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Abstract

Binary matrices and tensors are popular data
structures that need to be efficiently approxi-
mated by low-rank representations. A standard
approach is to minimize the logistic loss, well
suited for binary data. In many cases, the num-
ber m of non-zero elements in the tensor is much
smaller than the total number n of possible en-
tries in the tensor. This creates a problem for
large tensors because the computation of the lo-
gistic loss has a linear time complexity with n. In
this work, we show that an alternative approach is
to minimize the quadratic loss (root mean square
error) which leads to algorithms with a training
time complexity that is reduced from O(n) to
O(m), as proposed earlier in the restricted case
of alternating least-square algorithms. In addi-
tion, we propose and study a greedy algorithm
that partitions the tensor into smaller tensors,
each approximated by a quadratic upper bound.
This technique provides a time-accuracy trade-
off between a fast but approximate algorithm and
an accurate but slow algorithm. We show that
this technique leads to a considerable speedup in
learning of real world tensors.

1 INTRODUCTION

In multi-relational data factorization problems [20, 25],
many negative examples are implicitly created for rela-
tions that are not true. For example, in a knowledge
base of family relationships, the fact isFather(x,y)
can be considered as a positive example and automat-
ically induces m − 1 negative examples of the form
not(isFather(x,z)), for all m individuals z differ-
ent from y. In other words, for some relations, one pos-
itive example is always associated with several thousands
of negative examples. The focus of our work is to consider
algorithms that are independent of this number of negative

examples. In a different domain, state-of-the-art detection
systems in computer vision are based on a binary classifier
applied many times on a dense multi-resolution scan of an
image [7]. Here, most of the examples do not contain the
object to be detected and negative patches often overwhelm
the number of positive examples. Finally, another classi-
cal example of such problems with unbalanced categories
corresponds to recommender systems taking into account
implicit feedback: in this domain, it corresponds to the sig-
nal that if a user did not do some action, such as buying an
object in an online shopping web site or did not click on
an online advertisement, then a negative training example
is created to take into account the fact that the proposed
item or advert might not be appropriate. While these neg-
ative examples are sometimes subject to controversy since
one does not know whether the recommendation was cor-
rect or not, they are nevertheless considered as very useful
by practitioners and are key components of most of online
recommendation engines [9].

For a binary classification problem where the total number
n+ of positive examples is largely inferior to the total num-
ber n− of negative examples, the complexity of most of the
existing learning algorithms is at least linear in the num-
ber n = n+ + n− of training samples, since it is a general
belief that every training point needs to be loaded in mem-
ory at least once. In fact, the sparsity of the data can be
used to drastically reduce the computation time of square-
norm minimization problems, as proposed by [9] using a
alternating least square algorithm, where each least square
problem has a complexity linear in the number of positive
data only. We will give an alternative derivation of this
result and show that it is also valid for gradient-based algo-
rithms.

However, the squared loss is not always satisfactory. For
example, binary tensor decomposition with logistic loss
gives much better predictive performance than minimizing
the squared loss. The downside of it is that the compu-
tational cost increases significantly [14, 19], and one usu-
ally relies on heuristic rules to subsample the negative ex-
amples [11]. The time to minimize the logistic loss (or



other non-quadratic loss) scales linearly in the total num-
ber n = n+ + n− of observations, which is a real issue in
these heavily unbalanced datasets for which n+ << n−.

In this work, the key contributions are:

• For matrix and tensor factorization models learned by
minimizing the squared loss, we show that all the al-
gorithms can benefit from this speedup, i.e. it is not re-
stricted to the alternating least square algorithm of [8],

• We propose a new algorithm to minimize non-
quadratic losses. It is based on the partitioning of the
tensor into blocks and the use of Jaakkola’s quadratic
upper bound to the logistic loss [10]. While Jaakkola’s
bound has already been used to factorize large ma-
trices, the case of unbalanced datasets was not ad-
dressed [24]. Our work can be viewed as a novel ap-
plication of these upper-bounding techniques, where
the incremental refinement of the approximation pro-
vides a natural way to correct the optimality gap intro-
duced by the bound.

