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Abstract

When an imperfect model is used to generate
sample rollouts, its errors tend to compound –
a flawed sample is given as input to the model,
which causes more errors, and so on. This
presents a barrier to applying rollout-based plan-
ning algorithms to learned models. To ad-
dress this issue, a training methodology called
“hallucinated replay” is introduced, which adds
samples from the model into the training data,
thereby training the model to produce sensible
predictions when its own samples are given as
input. Capabilities and limitations of this ap-
proach are studied empirically. In several exam-
ples hallucinated replay allows effective planning
with imperfect models while models trained us-
ing only real experience fail dramatically.

1 INTRODUCTION

Online Monte Carlo-based planning algorithms such as
Sparse Sampling (Kearns et al. 2002), UCT (Kocsis &
Szepesvári 2006), and POMCP (Silver & Veness 2010) are
attractive in large problems because their computational
complexity is independent of the size of the state space.
This type of planning has been successful in many domains
where a perfect model is available to the agent, but there is
a fundamental barrier in the way of applying these meth-
ods to learned models. The core operation in Monte Carlo
planning is sampling possible futures by composing the
model’s one-step predictions (in a process called rollout).
When an imperfect model is used, errors in one sampled
observation cause more errors in the next sample, and so on
until the rollout bears little or no resemblance to any plau-
sible future, making it worthless for planning purposes.

To illustrate, consider the following simple planning prob-
lem, which will serve as a running example throughout the
paper. In “Mini-Golf” (pictured in Figure 1a), the agent’s

observations are 20 × 3 binary images. The image shows
a ball, a wall, and a pit. A cover slides back and forth over
the pit. The agent selects between two actions: no-op and
hit; once the hit action is selected, only the no-op action
is available thereafter. When the ball is hit, it travels to
the right, knocks the wall down (i.e., the wall disappears),
bounces back to the left, hits the left edge, and bounces
back to the right. If the cover is in the correct position,
the ball reaches the right side, the episode ends, and the
agent receives 1 reward. Otherwise, the ball falls into the
pit which ends the episode with no reward.

Imagine that the agent learns a factored model over pixels.
There is a separate component model responsible for pre-
dicting each pixel; the prediction for the full image is the
product of the component models’ predictions. The com-
ponent model at position 〈x, y〉 is given the pixel values in
an n×m neighborhood centered at 〈x, y〉 for the previous
two time-steps, as well as the most recent two actions.

If n = 9 and m = 3, there is enough information to make
perfectly accurate predictions, but imagine that n = 7. This
simulates the common situation that the minimum set of
features necessary for perfect accuracy is either unknown
or computationally impractical. The consequences of the
limitation are illustrated in Figure 1b. The main problem
is that a pixel immediately adjacent to the ball cannot tell
if the ball is next to a wall, and therefore whether the ball
will bounce back. As a result, the model for this pixel is
uncertain whether the pixel will be black or white.

Figure 2 shows a rollout from a perfect model (n = 9)
on the left and a rollout from an imperfect model (n = 7)
in the center. When the model is very accurate, rollouts
are plausible futures. When the model is imperfect, the
model’s limitation eventually causes an error – a pixel next
to the ball stochastically turns black, as if the ball were
bouncing back. This creates a context for the nearby pixel
models that is unlike any they have seen before. This
causes new artifacts to appear in the next sample, and so
on. The meaningful structure in the observations is quickly
obliterated making it impossible to tell whether the ball will
eventually reach the other side.



Figure 1: a) The Mini-Golf problem. b) The pixel marked with the ? cannot be predicted perfectly with a 7×3 neighborhood
(shaded) because it cannot tell if the ball will bounce off of a wall.

