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Abstract

We consider the problem of selecting informative
observations in Gaussian graphical models con-
taining both cycles and nuisances. More specif-
ically, we consider the subproblem of quantify-
ing conditional mutual information measures that
are nonlocal on such graphs. The ability to effi-
ciently quantify the information content of obser-
vations is crucial for resource-constrained data
acquisition (adaptive sampling) and data process-
ing (active learning) systems. While closed-
form expressions for Gaussian mutual informa-
tion exist, standard linear algebraic techniques,
with complexity cubic in the network size, are in-
tractable for high-dimensional distributions. We
investigate the use of embedded trees for com-
puting nonlocal pairwise mutual information and
demonstrate through numerical simulations that
the presented approach achieves a significant re-
duction in computational cost over inversion-
based methods.

1 INTRODUCTION

In resource-constrained inferential settings, uncertainty can
be efficiently minimized with respect to a resource bud-
get by acquiring or processing the most informative sub-
set of observations – a problem known as active inference
(Krause and Guestrin, 2005; Williams et al., 2007). Yet
despite the myriad recent advances in both understanding
and streamlining inference through probabilistic graphical
models (Koller and Friedman, 2009), there does not exist a
comparable wealth of knowledge regarding how informa-
tion measures propagate on these graphs. This paper con-
siders the problem of efficiently quantifying a measure of
informativeness across nonlocal pairings in a loopy Gaus-
sian graphical model.

This paper assumes a model has been provided, and the
ensuing goal is to interpret relationships within this model

in the context of informativeness. This assumption is mo-
tivated by the hypothesis that, regardless of the specific
sensing modalities or communication platforms used in an
information collection system, the underlying phenomena
can be described by some stochastic process structured ac-
cording to a probabilistic graphical model. The sparsity
of that model determines the efficiency of inference pro-
cedures. In contrast to methods for estimating informa-
tion measures directly from raw data (e.g., Kraskov et al.,
2004), the approach of this paper does not require the prior
enumeration of interaction sets that one wishes to quan-
tify, and the presented algorithm computes conditional in-
formation measures that account for statistical redundancy
between observations.

This paper specifically addresses the common issue of nui-
sances in the model – variables that are not of any extrin-
sic importance, but act as intermediaries between random
variables that are either observable or of inferential inter-
est. Marginalization of nuisances can be both computa-
tionally expensive and detrimental to the sparsity of the
graph, which, in the interest of efficient model utilization,
one wishes to retain. Ignoring nuisances by treating them
as relevant can result in observation selectors fixated on re-
ducing uncertainty in irrelevant portions of the underlying
distribution (Levine and How, 2013). In terms of informa-
tion quantification, nuisances can induce nonlocality in the
sense that observations and relevant latent variables are not
adjacent in the graph, motivating the study of how informa-
tion measure propagate through graphical models.

In this paper, we investigate the use of embedded trees
(Sudderth et al., 2004) for efficiently quantifying nonlo-
cal mutual information in loopy Gaussian graphs. The for-
mal problem statement and a characterization thereof is de-
scribed in Section 2. Some preliminary material and prior
algorithmic technologies are reviewed in Section 3. Our
method for quantify mutual information using embedded
trees, ET-MIQ, is described in Section 4 and demonstrated
through experimental results in Section 5. A discussion of
ET-MIQ in comparison to alternative methods and in antic-
ipation of future extensions is provided in Section 6.



2 PROBLEM STATEMENT

Let x = (x1, . . . , xN ) be a collection of N random vari-
ables (or disjoint subvectors) with joint distribution px(·).
Let index set V = {1, . . . , N} be partitioned such that
V = U ∪ S , where U ⊂ V indexes latent (unobservable)
variables, and where S ⊂ V indexes observable variables,
whose realizations xs = xs, s ∈ S may be obtained by
expending some resource. Let c : 2S → R≥0 be the cost
function that maps subsets of observable variables to a re-
source cost, and let β ∈ R≥0 be a resource budget. Given
a subset R ⊆ U of relevant latent variables, which are of
inferential interest and about which one wishes to reduce
uncertainty, the general focused active inference problem
(Levine and How, 2013) is

maximizeA⊆S I(xR; xA)
s.t. c(A) ≤ β, (1)

where I(· , ·) is the mutual information measure (cf. Sec-
tion 3.3).

It is well known that (1) is NP-hard (Ko et al., 1995; Krause
and Guestrin, 2009). Despite this, suboptimal heuristics
such as greedy selection have been analyzed in the con-
text of submodularity (Nemhauser et al., 1978), leading to
various performance bounds (Golovin and Krause, 2010;
Krause and Guestrin, 2005; Williams et al., 2007). In
the focused case, where there are nuisances U \ R in the
problem, the objective in (1) is in general not submodular
(Krause et al., 2008), although online-computable perfor-
mance bounds can be established through submodular re-
laxations (Levine and How, 2013).

