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Abstract

Out of the many potential factors that deter-
mine which links form in a document citation
network, two in particular are of high impor-
tance: first, a document may be cited based
on its subject matter—this can be modeled by
analyzing document content; second, a doc-
ument may be cited based on which other
documents have previously cited it—this can
be modeled by analyzing citation structure.
Both factors are important for users to make
informed decisions and choose appropriate ci-
tations as the network grows. In this paper,
we present a novel model that integrates the
merits of content and citation analyses into
a single probabilistic framework. We demon-
strate our model on three real-world citation
networks. Compared with existing baselines,
our model can be used to effectively explore
a citation network and provide meaningful
explanations for links while still maintaining
competitive citation prediction performance.

1 Introduction

Many large citation networks—Wikipedia, arXiv, and
PubMed1, to name a few—continue to quickly grow
in size, and the structure of these networks continues
to increase in complexity. To effectively explore large-
scale and complex data like these and extract useful
information, users rely more and more on various types
of guidance for help. An important type of guidance
comes from the citations (or links) in the network.
Citations serve as paths that users can easily follow,
and do not require users to specify certain keywords in
advance. In scientific research, for example, researchers

∗Work completed while at Carnegie Mellon University.
1http://www.wikipedia.org/, http://arxiv.org/,

and http://www.ncbi.nlm.nih.gov/pubmed

often find potentially interesting articles by following
citations made in other articles. In Wikipedia, users
often find explanations of certain terms by following the
links made by other Wikipedia users. Thus, generating
relevant citations is important for many users who may
frequently rely on these networks to explore data and
find useful information.

We believe that, among many, two important factors
largely determine how a document citation network is
formed: the documents’ contents and the existing cita-
tion structure. Take as an example a citation network
of computer science articles. A research paper about
“support vector machines (SVMs)”, for instance, might
be cited by several other articles that develop related
methods, based on the subject matter alone. This type
of information can be well captured by analyzing the
content of the documents. However, the existing cita-
tion structure is also important. If this SVM paper
included great results on a computer vision dataset,
for example, it might be cited by many vision papers
that are not particularly similar in content. Though
different in content, this SVM paper could be very
important to users in a different topic area, and should
be considered by these users when choosing citations.
This type of information cannot be easily captured by
analyzing document content, but can be discovered by
analyzing the existing citation structure among docu-
ments while studying the contents of the papers that
generated these citations.

Given these observations, we present a probabilistic
model to accurately model citation networks by in-
tegrating content and citation/link information into
a single framework. We name our approach a latent
random offset (LRO) model. The basic idea is as fol-
lows: we first represent the content of each document
using a latent vector representation (i.e. “topics”) that
summarizes the document content. Then, each latent
representation is augmented in an additive manner with
a random offset vector; this vector models information
from the citation structure that is not well captured



Initial Topics
built,
side,
large,
design

italy,
italian,
china,
russian

church,
christ,
jesus,

god

0 20 40 60 80 100 120 140 160
0.05

0.00

0.05

0.10

0.15

0.20

0.25
church,
christ,
jesus,
god

Topics after Random Offsets

built,
side,
large,
design

english,
knight,
translated,
restoration

italy,
italian,
china,
russian

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Italy

italy,
italian,
china,
russian

building,
built,
tower,
architecture

built,
side,
large,
design

church,
christ,
jesus,
god

built,
side,
large,
design

church,
christ,
jesus,
god

Offsets Learned from Links (Random Offsets)

english,
knight,
translated,
restoration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Chapelbuilt,
side,
large,
design church,

christ,
jesus,
god

building,
built,
tower,
architecture

Text: "The Sistine Chapel is a large chapel in the Vatican Palace, the place in Italy where the Pope lives. The 
Chapel was built between 1473 and 1481 by Giovanni dei Dolci for Pope Sistus IV...The Sistine Chapel is 
famous for its fresco paintings by the Renaissance painter Michelangelo..."

Sistine Chapel  (Simple English Wikipedia)

In-Links (Citing Documents):  (1) Raphael, (2) Ten Commandments, (3) Chapel, (4) Apostolic Palace, (5) St. Peter's Basilica

Predicted Links:   (1) Chapel, (2) Christian, (3) Italy
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Figure 1: Analysis of content, latent offsets, and pre-
dicted links for the Sistine Chapel document in the
Simple English Wikipedia dataset. The first row shows
an example passage from the document. The next row
shows the names of the documents that cite Sistine
Chapel. The next row shows the initial latent topics
(first column), the latent offsets learned from links
(second column), and the latent topics after applying
the offsets (third column). The final row shows inter-
pretable link predictions; for each predicted link, we
show the relative weight that each latent topic con-
tributed to the prediction.

by document content. The final augmented representa-
tion is then used to model how this document is cited
by other documents. To motivate this representation,
we present sample outputs from running LRO on the
Simple English Wikipedia.

