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Abstract

We present a peptide-spectrum alignment strategy
that employs a dynamic Bayesian network (DBN)
for the identification of spectra produced by tan-
dem mass spectrometry (MS/MS). Our method is
fundamentally generative in that it models peptide
fragmentation in MS/MS as a physical process.
The model traverses an observed MS/MS spec-
trum and a peptide-based theoretical spectrum
to calculate the best alignment between the two
spectra. Unlike all existing state-of-the-art meth-
ods for spectrum identification that we are aware
of, our method can learn alignment probabilities
given a dataset of high-quality peptide-spectrum
pairs. The method, moreover, accounts for noise
peaks and absent theoretical peaks in the observed
spectrum. We demonstrate that our method out-
performs, on a majority of datasets, several widely
used, state-of-the-art database search tools for
spectrum identification. Furthermore, the pro-
posed approach provides an extensible framework
for MS/MS analysis and provides useful informa-
tion that is not produced by other methods, thanks
to its generative structure.

1 INTRODUCTION

A fundamental problem in biology and medicine is accu-
rately identifying the proteins present in a complex sam-
ple, such as a drop of blood. The only high-throughput
method for solving this problem is tandem mass spectrom-
etry (MS/MS). Given a complex sample, an MS/MS ex-
periment produces a collection of spectra, each of which
represents a single peptide (protein subsequence) that was
present in the original sample. Fundamental to MS/MS is
the ability to accurately identify the peptide responsible for
generating a particular spectrum.

The most accurate methods for identifying MS/MS spectra
make use of a peptide database. Given a peptide drawn from
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the database and an observed spectrum, these methods com-
pare a theoretical spectrum of the peptide’s idealized frag-
mentation events to a quantized or fixed-width thresholded
observed spectrum. Such preprocessing necessarily discards
potentially useful information. The spectrum identification
problem is greatly complicated by experimental noise, cor-
responding both to the presence of unexpected peaks (in-
sertions) and the absence of expected peaks (deletions) in
the observed spectrum (Fig. 1). This paper describes a Dy-
namic Bayesian network for Rapid Identification of Peptides
(DRIP), a database search method that serves as a generative
model of the process by which peptides produce spectra in
MS/MS. DRIP explicitly models insertions and deletions,
without quantization or thresholding of the observed spectra.

‘We note that a DBN-based database search method, called
Didea, was recently proposed [1], but this method does not
model the underlying process by which peptides produce
MS/MS spectra. Rather, in Didea both theoretical and ob-
served spectra are observed, and the model contains only
a single hidden variable, which is devoid of any physical
meaning relative to the underlying MS/MS process. The the-
oretical spectrum in DRIP, by contrast, is hidden; insertions
and deletions are explicitly modeled as latent variables (as
in [2]), and the most probable alignment between the the-
oretical and observed spectra can be efficiently calculated
(detailed in Section 4). Furthermore, Didea has a single
hyperparameter that is optimized via grid search, making
the model poorly adaptable to the wide range of machines
with widely varying characteristics, a problem addressed by
the highly trainable nature of DRIP.

We demonstrate, in fact, that against four state-of-the-art
benchmarked competitors, DRIP is the most frequent top
performer, dominating the others on four out of nine separate
datasets. By contrast, other competitors, such as Didea, dom-
inate on at most two datasets. Furthermore, DRIP, thanks to
its generative approach, provides valuable auxiliary informa-
tion, such as which observed peaks are most likely spurious,
which theoretical peaks are most likely present, and the
ability to calculate posteriors of interest via sum-product
inference [3, 4]. Such posteriors include the probability of
post-translational modifications given the observed spec-



trum, a task which previously required post-processing the
results of a database search [5].

We first give a brief overview of a typical tandem mass spec-
trometry experiment and an overview of database search in
Section 2. Readers are directed to [6] for further background
in this area. Next, the four benchmarked competitors are
described in Section 3. DRIP is described in detail in Sec-
tion 4. Results are presented in Section 5, and we conclude
and discuss future work in Section 6.

2 TANDEM MASS SPECTROMETRY
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Figure 1: Sample tandem mass spectrum, where the

peptide responsible for generating the spectrum is x =
LWEPLLDVLVQTK, the precursor charge ¢° is 2, and the
most probable alignment computed in DRIP is plotted. The
b-ion peaks are colored blue, y-ion peaks are colored red,
and insertions are colored gray. Note that fragment ions
b1,y1, b4, by2 correspond to deletions.