However, efficient computation of the mutual informa-
tion objective in (1) has remained elusive for all but sim-
ple models – symmetric discrete distributions (Choi et al.,
2011) and Gaussian trees (Levine and How, 2013). Just as
covariance analysis in the Kalman filtering framework can
be used to anticipate the uncertainty evolution in a linear-
Gaussian state space model, which is Markov to a mini-
mal tree-shaped Gaussian graph, this paper aims to provide
a general preposterior analysis of uncertainty reduction in
nontree Gaussian systems.

This paper specifically considers the class of Gaussian dis-
tributed vectors x ∼ N−1(0, J) with inverse covariance
matrices J , each of which is Markov to an undirected graph
with cycles. For large N , evaluating the MI objective in
(1) via matrix inversion is cubic in N , which may be pro-
hibitively expensive. The aim of this paper is explicating
an iterative algorithm for computing MI whose complex-
ity per iteration is linear in N , and whose convergence is
often subquadratic in N , leading to a relative asymptotic
efficiency over naı̈ve linear algebraic techniques.

3 BACKGROUND

3.1 MARKOV RANDOM FIELDS

A graph G = (V, E), with vertex set V and edge set E link-
ing pairs of vertices, can be used to represent the condi-
tional independence structure of a joint distribution px(·)
over a collection x = (x1, . . . , xN ) of N random variables
(or disjoint random subvectors). This paper considers the
class of distributions represented by undirected graphs, also
known as Markov random fields (MRFs).

The topology of an MRF can be characterized, in part,
by its set of paths. A path is a sequence of distinct ad-
jacent vertices (v1, . . . , vm) where {vk, vk+1} ∈ E , k =
1, . . . ,m− 1. If for any two distinct vertices s, t ∈ V there
is more than one path joining s to t, then G contains a cycle.
A graph without cycles is called a tree (or, if it is discon-
nected, a forest).

An MRF can represent conditional independences of the
form given by the global Markov condition: For disjoint
subsets A,B,C ⊂ V , xA ⊥⊥ xB | xC iff A and B are
graph-separated by C (all paths between a vertex in A and
a vertex inB must pass throughC). The edge set E satisfies
the pairwise Markov property: For all i, j ∈ V , {i, j} /∈ E
iff xi ⊥⊥ xj | xV\{i,j}. A distribution is said to be Markov
with respect to a graph G if it satisfies the conditional inde-
pendences implied by G.

3.2 INFERENCE ON GAUSSIAN MRFS

A multivariate Gaussian distribution in the information
form px(x) ∝ exp{− 1

2x
TJx + hTx}, with (symmetric,

positive definite) precision or inverse covariance matrix J
and potential vector h, is Markov with respect to a Gaus-
sian MRF (GMRF; Speed and Kiiveri, 1986) if J satisfies
the sparsity pattern of E : (J)i,j = (J)Tj,i 6= 0 ⇔ {i, j} ∈
E . The parameters of the information form are related to the
covariance P = J−1 and mean J−1h. Thus, estimating the
mean of a Gaussian is equivalent to solving the system of
equations

J x̂ = h. (2)

Assume without loss of generality1 that each component
xi of x is a subvector of dimension d ∈ N+, whereby
J ∈ RNd×Nd can be partitioned into an N × N grid of
d × d block submatrices. Solving (2) by inverting J re-
quires O((Nd)3) operations, which can be prohibitively
expensive for largeN . If the graph contains no cycles, then
Gaussian belief propagation (GaBP) (Pearl, 1988; Weiss
and Freeman, 2001) can be used to compute the conditional
mean, as well as marginal variances, inO(Nd3), providing
a significant computational savings for largeN . For graphs

1Extension to the case of varying subvector dimensions with
d , maxi∈V dim(xi) is straightforward.



with cycles, various estimation procedures have been re-
cently developed to exploit available sparsity in the graph
(cf. Sections 3.4 and 3.5).

Marginalization and conditioning can be conceptualized as
selecting submatrices of P and J , respectively. Let disjoint
sets A and B form a partition of V = {1, . . . , N}. The
marginal distribution pxA(·) over xA is parameterized by
covariance matrix (P )A,A, the block submatrix of P corre-
sponding to the rows and columns indexed byA. Similarly,
the conditional distribution pxA|xB (·|xB) of xA conditioned
on xB := xB is parameterized by the (J)A,A block subma-
trix of J . In the inferential setting, one has access to J and
not P .