2 PROBLEM FORMULATION

Let Ω := {(i1, · · · , iD) ; id ∈ {1, · · · , nd} ∀d =
1, · · · , D} denotes the set of D-uplets for the dimensions
n1, n2, · · · , nD. For each of these D-uplets, we observe
a noisy binary values yt ∈ {0, 1} indexed by t ∈ Ω.
These observations can also be represented as a noisy bi-
nary tensor Y ∈ {0, 1}n1×···×nD where n1, n2, · · · , nD
correspond to the tensor dimensions. Typically, D = 2
will correspond to binary matrices, and D = 3 to third-
order tensors as used in database factorization models such
as RESCAL [20]. Our objective is to predict the value of
some specific entries in the tensor, which can be understood
as detecting which entries in the tensor are outliers yt. To
do this, we estimate a tensor Z(θ) ∈ Rn1×···×nD of log-
odds parameterized by θ ∈ Θ.

We formulate the problem as an empirical loss minimiza-
tion. In the training phase, the empirical loss L is mini-
mized with respect to the parameter vector θ:

min
θ∈Θ
L(θ) L(θ) :=

∑
t∈Ω

`(yt, zt(θ)) (1)

where `(y, z) = −y log(σ(z))−(1−y) log(1−σ(z)) with
σ representing the sigmoid function: σ(z) := 1

1+e−z . The
predicted tensor Z(θ) := {zt(θ)}t∈Ω is assumed to be a
factored representation, i.e. it has a low rank structure. For
clarity, we consider only multi-linear models based on the
PARAFAC [6] tensor parametrization.1 The predictions zt
are obtained by the multilinear product of rank-K factors

1We can easily adapt this work to more general decomposi-
tions such as Tucker or RESCAL, or even to convex loss functions
using trace-norm regularization.

represented in the rows of matrices Θd ∈ Rnd×K , d ∈
{1, · · · , D}:

zt(θ) :=

K∑
k=1

D∏
d=1

θ
(d)
tdk

:=
〈
θ

(1)
t1 , · · · ,θ

(D)
tD

〉
.

For matrices (D = 2), this model is a special case of
exponential-family PCA [5] where the link function is
logistic. For D = 3, this model has been studied in
the context of multi-relational knowledge bases factoriza-
tion [14, 18]. To solve Equation (1), several optimization
methods have been proposed in the literature. Alternating
optimization, gradient descent and stochastic gradient de-
scent:

• The gradient descent algorithms are only based on
the minimization of L by doing small steps in the
direction of the gradients. Since the loss is differ-
entiable, we derive its gradient in closed form and
use a generic software to choose the optimal descent
direction. In the experiments below, we use Marc
Schmidt’s minFunc Matlab function.2

• The alternating optimization procedure, also called
block coordinate descent, consists in minimizing the
loss L with respect to the i-th component Θi, keeping
all the other components Θj , j 6= i fixed. This opti-
mization makes use of existing optimized linear logis-
tic regression algorithms. The optimization procedure
is obtained through a round-robin schedule. This ap-
proach is simple to implement, but it involves an in-
ner loop since linear logistic regression algorithms are
also based on gradient minimization.

• For large scale optimization, there is a growing in-
terest in stochastic gradient descent algorithms since
every gradient computation can potentially be too ex-
pensive. It consists in computing the gradients for a
subset of the observations.

For highly sparse matrices where the number of zeros is
much larger than the number of ones, these approaches do
not scale well with the dimension of the tensor. For each
of these algorithms, the time to make one function evalua-
tion is the key bottleneck. The gradient descent algorithm
requires to sum |Ω| elements (one per possible prediction).
One step of the alternating optimization procedure is com-
putationally costly because it requires to solve a linear lo-
gistic regression with |Ω| observations. The stochastic gra-
dient descent algorithm seems to be better as each itera-
tion is very fast, but it still requires |Ω| iterations to do one
pass through the data. For some problems, good predic-
tive performances are obtained even before the first pass

2Can be found at http://www.di.ens.fr/
˜mschmidt/Software/minFunc.html.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html
http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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Figure 1: Comparison of the logistic function and the Gaus-
sian distribution. The Gaussian distribution (the mean is
-2.61 and the variance is 5.25) approximates well the lo-
gistic function in a range of values (gray area in the range
[-2,2]) that corresponds to probabilities between 0.12 and
0.88 (dotted lines). In most of recommender systems appli-
cations, the probability of correctly predicting user choice
is in this range, which explains that RMSE loss is reason-
able.

through the data has been completed, but this case is rel-
atively rare in practice. Our objective is to study methods
that have a sub-linear complexity in the number of training
sample, i.e. we can take into account all the |Ω| training
samples while having a complexity that scales only in the
number n+ = |Ω+| of non-zero elements. In the follow-
ing we show that this complexity can be obtained by using
a quadratic approximation to the logistic loss, leading to
considerable speedup in our experiments.