Although we are typically interested in the protein content
of a complex mixture, the fundamental unit of observation
in tandem mass spectrometry is the peptide, because pep-
tides are more amenable to liquid chromatography and mass
spectrometry analysis[6, 7]. Thus, a typical MS/MS exper-
iment begins by digesting the proteins into peptides using
a cleavage agent such as the enzyme trypsin. MS/MS then
proceeds with two rounds of mass spectrometry. The first
round measures the mass-to-charge ratio (m/z) of the intact
peptide (called the precursor m/z), and the second round
fragments the peptide and measures the m/z values of the
resulting prefixes and suffixes. Each of these fragment m/z
values is associated with an intensity value, which is roughly
proportional to the number of copies of that peptide frag-
ment. Figure | displays a sample tandem mass spectrum,
along with the theoretical fragment ions (described below)
of the generating peptide. A single unit along the m/z
axis is called a Thomson (Th), and the intensity (y-axis) is
unitless but can be seen as a measure of abundance or count.

Let P be the set of all possible peptides and S be the set
of all tandem mass spectra. Given an observed spectrum
s € S with observed precursor m/z m?® and precursor charge
c®, our task is to identify the peptide x from a given pep-
tide database D C P that is responsible for generating s.
Any given mass spectrometry device is capable of isolating

peptides with a specified precision on the precursor m/z;
therefore, we may constrain the search to only consider pep-
tides with precursor m/z +w of m?®. The set of candidate
peptides to be scored is then

< w} )

(1)

where m(x) is the calculated mass of peptide x. The goal
of database search, then, is to return the highest scoring
candidate peptide

D(m®,¢®, D,w) = {x rx €D, ’m(gj) —m?®
CS

¥ = argmax  Y(z,s),
z€D(m*,c®,D,w)

where ¢ : P x S — R is a function that assigns higher
scores to higher quality matches and the pair (x,S) is
referred to as a peptide-spectrum match (PSM). The
primary distinguishing characteristic of any database search
procedure is its choice of score function .

2.1 THEORETICAL SPECTRA

Many score functions, including the one employed by the
very first database search algorithm, SEQUEST [8], work by
comparing the observed spectrum to a theoretical spectrum
that is derived from a candidate peptide using basic rules
of biochemistry. Let z € D(m?®, ¢®, D, w) be an arbitrary
candidate peptide of length n. Note that x = zgx1 ... Tp_1
is a string of amino acids, i.e. characters in a dictionary of
size 20. For convenience, let 7 = n — 1. Our goal is to
produce a theoretical spectrum v* containing the fragment
m/z values that we expect x to produce. In this work, we as-
sume that the mass spectrometer employs collision-induced
dissociation, which is the most widely employed method
of peptide fragmentation. The model can be modified in a
straightforward fashion to accommodate other fragmenta-
tion modes.

The first type of fragment m/z value corresponds to prefixes
or suffixes of the candidate peptide, referred to respectively
as b-ions and y-ions. In this work, we assume that the
precursor charge ¢ is 2, because this is the charge state
of the high-quality set of PSMs used for training [9]. For
¢® = 2, these b- and y-ions can be represented as functions
b(-,-) and y(-, -), respectively, that take as input a peptide x
and integer k < n:

o
i

b(x, k) =

m(z;)+1, y(z, k)= Z m(xz;) + 19.

2

Note that the whole peptide mass is not considered and that,
for 1 < k < n, we have the recurrence relations b(z, k) =
b(x, k—1)+m(xk—1) andy(x, k) = y(x, k—1)+m(xsmi—g).
In Equation 2, the b-ion unit offset corresponds to the mass
of a hydrogen atom while the y-ion offset corresponds to
the masses of a water molecule as well as a hydrogen atom.
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Thus, the b- and y-ions are simply the shifted prefix sums
and suffix sums of z, respectively. When there is no ambi-
guity as to the peptide being described, it is typical to repre-
sent the b- and y-ion pairs as (b, yn—) for k =1,..., 7,
where the subscript denotes the number of amino acids uti-
lized in the ion computation. As an example, for peptide
x = BALK, (b1,y3) = (b(z,1),y(x,3)) = (130, 331).
Denoting the number of unique b- and y-ions as n” and,
for convenience, letting n® = n* — 1, our theoretical spec-
trum is a sorted vector v¥ = (v, ..., V=) consisting of the
unique b- and y-ions of x. Figure 2 displays the theoretical
spectrum for x = EALK, and Figure | displays an observed
spectrum with annotated b- and y-ions.

