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Krishnendu Chatterjee, Martin Chmeĺık . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Parallel Gaussian Process Regression with Low-Rank Covariance Matrix Approximations.

Jie Chen, Nannan Cao, Kian Hsiang Low, Ruofei Ouyang, Colin Keng-Yan Tan, Patrick
Jaillet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

i



Convex Relaxations of Bregman Divergence Clustering.
Hao Cheng, Xinhua Zhang, Dale Schuurmans . . . . . . . . . . . . . . . . . . . . . . . . . 162

Learning Sparse Causal Models is not NP-hard.
Tom Claassen, Joris Mooij, Tom Heskes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Advances in Bayesian Network Learning using Integer Programming.
James Cussens, Mark Bartlett . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Qualitative Possibilistic Mixed-Observable MDPs.
Nicolas Drougard, Florent Teichteil-Königsbuch, Jean-Loup Farges, Didier Dubois . . . . 192

Optimization With Parity Constraints: From Binary Codes to Discrete Integration.
Stefano Ermon, Carla Gomes, Ashish Sabharwal, Bart Selman . . . . . . . . . . . . . . . 202

Monte-Carlo Planning: Theoretically Fast Convergence Meets Practical Efficiency.
Zohar Feldman, Carmel Domshlak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Bethe-ADMM for Tree Decomposition based Parallel MAP Inference.
Qiang Fu, Huahua Wang, Arindam Banerjee . . . . . . . . . . . . . . . . . . . . . . . . . 222

Building Bridges: Viewing Active Learning from the Multi-Armed Bandit Lens.
Ravi Ganti, Alexander Gray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Batch-iFDD for Representation Expansion in Large MDPs.
Alborz Geramifard, Tom Walsh, Nicholas Roy, Jonathan How . . . . . . . . . . . . . . . . 242

Structured Message Passing.
Vibhav Gogate, Pedro Domingos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Multiple Instance Learning by Discriminative Training of Markov Networks.
Hossein Hajimirsadeghi, Jinling Li, Greg Mori, Mohammad Zaki, Tarek Sayed . . . . . . 262

Unsupervised Learning of Noisy-Or Bayesian Networks.
Yonatan Halpern, David Sontag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Gaussian Processes for Big Data.
James Hensman, Nicolo Fusi, Neil Lawrence . . . . . . . . . . . . . . . . . . . . . . . . . 282

Inverse Covariance Estimation for High-Dimensional Data in Linear Time and Space: Spectral
Methods for Riccati and Sparse Models.
Jean Honorio, Tommi Jaakkola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Discovering Cyclic Causal Models with Latent Variables: A General SAT-Based Procedure.
Antti Hyttinen, Patrik Hoyer, Frederick Eberhardt, Matti Järvisalo . . . . . . . . . . . . . 301

Warped Mixtures for Nonparametric Cluster Shapes.
Tomoharu Iwata, David Duvenaud, Zoubin Ghahramani . . . . . . . . . . . . . . . . . . . 311

The Lovasz-Bregman Divergence and connections to rank aggregation, clustering, and web rank-
ing.
Rishabh Iyer, Jeff Bilmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Solving Limited-Memory Influence Diagrams Using Branch-and-Bound Search.
Arindam Khaled, Eric Hansen, Changhe Yuan . . . . . . . . . . . . . . . . . . . . . . . . 331

Constrained Bayesian Inference for Low Rank Multitask Learning.
Oluwasanmi Koyejo, Joydeep Ghosh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Collective Diffusion Over Networks: Models and Inference.
Akshat Kumar, Dan Sheldon, Biplav Srivastava . . . . . . . . . . . . . . . . . . . . . . . . 351

Causal Transportability of Experiments on Controllable Subsets of Variables: z-Transportability.
Sanghack Lee, Vasant Honavar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

A Sound and Complete Algorithm for Learning Causal Models from Relational Data.
Marc Maier, Katerina Marazopoulou, David Arbour, David Jensen . . . . . . . . . . . . . 371

Evaluating Anytime Algorithms for Learning Optimal Bayesian Networks.
Brandon Malone, Changhe Yuan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

On the Complexity of Strong and Epistemic Credal Networks.
Denis Maua, Cassio de Campos, Alessio Benavoli, Alessandro Antonucci . . . . . . . . . 391

Learning Periodic Human Behaviour Models from Sparse Data for Crowdsourcing Aid Delivery
in Developing Countries.
James McInerney, Alex Rogers, Nicholas Jennings . . . . . . . . . . . . . . . . . . . . . . 401

Learning Max-Margin Tree Predictors.
Ofer Meshi, Elad Eban, Gal Elidan, Amir Globerson . . . . . . . . . . . . . . . . . . . . . 411

ii



Tighter Linear Program Relaxations for High Order Graphical Models.
Elad Mezuman, Daniel Tarlow, Amir Globerson, Yair Weiss . . . . . . . . . . . . . . . . 421

Cyclic Causal Discovery from Continuous Equilibrium Data.
Joris Mooij, Tom Heskes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

From Ordinary Differential Equations to Structural Causal Models: the deterministic case.
Joris Mooij, Dominik Janzing, Bernhard Schölkopf . . . . . . . . . . . . . . . . . . . . . . 440

One-Class Support Measure Machines for Group Anomaly Detection.
Krikamol Muandet, Bernhard Schölkopf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Structured Convex Optimization under Submodular Constraints.
Kiyohito Nagano, Yoshinobu Kawahara . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Treedy: A Heuristic for Counting and Sampling Subsets.
Teppo Niinimki, Mikko Koivisto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

Stochastic Rank Aggregation.
Shuzi Niu, Yanyan Lan, Jiafeng Guo, Xueqi Cheng . . . . . . . . . . . . . . . . . . . . . . 478

Pay or Play.
Sigal Oren, Michael Schapira, Moshe Tennenholtz . . . . . . . . . . . . . . . . . . . . . . 488

Evaluating computational models of explanation using human judgments.
Michael Pacer, Joseph Williams, Xi Chen, Tania Lombrozo, Thomas Griffiths . . . . . . 498

Approximation of Lorenz-Optimal Solutions in Multiobjective Markov Decision Processes.
Patrice Perny, Paul Weng, Judy Goldsmith, Josiah Hanna . . . . . . . . . . . . . . . . . 508

Solution Methods for Constrained Markov Decision Process with Continuous Probability Modu-
lation.
Marek Petrik, Dharmashankar Subramanian, Janusz Marecki . . . . . . . . . . . . . . . . 518

The Supervised IBP: Neighbourhood Preserving Infinite Latent Feature Models.
Novi Quadrianto, Viktoriia Sharmanska, David Knowles, Zoubin Ghahramani . . . . . . 527

Normalized Online Learning.
Stephane Ross, Paul Mineiro, John Langford . . . . . . . . . . . . . . . . . . . . . . . . . 537

Beyond Log-Supermodularity: Lower Bounds and the Bethe Partition Function.
Nicholas Ruozzi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

Identifying Finite Mixtures of Nonparametric Product Distributions and Causal Inference of
Confounders.
Eleni Sgouritsa, Dominik Janzing, Jonas Peters, Bernhard Schölkopf . . . . . . . . . . . 556

Determinantal Clustering Processes - A Nonparametric Bayesian Approach to Kernel Based Semi-
Supervised Clustering.
Amar Shah, Zoubin Ghahramani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

Sparse Nested Markov models with Log-linear Parameters.
Ilya Shpitser, Robin Evans, Thomas Richardson, James Robins . . . . . . . . . . . . . . . 576

Scalable Matrix-valued Kernel Learning for High-dimensional Nonlinear Multivariate Regression
and Granger Causality.
Vikas Sindhwani, Ha Quang Minh, Aurelie Lozano . . . . . . . . . . . . . . . . . . . . . . 586

Preference Elicitation For General Random Utility Models.
Hossein Azari Soufiani, David Parkes, Lirong Xia . . . . . . . . . . . . . . . . . . . . . . 596

Calculation of Entailed Rank Constraints in Partially Non-Linear and Cyclic Models.
Peter Spirtes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

Modeling Documents with Deep Boltzmann Machines.
Nitish Srivastava, Ruslan Salakhutdinov, Geoffrey Hinton . . . . . . . . . . . . . . . . . . 616

Speedy Model Selection (SMS) for Copula Models.
Yaniv Tenzer, Gal Elidan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

Probabilistic inverse reinforcement learning in unknown environments.
Aristide Tossou, Christos Dimitrakakis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

Approximate Kalman Filter Q-Learning for Continuous State-Space MDPs.
Charles Tripp, Ross Shachter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

Finite-Time Analysis of Kernelised Contextual Bandits.
Michal Valko, Nathaniel Korda, Remi Munos, Ilias Flaounas, Nelo Cristianini . . . . . . 654

iii



Dynamic Blocking and Collapsing for Gibbs Sampling.
Deepak Venugopal, Vibhav Gogate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

Bounded Approximate Symbolic Dynamic Programming for Hybrid MDPs.
Luis Gustavo Vianna, Scott Sanner, Leliane de Barros . . . . . . . . . . . . . . . . . . . . 674

On MAP Inference by MWSS on Perfect Graphs.
Adrian Weller, Tony Jebara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684

Integrating Document Clustering and Topic Modeling.
Pengtao Xie, Eric Xing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

Active Learning with Expert Advice.
Peilin Zhao, Steven Hoi, Jinfeng Zhuang . . . . . . . . . . . . . . . . . . . . . . . . . . . 704

Bennett-type Generalization Bounds: Large-deviation Case and Faster Rate of Convergence.
Chao Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

iv



Preface

This volume contains all papers that were accepted for the 29th Conference on Uncertainty in Artificial Intelli-
gence (UAI), held in Bellevue, Washington, USA, from July 12 to 14th 2013. 233 papers were submitted to the
conference and each was peer-reviewed by 3 or more reviewers. From the 233 papers, a total of 73 papers were
accepted, 26 for oral presentation and 47 for poster presentation, for an acceptance rate of 31%. We are very
grateful to the senior program committee and program committee members for their diligence in generating over
700 reviews for the 233 submitted papers.

In addition to the presentation of technical papers, the following invited speakers were also scheduled to
give keynote talks at UAI 2013: Tom Mitchell (Carnegie Mellon University), Ralf Herbrich (Amazon), and Josh
Tenenbaum (MIT).

A day of UAI 2013 tutorials was organized by tutorials chair David Sontag, on topics such as Computational
Advertising and Causality (Leon Bottou), Large-Scale Distributed Learning with GraphLab (Carlos Guestrin),
Statistical Methods in Genomics (Lior Pachter), and Polynomial Methods in Learning and Statistics (Ankur
Moitra). UAI 2013 also featured a day of workshops, organized by workshops chair John Mark Agosta, on
topics such as Approaches to Causal Structure Learning, Big Data meet Complex Models, New Challenges in
E-Commerice Recommendations, and Models for Spatial, Temporal, and Network Data.

Ann Nicholson and Padhraic Smyth (Program Co-Chairs)
Nando De Freitas and Max Chickering (General Co-Chairs)
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Abstract

We present a comprehensive study of the
use of generative modeling approaches for
Multiple-Instance Learning (MIL) problems.
In MIL a learner receives training instances
grouped together into bags with labels for
the bags only (which might not be correct
for the comprised instances). Our work was
motivated by the task of facilitating the di-
agnosis of neuromuscular disorders using sets
of motor unit potential trains (MUPTs) de-
tected within a muscle which can be cast as a
MIL problem. Our approach leads to a state-
of-the-art solution to the problem of muscle
classification. By introducing and analyzing
generative models for MIL in a general frame-
work and examining a variety of model struc-
tures and components, our work also serves
as a methodological guide to modelling MIL
tasks. We evaluate our proposed methods
both on MUPT datasets and on the MUSK1
dataset, one of the most widely used bench-
marks for MIL.

1 Introduction

In Multiple-Instance Learning (MIL), training in-
stances are grouped together in bags which have la-
bels. Each instance in a bag has a label that may
be different from that of the bag, but instance labels
are not observed; only the label of the bag is available
for learning. The MIL framework was first introduced
by Dietterich et al. [1997] for a problem in a medical
(pharmaceutical) domain. Their task was to predict
the binding properties of molecules, which depend on
the shape of the molecule. However, a molecule can
take on several shapes. Thus, each molecule is repre-
sented as a bag of instances, where each instance rep-
resents a shape the molecule can take on. If none of

the possible shapes enable binding, the bag (molecule)
gets a negative label. But as soon as one shape allows
for binding, the bag is labeled positive. The MUSK
dataset from this problem has remained one of the
most widely used benchmark datasets for MIL tasks.

Following the introduction of the framework, various
problems have been expressed as MIL. MIL approaches
have, for example, been employed for content-based
image retrieval [Maron and Ratan, 1998, Zhang et al.,
2002], text classification [Settles et al., 2007, Andrews
et al., 2002b], protein identification [Tao et al., 2004],
music information retrieval [Mandel and Ellis, 2008]
and activity recognition [Stikic and Schiele, 2009]. In
medical domains, prediction problems often naturally
occur as MIL tasks. One example is the original
MUSK prediction task; Dundar et al. [2008] also show
that learning problems for computer-aided detection
applications can often be considered as MIL problems.

Our work was motivated by an application which uses
quantitative analysis of clinically detected electromyo-
graphic (EMG) signals to assist with the diagnosis of
certain neuromuscular disorders. The diagnosis of a
neuromuscular disorder often requires the characteri-
zation of several individual muscles. A muscle charac-
terization, in turn, is based on characterizing a sam-
pling of its motor units (MUs). A motor unit potential
train (MUPT) created by a MU and extracted from
a needle-detected EMG signal can be used to obtain
a characterization of the MU (see Section 2 for de-
tails). The classification of a muscle based on the set of
MUPTs representing a sampling of its MUs can there-
fore be formulated as a MIL problem wherein each
muscle is a bag and each MU of a muscle is an instance
of that bag. We propose that generative modeling
approaches—models that describe the full joint dis-
tribution of the data—are useful and effective for data
that naturally occurs in MIL form, such as muscle clas-
sification based on a set of MUPTs. Predicting with
a generative model is particularly suitable for medical
domains for several reasons: Generative models allow
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for expert domain knowledge to be incorporated in an
intuitive way, which leads to good inductive bias in
the modeling assumptions. As we will demonstrate, a
model with good inductive bias (elicited from experts
in biomedicine) can result in highly accurate predic-
tions even on the basis of a relatively small training set.
Most importantly, they yield not only a classification
tool, but a simulation tool for the problem domain. In
our setting, such a simulator provides a stepping stone
toward a more sophisticated system that not only helps
with the diagnosis of neuromuscular disorders but also
provides a measure of their severity.

Our contributions are two-fold: First, we provide a
state-of-the-art solution to the problem of muscle clas-
sification. We show that modeling the muscle as a
two-stage generative model (according to the way its
MUPTs are actually generated) significantly improves
classification accuracy over previous strategies for this
task both at the instance and bag level [Adel et al.,
2012]. Second, we introduce a general framework and
provide intuition and guidelines for applying genera-
tive models to MIL problems. Generative models have
only recently been successfully applied to MIL tasks
[Yang et al., 2009, Foulds and Smyth, 2011]; these can
be viewed as special cases of our framework. We com-
pare different possible model structures for MIL gen-
erative models both conceptually and experimentally,
and we discuss the impact of their differing conditional
independence structures and parametric modeling as-
sumptions. We suggest several possible implementa-
tions for these structures and validate the proposed
methods both on the MUPT and MUSK data. Be-
cause we examine a variety of model structures and
components (not just those appropriate for muscle
classification) our work also serves as a methodolog-
ical guide to modelling MIL tasks.

2 Muscle Classification using QEMG

Quantitative electromyography (QEMG) is a method
used to help diagnose neuromuscular disorders by
quantitatively analyzing EMG signals detected dur-
ing a slight to moderate level, voluntary muscle con-
traction using an inserted needle electrode. A mus-
cle is comprised of several MUs which are repeatedly
activated during muscle contraction. A motor unit
consists of a group of muscle fibers and the α motor
neuron that activates those fibers. The voltage sig-
nal detected by an electrode created by the activation
of the fibers of a motor unit is called a motor unit
potential (MUP). The train of MUPs created by the
repeated activity of a MU is called a MUPT. Each
EMG signal is thus a compound signal that represents
the sum of the MUPTs of all active motor units. For
analysis purposes, an EMG signal is decomposed into

Figure 1: MUPT extraction via EMG Signal Decom-
position. Derived from Basmajian and Luca [1985].

its constituent MUPTs using a state-of-the-art pat-
tern recognition based decomposition system (see also
the work of Adel et al. [2012] and Farkas et al. [2010]
for more details). Figure 1 illustrates this MUPT ex-
traction process. Usually, 4 to 6 EMG signals, each
detected with the needle at a distinct location in the
muscle, are recorded and decomposed to obtain a rep-
resentative set of MUPTs of sufficient size (15-25).

Muscles are classified as either normal, myopathic
or neurogenic based on clinical expertise. Initially,
MUPTs are labeled normal, myopathic or neurogenic
on the basis of being detected in a normal, myopathic
or neurogenic muscle. For normal muscles, this is
largely correct as it is unlikely that a motor unit of
a normal muscle would generate a disordered (myo-
pathic or neurogenic) MUPT. However, passing on the
muscle label to each MUPT is not accurate for dis-
ordered muscles: myopathic and neurogenic muscles
commonly have some normal MUs, and thus produce
some normal MUPTs. Thus, labelling all MUPTs in
a disordered muscle as disordered is incorrect.

Classifying a muscle as normal, myopathic or neuro-
genic can be posed as a MIL problem in a straight-
forward manner: In this task, a bag corresponds to
the muscle that produces the MUPT instances, with
each instance representing a sampled MU within that
muscle. The features of an instance correspond to the
features used to represent the MUPT of the MU. The
instances of a normal bag are all normal, while neuro-
genic and myopathic bags might contain both normal
and neurogenic or myopathic instances, respectively.
It is exceedingly unlikely that a neurogenic (resp. my-
opathic) disordered muscle contains/generates a myo-
pathic (resp. neurogenic) MU/MUPT. While it is pos-
sible for a domain expert to manually classify indi-
vidual MUPTs, this task is time-consuming. Clinical
experts therefore typically provide only the diagnosis
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for the whole muscle, which gives the bag label. Thus
a learner must learn how to classify new MUPTs and
muscles from a training set providing only muscle la-
bels.

The machine learning techniques implemented in this
work are known as quantitative EMG techniques. The
main goal of quantitative EMG techniques is to extract
suitable information from detected EMG signals and
then interpret this information to assist with the di-
agnosis of their respective muscles. It is also desirable
that quantitative EMG analysis provides a measure
related to the severity of the predicted disorder [Pino,
2008]. Two muscles can both be myopathic, but one
may be mildly myopathic while the other is severely
myopathic; it is hypothesized that severe cases are in-
dicated by increased numbers of MUPTs from within
their class as well as that some of the MUPTs may
be outliers within their class. By identifying when an
instance is atypical within its class label, in future our
generative model may be used for estimating the sever-
ity of muscular disorders. Our ultimate goal is to build
a clinical decision support system that assists with the
diagnosis of muscles (both in terms of classification and
assessment of severity) by inspecting sets of MUPTs
extracted from EMG signals.

3 Related work

The last decade and a half has seen the development
of a large body of work on MIL, both in terms of theo-
retical analysis and the development of practical algo-
rithms for various application areas as we mentioned
in the introduction.

Dietterich et al. [1997] suggest several algorithms for
learning axis-aligned rectangles for the original MIL
problem on the MUSK data. Maron and Lozano-Pérez
[1998] introduced the diverse density (DD) algorithm,
a paradigm for MIL that, similar to the axis-aligned
rectangle learning approach, assumes that there is a
specific region of positive instances to be identified
in the feature space. The algorithm has been further
developed to EM-DD by Zhang and Goldman [2001].
This is one of the most successful approaches for MIL
and we discuss how it relates to our framework in Sec-
tion 4.2. Wang and Zucker [2000] adapted Nearest
Neighbor learning to MIL. Several studies present ker-
nels to use Support Vector Machines on MIL problems
[Gärtner et al., 2002, Andrews et al., 2002a, Tao et al.,
2004], or adaptations of boosting [Andrews and Hof-
mann, 2003, Xu and Frank, 2004, Viola et al., 2005]
and, more recently, incorporate methods from semi-
supervised or active learning into the MIL setting
[Rahmani and Goldman, 2006, Zhou and Xu, 2007,
Settles et al., 2007]. The original bag labeling rule

(where the label of the bag is the logical OR of its in-
stances as in the MUSK data) has been modified and
generalized to apply to other areas (Foulds and Frank
[2010] provide an overview).

Long and Tan [1998] analyze the original problem
of learning axis-aligned rectangles from MIL data in
the Probably Approximately Correct (PAC) learning
framework. This set-up assumes independence of the
instances that occur together in a bag and the goal
is to learn a low-error instance level classifier. Blum
and Kalai [1998] show that this framework is equiv-
alent to PAC-learning with one-sided noise, a prob-
lem that has recently been analyzed in Simon [2012].
However, in most MIL problems, it is not appropri-
ate to assume that instances occurring together in a
bag are conditionally independent and the goal is to
learn a bag-level classifier rather than an instance-level
classifier. Sabato et al. [2010] provides a comprehen-
sive study with upper and lower bounds on the sample
complexity of the bag-level learning problem without
the independence assumption. Diochnos et al. [2012]
tighten some of those lower bounds.

Generative model approaches have only rather recently
been introduced to the MIL setting [de Freitas and
Kück, 2005, Yang et al., 2009, Foulds and Smyth,
2011]. The former two studies suggest more complex
model structures for modifications of the MIL prob-
lem. The work of Foulds and Smyth [2011] fits into
our framework with specific choices for the model com-
ponents. We discuss the modeling choices that were
made in Foulds and Smyth [2011] and Yang et al.
[2009] in the context of our framework below.

4 Generative Models for MIL

We denote random variables in upper case, and their
realizations in lower case. Let t be the number of possi-
ble bag/instance labels. Let B ∈ {1, 2, ..., t} represent
a bag’s label, and let Ij ∈ {1, 2, ..., t} represent the
label of the jth instance belonging to the bag. The
number of instances in the bag is denoted by m; we
refer to the m instance labels together as the vector
~I. Let ~F j ∈ Rp be the p-dimensional feature vector
belonging to the jth instance. We index elements of
a vector with a square-bracketed subscript, so ~Fj[k] is
the kth element of the observed feature vector of the
jth instance in a bag. In our models, marginal and
conditional distributions involving only Ij and ~F j are
the same for all j, so we refer to a “generic” instance
label as I and a “generic” feature vector as ~F .

Most MIL work to date considers binary labels, i.e.
t = 2. In our muscle classification problem t = 3,
since a bag or instance can be either normal (B = 1),
myopathic (B = 2), or neurogenic (B = 3). Fur-
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Figure 2: The BIF Model Structure. Parameters for
P (Ij |B) and for P (~Fj |Ij) are tied across j.

thermore, in our problem, a bag may only generate
a compatible instance label: We call the value of a sin-
gle instance label ij compatible with a bag label b iff

ij ∈ {1} ∪ {b}. We call a joint labelling ~i = i1, ..., im
feasible iff ∃b(∀j, ij ∈ {1} ∪ {b}).
We begin by discussing possible Bayes net structures
for our MIL model in Section 4.1. We then discuss pos-
sible modelling choices for marginal and conditional
distributions in Section 4.2.

4.1 Model Structures

The main inductive bias that we retain from the orig-
inal MIL formulation is the assumption that the bag
label is conditionally independent of the feature vec-
tors given their corresponding instance labels. This is
implied by the assumption that the feature distribu-
tion of normal instances in a normal bag should be the
same as the feature distribution of normal instances in
an abnormal bag. This restricts us to three possible
Bayes net structures presented below, two of which
we will use as candidate structures for our generative
model. For completeness, we also discuss a fourth
structure that does not satisfy the conditional inde-
pendence assumption. We name the structures based
on the partial order in which the variables appear in
the graph. Alpaydin [2010] gives a concise overview of
directed graphical models; Koller and Friedman [2009]
give a comprehensive treatment.

4.1.1 BIF: B −→ I → ~F m

This structure best represents the generative process
underlying our MUPT data. Under this structure, the
bag (muscle) generates its m instances (MUPTs) in-
dependently given its label. Each instance in turn
generates its own feature vector given its label, but
independent of the bag label and independent of the
other instances and features in the bag. The struc-
ture of this model is given concisely by the plate dia-

gram B −→ I → ~F m for which we give the expanded
version in Figure 2. The other model structures we
consider are the same except for the directions of the
edges. We will see that the choice of the edge direc-
tions has important consequences.

For this structure, we must learn P (B) from observed

data, and learn P (I|B) and P (~F |I) using a hidden
variable method like EM. Constraints on P (I|B) are
simple to encode; to ensure that a bag can never gener-
ate an incompatible instance, we can restrict the values
in the conditional probability table of I|B by requiring
P (I = i|B = b) = 0 for all i /∈ {1} ∪ {b}. It follows
that sets of instance labels drawn from this model are
always compatible with the bag label. Furthermore,
we can easily impose a Dirichlet prior on the propor-
tion of instance labels that match the bag label while
obeying these constraints. Since we have continuous
features, P (~F |I) is modeled using density estimation.

The main departure this model makes from other prob-
abilistic models for MIL is that it assumes that the bag
label is the cause of the instance label, rather than the
other way around. Under this model, it is possible
for a non-normal bag to produce all normal instances,
which is disallowed in other MIL models. However,
for our system, this is entirely appropriate; it is pos-
sible (though unlikely) for a muscle with a myopathic
or neurogenic disorder to produce all normal MUPTs.
Among existing models, that of Yang et al. [2009] is
most similar to BIF.

4.1.2 FIB: B ←− I ← ~F m

FIB represents another way of expressing an MIL
model where the instances generate the bag label. Un-
der this structure, the feature vectors are drawn from
some P (~F ), they then generate the instance labels,
which in turn determine the bag label. The probabil-
ity P (I|~F ) can be expressed using any discriminative
learner, which is attractive, though we still must use a
hidden variable method like EM for training because
the instance labels are not observed. In order to make
the model fully generative we must also model P (~F )
using density estimation. In previous work, for exam-
ple, EM-DD, this model structure is used (though not
made explicit) since if the model does not need to be

generative (i.e. if we will always condition on ~F ) then
density estimation is not required at all. We will show
in Section 4.2 that the well-known EM-DD MIL algo-
rithm [Han et al., 2007] can be implemented using this
model structure.

Note that B has all m instances as parents, and m
can vary from muscle to muscle, so we must express
P (B|~I) to allow different sized joint labellings; this is
discussed in Section 4.2. Unfortunately, in our 3-class
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setting, this structure suffers from an important draw-
back: it offers no way of prohibiting infeasible instance
label assignments, i.e. assignments where for example
I1 = 2 and I2 = 3. In order to have a fully consistent
generative FIB model, therefore, we must add an ad-
ditional possible bag “label” b = 0 that has positive
probability given infeasible labelings. This does not
reflect the generative process of the MUPT data, but
we can still use this model structure and condition on
the event B 6= 0 where necessary. Foulds and Smyth
[2011] note that prior knowledge about the frequency
of instance labels given bag labels is difficult to incor-
porate with a directed edge from I to B.

4.1.3 IBF: B ←− I → ~F m

Under this structure, the instances are generated in-
dependently according to some P (I), and they sub-
sequently generate both the bag label and the fea-
ture vectors. This model structure is essentially the
“Multi-Instance Mixture Model” of Foulds and Smyth
[2011]. As in the FIB model, we have m directed edges
from the Ij to B, which causes the same drawbacks
described in the FIB model but does not give us the
additional flexibility of using a discriminative learner
for the instance labels. Therefore, we will not consider
this structure for our generative model. Foulds and
Smyth [2011] observe that the EM-DD algorithm can
be expressed using this structure given an appropriate
model of P (~F |I) and a “discriminative learning objec-
tive”; this is equivalent to our FIB structure described
above.

4.1.4 Alternative model BFI: B −→ I ← ~F m

This model attempts to combine two attractive prop-
erties: The ability to use a discriminative model
P (I|~F ), and the ability to easily assign values for

P (I|B). Unfortunately, in this model, B and ~F are
dependent given I, which we know to be untrue in our
problem. In this model, normal instances where B = 1
may have a different feature distribution from normal
instances where B = 2. Since we count on being able
to generalize from normal instances in normal bags to
normal instances in abnormal bags, this model is not
appropriate. Note that the BFI model is essentially
a clustering model with I as the cluster label and B
acting simply as an additional feature along with ~F .

4.2 Model Components

Choosing the model structure determines the condi-
tional independence properties of our model but does
not specify a form for the various distributions. We
discuss some possibilities for components of the model
that have different assumptions and inductive biases.

4.2.1 P (B) and P (I|B) for the BIF Structure

Since B and I take on a small number of discrete val-
ues, a tabular representation is appropriate. As noted
earlier, one can impose restrictions on possible values
of I|B by clamping appropriate values in the condi-
tional probability table.

4.2.2 P (~F |I) for the BIF Structure

Because we assume a continuous feature space, P (~F |I)
can be modeled using any density estimation method.
We discuss some well-known possibilities here.

Multivariate Gaussian One simple choice for
P (~F |I = i) is a multivariate Gaussian distribution
with mean µi and covariance Σi for i ∈ {1, ..., t}. De-
pending on the availability of data and desired mod-
elling assumptions, one can restrict Σi to be diagonal.

Gaussian Copula with KDE Marginals A draw-
back of the multivariate Gaussian approach is that
much real-world data is not in fact Gaussian. Since we
want our generative model to be as realistic as possi-
ble, we propose a copula-based model that is practical
to estimate and can fit the observed data more closely.

Sklar’s theorem [1959] implies that any multivari-
ate density g with marginal densities g1, g2, ..., gp and
marginal cumulative distribution functions (CDFs)
G1, G2, ..., Gp can be expressed in the form

g(~f) = g1(~f[1]) · g2(~f[2]) · ... · gp(~f[p])
· c(G1(~f[1]), G2(~f[2]), ..., Gp(~f[p])) (1)

where c is a copula density that captures the de-
pendence structure of the feature vector ~F =
(~F[1], ..., ~F[p]). If the elements of ~F are independent,
then c ≡ 1.

Because they are all one-dimensional, the marginals
can be estimated well using Kernel Density Estimation
(KDE) Alpaydin [2010] even with a modest amount of
data, giving ĝk and Ĝk for k = 1...p. This allows our
model to capture non-Gaussian aspects of the data,
such as relatively heavy or light tails, skewness, or even
multi-modality, thus making it more realistic.

The copula model allows us to achieve more high-
fidelity marginals without resorting to an unreal-
istic independence assumption: we can still cap-
ture pairwise dependencies in the data by assum-
ing a parametric form for c and estimating the
necessary parameters. We will assume a Gaussian
copula, whose parameter is the covariance matrix
of (Φ−1(G1(~F [1])),Φ

−1(G2(~F [2])), ...,Φ
−1(Gp(~F [p])))

where Φ−1 is the inverse of the standard normal CDF.
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This can be estimated by the empirical covariance
of (Φ−1(Ĝ1(~F [1])),Φ

−1(Ĝ2(~F [2])), ...,Φ
−1(Ĝp(~F [p])))

over the observed ~f |I = i in the data. (We estimate
a separate copula model for each possible value of I.)
Other, more flexible copula models are possible; we
have elected to use the Gaussian copula for simplicity.

Kernel Density Estimation Kernel Density Esti-
mation (KDE) is a non-parametric method that es-
timates a probability density or distribution function
by summing up kernel functions placed at every ob-
served data point. We use the most common form
of KDE, which uses a Gaussian kernel. To choose
the kernel width, we employ the maximum smoothing
principle [Terrell, 1990] as a simple but effective choice;
other more fine-tuned choices are possible. The advan-
tage of KDE is that it is capable of modeling complex
marginals and complex dependencies among the vari-
ables of interest, but it does not always work well in
moderate to high dimensions.

4.2.3 P (~F ) for the FIB Structure

In principle, any of the density estimators proposed
for P (~F |I) could be used here; however, the marginal

P (~F ) is likely to be multi-modal, so the copula or KDE
models may be more appropriate.

4.2.4 P (I|~F ) for the FIB Structure

Since I has a discrete domain, any classification
method that supplies class probabilities can be used
to model P (I|~F ). We examine four such methods.

Logistic Regression This well-known model as-

sumes P (I = i|~F ) ∝ exp
~βi[0]+~β

T
i[1:p]

~f , i < t. Note that
the maximum likelihood estimate of β is not unique if
the data are linearly separable.

Support Vector Machines Although the classic
SVM formulation [Cortes and Vapnik, 1995] does
not provide conditional class probabilities, subsequent
work [Huang et al., 2006, Chang and Lin, 2011] has
added this capability. It has the added advantage that
in the event of feature separability, we get a large-
margin classifier whereas logistic regression would fail
to converge. Furthermore, kernelized SVMs allow us to
easily create non-linear separators in a feature space.

K Nearest Neighbours If the decision boundary
between instance labels is believed to be complex and
if we have sufficient data, a non-parametric model may
be warranted. K nearest neighbours uses the empiri-
cal distribution of the instance labels of the K closest
feature vectors to ~f to estimate P (I|~F = ~f).

“Diverse Density” When bag and feature labels
are binary (t = 2 where 2 is positive and 1 is negative)

we may assume P (I = 2|~F ) = exp(−∑p
k=1 s

2
[k](

~f[k] −
~w[k])

2). Here, s and ~w are parameters fit by maximum
likelihood. Note that this is not a gaussian distribu-
tion; its conditional distributions are Bernoulli such
that P (I = 2|~F = ~f) ≈ 1 when ~f is near ~w. We infer
that the reason for its use in the DD and EM-DD al-
gorithms comes from the assumption that the positive
instances were localized in feature space, whereas the
negative instances were assumed only to be far from
the positive ones; they were explicitly assumed not to
form a cluster of their own. Because it requires t = 2
we cannot use this model for our MUPT data, but
we can use it on the MUSK data (described later) for
comparison purposes.

4.2.5 P (B|I) for the IBF and FIB Structures

Since m varies from bag to bag, we must express
P (B|I) as a function that can take a variable num-
ber of parameters. Recall that in this setting, we must
allow for the possibility that the joint labelling of ~I
is not feasible; we add b = 0 to the domain of B to
capture this event. We can adhere to the standard
MIL assumptions by making P (B|~I) deterministic as
follows. For feasible labelings, we set

P (B = b|I1, I2, ..., Im) =

{
1 if b = maxj Ij

0 otherwise,
(2)

and for infeasible labelings we set

P (B = b|I1, I2, ..., Im) =

{
1 if b = 0

0 otherwise.
(3)

5 Learning and Inference

All of the components described in Section 4.2 have
associated off-the-shelf learning algorithms for com-
pletely observed data. We must learn our models
without ever observing I (though with substantial in-
formation about I provided through B), so we use
a hard-Expectation-Maximization (EM) procedure for
simultaneously learning the model parameters and in-
ferring the most likely I given the observed B and
~F . This worked well on our MUPT data; the concep-
tual groundwork we lay here could also be used with
sampling-based approaches if desired.

5.1 Learning

For learning, we use a “hard-EM” approach [Koller
and Friedman, 2009]. We assume access to a col-

lection of n bags of the form (b, ~f1, ~f2, ..., ~fmν )ν , ν ∈
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{1, ..., n} which are independent and identically dis-
tributed. Given an initial label assignment to all of
the instances in our dataset, our learning method has a
straightforward implementation; a sketch is presented
in Algorithm 1. We discuss the two main steps.

5.1.1 Parameter Estimation

BIF For the BIF model, we must estimate P (B),

P (~I|B), and P (~F |I). The marginal probability P (B)
is estimated from observed bag label counts only; it
does not change across iterations. Because we assume
P (I|B) is the same for all instances in all bags, we pool
all the bags together and use the aggregated counts to
estimate P (I|B). We may add “pseudo-counts” to this
estimate if a dirichlet prior is desired; in our experi-
ments we assume for each bag type that we have seen
each compatible instance label once, and each incom-
patible label zero times. To learn P (~F |I), again we
may pool all of the instances together to learn t den-
sity estimates P (~F |I = 1), P (~F |I = 2), ..., P (~F |I = t).

FIB For the FIB model, we must estimate P (~F )

and P (I|~F ); we assume that P (B|I) is fixed accord-

ing to the standard MIL definition. To estimate P (~F ),
we pool all feature vectors together and estimate the
necessary parameters. These are completely observed
so P (~F ) does not change across iterations. To learn

P (I|~F ), again we pool all of the instances together to
learn the conditional distribution using a supervised
learning method.

