the observed dependence
dxE[Y |X=x] as a realistic scale based on which one
can constrain ∂1E[Y |Z=g(x),doX=x], formally

|∂1E[Y |Z=g(x),doX=x]| ≤ c|dxE[Y |X=x]|,

for some c, then one can bound the modulus of the
causal effect from below:

|∂2E[Y |Z=g(x),doX=x]|
≥ (1− c|g′(x)|)|dxE[Y |X=x]|.

Obviously one weakness of the above argument is that
the estimation of the causal effect heavily depends on
the bound that we assume w.r.t. the “back-door” de-
pendence of Y on Z, ∂1E[Y |Z=g(x),doX=x]. How-
ever, this can be seen as a quantitative analogon to the
qualitative assumption of the RDD that E[U |Z = z] is
continuous in z.

Keep in mind that our results on Fisher information
(Section 3.4) can be used in the case where X is not
a deterministic function of Z that changes rapidly but
instead the conditional probability p(X|z) changes fast
at some z = z0.

5 CONCLUSIONS

In this paper, we analyzed a simple intuition linking
observation and causation: if the observed dependence
is strong and the effect of confounding is known to be
weak, then we can infer a causal effect. We did this
by employing a number of different notions for mea-
suring dependence and causation, leading to different
theoretical bounds. We do not argue that at present,
there is a single formalization that best captures all as-
pects of this intuition, rather, we try to shed light on
properties of the various notions by applying them to
the same fundamental problem. While bounding con-
founding appears easier based on information theoretic
quantities, expressing the influence from the treatment
to the outcome variable by e.g. the effect of treatment
on the treated (ETT) seems more relevant for practical
purposes. We discussed several prototypical scenarios
where bounds on confounding can be derived.
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