3 QUADRATIC LOSS: FAST BUT OFTEN
INACCURATE

As illustrated in Figure 1, the logistic loss can be reason-
ably approximated by a quadratic function, so the Root
Mean Square Error (RMSE) should be a a good surro-
gate function to minimize. A naive computation of the
square loss L(θ) =

∑
t∈Ω(yt − zt(θ))

2 would require
O(KD

∏
d nd) operations, since there are

∏
d nd possible

predictions, but simple algebra shows that it is equal to:

L(θ) =
∑
t∈Ω

(yt − zt)2 (2)

= n+ − 2
∑
t∈Ω+

zt(θ) +

K∑
k=1

K∑
k′=1

D∏
d=1

M
(d)
kk′ (3)

where the K × K matrices M (d) are defined by M (d)
kk′ :=∑d

j=1 θ
(d)
jk θ

(d)
jk′ . Hence, for tensors of high dimension, we

get a significant speedup as Equation (3) can be computed
in O(Kn+ + K2

∑
d nd) operations.As an example, as-

sume one wishes to compute the loss of a 1000 × 1000 ×
1000 tensor containing 105 entries and the low-rank ap-
proximation has rankK = 100. Then, we can see that there
are 3.1011 basic operations in the formula of Equation (2),

while the formula of Equation (3) contains 6.107 basic op-
erations. This means that it will be 5000 times faster to
compute exactly the same quantity!

If we minimize the loss L(θ) with respect to θ using block-
coordinate descent, the iterations end up being least squares
problem with a per-iteration complexity that scales linearly
with the number of positive examples only. This corre-
sponds exactly to the iTALS algorithm [22], which is the
tensor generalization of the alternating least squares algo-
rithm of [9]. In our experiments, we used gradient descent
to minimize the objective function, using Equation (3) to
compute the gradient efficiently (the complexity is the same
as the function evaluation).

4 SPEED-ACCURACY TRADE-OFF BY
BOUNDING SPLITS

4.1 UPPER BOUNDING THE LOSS

To speed-up computation, we minimize a quadratic upper
bound to the logistic loss. We use Jaakkola’s bound to the
logistic loss [10]:

log(1 + ez) ≤ λ(ξ)(z2 − ξ2) +
1

2
(z − ξ) + log(1 + eξ) ,

where λ(ξ) := 1
2ξ ( 1

1+eξ
− 1

2 ) and ξ is a variational param-
eter. We keep the same value for ξ for all the elements of
the tensor Z, so that the upper bound has exactly the form
required to apply the computational speedup described in
the previous section.

L̄(θ, ξ) = λ(ξ)
∑
t∈Ω

(
zt −

2yt
4λ(ξ)

)2

+ c(ξ)

where c(ξ) is a constant function that does not depend on θ:

c(ξ) = |Ω|
(

log(1 + eξ)− λ(ξ)ξ2 − 1

2
ξ − 1

16λ(ξ)

)
The optimization of this bound with respect to ξ gives ex-
actly the Frobenius norm of the tensor:∑

t∈Ω

zt(θ)
2 = arg min

ξ
L̄(θ, ξ) . (4)

Note that Z(θ) is low rank in general. This means that
it can also be efficiently computed using the third term of
Equation (3). We have now an upper bound to the original
loss L that needs to be minimized:

L(θ) ≤ L̄Ω(θ, ξ) . (5)

As usual with bound optimization, we alternate between
two steps: 1) minimizing the bound with respect to the
variational parameter ξ using closed form updates (e.g.
when using Jaakkola’s bound) or dichotomic search where
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Figure 2: Illustration of the idea of bound refinement. The
main idea is that computing the integral of the quadratic
upper bound (such as b1 in the top graph) is much faster
than computing the integral of f directly. To improve the
accuracy, we use piecewise bounds. To choose the domain
of the pieces, we use a greedy algorithm that identifies the
partition that leads to the diminished upper bound (leading
to the upper bounds b2 and b3.

no closed form solution exists; and 2) minimizing the
bound with respect to θ using a standard gradient de-
scent algorithm. This algorithm is sometimes referred as
Majorization-Minimization algorithm in the literature [16].
The algorithm minimizes the loss with a complexity per
iteration equal to O

(
Kn+ +K2

∑
d nd

)
In the experi-

ments, this algorithm is called Quad-App. It is detailed in
Algorithm 2.