This issue can be framed as a mismatch between the
model’s training data and test data. Specifically, the
model’s training data is drawn from real world experience
but when it is actually used for planning (i.e., “tested”), the
inputs to the model are samples generated from the model
itself, which may be very different than real observations.
In a sense, the model in this example has overfit to the real
world! The approach taken in this paper to address this
train/test mismatch is to mix samples from the model into
the training data. The resulting method is called “halluci-
nated replay,” in analogy to “experience replay” (Lin 1992).
On the right of Figure 2 is a rollout of a model trained using
hallucinated replay. Note that it makes the same initial er-
ror (a spurious black pixel still appears), but it has learned
that lone black pixels should turn white. In effect, it has
learned to correct for its own sampling errors.

This paper has two main goals. The first is to highlight the
dramatic impact of this mismatch between real inputs and
sampled inputs on model-based reinforcement learning. In
several examples seemingly innocuous model limitations
cause catastrophic planning failures. The second is to em-
pirically investigate hallucinated replay as an approach to
addressing this issue. Most notably, hallucinated replay
will be used to learn imperfect models that can neverthe-
less be used for effective planning. These results indicate
that this method may be an important tool for model-based
reinforcement learning in problems where one cannot ex-
pect to learn a perfect model.

2 ENVIRONMENTS AND MODELS

The development of hallucinated replay will focus on the
setting of multi-dimensional, discrete, deterministic dy-
namical systems. Time proceeds in discrete steps. At
each step t, the agent selects an action at from a finite
set of actions A. Given the action, the environment de-
terministically produces an observation vector ot. Let
O = O1×O2× . . .×On be the observation space, where
Oi is the finite set of possible values for component i of
the observation. Note that not all o ∈ O will necessarily
be reachable in the world. Let OE ⊆ O be the subset of
observations that the environment can ever produce. For
example, in Mini-Golf, O would be the set of all 20 × 3
binary images, and OE would be the set of binary images
with a ball, a pit, and either a wall or no wall.

Let H be the set of all sequences a1o1 . . . akok for all

lengths k and let ot = T (at, ht−1) where ht−1 =
a1o1 . . . at−1ot−1 is the history at time t − 1 and T is the
transition function T : A ×H → OE . Note that typically
not all sequences in H are reachable. Let HE ⊆ H be
the set of histories that could be produced by taking some
action sequence in the environment.

At each step the environment also produces a reward value
rt and, in the episodic case, a Boolean termination sig-
nal ωt. For simplicity’s sake, these values are assumed
to be contained in the observation vector ot so correctly
predicting the next observation also involves correctly pre-
dicting the reward and whether the episode will termi-
nate. Assume that if ωt = True then ωt′ = True and
rt′ = 0 for all t′ > t. The goal of an agent in this en-
vironment is to maximize the expected discounted return
E
[∑∞

t=1 γ
t−1rt

]
, where γ ∈ [0, 1] is the discount factor

and the expectation is over the agent’s behavior (the envi-
ronment is deterministic).

Note that even though the environment is assumed to be
deterministic, it may be too complex to be perfectly cap-
tured by a model. Thus models will, in general, be stochas-
tic. Also note that because OE and HE are unknown a
priori, models will be defined over the full spaces O and
H instead. So, an imperfect model not only has an incor-
rect probability distribution over possible observations, but
it may assign positive probability to impossible observa-
tions, as seen in the Mini-Golf example. Furthermore, dur-
ing rollouts the model will have to make predictions given
histories inH\HE , though no amount of experience in the
environment will provide guidance about what those pre-
dictions should be.

In an abstract sense, a model M provides a conditional
probability TM (o | ha) for every observation vector o ∈
O, action a ∈ A, and history sequence h ∈ H. As as-
sumed above, predicting the next observation also involves
predicting the reward value and whether the episode will
terminate. Note that the history h is an arbitrarily long
and ever expanding sequence of actions and observations.
Most practical models will rely upon some finite dimen-
sional summary of history c(ha), which is hereafter called
the model’s context. For the sake of simplifying notation,
let ct = c(ht−1at). For instance, a Markov model’s con-
text would include the most recent action and observation
and a POMDP model’s context would include the belief
state associated with the history.



Figure 2: Rollouts using a perfect model (left), a model trained with only real experience (center) and a model trained with
hallucinated replay (right). Hallucinated replay makes the model robust to its own errors.