5.1.2 Label Updating

To update the labels for each bag given the learned pa-
rameters, we must find the most likely instance labels
~i given the observed data, that is, we must compute
argmax~i P (~I =~i|B = b, ~F1 = ~f1, ..., ~Fm = ~fm) for each
bag.

BIF From the conditional independence structure of
the BIF model, we have

P (~I =~i|B = b, ~F1 = ~f1, ..., ~Fm = ~fm)

∝ P (~I =~i|B = b)P (~F1 = ~f1, ..., ~Fm = ~fm|~I =~i).

Since the labels and feature vectors for different in-
stances are independent given the bag label, we have

P (~I =~i|B = b)P (~F1 = ~f1, ..., ~Fm = ~fm|~I =~i)

=
m∏

j=1

P (Ij = ij |B = b)P (~Fj = ~fj |Ij = ij),

so to maximize the probability of the joint label as-
signment ~i, we may maximize each instance label in-

Algorithm 1 Hard EM Algorithm Sketch

for all bags do {initialize instance labels}
~i← b

end for
repeat

learn model components {M-step}
for all bags do {relabel instances: E-step}
~i← argmax~i P (~I =~i|B = b,

~F1 = ~f1, ..., ~Fm = ~fm)
end for

until instance labels do not change

dependently:

~i∗[j] ← argmax
ij∈{1,...,t}

P (Ij = ij |B = b)P (~Fj = ~fj |Ij = ij).

FIB From the conditional independence structure of
the FIB model, we have

P (~I =~i|B = b, ~F1 = ~f1, ..., ~Fm = ~fm)

∝ P (B = b|~I =~i)P (~I =~i|~F1 = ~f1, ..., ~Fm = ~fm).

However, in this model, the instance labels are not
conditionally independent given the bag label and we
cannot maximize them independently. For example, if
B = 2, and I1, I2, ..., Im−1 are all equal to 1, then Im
must be equal to 2 according to the MIL assumption
encoded in P (B|~I). However, we can still avoid search-
ing over all tm possible label vectors. We defined in
Section 4 that if ~i is a feasible vector for B = b, then
we have P (B = b|~i) = 1 and therefore we have

P (B = b|~i)P (~I =~i|~F = ~f) =
m∏

j=1

P (Ij = ij |~Fj = ~fj).

We can find the best feasible ~i in two steps:

1. Let ~i∗[j] ← argmaxij∈{1}∪{b} P (Ij = ij |~Fj = ~fj)

2. If ~i∗ = ~1, set ~i∗[k∗] ← b for k∗ given by

argmax
k

[
P (Ik = b|~Fj = ~fj)

∏
j 6=k

P (Ij = 1|~Fj = ~fj)
]
.

The vector ~i∗ is feasible and maximizes
∏m
j=1 P (Ij =

ij |~Fj = ~fj) over all feasible vectors when B = b.

5.2 Inference

Once we have learned all of the model parameters,
given a new bag where only feature values ~f are ob-
served, we wish to compute argmax~i,b P (I = ~i, B =

b|~F1 = ~f1, ..., ~Fm = ~fm). These are the most likely
bag and instance labels given the m feature vectors in
the new bag.
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BIF In the BIF model,

argmax
~i,b

P (~I =~i, B = b|~F1 = ~f1, ..., ~Fm = ~fm)

= argmax
~i,b

P (B = b)P (~I =~i|B = b)

· P (~F1 = ~f1, ..., ~Fm = ~fm|~I =~i)

= argmax
b

[
P (B = b) argmax

~i

(
P (~I =~i|B = b)

· P (~F1 = ~f1, ..., ~Fm = ~fm|~I =~i)
)]
.

Therefore we can apply the instance label updating
method presented in Section 5.1 for each possible bag
label and weight them according to P (B) to find the
joint MAP assignment to b and ~i.

FIB In the FIB model,

argmax
~i,b

P (~I =~i, B = b|~F1 = ~f1, ..., ~Fm = ~fm)

= argmax
b

[
argmax

~i

(
P (B = b|~I =~i)

· P (~I =~i|~F1 = ~f1, ..., ~Fm = ~fm)
)]

Therefore we can apply the instance label updating
method presented in Section 5.1 for each possible bag
label to find the joint MAP assignment to b and ~i.

6 Experiments

We now give the details of how our MUPT dataset was
constructed, and we discuss the results of the various
generative models as applied to our MUPT dataset.
We find that the BIF structured models perform very
well for several different component choices. The FIB
structured models perform less well, but still much bet-
ter than chance on both bags and instances. Based on
our results, we recommend structure and component
choices that lead to a high-fidelity generative model
of MUPT data. We also give the performance of the
models on the MUSK1 dataset [Dietterich et al., 1997].

6.1 The MUPT dataset

Recall that each detected EMG signal is a composite
signal that represents the activity of all of the MUs
that were active during a muscle contraction. After
acquiring an EMG signal, it is decomposed into its con-
stituent MUPTs, each of which ideally represents the
electrical activity of a single, sampled MU. As such,
the MUPTs are our instances and are the source of
our instance level features. From each MUPT, it is
common practice to compute a MUP template which
is a single MUP whose shape is representative of all

MUPs in the MUPT [Stashuk, 1999]. All but two of
the features we use are functions of this MUP tem-
plate, while the rest of the features describe aspects of
the MUPT itself. We use p = 8 features, which were
chosen by automated feature selection (both wrapper-
and filter-based) in prior work [Adel et al., 2012].

1. Number of turns is the number of positive and
negative peaks; a function of the MUP template.

2. Amplitude represents the maximum difference of
voltage between two points [Dumitru et al., 1995];
a function of the MUP template.

3. Area represents the area under the curve; a func-
tion of the MUP template.

4. Thickness refers to the ratio of area to amplitude;
a function of the MUP template.

5. Size index given by 2 log(amplitude) + area
amplitude ;

a function of the MUP template.
6. Turn width is given by duration

turns . Duration is the
interval from the first signal deflection from baseline
to its final return to baseline [Dumitru et al., 1995];
a function of the MUP template.

7. Firing rate MCD (mean consecutive differ-
ence) refers to the sequential change in the firing
rate of the MU over time; a function of the MUPT.

8. A-jiggle is a measure of the shape variability of
band-pass filtered MUPs (2nd derivative of the sig-
nal); a function of the MUPT.

We have two MUPT datasets, one acquired from
upper-leg recordings containing 88 bags and 1534 in-
stances, and another acquired from lower-leg record-
ings with 70 bags and 1500 instances. All data
were collected under IRB approval and and were de-
identified. Prior versions of the MUPT data were used
by Adel et al. [2012]; our versions have been cleaned to
remove obvious outlier errors. For example, instances
with highly improbable feature values were removed.

6.2 Results

Table 1 shows the performance of different models on
our data. Because one of the authors [TA] manually la-
beled the instances, we can estimate both the accuracy
of each model for classifying bags and the accuracy for
classifying instances given only the features within a
new bag. Note, the manually assigned instance labels
were not used for learning or inference. The accuracy
results were computed using leave-one-bag-out cross-
validation. We also present the log likelihood of the
observed data maximized over the model parameters
and the hidden instance labels, which measures how
well the models fit the training data.

We present the results for the BIF structure using five
different density estimators for P (~F |I). We use two

9



Table 1: MUPT Dataset Results. To give a sense of the statistical uncertainty, we mark all accuracies that are
within the 99% Bernoulli confidence interval of the maximum observed accuracy in bold. We mark the highest
log likelihoods for the BIF and FIB structures in italics.

Upper Leg BIF: B −→ I → ~F m FIB: B ←− I ← ~F m Non-MIL
Rnd: 0.33 ⊥⊥Gauss ⊥⊥Cop. Gauss Cop. KDE LR KNN SVM QDA ⊥⊥QDA

Bag Acc. 0.955 0.955 0.955 0.955 0.955 0.728 0.568 0.250 0.898 0.841
Inst. Acc. 0.984 0.978 0.983 0.980 0.983 0.728 0.674 0.415 0.978 0.850
Log lik. -36843 -37104 -36810 -37066 -34726 -32889 -32998 -34382 -32938 —

Lower Leg BIF: B −→ I → ~F m FIB: B ←− I ← ~F m Non-MIL
Rnd: 0.33 ⊥⊥Gauss ⊥⊥Cop. Gauss Cop. KDE LR KNN SVM QDA ⊥⊥QDA

Bag Acc. 0.986 0.971 0.971 0.957 0.886 0.814 0.586 0.371 0.886 0.771
Inst. Acc. 0.946 0.899 0.931 0.880 0.859 0.543 0.571 0.469 0.915 0.781
Log lik. -38035 -38206 -37980 -38141 -35999 -34833 -34952 -35598 -35128 —

Table 2: MUSK1 Dataset Results

MUSK1 BIF: B −→ I → ~F m FIB: B ←− I ← ~F m Non-MIL

Rnd: 0.50 ⊥⊥ Gauss ⊥⊥ Cop. Gauss Cop. KDE LR KNN SVM QDA DD QDA

Bag Acc. 0.870 0.848 0.696 0.641 0.772 0.783 0.772 0.837 0.837 0.620 .783

Log lik. -14921 -18437 -45815 -51031 -33591 -34086 -34120 -34076 -34056 -34105 —

versions each of the Gaussian and copula models, one
assuming independence between elements of the fea-
ture vectors given the instance labels (e.g. a diago-
nal covariance matrix) indicated by the prefix ⊥⊥, and
one assuming pairwise correlations. The marginals of
the copula models are estimated using KDE with a
Gaussian kernel and the maximum smoothing prin-
ciple (MSP) bandwidth [Terrell, 1990]. We also give

results for a multi-dimensional KDE for P (~F |I), again
with the MSP bandwidth.

We present results for the FIB structure using four
different discriminative learning models. In all cases,
P (~F ) was estimated using a multi-dimensional KDE
with the MSP bandwidth. The discriminative learn-
ers were Logistic Regression (LR), K-nearest neighbors
with K = 7 (KNN), SVMs with a radial basis function
kernel, C = 1 and γ = 1/8, and Quadratic Discrim-
inant Analysis (QDA). The parameter K was chosen
based on past experience with the data; SVM param-
eters are defaults. In the last column, we also present
results using Quadratic Discriminant Analysis in a non
multiple-instance setting by assuming the instance la-
bels are in fact the bag labels and labelling new bags
by majority vote.

Table 2 shows results on the MUSK1 dataset, which
contains 92 bags and 476 instances. We use the same
models and add a version of the FIB model with the
“Diverse Density” (DD) model for P (I|~F ). Since the
data are 166-dimensional, as a pre-processing step,
we use PCA to eliminate near-collinearity; we choose
enough components to capture 90% of the variance,

leaving us with p = 76 features. Results are not
state-of-the-art—Zhang and Goldman [2001] achieve
96.8%—but moderately good; among our models the
BIF model with independent Gaussians for P (~F |I)
has the highest cross-validation accuracy and log like-
lihood. No expert instance labels exist for MUSK1.

7 Conclusions

Results on the MUPT data indicate that all of our
BIF-based generative models perform better than pre-
vious state-of-the-art work by Adel et al. [2012], whose
best leave-one-bag-out bag label accuracy was 82.3%
(lower leg.) In addition, we demonstrate that we are
able to recover the instance labels with very high accu-
racy. The FIB models had worse performance on the
MUPT data but better on the MUSK1 data, suggest-
ing they may be useful for other tasks. If muscle classi-
fication accuracy is paramount, the parametric model
components (Gaussian and Copula) appear best, but
if high-fidelity simulation is paramount, then the KDE
model component is a better fit to the observed data.

We have introduced a general framework for genera-
tive models in MIL . Although MIL is a well-developed
sub-field of Machine Learning, generative model ap-
proaches had not received much attention so far. Our
results suggest that models that are well aligned with
the actual data generation in a problem domain (the
BIF structure in the case of our muscle classification
task) are an excellent choice for classification and mod-
eling purposes.
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Abstract

Sensory inference under conditions of uncer-
tainty is a major problem in both machine
learning and computational neuroscience.
An important but poorly understood aspect
of sensory processing is the role of active
sensing. Here, we present a Bayes-optimal
inference and control framework for active
sensing, C-DAC (Context-Dependent Active
Controller). Unlike previously proposed al-
gorithms that optimize abstract statistical
objectives such as information maximization
(Infomax) [Butko and Movellan, 2010] or
one-step look-ahead accuracy [Najemnik and
Geisler, 2005], our active sensing model di-
rectly minimizes a combination of behavioral
costs, such as temporal delay, response error,
and sensor repositioning cost. We simulate
these algorithms on a simple visual search
task to illustrate scenarios in which context-
sensitivity is particularly beneficial and op-
timization with respect to generic statisti-
cal objectives particularly inadequate. Mo-
tivated by the geometric properties of the C-
DAC policy, we present both parametric and
non-parametric approximations, which retain
context-sensitivity while significantly reduc-
ing computational complexity. These ap-
proximations enable us to investigate a more
complex search problem involving peripheral
vision, and we notice that the performance
advantage of C-DAC over generic statistical
policies is even more evident in this scenario.

1 Introduction

In the realm of symbolic problem solving, comput-
ers are sometimes comparable, or even better than,
typical human performance. In contrast, in sensory

processing, especially under conditions of noise, un-
certainty, or non-stationarity, human performance is
often still the gold standard [Martin et al., 2001, Bran-
son et al., 2011]. One important tool the brain has at
its disposal is active sensing, a goal-directed, context-
sensitive control strategy that prioritizes sensing re-
sources toward the most rewarding or informative as-
pects of the environment [Yarbus, 1967]. Most theo-
retical models of sensory processing presume passive-
ness, considering only how to represent or compute
with given inputs, and not how to actively intervene
in the input collection process itself, especially with re-
spect to behavioral goals or environmental constraints.
Having a formal understanding of active sensing is not
only important for advancing neuroscientific progress
but also for engineering applications, such as develop-
ing context-sensitive, interactive artificial agents.

The most well-studied aspect of human active sensing
is saccadic eye movements, and early work suggests
that saccades are attracted to salient targets that dif-
fer from surround in one or more of feature dimensions
such as orientation, motion, luminance, and color con-
trast [Koch and Ullman, 1985, Itti and Koch, 2000].
This passive explanation does not take into account
the fact that the observations made while attending
the task can affect the fixations decisions that follow.
More recently, there has been a shift to relax this con-
straint of passiveness, and the notion of saliency has
been reframed probabilistically in terms of maximiz-
ing the informational gain (Infomax) given the spa-
tial and temporal context [Lee and Yu, 2000, Itti and
Baldi, 2006, Butko and Movellan, 2010]. Separately, in
another active formulation, it has been proposed that
saccades are chosen to maximize the greedy, one-step
look-ahead probability of finding the target (greedy
MAP), conditioned on self knowledge about visual
acuity map [Najemnik and Geisler, 2005].

While both the Infomax and Greedy MAP algorithms
brought a new level of sophistication – represent-
ing sensory processing as iterative Bayesian inference,
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quantifying the knowledge gain of different saccade
choices, and incorporating knowledge about sensory
noise – they are still limited in several key respects: (1)
they optimize abstract computational quantities that
do not directly relate to behavioral goals (eg, speed
and accuracy) or task constraints (eg, cost of switch-
ing from one location to another); (2) relatedly, it is
unclear how to adapt these algorithms to varying task
goals (eg, locating someone in a crowd versus catching
a moving object); (3) there is no explicit representa-
tion of time in these algorithms, and thus no means
of trading off fixation duration or number of fixations
with search accuracy. In the rest of the paper, we refer
to Infomax and Greedy MAP as “statistical policies”,
in the sense that they optimize generic statistical ob-
jectives insensitive to behavioral objectives or contex-
tual constraints.

In contrast to the statistical policies, we propose
a Bayes-optimal inference and control framework
for active sensing, which we call C-DAC (Context-
Dependent Active Controller). Specifically, we assume
that the observer aims to optimize a context-sensitive
objective function that takes into account behavioral
costs such as temporal delay, response error, and the
cost of switching from one sensing location to another.
C-DAC uses this objective to choose when and where
to collect sensory data, based on a continually up-
dated statistically optimal (Bayesian) representation
of the sequentially collected sensory data. This frame-
work allows us to derive behaviorally optimal proce-
dures for making decisions about (1) where to acquire
sensory inputs, (2) when to move from one observa-
tion location to another, and (3) how to negotiate
the exploration-exploitation tradeoff between collect-
ing additional data and terminating the observation
process. We also compare the performance of C-DAC
and the statistical policies under different task param-
eters, and illustrate scenarios in which the latter per-
form particularly poorly. Finally, we present two ap-
proximate value iteration algorithms, based on a low-
dimensional parametric and non-parametric approxi-
mation of the value function, which retain context-
sensitivity while significantly reducing computational
complexity.

In Sec. 2, we describe in detail the C-DAC model. In
Sec. 3, we apply the model to a visual search task,
simulating scenarios where C-DAC achieves a flexi-
ble trade-off between speed, accuracy and effort de-
pending on the task demands, whereas the statistical
policies fall short – this forms experimentally testable
predictions for future investigations. We also present
approximate value-iteration algorithms, and an exten-
sion of the search problem that incorporates peripheral
vision. We conclude with a discussion of the implica-

tions of this work, relationship to previous work, as
well as pointers to future work (Sec. 4).

2 The Model: C-DAC

We consider a scenario in which the observer must pro-
duce a response based on sequentially observed noisy
sensory inputs (e.g., identifying target location in a
search task or scene category in a classification task),
with the ability to choose where and how long to collect
the sensory inputs.

2.1 Sensory Processing: Bayesian Inference

We use a Bayesian generative model to capture the
observer’s knowledge about the statistical relationship
among hidden causes or variables and how they give
rise to noisy sensory inputs, as well as prior beliefs
of hidden variables. We assume that they use exact
Bayesian inference in the recognition model to main-
tain a statistically optimal representation of the hid-
den state of the world based on the noisy data stream.

Conditioned on the target location (s, hidden) and
the sequence of fixation locations (λt := {λ1, . . . , λt},
known), the agent sequentially observes iid inputs
(xt := {x1, . . . , xt}):

p(xt|s;λt) =
t∏

i=1

p(xi|s;λi) =
t∏

i=1

fs,λi(xi) (1)

where fs,λ(xt) is the likelihood function. These vari-
ables can be scalars or vectors, depending on the spe-
cific problem.

In the recognition model, repeated applications of
Bayes’ Rule can be used to compute the iterative pos-
terior distribution over the k possible target locations,
or the belief state:

pt := (P (s = 1|xt;λt), . . . , P (s = k|xt;λt))
pit = P (s = i|xt;λt) ∝ p(xt|s = i;λt)P (s = i|xt−1;λt−1)

= fs,λt(xt)p
i
t−1 (2)

where p0 is the prior belief over target location.

2.2 Action Selection: Bayes Risk
Minimization

The action selection component of active vision is a
stochastic control problem where the agent chooses
the sensing location and the number of data points
collected, and we assume the agent can optimize this
process dynamically based on ongoing data collection
and size of sensory data, but the exact consequence
of each action is not perfectly known ahead of time.
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The goal is to find a good decision policy π, which
maps the augmented belief state (xt,λt) into an ac-
tion a ∈ A, where A consists of a set of termination
actions, stopping and choosing a response, and a set of
continuation actions, obtaining data point from a cer-
tain observation location. The policy π produces for
each observation sequence (x1, . . . , xt, . . .), a stopping
time τ (number of data points observed), a sequence
of fixation choices λτ := (λ1, . . . , λτ ), and an eventual
target choice δ.

In the Bayes risk minimization framework, the opti-
mization problem is formulated in terms of minimizing
an expected cost function, Lπ := E[l(τ,λτ , δ)]x,s, aver-
aged over stochasticity in the true target location s and
the data samples x. We assume that the cost incurred
on each trial takes into account temporal delay, switch
cost (cost associated with each switch in sensing loca-
tion), and response error, respectively. In accordance
with the typical Bayes risk formulation of the sequen-
tial decision problem, we assume the cost function to
be a linear combination of the relevant factors:

l(τ, δ;λτ , s) = cτ + csnτ + 1{δ 6=s} (3)

where nτ is the total number of switches (nτ :=∑τ−1
t=1 1{λt+1 6=λt}), c parameterizes the cost of tempo-

ral delay, cs the cost of a switch, and unit cost for
response errors is assumed (as we can always divide
c and cs by the appropriate constant to make it 1).
The expected cost is Lπ := cE[τ ]+ csE[ns]+P (δ 6= s),
where the expectation is taken over τ , λ, δ, and xτ .

Bellman’s dynamic programming equation [Bellman,
1952] tells us that the problem is optimized if at
each time point, the agent chooses the action asso-
ciated with the lowest expected cost (the Q-factor
for that action), given his current knowledge or be-
lief state, pt. The Q-factors for the stopping actions
are straight forward: Q̄it(pt,λt) := E[l(t, i)|pt,λt] =
ct + csnt + (1−pit). Obviously, the best stopping ac-
tion δ is to minimize the probability of error. Thus,
the stopping cost associated with the optimal stopping
action (i∗ := argmaxi p

i
t) is:

Q̄∗t (pt,λt) := E[l(t, i∗)|pt,λt]
= ct+ csnt + (1−pi∗t ) (4)

The Q-factor associated with each continuation action
j (continue sensing in location j) is:

Qjt (pt = p,λt) := c(t+ 1) + cs(nt + 1{j 6=λt})+

min
τ ′,δ,λτ′

E[l(τ ′, δ)|p0 =p, λ1 = j] (5)

with the optimal continuation action being Q∗t :=

minj Q
j
t = Qj

∗

t . The expected cost of continuing ob-
serving in location j is equivalent to solving the orig-
inal optimization problem with the prior belief set to

the posterior after the previous t time-steps, and the
first observation location being j. Suppose we define
the value function V (p, i) as the expected cost associ-
ated with the optimal policy, given prior belief p0 = p
and initial observation location λ1 = i:

V (p, i) := min
τ,δ,λτ

E[l(τ, δ)|p0 =p, λ1 = i] . (6)

Then the value function satisfies the following recur-
sive relation:

V (p, k) = min(Q̄∗1(p, k), Q∗1(p, k))

= min
((

min
i
Q̄i1(p, k)

)
,

min
j

(
c+ cs1{j 6=k} + E[V (p′, j)]

))
(7)

where p′ is the belief state at next time-step, and the
expectation is taken over the stochasticity in the next
observation x. The optimal policy effectively divides
the belief state space into a stopping region (Q̄∗ ≤
Q∗) and a continuation region (Q̄∗ > Q∗), each of
which further divided into subregions corresponding
to alternative continuation and stopping actions. Note
that the optimal decision policy is a stationary policy:
the value function depends only on the belief state and
observation location at the time the decision is to be
taken, and not on time t per se.

Bellman’s dynamic programming principle implies a
numerical algorithm for computing the optimal policy:
guess an initial setting V ′(p, k) of the value function
(e.g., minimal stopping cost associated with each be-
lief state p and observation location k), then iterate
Eq. 7 until convergence, which yields the value func-
tion V (p, k) = V∞(p, k).

3 Case Study: Visual Search

In this section, we apply the active sensing model to
a simple, three location visual search task, where we
can compute the exact optimal policy (up to discretiza-
tion of the state space), and compare its performance
with the statistical policies [Butko and Movellan, 2010,
Najemnik and Geisler, 2005]. The target and distrac-
tors differ in terms of the likelihood of observations
received, when looking at them.

3.1 C-DAC Policy

For simplicity, we assume that the observations are
binary and Bernoulli distributed (iid conditioned on
target and fixation locations):

p(x|s = i;λt = j) = 1{i=j}β
x
1 (1−β1)1−x+1{i 6=j}β

x
0 (1−β0)1−x
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The difficulty of the task is determined by the discrim-
inability between target and distractor, or the differ-
ence between β1 and β0. For simplicity, we assume
that the only stopping action available is to choose
the current fixated location: ŝ(τ ;λτ = j) = j. To re-
duce the parameter space, we also set β0 = 1 − β1,
which is a reasonable assumption stating that the dis-
tractor and target stimuli only differ in one way (e.g.
opposing direction of motion when using random dots
stimulus with the coherence of dots kept the same).
In the following, we first present a brief description of
the greedy MAP and the infomax algorithms, before
moving on to model comparisons.

3.2 Greedy MAP Policy

The greedy MAP algorithm [Najemnik and Geisler,
2005] suggests that agents should try to maximize the
expected one-step look-ahead probability of finding the
target. Thus, the reward function is:

Rg(pt, j) = Ext+1
[max

i
P (s = i|xt, xt+1,λt, λt+1 = j)]

= Ext+1
[max

i
(pit+1)|xt+1, λt+1 = j]

To keep the notations consistent, we define the associ-
ated Q-factor, cost and policy as:

Qg(pt, j) = −Rg(pt, j)
V g(pt, j) = min

j
Qg(pt, j)

λgt+1 = argmin
j

Qg(pt, j)

3.3 Infomax Policy

The infomax algorithm [Butko and Movellan, 2010]
tries to maximize the information gained from each
fixation, by minimizing the expected cumulative fu-
ture entropy. Similar to [Butko and Movellan, 2010],
we can define the Q-factors, cost and the policy as:

Qim(pt, j) =
T∑

t′=t+1

Ext′ [H(pt′)|xt′ , λt+1 = j]

V im(pt, j) = min
j
Qim(pt, j)

λimt+1 = argmin
j

Qim(pt, j)

where H(p) = −∑i p
ilogpi is Shannon’s entropy.

Note that neither the original greedy MAP nor the
infomax algorithm provide a principled answer as to
when to stop searching and respond. They need to
be augmented to stop once the maximum probability
of any location containing the target exceeds a fixed
threshold. We come back to the problem of how we
set this threshold when we present comparison results.

3.4 Model Comparison

Before we discuss the performance of different models
in terms of “behavioral” output, we first visually il-
lustrate the decision policies (Fig. 1). The belief state
p is represented by discretizing the two-dimensional
belief state space (p1,p2) with m = 201 bins in each
dimension (p3 = 1 − p1 − p2). Although for C-DAC
the policy also depends on the current fixation loca-
tion, we only show it for fixating the first location;
the other representations being rotationally symmet-
ric. In Fig. 1, the parameters used for the C-DAC
policy are (c, cs, β) = (0.1, 0, 0.9), and for the statisti-
cal policies, (β, thresh) = (0.9, 0.8). Note that for this
simple scenario with no switch cost, the infomax policy
looks almost like the C-DAC policy – fixate the most
likely location unless there is very strong evidence that
the fixated location contains the target, in which case
the observer should stop. The greedy MAP policy,
on the other hand, looks completely different, and is
in fact ambiguous in the sense that for a large set of
belief states the policy does not give a unique next fix-
ation location. We show one instance of this seemingly
random policy, and note that there are regions where
the policy suggests to look at either location 1 or 2
or 3 (corner regions speckled with green, orange and
brown). Similarly, there are regions where the policy
suggests to look at 1 or 2 (green+orange region). In
fact, the performance of greedy MAP is so poor that
we exclude it from the model comparisons below.

Figure 1: Decision policies – Infomax resembles C-
DAC. Blue: stop. Green: fixate location 1. Orange:
fixate location 2. Brown: fixate location 3. Environ-
ment (c, cs, β) = (0.1, 0, 0.9). Threshold for infomax
and greedy MAP = 0.8

Fig. 2 shows the effects of how the C-DAC policy
changes when different parameters of the task are
changed. As seen in the figure, the stopping region ex-
pands if the cost of time increases (high c), intuitively
this makes sense – if each time step is costlier then the
observer should stop at a lower level of confidence, at
the expense of higher error rate. Similarly, for the case
when β is smaller (high noise), stopping with a lower
level of confidence makes sense – the value of each ad-
ditional observation depends on how noisy the data is,
the noisier the less worthwhile to continue observing,
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thus leading to a lower stopping criterion. Lastly, and
arguably the most interesting case, is when there is an
additional switch cost (added cs); this deters the algo-
rithm from switching even when the belief in a given
location has reduced below 1/3. In fact, this is the sce-
nario where optimizing for behavioral objectives turns
out to be truly beneficial, and although infomax can
approximate the C-DAC policy when the switch cost
is 0, it cannot do so when switch cost comes in to play.

Figure 2: C-DAC policy for different environments
(c, cs, β) – high c (0.2, 0, 0.9), high noise (0.1, 0, 0.7),
and added cs (0.1, 0.1, 0.9).

Next, we look at how these intuitions from the policy
plots translate to output measures in terms of accu-
racy, response delay, and number of fixations. In order
to set the stopping threshold for the infomax policy in
the most generous/optimistic setting, we first run the
C-DAC policy, and then set the threshold for infomax
so that it matches the accuracy of C-DAC 1, while we
compare the other output measures. We choose two
scenarios: (1) no switch cost, (2) with switch cost. For
all simulations, the algorithm starts with uniform prior
(p = (1/3, 1/3, 1/3)) and initial fixation location 1,
while the true target location is uniformly distributed.
Fig. 3 shows the accuracy, number of time steps and
number of switches for both scenarios. Confirming the
intuition from the policy plots, the performance of in-
fomax and C-DAC are comparable for cs = 0. How-
ever, when a switch cost is added, cs = 0.2, we see that
although the accuracy is comparable by design, there
is small improvement in search time of C-DAC, and
a notable advantage in the number of switches. The
behavior of the infomax policy does not adapt to the
change in the behavioral cost function, thus incurring
an overall higher cost. Algorithms like infomax that
maximize abstract statistical objectives lack the inher-
ent flexibility to adapt to changing behavioral goals or
environmental constraints. Even for this simple visual
search example, Infomax does not have a principled
way of setting the stopping threshold, and we gave it
the best-scenario outcome by adopting the stopping
policy generated by C-DAC in different contexts.

1Since a binary search is required to set this matching
threshold, and the accuracy is sensitive w.r.t. this thresh-
old, we settle on an approximate accuracy match for info-
max that is comparable or lower than C-DAC.

3.5 Approximate Control

Our model is formally a variant of POMDP (Partially
Observable Markov Decision Process), or, more specif-
ically, a Mixed Observability Markov Decision Process
(MOMDP) [Ong et al., 2010, Araya-López et al., 2010],
which differs from ordinary POMDP in that part of
the state space is partly hidden (target location in our
case) and partly observable (current fixation location
in our case). In general, POMDPs are hard to solve
since the decision made at each time step depends on
all the past actions and observations, thus imposing
enormous memory requirements. This is known as the
curse of history, and is the first major hurdle towards
any practical solution. An elegant way to alleviate this
is to use belief states which serve as a sufficient statistic
for the process history, thus requiring to maintain just
a single distribution instead of the entire history. Con-
verting a POMDP to a belief-state MDP is in fact a
prevalent technique and the one we employ. However,
this leads to another computational hurdle, known as
the curse of dimensionality, since now we have a MDP
with a continuous state-space, making tabular repre-
sentation of value function infeasible. One way to work
around the problem is to discretize the belief state
space into a grid, where instead of finding the value
function at all the points in the belief state simplex,
we only do so for a finite number of grid points. The
grid approximation, that we also use, has appealing
performance guarantees which improve as the density
of the grid is increased [Lovejoy, 1991]. To evaluate
the value function at the points not in this set, we
use some sort of interpolation technique (value at the
nearest grid point, weighted average value at k-nearest
grid point, etc.). However, although grid approxima-
tion may work for small state spaces, it does not scale
well to larger, practical problems. For example, when
used for the active sensing problem with k sensing lo-
cations, a uniform grid of size n has O(knk−1) com-
plexity.

Although there is a rich body of literature on ap-
proximate solutions of POMDP (e.g. [Powell, 2007,
Lagoudakis and Parr, 2003, Kaplow, 2010]) tackling
both general as well as application-specific approxi-
mations, most are inappropriate for dealing with the
MOMDP problem such as the one encountered here.
Furthermore, most of the POMDP approximation al-
gorithms focus on discounted rewards and/or finite-
horizon problems. Our formulation does not fall into
these categories and thus require novel approximation
schemes. We note that the Q-factors and the resulting
value function are smooth and concave, making them
amenable to low dimensional approximations. At each
step, we find a low dimensional representation of the
value function, and use that for the update step of the
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Figure 3: Comparison between C-DAC and Infomax for two environments (c, cs, β) = (0.1, 0, 0.8) and
(0.1, 0.2, 0.8). C-DAC has superior performance when cs > 0.

value iteration algorithm. Specifically, instead of re-
computing the value function at each grid point, here
we generate a large number of samples uniformly on
the belief state space, compute a new estimate of the
value function at those locations, and then extrapo-
late the value function to everywhere by improving its
parametric fit.

The first low-dimensional approximation we consider
is the Radial Basis Functions (RBF) representation:

1. Generate M RBFs, centered at {µi}Mi=1, with fixed

σ: φ(p) = 1
σ(2π)k/2

e
||p−µi||2

2σ2

2. Generate m random points from belief space, p.

3. Initialize {V (pi)}mi=1 with the stopping costs.

4. Find minimum-norm w from: V (p) = Φ(p)w.

5. Generate new m random belief state points (p′).
6. Evaluate required V values using current w.

7. Update V (p′) using value iteration.

8. Find a new w from V (p′) = Φ(p′)w.

9. Repeat steps 5 through 8, until w converges.

While we adopt a Gaussian kernel function, other
constructs are possible and have been imple-
mented in our problem without significant perfor-
mance deviation (not shown), e.g. multiquadratic
(φ(p) =

√
1 + ε||p− µi||2), inverse-quadratic(φ(p) =

(1 + ε||p− µi||2)−1), thin plate spine (φ(p) = ||p −
µi||2ln||p− µi||), etc. [Buhmann, 2003].

The RBF approximation requires setting several pa-
rameters (number, mean, and variance of bases), which
can be impractical for large problems, when there is
little or no information available about the properties
of the true value function. We thus also implement
a nonparametric variation of the algorithm, whereby
we use Gaussian Process Regression (GPR) [Williams
and Rasmussen, 1996] to estimate the value function
(step 4, 6 and 8). In addition, we also implement GPR

with hyperparameter learning (Automatic Relevance
Determination, ARD), thus obviating the need to pre-
set model parameters.

The approximations lead to considerable computa-
tional savings. The complexity of the RBF approxi-
mation is O(k(mM +M3)), for k sensing locations, m
random points chosen at each step, and M bases. For
the GPR approximation, the complexity is O(kN3),
where N is the number of points used for regression.
In practice, all the approximation algorithms we con-
sider converge rapidly (under 10 iterations), though we
do not have a proof that this holds for a general case.

Figure 4: Exact vs. approximate policies shown
over n = 201 bins. (A) Environment (c, cs, β) =
(0.1, 0, 0.9). (B) (c, cs, β) = (0.1, 0.1, 0.9).

In the simulations, the RBF approximate policy uses
m = 1000 random point for each iteration, and M =
49 bases, uniformly placed in the belief simplex, with
a unit variance. The GPR approximate policy uses
a unit length scale, unit signal strength and a noise-
strength of 0.1, with N = 200 random points used
for regression. Fig. 4A shows the exact policy vs. the
learned approximate policies for different approxima-
tions when the switch cost is 0, (c, cs, β) = (0.1, 0, 0.9).
We notice that with handcrafted bases, RBF is a good
approximation of the exact policy, whereas relaxing
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the parametric form in GPR and subsequently learn-
ing the hyperparameters in GPR with ARD, leads
to a slightly poorer but more robust non-parametric
approximation. Similar observations can be made in
Fig. 4B, for the environment with added switch cost,
(c, cs, β) = (0.1, 0.1, 0.9). All the results are shown
over a 201x201 grid. These faster yet robust approx-
imations motivated us to apply our model to more
complex problems. We investigate one such problem
of visual search with peripheral vision next, and show
how our model is fundamentally different from exist-
ing formulations such as infomax, even when the cost
of effort is not considered.

3.6 Visual Search with Peripheral Vision

In the very simple three-location visual search prob-
lem we considered above, we did not incorporate the
possibility of peripheral vision, or the more general
possibility that a sensor positioned in a particular lo-
cation can have distance-dependent, degraded infor-
mation about nearby locations as well. We therefore
consider a simple example with peripheral vision (see
Fig. 5B), whereby the observer can saccade to inter-
mediate locations that give reduced information about
either two (sensing locations on the edges of the tri-
angle) or three (sensing location in the center) stim-
uli. This is motivated by experimental observations
that humans not only fixate most probable target lo-
cations but sometimes also center-of-gravity locations
that are intermediate among two or more target loca-
tions [Findley, 1982, Zelinsky et al., 1997].