3.3 MUTUAL INFORMATION

Mutual information (MI) is an information-theoretic mea-
sure of dependence between two (sets of) random variables.
Its interpretation as a measure of entropy reduction appeals
to its use in uncertainty mitigation (Caselton and Zidek,
1984). For disjoint subsets A,B,C ⊂ V (with C possibly
empty), conditional mutual information is defined as

I(xA; xB |xC) , h(xA|xC)− h(xA|xB , xC), (3)

where, for continuous random variables xV , h(·) is the dif-
ferential entropy functional

h(qx(·)) = −
∫
X
qx(x) log qx(x) dx .

Note that MI is always nonnegative and is symmetric with
respect to its first two arguments. For convenience, we will
often use only the index sets (and not the random variables
they index) as the arguments of mutual information.

Let PA|C denote the (marginal) covariance of xA given xC .
For multivariate Gaussians, the conditional MI (Cover and
Thomas, 2006) is

I(A;B|C) = 1

2
log

det(PA|C) det(PB|C)

det(PA∪B|C)
. (4)

Computing the marginal covariance matrices needed in
(4) via matrix inversion (or taking Schur complements) of
JA∪B|C generally requires O((Nd)3) operations, even if
one is computing pairwise MI (i.e., |A| = |B| = 1). For
Gaussian trees, an efficient algorithm exist for reducing
pairwise MI complexity toO(Nd3), i.e., linear in the num-
ber of vertices (Levine and How, 2013). The main objective
of this paper is providing a similar reduction in complexity
for loopy Gaussian graphical models.

3.4 EMBEDDED TREES

The embedded trees (ET) algorithm was introduced in
(Sudderth, 2002; Wainwright et al., 2000) to iteratively

compute both conditional means and marginal error vari-
ances in Gaussian graphical models with cycles. Although
the algorithm requires only the identification of subgraphs
on which inference is tractable, and extensions to, for ex-
ample, embedded polygons (Delouille et al., 2006) and
embedded hypergraphs (Chandrasekaran et al., 2008) have
been considered, this paper will focus for clarity of discus-
sion on embedded trees.

Let x ∼ N−1(0, J) be a Gaussian distributed random vec-
tor Markov to an undirected graph G = (V, E) that contains
cycles. Consider an alternatively distributed random vector
xT ∼ N−1(0, JT ) that is of the same dimension as x but
is instead Markov to a cycle-free subgraph GT = (V, ET )
of G (in the sense that ET ⊂ E). The tree-shaped (and
symmetric, positive definite) inverse covariance matrix JT
can be decomposed as JT = J + KT , where KT is any
symmetric cutting matrix that enforces the sparsity pattern
of JT by zeroing off-diagonal elements of J correspond-
ing to cut edges E \ ET . Since many cutting matrices KT
will result in a tree-shaped inverse covariance JT Markov
to GT , attention will be restricted to so-called regular cut-
ting matrices, whose nonzero elements are constrained to
lie at the intersection of the rows and columns correspond-
ing to the vertices incident to cut edges. Note that KT can
always be chosen such that rank(KT ) is at most O(Ed),
where E , |E \ ET | will be used to denote the number of
cut edges.

3.4.1 Conditional Means

Given an initial solution x̂(0) to (2), the single-tree Richard-
son iteration (Young, 1971) induced by embedded tree GT
with cutting matrix KT and associated inverse covariance
JT = J +KT is

x̂(n) = J−1T

(
KT x̂

(n−1) + h
)
. (5)

Thus, each update x̂(n) is the solution of a synthetic infer-
ence problem (2) with precision matrix J̃ = JT and po-
tential vector h̃ = KT x̂

(n−1) + h. This update requires a
total of O(Nd3 + Ed2) operations, where O(Nd3) is due
to solving J̃ x̂(n) = h̃ with a tree-shaped graph, and where
O(Ed2) with E = |E \ ET | is due to forming h̃. In the
case that E is at most O(N), the overall complexity per
iteration is O(Nd3). Letting ρ(D) , maxλ∈{λi(D)} |λ|
denote the spectral radius of a square matrix D, the asymp-
totic convergence rate of the single-tree iteration (5) is

ρ(J−1T KT ) = ρ(I − J−1T J), (6)

with convergence to x̂ guaranteed (regardless of x̂(0)) if
and only if ρ(J−1T KT ) < 1. Inherent in (5) and (6) is a
tradeoff in the choice of embedded structure between the
tractability of solving JT x̂(n) = h̃ and the approximation
strength of JT ≈ J for fast convergence.