Examples from Simple English Wikipedia.
The first graph in the top row of Figure 1 shows,
for the Sistine Chapel article in the Simple English
Wikipedia, the latent vector representation, which is
concentrated around three topics: countries (italy,
italian, china, russian), Christianity (church, christ,
jesus, god), and architecture (built, side, large, de-
sign). Here we’ve listed the top four words in each topic
(in parens). The incoming links to the Sistine Chapel ar-
ticle are also shown; these citing documents determine
the random offsets for Sistine Chapel. The random
offsets can be thought of as “corrections” to the latent
vector representation, based on the content of citing
documents—for example, the two largest positive off-
sets are Christianity (church, christ, jesus, god) and
Anglicanism (english, knight, translated, restoration),
meaning that the citing documents strongly exhibit
these two topics (compared to the Sistine Chapel arti-
cle). On the other hand, there is a large negative offset
on architecture (built, side, large, design), indicating
that the citing documents do not exhibit this topic as

much as Sistine Chapel.

Notably, the topic Anglicanism (containing words re-
lated to Christianity in England) is found in the ran-
dom offsets for Sistine Chapel, but is absent from its
latent vector representation. This is because the Sistine
Chapel is in the Vatican City, and thus its article does
not emphasize content relating to England or Anglican-
ism (even though they are all related to Christianity).
However, documents that link to Sistine Chapel, such
as Chapel, talk about the Anglican Church in England.
This is an example where pertinent information is found
in the citation structure, but not in the document con-
tent. By capturing this citation information, the LRO
model provides insights into the context surrounding a
document.

Following this idea, we can add the latent vector and
random offsets together to obtain the “augmented repre-
sentation” of a document (i.e. the “topics after random
offsets” graph in Figure 1), which takes into account
not just its content, but the content of its citing doc-
uments as well. Link predictions in the LRO model
are based upon the intuition that a document i cites
document j only if both documents have similar repre-
sentations. This intuition is captured in the bottom row
of graphs in Figure 1, which explains three out-links
predicted by the LRO model for the Sistine Chapel
document. For each predicted link, we show the topics
that contributed most to the prediction, and not sur-
prisingly, the most important topics for each link also
feature strongly in the augmented representation for
the Sistine Chapel. Knowing which topics contributed
to the prediction of links not only helps users interpret
existing links within a document corpus, but also gives
users an explanation for every new link predicted by
the LRO model—for instance, a user might invoke LRO
to recommend citations for an academic paper, and
such “link explanations” give the user a quick overview
of why each recommendation is relevant.

We note that of the three predicted out-links for Sis-
tine Chapel, two of them (Chapel, Italy) are actual
out-links in Sistine Chapel, while the third, Christian,
is obviously relevant but not found in the document.
This motivates another application of LRO: predicting
relevant but missing links in document corpora; in this
case, we are completing the references for a Wikipedia
article. Another application context is academic paper
writing: LRO can be used to recommend important
(but otherwise overlooked) citations for a newly-written
academic paper.

The rest of this paper is organized as follows: we be-
gin by formalizing latent random offset modeling, and
then show how we can use it to model citation net-
works. We then develop a fast learning algorithm



with linear complexity in the size of the number of
citations, and empirically evaluate our approach using
three real-world citation networks. Compared with
several baselines, our model not only improves citation
prediction performance, but also provides meaningful
explanations for citations within the networks. By
studying latent random offset representations, we show
these explanations can be used to effectively interpret
why our model predicts links for given documents and
to explore citation networks.

2 Latent Random Offset Models

We introduce the general framework of latent random
offsets for citation network modeling. Suppose our
citation network consists of D documents (i.e. nodes),
D = {x1, x2, ..., xD}. We use yij = 1 or 0 to indicate
whether document i cites document j or not. Note
that yij is directed, meaning yij is not necessarily the
same as yji.

Each document xj is usually a high-dimensional vector
in RV , where V is the vocabulary size, so it is desirable
to represent xj using a low-dimensional vector θj . In
other words, the mapping

θj = θj(xj) (1)

serves as a summarization of the original document
content xj , and these summarizations can be used to
measure the content similarities of different documents.

However, in real citation networks, a document can
be cited by others for reasons outside of its content
information. For example, a target document might
provide an influential idea that can be used in many
different fields and thus be cited by a diverse set of
documents. This information is encoded not in the
document content but in the citation network structure.
We choose to model this phenomenon by allowing a
random offset vector εj to augment the low-dimensional
vector θj , which gives the augmented representation

vj = θj + εj . (2)

The offset vector εj is used to capture the network struc-
ture information that is not contained in the document’s
content. One important property of this augmented
representation is that the random offset εj is aligned in
the same space as θj . If the dimension of θj has some
semantic explanations, then εj can be understood as
modifications of those explanations.