<— b-ion increment

<— y-ion increment

<— theoretical spectrum increment
— by, pairs

v¥, x=EALK

m/zr

A

0 QN
(0& P> ALY

v x’b“ gy @ﬂ v 'LQX yT }‘LGQ

1 | ———

Q X A9 X«\@ X‘(\&PB

‘03//‘0 }Zax:‘ g ”f‘l "Ebrlbx

Figure 2: Theoretical spectrum of the peptide x = EALK.
Note that the b- and y-ions correspond to prefix and suffix
sums, respectively, of the peptide x.

3 PREVIOUS WORK

We compare DRIP’s performance to that of four previ-
ously developed state-of-the-art methods. We describe each
method briefly here, and in more detail in [10]. All four
methods begin by binning the observed spectrum. The first
database search algorithm, SEQUEST [8], uses a scoring
function called XCorr, consisting of a dot-product minus a
cross-correlation term that provides an empirical null model
for a random match. The second approach, the Open Mass
Spectrometry Search Algorithm (OMSSA) [11] counts, the
b- and y-ions present in the observed spectrum and then esti-
mates a p-value by fitting this count to a Poisson distribution
with mean parameter derived from the properties of the ob-
served spectrum. The third algorithm, MasS Generating
Function DataBase (MS-GFDB) [12], computes a score by
taking a dot product between a Boolean theoretical vector
and a processed observed spectrum and then computes a
p-value for this score using dynamic programming. The
fourth algorithm that we consider, Didea [1], is most closely
related to DRIP, in the sense that both methods employ
a DBN. However, Didea differs from DRIP in four quite
significant ways:

e Notion of “time.” In Didea, each frame of the DBN
corresponds to one amino acid from the candidate pep-
tide sequence. Accordingly, Didea must copy the en-
tire observed spectrum in every frame in order to score
these observations. By contrast, each frame in DRIP

instead corresponds to a peak in the observed spec-
trum, such that a single m/z value and intensity value
are observed and scored per frame.

o Whether the theoretical spectrum is hidden or ob-
served. The theoretical spectrum in DRIP is hidden,
and inference is run to determine the best alignment
between the observed and theoretical spectra while ac-
counting for insertions and deletions, thus providing
not just a score but valuable alignment information as
well. In Didea, the theoretical spectrum is not hidden
because the amino acid variables in each frame are
observed, so that performing inference only provides a
score.

e Observed spectrum pre-processing. DRIP performs
much less pre-processing on the observed spectrum
than Didea. In particular, Didea must work with a
version of the observed spectrum in which the m/z
axis is discretized and the observed intensity values are
reweighted using a complicated function of exponen-
tials. DRIP instead scores m/z values in their natural
resolution, without discarding information due to quan-
tization.

e Training of parameters. Whereas Didea is essentially
a fixed model, DRIP offers the ability to learn its param-
eters using training data. The only learning available
in Didea is the tuning of a single hyperparameter, via
grid search, which controls the reweighting of peak

intensities.
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Figure 3: Graph of DRIP, where the boxed words on the far
left summarize the role of the random variables on the same
horizontal level to aid interpretation of the model. THEO
and OBS are short for theoretical and observed, respectively.

The graph of DRIP is displayed in Figure 3, where each
frame of the model corresponds to a single observed peak.
Shaded nodes represent observed variables, and unshaded
nodes represent hidden variables. Black edges correspond to
deterministic functions of parent variables, and blue edges



represent switching parent functionality (also known as
Bayesian multi-nets [13]) where the parent nodes are known
as switching parents and the parents (and hence conditional
distributions) of their children may change given the values
of their switching parents. Finally, red edges denote continu-
ous conditional distributions. Random variables are grouped
into frames, indexed by t = 0, ...,n® — 1. Note that while
elements of vectors are denoted using parentheses, a particu-
lar value of a sequence is denoted using subscripts, such that
d¢ is a random variable in the ¢th frame. For convenience,
let n° = n® — 1, and recall that n* denotes the number
of peaks in the theoretical spectrum minus one. The first
and last frames are known as the prologue and epilogue,
respectively. The middle frame is called the chunk and is
unrolled n® — 2 times to frames ¢t = 1,...,n° — 1. Each
frame of the graph contains observations OMZ and O, the
tth m/z and normalized intensity values of s, respectively.
Thus, we can view traversing the graph from left to right as
moving across the observed spectrum.
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Figure 4: Illustration of a particular spectrum alignment
(instantiation of random variables) in DRIP, where the node
color denotes its instantiated value. The observed spectrum
peaks serve as the observations in each frame while the theo-
retical spectrum is hidden. DRIP thus serves as a sequencer
through all possible alignments between the theoretical and
observed spectra, made efficient via dynamic programming.