3 HALLUCINATED REPLAY

Consider learning a model using a set of training trajecto-
ries {h1, . . . , hk}, where trajectory hi is of length |hi|. The
training data can be seen as a set of training pairs for a su-
pervised learning algorithm: {〈cit,oi

t〉 | i = 1 . . . k, t =
1 . . . |hi|}, where the context cit is the input and the ob-
servation oi

t is the target output. Let M be the space of
possible models, or the model class. Most model learning
methods aim to find the modelM∗ ∈M, which maximizes
the log-likelihood:

M∗ = argmax
M∈M

k∑
i=1

|hi|∑
t=1

log(TM (oi
t | c(hit−1ait)))

= argmax
M∈M

k∑
i=1

|hi|∑
t=1

log(TM (oi
t | cit))

If a perfect model exists in M, one for which TM (oi
t |

cit) = 1 for all i and t, then M∗ is a perfect model. So in
this case M∗ is a sensible learning target for the purposes
of model-based reinforcement learning.

If there is no perfect model inM, M∗ may not be a very
good model for planning. Note that the log-likelihood only
measures the accuracy of the model’s one-step predictions
given contexts produced by the environment. However, as
seen above, in order to prevent errors from compounding
during planning, the model must make sensible predictions
in contexts the environment will never produce. As will be
demonstrated empirically, a model that accomplishes this
may yield better planning performance than M∗, even if it
incurs more prediction error (lower log-likelihood).

The high-level idea behind hallucinated replay is to train
the model on contexts it will see during sample rollouts in
addition to those from the world. Hallucinated replay aug-
ments the training data by randomly selecting a context cit
from the training set, replacing it with a “hallucinated” con-
text ĉit that contains sampled observations from the model,
and finally adding the training pair 〈ĉit,oi

t〉 to the training
set. The model is trained with inputs that are generated

from its own predictions, but outputs from real experience.

The experiments below consider three concrete instantia-
tions of this abstract idea, which are described below and
illustrated in Figure 3. All three begin by randomly se-
lecting a trajectory i and timestep t to select the “output”
component of the new training pair.

Shallow Sample: The simplest form of hallucinated replay
is to replace the observation at step t − 1 with a sample
ôi
t−1 ∼ TM (· | cit−1). Then the hallucinated context is

ĉit = c(hit−2a
i
t−1ô

i
t−1a

i
t). This approach essentially imag-

ines that there might be errors in the first sample of a rollout
(the sampled observation placed at the end of history) and
trains the model to behave reasonably despite those errors
(i.e., to predict the true next observation).

Deep Sample: A flaw in the above approach is that, even
if a rollout recovers from an error the erroneous obser-
vation will still persist in history, possibly affecting pre-
dictions deeper in the rollout. A simple fix is to ran-
domly select an observation in recent history (not just
the most recent one) to replace with a sample. Specif-
ically, randomly select an offset j > 0 and replace
the observation at step t − j with a sample ôi

t−j ∼
TM (· | cit−j) to generate the hallucinated context ĉit =

c(hit−j−1a
i
t−j ô

i
t−ja

i
t−j+1o

i
t−j+1 . . . a

i
t−1o

i
t−1a

i
t). If the

model is Markovian (that is, if its context only consid-
ers the most recent observation), then these two strategies
are equivalent. In the experiments, the model is 2nd-order
Markov, so j is either 1 or 2.

Deep Context: The above approaches have the draw-
back that they only introduce a single sampled observa-
tion into the context, whereas the contexts encountered by
the model during a rollout will largely consist entirely of
sampled observations. Even if the context only makes use
of one observation, the above approaches sample that ob-
servation as if it is the first in the rollout, whereas the
contexts encountered by the model will largely be sam-
pled after a long rollout. To address this, randomly se-
lect a rollout length l and sample observations ôi

j for
j = t − l . . . t − 1. Then the hallucinated context is



Figure 3: Methods for producing hallucinated contexts, illustrated with a 2nd-order Markov context. Samples are shaded;
dashed arrows indicate the contexts which generated the samples. Actions are not shown.