Finally we consider using a function f to model the
citation from document i to document j, such that

f(θi, θj + εj) ≈ yij (for all i, j)

where yij is the citation indicator from document i to
document j. Notice the asymmetric structure here for
document i and j—we do not consider the offset vector
εi for document i in our function f . In real citation
networks, when a new document joins the citation
network by citing some other documents, this new
document is effectively “not in” the network. It will be
most likely to cite other documents based only on their
content and their citations, as no network information
exists for this new document. One advantage of this
formulation is that we can make citation predictions
for a brand new document by only using its content
information.

In the next two sections, we first describe how we create
the low-dimensional document content representation
θj and how we use the latent random offset model for
citation network modeling.

2.1 Probabilistic topic models for document
content representation

There are many potential ways to create the low-
dimensional document content representation described
in Eq. 1. Here we choose to use probabilistic topic mod-
els. Topic models [5] are used to discover a set of “topics”
(or themes) from a large collection of documents. These
topics are distributions over terms, which are biased
to be associated under a single theme. One notable
property of these models is that they often provide
an interpretable low-dimensional representation of the
documents [10]. They have been used for tasks like
corpus exploration [8], information retrieval [23] and
recommendation [22].

Here we describe the simplest topic model, latent Dirich-
let allocation (LDA) [7] and use it to create the low-
dimensional document content representations. As-
sume there are K topics, βk, k = 1, ...,K and each
βk is a distribution over a fixed vocabulary. For each
document j, the generative process is as follows,

1. Draw topic proportions θj ∼ Dirichlet(α)
2. For each word xjn in document j,

(a) Draw topic assignment zjn ∼ Mult(θj)
(b) Draw word xjn ∼ Mult(βzjn)

This process describes how the words of a document
are generated from a mixture of topics that are shared
by the corpus. The topic proportions θj are document-
specific and we use these topic proportions as our low-
dimensional document content representation.

Given a document collection, the only observations
are the words in the documents. The topics, topic
proportions for each document, and topic assignments
for each word, are all latent variables that have to be



0 1

1

T
o

p
ic

1

Topic 2

1-simplex in

Figure 2: Left: The LRO graphical model. Only two
documents (i and j) and one citation (from i to j) are
shown. The augumented latent representation repre-
sentation for document j is vj = θj + εj . Right: An
illustration of the random offsets. We show each docu-
ment’s content vector θj (which lies on the simplex), its
offsets εj due to link structure (the superscript indicates
the dimension for εj), and the resulting augmented la-
tent representation vj .

determined from the data. LDA has been extensively
studied in the literature and many efficient algorithms
have been proposed to fit the LDA model variables [7,
12, 21]. For example, standard learning algorithms
like variational EM or Gibbs sampling can be used to
estimate these quantities [7]. These methods give us
the estimated document content representations θj in
terms of an approximate posterior distribution or point
estimates.

2.2 Modeling citations via random offsets

Having described how we represent the documents in a
low dimensional space, we now consider how to create
the augmented representations introduced in Eq. 2.
We model our latent random offset vector εj with a
multivariate Gaussian distribution

εj ∼ N (0, λ−1IK).

where λ is a scalar precision parameter for the latent
random offsets.

Using the general idea of latent random offset modeling
shown in Eq. 2 and probabilistic topic models described
in Section 2.1, our latent random offset model (LRO)
for citation network modeling has the following gen-
erative process (Figure 2 shows the graphical model).
Assuming K topics, β1:K ,

1. For each document j,

(a) Draw topic proportions θj ∼ Dirichlet(α)
(b) Draw latent random offset εj ∼ N (0, λ−1IK)

and set the document augmented representa-
tion as vj = θj + εj

(c) For each word xjn,

i. Draw topic assignment zjn ∼ Mult(θ)
ii. Draw word xjn ∼ Mult(βzjn)

2. For each directed pair of documents (i, j), draw
the citation indicator

yij ∼ N (y|wθ>i vj , τ−1ij ).

where w ∈ R+ is a global scaling parameter to account
for potential inefficiencies of the topic proportions θi,
which are constrained to the simplex.2 We chose a
Gaussian response to model the citations, in similar
fashion to [22]. Notation τ−1ij is the precision parameter
for the Gaussian distribution. Here, we choose to stray
from a formal generative process and also treat the yij
as parameters, such that τij satisfies

τij =

{
τ1 if yij = 1

τ0 if yij = 0 .

In this formulation, τ1 specifies the precision if a link
exists from document i to j, while τ0 is for the case
where the link does not exist. We set τ0 to be much
smaller (i.e. higher noise) than τ1 — this is similar to
the assumption made in [22], which models the fact
that yij = 0 could either mean it is not appropriate for
document i to cite document j, or simply that docu-
ment i should cite document j but has inadvertently
neglected to cite it. This also enables a fast learn-
ing algorithm with complexity linear in the number of
citations (See Section 3 for details).

The expectation of the citation can be computed as

E[yij ] = wθ>i vj = w(θ>i θj) + w(θ>i εj).

This reveals how likely it is for a citation from document
i to document j to occur under our model. If the
documents have similar content or document j has
certain large positive offsets, it is more likely to be
cited by document i.