The goal of DRIP is to calculate the most probable alignment
between the observed and theoretical spectra, where an
alignment is an instantiation of the random variables in
the graph and the scoring of observed peaks as dictated by
this instantiation. This concept is detailed in Figure 4 for
a particular alignment, where random variable values are
denoted by node colors, and the alignment corresponds to a
traversal of both the theoretical (upper portion) and observed
spectra (lower portion). In the center portion of Figure 4, the
random variable K, denotes the theoretical peak index and,
given the increment random variable J;, moves us down the

theoretical spectrum, while further alignment logic in DRIP
constrains the manner in which the theoretical and observed
spectra may be aligned. Figure 5 illustrates the scoring of
observed peaks (discussed in Section 4.2) in this alignment,
and the instantiation of random variables may be found in
Table 1. We now discuss the details of how DRIP aligns the
theoretical and observed spectra.

4.1 TRAVERSING THE THEORETICAL
SPECTRUM

The variable K, is the index of the theoretical peak used to
score peaks in frame ¢, such that

p(Ko = dodo) = 1, (3)
P = K1+ 64| Ky—1,0,) = 1,t > 0. (4)

From (3) and (4), we see that §; is the number of theoretical
peaks we traverse between frames ¢ and ¢ + 1. Note that
a deletion thus occurs when dg > 0 and §; > 1 fort > 0,
i.e., the hypotheses such that one or more theoretical peaks
are not accessed, where a hypothesis is an assignment of all
random variables in the graph. The number of deletions
occurring in a single frame is then § for the prologue and
(6¢ — 1)1{0; > 1} for all subsequent frames, where 1{-} is
the indicator function which returns 1 if its argument is true
and 0 otherwise. The total number of allowed deletions is Z
and counts down in subsequent frames such that, denoting
the number of deletions left in a frame as Z;, we have

p(ZO =Z — 50|Z,(50> =1
p(Zt =7 1 — (5t — 1)1{5t > 1}|Zt—175t) =1,t>0.

The allowable number of insertions counts down in a simi-
lar manner to the deletions. &; is the maximum allowable
insertions for all frames, i; is a Bernoulli random variable
which signifies whether the peak in frame ¢ is an inser-
tion, and p(§; = &1 — 4t—1/&—1,9¢-1) = 1. Further-
more, the role of &; as a switching parent of ¢; is such that
p(ix = 0|¢; = 0) = 1. Thus, when there are no insertions
left, 4; is O for all remaining frames.

The hidden multinomial §; is such that p(dy >
Z) = 0, ie. it respects the maximum deletion con-
straint of the first frame, and for ¢ > 0, p(d;) =
>i, P(0e|ds—1, Zi—1,n", i 1)p(it—1), Where

p((St = O|5t_1,Zt_1,ﬁx,Z't_1 = 1) = 1, (5)
p((;t > n® — (Kt — Zt)|ﬁz,Kt, Ztyit—l) =0. (6)

Equation (5) prohibits DRIP from moving down the theoret-
ical spectrum in a frame following an insertion. This con-
straint ensures that the theoretical spectrum may not be triv-
ially traversed while observed peaks are scored as insertions,
or equivalently that some observed peak must not be scored
as an insertion in order to move down the theoretical spec-
trum for frames ¢t > 0. Equation (6) constrains DRIP from
incrementing past the range of valid theoretical peak indices.



Table 1: Random variable hypothesis for alignment displayed in Figure 5. Recall the deterministic relationships Kq = dg,

Ky

= K;_1+ 6, fort > 0, and given the theoretical peak index K; we have the theoretical peak v* (K;). For instance, from

the theoretical spectrum of x = EALK in Figure 4, we have K¢ = K5 + d¢ and v*(K;) = v*(1) = 147.

t |O|1[{2(3[4]|5[6]7(8|9[10|11|12|13]|14|15(16[17|18[19(20(21|22|23|24|25|26
o [0j0|O|O|O]|O[1]|O[O[1]|O|O|O|O]O|2[0O[0O[0O]O]|O|1|O0|0O][O[O]O
K, |0{0[0jO|0fO|T|1|1(2]2 ]2 |2]|2]2|4|4]|4|4]|4]4]4]|5][5]|5]|5]5
i |(1|1|1(1|1|0f1j0fO|L1|1|1|1|jO0|O Ll |1 |1 |1 |1]|1]O|1|1|O|1]|]1

In order to discourage the use of deletions unless absolutely
necessary, the distribution over ¢, is constrained to be mono-
tone decreasing, such that for i,y = 1, Ky — Z; < n”,
and 0 < h < nf — (K¢ — Z¢) — 1, we have p(6; =
h|ﬁz, Ky, Zy, it_1) < p(5t =h-— 1|ﬁz7 Ky, Zy, it_1).