ĉit = c(hit−l−1a
i
t−lô

i
t−l . . . a

i
t−1ô

i
t−1a

i
t). In the experi-

ments below, l > 0 is drawn with probability Pr(l) = 1
2l

.
This biases the distribution toward short rollouts, since long
rollouts are expected to produce very noisy observations.

3.1 IMPORTANCE OF DETERMINISM

Note that hallucinated replay as described can not sensi-
bly be applied to stochastic environments. In a determin-
istic environment, the only reason ĉit can differ from cit is
that the model is imperfect. In a stochastic environment,
even a perfect model could generate ĉit 6= cit by sampling
a different stochastic outcome. In that case, training on the
pair 〈ĉit,oi

t〉 could harm the model by contradicting tem-
poral dependencies the model may have correctly identi-
fied. One exception to this limitation is when the source
of stochasticity is “measurement error,” noise that is uncor-
rolated over time and does not affect the evolution of the
underlying state. In that case, hallucinated replay would
re-sample the noise to no ill effect. This work focuses on
the case of stochastic models of deterministic environments
(assuming the environment may be too complex to model
perfectly). This is, in itself, a large and interesting class of
problems. The possibility of extending the idea to stochas-
tic environments is briefly discussed in Section 5.2.

4 EXPERIMENTS

This section contains the main results of the paper, an em-
pirical exploration of the properties of hallucinated replay
under different modeling conditions. The experiments will
be performed on variations of the Mini-Golf problem de-
scribed in the introduction. One of the key features of this
domain is that, though it is a simple planning problem (the
agent needs only to select hit at the right moment), a long
rollout is necessary to sample the eventual reward value and
determine whether it is better to hit or no-op. The exper-
iments employ the simple 1-ply Monte Carlo algorithm:

at each step, for each available action a, perform 50 roll-
outs of length at most 80 that begin with a and uniformly
randomly select actions thereafter. After the rollouts, ex-
ecute the action that received the highest average return.
In these experiments model learning and planning are both
performed online – at each step, the planner uses the cur-
rent model, which is then updated with the resulting train-
ing pair. All of the replay strategies train on 5 additional
pairs from past experience per step.

The model of the pixels is factored, as described in the in-
troduction. If a neighborhood contains pixels outside the
boundaries of the image they are encoded with a special
“out of bounds” color. In all the experiments data is shared
across all positions, providing some degree of positional
invariance in the predictions. To predict the reward and ter-
mination signals rt and ωt (which do not have positions on
the screen) the context is the pixel values at all positions
in ot and ot−1, as well as the actions at and at−1. During
sampling the pixel values are sampled before reward and
termination so the sampled image can be supplied as input.

In most of the experiments below the Context Tree Weight-
ing (CTW) algorithm (Willems et al. 1995) is used to learn
the component models, similar to the FAC-CTW algorithm
(Veness et al. 2011), which was also applied in a model-
based reinforcement learning setting. Very briefly, CTW
maintains a Bayesian posterior over all prunings of a fixed
decision tree. Amongst its attractive properties are compu-
tationally efficient updates, a lack of free parameters, and
guaranteed zero asymptotic regret with respect to the max-
imum likelihood tree in the model class. In order to ap-
ply CTW, an ordering must be selected for the variables in
the context tree. In all cases the actions and observations
were ordered by recency. For the pixel models, neighbor-
ing pixels within a timestep were ordered by proximity to
the pixel being predicted. For the reward and termination
models, pixel values were in reverse column-major order
(bottom-to-top, right-to-left).
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Mini-Golf: Small Neighborhoods, CTW

Figure 4: CTW results in Mini-Golf with small neighborhoods, averaged over 30 independent trials. Curves are smoothed
using a sliding average of width 50. Unsmoothed data is shown in faint colors. The legends list the replay method in
decreasing order of the value of the curve at episode 200 (in both cases, higher is better). Note the log scale in the
prediction performance graph. These conventions are maintained in subsequent figures.