Figure 5: Schematics of visual search task. The
general task is to find the target (left-moving dots)
amongst distractors (right-moving dots). Not drawn
to scale. (A) Task 1: agent fixates one of the target
patches at any given time. (B) Task 2: agent fixates
one of the blue circle regions at any given time

Formally, we need an acuity map, the notion that it is
possible to gain information about stimuli peripheral
to the fixation center (fovea), such that the quality
of that information decays at greater spatial distance
away from the fovea. For example, the task of Fig. 5B
would require a continuation action space of 7 ele-
ments, L = {l1, l2, l3, l12, l23, l13, l123}, where the first

three actions correspond to fixating one of the three
target locations, the next three to fixating midway be-
tween two target locations, and the last to fixating
the center of all three. We parameterize the quality
of peripheral vision by augmenting the observations
to be three-dimensional, (x1, x2, x3), corresponding to
the three simultaneously viewed locations. We assume
that each xi is generated by a Bernoulli distribution
favoring 1 if it is the target, and 0 if it is not, and
its magnitude (absolute difference from 0.5) is great-
est when observer directly fixates the stimulus, and
smallest when the observer directly fixates one of the
other stimuli. We use 4 parameters to characterize the
observations (1 > β1 > β2 > β3 > β4 >= 0.5). So,
when the agent is fixating one of the potential target
locations (l1, l2 or l3), it gets an observation from the
fixated location (parameter β1 or 1−β1 depending on
whether it is the target or a distractor), and observa-
tions from the non-fixated locations (parameter β4 or
1 − β4 depending on whether they are a target or a
distractor). Similarly, for the midway locations (l12,
l23 or l13), the observations are received for the clos-
est locations (parameter β2 or 1 − β2 depending on
whether they are a target or a distractor), and from
the farther off location (parameter β4 or 1 − β4 de-
pending on whether it is the target or a distractor).
Lastly, for the center location (l123), the observations
are made for all three locations (parameter β3 or 1−β3
depending on whether they are a target or a distrac-
tor). Furthermore, since the agent can now look at
locations that cannot be target, we relax the assump-
tion that the agent must look at a particular location
before choosing it, allowing the agent to stop at any
location and declare the target.

3.7 Model Comparison

We first present the policies, and, similar to our dis-
cussion of simple visual search task, we only show the
C-DAC policy looking at the first location (l1) (the
other fixation-dependent policies are rotationally sym-
metric). It is evident from Fig. 6 that now the C-DAC
policy differs from the infomax policy even when no
switch cost is considered, thus pointing to a more fun-
damental difference between the two. Note that for the
parameters used here, C-DAC never chooses to look at
the center l123, but it does so for other parameter set-
tings (not shown). Infomax, however, never even looks
at the actual potential locations, favoring only midway
locations before declaring the target location.

For performance comparison in terms of behavioral
output, we again investigate two scenarios: (1) no
switch cost, (2) with switch cost. The threshold for
infomax is set so that the accuracies are matched to
facilitate fair comparison. For all simulations, the al-
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Figure 6: Decision policies. Azure: stop and choose
location l1. Blue: stop and choose l2. Indigo: stop
and choose l3. Green: fixate l1. Sea-green: fixate l2.
Olive: fixate l3. Red: fixate l12. Brown: fixate l23.
Yellow: fixate l13. Environment (c, β1, β2, β3, β4) =
(0.05, 0.62, 0.6, 0.55, 0.5). Threshold for infomax = 0.6

gorithm starts with uniform prior (p = (1/3, 1/3, 1/3))
and initial fixation at the center (location l123), while
the true target location is uniformly distributed. Fig. 7
shows the accuracy, number of time steps, and num-
ber of switches for both scenarios. Now we notice that
C-DAC outperforms infomax even when switch cost is
not considered, in contrast to the simple task without
peripheral vision (Fig. 3). Note however that C-DAC
makes more switches for cs = 0, which makes sense
since switches have no cost, and search time can poten-
tially be reduced by allowing more switches. However,
when we add a switch cost (cs = 0.005), C-DAC signif-
icantly reduces number of switches, whereas infomax
lacks this adaptability to a changed environment.

4 Discussion

In this paper, we proposed a POMDP plus Bayes risk-
minimization framework for active sensing, which opti-
mizes behaviorally relevant objectives in expectation,
such as speed, accuracy, and switching efficiency. We
compared this C-DAC policy to the previously pro-
posed infomax and greedy MAP policies. We found
that greedy MAP performs very poorly, and although
Infomax can approximate the optimal policy for some
simple environments, it lacks intrinsic context sensi-
tivity or flexibility. Specifically, for different environ-
ments, there is no principled way to set a decision
threshold for either greedy MAP or Infomax, leading
to higher costs, longer fixation durations, and larger
number of switches in problem settings when those
costs are significant. This performance difference and
the advantage of the added flexibility provided by C-
DAC becomes even more profound when we consider
a more general visual search problem with peripheral
vision. The family of approximations that we present
opens up the avenue for application of our model to
complex, real world problems.

There have been several other related active sensing

algorithms that differ from C-DAC in their state rep-
resentation, inference, control and/or approximation
scheme. We briefly summarize some of these here. In
[Darrell and Pentland, 1996], the problem of active ges-
ture recognition is studied, by using historic state rep-
resentation and nearest neighbor Q-function approx-
imation. Sensing strategies for robots in RoboCup
competition is studied in [Kwok and Fox, 2004], which
uses states augmented with associated uncertainty and
model-free Least Square Policy Iteration (LSPI) ap-
proximation [Lagoudakis and Parr, 2003]. Context de-
pendent goals are considered in [Ji et al., 2007] and
[Naghshvar and Javidi, 2010]. The former concen-
trates on multi-sensor multi-aspect sensing using Point
Based Value Iteration (PBVI) approximation [Pineau
et al., 2006]. The latter aims to provide conditions
for reduction of an active sequential hypothesis test-
ing problem to passive hypothesis testing. A Rein-
forcement Learning paradigm where reward is not de-
pendent on information gain but on how close a sac-
cade brings the target to the optical axis has also been
proposed [Minut and Mahadevan, 2001]. Other con-
trol strategies like random search, sequential sweep-
ing search, “Drosophila-inspired” search [Chung and
Burdick, April 2007] and hierarchical POMDPs for
visual action planning [Sridharan et al., 2010] have
also been proposed. We choose infomax to compare
our C-DAC policy against because, as a human-vision
inspired model, it not only explains human fixation
behavior on a variety of tasks, but also has cutting
edge computer vision applications (e.g. the digital eye
[Butko and Movellan, 2010]).

A related problem domain, not typically studied as
POMDP or MDP, is Multi-Armed Bandits (MAB)
[Gittins, 1979]. The classical example of a MAB prob-
lem concerns with pulling levers (or playing arms) in a
set of slot machines. The person gambling is unaware
of the states and reward distribution of the levers, and
has to figure out which lever to pull next in order to
maximize the cumulative reward. Noting a correspon-
dence between the ideas of pulling arms and fixating
location, and between rewards and observations, the
MAB framework seems to describe the active sensing
problem. Concretely, given the locations fixated (arms
played) so far, and the observations (rewards) received,
how to choose which location to fixate (which arm to
play) next. However, there are certain characteristics
of the active sensing problem that make it difficult to
study in a MAB framework as yet. Firstly, the prob-
lem is an instance of restless bandits [Whittle, 1988],
where the state of an arm can change even when it is
not played. In active sensing, the belief about a lo-
cation being the target does change even when it is
not fixated. Whittles index is a simple rule that as-
signs a value to each arm in a restless setting, and the
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Figure 7: Comparison between C-DAC and Infomax on Task 2 for two environments (c, β1, β2, β3, β4) =
(0.05, 0.62, 0.6, 0.55, 0.5), cs = 0 and cs = 0.005. C-DAC adjusts the time steps and number of switches de-
pending on the environment, taking a little longer but reducing number of switches when effort has cost.

arm with the highest value is then played. The rule
is asymptotically optimal only for a sub-class of prob-
lems (e.g. [Washburn and Schneider, 2008] and [Liu
and Zhao, 2010]), but not optimal in general. Sec-
ondly, the states of the arms in the active sensing task
are correlated (the elements of the belief-state have
to add up to 1). There is some work on correlated
arms for specific structure of correlation, like clustered
arms [Pandey et al., 2007] and Gaussian process ban-
dits [Dorard et al., 2009], but so far there is no general
strategy for handling this scenario.

Active learning is another related approach, with hy-
pothesis testing as a sub-problem that is related to
the problem of active sensing. The setting involves an
unknown true hypothesis, and an agent that can per-
form queries providing information about the under-
lying hypothesis. The task is then to determine which
query to perform next to optimally reduce the num-
ber of plausible hypothesis (version space). In active
sensing however, although the belief about a hypoth-
esis (target location) can become arbitrarily low, the
number of plausible hypothesis does not reduce. This
problem is investigated in [Golovin et al., 2010], and
a near-optimal greedy solution is proposed along with
performance guarantees. Besides the sub-optimality of
the approach, the same test cannot be performed more
than once (whereas in active sensing, one location can
be fixated more than once). The lack of this provi-
sion stems from the fact that the noisy observations
considered are actually deterministic with respect to a
hidden noise parameter. Thus, as of yet it is hard to
cast the active sensing problem in this framework.

We thus conclude that although there is a rich body of
literature on related problems, as can be seen from the
few examples we presented, our formulation is novel
(to our best knowledge) in its goals and principled ap-
proach to the problem of active sensing. In general,
the framework proposed here has the potential for not

only applications in visual search, but a host of other
problems, ranging from active scene categorization to
active foraging. The decision policies it generates are
adaptive to the environment and sensitive to contex-
tual factors. This flexibility and robustness to differ-
ent environments makes the framework an appealing
choice for a variety of active sensing applications.
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Abstract

Graph-based methods provide a powerful
tool set for many non-parametric frameworks
in Machine Learning. In general, the mem-
ory and computational complexity of these
methods is quadratic in the number of exam-
ples in the data which makes them quickly in-
feasible for moderate to large scale datasets.
A significant effort to find more efficient so-
lutions to the problem has been made in
the literature. One of the state-of-the-art
methods that has been recently introduced
is the Variational Dual-Tree (VDT) frame-
work. Despite some of its unique features,
VDT is currently restricted only to Euclidean
spaces where the Euclidean distance quan-
tifies the similarity. In this paper, we ex-
tend the VDT framework beyond the Eu-
clidean distance to more general Bregman di-
vergences that include the Euclidean distance
as a special case. By exploiting the properties
of the general Bregman divergence, we show
how the new framework can maintain all the
pivotal features of the VDT framework and
yet significantly improve its performance in
non-Euclidean domains. We apply the pro-
posed framework to different text categoriza-
tion problems and demonstrate its benefits
over the original VDT.

1 Introduction

Graph-based methods provide a powerful tool set for
many non-parametric frameworks in Machine Learn-
ing (ML). The common assumption behind these
methods is the datapoints can be represented as the
nodes of a graph whose edges encode some notion of
similarity between the datapoints. Graph-based meth-
ods have been applied to various applications in ML

including clustering (Ng et al., 2001a; von Luxburg,
2007; Amizadeh et al., 2012b), semi-supervised learn-
ing (Zhu, 2005; Zhou et al., 2003), link-analysis (Ng
et al., 2001c,b) and dimensionality reduction (Belkin
and Niyogi, 2002; Zhang et al., 2012).

On the algorithmic side, many of these methods in-
volve computing the random walk on the graph which
is mathematically represented by a (Markov) transi-
tion matrix over the graph. In general, the compu-
tation of such matrix takes O(N2) time and memory,
where N is the problem size. As a result, for problems
with large N , the direct computation of the transi-
tion matrix (or its variants) quickly becomes infeasi-
ble. This is indeed a big challenge for applying many
graph-based frameworks specially with the advent of
large-scale datasets in many fields in ML. To tackle
this challenge, a significant effort has been made in
the literature to develop the approximation techniques
that somehow reduce the representation of the under-
lying graph. Based on the nature of approximation,
these methods are generally categorized into node re-
duction (Kumar et al., 2009; Talwalkar et al., 2008;
Amizadeh et al., 2011), edge reduction (von Luxburg,
2007; Jebara et al., 2009; Qiao et al., 2010), Fast Gauss
Transform (Yang et al., 2003, 2005) and hierarchical
(Amizadeh et al., 2012a; Lee et al., 2011) techniques.

Recently, Amizadeh et. al (Amizadeh et al., 2012a)
have proposed a hierarchical approximation frame-
work called the Variational Dual-Tree (VDT) frame-
work for the same purpose. In particular, by com-
bining the variational approximation with hierarchical
clustering of data, VDT provides a fast and scalable
method to directly approximate the transition matrix
of the random walk. Furthermore, the hierarchical na-
ture of VDT makes it possible to have approximations
at different levels of granularity. In fact, by chang-
ing the level of approximation in VDT, one can ad-
just the trade-off between computational complexity
and approximation accuracy. One major restriction
with the VDT framework, however, is it only works
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for Euclidean spaces where similarity is expressed via
the Euclidean distance. This can be problematic in
many real applications where the Euclidean distance is
not the best way to encode similarity. Unfortunately,
the extension of VDT to a general distance metric is
not straightforward, mainly because the key compu-
tational gain of VDT is achieved by relying on the
functional form of the Euclidean distance.

In this paper, our goal is to extend the VDT frame-
work to use a general class of divergences called Breg-
man divergences (Banerjee et al., 2005). We propose
this new method as the Bregman Variational Dual Tree
(BVDT) framework. Bregman divergences cover a di-
verse set of divergences and distances which can all
be reformulated in a unified functional form. They
have been used in many ML paradigms including clus-
tering (Banerjee et al., 2005), matrix approximation
(Dhillon and Sra, 2005; Banerjee et al., 2004), nearest
neighbor retrieval (Cayton, 2008) and search (Zhang
et al., 2009). From the applied side, some famous
distances and divergences such as Euclidean distance,
KL-Divergence and Logistic Loss are in fact the in-
stances of Bregman divergences. By extending the
VDT framework to Bregman divergences, one can use
it with any instance of Bregman divergences depend-
ing on the application and therefore it becomes acces-
sible to a large class of applications where similarity is
expressed via non-Euclidean measures.

The crucial aspect of using Bregman divergences for
the VDT framework is it does not cost us any extra
order of computations; it still has the same compu-
tational and memory complexity order as the original
VDT. In particular, we show that by exploiting the
functional form of the general Bregman divergence,
one can design a similar mechanism as in VDT to
significantly cut unnecessary distance computations.
This is a very important property because the motiva-
tion to develop variational dual-trees in the first place
was to tackle large-scale problems.

One nice feature of the VDT framework is its prob-
abilistic interpretation. In fact, the whole framework
is derived from the data likelihood. We show that by
using the natural correspondence between the Breg-
man divergences and the exponential families, we can
reconstruct the same probabilistic interpretation for
the BVDT framework which induces a more general
modeling perspective for the problems we consider.
The benefit of such probabilistic view is not restricted
only to the theoretical aspects; as we show by a walk-
through example, one can utilize the probabilistic view
of our model to derive appropriate Bregman diver-
gences for those domains where the choice of a good
Bregman divergence is not apparent. In particular, in
this paper, we use this construction procedure to de-

rive a proper Bregman divergence for frequency data
(specifically text data in our experiments). By apply-
ing the BVDT framework equipped with the derived
divergence on various text datasets, we show the clear
advantage of our framework over the original VDT
framework in terms of the approximation accuracy,
while preserving the same computational complexity.
Finally, we show that the original VDT framework is
in fact a special case of the BVDT framework.

2 Euclidean Variational Dual-Trees

To prepare the reader for the proposed Bregman diver-
gence extension to the VDT framework, we will in this
section briefly review the basic elements of VDT. In-
terested readers may refer to (Amizadeh et al., 2012a)
for further details.

2.1 Motivation

Let D = {x1, x2, . . . , xN} be a set of i.i.d. datapoints
in X ⊆ Rd. The similarity graph G = 〈D,D ×D,W〉
is defined as a complete graph whose nodes are the
elements of D and the matrix W = [wij ]N×N rep-
resents the edge weights of the graph. A weight
wij = k(xi, xj ;σ) = exp(−‖xi − xj‖2/2σ2) is de-
fined by the similarity between nodes xi and xj . The
closer xi and xj are in terms of the Euclidean distance
‖xi − xj‖, the higher the similarity weight wij will
be. The bandwidth parameter σ is a design parameter
that scales the similarities in the graph. By abstract-
ing the input space into a graph, the similarity graph
essentially captures the geometry of the data.

Once the similarity graph is constructed, one can de-
fine a random walk on it. The transition probability
distributions are in this case given by the transition
matrix P = [pij ]N×N , where pij = wij/

∑
k 6=i wik is

the probability of jumping from node xi to node xj .
Note that the elements in each row of P sum up to 1 so
that each row is a proper probability distribution. The
transition matrix is the fundamental quantity used by
many graph-based Machine Learning frameworks, as
mentioned already in Section 1.

In terms of computational resources, it takes O(N2)
CPU and memory to construct and maintain the tran-
sition matrix, which can be problematic when the
number of datapoints, N , becomes large. This is,
in fact, quite typical in many real-world datasets and
therefore leaves us with a serious computational chal-
lenge in using many graph-based frameworks. To
overcome this challenge, the key idea is to some-
how reduce the representation of P. The Varia-
tional Dual-Tree (VDT) framework provides a non-
parametric methodology to approximate and represent
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P in O(N1.5 logN). One big advantage of this frame-
work to its counterparts is that it directly computes
the transition matrix without computing the interme-
diate similarity matrix W. Another advantage of VDT
is that given a distance computation of O(1) between
any two datapoints, the overall computational com-
plexity of VDT does not depend on the dimensionality
d of the input space.

2.2 Variational Dual-Tree Partitioning

The main idea behind the computational reduction by
the VDT framework is to partition the transition ma-
trix P into blocks, where each block ties the individual
transition probabilities in that block into a single num-
ber (or parameter). The number of different elements
in P is in this way reduced from N2 to |B|, the num-
ber of blocks. In the VDT framework, a cluster tree
hierarchy of the data lets us define blocks of different
sizes according to nodes at different granularity levels
in the tree. In this way, the number of blocks |B| can
be as small as O(N) (Amizadeh et al., 2012a).

More specifically, let T be a binary tree that repre-
sents a hierarchical clustering of data. Given T , a
valid block partition B defines a mutually exclusive
and exhaustive partition of P into blocks (or sub-
matrices) (A,B) ∈ B, where A and B are two non-
overlapping subtrees in T . That is, A cannot be a
subtree of B or vice versa. A valid block partition B
relates to a similarity graph as follows. If A and B
are two non-overlapping datapoint clusters, then the
block (A,B) ∈ B represents the transition probabili-
ties from datapoints in node A to datapoints in node
B with only one parameter, which is denoted by qAB .
That is, ∀xi ∈ A, xj ∈ B, pij = qAB ; we call this a
block constraint. Valid block partitions are not unique;
in fact, any further refinement of a valid partition re-
sults in a new valid partition with increased number
of blocks. In the coarsest partition, each subtree in T
is blocked with its sibling, resulting in the minimum
number of blocks |B| = 2(N − 1). The coarsest parti-
tion embodies the approximation of P at the coarsest
level. On the other hand, in the finest partition, each
leaf in T is blocked with all the other leaves resulting
in the maximum number of blocks |B| = N(N − 1);
this partition exactly represents P with no approxima-
tion. The other valid partitions vary between these
two extremes. In this setup, a finer partition has bet-
ter approximation accuracy at the cost of increased
computational complexity and vice versa. Figure 1
borrowed from (Amizadeh et al., 2012a) shows an ex-
ample of a block partitioning with its corresponding
cluster tree.

Given a block partitioning B of P, one needs to com-
pute the parameter set Q = {qAB | (A,B) ∈ B} as

Figure 1: A block partition that, for example, enforces
the block constraint p13 = p14 = p23 = p24 for the
block (A,B) = (1− 2, 3− 4) (where a− b denotes a
through b).

the final step to complete the approximation of P. For
this purpose, the VDT framework maximizes the vari-
ational lower bound on the log-likelihood of data with
the set Q as the variational parameters. In this frame-
work, the likelihood of data is modeled by the non-
parametric kernel density estimate. In particular, a
Gaussian kernel is placed on each datapoint in the in-
put space such that each datapoint xi plays two roles:
(I) a datapoint where we want to compute the likeli-
hood at, and (II) the center of a Gaussian kernel. We
denote datapoint xi as mi when it is regarded as a
kernel center. Using this notation, the likelihood of
dataset D is computed as:

p(D) =
∏

i

p(xi) =
∏

i

∑

j 6=i
p(mj)p(xi | mj), (1)

where p(xi|mj) is the Gaussian density at xi cen-
tered at mj ; that is, p(xi|mj) = exp(−‖xi −
mj‖2/2σ2)(2πσ2)−d/2, and p(mj) = 1/(N − 1) is the
uniform mixture weight. Using Bayes rule, we observe
that the posterior p(mj | xi) is equal to the transition
probability pij . The lower-bound on the log-likelihood
is then computed as:

log p(D) =
∑

i

log
∑

j 6=i

qij
qij
p(mj)p(xi | mj)

≥
∑

i

∑

j 6=i
qij log

p(mj)p(xi | mj)

qij

= log p(D)−
∑

i

DKL

(
qi·‖pi·

)
, `(D), (2)

where qij ’s are the variational parameters approximat-
ing pij ’s and DKL(qi·‖pi·

)
is the KL-divergence be-

tween two distributions qi· and pi·. With only the
sum-to-one constraints ∀i :

∑
j 6=i qij = 1, the opti-

mization in Eq. (2) returns qij = pij ; that is, there is
no approximation! However, by adding the block con-
straints from the block partition B, one can rewrite Eq.
(2) in terms of the block parameters in Q. Let us first
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reformulate the sum-to-one constraints in accordance
with the block partition as follows:

∑
(A,B)∈B(xi)

|B| · qAB = 1 for all xi ∈ D. (3)

where, B(xi) , {(A,B) ∈ B | xi ∈ A}. In this case,

`(D) = c− 1

2σ2

∑

(A,B)∈B
qAB ·DAB

−
∑

(A,B)∈B
|A||B| · qAB log qAB , (4)

where

c = −N log
(
(2π)d/2σd(N − 1)

)

DAB =
∑

xi∈A

∑

mj∈B
‖xi −mj‖2. (5)

(Thiesson and Kim, 2012) has proposed anO(|B|)-time
algorithm to maximize Eq. (4) under the constraints
in Eq. (3).

A very crucial element of the VDT framework is the
way that Eq. (5) is computed; the direct computation
of the double-sum for DAB of all blocks would send
us back to an O(N2)-time algorithm! Fortunately,
this can be avoided thanks to the Euclidean distance,
where DAB can be written as:

DAB = |A|S2(B) + |B|S2(A)− 2S1(A)TS1(B), (6)

where, S1(A) =
∑
x∈A x and S2(A) =

∑
x∈A x

Tx are
the statistics of subtree A. These statistics can be
incrementally computed and stored while the cluster
tree is being built; an O(N) computation. Using these
statistics, DAB is computed in O(1). The crux of
the reformulation in Eq. (6) is the de-coupling of the
mutual interactions between two clusters A and B so
that the sum of mutual interactions can be computed
using the sufficient statistics pre-calculated indepen-
dently for each cluster.

Once the parameters Q are computed, we have the
block approximation of P which we denote by Q.
(Amizadeh et al., 2012a) has proposed an O(|B|)-time
algorithm to compute the matrix-vector multiplication
Qv for an arbitrary vector v. We will use this algo-
rithm for label propagation in Eq. (29) in Section 4.2.

2.3 Anchor Tree Construction

So far, we assumed the cluster hierarchy tree T is
given. In reality, however, one needs to efficiently build
such a hierarchy from data as the first step of the VDT
framework. (Amizadeh et al., 2012a) has used the an-
chor construction method (Moore, 2000) for this pur-
pose. Compared to the classical O(N3)-time agglom-
erative clustering algorithm, the construction time for

this tree is O(N1.5 logN) for a relatively balanced data
set (see Amizadeh et al. (2012a), Appendix). The con-
struction starts with an anchor growing phase that for
the N data points gradually grows a set of

√
N an-

chors A. Each anchor A ∈ A has a pivot datapoint Ap
and maintains a list of individual member datapoints
AM sorted by decreasing order of distance to the pivot
‖xi − Ap‖, xi ∈ AM . The distance to the first data-
point in the list therefore defines a covering radius Ar
for the anchor, where ‖xi−Ap‖ ≤ Ar for all xi ∈ AM .

The anchor growing phase constructs a first anchor by
choosing a random datapoint as pivot and assigning
all datapoints as members of that anchor. A new an-
chor Anew is now added to a current set of anchors
in three steps until

√
N anchors are found: first, its

pivot element is chosen as the datapoint with largest
distance to the pivot(s) of the current anchor(s):

Anewp = arg max
xi∈AM ,A∈A

‖xi −Ap‖. (7)

Second, the new anchor now iterates through the mem-
ber elements of current anchors and “steals” the dat-
apoints with ‖xi − Anewp ‖ < ‖xi − Ap‖. Because the
list of elements in an anchor is sorted with respect to
‖xi−Ap‖, a significant computational gain is achieved
by not evaluating the remaining datapoints in the list
once we discover that for the i-th datapoint in the list
‖xi −Ap‖ ≤ dthr, where

dthr = ‖Anewp −Ap‖/2, (8)

This guarantees that the elements with index j ≥ i
in the list are closer to their original anchor’s pivot
and cannot be stolen by the new anchor. When a new
anchor is done stealing datapoints from older anchors,
its list of elements is finally sorted.

Once the
√
N anchors are created, the anchor tree con-

struction now proceeds to anchor agglomeration phase
that assigns anchors as leaf nodes and then iteratively
merges two nodes that create a parent node with the
smallest covering radius. This agglomerative bottom-
up process continues until a hierarchical binary tree
is constructed over the

√
N initial anchors. With an

Euclidean distance metric, the covering parent for two
nodes A and B can be readily computed as the node
C with pivot and radius

Cp = (|A| ·Ap + |B| ·Bp)/(|A|+ |B|) (9)

Cr = (Ar +Br + ‖Bp −Ap‖)/2 (10)

Finally, recall that the leaves (i.e. the initial anchors)
in this newly constructed tree contain

√
N datapoints

on average each. The whole construction algorithm is
now recursively called for each anchor leaf to grow it
into a subtree. The recursion ends when the leaves of
the tree contain only one datapoint each.
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3 Bregman Variational Dual-Trees

The Euclidean VDT framework has been shown to be a
practical choice for large-scale applications. However,
its inherent assumption that the underlying distance
metric in the input space should be the Euclidean
distance is somewhat restrictive. In many real-world
problems, the Euclidean distance is simply not the best
way to quantify the similarity between datapoints.

On the other hand, the VDT framework does not seem
to depend on the choice of distance metric, which
makes it very tempting to replace the Euclidean dis-
tance in the formulation of the VDT framework with
a general distance metric. However, there is one prob-
lem: the de-coupling in Eq. (6) was achieved only
because of the Euclidean distance special form which
is not the case for a general distance metric. Unfor-
tunately, we cannot compromise on this de-coupling
simply because, without it, the overall complexity of
the framework is back to O(N2). One solution is to use
some approximation technique similar to Fast Gauss
Transform techniques (Yang et al., 2005) to approxi-
mately de-couple a general distance metric. Although,
this may work well for some special cases, in general,
the computational burden of such approximation can
be prohibitive; besides, we will have a new source of
approximation error.

So, if we cannot extend VDT for general distance met-
ric, is there any sub-class of metrics or divergences
which we can safely use to extend the VDT frame-
work? The answer is yes, the family of Bregman di-
vergences is a qualified candidate. This family con-
tains a diverse set of divergences which also include the
Euclidean distance. By definition, the Bregman diver-
gence has a de-coupled form which makes it perfect for
our purpose. From the applied side, Bregman diver-
gences cover some very practical divergences and met-
rics such as Euclidean distance, KL-Divergence and
Logistic Loss that are widely used in many engineer-
ing and scientific applications. Furthermore, the nat-
ural correspondence of Bregman divergences with the
exponential families provides a neat probabilistic in-
terpretation for our framework.

3.1 Bregman Divergence and The
Exponential Families

Before illustrating the Bregman Variational Dual-Tree
(BVDT) framework, we briefly review the Bregman
divergence, its important properties and its connection
to the exponential families. Interested readers may
refer to (Banerjee et al., 2005) for further details.

Let X ⊆ Rd be a convex set in Rd, ri(X ) denote the
relative interior of X , and φ : X 7→ R be a strictly con-

vex function differentiable on ri(X ), then the Bregman
divergence dφ : X × ri(X ) 7→ [0,∞) is defined as:

dφ(x, y) , φ(x)− φ(y)− (x− y)T∇φ(y) (11)

where, ∇φ(y) is the gradient of φ(·) evaluated at y. For
different choices of φ(·), we will get different Bregman
divergences. Table 1 lists some famous Bregman diver-
gences along with their corresponding φ(·) functions.
It is important to note that the general Bregman di-
vergence is not a distance metric: it is not symmetric,
nor does it satisfy the triangular inequality. However,
we have ∀x ∈ X , y ∈ ri(X ) : dφ(x, y) ≥ 0, dφ(y, y) = 0.

Let S = {x1, . . . , xn} ⊂ X and X be a random variable
that takes values from S with uniform distribution1;
the Bregman information of the random variable X
for the Bregman divergence dφ(·, ·) is defined as:

Iφ(X) , min
s∈ri(X )

E
[
dφ(X, s)

]
= min
s∈ri(X )

1

n

n∑

i=1

dφ(xi, s)

(12)
The optimal s that minimizes Eq. (12) is called the
Bregman representative of X and is equal to:

arg min
s∈ri(X )

E
[
dφ(X, s)

]
= E[X] =

1

n

n∑

i=1

xi , µ (13)

That is, the Bregman representative of X is always
equal to the sample mean of S independent of the Breg-
man divergence dφ(·, ·).
The probability density function p(z), defined on set
Z, belongs to an exponential family if there exists a
mapping g : Z 7→ X ⊆ Rd that can be used to re-
parameterize p(z) as:

p(z) = p(x; θ) = exp(θTx− ψ(θ))p0(x) (14)

where x = g(z) is the natural statistics vector, θ is the
natural parameter vector and ψ(θ) is the log-partition
function. Eq. (14) is called the canonical form of p. If
θ takes values from parameter space Θ, Eq. (14) de-
fines the family Fψ = {p(x; θ) | θ ∈ Θ} parameterized
by θ. If Θ is an open set and we have that @c ∈ Rd
s.t. cT g(z) = 0,∀z ∈ Z, then family Fψ is called a
regular exponential family. (Banerjee et al., 2005) has
shown that any probability density function p(x; θ) of
a regular exponential family with the canonical form
of Eq. (14) can be uniquely expressed as:

p(x; θ) = exp(−dφ(x, µ)) exp(φ(x))p0(x) (15)

where φ(·) is the conjugate function of the log-partition
function ψ(·), dφ(·, ·) is the Bregman divergence de-
fined w.r.t. function φ(·), and µ is the mean param-
eter. The mean parameter vector µ and the natural

1The results hold for any distribution on S.
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parameter vector θ are connected through:

µ = ∇ψ(θ), θ = ∇φ(µ) (16)

Moreover, (Banerjee et al., 2005) (Theorem 6) has
shown there is a bijection between the regular expo-
nential families and the regular Bregman divergences.
The last column in Table 1 shows the corresponding
exponential family of each Bregman divergence. Us-
ing Eq. (13), one can also show that, given the finite
sample S = {x1, . . . , xn}, the maximum-likelihood es-
timate of the mean parameter µ̂ for any regular expo-
nential family Fψ is always equal to the sample mean
of S regardless of Fψ.

3.2 Bregman Variational Approximation

Having described the basic concepts of Bregman di-
vergences, we are now ready to nail down the BVDT
framework. Let S = {z1, z2, . . . , zN} ⊂ Z be a fi-
nite sample from the convex set Z which is not nec-
essarily an Euclidean space. We are interested to ap-
proximate the transition matrix P on the similarity
graph of S where we know the Euclidean distance is
not necessarily the best way to encode similarity. To
do so, we assume S is sampled according to an un-
known mixture density model p∗(z) with K compo-
nents from the regular exponential family Fψ. That
is, there exists the mapping g : Z 7→ X ⊆ Rd such that
p∗(z) can be re-parametrized in the canonical form as

p∗(x) =
∑K
i=1 p(θi) exp(θTi x− ψ(θi))p0(x).2

Furthermore, let D = g(S) = {x1, x2, . . . , xN} ⊂ X be
the natural statistics of sample S s.t. xi = g(zi). Then
we model the likelihood of D using the kernel density
estimation:

p(D) =
N∏

i=1

∑

j 6=i
p(mj)p(xi | mj) (17)

=

N∏

i=1

∑

j 6=i
p(mj) exp(−dφ(xi,mj)) exp(φ(xi))p0(xi)

Where, we assume the kernel component p(xi | mj)
belongs to the regular exponential family Fψ such that
it can be uniquely re-parameterized using Eq. (15).
Given a block partitioning B on P, we follow the similar
steps in Eq. (2)-(5) to derive the block-partitioned
variational lower-bound on p(D):

`(D) = c−
∑

(A,B)∈B
qAB ·DAB

−
∑

(A,B)∈B
|A||B| · qAB log qAB , (18)

2For some exponential families such as Gaussian and
Multinomial, the mapping g(·) is identity.

where

c = −N log(N − 1) +

N∑

i=1

(
φ(xi) + log p0(xi)

)

DAB =
∑

xi∈A

∑

mj∈B
dφ(xi,mj). (19)

Now we can maximize `(D) subject to the constraints
in Eq. (3) to find the approximation Q of P using the
same O(|B|)-time algorithm in the VDT framework.

The crucial aspect of the BVDT framework is DAB in
Eq. (19) is de-coupled into statistics of the subtrees A
and B using the definition of the Bregman divergence:

DAB = |B|S1(A)+|A|
(
S2(B)−S1(B)

)
−S3(A)TS4(B)

(20)
where,

S1(A) =
∑

x∈A
φ(x), S2(A) =

∑

x∈A
xT∇φ(x)

S3(A) =
∑

x∈A
x, S4(A) =

∑

x∈A
∇φ(x) (21)

are the statistics of subtree A. These statistics can be
incrementally computed and stored while the cluster
tree is being built (in overall O(N) time) such that at
the optimization time, DAB is computed in O(1).

Finally, by setting φ(x) = ‖x‖2/2σ2 and doing the al-
gebra, the BVDT framework reduces to the Euclidean
VDT framework; that is, the Euclidean VDT frame-
work is a special case of the BVDT framework.

3.3 Bregman Anchor Trees

Recall that the approximation in the Euclidean VDT
framework is based on the cluster hierarchy T of the
data which is built using the anchor tree method with
the Euclidean distance. For the BVDT framework, we
can no longer use this algorithm because the Euclidean
distance no longer reflects the similarity in the input
space. For this reason, one needs to develop an an-
chor tree construction algorithm for general Bregman
divergences. This generalization is not straightforward
as a general Bregman divergence is neither symmetric
nor does it hold the triangle inequality. In particular,
we need to address two major challenges.

First, due to the asymmetry of a general Bregman di-
vergence, the merging criterion in the anchor agglom-
eration phase is no longer meaningful. For this pur-
pose, we have used the criterion suggested in the recent
work by (Telgarsky and Dasgupta, 2012). In particu-
lar, at each agglomeration step, anchors A and B with
the minimum merging cost are picked to merge into
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Name X φ(x) dφ(x,y) Exponential Family
Logistic Loss (0, 1) x log x x log

`
x
y

´
+ (1− x) log

`
1−x
1−y

´
1D Bernoulli

Itakura-Saito Dist. R++ − log x− 1 x
y
− log

`
x
y

´
− 1 1D Exponential

Relative Entropy Z+ x log x− x x log
`
x
y

´
− x+ y 1D Poisson

Euclidean Dist. Rd ‖x‖2/2σ2 ‖x− y‖2/2σ2 Spherical Gaussian

Mahalonobis Dist. Rd xT Σ−1x (x− y)T Σ−1(x− y) Multivariate Gaussian

KL-Divergence d-simplex
Pd

j=1 x(j) log x(j)
Pd

j=1 x(j) log
`x(j)
y(j)

´
-

- int. d-simplex
Pd

j=1 x(j) log
`x(j)

L

´ Pd
j=1 x(j) log

`x(j)
y(j)

´
Multinomial

Table 1: Famous Bregman divergences along with their corresponding φ(·) function, its domain and the corresponding
exponential family distribution

the parent anchor C. The cost for merging a pair of
anchors A and B is defined as:

∆(A,B) = |A| · dφ(Ap, Cp) + |B| · dφ(Bp, Cp) (22)

where |A| is the number of elements in the anchor A,
and Cp is the parent anchor’s pivot which is given by
Eq. (9). (Telgarsky and Dasgupta, 2012) has shown
that the merging cost in Eq. (22) can be interpreted
as the difference of cluster unnormalized Bregman in-
formations before and after merging.