The epilogue variable Rjs, observed to 1, constrains which
theoretical peaks may occur in the final frame. If the number
of theoretical peaks left unexplored in the epilogue is greater
than the number of remaining deletions, then such a hypoth-
esis of random variables receives probability zero. Thus, we
have p(Rﬁs = 1|ﬁz, Kﬁs, ZﬁS) = l{ﬁx — Kﬁs < Zﬁs }
This boundary condition limits the number of valid hypothe-
ses in DRIP which have non-zero probability, and by forcing
the traversal of the theoretical spectrum from prologue to
epilogue ensures that a peptide cannot align trivially well
to the observed spectrum. Figure 4 and Table 1 detail the
theoretical spectrum traversal for the alignment depicted in
Figure 5.

4.2 SCORING OBSERVED PEAKS
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Figure 5: Spectra alignment in DRIP given observed spec-
trum s, x = EALK, the theoretical Gaussian peaks of v*,
and hypothesis from Figure 4. Note that ¢ is the frame
number, all Gaussians have equal variance, and v*(3) is a
deletion.

The m/z observation is scored by a Gaussian centered near
the theoretical peak accessed in a frame, and the intensity
observation is scored using a Gaussian with mean greater
than or equal to the most intense peak value. In this man-
ner, DRIP aligns the theoretical and observed spectra by
penalizing observed peaks far from theoretical peaks and pe-
nalizing peaks with intensity less than unity. The conditional

distributions of the observations are then

ZP (O 0" (K), ie)p (i),
ZP t |Zt (i¢).

When #; = 0, i.e., the tth observed peak is not an insertion,
then the observations are scored as

PO 0" (Ky), iy = 0) ~N (W™ (0" (Ky)), 0
p(OIM ™ i, = 1) ~N (", 52),

(Omzh} (K1)

Oln

%),

where '™ and 52 are the mean and variance of the Gaus-
sian used to score peak intensities, o2 is the variance of
the Gaussian used to score m/z observations, and ’umz

a vector of means such that an arbitrary theoretical peak
Jj scores m/z observations using N (™% (), o%). The the-
oretical peaks serve as indices into a vector of Gaussians,
each such Gaussian having equal variance and centered at
a unique m/z position (illustrated in Figure 5). Thus, when
describing a theoretical peak as scoring an observed peak,
we are referring to scoring using the Gaussian accessed by
the theoretical peak. To avoid confusion, we refer to the
Gaussian accessed by a theoretical peak as the theoretical
Gaussian peak.

All DRIP Gaussian means and variances are learned using
expectation-maximization(EM) [14] and a high-confidence
set of PSMs used in [9]. Note that this adds a great deal of
modeling power to DRIP, allowing for adaptability of the
expected m/z location of theoretical peaks. In MS/MS data,
the m/z measurements will be stochastically offset from
the true m/z values in a manner dependent upon machine
precision, and may also be systematically offset in a non-
linear fashion due to machine miscalibration [15]. Learning
the means of the Gaussians allows DRIP to account for
and adapt to these trends. Furthermore, the learned means
themselves may be of interest to researchers in the field as a
method of studying the nonlinear warping of the m/z axis
encountered in specific experiments.

4.2.1 Insertion penalties

Due to the noisy nature of MS/MS data, only a small minor-
ity of observed peaks actually correspond to fragment ions.
As an example, Figure 1 displays excellent fragmentation
of the peptide present in the observed spectrum. However,



only 22 of 324 peaks correspond to fragment ions. Further-
more, these fragment ions only occur within a sufficiently
small Th window of their theoretical values. Indeed, the
learned variance o dictates that 99.9937% of the mass for
a theoretical Gaussian peak lies within an approximately
1Th range, so that attempting to score all m/z observations
with theoretical Gaussian peaks would see a majority of pep-
tides score poorly for almost all observed spectra. Such an
approach would also make the comparison of scores across
different spectra in the same dataset difficult, because the
variance among the PSMs would be incredibly high. Thus,
when i; = 1, the observations are scored as

p(OP2|u® (Ky), iy = 1) =p(O™2}i, = 1) = a
p(OM}i; = 1) =b,

where a and b are constants.