4.1 CORRECTING SAMPLE ERRORS

The first experiment considers the setting described in the
introduction in which models are learned with 7× 3 neigh-
borhoods. Figure 4 shows the results of training with the
three hallucinated replay variations proposed above and
training with pure “Experience replay” (re-training on ran-
domly selected training pairs from past experience without
modifying the context). The results of training with only
the agent’s experience (“No Replay”) are also provided as
a baseline to show the effects of replay alone.

The most dramatic result can be seen in the planning per-
formance (Figure 4a): the models trained only with expe-
rience from the environment (regardless of whether replay
was used) result in behavior that is no better than an agent
that chooses actions uniformly randomly (indicated by the
solid black line). As can be seen in Figure 4b, the mod-
els trained using hallucinated replay achieve no better (and
in one case much worse) prediction accuracy, as measured
by average per-step log-likelihood over the training data
(not counting replay). Nevertheless, they all result in near
perfect planning performance. This matches the intuition
described above, and indeed the rollouts in Figure 2 were
generated using these learned models.

It is unsurprising that the Deep Sample replay strategy
would outperform the Shallow Sample strategy – it was in-
deed important that sampled observations appear in both
positions in the context. It is somewhat surprising that
Deep Sample outperformed Deep Context as well. The
hypothesis that it would be important for the model to be
trained on contexts sampled far into a rollout is not sup-
ported by these results. It may be that the noisy samples ob-
tained from long rollouts, especially early in training, were
misleading enough to harm performance. It is also possi-
ble that this effect is an artifact of this example. Neverthe-
less, these qualitative findings were consistent across the
variations explored below so, to reduce clutter, only Deep
Sample results are reported in the subsequent experiments.

4.2 FULL NEIGHBORHOODS

The previous experiment is an example of hallucinated re-
play making meaningful planning possible when a perfect
model is not contained within the model class. This is the
most common case in problems of genuine interest. Never-
theless, it is relevant to ask what effect it has when a perfect
model is in the class.

Figures 5a and 5b show the results in the Mini-Golf prob-
lem when the models used 9× 3 neighborhoods (sufficient
to make accurate predictions). Both the Experience Replay
and No Replay models are able to support planning, and
experience replay clearly improves sample efficiency. The
Hallucinated Replay model has consistently lower predic-
tion accuracy and lags behind the Experience Replay model
in planning performance, though it eventually catches up.
Noting that the hallucinated contexts in the very beginning
of training are likely to be essentially meaningless, Figure
5 also shows the results of performing experience replay
for the first 50 episodes, and hallucinated replay thereafter.
This model’s planning performance is nearly identical to
that of the Experience Replay model. Once the model has
had some time to learn, the sampled observations become
more and more like real observations, so this similarity is
not surprising.

Note that though a perfect model is in the class, the in-
termediate models during learning are imperfect and their
sampling errors do impact planning performance. It is in-
teresting that hallucinated replay does not aid planning per-
formance by making the model more robust to these errors.
One hypothesis might be that if the rollouts were much
longer, errors would be more likely to affect planning, and
hallucinated replay might have more of an impact.

Figures 5c and 5d show the results of a variation on Mini-
Golf that is the same in every respect, except that there are
6 walls to knock down rather than 1. Thus rollouts must
be much longer for successful planning. First note that the
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Mini-Golf: Full Neighborhoods, CTW

Figure 5: CTW results in Mini-Golf with full neighborhoods, both with 1 wall and with 6 walls.

hypothesis that longer rollouts will cause more sampling
errors is borne out. For a comparable level of prediction
accuracy, the models achieve substantially better planning
performance in the 1 wall version than the 6 wall version.
Still, hallucinated replay was not able to mitigate the im-
pact of the model errors.