4.2 SPLIT THE DATA TO IMPROVE ACCURACY

The drawback of the previous approach, even with one or
two orders of magnitude speedups, the resulting quadratic
approximation can be quite loose for some data, and the
accuracy of the method can be too low. We give here a
family of approximation that interpolates between this fast
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Figure 3: Example of matrix split to improve upper bound
accuracy. Colors identify blocks. Numbers in the ma-
trix represent predictions. The block 1 is decomposed into
blocks 1 and 4, both having a small variance on the absolute
value of the predictions.

but inaccurate quadratic approximation and the slow but
exact minimization of the non-quadratic loss.

We propose to take advantage of the speedup due to the
quadratic upper bound by applying it on a partition of the
the original tensor: we select a set B = {B1, ·, B|B|} of
disjoint blocks that partitions the space of possible obser-
vation indices Ω. On each of these blocks, the bounding
technique described in the previous section is applied, the
main difference being that the minimization with respect to
θ is done jointly on all the blocks. This process is illustrated
in Figure 2. Formally, each block Bb, b ∈ {1, · · · , |B|} is
identified by D sets of indices which represent the dimen-
sions that are selected in the given block b. The split of
these indices are illustrated in a toy matrix example in Fig-
ure 3. Blocks for tensors are computed the same way as
matrices, but the depth indices are also splitted: At each
refinement step, we choose to partition the rows indices,
column indices or depth indices.

To select the blocks, we use a greedy construction of
the blocks: starting with a single block containing all
the indices, i.e. B = {Ω}, we iteratively refine the
blocks using the following two-step procedure, called
RefineBlocks:

1. select the block b to split that has the maximal variance
in the absolute values of the predictions |zt|;

2. split the block b into two block so that the variance
of the absolute values of the predictions |zt| is mini-
mized.

An example of such a split is shown in Figure 3. This
method is fully described in Algorithm 1, which uses Al-



Algorithm 1 Iterative block splitting: minθ,B L̄(θ,B, Y )

1: θ̂ = UBAdaptiveMinimization(Y , θ(0), ε)
2: Inputs: tensor Y , initial θ(0), tolerance ε
3: Outputs: latent factors θ̂ = {Θ̂1, · · · , Θ̂D}
4: Initialize blocks B(0) = {Ω},
5: for i = 1, 2, · · · until improvement less than ε do
6: θ(i) = UBMinimization(Y , θ(i−1), ε/2, B(i−1))
7: B(i) ← RefineBlocks(B(i−1),θ(i))
8: end for
9: θ̂ = θ(i)

Algorithm 2 UBMinimization minθ L̄(θ,B, Y )

1: θ̂ = UBMinimization(Y , θ(0), ε, B)
2: Inputs: tensor Y , initial θ(0), tol. ε, blocks B
3: Outputs: latent factors θ̂ = {Θ̂1, · · · , Θ̂D}
4: for i = 1, 2, · · · until improvement less than ε do
5: for b = 1, 2, · · · , |B| do
6: ξ

(i)
b ← arg minξb L̄b(θ(i−1), ξb,Bb)

7: end for
8: θ(i) ← arg minθ

∑
b L̄b(θ, ξ

(i)
b ,Bb)

9: end for
10: θ̂ = θ(i)

gorithm 2 as a sub-program to learn the parameters for a
fixed set of blocks, following the approach described in the
previous section. There is a tradeoff between optimizing
the bound using Algorithm 2 and refining the partition B in
Algorithm 1. A simple strategy that worked well in prac-
tice was to refine the partition when the upper bound mini-
mization did not improve more than a given tolerance level
ε/2 in two successive iterations. This piecewise refinement
strategy is called PW Quad-App in the experimental sec-
tion.

We also introduced a slight variant of this basic algorithm,
where we compute the exact logistic loss in blocks that are
sufficiently dense, i.e. when computing Equation (3) re-
quires more iterations than computing the loss in the clas-
sical way (Equation (3)). This condition is verified when
n+(B) ≥

∏D
d=1 n

(B)
d −K

∑D
d=1 n

(B)
d , where n+(B) and

n
(B)
d correspond to the number of non-zero elements and

dimensions of the block tensor B. We call this variant
PW Quad-App + Logistic.