The insertion constant a imposes a tradeoff between, on the
one hand, receiving exponentially bad scores from scoring
observed peaks far from theoretical Gaussian peaks and, on
the other hand, simply receiving an arbitrarily large constant
penalty. To balance this tradeoff, a is set to the score re-
ceived evaluating an m/z observation 4 standard deviations
from the theoretical Gaussian peak mean, ™% (v*(Ky)),
ie.,a= f(40 — pMZ(v®(K,))| ™% (v*(Ky)), 0?), where
f(2|u,5?) is the scalar Gaussian with mean p and vari-
ance &2, evaluated at z € R. Thus, scoring an m/z ob-
servation score is greater than a so long as the observa-
tion remains within 99.9937% of the centered mass of
N (uM2(v*(Ky)),0?). Similarly, the penalty b is set such
that an intensity observation score is greater than b so long
as it is within a specified percentage of the centered mass of
N (1!, 52). The percentage used for the results in Section 5
was 20%, prioritizing aligning the observed and theoretical
peaks over simply scoring high intensity peaks. Further-
more, the number of allowable insertions is limited per pep-
tide (described in [10]), restricting the ability of arbitrary
peptides to score observed peaks well.

4.3 DRIP SCORING FUNCTION

Peptides are scored by their optimal alignment using their
per-frame log-Viterbi Score,

1 1
U(s) = — max logp(s|e) = — logp”(sla). ()

t,%¢,V1

Dividing by the number of frames allows comparability of
PSMs from different spectra. In order to further analyze
the scoring function, assume inference has been completed
and we have computed the Viterbi path, using * to denote
a variable’s Viterbi value. Let A = ZLO i; denote the
number of used insertions and note that p(i; = 0) = p(ip =

0). DRIP’s score is then

log p*(s|a) = (8)
Mlog(ab) + 3logp(ip = 1)] + 3(n® — A) logp(ip = 0)+

s

3!

[10gp(67) + log £ (O™, %)+

t

Il
o

1{i; = 0}(log S (OM|u™ (0" (K;)), 0%)]

where, as before, f(z|u,5?) is the scalar Gaussian with
mean g and variance &2, evaluated at z € R. The learned
model variances are such that o2 < 2, i.e., there is more
uncertainty in intensity measurements than m/z measure-
ments. Thus, it is easy to see that when a peptide does not
align well with the observed spectrum (i.e., many observed
peaks are far from the closest theoretical peak), then the
log f(OMZ|MZ(y=(K})), 0?) term severely penalizes the
score. Furthermore, this score decreases quickly as the dis-
tance between the observed peak and theoretical peak mean
increases. This also implies that peptides which arbitrarily
match intense peaks will still receive poor scores if they do
not align well.

44 APPROXIMATE INFERENCE

Table 2: DRIP per-peptide run-times (in seconds) for 3 yeast
spectra, 1000 scored candidate peptides each.

Spec. ExactInf. k=1500 £k =1000 £k = 500
s1 0.07816 0.01056 0.00779  0.00436
S2 0.30003 0.02070 0.01496  0.00820
S3 3.61777 0.04105 0.02861 0.01586

The state space of the random variables in DRIP grows
rapidly as the number of observed and theoretical peaks
increases. Although the observed variables %, Rys, Z, &
greatly decrease the number of states necessary to explore
by limiting the hypotheses in DRIP which receive non-zero
probability, there are still an exponentially large number of
states to score in order to find the Viterbi path. However,
the problem of interest is ideally suited for approximate
inference techniques, specifically beam pruning [16]. In
beam pruning, assuming a beam width of & € N, only the
top k most probable states in a frame are allowed to persist.
Although under this methodology we are no longer theoreti-
cally guaranteed to find the Viterbi path, the structure of the
problem and the value of the learned theoretical Gaussian
variances ensures that, per frame, many of the hypotheses
will be of extremely low probability.

For instance, the hypothesis that the first theoretical peak
matches the last observed peak is highly improbable. In gen-
eral, the hypothesis that a theoretical peak centered many
Thomsons away from an observed peak is also highly im-
probable. Thus, we can retain the k¥ most probable states
in a frame without deleteriously affecting the Viterbi score.



However, care must be taken such that £ is not too small
or else globally good alignments where a frame must be
explained by a low probability event may not be allowed to
persist. Table 2 displays the per-peptide run times for 3 ran-
domly chosen yeast spectra, scoring 1000 candidate peptides
per spectrum using exact inference and various k values.
Each test was performed on the same machine with an Intel
Core 2 Quad Q9550 and 8GB RAM. For k£ € {1500, 1000},
all peptide scores were equal to their exact scores. For
k = 500, 0.1% of the peptide scores differed from their
exact scores. The top ranking PSM scores did not change
for all beam widths. The results found in Section 5 were
generated using k£ = 1500.