For a document j, our latent representation θj is over a
simplex. In Figure 2 (right), we show how the random
offsets εj produce the augmented representation vj .

2.3 Citation prediction

In a system for citation prediction, it is more realistic
to suggest citations than to make hard decisions for
the users. This is common in many recommender
systems [13, 22]. For a particular document i, we rank
the potential citations according to the score

Sij = wθ>i vj ,

2Our experiments show that optimizing the global scal-
ing parameter w is important for obtaining good results.



for all other documents j, and suggest citations based
on this score (excluding document i and all pre-existing
citations).

3 Learning Algorithm

We use maximum a posteriori (MAP) estimation to
learn the latent parameters of the LRO, where we
perform a coordinate ascent procedure to carry out
the optimization. Maximization of the posterior is
equivalent to maximizing the complete log likelihood
of v1:D, θ1:D and β1:K , which we can write as

L =− λ

2

∑
j

(vj − θj)>(vj − θj)−
∑
i6=j

τij
2

(yij − wθTi vj)2

+
∑
j

∑
n

log

(∑
k

θjkβk,xjn

)
.

where we have omitted a constant and set α = 1.

First, given topics β1:K and augmented representations
v1:D, for all documents, we describe how to learn the
topic proportions θj . We first define φjnk = q(zjn = k).
Then we separate the items that contain θj and apply
Jensen’s inequality,

L(θj) ≥ −
λ

2

∑
j

(vj − θj)>(vj − θj)

+
∑
n

∑
k

φjnk
(
log θjkβk,xjn

− log φjnk
)

= L(θj ,φj).

where φj = (φjnk)D×Kn=1,k=1. The optimal φjnk then
satisfies

φjnk ∝ θjkβk,xjn
.

The L(θj ,φj) gives the tight lower bound of L(θj). We
cannot optimize θj analytically, but we can use the
projection gradient [3] method for optimization.3

Second, given this φ, we can optimize the topics β1:K
with

βkx ∝
∑
j

∑
n

φjnk1[xjn = x].

This is the same M-step update for topics as in LDA [7].

Next, we would like to optimize the augmented repre-
sentations v1:D. We can write the component of the
log likelihood with terms containing vj as

L(vj) =− λ

2
(vj − θj)>(vj − θj)

−
∑
i,i 6=j

τij
2

(yij − wθ>i vj)2.

3On our data, we found that simply fixing θj as the es-
timate from the LDA model gives comparable performance
and saves computation.

To maximize this quantity, we take the gradient of
L(vj) with respect to vj and set it to 0, which gives an
update for vj

v∗j ←
(
λIK + w2

(
(τ1 − τ0)

∑
i∈{i:i→j}

θiθ
>
j + τ0

∑
i,i6=j

θiθ
>
j

))−1

×
(
θj + wτ1

∑
i∈{i:i→j}

θi

)
(3)

where {i : i → j} denotes the set of documents that
cite document j. For the second line of Eq. 3, we can
see that the augmented representation vj is affected by
two main parts: the first is the content from document
j (topic proportions θj) and the second is the content
from other documents who cite document j (topic
proportions θi, where i ∈ {i : i→ j}).

Next, we want to optimize the global scaling variable
w. Isolating the terms in the complete log likelihood
that contain w gives

L(w) = −
∑
i6=j

τij
2

(yij − wθ>i vj)2.

In a similar manner as the previous step, to maximize
this quantity we take the gradient of L(w) with respect
to w and set it to 0, which gives its update4

w∗ ←
(∑

j

(
(τ1 − τ0)

∑
i∈{i:i→j}

(θ>i vj)
2 + τ0

∑
i,i6=j

(θ>i vj)
2

))−1

×
(
τ1
∑
j

∑
i∈{i:i→j}

θ>i vj

)
. (4)

Empirically, we found that an optimal trade-off between
computation time and performance involves performing
LDA [7] initially to learn the latent representations θj ,
and then performing coordinate ascent to learn the
augmented representations vj and global parameter w.
We detail this procedure in Algorithm 1.

Computational efficiency. We now show that
our learning algorithm (Algorithm 1) has runtime com-
plexity linear in the number of documents and citations.

First, estimating the topic proportions θj , j = 1, ..., D
has the same complexity as the standard learning al-
gorithm for LDA, which is linear in the number of
documents.

Second, the augmented representations vj , j = 1, ..., D
and global scaling parameter w can be estimated in
linear time, via a caching strategy — this is similar to
the method adopted by [13, 22]. We now describe this
strategy.

4In theory, this update could lead to a negative value.
However, in our experiments, we did not see this happen.