Second, as shown before, using the halfway Euclidean
distance as the stealing threshold (Eq. (8)) in the
anchor construction phase significantly cuts the un-
necessary computations. This threshold, however, is
meaningless for a general Bregman divergence simply
because a general Bregman divergence is not a metric.
Therefore, we need to develop an equivalent threshold
for Bregman divergences to achieve a similar computa-
tional gain in constructing Bregman anchor trees. The
following proposition addresses this problem:

Preposition 1. Let Acurr and Anew denote the cur-
rent and the newly created anchors, respectively, where
Anew is stealing datapoints from Acurr. Define

dthr =
1

2
min
y∈X

[
dφ(y,Acurrp ) + dφ(y,Anewp )

]
(23)

Then for all x ∈ Acurr such that dφ(x,Acurrp ) ≤ dthr,
we will have dφ(x,Acurrp ) ≤ dφ(x,Anewp ); that is, x
cannot be stolen from Acurrp by Anewp . Furthermore,
the minimizer of Eq. (23) is equal to:

y∗ = ∇φ−1
[

1

2

(
∇φ(Acurrp ) +∇φ(Anewp )

)]
(24)

The proof is easily derived by contradiction. Note that
for the special case of Euclidean distance where φ(x) =
‖x‖2/2σ2, Eq. (23) reduces to Eq. (8).

4 Experiments

In order to apply the BVDT framework to a real prob-
lem, all one needs to know are the appropriate Breg-

man divergence and its corresponding φ(·) function in
the input space; knowing the corresponding exponen-
tial family that has generated the data is not neces-
sary. However, in many problems, the choice of the
appropriate Bregman divergence is not clear; instead,
we know that the underlying data generation process
belongs to or can be accurately modeled with expo-
nential families. In such cases, one can systematically
derive the appropriate Bregman divergence from the
data distribution. In this section, we use this proce-
dure to derive an appropriate Bregman divergence for
the frequency data.

4.1 Modeling Frequency Data

Given a set of d events {ej}dj=1, the frequency dataset
D consists of N feature vectors where the j-th ele-
ment of the i-th vector, xi(j), represents the number
of times that event ej happens in the i-th case for all
j ∈ {1, . . . , d}. The length of each vector is defined
as the total number of events happened in that case,
i.e. Li =

∑d
j=1 xi(j). For example, in text analy-

sis, events can represent all the terms that appeared
in a text corpus, while the data cases represent the
documents. The frequency dataset in this case is the
famous bag-of-words. We adopt the term-document
analogy for the rest of this section.

If the lengths of all documents were equal, one could
model the document generation process with a mix-
ture of multinomials, where each mixture component
had different term generation probabilities while shar-
ing the same length parameter (Banerjee et al., 2005).
However, having the same length is not the case for
many real datasets. To address this issue, we pro-
pose a mixture model for data generation whose k-th
component (k ∈ [1..K]) is modeled by the following
generative model:

pk(x;αk, λk) = p(x | L;αk)p(L;λk) (25)

where, the length of a document, L, has a poisson
distribution p(L;λk) with mean length λk and given
L, document x has a multinomial distribution p(x |
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L;αk) with the term probabilities αk = [αk(j)]dj=1.
By doing the algebra, pk(x;αk, λk) can be written in
the form of Eq. (14), where we have:

θk = [θk(j)]dj=1 =
[

log(λkαk(j))
]d
j=1

,

ψ(θk) =
d∑

j=1

exp(θk(j)), p0(x) =

( d∏

j=1

x(j)!

)−1
(26)

That is, our generative model also belongs to an ex-
ponential family. By deriving the conjugate function
of ψ(·), we get the φ(·) function and its corresponding
Bregman divergence as:

φ(x) =

d∑

j=1

x(j) log x(j)−
d∑

j=1

x(j) (27)

dφ(x, y) =
d∑

j=1

[
x(j) log

(
x(j)

y(j)

)
− x(j) + y(j)

]
(28)

The divergence in Eq. (28) is called the Generalized
I-Divergence (GID) which is a generalization of KL-
Divergence (Dhillon and Sra, 2005). As a result, to
work with frequency data (in particular text data in
our experiments), we customize the BVDT framework
to use GID as its Bregman divergence. It should be
noted that GID is not the only non-Euclidean sim-
ilarity measure between documents, other techniques
such as co-citation (Šingliar and Hauskrecht, 2006) has
been used before.

4.2 Experimental Setup

To evaluate the BVDT framework, we use it for a
semi-supervised learning (SSL) task on various text
datasets. (Amizadeh et al., 2012a) has experimentally
shown the VDT framework can be well scaled to large-
scale problems. Our framework has exactly the same
order of complexity as VDT. Therefore, due to the
space limit, we focus our evaluation only on the accu-
racy of SSL for text data. In particular, we show that
while enjoying the same computational speed-up as
the Euclidean VDT framework, the BVDT framework
equipped with GID significantly improves the quality
of learning over the VDT framework for text data.

For the SSL task, we want to propagate the labels from
a small set of labeled examples to the rest of unlabeled
examples over the similarity graph built over the ex-
amples. To do so, we use the following iterative prop-
agation scheme (Zhou et al., 2003):

y(t+1) ← αMy(t) + (1− α)y0 (29)

where y(t) ∈ RN×1 is the vector of labels at time t,
M ∈ RN×N is the transition matrix P (or its approx-
imation Q), y0 is the vector of initial partial label-
ing and α ∈ [0, 1] is the mixing coefficient. For all of

our experiments, we iterate through this process 300
times with α = 0.01. Upon completion of propagation,
we compute the classification accuracy over the unla-
beled data w.r.t. the held-out true labels. Note that
this process is for binary classification problems; for
problems with multiple classes, we perform one-vs-all
scheme for each class and take the maximum.

We have compared four methods for computing ma-
trix M: (a) Euclidean VDT, (b) BVDT equipped with
GID, (c) Exact method with Euclidean distance and
(d) Exact method with GID. For Exact methods, the
transition matrix P is exactly computed using the di-
rect method. Due to memory limitations on our single
machine, we could apply Exact methods only for the
smaller datasets. For variational methods, we have
used the coarsest level of approximation for the tran-
sition matrix; that is, P is approximated with only
2(N − 1) number of parameters (or blocks).

We have applied these methods on five text datasets
represented as bag-of-words used before in (Greene
and Cunningham, 2006; Deng et al., 2011; Maas et al.,
2011; Lang, 1995). Table 2 illustrates the details.

Dataset N d C
BBC-Sport News Articles 737 4613 5
BBC News Articles 2225 9636 5
20 Newsgroup 11269 61188 20
NSF Research Abstracts 16405 18674 10
Large Movie Reviews 50000 89527 2

Table 2: Datasets used: N = number of documents, d =
number of terms, C = number of classes

4.3 Results

Figures 2(A-E) show the classification accuracy vs. the
percentage of labeled data for the datasets. The plots
show the average of 5 trials with 95% confidence inter-
vals. Although, none of the actual datasets is gener-
ated by the generative model proposed in Eq. (25), the
BVDT with GID method consistently and significantly
outperforms the Euclidean VDT. In particular, these
results show that (a) the Generalized I-Divergence de-
rived from the proposed generative model for text data
captures the document similarity much better than the
Euclidean distance does, and (b) the BVDT frame-
work provides a straightforward mechanism to extend
the variational dual-tree method beyond the Euclidean
distance to use Bregman divergences such as GID.

We have also applied the Exact methods to the two
smallest datasets. Not surprisingly, the Exact method
with GID has the best performance compared to other
methods. However, the Exact method with a wrong
distance metric (the Euclidean distance in this case)
can do even worse than the VDT method with Eu-
clidean distance, as observed for the second BBC
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Figure 2: The accuracy curves vs. labeled data % for (A) BBC Sport News (B) BBC News (C) 20 Newsgroup (D) NSF
Research Abstracts (E) Large Movie Reviews. (F) The computational complexity of four methods vs. the dataset size

dataset. We conjecture the existence of block regu-
larization in the VDT framework compensates for the
improper distance to some degree in this case.

Finally, we note the computational complexity of the
aforementioned methods vs. the dataset size (i.e. the
number of documents) shown in Figure 2(F). Both X
an Y axes in this plot are in log-scale. As the plot
shows while Euclidean VDT and BVDT have the same
order complexity, they both are orders of magnitude
faster than the Exact methods. In other words, while
significantly improving on learning accuracy, BVDT
still enjoys the same computational benefits as VDT.

5 Conclusions

In this paper, we proposed the Bregman Variational
Dual-Tree framework which is the generalization of the
recently developed Euclidean Variational Dual-Tree
method to Bregman divergences. The key advantage
of the BVDT framework is it covers a large class of dis-
tances and divergences and therefore makes the vari-
ational dual-trees accessible to many non-Euclidean
large-scale datasets. The crucial aspect of our general-
ization to Bregman divergences is, unlike generalizing
VDT to a general distance metric, it comes with no
extra computational cost; that is, its computational
order can still be kept the same as that of the VDT
framework. This is very important to the development
of whole framework since the variational dual-trees
were originally developed to tackle large-scale prob-
lems. To achieve this, we utilized the functional form

of the general Bregman divergence to design a bottom-
up mechanism to cut unnecessary distance computa-
tions similar to that of the Euclidean VDT framework.

Furthermore, by exploiting the connection between the
Bregman divergences and the exponential families, we
provided a probabilistic view of our model. By a walk-
through example, we showed that this probabilistic
view can be used to derive the appropriate Bregman
divergence for those domains where the best choice of
distance in not apparent at the first glance. This exam-
ple provides us with a powerful construction procedure
to develop the appropriate Bregman divergence for a
given problem. Specifically, we used this procedure to
derive the Generalized I-Divergence for the frequency
data. We showed that by incorporating GID in the
BVDT framework, our model significantly improved
the accuracy of learning for semi-supervised learning
on various text datasets, while maintaining the same
order of complexity as the original VDT framework.
It should be emphasized that although we used the
BVDT framework with one type of Bregman diver-
gence, the proposed model is general and can be cus-
tomized with any Bregman divergence.
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Abstract

Graphical models for structured domains are
powerful tools, but the computational com-
plexities of combinatorial prediction spaces
can force restrictions on models, or re-
quire approximate inference in order to be
tractable. Instead of working in a combina-
torial space, we use hinge-loss Markov ran-
dom fields (HL-MRFs), an expressive class
of graphical models with log-concave density
functions over continuous variables, which
can represent confidences in discrete predic-
tions. This paper demonstrates that HL-
MRFs are general tools for fast and accu-
rate structured prediction. We introduce the
first inference algorithm that is both scalable
and applicable to the full class of HL-MRFs,
and show how to train HL-MRFs with several
learning algorithms. Our experiments show
that HL-MRFs match or surpass the predic-
tive performance of state-of-the-art methods,
including discrete models, in four application
domains.

1 INTRODUCTION

The study of probabilistic modeling in structured
and relational domains primarily focuses on predict-
ing discrete variables [12, 19, 24]. However, except
for some isolated cases, the combinatorial nature of
discrete, structured prediction spaces requires conces-
sions: most notably, for inference algorithms to be
tractable, they must be relaxed or approximate (e.g.,
[19, 22, 25]), or the model’s structure must be re-
stricted (e.g., [2, 8]). Broecheler et al. [6] introduced
a class of models for continuous variables that has the
potential to combine fast and exact inference with the
expressivity of discrete graphical models, but this po-
tential has not been well explored. Now called hinge-

loss Markov random fields (HL-MRFs) [3], these mod-
els are analogous to discrete Markov random fields,
except that random variables are continuous valued
in the unit interval [0,1], and potentials are linear or
squared hinge-loss functions.

In this work, we demonstrate that HL-MRFs are
powerful tools for structured prediction by producing
state-of-the-art performance in a number of domains.
We are the first to leverage some of the most pow-
erful features of HL-MRFs, such as squared poten-
tials, which we show produce better results on mul-
tiple tasks. We show that HL-MRFs are well-suited to
structured prediction for the following reasons. They
are expressive, interpretable, and easily defined using
the modeling language probabilistic soft logic (PSL)
[6, 13]. Further, continuous variables are useful both
for modeling continuous data as well as for expressing
confidences in discrete predictions. Confidences are
desirable for the same reason that practitioners often
prefer marginal probabilities to the single most prob-
able discrete prediction. Finally, HL-MRFs have log-
concave density functions, so finding an exact most
probable explanation (MPE) for a given input is a
convex optimization, and therefore exactly solvable in
polynomial time.

Our specific contributions include the following. First,
we introduce a new, fast algorithm for MPE inference
in HL-MRFs, which is the first to be both scalable
and applicable to the full class of HL-MRFs. Sec-
ond, we show how to train HL-MRFs with several
learning algorithms. Third, we show empirically that
these advances enable HL-MRFs to tackle a diverse set
of relational and structured prediction tasks, provid-
ing state-of-the-art performance on collective classifi-
cation, social-trust prediction, collaborative filtering,
and image reconstruction. In particular, we show that
HL-MRFs can outperform their discrete counterparts,
as well as other leading methods.
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1.1 RELATED WORK

Probabilistic soft logic (PSL) [6, 13] is a declarative
language for defining templated HL-MRFs. Its de-
velopment was partially motivated by the need for
rich models of continuous similarity values, for use
in tasks such as entity resolution, collective classifi-
cation, and ontology alignment. PSL is in a family of
systems for defining templated, relational probabilistic
models that includes, for instance, Markov logic net-
works [19], relational dependency networks [17], and
relational Markov networks [23]. In our experiments,
we compare against Markov logic networks, which use
a first-order syntax similar to PSL’s to build discrete
probabilistic models.

MPE inference algorithms for HL-MRFs solve a con-
strained, convex optimization. A standard approach
for general, constrained, convex optimization is to use
an interior-point method, which Broecheler et al. [6]
use. While theoretically efficient, the practical run-
ning time of interior-point optimizers quickly becomes
cumbersome for large problems. For discrete graph-
ical models, recent advances use consensus optimiza-
tion to obtain fast, approximate MPE inference algo-
rithms [5, 15, 16]. Bach et al. [3] recently developed
an analogous algorithm for exact MPE inference in
HL-MRFs that produced a significant improvement in
running time over interior-point methods, though it
was limited to pairwise potentials and constraints, and
cost considerably more computation to optimize over
squared potentials.

The learning methods we adapt for HL-MRFs are stan-
dard approaches for learning parameters of probabilis-
tic models. In particular, our adaptations are anal-
ogous to previous learning algorithms for relational
and structured models using approximate maximum-
likelihood or maximum-pseudolikelihood estimation
[6, 14, 17, 19] and large-margin estimation [11, 12, 24].

2 HINGE-LOSS MARKOV
RANDOM FIELDS

Hinge-loss Markov random fields (HL-MRFs) are a
general class of conditional, continuous probabilistic
models [3]. HL-MRFs are log-linear models whose fea-
tures are hinge-loss functions of the variable states.
Through constructions based on soft logic, hinge-loss
potentials can be used to model generalizations of log-
ical conjunction and implication. HL-MRFs can be
defined using the modeling language probabilistic soft
logic (PSL) [6, 13], making these powerful models in-
terpretable, flexible, and expressive. In this section, we
formally present constrained hinge-loss energy func-
tions, HL-MRFs, and briefly review PSL.

Definition 1. Let Y = (Y1, . . . , Yn) be a vector of
n variables and X = (X1, . . . , Xn′) a vector of n′

variables with joint domain D = [0, 1]n+n′
. Let φ =

(φ1, . . . , φm) be m continuous potentials of the form

φj(Y,X) = [max {`j(Y,X), 0}]pj

where `j is a linear function of Y and X and pj ∈
{1, 2}. Let C = (C1, . . . , Cr) be linear constraint func-
tions associated with index sets denoting equality con-
straints E and inequality constraints I, which define
the feasible set

D̃ =

{
Y,X ∈ D

∣∣∣∣
Ck(Y,X) = 0,∀k ∈ E
Ck(Y,X) ≥ 0,∀k ∈ I

}
.

For Y,X ∈ D̃, given a vector of nonnegative free
parameters, i.e., weights, λ = (λ1, . . . , λm), a con-
strained hinge-loss energy function fλ is defined as

fλ(Y,X) =
m∑

j=1

λjφj(Y,X) .

Definition 2. A hinge-loss Markov random field P
over random variables Y and conditioned on random
variables X is a probability density defined as follows:
if Y,X /∈ D̃, then P (Y|X) = 0; if Y,X ∈ D̃, then

P (Y|X) =
1

Z(λ)
exp [−fλ(Y,X)] ,

where Z(λ) =
∫
Y

exp [−fλ(Y,X)].

Thus, MPE inference is equivalent to finding the min-
imizer of the convex energy fλ.

The potentials and weights can be grouped together
into templates, which can be used to define general
classes of HL-MRFs that are parameterized by the in-
put data. Let T = (t1, . . . , ts) denote a vector of tem-
plates with associated weights Λ = (Λ1, . . . ,Λs). We
partition the potentials by their associated templates
and let Φq(Y,X) =

∑
j∈tq φj(Y,X) for all tq ∈ T . In

the HL-MRF, the weight of the j’th hinge-loss poten-
tial is set to the weight of the template from which it
was derived, i.e., λj = Λq, for each j ∈ tq.
Probabilistic soft logic [6, 13] provides a natural in-
terface to represent hinge-loss potential templates us-
ing logical rules. In particular, a logical conjunc-
tion of Boolean variables X ∧ Y can be general-
ized to continuous variables using the hinge function
max{X+Y −1, 0}, which is known as the Lukasiewicz
t-norm. Disjunction X∨Y is relaxed to min{X+Y, 1},
and negation ¬X to 1 − X. PSL allows modelers to
design rules that, given data, ground out substitutions
for logical terms. The groundings of a template define
hinge-loss potentials that share the same weight and
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have the form one minus the truth value of the ground
rule. We defer to Broecheler et al. [6] and Kimmig
et al. [13] for details on PSL.

To further demonstrate this templating, consider the
task of predicting who trusts whom in a social network.
Let the network contain three individuals: A, B, and
C. We can design an HL-MRF to include potentials
that encode the belief that trust is transitive (which
is a rule we use in our experiments). Let the variable
YA,B represent how much A trusts B, and similarly so
for YB,C and YA,C . Then the potential

φ(Y,X) = [max{YA,B + YB,C − YA,C − 1, 0}]p

is equivalent to one minus the truth value of
the Boolean formula YA,B ∧ YB,C → YA,C when
YA,B , YB,C , YA,C ∈ {0, 1}. When they are allowed to
take on their full range [0, 1], the potential is a convex
relaxation of the implication. An HL-MRF with this
potential function assigns higher probability to vari-
able states that satisfy the logical implication above,
which can occur to varying degrees in the continuous
domain. Given a social network with more than these
three individuals, PSL can ground out possible sub-
stitutions for the roles of A, B, and C to generate
potential functions for each substitution, thus defining
the full, ground HL-MRF.

HL-MRFs support a few additional components useful
for modeling. The constraints in Definition 1 allow the
encoding of functional modeling requirements, which
is useful, e.g., when variables correspond to mutually
exclusive labels, and thus should sum to one. The
exponent parameter pj allows flexibility in the shape
of the hinge, affecting the sharpness of the penalty for
violating the logical implication. Setting pj to 1 penal-
izes violation linearly with the amount the implication
is unsatisfied, while setting pj to 2 penalizes small vi-
olations much less. In effect, some linear potentials
overrule others, while the influences of squared poten-
tials are averaged together.

3 MPE INFERENCE

MPE inference for HL-MRFs requires finding a feasible
assignment that minimizes fλ. Performing MPE infer-
ence quickly is crucial, especially because weight learn-
ing often requires performing inference many times
with different weights (as we discuss in Section 4).
Here, HL-MRFs have a distinct advantage over gen-
eral discrete models, since minimizing fλ is a convex
optimization rather than a combinatorial one. In this
section, we detail a new, faster MPE inference algo-
rithm for HL-MRFs.

Bach et al. [3] showed how to minimize fλ with
a consensus-optimization algorithm, based on the

alternating-direction method of multipliers (ADMM)
[5]. The algorithm works by creating local copies of the
variables in each potential and constraint, constrain-
ing them to be equal to the original variables, and re-
laxing those equality constraints to make independent
subproblems. By solving the subproblems repeatedly
and averaging the results, the algorithm reaches a con-
sensus on the best values of the original variables, also
called the consensus variables. This procedure is guar-
anteed to converge to the global minimizer of fλ. See
[3] and [5] for more details on consensus optimization
and ADMM.

This previous consensus-optimization approach to
MPE inference works well for linear potentials with at
most two unobserved variables, and empirical evidence
suggests it scales linearly with the size of the problem
[3]. However, it is restricted to pairwise potentials and
constraints, and requires an interior-point method as
a subroutine to solve subproblems induced by squared
potentials. Because of the embedded interior-point
method, its running time can increase roughly 100-fold
with squared potentials [3].

We improve the algorithm of Bach et al. [3] by refor-
mulating the optimization to enforce Y ∈ [0, 1]n only
on the consensus variables, not the local copies. This
form of consensus optimization is described in greater
detail by Boyd et al. [5]. The result is that, in our algo-
rithm, the potentials and constraints are not restricted
to a certain number of unknowns, and the subproblems
can all be solved quickly using simple linear algebra.

Algorithm 1 gives pseudocode for our new algorithm.
It starts by initializing local copies of the variables that
appear in each potential and constraint, along with
a corresponding Lagrange multiplier for each copy.
Then, until convergence, it iteratively updates La-
grange multipliers and solves suproblems induced by
the HL-MRF’s potentials and constraints. If the sub-
problem is induced by a potential, it sets the local vari-
able copies to a balance between the minimizer of the
potential and the emerging consensus. Eventually the
Lagrange multipliers will enforce agreement between
the local copies and the consensus. If instead the sub-
problem is induced by a constraint in the HL-MRF,
the algorithm projects the consensus variables’ current
values to that constraint’s feasible region. The con-
sensus variables are updated at each iteration based
on the values of their local copies and corresponding
Lagrange multipliers, and clipped to [0,1].

We take the same basic approach as Bach et al. [3] to
solve the subproblems. We first try to find a minimizer
on either side of the hinge (where `j(Y,X) is either
positive or negative) before projecting onto the plane
defined by `j(Y,X) = 0. Without the constraints on
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Algorithm 1 MPE Inference for HL-MRFs

Input: HL-MRF(Y,X, φ, λ, C, E , I), ρ > 0

Initialize yj as copies of the variables Yj that appear
in φj , j = 1, . . . ,m

Initialize yk+m as copies of the variables Yk+m

that appear in Ck, k = 1, . . . , r
Initialize Lagrange multipliers αi corresponding to

variable copies yi, i = 1, . . . ,m+ r

while not converged do

for j = 1, . . . ,m do
αj ← αj + ρ(yj −Yj)
yj ← Yj −αj/ρ
if `j(yj ,X) > 0 then

yj ← arg minyj

[
λj [`j(yj ,X)]pj

+ρ
2‖yj −Yj + 1

ραj‖22

]

if `j(yj ,X) < 0 then
yj ← Proj`j=0(Yj)

end if
end if

end for

for k = 1, . . . , r do
αk+m ← αk+m + ρ(yk+m −Yk+m)
yk+m ← ProjCk

(Yk+m)
end for

for i = 1, . . . , n do

Yi ← 1
|copies(Yi)|

∑
yc∈copies(Yi)

(
yc + αc

ρ

)

Clip Yi to [0,1]
end for

end while

the local variable copies, finding these minimizers and
projections is much simpler. Solving for the constraint
subproblems is now also simpler, requiring just a pro-
jection onto a hyperplane or a halfspace.

Our algorithm retains all of the benefits of the original
MPE inference algorithm while removing all restric-
tions on the numbers of unknowns in the potentials
and constraints, making MPE inference fast with both
linear and squared potentials. Another advantage of
consensus optimization for MPE inference is that it is
easy to warm start. Warm starting provides signifi-
cant efficiency gains when inference is repeated on the
same HL-MRF with small changes in the weights, as
often occurs during weight learning.

4 WEIGHT LEARNING

In this section, we present three weight learning meth-
ods for HL-MRFs, each with a different objective func-
tion, two of which are new for learning HL-MRFs.
The first method, introduced by Broecheler et al. [6],

performs approximate maximum-likelihood estimation
using MPE inference to approximate the gradient of
the log-likelihood. The second method maximizes the
pseudolikelihood. The third method finds a large-
margin solution, preferring weights that discriminate
the ground truth from other states. We describe below
how to apply these learning strategies to HL-MRFs.

4.1 MAXIMUM-LIKELIHOOD
ESTIMATION

The canonical approach for learning parameters Λ is
to maximize the log-likelihood of training data. The
partial derivative of the log-likelihood with respect to
a parameter Λq is

∂ log p(Y|X)

∂Λq
= EΛ [Φq(Y,X)]− Φq(Y,X) ,

where EΛ is the expectation under the distribution de-
fined by Λ. The voted perceptron algorithm [7] opti-
mizes Λ by taking steps of fixed length in the direc-
tion of the gradient, then averaging the points after
all steps. Any step that is outside the feasible region
is projected back before continuing. For a smoother
ascent, it is often helpful to divide the q-th component
of the gradient by the number of groundings |tq| of the
q’th template [14], which we do in our experiments.
Computing the expectation is intractable, so we use
a common approximation: the values of the potential
functions at the most probable setting of Y with the
current parameters [6].

4.2 MAXIMUM-PSEUDOLIKELIHOOD
ESTIMATION

Since exact maximum likelihood estimation is in-
tractable in general, we can instead perform
maximum-pseudolikelihood estimation (MPLE) [4],
which maximizes the likelihood of each variable condi-
tioned on all other variables, i.e.,

P ∗(Y|X) =

n∏

i=1

P ∗(Yi|MB(Yi))

=
n∏

i=1

1

Z(λ, Yi)
exp

[
−f iλ(Yi,Y,X)

]
;

Z(λ, Yi) =

∫

Yi

exp
[
−f iλ(Yi,Y,X)

]
;

f iλ(Yi,Y,X) =
∑

j:i∈φj

λjφj
(
{Yi ∪Y\i},X

)
.

Here, i ∈ φj means that Yi is involved in φj , and
MB(Yi) denotes the Markov blanket of Yi—that is,
the set of variables that co-occur with Yi in any po-
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tential function. The partial derivative of the log-
pseudolikelihood with respect to Λq is

∂ logP ∗(Y |X)

∂Λq
=

n∑

i=1

EYi|MB


 ∑

j∈tq :i∈φj

φj(Y,X)




− Φj(Y,X).

Computing the pseudolikelihood gradient does not re-
quire inference and takes time linear in the size of
Y. However, the integral in the above expectation
does not readily admit a closed-form antiderivative,
so we approximate the expectation. When a variable
in unconstrained, the domain of integration is a one-
dimensional interval on the real number line, so Monte
Carlo integration quickly converges to an accurate es-
timate of the expectation.

We can also apply MPLE when the constraints are not
too interdependent. For example, for linear equality
constraints over disjoint groups of variables (e.g., vari-
able sets that must sum to 1.0), we can block-sample
the constrained variables by sampling uniformly from
a simplex. These types of constraints are often used
to represent mutual exclusivity of classification labels.
We can compute accurate estimates quickly because
these blocks are typically low-dimensional.

4.3 LARGE-MARGIN ESTIMATION

A different approach to learning drops the probabilistic
interpretation of the model and views HL-MRF infer-
ence as a prediction function. Large-margin estima-
tion (LME) shifts the goal of learning from producing
accurate probabilistic models to instead producing ac-
curate MPE predictions. The learning task is then to
find the weights Λ that provide high-accuracy struc-
tured predictions. We describe in this section a large-
margin method based on the cutting-plane approach
for structural support vector machines (SVMs) [12].

The intuition behind large-margin structured predic-
tion is that the ground-truth state should have energy
lower than any alternate state by a large margin. In
our setting, the output space is continuous, so we pa-
rameterize this margin criterion with a continuous loss
function. For any valid output state Ỹ, a large-margin
solution should satisfy:

fλ(Y,X) ≤ fλ(Ỹ,X)− L(Y, Ỹ),∀Ỹ,

where the decomposable loss function L(Y, Ỹ) =∑
i L(Yi, Ỹi) measures the disagreement between a

state Ỹ and the training label state Y. We define
L as the `1 distance. Since we do not expect all prob-
lems to be perfectly separable, we relax this constraint
with a penalized slack ξ. We obtain a convex learning

objective for a large-margin solution

min
Λ≥0

1

2
||Λ||2 + Cξ

s.t. Λ>(Φ(Y,X)− Φ(Ỹ,X)) ≤ −L(Y, Ỹ) + ξ,∀Y,

where Φ(Y,X) = (Φ1(Y,X), . . . ,Φs(Y,X)). This
formulation is analogous to the margin-rescaling ap-
proach by Joachims et al. [12]. Though such a struc-
tured objective is natural and intuitive, its number
of constraints is the cardinality of the output space,
which here is infinite. Following their approach, we
optimize subject to the infinite constraint set using
a cutting-plane algorithm: we greedily grow a set K
of constraints by iteratively adding the worst-violated
constrain given by a separation oracle, then updating
Λ subject to the current constraints. The goal of the
cutting-plane approach is to efficiently find the set of
active constraints at the solution for the full objec-
tive, without having to enumerate the infinite inactive
constraints. The worst-violated constraint is

arg min
Ỹ

Λ>Φ(Ỹ,X)− L(Y, Ỹ).

The separation oracle performs loss-augmented in-
ference by adding additional loss-augmenting poten-
tials to the HL-MRF. For ground truth in {0, 1},
these loss-augmenting potentials are also examples of
hinge-losses, and thus adding them simply creates an
augmented HL-MRF. The worst-violated constraint
is then computed as standard inference on the loss-
augmented HL-MRF. However, ground-truth variables
in the interior (0, 1) cause any distance-based loss to be
concave, which require the separation oracle to solve
a non-convex objective. For interior ground truth val-
ues, we use the difference of convex functions algo-
rithm [1] to find a local optimum. Since the concave
portion of the loss-augmented inference objective piv-
ots around the ground truth value, the subgradients
are 1 or −1, depending on whether the current value
is greater than the ground truth. We simply choose an
initial direction for interior labels by rounding, and flip
the direction of the subgradients for variables whose
solution states are not in the interval corresponding to
the subgradient direction until convergence.

Given a set K of constraints, we solve the SVM objec-
tive as in the primal form minΛ≥0

1
2 ||Λ||2 +Cξ s.t. K.

We then iteratively invoke the separation oracle to find
the worst-violated constraint. If this new constraint is
not violated, or its violation is within numerical toler-
ance, we have found the max-margin solution. Other-
wise, we add the new constraint to K, and repeat.

One fact of note is that the large-margin criterion
always requires a little slack for squared HL-MRFs.
Since the squared hinge potential is quadratic and the
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loss is linear, there always exists a small enough dis-
tance from the ground truth such that an absolute (i.e.,
linear) distance is greater than the squared distance.
In these cases, the slack parameter trades off between
the peakedness of the learned quadratic energy func-
tion and the margin criterion.

5 EXPERIMENTS

To demonstrate the flexibility and effectiveness of HL-
MRFs, we test them on four diverse learning tasks:
collective classification, social-trust prediction, prefer-
ence prediction, and image reconstruction. 1 Each of
these experiments represents a problem domain that
is best solved with relational learning approaches be-
cause structure is a critical component of their prob-
lems. The experiments show that HL-MRFs perform
as well as or better than state-of-the-art approaches.

For these diverse tasks, we compare against a number
of competing methods. For collective classification and
social-trust prediction, we compare HL-MRFs to dis-
crete Markov random fields (MRFs). We construct
them with Markov logic networks (MLNs) [19], which
template discrete MRFs using logical rules similarly to
PSL for HL-MRFs. We perform inference in discrete
MRFs using 2500 rounds of the sampling algorithm
MC-Sat (500 of which are burn in), and we find ap-
proximate MPE states during MLE learning using the
search algorithm MaxWalkSat [19]. For collaborative
filtering, a task that is inherently continuous and non-
trivial to encode in discrete logic, we compare against
Bayesian probabilistic matrix factorization [20]. Fi-
nally, for image reconstruction, we run the same exper-
imental setup as Poon and Domingos [18] and compare
against the results they report, which include tests us-
ing sum product networks, deep belief networks, and
deep Boltzmann machines.

When appropriate, we evaluate statistical significance
using a paired t-test with rejection threshold 0.01. We
omit variance statistics to save space and only report
the average and statistical significance. We describe
the HL-MRFs used for our experiments using the PSL
rules that define them. To investigate the differences
between linear and squared potentials we use both in
our experiments. HL-MRF-L refers to a model with
all linear potentials and HL-MRF-Q to one with all
squared potentials. When training with MLE and
MPLE, we use 100 steps of voted perceptron and a
step size of 1.0 (unless otherwise noted), and for LME
we set C = 0.1. We experimented with various set-
tings, but the scores of HL-MRFs and discrete MRFs
were not sensitive to changes.

1All code is available at http://psl.umiacs.umd.edu.

Table 1: Average accuracy of classification by HL-
MRFs and discrete MRFs. Scores statistically equiva-
lent to the best scoring method are typed in bold.

Citeseer Cora

HL-MRF-Q (MLE) 0.729 0.816
HL-MRF-Q (MPLE) 0.729 0.818
HL-MRF-Q (LME) 0.683 0.789

HL-MRF-L (MLE) 0.724 0.802
HL-MRF-L (MPLE) 0.729 0.808
HL-MRF-L (LME) 0.695 0.789

MRF (MLE) 0.686 0.756
MRF (MPLE) 0.715 0.797
MRF (LME) 0.687 0.783

5.1 COLLECTIVE CLASSIFICATION

When classifying documents, links between those
documents—such as hyperlinks, citations, or co-
authorship—provide extra signal beyond the local fea-
tures of individual documents. Collectively predicting
document classes with these links tends to improve
accuracy [21]. We classify documents in citation net-
works using data from the Cora and Citeseer scientific
paper repositories. The Cora data set contains 2,708
papers in seven categories, and 5,429 directed citation
links. The Citeseer data set contains 3,312 papers in
six categories, and 4,591 directed citation links.

The prediction task is, given a set of seed documents
whose labels are observed, to infer the remaining doc-
ument classes by propagating the seed information
through the network. For each of 20 runs, we split the
data sets 50/50 into training and testing partitions,
and seed half of each set. To predict discrete cate-
gories with HL-MRFs we predict the category with
the highest predicted value.

We compare HL-MRFs to discrete MRFs on this task.
We construct both using the same logical rules, which
simply encode the tendency for a class to propagate
across citations. For each category Ci, we have two
separate rules for each direction of citation:

Label(A,Ci) ∧Cites(A,B)⇒ Label(B,Ci),

Label(A,Ci) ∧Cites(B,A)⇒ Label(B,Ci).

Table 1 lists the results of this experiment. HL-MRFs
are the most accurate predictors on both data sets. We
also note that both variants of HL-MRFs are much
faster than discrete MRFs. See Table 3 for average
inference times on five folds.
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Table 2: Average area under ROC and precision-recall
curves of social-trust prediction by HL-MRFs and dis-
crete MRFs. Scores statistically equivalent to the best
scoring method by metric are typed in bold.

ROC P-R (+) P-R (-)

HL-MRF-Q (MLE) 0.822 0.978 0.452
HL-MRF-Q (MPLE) 0.832 0.979 0.482
HL-MRF-Q (LME) 0.814 0.976 0.462

HL-MRF-L (MLE) 0.765 0.965 0.357
HL-MRF-L (MPLE) 0.757 0.963 0.333
HL-MRF-L (LME) 0.783 0.967 0.453

MRF (MLE) 0.655 0.942 0.270
MRF (MPLE) 0.725 0.963 0.298
MRF (LME) 0.795 0.973 0.441

5.2 SOCIAL-TRUST PREDICTION

An emerging problem in the analysis of online social
networks is the task of inferring the level of trust be-
tween individuals. Predicting the strength of trust
relationships can provide useful information for viral
marketing, recommendation engines, and internet se-
curity. HL-MRFs with linear potentials have recently
been applied by Huang et al. [10] to this task, show-
ing superior results with models based on sociologi-
cal theory. We reproduce their experimental setup us-
ing their sample of the signed Epinions trust network,
in which users indicate whether they trust or distrust
other users. We perform eight-fold cross-validation. In
each fold, the prediction algorithm observes the entire
unsigned social network and all but 1/8 of the trust
ratings. We measure prediction accuracy on the held-
out 1/8. The sampled network contains 2,000 users,
with 8,675 signed links. Of these links, 7,974 are pos-
itive and only 701 are negative.