4.5 DRIP OBSERVED SPECTRUM
PREPROCESSING

As with all other search algorithms, we score database pep-
tides of at most a fixed maximum length, specified prior to
run time. Practical values of the maximum peptide length
(the maximum peptide length considered for all results in
Section 5 is 50) mean that the number of observed peaks is
typically an order of magnitude larger than the number of
theoretical peaks for any scored peptide. Furthermore, most
of these peaks are noise peaks [17], and as such we filter all
but the most [ intense peaks, where in practice, [ = 300.

After filtering peaks, the observed spectrum is renormal-
ized as in SEQUEST [8], the steps of which are as follows.
Firstly, all observed peak intensity values are replaced with
their square root. Secondly, the observed spectrum is par-
titioned into 10 equally spaced regions along the m/z axis
and all peaks in a region are normalized to some globally
maximum intensity, which in our case is 1. Steps 1 and 2
greatly decrease the high variance of observed intensities,
and step 2 helps ensure that scoring is not severely biased
by many large peaks lying arbitrarily close to one another.
Lastly, any peak with intensity less than 1/20 of the most
intense peak is filtered. Note that through all of these pre-
processing steps, the m/z values for all remaining observed
peaks remain unaltered and, as discussed in Section 4.3, the
scoring of these unaltered values dominates the returned
DRIP score.

S RESULTS

We compared the performance of DRIP to four competing
database search methods (Section 3). In these evaluations,
we do not have an independently labeled gold standard set of
identified spectra. Although it is possible to send a purified
sample of known peptides through the MS/MS pipeline to
obtain high confidence identifications, the low complexity
of the input sample yields spectra that are less noisy than
real spectra. Therefore, as is common in this field, we esti-
mate for each search procedure the false discovery rate (i.e.,
the proportion of spectra above a given threshold that are
incorrectly identified, or 1 — precision) by searching a decoy

database of peptides [18]. These decoys are generated by
shuffling the peptides in the target database. Because FDR
is not monotonically related to the underlying score, we
compute a g-value for each scored spectrum, defined as the
minimum FDR threshold at which that score is deemed sig-
nificant. Once the target and decoy PSMs are calculated, we
plot the number of identified targets as a function of g-value
threshold. In practice, search results with an FDR >10%
are not practically useful, so we only plot ¢ € [0, 0.1].

We use eight previously described datasets [1] as well as
another yeast dataset (yeast-03) taken from the same repos-
itory, considering only spectra with charge 2+. All bench-
mark methods were searched using the same target and
decoy databases, and all parameters across search algo-
rithms were set as equivalently as possible. All datasets
and reported PSMs per benchmark method may be found
at http://noble.gs.washington.edu/proj/drip. As seen in the
results panel in Figure 5, DRIP outperforms SEQUEST and
OMSSA at all g-value thresholds on all datasets. DRIP is
the most frequent top performer, beating all other methods
on four datasets, compared to MS-GFDB and Didea, each of
which is top performer on only two datasets. Furthermore,
DRIP individually outperforms MS-GFDB and Didea on six
of the nine datasets. DRIP also offers the most consistent
performance compared to MS-GFDB and Didea across the
different organisms: DRIP is always ranked first or second,
whereas MS-GFDB and Didea rank third on many datasets.
Both DRIP and Didea only model b- and y-ions, whereas the
other algorithms [8, 11, 12] use more complicated models
of peptide fragmentation (further discussed in [10]).

5.1 INSERTION, DELETION COUNT-BASED
SCORES

Once a peptide’s Viterbi path has been decoded, the total
number of insertions and deletions used by a peptide to score
an observed spectrum may be calculated. These two quan-
tities may be used as quality measures for a PSM, as well
as to exactly compute the signal-to-noise ratio per observed
spectrum. To illustrate the utility of these two quantities,
we show that using both as scoring functions allows some
discriminative power to differentiate between target and
decoy peptides, outperforming OMSSA and SEQUEST as
well as MS-GFDB over some datasets. Plotted in Figure 6,
DRIP-NotDel and DRIP-NotIns correspond to scoring func-
tions utilizing the number of a peptide’s theoretical peaks
not deleted and the number of observed peaks a peptide did
not consider an insertion, respectively. Note the piece-wise
linear behavior, which is caused by scoring ties due to the
scoring functions being integer based.