The errors produced by these “models-in-training” tend to
be “salt-and-pepper” noise caused by pixel models that all
assign small but positive probability to the incorrect out-
come. This is a relatively unstructured type of noise in
comparison to that seen in the first experiment. It may sim-
ply be that more data is required to learn to correct for the
noise than to simply improve accuracy. Or, since objects in
this problem consist of only a few pixels, this type of noise
may be too destructive to be compensated for.

4.3 A DIFFERENT MODEL CLASS

In order to validate that the benefits of hallucinated replay
are robust to the choice of model class, Figure 6 shows
the results of training feed forward neural networks in the
Mini-Golf domain. The same model architecture was used
except here the pixel, reward, and termination models are
neural networks with 10 logistic hidden units and a lo-
gistic output layer, trained using standard backpropagation
(Rumelhart et al. 1986). Several values of the learning rate
α were tested and the results using the best value of α for
each method are presented. Figures 6a and 6b show the
planning and prediction performance of the neural network
models when given 7 × 3 neighborhoods. The results are
very similar to those using CTW models. Figures 6c and
6d show the results using 9 × 3 neighborhoods. Here, un-
like with CTW, the hallucinated replay training does not
seem to cause a significant loss in performance. The neural

network is likely less sensitive to the initially uninforma-
tive hallucinated samples because it is easily able to ignore
irrelevant features.

Notably, waiting to start hallucinated replay hurts perfor-
mance rather than helps. The reason for this can be seen
in the prediction performance graphs: a large drop in pre-
diction performance is observed when hallucinated replay
begins – this is because the hidden units must adjust to a
sudden change in the distribution of input vectors. This in-
dicates that the compatibility of a model learning method
with hallucinated replay may depend on its ability to grace-
fully handle the non-stationarity it creates in the training
data. No-regret algorithms like CTW may be particularly
well-suited for that reason.

Neural network models also provide an opportunity to ex-
amine another source of model error. Figure 7 shows the re-
sults (planning only) of using neural network models with
too few hidden nodes (but with full neighborhoods). In
Figure 7a, the networks have 5 hidden nodes. The mod-
els trained with experience replay are able to learn quickly,
but level off at sub-optimal behavior. Training with hal-
lucinated replay is slower, but planning performance ulti-
mately surpasses that of the experience replay model. In
Figure 7b, the average score of the last 100 episodes (out of
5000) is shown for various numbers of hidden nodes. The
best learning rate for each method and each number of hid-
den nodes is used. With a small number of hidden nodes,
the model is unable to make good predictions or correct
for errors. With a large number, an accurate model can be
learned and hallucinated replay is unnecessary. For inter-
mediate values hallucinated replay is able to compensate
somewhat for the model’s representational deficiency.
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Mini-Golf: Feed Forward Neural Networks (10 Hidden Nodes)

Figure 6: Neural network results in Mini-Golf with 10 hidden nodes.

4.4 ADDITIONAL EXAMPLES

Finally, as additional examples of model impairments that
hallucinated replay can help to overcome, consider two
variations on the Mini-Golf domain.

4.4.1 DECEPTIVELY INFORMATIVE FEATURES

In the first variation, a score display is added. The obser-
vations are now 20 × 6 images. The bottom three rows of
the image are blank for the most part, but at the end of an
episode the 3 × 3 area in the bottom right displays a digit
(“0” or a “1”) to show the reward received.

As can be seen in Figure 8a, when the model is trained us-
ing only real experience this seemingly innocuous addition
causes severe planning problems, even though the pixel
models are given sufficient contexts to perfectly model the
dynamics of the game. The problem arises because the
neighborhood size is not sufficient to model the score dis-
play. When trained only on real experience, the reward and
termination models rightly learn that the score display is a
reliable predictor. However, during rollouts, those pixels
no longer behave as they do in the world, and the reward
and termination models make erratic predictions.

In contrast, the models trained with hallucinated replay
learn that the score display pixels cannot be relied upon
and focus instead on other relevant contextual information
(such as the ball’s position). This allows the models to pro-
vide meaningful predictions that result in good planning
performance. Note again that hallucinated replay has not
fixed the errors. The hallucinated replay models are no bet-

ter at predicting what the score display will do. They are
able to make good predictions about the reward and termi-
nation signals despite sample errors in the score display.