We use a model based on the social theory of struc-
tural balance, which suggests that social structures are
governed by a system that prefers triangles that are
considered balanced. Balanced triangles have an odd
number of positive trust relationships; thus, consider-
ing all possible directions of links that form a triad of
users, there are sixteen logical implications of the form

Trusts(A,B) ∧Trusts(B,C)⇒ Trusts(A,C).

Huang et al. [10] list all sixteen of these rules, a reci-
procity rule, and a prior in their Balance-Recip model,
which we omit to save space.

Since we expect some of these structural implications
to be more or less accurate, learning weights for these
rules provides better models. Again, we use these rules
to define HL-MRFs and discrete MRFs, and we train

Table 3: Average inference times (reported in seconds)
of single-threaded HL-MRFs and discrete MRFs.

Citeseer Cora Epinions

HL-MRF-Q 0.42 0.70 0.32
HL-MRF-L 0.46 0.50 0.28
MRF 110.96 184.32 212.36

them using various learning algorithms. We compute
three metrics: the area under the receiver operating
characteristic (ROC) curve, and the areas under the
precision-recall curves for positive trust and negative
trust. On all three metrics, HL-MRFs with squared
potentials score significantly higher. The differences
among the learning methods for squared HL-MRFs are
insignificant, but the differences among the models is
statistically significant for the ROC metric. For area
under the precision-recall curve for positive trust, dis-
crete MRFs trained with LME are statistically tied
with the best score, and both HL-MRF-L and discrete
MRFs trained with LME are statistically tied with the
best area under the precision-recall curve for negative
trust. The results are listed in Table 2.

Though the random fold splits are not the same, using
the same experimental setup, Huang et al. [10] also
scored the precision-recall area for negative trust of
standard trust prediction algorithms EigenTrust and
TidalTrust, which scored 0.131 and 0.130, respectively.
The logical models based on structural balance that
we run here are significantly more accurate, and HL-
MRFs more than discrete MRFs.

Table 3 lists average inference times on five folds of
three prediction tasks: Cora, Citeseer, and Epinions.
We implemented each method in Java. Both HL-
MRF-Q and HL-MRF-L are much faster than discrete
MRFs. This illustrates an important difference be-
tween performing structured prediction via convex in-
ference versus sampling in a discrete prediction space:
using our MPE inference algorithm is much faster.

5.3 PREFERENCE PREDICTION

Preference prediction is the task of inferring user at-
titudes (often quantified by ratings) toward a set of
items. This problem is naturally structured, since a
user’s preferences are often interdependent, as are an
item’s ratings. Collaborative filtering is the task of
predicting unknown ratings using only a subset of ob-
served ratings. Methods for this task range from sim-
ple nearest-neighbor classifiers to complex latent fac-
tor models. To illustrate the versatility of HL-MRFs,
we design a simple, interpretable collaborative filtering
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Table 4: Normalized mean squared/absolute errors
(NMSE/NMAE) for preference prediction using the
Jester dataset. The lowest errors are typed in bold.

NMSE NMAE

HL-MRF-Q (MLE) 0.0554 0.1974
HL-MRF-Q (MPLE) 0.0549 0.1953
HL-MRF-Q (LME) 0.0738 0.2297

HL-MRF-L (MLE) 0.0578 0.2021
HL-MRF-L (MPLE) 0.0535 0.1885
HL-MRF-L (LME) 0.0544 0.1875

BPMF 0.0501 0.1832

model for predicting humor preferences. We test this
model on the Jester dataset, a repository of ratings
from 24,983 users on a set of 100 jokes [9]. Each joke
is rated on a scale of [−10,+10], which we normalize
to [0, 1]. We sample a random 2,000 users from the
set of those who rated all 100 jokes, which we then
split into 1,000 train and 1,000 test users. From each
train and test matrix, we sample a random 50% to use
as the observed features X; the remaining ratings are
treated as the variables Y.

Our HL-MRF model uses an item-item similarity rule:

SimRate(J1, J2) ∧ Likes(U, J1)⇒ Likes(U, J2)

where J1, J2 are jokes and U is a user; the pred-
icate Likes indicates the degree of preference (i.e.,
rating value); and SimRate measures the mean-
adjusted cosine similarity between the observed rat-
ings of two jokes. We also include rules to enforce that
Likes(U, J) concentrates around the observed average
rating of user U and item J , and the global average.

We compare our HL-MRF model to a current state-
of-the-art latent factors model, Bayesian probabilis-
tic matrix factorization (BPMF) [20]. BPMF is a
fully Bayesian treatment and, as such, is considered
“parameter-free”; the only parameter that must be
specified is the rank of the decomposition.For our ex-
periments, we use Xiong et al.’s code [2010]. Since
BPMF does not train a model, we allow BPMF to use
all of the training matrix during the prediction phase.

Table 4 lists the normalized mean squared er-
ror (NMSE) and normalized mean absolute error
(NMAE), averaged over 10 random splits. Though
BPMF produces the best scores, the improvement over
HL-MRF-L (LME) is not significant in NMAE.

5.4 IMAGE RECONSTRUCTION

Digital image reconstruction requires models that un-
derstand how pixels relate to each other, such that
when some pixels are unobserved, the model can in-
fer their values from parts of the image that are ob-
served. We construct pixel-grid HL-MRFs for image
reconstruction. We test these models using the exper-
imental setup of Poon and Domingos [18]: we recon-
struct images from the Olivetti face data set and the
Caltech101 face category. The Olivetti data set con-
tains 400 images, 64 pixels wide and tall, and the Cal-
tech101 face category contains 435 examples of faces,
which we crop to the center 64 by 64 patch, as was
done by Poon and Domingos [18]. Following their ex-
perimental setup, we hold out the last fifty images and
predict either the left half of the image or the bottom
half.

The HL-MRFs in this experiment are much more com-
plex than the ones in our other experiments because
we allow each pixel to have its own weight for the fol-
lowing rules, which encode agreement or disagreement
between neighboring pixels:

Bright(Pij , I) ∧North(Pij , Q)⇒ Bright(Q, I),

Bright(Pij , I) ∧North(Pij , Q)⇒ ¬Bright(Q, I),

¬Bright(Pij , I) ∧North(Pij , Q)⇒ Bright(Q, I),

¬Bright(Pij , I) ∧North(Pij , Q)⇒ ¬Bright(Q, I),

where Bright(Pij , I) is the normalized brightness of
pixel Pij in image I, and North(Pij , Q) indicates that
Q is the north neighbor of Pij . We similarly include
analogous rules for the south, east, and west neighbors,
as well as the pixels mirrored across the horizontal and
vertical axes. This setup results in up to 24 rules per
pixel, which, in a 64 by 64 image, produces 80,896
weighted potential templates.

We train these HL-MRFs using MPE-approximate
maximum likelihood with a 5.0 step size on the first
200 images of each data set and test on the last fifty.
For training, we maximize the data log-likelihood of
uniformly random held-out pixels for each training
image, allowing for generalization throughout the im-
age. Table 5 lists our results and others reported by
Poon and Domingos [18]. HL-MRFs produce the best
mean squared error on the left- and bottom-half set-
tings for the Caltech101 set and the left-half setting in
the Olivetti set. Only sum product networks produce
lower error on the Olivetti bottom-half faces. Some
reconstructed faces are displayed in Figure 1, where
the shallow, pixel-based HL-MRFs produce compara-
bly convincing images to sum-product networks, es-
pecially in the left-half setting, where HL-MRF can
learn which pixels are likely to mimic their horizontal
mirror. While neither method is particularly good at
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Table 5: Mean squared errors per pixel for image reconstruction. HL-MRFs produce the most accurate recon-
structions on the Caltech101 and the left-half Olivetti faces, and only sum-product networks produce better
reconstructions on Olivetti bottom-half faces. Scores for other methods are taken from Poon and Domingos [18].

HL-MRF-Q (MLE) SPN DBM DBN PCA NN

Caltech-Left 1741 1815 2998 4960 2851 2327
Caltech-Bottom 1910 1924 2656 3447 1944 2575
Olivetti-Left 927 942 1866 2386 1076 1527
Olivetti-Bottom 1226 918 2401 1931 1265 1793

Figure 1: Example results on image reconstruction of Caltech101 (left) and Olivetti (right) faces. From left
to right in each column: (1) true face, left side predictions by (2) HL-MRFs and (3) SPNs, and bottom half
predictions by (4) HL-MRFs and (5) SPNs. SPN reconstructions are downloaded from Poon and Domingos [18].

reconstructing the bottom half of faces, the qualitative
difference between the deep SPN and the shallow HL-
MRF reconstructions is that SPNs seem to hallucinate
different faces, often with some artifacts, while HL-
MRFs predict blurry shapes roughly the same pixel
intensity as the observed, top half of the face. The
tendency to better match pixel intensity helps HL-
MRFs score better quantitatively on the Caltech101
faces, where the lighting conditions are more varied.

Training and predicting with these HL-MRFs takes lit-
tle time. In our experiments, training each model takes
about 45 minutes on a 12-core machine, while predict-
ing takes under a second per image. While Poon and
Domingos [18] report faster training with SPNs, both
HL-MRFs and SPNs clearly belong to a class of faster
models when compared to DBNs and DBMs, which
can take days to train on modern hardware.

6 CONCLUSION

We have shown that HL-MRFs are a flexible and inter-
pretable class of models, capable of modeling a wide

variety of domains. HL-MRFs admit fast, convex in-
ference. The MPE inference algorithm we introduce
is applicable to the full class of HL-MRFs. With this
fast, general algorithm, we are the first to show results
using quadratic HL-MRFs on real-world data. In our
experiments, HL-MRFs match or exceed the predic-
tive performance of state-of-the-art methods on four
diverse tasks. The natural mapping between hinge-
loss potentials and logic rules makes HL-MRFs easy
to define and interpret.
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Abstract

Joint sparsity regularization in multi-task learn-
ing has attracted much attention in recent years.
The traditional convex formulation employs the
group Lasso relaxation to achieve joint sparsity
across tasks. Although this approach leads to a
simple convex formulation, it suffers from sev-
eral issues due to the looseness of the relax-
ation. To remedy this problem, we view jointly
sparse multi-task learning as a specialized ran-
dom effects model, and derive a convex relax-
ation approach that involves two steps. The first
step learns the covariance matrix of the coef-
ficients using a convex formulation which we
refer to as sparse covariance coding; the sec-
ond step solves a ridge regression problem with
a sparse quadratic regularizer based on the co-
variance matrix obtained in the first step. It is
shown that this approach produces an asymptot-
ically optimal quadratic regularizer in the mul-
titask learning setting when the number of tasks
approaches infinity. Experimental results demon-
strate that the convex formulation obtained via
the proposed model significantly outperforms
group Lasso (and related multi-stage formula-
tions).

1 Introduction

Modern high-dimensional data sets, typically with more
parameters to estimate than the number of samples avail-
able, have triggered a flurry of research based on structured
sparse models, both on the statistical and computational as-
pects. The initial problem considered in this setting was
to estimate a sparse vector under a linear model (or the
Lasso problem). Recently, several approaches have been
proposed for estimating a sparse vector under additional
constraints, for e.g., group sparsity- where certain groups
of coefficients are jointly zero or non-zero. Another closely

related problem is that of multi-task learning or simultane-
ous sparse approximation, which are special cases of the
group sparse formulation. A de-facto procedure for dealing
with joint sparsity regularization is the group-Lasso estima-
tor [16], which is based on a (2, 1)-mixed norm convex re-
laxation to the non-convex (2, 0)-mixed norm formulation.

However, as we shall argue in this paper, group-Lasso suf-
fers from several drawbacks due to the looseness of the re-
laxation; cf., [12, 9]. We propose a general method for
multi-task learning in high-dimensions based on a joint
sparsity random effects model. The standard approach for
dealing with random effects requires estimating covariance
information. Similarly, our estimation procedure involves
two-steps: a convex covariance estimation step followed by
the standard ridge-regression. The first step corresponds
to estimating the covariance of the coefficients under ad-
ditional constraints that promote sparsity. The intuition is
that to deal with group sparsity (even if we are interested
in estimating the coefficients) it is better to first estimate
covariance information, and then plug in the covariance
estimate for estimating the coefficients. With a particu-
lar sparse diagonal structure for the covariance matrix the
model becomes similar to group-lasso, and the advantage
of the proposed estimation approach over group-lasso for-
mulation will be clarified in this setting.

Related work: Traditional estimation approaches for ran-
dom effects model involve two-steps: first estimate the un-
derlying covariance matrix, and then estimate the coeffi-
cients based on the covariance matrix. However, the tra-
ditional covariance estimation procedures are non-convex
such as the popular method of restricted maximum likeli-
hood (REML) and such models are typically studied in the
low-dimensional setting [10].

From a Bayesian perspective, a hierarchical model for si-
multaneous sparse approximation is proposed in [15] based
on a straightforward extension of automatic relevance de-
termination. Under that setting, the tasks share a common
hyper-prior that is estimated from the data by integrating
out the actual parameter. The resulting marginal likelihood
is maximized for the hyper-prior parameters; this proce-
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dure is called as type-II maximum likelihood in the liter-
ature. The non-Bayesian counterpart is called random ef-
fects model in classical statistics, and the resulting estima-
tor is referred to as REML. The disadvantage of this ap-
proach is that it makes the resulting optimization problem
non-convex and difficult to solve efficiently, as mentioned
before. In addition, the problem becomes harder to analyze
and provide convincing statistical and computational guar-
antees, while Lasso-related formulations are well studied
and favorable statistical and computational properties could
be established.

More recently, the problem of joint sparsity regularization
has been studied under various settings (multi-task learn-
ing [2, 1], group lasso [16], and simultaneous sparse ap-
proximation [14, 15]) in the past years. In [1], the authors
develop a convex framework for multi-task learning based
on the (2, 1)-mixed norm formulation. Conditions for spar-
sity oracle inequalities and variable selection properties for
a similar formulation are derived in [13], showing the ad-
vantage of joint estimation of tasks that share common sup-
port is statistically efficient. But the formulation has sev-
eral drawbacks due to the looseness of its convex relaxation
[12, 9]. The issue of bias that is inherent in the group lasso
formulation was discussed in [12]. By defining a measure
of sparsity level of the target signal under the group setting,
the authors mention that the standard formulation of group
lasso exhibits a bias that cannot be removed by simple re-
formulation of group lasso. In order to deal with this is-
sue, recently [9] proposed the use of a non-convex regular-
izer and provided a numerical algorithm based on solving
a sequence of convex relaxation problems. The method is
based on a straightforward extension of a similar approach
developed for the Lasso setting (cf., [17]), to the joint spar-
sity situation. Note that adaptive group-Lasso is a special
case of [9]. In this paper, we propose a simple two-step pro-
cedure, to overcome the drawbacks of the standard group-
Lasso relaxation. Compared to [9], the proposed approach
is entirely convex and hence attains the global solution.

The current paper has two theoretical contributions. First,
under a multi-task random effects model, we obtain an
expected prediction error bound that relates the predic-
tive performance to the accuracy of covariance estimation;
by adapting high dimensional sparse covariance estimation
procedures such as [8, 4], we can obtain consistent estimate
of covariance matrix which leads to asymptotically optimal
performance. Second, it is shown that under our random
effects model, group Lasso in general does not accurately
estimate the covariance matrix and thus is not optimal un-
der the model considered. Experiments show that this ap-
proach provides improved performance compared to group
Lasso (and the multi-stage versions) on simulated and real
datasets.

2 Joint Sparsity Random Effects Model and
Group Lasso

We consider joint sparsity regularization problems under
multi-task learning. In multi-task learning, we consider m
linear regression problems tasks ` = 1, . . . ,m

y(`) = X(`)β̄(`) + ε(`). (1)

We assume that each y(`) is an n(`) dimensional vector,
each X(`) is an n(`) × d dimensional matrix, each β̄(`)

is the target coefficient vector for task ` in d dimension.
For simplicity, we also assume that ε(`) is an n(`) dimen-
sional iid zero-mean Gaussian noise vector with variance
σ2: ε(`) ∼ N(0, σ2In(`)×n(`)).

The joint sparsity model in multi-task learning assumes that
all β̄(`) share similar supports: supp(β̄(`)) ⊂ F̄ for some
common sparsity pattern F̄ , where supp(β) = {j : βj 6=
0}. The convex relaxation formulation for this model is
given by group Lasso

min
β
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where β = {β(`)}`=1,...,m.

We observe that the multi-task group Lasso formulation (2)
is equivalent to minβ,ω F (β, ω), where F (β, ω) =
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with λ = σ
√
m, where β = {β(`)}`=1,...,m and ω =

{ωj}j=1,...,d. With fixed hyper parameter ω, we note that
(2) is a special case of

min
β
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(β(`))>Ω−1β(`),

(4)
where Ω is a hyper parameter covariance matrix shared
among the tasks. This general method employs a common
quadratic regularizer that is shared by all the tasks. The
group Lasso formulation (2) assumes a specific form of di-
agonal covariance matrix Ω = diag({ωj}).

Equation (4) suggests the following random effects model
for joint sparsity regularization, where the coefficient vec-
tors β̄(`) are random vectors generated independently for
each task `; however they share the same covariance matrix
Ω̄: E β̄(`)β̄(`)> = Ω̄. Given the coefficient vector β̄, we
then generate y(`) based on (4). Note that we assume that
Ω may contain zero-diagonal elements. If Ωjj = 0, then
the corresponding β̄(`)

j = 0 for all `. Therefore we call this
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model joint sparsity random effects model for multi-task
learning.

3 Joint Sparsity via Covariance Estimation
Under the proposed joint sparsity random effects model,
it can be shown (see Section 4) that the optimal quadratic
optimizer (β(`))>Ω−1β(`) in (2) is obtained at the true co-
variance Ω = Ω̄. This observation suggests the following
estimation procedure involving two steps:

• Step 1: Estimate the joint covariance matrix Ω as hy-
per parameter. In particular, this paper suggests the
following method as discussed in Section 3.1: Ω̂ =

arg min
Ω∈S

[
1

2

m∑

`=1

∥∥∥y(`)y(`)> −X(`)ΩX(`)>
∥∥∥

2

F
+R(Ω)

]
,

(5)
where ‖ · ‖F denotes the matrix Frobenius norm, S
is the set of symmetric positive semi-definite matri-
ces, and R(Ω) is an appropriately defined regularizer
function (specified in Section 3.1).

• Step 2: Compute each β(`) separately given the esti-
mated Ω̂ using:

β̂(`) =
(
X(`)>X(`) + λΩ̂−1

)−1

X(`)>y(`), (6)

where ` = 1, . . . ,m.

Note that the estimation method proposed in step 1 holds
for a general class of covariance matrices. Meaningful es-
timates of the covariance matrix could be obtained even
when the generative model assumption is violated. If the
dimension d and sample size n per task are fixed, it can be
shown relatively easily using classical asymptotic statistics
that when m → ∞, we can reliably estimate the true co-
variance Ω̄ using (5), i.e., Ω̂ → Ω̄. Therefore the method
is asymptotically optimal as m → ∞. On the other hand,
the group Lasso formulation (3) produces sub-optimal es-
timate of ωj , as we shall see in Section 4.2. We would like
to point out that in cases when the matrix Ω̂ is not invert-
ible (for example, as in the sparse diagonal case as we see
next) we replace the inverse with pseudo-inverse. For ease
of presentation, we use the inverse throughout the presen-
tation, though it should be clear from the context.

3.1 Sparse Covariance Coding Models
In our two step procedure, the covariance estimation of
step 1 is more complex compared to step 2, which involves
only the solutions of ridge regression problems. As men-
tioned above, if we employ a full covariance estimation
model, then the estimation procedure proposed in this work
is asymptotically optimal when m → ∞. However, since
modern asymptotics are often concerned with the scenario

when d � n, computing a d × d full matrix Ω becomes
impossible without further structure on Ω. In this section,
we assume that Ω is diagonal, which is consistent with the
group Lasso model.

This section explains how to estimate Ω using our gen-
erative model, which implies that β̄(`) ∼ N(0,Ω), and
y(`) = X(`)β̄(`) + ε(`) with ε(`) ∼ N(0, σ2In(`)×n(`)).
Taking expectation of y(`)y(`)> with respect to ε and β̄(`),
we obtain Eβ(`),εy

(`)y(`)> = X(`)ΩX(`)> + σ2In(`)×n(`) .
This suggests the following estimator of Ω: Ω̂ =

arg min
Ω∈S

m∑

`=1

∥∥∥y(`)y(`)> −X(`)ΩX(`)> − σ2In(`)×n(`)

∥∥∥
2

F
,

where ‖ · ‖F is the matrix Frobenius norm. This is equiva-
lent to

Ω̂ = arg min
Ω∈S

1

2

m∑

`=1

∥∥∥y(`)y(`)> −X(`)ΩX(`)>
∥∥∥

2

F

+ λtr

(
Ω

m∑

`=1

X(`)>X(`)

)
(7)

with λ = σ2. Similar ideas for estimating covariance by
this approach appeared in [8, 5]. We may treat the last term
as regularizer of Ω, and in such sense a more general form
is to consider Ω̂ =

arg min
Ω∈S

[
1

2

m∑

`=1

∥∥∥y(`)y(`)> −X(`)ΩX(`)>
∥∥∥

2

F
+R(Ω)

]
,

where R(Ω) is a general regularizer function of Ω. Note
that the dimension d can be large, and thus special struc-
ture is needed to regularize Ω. In particular, to be consis-
tent with group Lasso, we impose the diagonal covariance
constraint Ω = diag({ωj}), and then encourage sparsity as
follows: Ω̂ =

arg min
{ωj≥0}

m∑

`=1

1

2
‖y(`)y(`)> −X(`)diag({ωj})X(`)>‖2F

+λ
∑

j

ωj .

(8)

This formulation leads to sparse estimation of ωj , which
we call sparse covariance coding (scc). Note that the
above optimization problem is convex and hence the solu-
tion could be computed efficiently. This formulation is con-
sistent with the group Lasso regularization which also as-
sumes diagonal covariance implicitly as in (2). It should be
noted that if the diagonals of

∑m
`=1X

(`)>X(`) have iden-
tical values, then up to a rescaling of λ, (8) is equivalent
to (7) with Ω restricted to be a diagonal matrix. In the ex-
periments conducted on real world data sets, there was no
significant difference between the two regularization terms
(see Table 4 ), when both formulations are restricted to di-
agonal Ω.
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3.2 Other Covariance Coding Models

We now demonstrate the generality of the proposed ap-
proach for multi-task learning. Note that in addition to the
sparse covariance coding method (8) that assumes a diago-
nal form of Ω plus sparsity constraint, some other structures
may be explored. One method that has been suggested for
covariance estimation in [4] is the following formulation:

Ω̂ = arg min
Ω∈S

m∑

`=1

‖y(`)y(`)> −X(`)ΩX(`)‖2F

+2λ
∑

k

γk

√∑

m

Ω2
k,m, (9)

where S denotes the set of symmetric positive semi-definite
matrices S. This approach selects a set of features, and then
models a full covariance matrix within the selected set of
features. Although the feature selection is achieved with a
group Lasso penalty, unlike this work, [4] didn’t study the
possibility of using covariance estimation to do joint fea-
ture selection (which is the main purpose of this work), but
rather studied covariance estimation as a separate problem.

The partial full covariance model in (9) has complexity in
between that of the full covariance model and the sparse di-
agonal covariance model (sparse covariance coding) which
we promote in this paper, at least for the purpose of joint
feature selection. The latter has the smallest complexity,
and thus more effective for high dimensional problems that
tend to cause over-fitting.

Another model with complexity in between of sparse diag-
onal covariance and full covariance model is to model the
covariance matrix Ω as the sum of a sparse diagonal com-
ponent plus a low-rank component. This is similar in spirit
to the more general sparse+low-rank matrix decomposition
formulation recently appeared in the literature [7, 6, 11].
However since the sparse matrix is diagonal, identifiability
holds trivially (as described in the appendix) and hence one
could in principal, recover both the diagonal and the low-
rank objects individually which preserves the advantages of
the diagonal formulation and the richness of low-rank for-
mulation. The model assumption is Ω = ΩS + ΩL, where
ΩS is the diagonal matrix and ΩL is the low-rank matrix.
The estimation procedure now becomes the following opti-
mization problem (and the rest follows) [Ω̂S , Ω̂L] =

arg min
ΩS ,ΩL

m∑

`=1

1

2
‖y(`)y(`)> −X(`)(ΩS + ΩL)X(`)>‖2F

+ λ1‖ΩS‖vec(1) + λ2‖ΩL‖∗,

subject to the condition that ΩS is a non-negative diagonal
matrix, and ΩL ∈ S , where ‖ · ‖vec(1) is the element-wise
L1 norm and ‖ · ‖∗ corresponds to trace-norm.

4 Theoretical Analysis

In this section we do a theoretical analysis of the pro-
posed method. Specifically, we first derive upper and lower
bounds for prediction error for the joint sparsity random
effects model and show the optimality of the proposed ap-
proach. Informally, the notion of optimality considered is
as follows: what is the ‘optimal shared quadratic regular-
izer’, when m and d goes to infinity and when solutions for
each task can be written as individual ridge regression solu-
tions with a shared quadratic regularizer (note that this in-
cludes group-Lasso method). Next, we demonstrate with a
simple example (i.e., considering the low-dimensional set-
ting) the drawback of the standard group-Lasso relaxation.
In a way, this example also serves as a motivation for the
approach proposed in this work and provides concrete in-
tuition.

We consider a simplified analysis with Ω̂ replaced by Ω̂(`)

in Step 2 so that Ω̂(`) does not depend on y(`):

β̂(`) =
(
X(`)>X(`) + λΩ̂(`)−1

)−1

X(`)>y(`). (10)

For example, this can be achieved by replacing Step 1 with
Ω̂(`) =

arg min
Ω∈S


1

2

∑

k 6=`

∥∥∥y(k)y(k)> −X(k)ΩX(k)>
∥∥∥

2

F
+R(Ω)


 .

(11)

Obviously when m is large, we have Ω̂(`) ≈ Ω̂. Therefore
the analysis can be slightly modified to the original formu-
lation, with an extra error term of O(1/m) that vanishes
when m → ∞. Nevertheless, the independence of Ω̂(`)

and y(`) simplifies the argument and makes the essence of
our analysis much easier to understand.

4.1 Prediction Error

This section derives an expected prediction error bound for
the coefficient vector β̂(`) in (10) in terms of the accuracy
of the covariance matrix estimation Ω̂(`). We consider the
fixed design scenario, where the design matrices X(`) are
fixed and ε(`) and β̄(`) are random.

Theorem 4.1. Assume that λ ≥ σ2. For each task `, given
Ω̂(`) that is independent of y(`), the expected prediction er-
ror with β̂(`) in (10) is bounded as

σ2λω(`) ≤ A ≤ λ2ω(`),

where A = E ‖X(`)β̂(`) − X(`)β̄(`)‖22 −∥∥∥X(`)Ω̄1/2
(
Ω̄1/2Σ(`)Ω̄1/2 + λI

)−1/2
∥∥∥

2

F
and the ex-

pectation is with respect to the random effects β̄(`) and
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noise ε(`), and Σ(`) = X(`)>X(`), and

ω(`) = ‖X(`)
(

Ω̂(`)Σ(`) + λI
)−1

(Ω̂(`) − Ω̄)(Σ(`))1/2

(
(Σ(`))1/2Ω̄(Σ(`))1/2 + λI

)−1/2

‖2F .

The bound shows that the prediction performance of (10)
depends on the accuracy of estimating Ω̄. In partic-
ular, if Ω̂(`) = Ω̄, then the optimal prediction error

of
∥∥∥X(`)Ω̄1/2

(
Ω̄1/2X(`)>X(`)Ω̄1/2 + λI

)−1/2
∥∥∥

2

F
can be

achieved. A simplified upper bound is E ‖X(`)β̂(`) −
X(`)β̄(`)‖22 ≤

∥∥∥X(`)Ω̄1/2
(
Ω̄1/2Σ(`)Ω̄1/2 + λI

)− 1
2

∥∥∥
2

F
+

λ−1‖Σ(`)(Ω̂(`) − Ω̄)‖2F .

This means that if the covariance estimation is
consistent; that is, if Ω̂(`) converges to Ω̄, then
our method achieves the optimal prediction error∥∥∥X(`)Ω̄1/2

(
Ω̄1/2Σ(`)Ω̄1/2 + λI

)−1/2
∥∥∥

2

F
for all tasks.

The consistency of Ω̂(`) has been studied in the literature,
for example by [4] under high dimensional sparsity as-
sumptions. Such results can be immediately applied with
Theorem 4.1 to obtain optimality of the proposed approach.
Specifically, we consider the case of diagonal covariance
matrix, where the sparsity in Ω̄ is defined as the number of
non-zero diagonal entries, i.e., s = |{i : Ωii 6= 0}|. Fol-
lowing [4], we consider the case X(`) = X ∈ Rn×d, ` =
1, . . . ,m. Let XJ denote the sub matrix of X obtained by
removing the columns ofX whose indices are not in the set
J . We also assume that the diagonals of X>X have iden-
tical values so that (8) is equivalent to (7) up to a scaling of
λ.

Let ρmin(A) and ρmax(A) for a matrix A denote the small-
est and largest eigenvalue of A respectively. We introduce
two quantities [4] that impose certain assumptions on the
matrix X .

Definition 1. For 0 < t ≤ d, define ρmin(t) :=
infJ⊂{1,...,d}

|J|≤t
ρmin(X>J XJ).

Definition 2. The mutual coherence of the columnsXt, t =
1, . . . , d of X is defined as θ(X) := max{|X>t′Xt|, t 6=
s′, 1 ≤ t, t′ ≤ d} and let X2

max := max{‖Xt‖22, 1 ≤ t ≤
d}.

We now state the following theorem establishing the con-
sistency of covariance estimation (given by Eq 11) in the
high-dimensional setting. The proof essentially follows the
same argument for Theorem 8 in [4], by noticing the equiv-
alence between (8) and (7), which implies consistency.

Theorem 4.2. Assume that Ω̄ is diagonal, and θ(X) <
ρmin(s)2/4ρmax(X>X)s. Assume n is fixed and the num-
ber of tasks and dimensionality m, d → ∞ such that

√
s ln d/m → 0. Then the covariance estimator of (11),

with appropriately chosen λ and R(Ω) defined by (8), con-
verges to Ω̄:

‖X(Ω̂(`) − Ω̄)X>‖2F →P 0. (12)

The following corollary, which is an immediate conse-
quence of Theorem 4.1 and 4.2, establishes the asymptotic
optimality (for prediction) of the proposed approach under
the sparse diagonal matrix setting and R(Ω) defined as in
(8). Similar result could be derived for other regularizers
for R(Ω).

Corollary 1. Under the assumption of Theorem 4.1 and
4.2, the two-step approach defined by (11) and (10), with
R(Ω) defined by (8) is asymptotically optimal for predic-
tion, for each task `:

E ‖Xβ̂(`) −Xβ̄(`)‖22

−
∥∥∥∥XΩ̄1/2

(
Ω̄1/2X>XΩ̄1/2 + λI

)−1/2
∥∥∥∥

2

F

→P 0.

Note that the asymptotics considered above, reveals the ad-
vantage of multi-task learning under the joint sparsity as-
sumption: with a fixed number of samples per each task,
as the dimensions of the samples and number of tasks tend
to infinity (obeying the condition given in theorem 4.2) the
proposed two-step procedure is asymptotically optimal for
prediction. Although for simplicity, we state the optimality
result for (11) and (10), the same result holds for the two-
step procedure given by (5) and (6), because Ω̂(`) of (11)
and Ω̂ of (5) differ only by a factor of O(1/m) which con-
verges to zero under the asymptotics considered. Finally,
we would like to remark that the mutual coherence assump-
tion made in Theorem 4.2 could be relaxed to milder con-
ditions (based on restricted eigenvalue type assumptions) -
we leave it as future work.

4.2 Drawback of Group Lasso

In general, group Lasso does not lead to optimal perfor-
mance due to looseness of the single step convex relax-
ation. [12, 9]. This section presents a simple but concrete
example to illustrate the phenomenon and shows how Ω̄
is under-estimated in the group-Lasso formulation. Com-
bined with the previous section, we have a complete theo-
retical justification of the superiority of our approach over
group Lasso, which we will also demonstrate in the empir-
ical study.

For this purpose, we only need to consider the following
relatively simple illustration (in the low-dimensional set-
ting). We consider the case when all design matrices equal
identity: X(`) = I for ` = 1, . . . ,m. This formulation is
similar to Normal means models, a popular model in the
statistics literature. It is instructive to consider this model
because of its closed form solution. It helps in deriving
useful insights that further help for a better understanding
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of more general cases. We are interested in the asymptotic
behavior when m → ∞ (with n(`) and d fixed), which
simplifies the analysis, but nevertheless reveals the prob-
lems associated with the standard group Lasso formulation.
Moreover, it should be mentioned that although the two-
step procedure is motivated from a generative model, the
analysis presented in this section does not need to assume
that each β(`) is truly generated from such a model.

Proposition 1. Suppose that n(`) = d and X(`) = I for
` = 1, . . . ,m, and m → ∞. The sparse covariance es-
timate corresponding to the formulation defined by (8) is
consistent.

Proof. The sparse covariance coding formulation (8) is
equivalent to (with the intention of setting λ = σ2): Ω̂scc =

arg min{ωj≥0}
∑m
`=1

1
2

∥∥y(`)y(`)> − diag({ωj})
∥∥2

F
+

λm
∑
j ωj . The closed form solution is given by

ω̂sccj = max
(

0,m−1
∑m
`=1(y

(`)
j )2 − λ

)
for j = 1, . . . , d.

Since m−1
∑m
`=1(y

(`)
j )2 → Eβ(`)(β

(`)
j )2 +σ2 as m→∞,

the variance ω̂sccj → Eβ(`)(β
(`)
j )2 with λ = σ2. Therefore

ω̂j is consistent.

Note that by plugging-in the estimate of variance into (6)
with the same λ (with λ = σ2), we obtain

β̂
(`)
j = y

(`)
j max

(
0, 1− λ

m−1
∑m
`=1(y

(`)
j )2

)
. (13)

An immediate consequence of Proposition 1 is that the
estimate define in (13) is asymptotically optimal for any
method using a quadratic regularizer shared by all the tasks.

A similar analysis of group Lasso formulation would re-
veal its drawback. Consider the group Lasso formulation
defined in (3). Under similar settings, the formulation can
be written as [β̂, ω̂gl] =

arg min
β,ω

m∑

`=1

∥∥∥y(`) − β(`)
∥∥∥

2

2
+ λ

d∑

j=1

1

ωj

m∑

`=1

(β
(`)
j )2

+m
d∑

j=1

ωj .

The closed form solution for the above formulation is

given by ω̂glj = max

(
0,
√
λm−1

∑m
`=1(y

(`)
j )2 − λ

)
, for

j = 1, . . . , d, and the corresponding coefficient estimate

is β̂(`)
j = y

(`)
j max

(
0, 1−

√
λ√

m−1
∑m

`=1(y
(`)
j )2

)
, for ` =

1, . . . ,m and j = 1, . . . , d.

The solution for ω̂glj implies that it is not possible to pick
a fixed λ such that the group Lasso formulation gives con-
sistent estimate of ωj . Since from (3), it is evident that
group Lasso can also be regarded as a method that uses a

quadratic regularizer shared by all the tasks, we know that
the solution obtained for the corresponding co-efficient es-
timate is asymptotically sub-optimal. In fact, the covari-
ance estimate ω̂glj is significantly smaller than the correct
estimate ω̂sccj . This under-estimate of ωj in group Lasso
implies a corresponding under-estimate of β(`) obtained
via group Lasso, when compared to (13). This under-
estimation is the underlying theoretical reason why the pro-
posed two-step procedure is superior to group Lasso for
learning with joint sparsity. This claim is also confirmed
by our empirical studies.

5 Experiments

We demonstrate the advantage of the proposed two-step
procedure through (i) multi-task learning experiments on
synthetic and real-world data sets and (ii) sparse covariance
coding based image classification.

5.1 Multi-task learning

We first report illustrative experiments conducted on syn-
thetic data sets with the proposed models. They are com-
pared with the standard group-lasso formulation. The ex-
perimental set up is as follows: the number of tasks m =
30, d = 256, and n` = 150. The data matrix consists of
entries from standard Gaussian N(0, 1). To generate the
sparse co-efficients, we first generate a random Gaussian
vector in d dimensions and set to zero d − k of the co-
efficients to account for sparsity. The cardinality of the set
of non-zero coefficients is varied as k = 50, 70, 90 and
the noise variance was 0.1. The results reported are aver-
ages over 100 random runs. We compare against standard
group lasso, MSMTFL [9] (note that this is a non-convex
approach, solved by sequence of convex relaxations) and
another natural procedure (GLS-LS) where one uses group
lasso for feature selection and with the selected features,
one does least squares regression to estimate the coeffi-
cients. A precise theoretical comparison to MSMTFL pro-
cedure is left as future work.