Algorithm 1 MAP Parameter Learning

Input: A citation network of documents {xj}Dj=1 with
directed links yij for i, j ∈ {1, . . . , D}, and stopping
criteria δ

Output: Latent content representations θj , link-offset
representations vj , and global scale parameter w

1: Run LDA [7] on {xj}Dj=1 to learn θ1:D
2: Initialize v1:D = θ1:D and eps =∞
3: while eps > δ do
4: Update w ← w∗ . Equation 4
5: for j = 1 to D do
6: Update vj ← v∗j . Equation 3
7: end for
8: Set eps← ‖v1:D − ṽ1:D‖
9: end while

For the augmented representation vj (Eq. 3), we cache
θ0 =

∑
i θi. This allows us to update vj (Eq. 3) using

the identity ∑
i,i 6=j θi = θ0 − θj .

Every time we update a θj , we also update the cache
θ0, and this takes constant time w.r.t. the number of
documents and citations.

For the global scaling parameter w (Eq. 4), we can
compute∑

i,i6=j(θ
>
i vj)

2 =
∑

i,i 6=j v
>
j θiθ

>
i vj

= v>j (
∑

i,i 6=j θiθ
>
i )vj

= v>j (
∑

i θiθ
>
i )vj − v>j θjθ>j vj

in O(K2) time (constant in the number of docs and
citations) by simply caching Θ0 =

∑
i θiθ

>
i . This cache

variable also requires O(K2) time to update whenever
we modify some θj .

The remaining sums in Eqs 3,4 touch every citation
exactly once, therefore a single update sweep over all vj
and w only requires constant work per edge (treating K
as constant). We have therefore shown that Algorithm
1 is linear in the number of documents and citations.
Moreover, we have attained linear scalability without
resorting to treating missing citations as hidden data.
This gives our LRO a data advantage over methods
that hide missing citations, such as the RTM [9].

4 Related Work

Our proposed work focuses on two aspects of ci-
tation network modeling: 1) network understand-
ing/exploration and 2) citation prediction. We there-
fore divide the related work section into these two
categories.

Network understanding/exploration. Net-
work exploration is a broad empirical task concerned
with, amongst other things, understanding the over-
all structure of the network [19], understanding the
context of individual nodes [2], and discovering anoma-
lous nodes or edges [20]. In addition to methods that
operate on purely graph data, there are techniques
that leverage both the graph as well as textual content,
such as relational topic models (RTM) [9], Link-PLSA-
LDA [17], and TopicFlow [18]. The idea behind such
hybrid methods is that text and graph data are often
orthogonal, providing complementary insights [11].

Our LRO model incorporates network information by
modeling per-document random offsets that capture
topical information from connected neighbors. These
random offsets represent relevant topics that would
otherwise not be found in the documents through con-
tent analysis. The Simple English Wikipedia analysis
from the introduction provides a good example: the
Sistine Chapel article’s random offsets (the top row
of Figure 1) contain the topic Anglicanism (which is
also related to Christianity), even though the article
text’s latent topic representation makes no mention of
it. In this manner, the LRO model helps us understand
the context of network nodes (a.k.a. documents), and
helps us to detect anomalous nodes (such as documents
whose random offsets diverge greatly from their latent
topic vectors).

Citation prediction. The citation prediction task
can be approached by considering text features, network
features, or a combination of both. In the text-only set-
ting, approaches based on common text features (e.g.,
TF-IDF scores [4]) and latent space models (e.g., topic
models [5]) can be used to the measure similarities
between two documents, allowing for ranking and pre-
diction. However, text-only approaches cannot account
for citation behavior due to the network structure.

In the network-only setting without document content,
there are a number of commonly-used measures of node
similarity, such as the Jaccard Coefficient, the Katz
measure [14] and the Adamic/Adar measure [1]. La-
tent space models such as matrix factorization (MF)
methods [15] can be used here. However, when test
documents are out-of-sample with respect to the net-
work (when we consider newly-written papers with no
preexisting citations), these measures are inapplicable.

Finally, there are methods that combine both document
content and network structure to predict citations. One
such method is the relational topic models (RTM) [9],
in which link outcomes depend on a reweighted in-
ner product between latent positions (under the LDA
model). The weights are learned for each latent di-
mension (topic), but are not specific to any document,



and thus only capture network behavior due to topic-
level interactions. In contrast, our random offsets are
learned on a per-document basis, capturing interac-
tion patterns specific to each document, which in turn
yields better predictive performance as shown in our
empirical study. In [16], in addition to the document
content, author information is also considered to model
the citation structure. In [17], citations were treated
as a parallel document (of citations) as to the docu-
ment content of words. Neither of these methods use
per-document offsets to model citation structure.

5 Empirical Study

We will empirically demonstrate the use of our model
for modeling citation networks. We will first show
quantitative results for citation prediction then present
qualitative results using our model to explore citation
networks.

Datasets. We use three citation network datasets,

1. The ACL Anthology paper citation network (ACL)
contains 16,589 documents and 94,973 citations
over multiple decades.

2. The arXiv high energy physics citation network
(arXiv) contains 34,546 arXiv/hep-th articles and
421,578 citations from January 1993 through April
2003.

3. The Simple English Wikipedia citation network
(Wikipedia) contains 27,443 articles, and 238,957
citations corresponding to user-curated hyperlinks
between articles.