5 EXPERIMENTS AND RESULTS

In this section, to evaluate the performances of our frame-
work, we conducted experiments on both synthetic and real
datasets.

Synthetic Data Experiments To explore the speed-
accuracy tradeoff, we generated different binary matrices
Y by randomly sampling noisy low-rank matrices X =

UV + E where U ∈ Rn1×r and V ∈ Rr×n2 are gen-
erated using independent standard normal variables and
E ∈ Rn1×n2 is a normally distributed Gaussian noise
with standard deviation σ. To create the binary matrix
Y ∈ {0, 1}n1×n2 , we round the values of X using a high
percentile of X as a threshold to produce a heavy tendency
towards the negative class. We learn an estimation X̂ of the
original matrix X on the data matrix Y assumed to be fully
observed and compute the RMSE on the recovery of X ,
i.e. RMSE=‖X − X̂‖F . We measure the running time of
each of the methods to understand their scalability to large
datasets.
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Figure 4: Matrix recovery results on simulation data with
size 10000×5000, sparsity %0.1 and noise σ = 0.1. Mark-
ers are plotted at iterations 10, 17, 28, 35, 52, 63 and 73
(these times correspond to the refinement of the piecewise
bound).

The timing and accuracy performances of our methods on
simulation data with various dimensions, noise levels and
sparsity percentages are shown in Table 1. These results
are averaged over 10 runs and we choose rank r = 5 for
every simulation. Here, the baselines are logistic loss and
quadratic loss. The logistic loss gives much smaller error
rates than the quadratic loss (EUC-Full and EUC-Fast) and
quadratic approximation, especially when the noise level is
low. However, minimizing the logistic loss requires con-
siderably more time than the alternative approaches as the
problem size grows. These experiments highlight the fact
that our unified framework for quadratic loss gives a sig-
nificant improvement over logistic loss in terms of runtime
performance. We also observe that the piecewise quadratic
bounding technique has better predictive performance than
the quadratic approximation, along with a huge speedup
when we compare it to the time to train the model using
the logistic loss. On Figure 4, we plotted the test RMSE
with respect to the CPU time (each marker corresponds to



Table 1: Evaluation results of the synthetic experiments in terms of seconds for runtime and RMSE for matrix recovery.

Methods

EUC-Full EUC-Fast Logistic Quad-App PW QuadApp

Noise Level Dimension Sparsity RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time

Low
Noise
σ = 0.1

n1 = 100
n2 = 50

10% 0.6970 60.45 0.6970 0.50 0.3561 103.13 0.6421 0.58 0.4377 6.16

1% 0.6792 55.57 0.6792 0.46 0.1095 90.65 0.4568 0.56 0.1918 3.19

n1 = 1000
n2 = 500

1% 0.7251 5295.7 0.7251 63.10 0.1563 7216.2 0.7054 75.49 0.3790 421.11

0.1% 0.7251 5248.3 0.7251 42.90 0.2126 6605.6 0.7067 62.90 0.5247 301.35

n1 = 10000
n2 = 5000

0.1% 0.4483 84950 0.4483 1289.2 0.0497 68199 0.2052 1353.8 0.0911 6683.9

0.01% 0.4217 86109 0.4217 803.2 0.0329 66482 0.1814 1049.3 0.0583 4271.4

High
Noise
σ = 2.0

n1 = 100
n2 = 50

10% 2.8989 59.06. 2.8989 0.48 1.2789 94.49 1.8639 0.73 1.3212 10.18

1% 2.8821 44.96 2.8821 0.37 0.2377 59.21 0.4589 0.54 0.2622 7.14

n1 = 1000
n2 = 500

1% 2.6705 7070.3 2.6705 110.87 0.3371 6592.0 0.4052 132.55 0.3659 943.67

0.1% 2.5116 7276.2 2.5116 109.99 0.0563 6503.1 0.1304 120.83 0.1078 783.91

n1 = 10000
n2 = 5000

0.1% 1.9990 97084 1.9990 1486.1 0.2312 66124 0.2604 1523.0 0.2374 7352.8

0.01% 1.7416 83846 1.7416 1183.0 0.1332 65664 0.1661 1589.6 0.1414 6613.1

an iteration). Because the error rate of quadratic loss is
considerably bigger than the other methods, we show the
results of logistic loss, quadratic approximation and piece-
wise methods in this figure. It is interesting to see that the
piecewise quadratic bound reaches its goal of interpolating
the performances between the fast but inaccurate quadratic
approximation, and the slow but accurate logistic loss min-
imization: On a wide range of times (from 2 minutes to
1 hour), the piecewise quadratic bound gives the best per-
formances. It is worth to note that the slight modification
that was introduced to perform exact logistic on the small-
est pieces improves performances when the methods have
nearly converged (after 60 iterations). Note that this exper-
iment was done on matrices, but the differences are even
bigger for tensors of high order.