Tables 2 shows the coefficient estimation error when the
samples are such that they share 80% as common basis (and
the rest 20% is selected randomly from the remaining basis)
and when the samples share the same indices of non-zero
coefficients (and the actual values vary for each signals).
We note that in both cases, the model with diagonal covari-
ance assumption and partial full covariance (Equation 9)
outperforms the standard group lasso formulation, with the
diagonal assumption performing better because of good es-
timates. The diagonal+low-rank formulation slightly out-
performs the other models as it preserves the advantages
of the diagonal model, while at the same time allows for
additional modeling capability through the low-rank part,
through proper selection of regularization parameters by
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cross-validation.

Support selection: While the above experiment sheds light
on co-efficient estimation error, we performed another ex-
periment to examine the selection properties of the pro-
posed approach. Table 1 shows the hamming distance be-
tween selected basis and the actual basis using the different
models. Note that Hamming distance is a desired metric
for practical applications where exact recovery of the sup-
port set is not possible due to low signal-to-noise ratio. The
indices with non-zero entry along the diagonal in the model
with diagonal covariance assumption correspond to the se-
lected basis. Similarly, indices with non-zero columns (or
rows by symmetry) correspond to the selected basis in the
partial full covariance model. The advantage of the diag-
onal assumption for joint feature selection is clearly seen
from the table. This superiority in the feature selection
process also explains the better performance achieved for
coefficient estimation. A rigorous theoretical study of the
feature selection properties is left as future work.

Correlated data: We next study the effect of correlated
data set on the proposed approach. We generated correlated
Gaussian random variables (corresponding to the size of
the data matrix) in order to fill the matrix X for each task.
The correlation co-efficient was fixed at 0.5. We worked
with fully overlapped support set. Other problem parame-
ters were retained. We compared the estimation accuracy
of the proposed approach with different settings with group
lasso and its variants. The results are summarized in Ta-
ble 3. Note that the proposed approach performs much
better than the group-Lasso based counterparts. Precisely
characterizing this improvement theoretically would be in-
teresting.

Next, the proposed approach was tested on three standard
multi-task regression datasets (computer, school and sar-
cos datasets) and compared with the standard approach for
multi-task learning: mixed (2, 1)-norms or group lasso (2).
A description of the datasets is given below:

Computer data set: This dataset consists of a survey
among 180 people (corresponding to tasks). Each rated
the likelihood of purchasing one of 20 different comput-
ers. The input consists 13 different computer characteris-
tics, while the output corresponds to ratings. Following [1],
we used the first 8 examples per task for training and the
last 4 examples per task for testing.

School data set: This dataset is from the London Educa-
tion Authority and consists of the exam scores of 15362
students from 139 schools (corresponding to tasks). The in-
put consists 4 school-based and 3 student-based attributes,
along with the year. The categorical features are replaced
with binary features. We use 75% of the data set for train-
ing and the rest for testing.

Sarcos data set: The dataset1 has 44,484 train samples and
4449 test samples. The task is to map a 21-dimensional in-
put space (corresponding to characteristics of robotic arm)
to the the output corresponding to seven torque measure-
ment (tasks) to predict the inverse dynamics.

We report the average (accross tasks) root mean square er-
ror on the test data set in Table 4. Note that the proposed
two-step approach performs better than the group lasso ap-
proach on all the data sets. The data sets correspond to
cases with varied data size and number of tasks. Observe
that even with a small training data (computer data set),
performance of both our approach is better than the group-
lasso approach.

5.2 SCC based Image Classification

In this section, we present a novel application of the
proposed approach for obtaining sparse codes for gender
recognition in CMU Multi-pie data set. The database con-
tains 337 subjects (235 male and 102 female) across si-
multaneous variations in pose, expression, and illumina-
tion. The advantages of jointly coding the extracted lo-
cal descriptors of an image with respect to a given dictio-
nary for the purpose of classification has been highlighted
in [3]. They propose a method based on mixed (2, 1)-norm
to jointly find a sparse representation of an image based
on local descriptors of that image. Following a similar ex-
perimental setup, we use the proposed sparse covariance
coding approach for attaining the same goal.

Each image is of size 30 × 40, size of patches is 8 × 8,
and number of overlapping patches per image is 64. Lo-
cal descriptors for each images are extracted in the form of
overlapping patches and a dictionary is learned based on
the obtained patches by sparse coding. With the learnt dic-
tionary, the local descriptors of each image is jointly sparse
coded via the diagonal covariance matrix assumption and
the codes thus obtained are used or classification. This ap-
proach is compared with the group sparse coding based ap-
proach. Linear SVM is used in the final step for classifica-
tion. Note that the purpose of the experiment is not learning
a dictionary. Table 5 shows the test set and train set error for
the classifier thus obtained. Note that the proposed sparse
covariance coding based approach outperforms the group
sparse coding based approach for gender classification due
to its better quality estimates.

Group sparse coding Sparse cov. coding
Train error 6.67± 1.34% 5.56± 1.62%
Test error 7.48± 1.54% 6.32± 1.12%

Table 5: Face image classification based on gender: Test
and Train set error rates for sparse covariance coding and
group sparse coding (both with a fixed dictionary).

1http://www.gaussianprocess.org/gpml/
data/
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Method 80% shared basis Completely shared basis
k=50 k=70 k=90 k=50 k=70 k=90

Standard group lasso 0.18 0.22 0.27 0.11 0.16 0.22
MSMTFL 0.15 0.18 0.20 0.07 0.08 0.17

Partial full covariance 0.17 0.20 0.23 0.07 0.11 0.16
Sparse diagonal covariance 0.13 0.16 0.20 0.05 0.09 0.14

Table 1: Support selection: Hamming distance between true non-zero indices and estimated non-zero indices by the
indicated method for all signals.

Method k=50 k=70 k=90
standard group Lasso 0.1541± 0.0045 0.1919± 0.0092 0.2404± 0.0124

GLS-LS 0.1498± 0.0032 0.1901± 0.0034 0.2383± 0.0342
Partial full covariance 0.1239± 0.0063 0.1542± 0.0131 0.1992± 0.0143

Sparse Diagonal covariance 0.1022± 0.0054 0.1393± 0.0088 0.1701± 0.0104
MSMTFL 0.1276± 0.0075 0.1564± 0.0153 0.1987± 0.0201

Diag+Low-rank covariance 0.1031± 0.0042 0.1212± 0.0122 0.1532± 0.0173

Standard group Lasso 0.1032± 0.0086 0.1574± 0.0151 0.1733± 0.0190
GLS-LS 0.1010± 0.0045 0.1532± 0.0134 0.1698± 0.0430

Partial full covariance 0.0735± 0.0078 0.1131± 0.0148 0.1576± 0.0201
Sparse Diagonal covariance 0.0447± 0.0071 0.0828± 0.0165 0.1184± 0.0198

MSMTFL 0.0643± 0.0093 0.0832± 0.0200 0.1457± 0.0223
Diag+low-rank Covariance 0.0452± 0.0084 0.0786± 0.0136 0.1012± 0.0161

Table 2: Coefficient estimation: Normalized L2 distance between true coefficients and estimated coefficients by the indi-
cated method. First 5 rows correspond to 80% shared basis and the last 5 rows correspond to fully shared basis.

6 Discussion and Future work

We proposed a two-step estimation procedure based on a
specialized random effects model for dealing with joint
sparsity regularization and demonstrated its advantage over
the group-Lasso formulation. The proposed approach high-
lights the fact that enforcing interesting structure on covari-
ance of the coefficients is better for obtaining joint sparsity
in the coefficients. We leave a theoretical comparison to
the MSMTFL procedure, precisely quantifying the statisti-
cal improvement provided by the proposed approach (note
that MSMTFL being a non-convex procedure does not at-
tain the global optimal solution [9]) as future work. Future
work also includes (i) relaxing the assumptions made in
the theoretical analysis, (ii) exploring more complex mod-
els like imposing group-mean structure on the parameters
for additional flexibility, (iii) other additive decomposition
of the covariance matrix with complementary regularizers
and (iv) using locally-smoothed covariance estimates for
time-varying joint sparsity.

A Identifiability of additive structure
The issue of identifiability (which is necessary subse-
quently for consistency and recovery guarantees) arises
when we deal with additive decomposition of the covari-
ance matrix. Here, we discuss about the conditions under

which the model is identifiable, i.e., there exist an unique
decomposition of the covariance matrix as the summation
of the sparse diagonal matrix and low-rank matrix. We fol-
low the discussion used in [11]. Let Ω = Ωs + ΩL denote
the decomposition where Ωs denotes the sparse diagonal
matrix and ΩL a low-rank matrix. Intuitively, identifiability
holds if the sparse matrix is not low-rank (i.e., the support
is sufficiently spread out) and the low-rank matrix is not too
sparse (i.e., the singular vectors are away from co-ordinate
axis). A formal argument is made based on the above intu-
ition. We defined the following quantities (following [11])
below that measures the non-zero entries in any row or col-
umn of Ωs and sparseness of the singular vectors of ΩL:

α = max{‖sign(Ωs)‖1→1, ‖sign(Ωs)‖∞→∞}

and

β = ‖UUT ‖∞ + ‖V V T ‖∞ + ‖U‖2→∞‖V ‖2→∞,

where U, V ∈ Rd×r are the left and right orthonormal sin-
gular vectors corresponding to non-zero singular values of
ΩL and ‖M‖p→q def

= {‖Mv‖q : v ∈ Rm, ‖v‖p ≤ 1}.
Note that, for a diagonal matrix, ‖sign(Ωs)‖1→1 =
‖sign(Ωs)‖∞→∞ = 1. It is proved in [11] that if αβ < 1,
then the matrices are identifiable, i.e, the sparse plus low-
rank decomposition is unique. Therefore we only need to
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Method k=50 k=70 k=90
Group Lasso 0.2012± 0.0033 0.2655± 0.0132 0.3252± 0.0323

GLS-LS 0.2090± 0.0098 0.2702± 0.0042 0.3304± 0.0333
Partial full covariance 0.1706± 0.0064 0.2376± 0.0224 0.2701± 0.0323

Sparse diagonal covariance 0.1634± 0.0022 0.2112± 0.0073 0.2601± 0.0231
MSMTFL 0.1786± 0.0023 0.2323± 0.0434 0.2776± 0.0223

Diag+Low-rank covariance 0.1531± 0.0042 0.2002± 0.0236 0.2544± 0.0145

Table 3: Coefficient estimation: Normalized L2 distance between true coefficients and estimated coefficients by the indi-
cated method with correlated input data.

Data set Group lasso MSMTFL Sparse diagonal Covariances Corr. Sparse diag (Eq.7)
Computer 1.542± 0.043 1.334± 0.031 1.223± 0.033 1.209± 0.054

School 2.202± 0.038 2.033± 0.241 1.987± 0.040 2.012± 0.073
Sarcos 9.221± 0.051 9.113± 0.145 8.983± 0.043 9.002± 0.032

Table 4: Multi-task learning: Average (across task) MSE error on the test data set.

require β < 1 for identifiability, which is a rather weak
assumption, satisfied by most low-rank matrices with suffi-
cient spread of the support.

B Proof of Theorem 4.1

For notational simplicity, we remove the superscripts (`) in
the following derivation (e.g., denote X(`) by X , β̂(`) by β̂
and so on). We have the following decomposition

E‖Xβ̂ −Xβ̄‖22
=E
∥∥X
((
X>X + λΩ̂−1

)−1
X>(Xβ̄ + ε)− β̄

)∥∥2

2

=E
∥∥X
(
X>X + λΩ̂−1

)−1
λΩ̂−1β̄

∥∥2

2

+ E
∥∥X
(
X>X + λΩ̂−1

)−1
X>ε

∥∥2

2

=λ2tr
[
X
(
X>X + λΩ̂−1

)−1
Ω̂−1Ω̄Ω̂−1

(
X>X + λΩ̂−1

)−1

X>
]

+ σ2tr
[
X
(
X>X + λΩ̂−1

)−1

X>X
(
X>X + λΩ̂−1

)−1
X>
]

≤trλ
[
X
(
Ω̂X>X + λI

)−1
(λΩ̄ + Ω̂X>XΩ̂)

(
X>XΩ̂ + λI

)−1
X>
]

=λ(A+B + C)

where with ∆Ω̂ = Ω̂ − Ω̄, we have A = tr
[
X
(
Ω̂X>X +

λI
)−1

∆Ω̂X>X∆Ω̂
(
X>XΩ̂ + λI

)−1
X>
]

and
B = 2tr

[
X
(
Ω̂X>X + λI

)−1
Ω̄X>X∆Ω̂

(
X>XΩ̂ +

λI
)−1

X>
]

and C = tr
[
X
(
Ω̂X>X + λI

)−1
(Ω̄X>XΩ̄ +

λΩ̄)
(
X>XΩ̂ + λI

)−1
X>
]
. We can further expand C as

C =tr
[
X
(
Ω̄X>X + λI

)−1
(Ω̄X>XΩ̄ + λΩ̄)

(
X>XΩ̂ + λI

)−1
X>
]

−tr
[
X
(
Ω̂X>X + λI

)−1
∆Ω̂X>X

(
Ω̄X>X + λI

)−1

(Ω̄X>XΩ̄ + λΩ̄)
(
X>XΩ̂ + λI

)−1
X>
]

=tr
[
XΩ̄

(
X>XΩ̂ + λI

)−1
X>
]
− tr

[
X
(
Ω̂X>X + λI

)−1

∆Ω̂X>XΩ̄
(
X>XΩ̂ + λI

)−1
X>
]

=tr
[
XΩ̄

(
X>XΩ̂ + λI

)−1
X>
]
−B/2.

Therefore we have

B + C − tr
[
XΩ̄

(
X>XΩ̄ + λI

)−1
X>
]

=B/2− tr
[
XΩ̄

(
X>XΩ̄ + λI

)−1
X>X∆Ω̂

(
X>XΩ̂ + λI

)−1
X>
]

=B/2− tr
[
X
(
Ω̄X>X + λI

)−1
Ω̄X>X∆Ω̂

(
X>XΩ̂ + λI

)−1
X>
]

=− tr
[
X
(
Ω̂X>X + λI

)−1
∆Ω̂X>X

(
Ω̄X>X + λI

)−1
Ω̄X>X∆Ω̂

(
X>XΩ̂ + λI

)−1
X>
]
.

Putting all together, we have

A+B + C − tr
[
XΩ̄

(
X>XΩ̄ + λI

)−1
X>
]

=tr
[
X
(
Ω̂X>X + λI

)−1
∆Ω̂
(
I −X>X

(
Ω̄X>X + λI

)−1

Ω̄
)
X>X∆Ω̂

(
X>XΩ̂ + λI

)−1
X>
]

=λtr
[
X
(
Ω̂X>X + λI

)−1
∆Ω̂
(
X>XΩ̄ + λI

)−1

X>X∆Ω̂
(
X>XΩ̂ + λI

)−1
X>
]
.

This proves the upper bound. Similarly, the lower bound
follows from the fact that E ‖Xβ̂ −Xβ̄‖22 ≥ σ2(A+B +
C).
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Abstract

The best current methods for exactly com-
puting the number of satisfying assignments,
or the satisfying probability, of Boolean for-
mulas can be seen, either directly or indi-
rectly, as building decision-DNNF (decision
decomposable negation normal form) repre-
sentations of the input Boolean formulas.
Decision-DNNFs are a special case of d-
DNNFs where d stands for deterministic. We
show that any decision-DNNF can be con-
verted into an equivalent FBDD (free binary
decision diagram) – also known as a read-
once branching program (ROBP or 1-BP) –
with only a quasipolynomial increase in rep-
resentation size in general, and with only
a polynomial increase in size in the special
case of monotone k-DNF formulas. Lever-
aging known exponential lower bounds for
FBDDs, we then obtain similar exponen-
tial lower bounds for decision-DNNFs which
provide lower bounds for the recent algo-
rithms. We also separate the power of
decision-DNNFs from d-DNNFs and a gener-
alization of decision-DNNFs known as AND-
FBDDs. Finally we show how these imply
exponential lower bounds for natural prob-
lems associated with probabilistic databases.

1 Introduction

Model counting is the problem of computing the num-
ber, #F , of satisfying assignments of a Boolean for-
mula F . While model counting is hard for #P, there
have been major advances in practical algorithms that
compute exact model counts for many relatively com-
plex formulas and, using similar techniques, that com-

∗This work was partially supported by NSF IIS-
1115188, IIS-0915054, and CCF-1217099.

pute the probability that Boolean formulas are satis-
fied, given independent probabilities for their literals.

Modern exact model counting algorithms use a va-
riety of techniques (see [Gomes et al., 2009] for a
survey). Many are based on extensions of back-
tracking search using the DPLL family of algo-
rithms [Davis and Putnam, 1960, Davis et al., 1962]
that were originally designed for satisfiability search.
In the context of model counting (and related prob-
lems of exact Bayesian inference) extensions in-
clude caching the results of solved sub-problems
[Majercik and Littman, 1998], dynamically decom-
posing residual formulas into components (Rel-
sat [Bayardo et al., 2000]) and caching their counts
([Bacchus et al., 2003]), and applying dynamic com-
ponent caching together with conflict-directed clause
learning (CDCL) to further prune the search (Cachet
[Sang et al., 2004] and sharpSAT [Thurley, 2006]).

The other major approach, known as knowledge
compilation, is to convert the input formula into
a representation of the Boolean function that the
formula defines and from which the model count
can be computed efficiently in the size of the
representation [Darwiche, 2001a, Darwiche, 2001b,
Huang and Darwiche, 2007, Muise et al., 2012].
Efficiency for knowledge compilation depends
both on the size of the representation and the
time required to construct it. As noted by (c2d
[Huang and Darwiche, 2007] based on component
caching) and (Dsharp [Muise et al., 2012] based
on sharpSAT), the traces of all the DPLL-based
methods yield knowledge compilation algorithms
that can produce what are known as decision-
DNNF representations [Huang and Darwiche, 2005,
Huang and Darwiche, 2007], a syntactic subclass
of d-DNNF representations [Darwiche, 2001b,
Darwiche and Marquis, 2002]. Indeed, all the
methods for exact model counting surveyed
in [Gomes et al., 2009] (and all others of which
we are aware) can be converted to knowledge com-
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pilation algorithms that produce decision-DNNF
representations, without any significant increase in
their running time.

In this paper we prove exponential lower bounds on
the size of decision-DNNFs for natural classes of for-
mulas. Therefore our results immediately imply ex-
ponential lower bounds for all modern exact model
counting algorithms. These bounds are unconditional
– they do not depend on any unproved complexity-
theoretic assumptions. These bounds apply to very
simple classes of Boolean formulas, which occur fre-
quently both in uncertainty reasoning, and in proba-
bilistic inference. We also show that our lower bounds
extend to the evaluation of the properties of a large
class of database queries, which have been studied in
the context of probabilistic databases.

We derive our exponential lower bounds by showing
how to translate any decision-DNNF to an equiva-
lent FBDD, a less powerful representation for Boolean
functions. Our translation increases the size by at
most a quasipolynomial, and by at most a polyno-
mial in the special case when the Boolean function
computed has a monotone k-DNF formula. The lower
bounds follow from well-established exponential lower
bounds for FBDDs. This translation from decision-
DNNFs to FBDDs is of independent interest: it is sim-
ple, and efficient, in the sense that it can be computed
in time linear in the size of the output FBDD.

It is interesting to note that with formula caching,
but without dynamic component caching, the trace ex-
tensions of DPLL-based searches yield FBDDs rather
than decision-DNNFs. Hence, the difference between
FBDDs and decision-DNNFs is precisely the ability
of the latter to take advantage of decompositions into
connected components of subformulas of the formula
being represented. Our conversion shows that these
connected component decompositions can only provide
quasipolynomial improvements in efficiency, or only a
polynomial improvement in the case of monotone k-
DNF formulas.

Representations Though closely related, FBDDs
and decision-DNNFs originate in completely different
approaches for representing (or computing) Boolean
functions. FBDDs are special kinds of binary deci-
sion diagrams [Akers, 1978], also known as branching
programs [Masek, 1976]. These represent a function
using a directed acyclic graph with decision nodes,
each of which queries a Boolean variable represent-
ing an input bit and has 2 out-edges, one labeled 0
and the other 1; it has a single source node, and has
sink nodes labeled by output values; the value of the
function on an assignment of the Boolean variables
is the label of the sink node reached. Free binary

decision diagrams (FBDDs), also known as read-once
branching programs (ROBPs), have the property that
each input variable is queried at most once on each
source-sink path1. There are many variants and ex-
tensions of these decision-based representations; for
an extensive discussion of their theory see the mono-
graph [Wegener, 2000]. These include nondeterminis-
tic extensions of FBDDs called OR-FBDDs, as well
as their corresponding co-nondeterministic extensions
called AND-FBDDs, which have additional internal
AND nodes through which any input can pass – the
output value is 1 for an input iff every consistent
source-sink path leads to a sink labeled 1.

Decision-DNNFs originate in the desire to find re-
stricted forms of Boolean circuits that have better
properties for knowledge representation. Negation
normal form (NNF) circuits are those that have un-
bounded fan-in AND and OR nodes (gates) with all
negations pushed to the input level using De Morgan’s
laws. Darwiche [Darwiche, 2001a] introduced decom-
posable negation normal form (DNNF) which restricts
NNF by requiring that the sub-circuits leading into
each AND gate are defined on disjoint sets of vari-
ables. He also introduced d-DNNFs [Darwiche, 2001a,
Darwiche and Marquis, 2002] which have the further
restriction that DNNFs are deterministic, i.e., the
sub-circuits leading into each OR gate never simul-
taneously evaluate to 1; d-DNNFs have the advan-
tage of probabilistic polynomial-time equivalence test-
ing [Huang and Darwiche, 2007]. Most subsequent
work has used these d-DNNFs. An easy way of en-
suring determinism is to have a single variable x
that evaluates to 1 on one branch and 0 on the
other, so d-DNNFs can be produced by the subcircuit
(x ∧ A) ∨ (¬x ∧ B), which is equivalent to having de-
cision nodes as above; moreover, the decomposability
ensures that x does not appear in either A or B. d-
DNNFs in which all OR nodes are of this form are
called decision-DNNFs [Huang and Darwiche, 2005,
Huang and Darwiche, 2007]. Virtually all algorith-
mic methods that use d-DNNFs, including those used
in exact model counting and Bayesian inference, ac-
tually ensure determinism by using decision-DNNFs.
Decision-DNNFs have the further advantage of being
syntactically checkable; by comparison, given a general
DNNF, it is not easy to check whether it satisfies the
semantic restriction of being a d-DNNF.

1The term free contrasts with ordered binary decision
diagrams (OBDDs) [Bryant, 1986] in which each root-leaf
path must query the variables in the same order. For each
variable order, minimized OBDDs are canonical represen-
tations for Boolean functions, making them extremely use-
ful for a vast number of applications. Unfortunately, OB-
DDs are often also simply referred to as BDDs, which leads
to confusion with the original general model.
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d-DNNF AND-FBDD 

decision-DNNF 

FBDD 
(a.k.a ROBP) n 

 

        ’En 

•  Quasi-polynomial increase (general formula) 
•  Polynomial increase (monotone k-DNF) 

Figure 1: A summary of our contributions (see Section 3).
Here, one representation is contained in another if and only
if the first can be (locally) translated into the second with
at most a polynomial increase in size.

It is immediate that one can get a completely equiva-
lent representation to the above definition by using a
decision node on x in place of each OR of ANDs involv-
ing x, and in place of each leaf variable or its negation;
the decomposability property ensures that no root-
leaf path in the circuit queries the same variable more
than once. Clearly these form a special subclass of the
AND-FBDDs discussed above, in which each AND is
required to have the decomposability property that the
different branches below each AND node query disjoint
sets of variables. Though formally there are insignif-
icant syntactic differences between the definitions, we
will use the term decision-DNNFs to refer to these de-
composable AND-FBDDs.

Two other consequences of our simulation of decision-
DNNFs by FBDDs are provable exponential separa-
tions between the representational power of decision-
DNNFs and that of either d-DNNFs or AND-FBDDs.
There are two functions, involving simple tests on the
rows and columns of Boolean matrices, that require
exponential size FBDDs but have linear size represen-
tations as AND-FBDDs and d-DNNFs respectively (cf.
Thms 10.3.8, 10.4.7. in [Wegener, 2000]); our sim-
ulation shows that these lower bounds carry over to
decision-DNNFs, yielding the claimed separations. A
comparison of these representations in terms of their
succinctness as well as a summary of our contributions
in this paper are given in Figure 12.

Probabilistic Databases These databases an-
notate each tuple with a probability of being
true [Suciu et al., 2011]. Query evaluation on proba-
bilistic databases reduces to the problem of computing
the probability of a positive, k-DNF Boolean formula,
where the number of Boolean variables in each term
is bounded by k, which is fixed by the query, while
the size of the formula grows polynomially in the size
of the database. Our results immediately imply that,

2It is open whether the region is empty if no black
square is shown (also indicated by dotted borders).

when applied to such formulas, decision-DNNFs are
only polynomially more concise than FBDDs. By com-
bining this with previously known results, we describe
a class of queries such that any query in this class gen-
erates Boolean formulas requiring decision-DNNFs of
exponential size, thus implying that none of the recent
evaluation algorithms that either explicitly or implic-
itly yield decision-DNNFs can compute these queries
efficiently. Although the exponential lower bounds we
derive for decision-DNNFs are not the first – there are
a small number of exponential lower bounds known
even for unrestricted AND-FBDDs [Wegener, 2000],
which therefore also apply for decision-DNNFs – none
of these apply to the kinds of simple structured prop-
erties that show up in probabilistic databases that we
are able to analyze.

Compilation As noted above, the size of the decision-
DNNF required is not the only source of complex-
ity in exact model counting. The other source is
the search or compilation process itself – the time
required to produce a decision-DNNF from an in-
put Boolean formula which may greatly exceed the
size of the representation. A particularly striking
case where this is an issue is that of an unsatisfiable
Boolean formula for which the function evaluates to
the constant 0 and hence the decision-DNNF is of
size 1. Determining this fact may take exponential
time. Indeed, DPLL with caching and conflict-directed
clause learning is a special case of resolution theorem
proving [Beame et al., 2004]. There are large num-
bers of unsatisfiable formulas for which exponential
lower bounds are known for every resolution refuta-
tion (see, e.g., [Ben-Sasson and Wigderson, 2001]) and
hence this compilation process must be exponential for
such formulas3. The same issues can arise in ruling out
parts of the space of assignments for satisfiable formu-
las. However, we do not know of any lower bounds
for this excess compilation time that directly apply to
the kinds of simple highly satisfiable instances that we
discuss in this paper.

The rest of the paper is organized as follows. In
Section 2 we review FBDDs and decision-DNNFs.
Section 3 presents our two main results: a general
transformation of a decision-DNNF into an equivalent
FBDD, with only a quasipolynomial increase in size
in general, and only a polynomial increase in size for
monotone k-DNF formulas. We prove these results in
Section 4 and Section 5. In Section 6 we discuss the im-
plications of this transformation for evaluating queries
in probabilistic databases. We conclude in Section 7.

3DPLL with formula caching, but not clause learning,
can be simulated by even simpler regular resolution, though
in general it is not quite as powerful as regular resolu-
tion [Beame et al., 2010].
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2 FBDDs and Decision-DNNFs

FBDDs. An FBDD is a rooted directed acyclic graph
(DAG) F , with two kinds of nodes: decision nodes,
each labeled by a Boolean variable X and two outgoing
edges labeled 0 and 1, and sink nodes labeled 0 and
1. Every path from the root to some leaf node may
test a Boolean variable X at most once. The size of
the FBDD is the number of its nodes. We denote the
sub-DAG of F rooted at an internal node u by Fu
which computes a Boolean function Φu; F computes
Φr where r is the root. For a node u labeled X with 0-
and 1-children u0 and u1, Φu = (¬X)Φu0

∨XΦu1
. The

probability of Φr can be computed in linear time in the
size of the FBDD using a simple dynamic program:
Pr[Φu] = (1− p(X)) Pr[Φu0 ] + p(X) Pr[Φu1 ].

Decision-DNNFs As noted in the introduction, we
choose to define decision-DNNFs as a sub-class of
AND-FBDDs. An AND-FBDD [Wegener, 2000] is an
FBDD with an additional kind of nodes, called AND-
nodes; the function associated to an AND-node u with
children u1, . . . , ur is Φu = Φu1

∧ . . .∧Φur
. A decision-

DNNF, D, is an AND-FBDD satisfying the additional
restriction that for any AND-node u and distinct chil-
dren ui, uj of u, the sub-DAGS Dui

and Duj
do not

mention any common Boolean variable X.

For the rest of the paper we make two assumptions
about decision-DNNFs. First, every AND-node has
exactly 2 children, and as a consequence every inter-
nal node u has exactly two children v1, v2, called the
left and right child respectively; second, that every
1-sink node has at most one incoming edge. Both as-
sumptions are easily enforced by at most a quadratic
increase in the number of nodes in the decision-DNNF.

3 Main Results

In this section we state our two main results and show
several applications. We first need some notation. For
each node u of a decision-DNNF D, let Mu be the
number of AND-nodes in the subgraph Du. If u is
an AND-node, then we have Mu = 1 + Mv1 + Mv2 ,
because, by definition, the two DAGs Dv1 and Dv2
are disjoint; we will always assume that Mv1 ≤ Mv2

(otherwise we swap the two children of the AND-node
u), and this implies that Mu ≥ 2Mv1 + 1. We classify
the edges of the decision-DNNF into three categories:
(u, v) is a light edge if u is an AND-node and v its first
child; (u, v) is a heavy edge if u is an AND-node and v
is a its second child; and (u, v) is a neutral edge if u is
a decision node. We always have Mu ≥ Mv, while for
a light edge we have Mu ≥ 2Mv + 1.

Let D be a decision-DNNF, N the total number of
nodes in D, M the number of AND-nodes, and L the
maximum number of light edges on any path from the

root node to some leaf node. Our first main result is:

Theorem 3.1. For any decision-DNNF D there exists
an equivalent FBDD F computing the same formula as
D, with at most NML nodes. Moreover, given D, F
can be constructed in time O(NML).

We give the proof in Section 4. We next show that the
bound NML is quasipolynomial in N .

Corollary 3.2. For any decision-DNNF D with N
nodes there exists an equivalent FBDD F with at most
N2log2N nodes.

Proof. Consider any path in D with L light edges,
(u1, v1), (u2, v2), . . . , (uL, vL). We have Mui

≥ 2Mvi +
1 and Mvi ≥ Mui+1

for all i, and we also have M ≥
Mu1

and MvL ≥ 0, which implies M ≥ 2L − 1 (by in-
duction on L). Therefore, 2L ≤ M + 1 ≤ N (because
D has at least one node that is not an AND-node), and

NML = N2L logM ≤ N2log2N , proving the claim.

Our second main result concerns monotone k-DNF
Boolean formulas, which have applications to proba-
bilistic databases, as we explain in Section 6. We show
that in this case any decision-DNNF can be converted
into an equivalent FBDD with only a polynomial in-
crease in size. This results from the following lemma,
whose proof we give in Section 5:

Lemma 3.3. If a decision-DNNF D computes a
monotone k-DNF Boolean formula then every path in
D has at most k − 1 AND-nodes.

Therefore, L ≤ k − 1, and Theorem 3.1 implies:

Theorem 3.4. For any decision-DNNF D with N
nodes that computes a monotone k-DNF Boolean for-
mula then there exists an equivalent FBDD F with at
most Nk nodes.

We give now several applications of our main results.

Lower Bounds for DPLL-based Algorithm
We give an explicit Boolean formula on which
every DPLL-based algorithm whose trace is a
decision-DNNF takes exponential time. We use
the following formula introduced by Bollig and
Wegener [Bollig and Wegener, 1998]. For any set
E ⊆ [n] × [n] define ΨE =

∨
(i,j)∈E XiYj , where

X1, . . . , Xn, Y1, . . . , Yn are Boolean variables. Let n =
p2 where p is a prime number; then each number
0 ≤ i < n can be uniquely written as i = a + bp
where 0 ≤ a, b < p. Define En = {(i+ 1, j + 1) |
i = a+ bp, j = c+ dp, c ≡ (a+ bd) mod p}. Then:

Theorem 3.5. [Bollig and Wegener, 1998, Th.3.1]
Any FBDD for ΨEn has 2Ω(

√
n) nodes.

Consider the formula Φn =
∨

1≤i,j≤nXiZijYj . Any

FBDD for Φn has size 2Ω(
√
n), because it can be con-

verted into an FBDD for ΨEn
by setting Zij = 1 or
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Zij = 0, depending on whether (i, j) is in En or not.
Both ΨEn and Φn are monotone, and 2-DNF and 3-
DNF respectively, therefore, by Theorem 3.4:

Corollary 3.6. Any decision-DNNF for either ΨEn

or Φn has 2Ω(
√
n) nodes.

In particular, any DPLL-based algorithm whose trace
is a decision-DNNF will take exponential time on the
formulas ΨEn

and Φn.

Separating decision-DNNFs from AND-
FBDDs We show that decision-DNNFs are
strictly weaker than AND-FBDDs. Define Ψ′En

=
∧

(i,j)∈En
(Xi ∨ Yj), the CNF expression that is

the dual of ΨEn . Since Ψ′En
is a CNF formula, it

admits an AND-FBDD with at most n2 nodes (since
|En| ≤ n2). On the other hand, we show that any

decision-DNNF must have Ω(2n
1/4

) nodes. Indeed,
Theorem 3.5 implies that any FBDD for Ψ′En

has

2Ω(
√
n) nodes. Consider some decision-DNNF D for

Ψ′En
having N nodes. By Corollary 3.2 we obtain an

FBDD F of size 2log2N+logN , which must be 2Ω(
√
n);

thus log2N = Ω(
√
n), hence logN = Ω(n1/4), and N

= 2Ω(n1/4). We have shown:

Corollary 3.7. Decision-DNNFs are exponentially
less concise than AND-FBDDs.

Separating decision-DNNFs from d-DNNFs De-
fine Γn on the matrix of variables Xij for i, j ∈ [n]
by Γn(X) = fn(X) ∨ gn(X) where fn is 1 if and
only if the parity of all the variables is even and the
matrix has an all-1 row and gn is 1 if and only if
the parity of all the variables is odd and the matrix
has an all-1 column. Wegener showed (cf. Theorem
10.4.7. in [Wegener, 2000]) that any FBDD for Γn has
2Ω(n) nodes (therefore, every decision-DNNF requires

2Ω(n1/2) nodes). Γn can also be computed by an O(n2)
size d-DNNF, because both fn and gn can be computed
by O(n2) size OBDDs, and fn ∧ gn ≡ false. Hence:

Corollary 3.8. Decision-DNNFs are exponentially
less concise than d-DNNFs.

4 Decision-DNNF to FBDD

In this section we prove Theorem 3.1 by describing
a construction to convert a decision-DNNF D to an
FBDD F .

4.1 Main Ideas

To construct F we must remove all AND-nodes in D
and replace them with decision nodes. An AND node
has two children, v1, v2; we need to replace this node
with an FBDD for the expression Φv1 ∧ Φv2 . Assume
that u is the only AND-node in D; then both Dv1
and Dv2 are already FBDDs, and Figure 2(a): stack

0 1 
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v1 

0 1 0 
1 

u 

v1 

0 1 

v2 

v2 

Ʌ 

(a)
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Ʌ Ʌ 

0 

0 0 
0 1 1 1 

1 
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Figure 2: (a) Basic construction for converting a decision-
DNNF into an FBDD (b) where it fails.

Dv1 over Dv2 , and redirect all 1-sink nodes in Dv1
to the root of Dv2 . Clearly this computes the same
AND function; moreover it is a correct FBDD because
Dv1 ,Dv2 do not have any common variable. If this con-
struction worked in general, then the entire decision-
DNNF would be converted into an FBDD of exactly
the same size.

But, in general, this simple idea fails, as can be seen on
the simple decision-DNNF in Figure 2(b) (it computes
(¬X)Y Z ∨ XY U). To compute the first AND node
we need to stack Dv1 over Dv2 , and to compute the
second AND node we need to stack Dv1 over Dv3 : this
creates a conflict for redirecting the 1-sink node in Dv1
to v2 or to v3

4. To get around that, we use two ideas.
The first idea is to make copies of some subgraphs. For
example if we make two copies of Dv1 , call them Dv1
and D′v1 , then we can compute the first AND-node
by stacking Dv1 over Dv2 , and compute the second
AND-node by stacking D′v1 over Dv3 and the conflict
is resolved. The second idea is to reorder the children
of the AND-nodes to limit the exponential blowup due
to copying. We present the details next.