5.1 Citation prediction

For citation prediction, we compare against the
RTM [9], matrix factorization (MF) [15], LDA-based
predictions [7], and three common baseline algorithms.
A detailed description is given below.

The first task is predicting held-out citations. Here
we used a five-fold cross validation: for each document
that has cited more than 5 documents, we held out
20% of the documents into test set and the rest into
the training set.

The second task is predicting citations for new docu-
ments. To simulate this scenario, we train our model
using all the citations before a certain year and predict
the citations of the new documents published in that
year. This task is important for a real citation predic-
tion system, where user may input some text without
existing citations. For this experiment, we excluded
MF from the comparisons, because it cannot perform
this task.

Evaluation metric. Our goal is to make citation
predictions, where it is more realistic to provide a rank
list of citation predictions than to make hard decisions
for the users. For a given set of M predicted citations,
we use a performance metric, Recall@M ,

Recall@M =
number of citations in the predicted set

total number of citations

which can be viewed as the proportion of “true” cita-
tions successfully predicted by a given method, when
the method is allowed to provide M guesses.

Comparison methods. We compare our model
with a number of competing strategies, starting with
the RTM [9]. In order to make predictions using the
RTM, we learn a latent representation for each docu-
ment and predict citations using a similarity function
between these representations (detailed in [9]). The
second comparison is an LDA-based prediction strategy,
in which document predictions are determined by the
similarity between the latent document representation
vectors θj . The similarity is computed using inverse of
the Hellinger distance [6]

Sij = H(θi, θj)
−1 =

√
2
∥∥√θi −√θj∥∥−1 .

Third, we compare with matrix factorization (MF),
but only on the first task. (MF cannot make the
citation predictions for a brand new document.) Fi-
nally, we compare with three simple baseline methods
on both tasks. The first is that of Adamic/Adar [1],
described in Section 4. The second is based on term
frequence-inverse document frequency (TF-IDF) scores,
where citations are predicted based on similarities in
the documents’ scores [4]. The third baseline is called
“in-degree”, where each document is given a score pro-
portional to the number of times it is cited; in this case,
the same set of predictions are given for every test doc-
ument. Hyperparameters are set via cross validation.

Task one: predicting held-out citations.
Given the document contents and the remaining links,
the task is to predict the held out citations for each
document. We show results for our model and six
comparison methods on the ACL dataset in Figure 3.
Our model (LRO) achieves a significantly higher recall
over all ranges of the number of predictions, and we
observed similar results for the other two datasets.

We also wanted to determine how our method performs
across different datasets. To make the results compa-
rable, we normalized the number of predictions M by
setting it to a fraction of the total number of documents
in each respective dataset. The results are shown in
Figure 4: LRO performs well on all three datasets,
though we note that ACL has a much better score than
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Figure 3: Left: Citation prediction performance on
the ACL dataset for task one (predicting held-out cita-
tions).Right: Citation prediction performance on task
two (predicting citations for new documents) on sub-
sets of the ACL dataset for 7 years. In both cases, the
LRO yields the highest recall over all ranges.

the other two. We attribute this to the fact that ACL
contains only refereed academic papers, and is therefore
more structured than either arXiv (which is unrefereed)
or Simple English Wikipedia (whose articles are not
always subject to editorial attention).

Task two: predicting citations for new docu-
ments. The second task is to predict citations for
documents with no prior citation information, corre-
sponding to scenarios in which one needs to suggest
citations for newly written documents. This task is
often referred to as the “cold start problem” in recom-
mender systems.

We simulate the process of introducing newly written
papers into a citation network by dividing them ac-
cording to publication year. Specifically, from the ACL
citation network dataset, we select the citations and
documents that existed before the year Y as training
data, for Y ranging from 2001 to 2006. After training
on this subset, the task is then to predict the citations
occurring in year Y for the new documents written in
year Y .

For this task, we compared our model against the same
comparison methods used in the previous task, except
for matrix factorization, which cannot make citation
predictions for new documents. Figure 3 (right) shows
the results. We fix the number of citation predictions
M = 150 (other M values have similar trends). Again,
our model achieves the best performance over a major-
ity of the M values in all six years, and increases its
lead over the comparison methods in later years, after
a larger portion of the citation network has formed and
can be used as training data.

Hyperparameter sensitivity. We also study how
different hyperparameters affect performance, including
the number of topics K, precision parameters τ0 and
τ1, and latent random offset precision parameter λ
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Figure 4: Left: citation prediction performance of our
LRO model on three real-world datasets. The ACL
dataset has a better score than the other two datasets.
See main text for details. Right: citation prediction
performance for a range of hyperparameter settings,
including the number of topics K, the non-link variance
parameter τ0, and the latent random offset variance
parameter λ.