Real Data Experiments In order to evaluate the perfor-
mances of our methods, we designed link-prediction ex-
periments on standard multi-relational datasets: Nations
that groups 14 countries (entities) with 56 binary relation
types (like ’economic aid’, ’treaties’ or ’rel diplomacy’)
representing interactions among them; Kinships which is
the complex relational structure of Australian tribes’ kin-
ship systems. In Kinships dataset, 104 tribe members were
asked to provide the kinship terms they used for one an-
other and this results in graph of 104 entities and 26 re-
lation types, each of them depicting a different kinship
term. And UMLS that contains data from the Unified Med-
ical Language System semantic work used in [11]. This
dataset consists in a graph with 135 entities (high-level
concepts like ’Disease or Syndrome’, ’Diagnostic Proce-
dure’) and 49 relation types (verbs depicting causal in-
fluence between concepts like ’affect’ or ’cause’). In the
end, these datasets results in tensors Y ∈ {0, 1}14×14×56,
Y ∈ {0, 1}104×104×26 and Y ∈ {0, 1}135×135×49 respec-

tively.

Then, we compared the Area Under the Receiver Operat-
ing Characteristic Curve (AUC) and runtime in seconds of
piecewise methods to the results of quadratic approxima-
tion and logistic loss and also the results of RESCAL [20],
SME [2] and LFM [11] that have the best published results
on these benchmarks in terms of AUC.

In addition, we test the performances of these methods on
three datasets in matrix form: MovieLens 3, Last FM 4 [4]
and Sushi Preference [12]. MovieLens dataset contains
movie ratings of approximately 1682 movies made by 943
MovieLens users and results in matrix Y ∈ {0, 1}943×1682.
The Last FM dataset consists of music artist listening
information from a set of 1892 users from Last.fm on-
line music system. We construct a binary matrix Y ∈
{0, 1}1892×17632 from this dataset that contains the artists
listened by each user. Lastly, the Sushi Preference Data Set
includes 4950 users’ responses of preference in 100 differ-
ent kinds of sushi. In this dataset, the most disliked kind of
sushi represented by 0 and the most preferred one is rep-
resented by 1. Eventually, sushi dataset results in matrix
Y ∈ {0, 1}100×4950.

For the results given in Table 2, we performed 10-
fold cross validation and averaged over 10 random splits
of the datasets. In addition, we select the optimal
regularization parameter λ∗ by searching over the set
{0.01, 0.05, 0.1, 0.5, 1} that maximizes the AUC and we
computed rank-20 decomposition of these datasets in or-
der to get comparable results to RESCAL, SME and LFM.
The time and accuracy comparisons are given in Table 2
in terms of seconds for time and AUC metric for predict-

3www.grouplens.org/node/73
4www.grouplens.org/datasets/hetrec-2011/



Table 2: Evaluation results obtained by our approaches, RESCAL [20], SME [2] and LFM [11] on the given datasets.
Datasets

Methods Nations Kinships UMLS MovieLens Last FM Sushi

AUC

EUC-Full 0.7536 0.8193 0.8205 0.8511 0.8965 0.8199
EUC-Fast 0.7536 0.8193 0.8205 0.8511 0.8965 0.8199
Logistic 0.9253 0.9592 0.9795 0.9848 0.9454 0.9513

Quad-App 0.8635 0.9087 0.9169 0.8916 0.9042 0.9078
PW QuadApp 0.9038 0.9213 0.9387 0.9490 0.9272 0.9200

PW Quad+Logistic 0.9122 0.9416 0.9566 0.9781 0.9381 0.9373
RESCAL [20] 0.8400 0.9500 0.9800 0.9601 0.9257 0.9481

SME [2] 0.8830 0.9070 0.9830 0.9144 0.9328 0.9177
LFM [11] 0.9090 0.9460 0.9900 0.9790 0.9401 0.9598

Time
(sec)