4.2 The Construction of F
Fix the decision-DNNF D. Let u denote a node in D
and P denote a path from the root to u. Let s(P )
be the set of light edges on the path P , and let S(u)
consist of the sets s(P ) for all paths from the root to
u, formally:

s(P ) ={(v, w) | (v, w) is a light edge in P}
S(u) ={s(P ) | P is a path from the root to u}

We consider the light edges in a set s = s(P ) ordered
by their occurrences in P (from the root to u). This
order is independent of P : if s = s(P ) = s(P ′) then
the light edges occur in the same order on the paths
P and P ′ (since D is acyclic).

We will convert D into an FBDD F with no-op nodes,
unlabeled nodes having only one outgoing edge. Any

4In this particular example one could stack Dv2 and Dv3

over Dv1 and avoid the conflict; but, in general, Dv2 ,Dv3

may have conflicts with other subgraphs.
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FBDD with no-op nodes is easily transformed into
a standard FBDD by removing the no-op nodes and
redirecting all incoming edges to its unique child.

We define F formally. Its nodes are pairs (u, s) where
u is a node in D and s ∈ S(u). The root node is
(root(D), ∅). The edges in F are of three types:
Type 1: For each light edge e = (u, v) in D and
every s ∈ S(u), add the edge ((u, s), (v, s∪{e})) to F ,
Type 2: For every neutral edge (u, v) in D and every
s ∈ S(u) add the edge ((u, s), (v, s)) to F ,
Type 3: For every heavy edge (u, v2), let e = (u, v1)
be the corresponding light sibling edge. Then, for
every s ∈ S(u), add all edges of the form ((w, s ∪
{e}), (v2, s)), where w is a 1-sink node in Dv1 , v2 is
the heavy child of u, s ∪ {e} ∈ S(w), and s ∈ S(v2).

Finally, we label every node u′ = (u, s) in F , as follows:
(1) If u is a decision node in D that tests the variable
X, then u′ is a decision node in F testing the same
variable X, (2) If u is an AND-node, then u′ is a no-
op node, (3) If u is a 0-sink node, then u′ is a 0-sink
node, (4) If u is a 1-sink node, then: if s = ∅ then u′

is a 1-sink node, otherwise it is a no-op node.

This completes our description of F . The intuition
behind it is that, for every AND node, we make a fresh
copy of its left child. To illustrate this, suppose D has
a single AND-node u with two children v1, v2, and let
e = (u, v1) be the light edge. Suppose there is a second,
neutral edge into v1, say (z, v1). Then F contains two
copies of the subgraph Dv1 , one with nodes labeled
(w, {e}), and the other with nodes labeled (w, ∅). Any
1-sink node in the first copy becomes a no-op node
in F and is connected to v2, similarly to Figure 2(a);
the same 1-sink node in the second copy remain 1-sink
nodes. This copying process is repeated in Dv1 .

4.3 Proof of Theorem 3.1

Theorem 3.1 follows from the following three lemmas:

Lemma 4.1. F has at most NML nodes.

Lemma 4.2. F is a correct FBDD with no-op nodes.

Lemma 4.3. F computes the same function as D.

Proof of Lemma 4.1. The nodes of F have the form
(u, s). There are N possible choices for the node u,
and at most ML possible choices for the set s, because
|s| ≤ L (since every path has ≤ L light edges), and M
is the number of light edges.

Proof of Lemma 4.2. We need to prove three proper-
ties of F : that F is a DAG, that every path in F reads
each variable only once, and that all its nodes are la-
beled consistently with the number of their children
(e.g., a no-op has one child). The first two properties
follow from the following claim:

Claim: If u is a decision node in D labeled with a
variable X, and there exists a non-trivial path (with
at least one edge) between the nodes (u, s) (v, s′) in
F , then the variable X does not occur in Dv.
Indeed, the claim implies that F is acyclic, because any
cycle in F implies a non-trivial path from some node
(u, s) to itself, and obviously X ∈ Du, contradicting
the claim. It also implies that every path in F is read-
once: if a path tests a variable X twice, once at (u, s)
and once at (u1, s1), then X ∈ Du1 , contradicting the
claim. It remains to prove the claim.

Suppose to the contrary that there exists a node (u, s)
such that u is labeled with X and there exists a path
from (u, s) to (v, s′) in F such that X occurs in Dv.
Choose v such that Dv is maximal; i.e., there is no
path from (u, s) to some (v′, s′′) such that Dv ⊂ Dv′
(in the latter case replace v with v′: we still have that
X occurs in Dv′). Consider the last edge on the path
from (u, s) to (v, s′) in F :

(u, s), . . . , (w, s′′), (v, s′) (1)

Observe that (w, v) is not an edge inD sinceDv is max-
imal and since (u, v) is not an edge in D by the read-
once property of D; therefore, the edge from (w, s′′) to
(v, s′) is of Type 3. Thus, there exists an AND-node
z with children v1, v, and our last edge is of the form
(w, s′ ∪ {e}), (v, s′), where e = (z, v1) the light edge of
z. We claim that e 6∈ s; i.e., it is not present at the be-
ginning of the path in (1). If e ∈ s then, since s ∈ S(u),
we have u, which queries X, in Dv1 . Together with the
assumption that some node in Dv queries X, we see
that descendants of the two children v1, v of AND-node
z query the same variable, contradicting the fact that
D is a decision-DNNF. This proves e 6∈ s. On the other
hand, e ∈ s′′. Now consider the first node on the path
in (1) where e is introduced. It can only be an edge of
the form (z, s1), (v1, s1∪{e}). But now we have a path
from (u, s) to (z, s1) with X ∈ Dz ⊃ Dv, contradicting
the maximality of v. This proves the claim.

Finally, we show that all nodes in F are consistently
labeled, i.e. they have the correct arity. To prove this,
we only need to show that every no-op node has a
single child. There are two cases: the node is (u, s)
where u is an AND node in D (for a Type 1 edge), in
which case its single child is (v1, s ∪ {(u, v1)}); or the
node is (w, s) where w is a 1-sink node and s 6= ∅ (for
a Type 3 edge). In that case, let e = (z, v) be the last
edge in s: more precisely, if P is any path such that
s = s(P ), then e is the last light edge on P . (This e
is well defined: if s = s(P ) = s(P ′) then P and P ′

have the same sets of light edges, and therefore must
traverse them in the same order since D is a DAG.)
Let v′ be the right child of z; then the only edge from
(w, s) goes to (v′, s− {e}).
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Next we prove Lemma 4.3, which completes the proof
of Theorem 3.1. To prove this we will use the proper-
ties that (a) the value of the function computed by an
FBDD on an input assignment is the value of the sink
reached on the unique path from the root followed by
the input, and (b) the value of the function computed
by a decision-DNNF is the logical AND of all of the
sink values reachable from the root on that assignment.

Proof of Lemma 4.3. Let ΦD and ΦF be the Boolean
formulas computed by D and F respectively. We show
that for any assignment θ to the Boolean variables,
ΦD[θ] = 0 iff ΦF [θ] = 0. For the “if” direction, sup-
pose that ΦF [θ] = 0. Let P be the unique root-sink
path in F consistent with θ, which must reach a 0-sink
by assumption. We will show that there exists a path
P ′ in D from the root to a 0-sink that is consistent
with θ. This suffices to prove that ΦD[θ] = 0. First,
notice that if P does not contain edges of Type 3, then
it automatically also translates into a path leading to
a 0-sink in D and the claim holds. Otherwise, consider
an edge of Type 3 from (w, s∪{e}) to (v2, s) such that
(i) there exists an AND-node u with children v1, v2,
(ii) w is a descendant of v1, and (iii) e = (u, v1). Since
the edge e must have been introduced along the path,
P contains an edge of the form (u, s′), (v1, s

′ ∪ {e}).
Remove the fragment of P between (u, s′) and (v2, s):
this is also a path in D to a 0-sink (using the original
heavy-edge (u, v2)), with one less edge of Type 3, and
the claim follows by induction.

For the “only if” part, suppose that ΦD[θ] = 0 and
P ′ is a path in D from the root to a 0-sink node; as a
warm-up, if P ′ has no heavy edges then it translates
immediately into a path in F to a 0-sink. In general,
we proceed as follows. Consider all paths in D that
are consistent with θ and lead to a 0-sink node. Order
them lexicographically as follows: P ′1 < P ′2 if, for some
k ≥ 1, P ′1 and P ′2 agree on the first k− 1 steps, and at
step k P ′1 follows the light edge (u, v1), while P ′2 follows
the heavy edge (u, v2) of some AND-node u. Let P ′

be a minimal path under this order. We translate it
into a path P in F iteratively, starting from the root r.
Suppose we have translated the fragment r → u of P ′

into a path P in F : (r, ∅)→ (u, s). Consider the next
edge (u, v) in P ′: if it is a light edge e or a neutral edge,
we simply extend P with (v, s ∪ {e}) or (v, s) respec-
tively. If (u, v) is a heavy edge, let (u, v1) be its light
sibling, and let s1 = s∪ {e}. By the minimality of P ′,
Φv1 [θ] = 1 (otherwise we could find a consistent path
to a 0-sink in Dv1). We claim that there exists a 1-sink
node w in Dv1 s.t. the path P ′′ in F(v1,s1) defined by θ
leads from (v1, s1) to (w, s1): the claim completes the
proof of the lemma, because we simply extend P with:
(u, s), (v1, s1), P ′′, (w, s1), (v, s), where the last edge
is an edge of Type 3, (w, s ∪ {e}), (v, s), completing
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Figure 3: The decision-DNNF D(p), p = 3, in Section 4.4.
The (red and blue) bold dotted arrows denote two paths
from the root to u = X00,m. The white boxes at the lowest
level denote decision nodes to 0- and 1-sinks.

our iterative construction of P .

To prove the claim, we apply our decision-DNNF-to-
FBDD translation to Dv1 , and let F1 denote the result-
ing FBDD; by construction, any edge (z′, s′), (z′′, s′′)
in F1 corresponds to an edge (z′, s′ ∪ s1), (z′′, s′′ ∪ s1)
in F . If ΦF1

is the function computed by F1, then
we have already shown that for any θ, ΦF1 [θ] = 0 ⇒
ΦDv1

[θ] = 0: for our particular θ we have ΦDv1
[θ] =

Φv1 [θ] = 1, hence ΦF1
[θ] = 1. Therefore, the path

defined by θ in F1 goes from the root (v1, ∅) to some
node (w, ∅), where w is a 1-sink node in D; the corre-
sponding path in F(v1,s1) goes from (v1, s1) to (w, s1),
proving the claim.

4.4 A Tight Example

We conclude this section by showing that our analy-
sis cannot be tightened to a polynomial bound5 Fix
M > 0, and let m = M1/2. For each number p > 0,
the decision-DNNF Dp given in Figure 3 (for p = 3)
consists of m = 2p− 1 blocks of size m, organized into
p levels (0 to p− 1). Each block has 2 children to the
next level.

A block is identified by w ∈ {0, 1}∗, where |w| ≤ p−1.
Thus, w = 011 means “left-right-right” and w = ε
means the root block. Each block w has m+ 1 AND-
nodes, m Boolean variables (Xw,i, where 1 ≤ i ≤ m),
and m entry points at these m variables. The left
(resp. right) child of the i-th AND-node in block w
points to Xw0,i (resp. Xw1,i), where 1 ≤ i ≤ m; The
left and the right children of the (m+ 1)-st AND node
in block w points to the (m+1)-st AND node of blocks
w0 and w1 respectively. Clearly, the total number of
AND-nodes in the decision-DNNF is M = m(m+ 1).

To obtain a lower bound on the size of the FBDD given
by our conversion algorithm, we count the total num-

5This only applies to our construction. It does not sep-
arate FBDDs from decision-DNNFs, since a smaller equiv-
alent FBDD may exist for this decision-DNNF.
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ber of copies (u, s) created for the node u = X00..0,m

(i.e., the last decision node in the left-most block at
the lowest level), where s ∈ S(u) is the set of light
edges on a path from the root to u. For any path
P from the root to u, let aj < m be the number of
consecutive decision nodes followed by P at the j-
th level, for 0 ≤ j ≤ p − 1; P must take the left
(light) branch of the corresponding AND-node at each

level j < m − 1. Note that
∑p−1
j=0 aj = m − 1, any

choice of aj ’s satisfying this corresponds to a valid
path P to u, and distinct choices correspond to differ-
ent sets of light edges. Therefore, |S(u)| is the number
of different choices of aj which is

(
m−1+p

p

)
≥
(
m
p

)
≥

(m/p)p = 2p(logm−log p) = 2Ω(log2m) = 2Ω(log2M) since
p = Θ(logm) and M = m(m+ 1).

5 Monotone k-DNFs

We prove Lemma 3.3 in this section. Fix a decision-
DNNF D computing a monotone k-DNF Boolean func-
tion Φ; w.l.o.g. we assume that D is non-redundant:
each child of each AND-node in D computes a non-
constant function.

Proposition 5.1. ∀ node u ∈ D, Φu is monotone.

Proof. The statement is true for the root node u. Sup-
pose that Φu is monotone at some node u. If u is a
decision node testing the variable X and with children
v0, v1, then both Φv0 = Φu[X = 0] and Φv1 = Φu[X =
1] are monotone. If u is an AND-node with children
u1, u2 then Φu = Φu1 ∧ Φu2 where Φu1 , Φu2 have dis-
joint sets of variables, hence they are themselves mono-
tone. The proposition follows by induction.

In the case of a monotone function Φ, a prime impli-
cant is a minimal set of variables whose conjunction
implies Φ and a minimal DNF for Φ has one term for
each of its prime implicants; hence, Φ can be written
as k-DNF iff k is the size of its largest prime implicant.
If θ is a partial assignment, then Φ[θ] is a k′-DNF for
some k′ ≤ k. Let Au be the largest number of AND-
nodes on any path from the node u to some leaf. The
following proposition proves Lemma 3.3:

Lemma 5.2. For every node u with Au ≥ 1, if Φu is
a monotone k-DNF, then k ≥ Au + 1.

Proof. The following claim, which we prove by induc-
tion on |Au|, suffices to show the lemma: for every
node u with Au ≥ 1, there exists a partial assignment
θ such that Φu[θ] is a Boolean formula that is the con-
junction of ≥ Au + 1 variables.

Observe that it suffices to prove the claim when u is an
AND-node, since for any u′ with Au′ ≥ 1 that is not an
AND-node, there is some AND-node u reachable from
u′ only via decision nodes (and hence with Au = Au′)
and we can obtain the partial assignment θ′ for u′ by

adding the partial assignment σ determined by the
path from u′ to u to the partial assignment θ for u.

If u is an AND-node with children v1, v2, then Φu =
Φv1 ∧ Φv2 where Φv1 ,Φv2 do not share any variables.
Consider a path starting at u that has Au AND-nodes
and assume w.l.o.g. that it takes the first branch, to
v1: thus, Au = Av1 + 1. If Av1 = 0 then, since D is
non-redundant, Φv1 is non-constant, so there is partial
assignment θ1 such that I1 = Φv1 [θ1] is a conjunction
of size ≥ 1 = Av1 + 1. If Av1 ≥ 1, by the induction
hypothesis, there exists a partial assignment θ1 such
that I1 = Φv1 [θ1] is a conjunction of size ≥ Av1 +
1. Since D is non-redundant, Φv2 is non-constant, so
there exists a partial assignment θ2 such that I2 =
Φv2 [θ2] is a conjunction of size ≥ 1. Taking θ = θ1∪θ2

and using the disjointness of the variables in Φv1 and
Φv2 , we get that Φu[θ] = I1 ∧ I2 is a conjunction of
size ≥ (Av1 + 1) + 1 = Au + 1, proving the claim.

6 Lower Bounds in Probabilistic
Databases

We now show an important application of our main
result to probabilistic databases. While in knowledge
compilation there exists a single complexity parame-
ter, which is the size of the input formula, in databases
there are two parameters: the database query, and the
database instance. For example, the query may be ex-
pressed in a query language, like SQL, and is usually
very small (e.g. few lines), while the database instance
is very large (e.g. billions of tuples). We are interested
here in data complexity [Vardi, 1982], where the query
is fixed, and the complexity parameter is the size of
the database instance. We use Theorem 3.4 to prove
an exponential lower bound for the query evaluation
problem for every query that is non-hierarchical.

We first briefly review the key concepts in
probabilistic databases, and refer the reader to
[Abiteboul et al., 1995, Suciu et al., 2011] for details.

A relational vocabulary consists of k relation names,
R1, . . . , Rk, where each Ri has an arity ai >
0. A (deterministic) database instance is D =
(A,RD1 , . . . , R

D
k ), were A is a set of constants called

the domain, and for each i, RDi ⊆ Aai . Let n = |A| be
the size of the domain of the database instance.

A Boolean query is a function Q that takes as in-
put a database instance D and returns an output
Q(D) ∈ {false, true}. A Boolean conjunctive query
(CQ) is given by an expression of the form Q =
∃x1 . . . ∃x`(P1 ∧ . . . ∧ Pm), where each Pk is a posi-
tive relational atom of the form Ri(xp1 , . . . , xpai

), with
xj either a variable ∈ {x1, . . . , x`} or a constant. A
Boolean Union of Conjunctive Queries (UCQ) is given
by an expression Q = Q1∨ . . .∨Qm where each Qi is a
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Patient P
name disease
Ann asthma X1

Bob asthma X2

Carl flue X3

Friend F
name1 name2
Ann Joe Z11

Ann Tom Z12

Bob Tom Z22

Carl Tom Z32

Smoker S
name
Joe Y1

Tom Y2

Query Q = ∃x ∃y P(x, ‘asthma’) ∧ F(x, y) ∧ S(y)

Lineage expression ΦD
Q = X1Z11Y1 ∨X1Z12Y2 ∨X2Z22Y2

Figure 4: A database instance, query, and lineage

Boolean conjunctive query. We assume all queries to
be minimized (i.e. they do not have redundant atoms,
see [Abiteboul et al., 1995]).

Given an instance D and query expression Q,
the lineage ΦDQ is a Boolean formula obtained by
grounding the atoms in Q with tuples in D; it
is similar to grounding in knowledge representa-
tion [Domingos and Lowd, 2009]. Formally, each tu-
ple t in the database D is associated with unique
Boolean variable Xt, and the lineage is defined in-
ductively on the structure of Q: (1) ΦDQ = Xt, if

Q is the ground tuple t, (2) ΦDQ1∧Q2
= ΦDQ1

∧ΦDQ2
, (3)

ΦDQ1∨Q2
= ΦDQ1

∨ ΦDQ2
, and (4) ΦD∃x.Q =

∨
a∈A ΦDQ[a/x].

The lineage is always a monotone k-DNF of size O(n`),
where n is the domain size and k, ` are the largest num-
ber of atoms, and the largest number of variables in
any conjunctive query Qi of Q.

In a probabilistic database [Suciu et al., 2011], every
tuple t in the database instance is uncertain, and the
Boolean variable Xt indicates whether t is present or
not. The probability P (Xt = true) is known for ev-
ery tuple t, and is stored in the database as a sepa-
rate attribute of the tuple. The goal in probabilistic
databases is: given a query Q and an input database
D, compute the probability of its lineage, P (ΦDQ).

Example 6.1. The following example is adapted
from [Jha et al., 2010], on a vocabulary with
three relations Patient(name, diseases),
Friend(name1, name2), Smoker(name) (see Fig-
ure 4). Each tuple is associated with a Boolean
variable (X1, X2 etc). The Boolean conjunctive
query Q (as well as the lineage ΦDQ for database D)
returns true if the database instance contains an
asthma patient who has a smoker friend. Our goal
is to compute P (ΦDQ), given the probabilities of each
Boolean variable, when Q is fixed and D is variable.

Lemma 6.2. Let h be the conjunctive query
∃x∃yR(x) ∧ S(x, y) ∧ T (y). Then any decision-DNNF
for the Boolean formula ΦDh has size 2Ω(

√
n), where n

is the size of the domain of D.

Proof. For any n, let D be the database instance RD =
[n], SD = [n]× [n], TD = [n]. Then the lineage ΦDh is
exactly the formula Φn of Corollary 3.6, up to variable
renaming, and the claim follows.

Fix a conjunctive query q = ∃x1 . . . ∃x`P1 ∧ . . . ∧ Pm.
For each variable xj , let at(xj) denote the set of atoms
Pi that contain the variable xj .

Definition 6.3. [Suciu et al., 2011] The query q is
called hierarchical if for any two distinct variables
xi, xj, one of the following holds: at(xi) ⊆ at(xj), or
at(xi) ⊇ at(xj), or at(xi) ∩ at(xj) = ∅. A Boolean
Union of Conjunctive Queries Q = q1 ∨ . . . ∨ qk is
called hierarchical if every qi is hierarchical for i ∈ [k].

For example, the query h in Lemma 6.2 is non-
hierarchical, because at(x) = {R,S}, at(y) = {S, T},
while the query ∃x.∃y.R(x)∧S(x, y) is hierarchical. It
is known that, for a non-hierarchical UCQ Q, comput-
ing the probability of the Boolean formulas ΦDQ is #P-
hard [Suciu et al., 2011]. In the full paper we prove:

Theorem 6.4. Consider any Boolean Union of Con-
junctive Queries Q. If Q is non-hierarchical, then the
size of the decision-DNNF for the Boolean functions
ΦDQ is 2Ω(

√
n), where n is the size of the domain of D.

The query Q in Example 6.1 is non-hierarchical: at(x)
= {Patient, Friend} and at(y) = {Friend, Smoker}.
Therefore, any decision-DNNF computing Q has
size 2Ω(

√
n). For another example, consider the

following non-hierarchical query that returns true iff
the database contains a triangle of friends:

q′ = ∃x∃y∃z(F(x, y) ∧ F(y, z) ∧ F(z, x))

Its lineage is ∆n =
∨
i,j,k=1,n ZijZjkZki. By Theo-

rem 6.4, any decision-DNNF for ∆n has size 2Ω(
√
n).

7 Conclusions and Open Problems

We have proved that any decision-DNNF can be effi-
ciently converted into an equivalent FBDD that is at
most quasipolynomially larger, and at most polynomi-
ally larger in the case of k-DNF formulas. As a conse-
quence, known lower bounds for FBDDs imply lower
bounds for decision-DNNFs and thus (a) exponential
separations of the representational power of decision-
DNNFs from that of both d-DNNFs and AND-FBDDs
and (b) lower bounds on the running time of any al-
gorithm that, either explicitly or implicitly, produces
a decision-DNNF, including the current generation of
exact model counting algorithms.

Some natural questions arise: Is there a polynomial
simulation of decision-DNNFs by FBDDs for the gen-
eral case? In particular, is there a polynomial-size
FBDD for the example Section 4.4? Is there some
other, more powerful syntactic subclass of d-DNNFs
that is useful for exact model counting? What can
be said about the limits of approximate model count-
ing [Gomes et al., 2009]?
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Abstract

Reasoning about degrees of belief in uncertain dy-
namic worlds is fundamental to many applications,
such as robotics and planning, where actions mod-
ify state properties and sensors provide measurements,
both of which are prone to noise. With the exception
of limited cases such as Gaussian processes over lin-
ear phenomena, belief state evolution can be complex
and hard to reason with in a general way. This pa-
per proposes a framework with new results that allows
the reduction of subjective probabilities after sensing
and acting, both in discrete and continuous domains,
to questions about the initial state only. We build
on an expressive probabilistic first-order logical ac-
count by Bacchus, Halpern and Levesque, resulting in
a methodology that, in principle, can be coupled with
a variety of existing inference solutions.

1 INTRODUCTION

Reasoning about degrees of belief in uncertain dynamic
worlds is fundamental to many applications, such as
robotics and planning, where actions modify state prop-
erties and sensors provide measurements, both of which
are prone to noise. However, there seem to be two dis-
parate paradigms to address this concern, both of which
have their limitations. At one extreme, there are logi-
cal formalisms, such as the situation calculus (McCarthy
and Hayes, 1969; Reiter, 2001), which allows us to ex-
press strict uncertainty, and exploits regularities in the ef-
fects actions have on propositions to describe physical laws
compactly. Probabilistic sensor fusion, however, has re-
ceived less attention here. At the other extreme, revising
beliefs after noisy observations over rich error profiles is ef-
fortlessly addressed using probabilistic techniques such as
Kalman filtering and Dynamic Bayesian Networks (Dean
and Kanazawa, 1989; Dean and Wellman, 1991). How-
ever, in these frameworks, a complete specification of the

∗We thank the reviewers for very helpful comments. Finan-
cial support from the Natural Science and Engineering Research
Council of Canada made this research possible.

dependencies between variables is taken as given, making it
difficult to deal with other forms of incomplete knowledge
as well as complex actions that shift dependencies between
variables in nontrivial ways.

An influential but nevertheless simple proposal by Bac-
chus, Halpern and Levesque (1999), BHL henceforth, was
among the first to merge these broad areas in a general way.
Their specification is widely applicable because it is not
constrained to particular structural assumptions. In a nut-
shell, they extend the situation calculus language with a
provision for specifying the degrees of belief in formulas in
the initial state, closely fashioned after intuitions on incor-
porating probability in modal logics (Halpern, 1990; Fagin
and Halpern, 1994). This then allows incomplete and par-
tial specifications, which might be compatible with one or
very many initial distributions and sets of independence as-
sumptions, with beliefs following at a corresponding level
of specificity. Moreover, together with a rich action theory,
the model not only exhibits Bayesian conditioning (Pearl,
1988) (which, then, captures special cases such as Kalman
filtering), but also allows flexibility in the ways dependen-
cies and distributions may change over actions.

What is left open, however, is the following computational
concern: how do we effectively reason about degrees of
belief in the framework? That is, while changing degrees
of belief do indeed emerge as logical entailments of the
given action theory, no procedure is given for computing
these entailments. On closer examination, in fact, this is a
two-part question:

(i) How do we effectively reason about beliefs in a par-
ticular state?

(ii) How do we effectively reason about belief state evolu-
tion and belief change?

In the simplest case, part (i) puts aside acting and sensing,
and considers reasoning about the initial state only, which
is then the classical problem of (first-order) probabilistic
inference. We do not attempt to do a full survey here, but
this has received a lot of attention, often under reasonable
assumptions such as the ability to factorize domains (Poole,
2003; Gogate and Domingos, 2010).
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This paper is about part (ii). Addressing this concern has
a critical bearing on the assumptions made about the do-
main for tractability purposes. For example, if the initial
state supports a decomposed representation of the distribu-
tion, can we expect the same after actions? In the exception
of very limited cases such as Kalman filtering that harness
the conjugate property of Gaussian processes, the situation
is discouraging. In fact, even in the slightly more general
case of Dynamic Bayesian Networks, which are in essence
atomic propositions, if one were to assume that state vari-
ables are independent at time 0, they can become fully cor-
related after a few steps (Dean and Kanazawa, 1988; Boyen
and Koller, 1998; Hajishirzi and Amir, 2010). Dealing with
complex actions, incomplete specifications and mixed rep-
resentations, therefore, is significantly more involved.

In this paper, we propose a new alternative to infer de-
grees of belief in the presence of a rich theory of actions,
closely related to goal regression (Waldinger, 1977; Reiter,
2001). The procedure is general, not requiring (but allow-
ing) structural constraints about the domain, nor imposing
(but allowing) limitations to the family of actions. Regres-
sion derives a mathematical formula, using term and for-
mula substitution only, that relates belief after a sequence
of actions and observations, even when they are noisy, to
beliefs about the initial state. That is, among other things, if
the initial state supports efficient factorizations, regression
will maintain this advantage no matter how actions affect
the dependencies between state variables over time. Going
further, the formalism will work seamlessly with discrete
probability distributions, probability densities, and perhaps
most significantly, with difficult combinations of the two.
(See Example 9.3 in Section 4 below.)

To see a simple example of what goal regression does,
imagine a robot facing a wall and at a certain distance h
to it, as in Figure 1. The robot might initially believe h to
be drawn from a uniform distribution on [2, 12]. Assume
the robot moves away by 2 units and is now interested in
the belief about h ≤ 5. Regression would tell the robot that
this is equivalent to its initial beliefs about h ≤ 3 which
here would lead to a value of .1. To see a nontrivial exam-
ple, imagine now the robot is also equipped with a sonar
unit aimed at the wall, that adds Gaussian noise with mean
µ and variance σ2. After moving away by 2 units, if the
sonar were now to provide a reading of 8, then regression
would derive that belief about h ≤ 5 is equivalent to

1
γ

∫ 3

2
.1 × N(6 − x; µ, σ2) dx.

where γ is the normalization factor. Essentially, the poste-
rior belief about h ≤ 5 is reformulated as the product of the
prior belief about h ≤ 3 and the likelihood of h ≤ 3 given an
observation of 6. (That is, observing 8 after moving away
by 2 units is related here to observing 6 initially.)

We believe the broader contributions of this line of work are

h

Figure 1: Robot moving towards a wall.

two-fold. On the one hand, as we show later, simple cases
of belief state evolution, as applicable to conjugate distri-
butions for example, are special cases of regression’s back-
ward chaining procedure. Thus, regression could serve as a
formal basis to study probabilistic belief change wrt limited
forms of actions. On the other hand, our contribution can
be viewed as a methodology for combining actions with re-
cent advances in probabilistic inference, because reasoning
about actions reduces to reasoning about the initial state.

We now describe the structure of the paper. Before mov-
ing on, we note that although the original BHL account is
only suitable for discrete domains (as they assume values
are taken from countable sets), in a companion paper (Belle
and Levesque, 2013a) we show that the account can be gen-
eralized to domains with both discrete and continuous vari-
ables with minimal additions. In the preliminaries section,
we cover the situation calculus, recap BHL and go over the
essentials of its continuous extension. We then present re-
gression for discrete domains, followed by regression for
general domains. We end with related and future work.
For this version of the paper, we allow noisy sensors but
assume deterministic (noise-free) physical actions. Noisy
actions are left for an extended version.

2 BACKGROUND

The language L of the situation calculus (Reiter, 2001) is
a many-sorted dialect of predicate calculus, with sorts for
physical actions, sensing actions, situations and objects
(including the set of reals R as a subsort). A situation repre-
sents a history as a sequence of actions. A set of initial sit-
uations correspond to the ways the world might be initially.
Successor situations are the result of doing actions, where
the term do(a, s) denotes the unique situation obtained on
doing a in s. The term do(α, s), where α is the sequence
[a1, . . . , an], abbreviates do(an, do(. . . , do(a1, s) . . . )). For
example, do([grasp(o1), repair(o1)], s) represents the situa-
tion obtained after grasping and repairing object o1 starting
from s. Initial situations are those without a predecessor:

Init(s) � ¬∃a, s′. s = do(a, s′).

We let the constant S0 denote the actual initial situation, and
we use the variable ι to range over initial situations only. L
also includes functions whose values vary from situation to
situation, called fluents, whose last argument is a situation.

We follow two notational conventions. We often suppress
the situation argument in a formula φ, or use a distinguished
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variable now. Either way, φ[t] is used to denote the formula
with that variable replaced by t, e.g. both ( f < 12)[s] and
( f (now) < 12)[s] mean f (s) < 12. We also use conditional
if-then-else expressions in formulas throughout. We write
f = If φ Then t1 Else t2 to mean [φ∧ f = t1]∨[¬φ∧ f = t2].
In case quantifiers appear inside the if -condition, we take
some liberties with notation and the scope of variables in
that we write f = If ∃x. φ Then t1 Else t2 to mean ∃x [φ ∧
f = t1] ∨ [( f = t2) ∧ ¬∃x. φ].

Basic action theory

Following (Reiter, 2001), we model dynamic domains in
L by means of a basic action theory D, which consists
of domain-independent foundational axioms, unique name
axioms for actions (see (Reiter, 2001)), and (1) axioms D0
that describe what is true in the initial states, including
S0;1 (2) precondition axioms2 of the form Poss(A(~x), s) ≡
ΠA(~x, s) describing executability conditions using a special
fluent Poss; and (3) successor state axioms of the following
form stipulating how fluents change:

f (do(a, s)) = u ≡ ∃~z1[a = A1(~z1) ∧ u = e1(~z1, s)] ∨ . . .
∃~zk[a = Ak(~zk) ∧ u = ek(~zk, s)] ∨∧¬∃~zi[a = Ai(~zi)] ∧ u = f (s).

(1)
where ei(~zi, s) is any expression whose only free variables
are ~zi and s. For example, consider the action fwd(z) of
moving precisely z units towards or away from the wall,
but the motion stops when the wall is reached:

h(do(a, s)) = u ≡ ∃z[a = fwd(z) ∧ u = max(0, h(s) − z)] ∨
¬∃z[a = fwd(z)] ∧ u = h(s).

(2)
This sentence states that fwd(z) is the only action affect-
ing fluent h, in effect incorporating a solution to the frame
problem (Reiter, 2001). Given an action theory, an agent
reasons about actions by means of entailments ofD.3

Likelihood and belief

The BHL model of belief builds on a treatment of knowl-
edge in L (Scherl and Levesque, 2003). Here we present a
simpler variant based on two distinguished fluents l and p.

The term l(a, s) is intended to denote the likelihood of ac-
tion a in situation s. For example, suppose sonar(z) is the
action of reading the value z from a sonar that measures the
distance to the wall, h. We might assume that this action is
characterized by a simple discrete error model (continuous

1Note that D0 can include any (classical) first-order sentence
about S0, such as h(S0) > 12 and f1(S0) , 2 ∨ f2(S0) = 5.

2Free variables in any of these axioms should be understood
as universally quantified from the outside.

3Entailments are wrt standard Tarskian models, but we will
also assume that models assign the usual interpretations to =, <,
>, 0, 1, +, ×, /, −, e, π, and xy (exponentials).

error models are considered later):

l(sonar(z), s) = If |h(s) − z| ≤ 1 Then 1/3 Else 0
(3)

which stipulates that the difference between a reading of
z and the true value h is either {0,−1, 1} with probability
1/3, assuming that h and z take integer values. In general,
the action theory D is assumed to contain for each sensor
sensei(~x) that measures a fluent f , an axiom of the form:

l(sensei(~x), s) = Erri(~x, f (s)),

where Erri(u1, u2) is some expression with only two free
variables u1 and u2, both numeric.4 (Noise-free physical
actions are given a likelihood of 1.)

Next, the p fluent determines a (subjective) probability dis-
tribution on situations. The term p(s′, s) denotes the relative
weight accorded to situation s′ when the agent happens to
be in situation s, as in modal probability logics (Fagin and
Halpern, 1994). Now, the task of the modeler is to specify
the initial properties of p as part ofD0 using ι and S0, e.g.:

p(ι, S0) = If h(ι) ∈ {2, . . . , 11} Then .1 Else 0 (4)

says that h is drawn from a uniform distribution. The fol-
lowing nonnegative constraint is also included inD0:

∀ι, s. p(s, ι) ≥ 0 ∧ (p(s, ι) > 0 ⊃ Init(s)) (P1)

Then, by means of a remarkably simple successor state ax-
iom for p, (P2) below, the formal specification is complete.

p(s′, do(a, s)) =

If ∃s′′. s′ = do(a, s′′) ∧ Poss(a, s′′)
Then p(s′′, s) × l(a, s′′)

Else 0

(P2)

In particular, the degree of belief in a formula φ can be
accounted for in terms of an abbreviation:5

Bel(φ, s) �
1
γ

∑

{s′:φ[s′]}
p(s′, s) (B)

where γ, the normalization factor, is understood throughout
as the same expression as the numerator but with φ replaced
by true, e.g. here γ is

∑
s′ p(s′, s). So, as in probability log-

ics, belief is simply the total weight of worlds satisfying φ.
But the novelty here is that in a dynamical setting, belief
change via (B) is identical to Bayesian conditioning:

4This captures the idea that the error model of a sensor mea-
suring f depends only on the true value of f , and is independent
of other factors. In a sense this follows the Bayesian model that
conditioning on a random variable f is the same as conditioning
on the event of observing f . But this is not required in general in
the BHL scheme, an issue we ignore for this paper.

5Summations can be expressed as logical terms. See BHL.
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Proposition 1: Suppose D includes (P1), (P2) and the
likelihood axiom for a sensor sense(z) measuring f . Then

D |= Bel( f = t, do(sense(z), S0)) =

Bel( f = t, S0) · Err(z, t)∑
x Bel( f = x, S0) · Err(z, x)

Essentially, if the robot’s sensors are informative, in the
sense of returning values closer to the true value, beliefs
are strengthened over time.

From sums to integrals

While the definition of belief in BHL has many desirable
properties, it is defined in terms of a summation over situ-
ations, and therefore precludes fluents whose values range
over the reals. The continuous analogue of (B) then re-
quires integrating over some suitable space of values.