(Figure 4, right). Again, we fix M = 150. First, we
varied the number of topics from 75 to 250, and found
an optimal value of approximately 175 topics. Next, in
order to find the optimal balance between parameters τ0
and τ1, we fixed τ1 = 1 and varied τ0 from 1/10000 to 1,
finding an optimal value of approximately τ0 = 1/100.
Finally, we varied the parameter λ from 5 to 40, and
found an optimal value at approximately λ = 9.

5.2 Exploring citation networks

The latent random offsets can yield useful information
that allows for analysis and exploration of documents
in the citation network. Our model provides, for each
document, a content representation vector θj , which
captures the topics associated with the content of the
document, and a latent offset vector εj , which captures
topics not necesarily contained within the document but
expressed by others who cited the document. Highly
positive latent offsets may capture the topics where a
given document has been influential within the context
of the citation network; alternatively, negative offsets
can represent topics that are expressed highly in a
document, but that have not proven to be influential
within the context of the network.

Given a document, we can therefore explore its contents
by examining the learned set of topics, and we can ex-
plore its role in the citation network (and see the topics
of documents that it has influenced) by examining the
latent offsets. In Figures 1 and 5 we show the latent
topic representations of document contents, the learned
random offsets, and the final augmented representa-
tions (the sum of topic representations and random
offsets), for a document in each of the Simple English
Wikipedia and ACL datasets. The augmented repre-
sentations provide information on both the content
and context of a document: they incorporate infor-
mation contained in the document as well as in other



documents that cite it.

For highly cited documents, we have a great deal of in-
formation from the citing documents (i.e. the in-links),
and this information can be used to more strongly off-
set the latent topic representations. Intuitively, the
content is like a prior belief about a document’s latent
representation, and as more sources start citing the
document, this outside information further offsets the
latent topic representations. Additionally, the offsets
do not only “add” more information to the latent rep-
resentation from the citing documents. In Figure 5
(top row), the offsets acted primarily to reduce the
weights of many of the largest topics in the content
representation, and only added weight to two topics.
Here, the offsets served to dampen many of the con-
tent topics that did not appear to be relevant to the
citing documents, and for this reason, the augmented
representation is more sparse than the initial content
representation.

Interpreting predictions. In addition to main-
taining competitive prediction performance, our model
allows for interpretable link prediction: for each pre-
dicted link we can use our latent representations to give
users an understanding of why the link was returned. In
particular, we can find the contribution that each topic
provides to the final prediction score in order to deter-
mine the “reasons” (in terms of the latent topics) why
a given document was predicted. We illustrate this in
Figures 1 and 5 (bottom row of graphs). In Figure 1, for
the Sistine Chapel document, Chapel is cited largely due
to three topics (architecture, Christianity, and
buildings), Christian is cited primarily due to a single
topic (Christianity), and Italy is mainly cited due to
six lower-weighted topics (countries, Christianity,
architecture, buildings, music, and populace).
Since Italy is a highly cited document and its aug-
mented latent representation emphasizes a large num-
ber of topics (many of those expressed by its in-links),
it was predicted due to a slight similarity in a number
of topics as opposed to a strong similarity in just a few.

In Figure 5 we show three predictions for the document
Automatic Recognition of Chinese Unknown Words
Based on Roles Tagging. We can see that each of the
predicted documents was due to a different aspect of
this paper: the document Automatic Rule Induction
For Unknown-Word Guessing was chosen primaily due
to the unknown-word topic (related to the paper’s goal
of recognizing unknown words), the document Word
Identification for Mandarin Chinese Sentences was cho-
sen primarily due to the China topic (related to the
paper’s language domain area), and the document A
Knowledge-Free Method For Capitalized Word Disam-
biguation was chosen primarily due to the pronoun

topic (related to the paper’s use of names, locations,

and roles).

Topics after Random OffsetsInitial Topics Offsets Learned from Links (Random Offsets)

Text: "This paper ... is based on the idea of 'roles tagging', to the complicated problems of Chinese 
unknown words recognition ... an unknown word is identified according to its component tokens and 
context tokens. In order to capture the functions of tokens, we use the concept of roles...We have got 
excellent precision and recalling rates, especially for person names and transliterations..."

Automatic Recognition Of Chinese Unknown Words Based On Roles Tagging  (ACL)

In-Links (Citing Documents):  (1) A...word segmentation system for Chinese, (2) Chinese lexical analysis..., (3) 
HHMM-based Chinese lexical analyzer..., (4) Chinese word segmentation...of characters, (5) Chinese 
unknown...character-based tagging...

Predicted Links: 
Automatic Rule Induction For
Unknown-Word Guessing
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Figure 5: Interpreting citation predictions for the doc-
ument Automatic Recognition Of Chinese Unknown
Words Based On Roles Tagging in the ACL dataset.
For each predicted link, we show the relative weight
that each latent topic (denoted by the top four words)
contributed to the prediction. These provide reasons
why each predicted link was chosen, in terms of the
topics.