The ET algorithm (Sudderth et al., 2004) is conceptualized
as a nonstationary Richardson iteration with multiple ma-
trix splittings of J . Let {GTn}

∞
n=1 be a sequence of em-

bedded trees within G, and let {KTn}
∞
n=1 be a sequence

of cutting matrices such that JTn = J + KTn is Markov
to GTn for n = 1, . . . ,∞. The nonstationary Richardson
update is then

x̂(n) = J−1Tn

(
KTn x̂

(n−1) + h
)
, (7)

with error e(n) , x̂(n) − x̂ that evolves according to

e(n) = J−1Tn KTne
(n−1). (8)

The criterion for convergence is when the normalized resid-
ual error ||KTn(x̂(n)−x̂(n−1))||2/||h||2 falls below a spec-
ified tolerance ε > 0. The sparsity of KTn permits the effi-
cient computation of this residual.

When {GTn ,KTn}
∞
n=1 is periodic in n, a convergence rate

analysis similar to (6) is given in (Sudderth et al., 2004).
It is also demonstrated that using multiple embedded trees
can significantly improve the convergence rate. Online
adaptive selection of the embedded tree was explored in
(Chandrasekaran et al., 2008) by scoring edges according
to single-edge walk-sums and forming a maximum weight
spanning tree in O(|E| log |N |).

3.4.2 Marginal Variances

Given that rank(KT ) ≤ 2Ed (Sudderth, 2002), where
E = |E \ ET |, an additive rank-one decomposition

KT =
∑
i

wiuiu
T
i , ui ∈ RNd (9)

can be substituted in the fixed-point equation (Sudderth
et al., 2004)

P = J−1T + J−1T KT P, (10)
yielding

P = J−1T +
∑
i

wi(J
−1
T ui)(Pui)

T . (11)

Solving for the vertex-marginal covariances Pi =
(P )i,i, i ∈ V , which are the block-diagonal entries of P ,
requires:

• solving for the block-diagonal entries of J−1T , with
one-time complexity O(Nd3) via GaBP;

• solving the synthetic inference problems JT zi = ui,
for all O(Ed) vectors ui of KT in (9), with one-
time total complexity O(Nd3 · Ed) = O(NEd4) via
GaBP;

• solving the synthetic inference problems Jzi = ui,
for all O(Ed) vectors ui of KT in (9), with per itera-
tion total complexity of O(NEd4) operations via ET
conditional means (7);

• and assembling the above components via (11).

Note that there exists a decomposition, alternative to (9), of
KT into O(Wd) rank-one matrices using a cardinality-W
vertex cover of E \ET (whereW ≤ E for any minimal ver-
tex cover); this alternative decomposition requires solving
a symmetric quadratic eigenvalue problem (Sudderth et al.,
2004).

3.5 COMPETING METHODS

Other methodologies have been proposed to perform in-
ference in loopy graphs. Loopy belief propagation (LBP)
is simply parallel belief propagation performed on graphs
with cycles; if it converges, it does so to the correct mean
but, in general, to incorrect variances (Weiss and Freeman,
2001). Extended message passing augments the original
BP messages and provides for convergence to the correct
variances, but its complexity is O(NL2) in the scalar case,
where L is the number of vertices incident to any cut edge,
and it requires the full message schedule to be executed
to produce an estimate (Plarre and Kumar, 2004). Lin-
ear response algorithms can be used to compute pairwise
marginal distributions for nonadjacent pairs of vertices, but
at a complexity ofO(N |E|d3), which may be excessive for
large N and |E| = O(N) given that conditional MI re-
quires only very specific pairwise marginals (Welling and
Teh, 2004).

It is also possible to perform efficient inference if it is
known that removal of a subset of V , called a feedback
vertex set (FVS), will induce a tree-shaped subgraph (Liu
et al., 2012). The resulting belief propagation-like infer-
ence algorithm, called feedback message passing, has com-
plexity O(Nk2) for scalar networks, where k is the size of
the FVS. If the topological structure of the graphical model
is well known a priori, or if the graph is learned by an
algorithm oriented towards forming FVSs (Liu and Will-
sky, 2013), then identification of an FVS is straightforward.
However, if the graphical model is provided without such
identification, it may be computationally expensive to form
an FVS of reasonable size, whereas finding a spanning tree
(as the ET algorithm does) is comparatively simple.

Various graph sparsification methods have been pursued to
find useful substructures that can precondition linear sys-
tems of equations (e.g., support graph theory (Bern et al.,
2006)). Notably, Spielman and Teng (2011) present a spec-
tral sparsification method for the graph Laplacian (which
has scalar edge weights) that permits the solution of di-
agonally dominant linear systems in near-linear time. In
contrast, this paper analyzes the ET sparsifier, which op-
erates on edges with potentially vectoral weights and does
not assume diagonal dominance (which would, for exam-
ple, guarantee the convergence of LBP (Weiss and Free-
man, 2001)).