4.4.2 COMPLICATED, IRRELEVANT FEATURES

In the second variation, an irrelevant but hard-to-predict
component is added to the image. Specifically, the images
are 21 × 3 where the last column displays a set of “blink-
ing lights.” Only one pixel in the last column is white on
any given step, but the pattern of which pixel is white is
3rd-order Markov. Since the model is 2nd-order Markov,
it cannot reliably predict the light pattern. That said, the
lights have no impact on the rest of the dynamics and the
models have sufficient context to make perfect predictions
for every other pixel. Nevertheless, as can be seen in Figure
8b, this addition once again causes the model trained only
on real experience to fail when used for planning.

In this case the problem is that rollout samples of the blink-
ing lights will not resemble those seen in the world. In
the world, only one light can be on a time but in samples
lights stochastically turn on and off, causing novel config-
urations. The pixel models neighboring these unfamiliar
configurations have higher uncertainty as a result, and the
now familiar error compounding process ensues, corrupt-
ing the important parts of the sampled image as well as
the unimportant parts. The models trained using halluci-
nated replay, in contrast, learn to make predictions given
the distribution of light configurations that will actually be
encountered during a rollout.
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Figure 7: Neural network results in Mini-Golf with full neighborhoods but too few hidden nodes.

5 DISCUSSION

The results have shown that even mildly limited fac-
tored models that can accurately predict nearly every
aspect of the environment’s dynamics can dramatically
fail when used in combination with Monte-Carlo plan-
ning. Since factored models and Monte-Carlo planning
are both important, successful tools in problems with large
state/observation spaces, resolving this issue may be a key
step toward scaling up model-based reinforcement learn-
ing. Overall, hallucinated replay was effective in its pur-
pose: to train models to be more robust to their own sam-
pling errors during rollouts.

When a perfect model was contained within the class (a
rare occurrence in problems of genuine interest), halluci-
nated replay was comparable to (but slightly less effective
than) pure experience replay. Though in this case the mod-
els are imperfect during training, hallucinated replay did
not seem to be effective at compensating for the type of
wide-spread, unstructured noise that resulted from transient
parameter settings (as opposed to the more systematic er-
rors resulting from class limitations in other examples).

It was also observed that when the model class is extremely
limited (e.g. the neural network models with only 2 hid-
den nodes), hallucinated replay may be ineffective at com-
pensating for errors because the model simply cannot learn
to make meaningful predictions at all. Of course, in this
case the model is ineffective no matter how it is trained.
It seems that hallucinated replay is most effective when the
model can capture some but not all of the environment’s dy-
namics. When a model is performing poorly hallucinated
replay may be able to magnify the impact of improving the
model’s expressive power (as was seen when the neural net-
works were given more hidden nodes).

5.1 RELATED WORK

Other authors have noted that the most accurate model in a
limited class may not be the best model for planning. Sorg,

Singh & Lewis (2010) argue that when the model or plan-
ner are limited, reward functions other than the true reward
may lead to better planning performance. Sorg, Lewis &
Singh (2010) use policy gradient to learn a reward func-
tion for use with online planning algorithms. Joseph et al.
(2013) make a similar observation regarding the dynamics
model and use policy gradient to learn model parameters
that lead to good planning, rather than low prediction er-
ror (demonstrating that the two do not always coincide).
The results presented here add to the evidence that simply
training to maximize one-step prediction accuracy may not
yield the best planning results.

Siddiqi et al. (2007) addressed the problem of learning sta-
ble dynamics models of linear dynamical systems. The
key idea was to project the learned dynamics matrix into
the constrained space of matrices with spectral radius of at
most 1, and which therefore remain bounded even when
multiplied with themselves arbitrarily many times. Though
certainly conceptually related (their work has the same goal
of learning a model whose predictions are sensible when
given its own output as input), their specific approach is
unlikely to apply to the setting considered here, as the con-
cept of “stability” is not so easily quantified.