6 Conclusion

In this paper, we proposed a probabilistic approach for
citation network modeling that integrates the merits of
both content and link analyses. Our empirical results
showed improved performance compared with several
popular approaches for citation prediction. Further-
more, our approach can suggest citations for brand new
documents without prior citations—an essential ability
for building a real citation recommendation system.

Qualitatively, our approach provides meaningful ex-
planations for how predictions are made, through the
latent random offsets. These explanations provide ad-
ditional information that can be useful for making
informed decisions. For example, in a citation rec-
ommendation system, we can inform users whether a
citation is suggested more due to content similarities or
due to the existing network structure, and we can show
the relative amounts that individual topics contributed
to the prediction. In future work, we would like to
conduct user studies to quantify how this additional
information helps users find more relevant citations in
a more efficient way.

7 Acknowledgments

This work is supported in part by DARPA X Data
FA87501220324, NIH GWAS R01GM087694, and NSF
Social Media IIS1111142. Q. Ho is supported by an
A-STAR, Singapore fellowship.



References

[1] Lada A Adamic and Eytan Adar, Friends and neigh-
bors on the web, Social networks 25 (2003), no. 3,
211–230.

[2] Edoardo M Airoldi, David M Blei, Stephen E Fienberg,
and Eric P Xing, Mixed membership stochastic block-
models, The Journal of Machine Learning Research 9
(2008), 1981–2014.

[3] D. Bertsekas, Nonlinear programming, Athena Scien-
tific, 1999.

[4] Steven Bethard and Dan Jurafsky, Who should I cite:
learning literature search models from citation behavior,
International Conference on Information and Knowl-
edge Management, 2010, pp. 609–618.

[5] D. Blei, Probabilistic topic models, Communications of
the ACM 55 (2012), no. 4, 77–84.

[6] D. Blei and J. Lafferty, Topic models, Text Mining:
Theory and Applications (A. Srivastava and M. Sa-
hami, eds.), Taylor and Francis, 2009.

[7] D. Blei, A. Ng, and M. Jordan, Latent Dirichlet alloca-
tion, Journal of Machine Learning Research 3 (2003),
993–1022.

[8] Allison June-Barlow Chaney and David M. Blei, Visu-
alizing topic models, The International AAAI Confer-
ence on Weblogs and Social Media, 2012.

[9] J. Chang and D. Blei, Relational topic models for doc-
ument networks, Artificial Intelligence and Statistics,
2009.

[10] J. Chang, J. Boyd-Graber, C. Wang, S. Gerrish, and
D. Blei, Reading tea leaves: How humans interpret
topic models, Advances in Neural Information Process-
ing Systems (NIPS), 2009.

[11] Qirong Ho, Jacob Eisenstein, and Eric P Xing, Docu-
ment hierarchies from text and links, Proceedings of
the 21st international conference on World Wide Web,
ACM, 2012, pp. 739–748.

[12] M. Hoffman, D. Blei, C. Wang, and J. Paisley, Stochas-
tic Variational Inference, ArXiv e-prints (2012).

[13] Yifan Hu, Yehuda Koren, and Chris Volinsky, Collab-
orative filtering for implicit feedback datasets, IEEE
International Conference on Data Mining, 2008.

[14] Leo Katz, A new status index derived from sociometric
analysis, Psychometrika 18 (1953), no. 1, 39–43.

[15] Yehuda Koren, Robert Bell, and Chris Volinsky, Ma-
trix factorization techniques for recommender systems,
Computer 42 (2009), no. 8, 30–37.

[16] Yan Liu, Alexandru Niculescu-Mizil, and Wojciech
Gryc, Topic-link LDA: joint models of topic and au-
thor community, International Conference on Machine
Learning, ACM, 2009, pp. 665–672.

[17] Ramesh Nallapati and William Cohen, Link-PLSA-
LDA: A new unsupervised model for topics and influ-
ence of blogs, International Conference for Weblogs
and Social Media, 2008.

[18] Ramesh Nallapati, Daniel A Mcfarland, and Christo-
pher D Manning, Topicflow model: Unsupervised learn-
ing of topic-specific influences of hyperlinked docu-
ments, International Conference on Artificial Intelli-
gence and Statistics, 2011, pp. 543–551.

[19] Mark EJ Newman, Modularity and community struc-
ture in networks, Proceedings of the National Academy
of Sciences 103 (2006), no. 23, 8577–8582.

[20] Taeshik Shon and Jongsub Moon, A hybrid machine
learning approach to network anomaly detection, Infor-
mation Sciences 177 (2007), no. 18, 3799–3821.

[21] Alexander Smola and Shravan Narayanamurthy, An
architecture for parallel topic models, Proc. VLDB
Endow. 3 (2010), no. 1-2, 703–710.

[22] Chong Wang and David Blei, Collaborative topic mod-
eling for recommending scientific articles., ACM In-
ternational Conference on Knowledge Discovery and
Data Mining (KDD), 2011.

[23] X. Wei and B. Croft, LDA-based document models for
ad-hoc retrieval, SIGIR, 2006.