4 ET MUTUAL INFORMATION
QUANTIFICATION (ET-MIQ)

This section describes the application of embedded trees to
efficient iterative computation of nonlocal mutual informa-
tion measures on loopy Gaussian graphs.

It is typically intractable to enumerate all possible selec-
tion sets A ∈ 2V and evaluate the resulting MI objective
I(R;A). Often, one balances tractability with performance
by using suboptimal selection heuristics with either a pri-
ori or online-computable performance bounds (Krause and
Guestrin, 2005; Levine and How, 2013). Starting from an
empty selection A ← ∅, the greedy heuristic

a← argmax
{y∈S\A : c(y)≤β−c(A)}

I(R; y|A) (12)

A ← A∪ {a}

selects one unselected observable variable with the highest
marginal increase in objective and continues to do so un-
til the budget is expended. By comparison to (4), the MI
evaluations needed to perform a greedy update are of the
form

I(R; y|A) = 1

2
log

det(PR|A) det(P{y}|A)

det(PR∪{y}|A)
(13)

While inverse covariance matrices obey specific sparsity
patterns, covariance matrices are generally dense. Thus
two of the determinants in (13) require O(|R|3d3) oper-
ations to compute. If |R| is O(N) (e.g., the graph repre-
sents a regular pattern, a constant fraction of which is to
be inferred), then such determinants would be intractable
for large N . One instead fixes some ordering R over the
elements of R, denoting by rk its kth element, Rk =
∪ki=1{ri} its first k elements, and appeal to the chain rule
of mutual information:

I(R; y | A) = I(r1; y | A) + I(r2; y | A ∪R1) + . . .

+ I(r|R|; y | A ∪R|R|−1). (14)

The advantage of this expansion is twofold. Each term
in the summation is a pairwise mutual information term.
Given an efficient method for computing marginal covari-
ance matrices (the focus of the remainder of this sec-
tion), the determinants in (4) can be evaluated in O(d3)
operations. More pressingly, conditioning in an undi-
rected graphical model removes paths from the graph (by
the global Markov property), potentially simplifying the
structure over which one must perform the quantification.
Therefore, the chain rule converts the problem of evaluat-
ing a set mutual information measure I(R; y|A) into |R|
separate pairwise MI computations that decrease in diffi-
culty as the conditioning set expands.

It suffices to describe how to compute one of the |R| terms
in the summation (14); the template will be repeated for the

other |R|−1 terms, but with a modified conditioning set. In
the remainder of this section, it is shown how to efficiently
compute I(r; y|C) for all y ∈ S \C provided some r ∈ R
and conditioning set C ⊂ V \ {r}. Since conditioning on
C can be performed by selecting the appropriate submatrix
of J corresponding to V \ C, it is assumed for clarity of
presentation and without loss of generality2 that eitherC =
∅ or that one is always working with a J resulting from a
larger J ′ that has been conditioned on C. The resulting MI
terms, in further simplification of (13), are of the form

I(r; y) =
1

2
log

det(P{r}) det(P{y})

det(P{r,y})
, (15)

where P{r} = (P )r,r and P{y} = (P )y,y are the d × d
marginal covariances on the diagonal, and where P{r,y} is
the 2d× 2d block submatrix of the (symmetric) covariance
P = J−1:

P{r,y} =

[
(P )r,r (P )r,y
(P )y,r (P )y,y

]
.

In addition to the marginal covariances on the diagonal, the
d × d off-diagonal cross-covariance term (P )r,y = (P )Ty,r
is needed to complete P{r,y}. If it were possible to effi-
ciently estimate the d columns of P corresponding to r,
all such cross-covariance terms (P )r,y,∀y ∈ S , would be
available. Therefore, let P be partitioned into columns
{pi}Ndi=1 and assume without loss of generality that r corre-
sponds to p1, . . . , pd. Let ei be the ithNd-dimensional axis
vector (with a 1 in the ith position). Then pi ≡ Pei, i =
1, . . . , d, can be estimated using the synthetic inference
problem

Jpi = ei. (16)

Thus, by comparison to (2) and (7), the first d columns of
P can be estimated with a complexity of O(Nd4) per ET
iteration.