EUC-Full 922.87 8793.8 81039 103454 701819 13490.8
EUC-Fast 18.37 80.95 167.67 344.81 3688.74 142.63
Logistic 1483.7 10374.2 75489 111257 721994 12704.6

Quad-App 18.07 97.13 187.1 431.35 1839.16 142.06
PieceQuadApp 32.52 169.35 922.65 1095.94 2792.18 643.56

PW Quad+Logistic 59.71 651.12 1035.47 1349.6 4065.12 755.72
RESCAL [20] 626.40 3714.6 4142.05 6786.23 9861.50 2632.1

SME [2] 32.11 135.9 513.03 749.07 1627.56 279.38
LFM [11] 64.63 1446.22 5097.5 8265.56 13058.1 3438.07

ing missing values. These results demonstrate that logis-
tic loss improves accuracy over RESCAL, SME and LFM
in Nations, Kinships, MovieLens and Last FM datasets
while it reaches almost the same score for UMLS and
Sushi datasets. On the other side, piecewise methods pro-
vide very close approximation to logistic loss on all these
datasets and they have a significant advantage in terms of
runtime over the other methods. They take a small fraction
of logistic loss’ running time, especially for large datasets.

6 RELATED WORK

In order to deal with learning on various forms of structured
data such as large-scale knowledge bases, time-varying net-
works or recommendation data, tensor factorizations have
become increasingly popular [3, 21, 23]. Recently, Nickel
et al presented RESCAL [20], an upgrade over previous
tensor factorization methods, which has been shown to
achieve state-of-the-art results for various relational learn-
ing tasks such as link prediction and entity resolution. In-
dependently, a similar logistic extension of the RESCAL
factorization has been proposed in [14]. [21] is an exten-
sion to the RESCAL algorithm on the YAGO ontology and
is based on alternating least-squares updates of the factor
matrices, has been shown to scale up to large knowledge
bases via exploiting the sparsity of relational data. Among
the existing works, [18] is the most similar work with our,
which is the logistic extension of RESCAL. It demonstrates
that the logistic loss improves the prediction results signif-
icantly but their algorithm requires to compute the dense
matrix and cannot scale to large data. In RESCAL, entities
are modeled by real-valued vectors and relations by matri-

ces. Bordes et al has further improved this idea in the Struc-
tured Embeddings (SE) framework [3] by learning a model
to represent elements of any knowledge base (KB) into a
relatively low dimensional embedding vector space by ten-
sor factorization method. Latent Factor Model (LFM) [11]
is based on a bilinear structure, which captures various or-
ders of interaction of the data, and also shares sparse la-
tent factors across different relations. In [2], they present
a new neural network designed to embed multi-relational
graphs into a flexible continuous vector space via a custom
energy function (SME) in which the original data is kept
and enhanced. In all of these studies [3, 11, 2], the data is
extremely skewed i.e., the number of negative examples�
the number of positive examples. To overcome the sparsity,
they first select a positive training triplet at random, then
create a negative triplet by sampling an entity from the set
of all entities. Unlike these approaches, we argue that it
is in general more appropriate to consider all the negative
examples.

Maaten et al [15] derive an upper bound to logistic loss
which can be minimized as surrogate loss for linear predic-
tors on binary labels. Khan et al [13] used Jaakkola’s bound
for binary observations and Bohning’s bound for multino-
mial observations [1]. Our work can be easily extended
to take into account Bohning’s bound. In addition, piece-
wise bounds have the important property: reducing the er-
ror as the number of pieces increase. Marlin et al. proposed
an improvement on the logistic-loss with piecewise linear
bounds, but this is a local approach and does not apply in
our setting since we need a global quadratic bound to apply
the squared norm trick [17].



7 CONCLUSION

There were several important techniques used in this paper:
1) the decomposition of the loss into a small positive part
and a large but structured negative space; 2) the use of the
squared norm trick that reduces the complexity of squared
loss computation and 3) the use of the partitioning tech-
nique to gradually reduce the gap introduced by the usage
of quadratic upper bounds for non-quadratic losses, par-
ticularly useful in the case of binary or count data. This
combination of techniques can be applied in a broad range
of other problems, such as probabilistic CCA, collective-
matrix factorization, non-negative matrix factorization, as
well as non-factorial models such as time series [7].
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