It is worth noting that scoring methods, such as SEQUEST
and Didea, which perform binning typically do so by taking
the maximum observed peak intensity falling within a bin.
Under such binning schemes, the number of theoretical
peaks not deleted is equal to the number of observed peaks
which are not insertions. In DRIP, where quantization is


http://noble.gs.washington.edu/proj/drip
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Figure 6: Performance curves for DRIP. The x-axis may be thought of as the significance threshold, and the y-axis the
number of correctly identified spectra at a threshold. Thus, higher on the y-axis denotes better performance. DRIP-NotDel
and DRIP-NotlIns utilize the decoded DRIP Viterbi path to calculate the number of theoretical peaks not deleted and number
of observed peaks not inserted, respectively, as scoring functions.



not performed, these two quantities are not equal (Figure 6).
Such quantities are typically used by post-processors as
features for the task of reranking target and decoy scores
for improved accuracy [19, 20], and these quantities (and
potentially others) calculated from DRIP’s Viterbi path may
similarly be used as features.

5.2 IMPACT OF LEARNED PARAMETERS ON
PERFORMANCE

The use of Gaussians allows DRIP to avoid quantization of
m/z measurements, unlike all existing competitors. Learn-
ing the Gaussian means and variances in DRIP provides
both a tool to study the nonlinear m/z offsets caused by
machine error [15] as well as a significant increase in perfor-
mance. As previously mentioned, the Gaussian parameters
are learned using EM and a high-confidence set of charge
2 PSMs used in [9]. Figure 7 displays the performance
benefits of jointly learning these parameters.
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Figure 7: DRIP run with different model parameters over
Yeast-01, where DRIP-0 consists of hand-tuned Gaussian pa-
rameters and DRIP consists of EM jointly learned Gaussian
means and variances.

DRIP-0 consists of setting the Gaussian means to values
halfway between integer units along the m/z axis and setting
the intensity variance to an order of magnitude larger than
the m/z variance, so as to penalize misalignment between
the theoretical and observed spectra greater than small inten-
sities. DRIP consists of jointly learning both the Gaussian
means and variances, the parameters used for testing over
all datasets in Figure 6. Interestingly, the learned inten-
sity variance is larger than the learned m/z variance, so
that the learned parameters dictate m/z measurements have
the largest impact when scoring. Jointly learning both the
means and variances improves performance compared to
hand-tuned parameters, leading to improved performance
relative to Didea. This trend of improved performance via
learning the Gaussian parameters is observed on the other

datasets, as well.

6 CONCLUSIONS AND FUTURE WORK

We have presented DRIP, a generative model of peptide frag-
mentation in MS/MS. Through DRIP, a database peptide is
scored by maximally aligning the peptide’s theoretical spec-
trum to the observed MS/MS spectrum via Viterbi decoding.
Unlike previous database search methods, the observed spec-
trum is not quantized; instead, the m/z measurements are
scored in their natural resolution. Considering the recent
push in the field toward high-resolution data [21], for which
other search methods must reevaluate their quantization
schemes, DRIP’s handling of m/z values at full resolution is
particularly important.

DRIP’s scoring function outperforms state-of-the-art algo-
rithms on many of the presented datasets, and is far superior
to the popular search algorithms SEQUEST and OMSSA.
Furthermore, unlike a recent DBN-based database search
method [1], DRIP is a highly trainable model which allows
it a great deal of adaptability to the wide variety of machines
and experimental conditions. The Viterbi path calculated in
DRIP also provides a large amount of information, which
otherwise typically requires post-processing after database
search. Finally, via sum-product inference, DRIP may be
used to calculate posteriors of particular interest to end
users, a task which has previously required complicated
post-processing [5].

We plan to pursue several avenues for future work. Ini-
tially, we will collect high-quality training sets of PSMs
charge states other than 2 and for high-resolution spectra.
Perhaps the most exciting avenue for future work is that
a minor change to the DRIP model will allow it to align
an observed spectrum to not just one but many different
peptides simultaneously. We plan to investigate sequential
variants of algebraic decision diagrams [22] to represent
(potentially exponentially) large collections of peptides in
polynomial space and to exploit the dynamic programming
nature of DBNSs to be able to score such peptide collections
efficiently. Such a framework will also generalize to de
novo sequencing, in which we search over the set of all pos-
sible peptides as opposed to simply a database. Finally, we
plan to investigate generalizing the use of algebraic decision
diagrams to allow DRIP to calibrate its scores relative to
the entire peptide set. This would be similar in spirit to the
dynamic programming calibration employed by methods
like MS-GFDB.
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