Using the results of Section 3.4.2, the marginal variances
can be estimated in O(NEd4) per iteration, where E =
|E \ ETn | is the number of cut edges. One can subse-
quently form each matrix P{r,y}, y ∈ S in O(d2) and
take its determinant in O(d3). Since |S| < N , the ET-
MIQ procedure outlined in the section can be used to iter-
atively estimate the set {I(r; y)}y∈S with total complexity
O(NEd4) operations per iteration. Returning to the greedy
selection of (12) and the chain rule of (14), given a subset
A ⊂ S of previous selections, the set of marginal gains
{I(R; y|A)}y∈S\A can be estimated in O(N |R|Ed4) op-
erations per iteration.

2Alternatively, the unconditioned J can be used by treating
conditioned vertices as blocked (not passing messages) and by
zeroing the elements of h and x̂(n) in (5) corresponding to C.



5 EXPERIMENTS

5.1 ALTERNATIVE METHODS

In order to demonstrate the comparative performance of the
ET-MIQ procedure of Section 4, alternative methods for
computing mutual information in Gaussian graphs – two
based on matrix inversion, and one based exclusively on
estimating columns of P – are briefly described.

5.1.1 Naı̈ve Inversion

Whenever a mutual information term of the form
I(A;B|C) is needed, the Naı̈veInversion procedure
conditions J on C and computes the marginal covari-
ance matrices PA∪B|C , PA|C , and PB|C of (4) using stan-
dard matrix inversion, which is O(N3d3). A greedy se-
lection update, which requires computing marginal infor-
mation gain scores {I(R; y|A)}y∈S\A, thereby requires
O(N3|S|d3) operations using this procedure.

5.1.2 Block Inversion

Intuitively, the Naı̈veInversion procedure appears
wasteful even for an inversion-based method, as it repeats
many of the marginalization operations needed to form
{I(R; y|A)}y∈S\A. The BlockInversion procedure
attempts to rectify this. Given a previous selection set
A, BlockInversion conditions J on A and marginal-
izes out nuisances U \ R (along with infeasible observa-
tion selections {y ∈ S \ A | c(y) > β − c(A)}) using
Schur complements. The complexity of this approach, for
each greedy update, isO(|S|4 + |R||S|3 + |R|3|S|+N3).
BlockInversion has the same worst-case asymptotic
complexity of O(N3|S|d3) as Naı̈veInversion but
may achieve a significant reduction in computation depend-
ing on how |R| and |S| scale with N .

5.1.3 ColumnET

The ColumnET procedure uses nonstationary embedded
tree estimation of specific columns of P to compute all in-
formation measures. That is to say, no marginal error vari-
ance terms are computed (cf. Section 3.4.2). Given a previ-
ous selection setA, and an orderingR overR, the columns
of P·|A∪Rk−1

corresponding to {rk} ∪ S \A are estimated
via (7) and (16). The complexity of a greedy update using
ColumnET is O(N |R||S|d4) operations per ET iteration.

5.2 “HOOP-TREE” EXAMPLES

To investigate the performance benefits of ET-MIQ, we
consider a subclass of scalar (d = 1) loopy graphs contain-
ing m simple cycles (achordal “hoops”) of length l, where
cycles may share vertices but no two cycles may share
edges. The structure of this graph resembles a macro-tree

Figure 1: Example of a hoop-tree with 4-vertex cycles.

over hoop subcomponents (a “hoop-tree”; see Figure 1).
Any embedded tree on this graph must only cut m edges
(E = m), one for each l-cycle. This class of graphs is use-
ful for benchmarking purposes, as it permits randomization
without requiring the subsequent enumeration of loops via
topological analysis, which may be computationally expen-
sive and thus inefficient for testing.

For each problem instance, we generate a random hoop-
tree G = (V, E) of size |V| = N . To generate a cor-
responding inverse covariance J , we sample (J)i,j ∼
uniform([−1, 1]) for each {i, j} ∈ E , and sample (J)i,i ∼
Rayleigh(1), with the diagonal rescaled to enforce the
positive definiteness of J . We then randomly label ver-
tices in V as belonging to S or U (or neither), set a bud-
get β ∝ |S|, and sample an integer-valued additive cost
function c(·) such that c(s) ∼ uniform([1, γβ]) for some
γ ∈ [0, 1] and all s ∈ S, and such that c(A) =

∑
a∈A c(a)

for all A ⊆ S.

Let GT1 and KT1 be the embedded subtree and associated
regular cutting matrix formed by cutting the edge of each l-
cycle with the highest absolute precision parameter |(J)i,j |.
Guided by the empirical results of Sudderth et al. (2004),
the second embedded tree GT2 is selected such that in every
l-cycle, KT2 cuts the edge farthest from the corresponding
cut edge in the GT1 (modulo some tie-breaking for odd l).