There is a long history in the supervised learning setting
of adding noise to training data (or otherwise intention-
ally corrupting it) to obtain regularization and generaliza-
tion benefits (see e.g. Matsuoka 1992, Burges & Schölkopf
1997, Maaten et al. 2013). There the issue is not typically
prediction composition but more broadly the existence of
inputs that the training set may not adequately cover. With-
out access to the true distribution over inputs, noise is typ-
ically generated via some computationally or analytically
convenient distribution (e.g. Gaussian) or via a distribution
that incorporates prior knowledge about the problem. In
contrast, we have access to the model which generates its
own inputs, and can thus sample corrupting noise from a
learned, but more directly relevant distribution.

Ross & Bagnell (2012) observed a similar train/test mis-
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Figure 8: CTW results in two variations of Mini-Golf (described in text).

match in the model-based reinforcement learning setting
when the model is trained on a fixed batch of data. In that
case, the plan generated using the model may visit states
that were underrepresented in training, resulting in poor
performance. Their algorithm DAgger mixes experience
obtained using model-generated plans into the training data
as the model learns, thereby closing the gap between train-
ing and test distributions. Roughly speaking, they prove
that their approach achieves good planning performance
when a model in the class has low prediction error. In the
examples considered here no model in the class has low
prediction error, but near perfect planning performance is
nevertheless possible.

5.2 FUTURE DIRECTIONS

The results indicate that, in addition to one-step accuracy,
a model’s robustness to its own errors should be a key con-
cern for model based reinforcement learning. They also in-
dicate that training a model on its own outputs is a promis-
ing approach to addressing this concern. These observa-
tions open the door to a number of interesting questions
and issues for further study.

As discussed in Section 3, hallucinated replay is not im-
mediately applicable in stochastic domains. While a lot of
perceived stochasticity can be attributed to unmodeled (but
deterministic) complexity, it would nevertheless be valu-
able to explore whether this approach can be applied to in-
herently stochastic dynamics. The main challenge in this
case is forcing the model’s hallucinated data to choose the
same stochastic outcome that was observed in the real data.
It may be that this could be accomplished by learning re-
verse correlations from real world outcomes to hallucinated
contexts and applying rejection sampling when generating
hallucinated data.

The hallucinated replay algorithm presented in this paper
is simple and offers no theoretical guarantees. It may,
however, be possible to incorporate the basic idea of hal-
lucinated replay into more principled algorithms that ad-
mit more formal analysis. For instance, it may be possible
to extend the DAgger algorithm given by Ross & Bagnell

(2012) using a form of hallucinated replay. This would al-
low the analysis to take into account the learned model’s
robustness (or lack thereof) to its own errors. It would also
be valuable, if possible, to develop algorithms that have the
benefits of hallucinated replay but are able to promise that
the hallucinated data will not harm asymptotic performance
if an accurate model is in the class.

Perhaps most important would be to develop a more for-
mal understanding of the relationships between accuracy,
robustness, and planning performance. In sufficiently inter-
esting environments, model errors will be inevitable. Suc-
cessfully planning despite those errors is key to applying
model based reinforcement learning to larger, more com-
plex problems. A characterization of the properties beyond
simple accuracy that make a model good for planning and a
more nuanced understanding of which types of model error
are acceptable and which are catastrophic could yield im-
proved forms of hallucinated replay, or other model learn-
ing approaches that have good planning performance as an
explicit goal rather than an implicit effect of accuracy.

6 CONCLUSIONS

Hallucinated replay trains a model using inputs drawn from
its own predictions, making it more robust when its pre-
dictions are composed. This training methodology was
empirically shown to substantially improve planning per-
formance compared to using only real experience. The
results suggest that hallucinated replay is most effective
when combined with model-learning methods that grace-
fully handle non-stationarity and when the model class’
limitations allow it to capture some but not all of the en-
vironment’s dynamics.
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