Figure 2 summarizes a comparison of ET-MIQ
against Naı̈veInversion, BlockInversion,
and ColumnET in terms of the mean runtime to complete
a full greedy selection. Random networks of size N
were generated, with |R| = 5 and |S| = 0.3N . The
alternative methods were suppressed when they began to
take prohibitively long to simulate (e.g., N = 1200 for
BlockInversion and ColumnET).

The runtime of ET-MIQ, which vastly outperforms the al-
ternative methods for this problem class, appears to grow
superlinearly, but subquadratically, in N (approximately,
bounded by o(N1.7)). The growth rate is a confluence of
three factors: the O(N |R|Ed4) complexity per Richard-
son iteration of updating {I(R; y|A)}y∈S\A; the number
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Figure 2: Mean runtime of the full greedy selection as
a function of the network size N for randomized loopy
graphs with m = 10 simple cycles of length l = 4.
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Figure 3: Mean runtime of the full greedy selection as
a function of the network size N for randomized loopy
graphs with m = 0.1N simple cycles of length l = 4.
As predicted, in the case where m = O(N), the ET-based
algorithms have the same asymptotic complexity; ET-MIQ
has a lower constant factor.

of Richardson iterations until the normalized residual error
converges to a fixed tolerance of ε = 10−10; and the growth
rate of |S| as a function of N , which indirectly affects the
runtime through the budget β by permitting larger selection
sets, and hence more rounds of greedy selection. To better
disambiguate the second and third factors, we studied how
the number of Richardson iterations to convergence (for a
random input h; cf. (2)) varies as a function ofN and found
no significant correlation in the case where m is constant
(not a function of N ). The median iteration count was 7,
with standard deviation of 0.6 and range 5-9 iterations.

We also considered the effect of letting m, the number of
cycles in the graph, vary with N . A runtime comparison
for m = 0.1N is shown in Figure 3. Given that E = m =
O(N) and |R| = O(1), ET-MIQ has an asymptotic com-
plexity of O(N |R|Ed4) = O(N2). Similarly, the com-
plexity of ColumnET is O(N |R||S|d4) = O(N2). Fig-
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Figure 4: Number of Richardson iterations until conver-
gence, for m = 0.1N cycles.
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Figure 5: Number of Richardson iterations until conver-
gence, for N = 1600 vertices, m = δN cycles.

ure 3 confirms this agreement of asymptotic complexity,
with ET-MIQ having a lower constant factor.

We repeated the convergence study for m = 0.1N and
varying N ∈ [100, 2000] (see Figure 4). The mean iter-
ation count appears to grow sublinearly in N ; the actual
increase in iteration count over N is quite modest.

The relationship between the convergence and the prob-
lem structure was more clearly illustrated when we fixed
a network size of N = 1600 and varied the number of 4-
vertex cycles m = δN , for δ ∈ [0.04, 0.32] (see Figure 5).
The cycle fraction δ is strongly correlated with the iteration
count – and even slightly more correlated with its log – sug-
gesting an approximately linear (and perhaps marginally
sublinear) relationship with δ, albeit with a very shallow
slope.

6 DISCUSSION

This paper has presented a method of computing nonlocal
mutual information in Gaussian graphical models contain-
ing both cycles and nuisances. The base computations are



iterative and performed using trees embedded in the graph.
We assess the proposed algorithm, ET-MIQ, and its alterna-
tives (cf. Sections 3.5 and 5.1) in terms of the asymptotic
complexity of performing a greedy update. For ET-MIQ,
per-iteration complexity is O(N |R|Ed4), where N is the
number of vertices in the network, R ⊂ V is set of rele-
vant latent variables that are of inferential interest, E is the
number of edges cut to form the embedded tree, and d is
the dimension of each random vector indexed by a vertex
of the graph. Let κ denote the expected number of Richard-
son iterations to convergence of ET-MIQ, which is a direct
function of the eigenproperties of the loopy precision ma-
trix and its embedded trees and an indirect function of the
other instance-specific parameters (number of cycles, net-
work size, etc.). The experimental results of Section 5 sug-
gest that the proposed algorithm, ET-MIQ, achieves signif-
icant reduction in computation over inversion-based meth-
ods, which have a total complexity of O(N3|S|d3), where
S ⊂ V is the set of observable vertices that one has the
option of selecting to later realize.

Based on the asymptotic complexities, we expect ET-MIQ
would continue to achieve a significant reduction in compu-
tation for large networks whenever |R|Edκ = o(N2|S|).
Typically, the vertex dimension d is not a function of the
network size. For dense networks (|E| = O(N2)), we
would not expect significant performance improvements
using ET-MIQ; however, it is often the case that E is sparse
in the sense that the number of cut edges E = O(N).
With |S| = O(N) (the number of available observations
growing linearly in the network size), asymptotic benefits
would be apparent for |R|κ = o(N2). Since we suspect κ
grows sublinearly (and very modestly) inN , and whichever
system utilizing the graphical model is free to choose R,
we expect that ET-MIQ would be beneficial for efficiently
quantifying information in a wide class of active inference
problems on Gaussian graphs.

The methods described in this paper are exact in the
sense that all mutual information measures are estimated
to within a specified tolerance. If the computational cost
of quantifying mutual information were constrained (e.g.,
in a distributed estimation framework with communication
costs), it may be of interest to develop algorithms for al-
lowing prioritized approximation depending on how sensi-
tive the overall information reward is to these conditional
mutual information terms. In addition to algorithms for
adaptively selecting embedded trees to hasten convergence,
Chandrasekaran et al. (2008) propose methods for choosing
and updating only a subset of variables in each Richard-
son iteration. If, in an essentially dual problem to (1), the
cost of sensor selections were to be minimized subject to
a quota constraint on the minimum amount of collected in-
formation, the ability to truncate information quantification
when a subset of the graph falls below an informativeness
threshold would be of potential interest, which we intend

to explore in future work.
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A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating
mutual information. Physical Review E, 69(6):066138,
jun 2004.

A. Krause and C. Guestrin. Near-optimal nonmyopic value
of information in graphical models. In Proc. Uncertainty
in Artificial Intelligence (UAI), 2005.

A. Krause and C. Guestrin. Optimal value of information
in graphical models. Journal of Artificial Intelligence
Research, 35:557–591, 2009.

A. Krause, A. Singh, and C. Guestrin. Near-optimal sen-
sor placements in gaussian processes: Theory, efficient
algorithms and empirical studies. Journal of Machine
Learning Research, 9:235–284, 2008.



D. Levine and J. P. How. Sensor selection in high-
dimensional Gaussian trees with nuisances. In
C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Weinberger, editors, Advances in Neural Information
Processing Systems (NIPS), volume 26, pages 2211–
2219, 2013.

Y. Liu and A. S. Willsky. Learning Gaussian graphical
models with observed or latent FVSs. In Advances
in Neural Information Processing Systems (NIPS), vol-
ume 26, 2013.

Y. Liu, V. Chandrasekaran, A. Anandkumar, and A. S. Will-
sky. Feedback message passing for inference in Gaussian
graphical models. IEEE Transactions on Signal Process-
ing, 60(8):4135–4150, Aug 2012.

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis
of approximations for maximizing submodular set func-
tions. Mathematical Programming, 14:489–498, 1978.

J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufman, San Mateo, CA, 1988.

K. H. Plarre and P. R. Kumar. Extended message pass-
ing algorithm for inference in loopy Gaussian graphical
models. Ad Hoc Networks, 2:153–169, 2004.

T. P. Speed and H. T. Kiiveri. Gaussian Markov distribu-
tions over finite graphs. Annals of Statistics, 14(1):138–
150, mar 1986.

D. A. Spielman and S.-H. Teng. Spectral sparsification of
graphs. SIAM Journal on Computing, 40(4):981–1025,
2011.

E. B. Sudderth. Embedded trees: Estimation of Gaussian
processes on graphs with cycles. Master’s thesis, Mas-
sachusetts Institute of Technology, February 2002.

E. B. Sudderth, M. J. Wainwright, and A. S. Willsky.
Embedded trees: Estimation of Gaussian processes on
graphs with cycles. IEEE Transactions on Signal Pro-
cessing, 52(11):3136–3150, November 2004.

M. J. Wainwright, E. B. Sudderth, and A. S. Willsky. Tree-
based modeling and estimation of Gaussian processes
on graphs with cycles. In T. K. Leen, T. G. Dietterich,
and V. Tresp, editors, Advances in Neural Information
Processing Systems (NIPS), volume 13. MIT Press, Nov
2000.

Y. Weiss and W. T. Freeman. Correctness of belief propaga-
tion in Gaussian graphical models of arbitrary topology.
Neural Computation, 13(10):2173–2200, 2001.

M. Welling and Y. W. Teh. Linear response algorithms
for approximate inference in graphical models. Neural
Computation, 16(1):197–221, 2004.

J. L. Williams, J. W. Fisher III, and A. S. Willsky. Perfor-
mance guarantees for information theoretic active infer-
ence. In M. Meila and X. Shen, editors, Proc. Eleventh
Int. Conf. on Artificial Intelligence and Statistics, pages
616–623, 2007.

D. M. Young. Iterative Solution of Large Linear Systems.
Academic, New York, 1971.