As it turns out, a suitable space can be found. First, as-
sume that there are n fluents f1, . . . , fn in L, and that these
take no arguments other than the situation argument.6 Next,
suppose that that there is exactly one initial situation for ev-
ery possible value of these fluents (Levesque et al., 1998):

[∀~x∃ι
∧

fi(ι) = xi] ∧ [∀ι, ι′.
∧

fi(ι) = fi(ι′) ⊃ ι = ι′] (I)

Under these assumptions, it can be shown that the summa-
tion over all situations in (B) can be recast as a summation
over all possible initial values x1, . . . , xn for the fluents:

Bel(φ, s) �
1
γ

∑

~x

P(~x, φ, s) (B′)

where P(~x, φ, s) is the (unnormalized) weight accorded to
the successor of an initial world where fi equals xi:

P(~x, φ, do(α, S0)) �
If ∃ι. ∧

fi(ι) = xi ∧ φ[do(α, ι)]
Then p(do(α, ι), do(α, S0))

Else 0

for any action sequence α. In a nutshell, because every sit-
uation has an initial situation as an ancestor, and because
there is a bijection between initial situations and possible
fluent values, it is sufficient to sum over fluent values to ob-
tain the belief even for non-initial situations. Note that un-
like (B), this one expects the final situation term do(α, S0)
mentioning what actions and observations took place to be
explicitly specified, but that is just what one expects when
the agent reasons about its belief after acting and sensing.

The generalization to the continuous case then proceeds as
follows. First, we observe that some (though possibly not
all) fluents will be real-valued, and that p(s′, s) will now
be a measure of density not weight. For example, if h is
real-valued, we might have the following analogue to (4):

p(ι, S0) = If 2 ≤ h(ι) ≤ 12 Then .1 Else 0 (5)
6It might be desirable to have fluents take arguments other than

the situation. See (Belle and Levesque, 2013a) for discussions.

which says that the true initial value of h is drawn from a
uniform distribution on [2,12]. Similarly, the P term above
now measures (unnormalized) density rather than weight.

Now suppose fluents are partitioned into two groups: the
first k take their values x1, . . . , xk from R, while the rest
take their values yk+1, . . . , yn from countable domains, then
the degree of belief in φ is an abbreviation for:

Bel(φ, s) �
1
γ

∫

~x

∑

~y
P(~x · ~y, φ, s) (B+)

That is, the belief in φ is obtained by ranging over all pos-
sible fluent values, and integrating7 and summing the den-
sities of successor situations where φ holds.8

To summarize the formalization, a basic action theory D
henceforth is assumed to additionally include: (a) (P1) and
(I) as part of D0; (b) (P2) as part of D’s successor state
axioms, and (c) sensor likelihood axioms.

3 REGRESSION FOR DISCRETE
DOMAINS

We now investigate a computational mechanism for reason-
ing about beliefs after a trajectory. In this section, we focus
on discrete domains, where a weight-based notion of be-
lief would be appropriate. Domains with both discrete and
continuous variables are reserved for the next section.

Formally, given a basic action theory D, a sequence of ac-
tions α, we might want to determine whether a formula φ
holds after executing α starting from S0:

D |= φ[do(α, S0)] (6)

which is called projection (Reiter, 2001). When it comes to
beliefs, and in particular how that changes after acting and
sensing, we might be interested in calculating the degrees
of belief in φ after α: find a real number n such that

D |= Bel(φ, do(α, S0)) = n. (7)

The obvious method for answering (6) is to translate both
D and φ into a predicate logic formula. This approach,
however, presents a serious computational problem be-
cause belief formulas expand into a large number of sen-
tences using (P2), resulting in an enormous search space
with initial and successor situations. The other issue with

7Like in BHL, where summations are captured as logical terms
using second-order quantification, we can use logical formulas to
capture a variety of sorts of integrals. See (Belle and Levesque,
2013a). We will henceforth simply suppose that for any term t and
variable x,

∫
x

t is a term which evaluates (in the standard calculus
sense) to the integral of t between [−∞,∞].

8We are assuming here that the density function is (Riemann)
integrable. If it is not or if γ = 0 then belief is clearly not defined,
nor should it be.
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this approach is that sums (and integrals in the continuous
case) reduce to complicated second-order formulas.

We now introduce a regression procedure to simplify both
(6) and (7) to queries about Bel(φ, S0), over arithmetic ex-
pressions, for which standard probabilistic reasoning meth-
ods can be applied. For this purpose, in the sequel, Bel is
treated as a special syntactic operator rather than as an ab-
breviation for other formulas. To see a simple example of
the procedure, imagine the robot is interested in the proba-
bility of h=7, given (4), after reading 5 from a sonar:

Bel(h = 7, do(sonar(5), S0)) (8)

If we are to take the sonar’s model to be (3), then (8) should
be 0 by Bayesian conditioning because the likelihood of the
true value being 7 given an observation of 5 is 0. Regres-
sion would reduce the term (8) to one over initial priors:

1
γ

∑

x∈{2,...,11}
Err(5, x) × Bel(h = x ∧ h = 7, S0) (9)

where Err is the error model from (3). By the condition
inside Bel, the only valid value for x is 7 for which the
prior is .1 but Err(5, 7) is 0. Thus, (8) = (9) = 0. In general,
regression is a recursive procedure that works iteratively
over a sequence of actions discarding one action at a time,
and it can be utilized to measure any logical property about
the variables, e.g. 2π · h < 12, h/fuel ≤ mileage, etc.

Formally, regression operates at two levels. (Note that this
differs slightly from (Reiter, 2001; Scherl and Levesque,
2003).) At the formula level,9 we introduce an opera-
tor R for regressing formulas, which over equality literals
sends the individual terms to an operator T for regress-
ing terms. The fundamental objective of these operators is
eliminate do symbols. The end result, then, is to transform
any expression whose situation term is a successor of S0,
say do([a1, a2], S0), to one about S0 only, at which point
D0 is all that is needed. As hinted earlier, these operators
treat Bel(φ, s) as though they are special sorts of terms.10

Throughout the presentation, we assume that the inputs to
these operators do not quantify over all situations.

Definition 2: For any term t, we inductively define T [t]:

1. If t is situation-independent (e.g. x, π2/3) thenT [t] = t.

2. T [g(t1, . . . , tk)] = g(T [t1], . . . ,T [tk]),

where g is any non-fluent function (e.g. ×,+,N).
9For simplicity, in what follows, functional fluents in formu-

las are only allowed to occur as arguments of an equality literal.
It is easy to show that every sentence can be transformed into an
equivalent one in the required form, and the transformation is lin-
ear in the size of the original sentence, e.g. h ≤ 9 is written as
∃u (h = u ∧ u ≤ 9).

10In the context of Bel, φ is understood to be any situation-
suppressed formula not mentioning p, l and Bel. If situation terms
do appear in φ, then they may only be the distinguished variable
now.

3. For a fluent function f , T [ f (s)] is defined inductively

(a) if s is of the form do(A(~t), s′) then
T [ f (s)] = T [e(~t, s′)]

(b) else T [ f (s)] = f (s)

where, in (a), an appropriate instance of the rhs of the
successor state axiom is used, as obtained from (1).

4. T [Bel(φ, s)] is defined inductively:

(a) if s is of the form do(a, s′) and a is a physical
action, then

T [Bel(φ, s)] = T [Bel(ψ, s′)]

where ψ is Poss(a, now) ⊃ R[φ[do(a, now)]].
(b) if s is of the form do(a, s′) and a is a sens-

ing action sense(z) such that l(sense(z), s) =

Err(z, fi(s)) is inD then

T [Bel(φ, s)] =

1
γ

∑

xi

Err(z, xi) × T [Bel(ψ, s′)]

where ψ is Poss(a, now) ⊃ φ ∧ fi(now) = xi, and
γ is the normalization factor and is the same ex-
pression as the numerator but φ replaced by true.

(c) else T [Bel(φ, s)] = Bel(φ, s).

Definition 3: For any formula φ, we define R[φ] induc-
tively:

1. R[t1 = t2] = (T [t1] = T [t2])

2. R[G(t1, . . . , tk)] = G(T [t1], . . . ,T [tk])

where G is any non-fluent predicate (e.g. =, <).

3. R[Poss(A(~t), s)] = R[ΠA(~t, s)],

where an appropriate instance of the rhs of the pre-
condition axiom replaces the atom (see Section 2).

4. When ψ is a formula, R[¬ψ] = ¬R[ψ],
R[∀xψ] = ∀xR[ψ], R[∃xψ] = ∃xR[ψ].

5. When ψ1 and ψ2 are formulas,
R[ψ1 ∧ ψ2] = R[ψ1] ∧ R[ψ2],
R[ψ1 ∨ ψ2] = R[ψ1] ∨ R[ψ2].

This completes the definition of T and R. We now go over
the justifications for the items, starting with the operator
T . In item 1, non-fluents simply do not change after ac-
tions. In item 2, T operates over sums and products in a
modular manner. In item 3, provided there are remaining
do symbols, the physics of the domain determines what the
conditions must have been in the previous situation for the
current value to hold. In item 4, if there is a remainder
physical action, part (a) says that belief in φ after actions is
simply the prior belief about the regression of φ, contingent
on action executability. Part (b) says that the belief about
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φ after observing z for the true value of fi is the prior be-
lief for all possible values xi for fi that agree with φ, times
the likelihood of fi being xi given z. The appropriateness
of parts (a) and (b) depend on the fact that physical actions
do not have any sensing aspect, while sensing actions do
not change the world. Part (c) simply says that T stops
when no do symbols appear in s. We proceed now with the
justifications for R. Over equality atoms, R separates the
terms of the equality and sends them to T . Likewise, over
non-fluent predicates. When Poss is encountered, precon-
ditions take its place. Finally, R simplifies over connectives
in a straightforward way. The main result for R regarding
projection is:

Theorem 4 : Suppose D is any action theory, φ any
situation-suppressed formula and α any action sequence:

D |= φ[do(α, S0)] iff D0 ∪Duna |= R[φ[do(α, S0)]]

where Duna is the unique name assumption and
R[φ[do(α, S0)]] mentions only a single situation term, S0.

Here,Duna is only needed to simplify action terms (Reiter,
2001) e.g. from fwd(4) = fwd(z), Duna infers z = 4. Now
when our goal is to explicitly compute the degrees of belief
in the sense of (7), we have the following property for T :

Theorem 5: LetD be as above, φ any situation-suppressed
formula and α any sequence of actions. Then:

D |= Bel(φ, do(α, S0)) = T [Bel(φ, do(α, S0))]

where T [Bel(φ, do(α, S0))] is a term about S0 only.

Theorem 5 essentially shows how belief about trajectories
is computable using beliefs about S0 only. Note that, since
the result of T is a term about S0, no sentence outside of
D − D0 is needed. We now illustrate regression with ex-
amples. Using Theorem 5, we reduce beliefs after actions
to initial ones. At the final step, standard probabilistic rea-
soning is applied to obtain the end values.

Example 6: Let D contain the union of (2), (3) and (4).11

Then the following equality expressions are entailed byD:

1. Bel(h = 10 ∨ h = 11, S0) = .2

Bel(h ≤ 9, S0) = .8

Terms about S0 are unaffected by T . So this amounts
to inferring probabilities usingD0.

2. Bel(h = 11, do(fwd(1), S0))

= T [ Bel(h = 11, do(fwd(1), S0)) ]

= T [ Bel( R[(h = 11)[do(fwd(1), now)]] , S0) ] (i)

11Initial beliefs can also be specified for D0 using Bel, e.g. (4)
can be replaced inD0 with Bel(h = u, S0) = .1 for u ∈ {2, . . . , 11}.

= T [Bel( T [h(do(fwd(1), now))] = T [11] , S0)] (ii)

= T [Bel(max(0, h − 1) = 11, S0)] (iii)

= Bel(max(0, h − 1) = 11, S0) (iv)

= 0

First, since action preconditions are all true, Poss is
ignored everywhere. We underline to emphasize the
expressions undergoing transformations. We begin al-
ways by applying T to the main term, in this case get-
ting (i), by means of T ’s item 4(a). Next, R’s item 1
is applied in (ii). While T [11] = 11 by T ’s item 1, for
T [h(do(fwd(1), now))] we use item 3 and (2) to get:

T [max(0, h(now) − 1)] = max(0, h(now) − 1)

which is substituted in (ii) to give (iii). Finally, T ’s
item 4(c) yields (iv), which is a belief term about S0.
Now the only valid value for h in (iv) is 12, but for
h = 12 the robot has a belief of 0 initially.

3. Bel(h ≤ 5, do(sonar(5), S0))

=
1
γ

∑

x∈{2,...,11}
Err(5, x) × T [Bel(h = x ∧ h ≤ 5, S0)] (i)

=
1
γ

∑

x∈{2,...,11}
Err(5, x) × Bel(h = x ∧ h ≤ 5, S0) (ii)

=
1
γ

(
1
3
· Bel(h = 4 ∧ h ≤ 5, S0)

+
1
3
· Bel(h = 5 ∧ h ≤ 5, S0) (iii)

+
1
3
· Bel(h = 6 ∧ h ≤ 5, S0)

)

=
1
γ

(
1
3
· Bel(h = 4, S0) +

1
3
· Bel(h = 5, S0)

)
(iv)

=
1
γ
· 2

30
= 2/3

where Err(5, x) is the model from (3). First, T ’s item
4(b) yields (i), and then item 4(c) yields (ii). Since
Err(5, x) is non-zero only for x ∈ {4, 5, 6}, (ii) is sim-
plified to (iii) and (iv) resulting in 1/15 · 1/γ. We cal-
culate γ as follows:

=
∑

x∈{2,...,11}
Err(5, x) × T [Bel(h = x ∧ true, S0)] (i′)

=
∑

x∈{2,...,11}
Err(5, x) × Bel(h = x, S0) (ii′)

= 3/30.

4 REGRESSION FOR GENERAL
DOMAINS

We now generalize regression for domains with discrete
and continuous variables, for which a density-based notion
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of belief is appropriate. The main issue is that when formu-
lating posterior beliefs after sensing, something like Defini-
tion 2’s item 4(b) will not work. This is because over con-
tinuous spaces the belief about any individual point is 0.
Therefore, we will be unpacking belief in terms of the
density function, i.e. in terms of P. These P(~x, φ, s) terms,
which will now also be treated as special sorts of syntac-
tic terms, are separately regressed. (Of course, the regres-
sion of weight-based belief can be approached on similar
lines.) Recall that P(~x, φ, S0) is simply the density of an
initial world (where fi = xi) satisfying φ. Formally, term
regression T is defined as follows:

Definition 7: For any term t, we inductively define:

1, 2 and 3 as before.

4. T [P(~x, φ, s)] is defined inductively:

(a) if s is of the form do(a, s′) and a is a physical
action then

T [P(~x, φ, s)] = T [P(~x, ψ, s′)]

where ψ is Poss(a, now) ⊃ R[φ[do(a, now)]].
(b) if s is of the form do(a, s′) and a is a sens-

ing action sense(z) such that l(sense(z), s) =

Err(z, fi(s)) is inD, then:

T [P(~x, φ, s)] = Err(z, xi) × T [P(~x, ψ, s′)]

where ψ is Poss(a, now) ⊃ φ ∧ fi(now) = xi.

(c) else T [P(~x, φ, s)] = P(~x, φ, s).

5. T [Bel(φ, s)] =
1
γ

∫

~z

∑

~y
T [P(~z · ~y, φ, s)].

R is defined as before. We have the following property:

Theorem 8: Let D be any action theory, φ any situation-
suppressed formula and α any action sequence. Then

D |= Bel(φ, do(α, S0)) = T [Bel(φ, do(α, S0))]

where T [Bel(φ, do(α, S0))] is a term about S0 only.

Similarly, the analogue of Theorem 4 holds as well.

Example 9: Consider the following continuous variant of
the robot example. Imagine a continuous uniform distribu-
tion for the true value of h, as provided by (5). Suppose the
sonar has the following error profile:

l(sonar(z), s) = If z ≥ 0
Then N(z − h(s); 0, 4)

Else 0
(10)

which says the difference between a nonnegative reading
and the true value is normally distributed with mean 0 and
variance 4. (A mean of 0 implies there is no systematic
bias.) Now, letD be any action theory that includes (2), (5)
and (10). Then the following equalities are entailed byD:

1. Bel(h = 3 ∨ h = 4, S0) = 0,

Bel(4 ≤ h ≤ 6, S0) = .2

T does not change terms about S0. Here, for example,
the second belief term equals ∫ 6

4 .1dx = .2.

2. Bel(h ≥ 11, do(fwd(1), S0))

=
1
γ

∫

x∈R
T [ P(x, h ≥ 11, do(fwd(1), S0)) ] (i)

=
1
γ

∫

x∈R
T [P(x,R[ψ], S0)] (ii)

where ψ is (h ≥ 11)[do(fwd(1), now)]

=
1
γ

∫

x∈R
T [P(x,max(0, h − 1) ≥ 11, S0)] (iii)

=
1
γ

∫

x∈R
P(x,max(0, h − 1) ≥ 11, S0) (iv)

=
1
γ

∫

x∈R


p(ι, S0) if ∃ι. h(ι) = x ∧ h(ι) ≥ 12
0 otherwise

(v)

=
1
γ

∫

x∈R


.1 if x ∈ [2, 12] and x ≥ 12
0 otherwise

(vi)

=
1
γ

∫

x∈R


.1 if x = 12
0 otherwise

(vii)

= 0

We use T ’s item 5 to get (i), after which item 4(a) is
applied. On doingR in (ii), along the lines of Example
6.2, we obtain (iii). T ’s item 4(c) then yields (iv),
and stops. In the steps following (iv), we show how P
expands in terms of p, and how the space of situations
resolves into a mathematical expression, yielding 0.12

3. Bel(h = 0, do(fwd(4), S0))

=
1
γ

∫

x∈R
T [P(x,R[(h = 0)[do(fwd(4), now)]], S0)] (i)

=
1
γ

∫

x∈R
T [P(x,max(0, h − 4) = 0, S0)] (ii)

=
1
γ

∫

x∈R


.1 if x ∈ [2, 12] and x ≤ 4
0 otherwise

(iii)

= .2

By means of (2), after moving forward by 4 units the
belief about h is characterized by a mixed distribution
because h = 0 is accorded a .2 weight (i.e. from all
points where h ∈ [2, 4] initially), while h ∈ (0, 8] are
associated with a density of .1. Here, T ’s item 5 and
4(a) are triggered, and the removal of T using 4(c) is
not shown. The end result is that the density function
is integrated for 2 ≤ x ≤ 4 leading to .2. (γ is 1.)

12Given certain assumptions, it is possible to further reduce
logical expressions involving fluents to a mathematical expression
using only those variables that appear in the integral. We expand
on this in a longer version of the paper.
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4. Bel(h = 4, do(fwd(−4), do(fwd(4), S0)))

=
1
γ

∫

x∈R
T [P(x,∃u. h = u ∧

4 = max(0, u + 4), do(fwd(4), S0))] (i)

=
1
γ

∫

x∈R
T [P(x,∃u. u = max(0, h − 4) ∧

4 = max(0, u + 4), S0)] (ii)

=
1
γ

∫

x∈R


.1 if x ∈ [2, 12], x ≤ 4
0 otherwise

(iii)

= .2

We noted above that the point h = 4 gets a .2 weight
on executing fwd(4), after which it obtains a h value of
0. The weight is retained on reversing by 4 units, with
the point now obtaining a h value of 4. The derivation
invokes two applications of T ’s item 4(a). We skip the
intermediate R steps. (γ evaluates to 1.)

5. Bel(h = 4, do(fwd(4), do(fwd(−4), S0)))

=
1
γ

∫

x∈R
T [P(x,∃u. u = max(0, h + 4) ∧

4 = max(0, u − 4), S0)] (i)

= 0

Had the robot moved away first, no “collapsing” of
points takes place, h remains a continuous distribution
and no point is accorded a non-zero weight. T steps
are skipped but they are symmetric to the one above,
e.g. compare (i) here and (ii) above. But then the den-
sity function is non-zero only for the individual h = 4.

6. Bel(4 ≤ h ≤ 6, do(sonar(5), S0))

=
1
γ

∫

x∈R
N(5 − x; 0, 4) × T [P(x, ψ, S0)] (i)

where ψ is h = x ∧ 4 ≤ h ≤ 6

=
1
γ

∫

x∈R


.1 · N(5 − x; 0, 4) if x ∈ [2, 12], x ∈ [4, 6]
0 otherwise

≈ .41

We obtain (i) afterT ’s item 5 and then 4(b) for sensing
actions. That is, belief about h ∈ [4, 6] is sharpened
after observing 5. Basically, we are integrating a func-
tion that is 0 everywhere except when 4 ≤ x ≤ 6 where
it is .1 × N(5 − x; 0, 4), normalized over 2 ≤ x ≤ 12.

7. Bel(4 ≤ h ≤ 6, do(sonar(5), do(sonar(5), S0))

=
1
γ

∫

x∈R
N(5 − x; 0, 4) × T [P(x, ψ, s))] (i)

where s = do(sonar(5), S0), ψ is h = x ∧ 4 ≤ h ≤ 6

=
1
γ

∫

x∈R
[N(5 − x; 0, 4)]2 × T [P(x, ψ, S0)] (ii)

≈ .52

As expected, two successive observations of 5 sharp-
ens belief further. Derivations (i) and (ii) follow from

2.5 5 7.5 10 12.5

0.1

0.2

0.3

S0

do(sonar(5), S0)

do(sonar(5), do(sonar(5), S0))

Figure 2: Belief density change for h at S0 (in blue), after sensing
5 (in green) and after sensing 5 twice (in red).

T ’s item 5, and two successive applications of item
4(b). Thus, we are to integrate .1×[N(5−x; 0, 4)]2 be-
tween [4, 6] and normalize over [2, 12]. These chang-
ing densities are plotted in Figure 2.

5 TWO SPECIAL CASES

Regression is a general property for computing properties
about posteriors in terms of priors after actions. It is there-
fore possible to explore limited cases, which might be ap-
propriate for some applications. We present two such cases.

Conjugate distributions

Certain types of systems, such as Gaussian processes, ad-
mit an effective propagation model. The same advantages
can be observed in our framework. We illustrate this us-
ing an example. Assume a fluent f , and suppose D0 is the
union of (I), (P1) and the following specification:

p(ι, S0) = N( f (ι); µ1, σ1
2)

which stipulates that the true value of f is believed to be
normally distributed. Assume the following sensor inD:

l(sense(z), s) = N(z − f (s); µ2, σ2
2)

Then it is easy to show that estimating posteriors yields a
product of Gaussians (that is also a Gaussian process (Box
and Tiao, 1973)), which is inferred by T :13

T [Bel(b ≤ f ≤ c, do(sense(z), S0))] =

1
γ

∫ c
b N(x; µ1, σ1

2) · N(z − x; µ2, σ2
2)dx

Distribution transformations

Certain actions affect priors in a characteristically simple
manner, and regression would account for these changes
as an appropriate function of the initial belief state. We
illustrate two instances using Example 9. First, consider an

13This corresponds to a simple case of Kalman filtering (Dean
and Wellman, 1991), where the sensed value is static. In the com-
plete framework with noisy effectors, we would obtain a model
where distinct actions may condition priors in distinct ways.
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action grasp(z) that grabs object z. Because the action of
grasping does not affect h by way of (2), we get:

T [Bel(h ≤ b, do(grasp(obj5), S0))] = Bel(h ≤ b, S0)

So no changes to h’s density are required. Second, consider
ground actions with the property that two distinct values of
f do not become the same after that action, e.g., for initial
states this means:

∀ι, ι′. f (ι) , f (ι′) ⊃ f (do(a, ι)) , f (do(a, ι′)) (EQ)

Think of fwd(−4) that agrees with this, but fwd(4) need not.
We can show that such actions “shift” priors:

T [Bel(h ≤ b, do(fwd(−n), S0))] = Bel(h ≤ b − n, S0)

Intuitively, the probability of h being in the interval [b, c],
irrespective of the distribution family, is the same as the
probability of h ∈ [b + n, c + n] after fwd(−n). Thus, regres-
sion derives the initial interval given the current one.14

6 RELATED WORK

Perhaps the most popular models to treat sensor fusion in-
clude variants of Kalman filtering (Fox et al., 2003; Thrun
et al., 2005), where priors and likelihoods are assumed to
be Gaussian. We already pointed out some instances of
Kalman filtering in our example. Where we differ is that
backward chaining is possible even when: (a) no assump-
tions about the nature of distributions, nor about how dis-
tributions and dependencies change need to be made, (b)
the framework is embedded in a rich theory of actions, and
(c) arbitrary forms of incomplete knowledge are allowed,
including strict uncertainty.15 Domain-specific dependen-
cies, then, may be exploited as appropriate.

There have been, of course, other attempts to extend the
situation calculus to reason about probabilistic belief, such
as (Poole, 1998). See BHL for a discussion on the differ-
ences to that work. On a related note, there are numerous
approaches that combine logic and probability. In partic-
ular, we mention dynamic logic proposals (Van Benthem
et al., 2009), planning languages (Younes and Littman,
2004; Sanner, 2011; Kushmerick et al., 1995), and first-
order frameworks based on the situation calculus and close
relatives (Thielscher, 2001). For discussions on these and
non-dynamic proposals such as Markov logics (Richardson
and Domingos, 2006), see (Belle and Levesque, 2013a,b).

14Although fwd shifts the distribution linearly, in general, pro-
vided something like (EQ) is true, actions may also result in non-
linear changes to state variables, which would nonlinearly change
the mean of the distribution. Nevertheless, similar features would
be observed. See the longer version of the paper for more details.

15Moreover, the BHL model is compatible with a wide vari-
ety of formalisms such as (Fagin and Halpern, 1994; Halpern and
Tuttle, 1993; Halpern, 1990). See BHL for discussions.

There is one other thread of related work, that of sym-
bolic dynamic programming (Boutilier et al., 2000, 2001)
which also has recent continuous extensions (Sanner et al.,
2011). While regression is used in this literature as well,
the concerns are very different: they focus on policy gen-
eration, while ours is strictly about belief change. Conse-
quently, the regression in that literature is adapted from the
regression for the non-epistemic situation calculus (Reiter,
2001). Ours, on the other hand, continues in the tradition
of the epistemic situation calculus (Scherl and Levesque,
2003) by extending those intuitions to probabilistic belief
and noisy sensing. In this regard, our account allows the
modeler to explicitly reason about beliefs in the language,
which would prove useful in formalizing the achievability
of plans (Levesque, 1996), among other things. The idea of
regression is not new and lies at the heart of many planning
systems (Fritz and McIlraith, 2007). For STRIPS actions,
regression has at most linear complexity in the length of
the action sequence (Reiter, 2001). For other studies, see
(Van Ditmarsch et al., 2007; Rintanen, 2008).

7 CONCLUSIONS

Planning and robotic applications have to deal with numer-
ous sources of complexity regarding action and change.
Consequently, irrespective of the decompositions and fac-
torizations that are justifiable initially, belief state evolu-
tion is known to invalidate these efforts even over simple
temporal phenomena. In this paper, we obtain a general
methodology to relate beliefs after acting and sensing to
initial beliefs. We investigated the methodology in an exist-
ing model by BHL, and a continuous extension to it, mak-
ing the technique applicable to discrete domains as well as
general ones. We demonstrated regression using an exam-
ple where actions affect priors in nonstandard ways, such as
transforming a continuous distribution to a mixed one. In
general, regression does not insist on (but allows) restric-
tions to actions, that is, no assumptions need to be made
about how actions affect variables and their dependencies
over time. Moreover, at the specification level, we do not
assume (but allow) structurally constrained initial states.

There are many avenues for future work. Extending au-
tomated regression solutions (Reiter, 2001) to subjective
probabilities is ongoing work. Moreover, given the promis-
ing advances made in the area of relational probabilistic in-
ference, we believe regression suggests natural ways to ap-
ply those developments with actions. This line of research
would allow us to address effective belief propagation for
numerous planning problems that require both logical and
probabilistic representations. On another front, note that
after applying the reductions, one may also use approxi-
mate inference methods. Perhaps then, regression can serve
as a computational framework to study approximate belief
propagation, on the one hand, and using approximate infer-
ence at the initial state after goal regression, on the other.

70



References
F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning

about noisy sensors and effectors in the situation calcu-
lus. Artificial Intelligence, 111(1–2):171 – 208, 1999.

V. Belle and H. J. Levesque. Reasoning about continu-
ous uncertainty in the situation calculus. In Proc. IJCAI,
2013.

V. Belle and H. J. Levesque. Robot location estimation in
the situation calculus. In ICAPS Workshop on Planning
and Robotics. 2013.

C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun.
Decision-theoretic, high-level agent programming in the
situation calculus. In Proc. AAAI, pages 355–362, 2000.

C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic
programming for first-order MDPs. In Proc. IJCAI,
pages 690–697, 2001.

G. E. P. Box and G. C. Tiao. Bayesian inference in statisti-
cal analysis. Addison-Wesley, 1973.

X. Boyen and D. Koller. Tractable inference for complex
stochastic processes. In Proc. UAI, pages 33–42, 1998.

T. Dean and K. Kanazawa. Probabilistic temporal reason-
ing. In Proc. AAAI, pages 524–529, 1988.

T. Dean and K. Kanazawa. A model for reasoning about
persistence and causation. Computational intelligence,
5(2):142–150, 1989.

T. Dean and M. Wellman. Planning and control. Morgan
Kaufmann Publishers Inc., 1991.

R. Fagin and J. Y. Halpern. Reasoning about knowledge
and probability. J. ACM, 41(2):340–367, 1994.

D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Bor-
riello. Bayesian filtering for location estimation. Per-
vasive Computing, IEEE, 2(3):24–33, 2003.

C. Fritz and S. A. McIlraith. Monitoring plan optimality
during execution. In Proc. ICAPS, pages 144–151, 2007.

V. Gogate and P. Domingos. Formula-based probabilistic
inference. In Proc. UAI, pages 210–219, 2010.

H. Hajishirzi and E. Amir. Reasoning about determin-
istic actions with probabilistic prior and application to
stochastic filtering. In Proc. KR, 2010.

J. Y. Halpern and M. R. Tuttle. Knowledge, probability,
and adversaries. J. ACM, 40:917–960, 1993.

J.Y. Halpern. An analysis of first-order logics of probabil-
ity. Artificial Intelligence, 46(3):311–350, 1990.

N. Kushmerick, S. Hanks, and D.S. Weld. An algo-
rithm for probabilistic planning. Artificial Intelligence,
76(1):239–286, 1995.

H. J. Levesque, F. Pirri, and R. Reiter. Foundations for the
situation calculus. Electron. Trans. Artif. Intell., 2:159–
178, 1998.

H. J. Levesque. What is planning in the presence of sens-
ing? In Proc. AAAI / IAAI, pages 1139–1146, 1996.

J. McCarthy and P. J. Hayes. Some philosophical problems
from the standpoint of artificial intelligence. In Machine
Intelligence, pages 463–502, 1969.

J. Pearl. Probabilistic reasoning in intelligent systems: net-
works of plausible inference. Morgan Kaufmann, 1988.

D. Poole. Decision theory, the situation calculus and con-
ditional plans. Electron. Trans. Artif. Intell., 2:105–158,
1998.

D. Poole. First-order probabilistic inference. In Proc. IJ-
CAI, pages 985–991, 2003.

R. Reiter. Knowledge in action: logical foundations for
specifying and implementing dynamical systems. MIT
Press, 2001.

M. Richardson and P. Domingos. Markov logic networks.
Machine learning, 62(1):107–136, 2006.

J. Rintanen. Regression for classical and nondeterministic
planning. In Proc. ECAI, pages 568–572, 2008.

S. Sanner, K. V. Delgado, and L. N. de Barros. Symbolic
dynamic programming for discrete and continuous state
MDPs. In Proc. UAI, pages 643–652, 2011.

S. Sanner. Relational dynamic influence diagram language
(rddl): Language description. Technical report, Aus-
tralian National University, 2011.

R. B. Scherl and H. J. Levesque. Knowledge, action, and
the frame problem. Artificial Intelligence, 144(1-2):1–
39, 2003.

M. Thielscher. Planning with noisy actions (preliminary re-
port). In Proc. Australian Joint Conference on Artificial
Intelligence, pages 27–45, 2001.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.
MIT Press, 2005.

J. Van Benthem, J. Gerbrandy, and B. Kooi. Dynamic
update with probabilities. Studia Logica, 93(1):67–96,
2009.

H. Van Ditmarsch, A. Herzig, and T. De Lima. Optimal
regression for reasoning about knowledge and actions.
In Proc. AAAI, pages 1070–1075, 2007.

R. Waldinger. Achieving several goals simultaneously. In
Machine Intelligence, volume 8, pages 94–136. 1977.

H. Younes and M. Littman. PPDDL 1. 0: An extension to
pddl for expressing planning domains with probabilistic
effects. Technical report, Carnegie Mellon University,
2004.

71



Probabilistic Conditional Preference Networks

Damien Bigot
IRIT-CNRS

Toulouse University
31400 Toulouse, France

damien.bigot@irit.fr

Hélène Fargier
IRIT-CNRS

Toulouse University
31400 Toulouse, France

helene.fargier@irit.fr
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Abstract

This paper proposes a “probabilistic” exten-
sion of conditional preference networks as a
way to compactly represent a probability dis-
tributions over preference orderings. It stud-
ies the probabilistic counterparts of the main
reasoning tasks, namely dominance testing
and optimisation from the algorithmical and
complexity viewpoints. Efficient algorithms
for tree-structured probabilistic CP-nets are
given. As a by-product we obtain a linear-
time algorithm for dominance testing in stan-
dard, tree-structured CP-nets.

1 Introduction

Modelling preferences has been an active research
topic in Artificial Intelligence for more than fifteen
years. In recent years, several formalisms have been
proposed that are rich enough to describe complex
preferences of a user in a compact way, by e.g. Rao
and Georgeff [1991], Gonzales et al. [2008], Boutilier
et al. [2001, 2004]. Ordinal preferences, where alter-
natives, or outcomes, are ranked without the use of
numerical functions, are usually easier to obtain, and
are the topic of this paper.

In many contexts, the preferences of the user are ill-
known, e.g. because they depend on the value of
non controllable state variable, or because the system
has no information about the user – her preferences
may then be extrapolated from information gathered
for previous customers. This is typically the case in
anonymous recommendation systems, where several
users with similar preferences can be grouped into a
single model – that can then be finely tuned to fit one
particular user. In this paper, we propose to use a
probability distribution over preference models to rep-
resent ill known preferences. Specifically, we propose
to extend conditional preference networks (CP-nets,

one of the most popular ordinal preference represen-
tation formalisms [Boutilier et al., 2004]) by attaching
probabilities to the local preference rules.

Probabilistic CP-nets are evoked for preference elicita-
tion in by de Amo et al. [2012]. However, the authors
do not give a precise semantics to their CP-nets, nor
do they study their computational properties. A more
general form of Probabilistic CP-net is also described
by Cornelio [2012], who prove that the problem of find-
ing the most probably optimal outcome is similar to
an optimisation problem in a Bayesian network.

In the present paper, we detail the Probabilistic CP
model, and especially its semantics, and provide effi-
cient algorithms to solve the corresponding dominance
and optimisation problems. After a brief presentation
of CP-nets (Section 2), we present Probabilistic CP-
nets, their semantics and explain how they can be used
in several practical settings (Section 3). In Section 4,
we give efficient algorithms and complexity results for
dominance testing. In Section 5, we turn to the opti-
misation task and prove that it can be performed in
linear time when some restriction is put on the struc-
ture of the PCP-net. Section 6 concludes the paper.

2 Background

We consider combinatorial objects defined over a set
of n variables V. Variables are denoted by uppercase
letters A,B,X, Y, . . .. X denotes the domain of a vari-
able X. More generally, for a set of variables U⊆V
, U denotes the Cartesian product of their domains.
Elements of V are called objects or outcomes, denoted
by o, o′, . . .. Elements of U for some U⊆V are denoted
by u, u′, . . .. Given two sets of variables U⊆V ⊆V and
v∈V , we write v[U ] for the restriction of v to the vari-
ables in U .

In this paper we essentially consider variables with a
Boolean domain. We consistently write x and x̄ for
the two values in the domain of X.
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Preference Relations We assume that individual
preferences can be represented by an order (reflex-
ive, antisymmetric and transitive) over the set of all
outcomes V. A convenient way to specify such or-
ders over outcomes in a multi-attribute domain is
by means of local preference rules: each rule en-
ables one to compare outcomes that have some spe-
cific values for some attributes. Conditional preference
networks [Boutilier et al., 2004] enable direct compar-
isons between outcomes that differ in the value of one
variable only (called swap pairs of outcomes). Such a
rule has the form (X,u :>), with X∈V, u∈U for some
U⊆V − {X}, and > a total order on X. According
to (X,u :>), for every pair of outcomes o, o′ such that
o[U ]=o′[U ]=u and o[V−(U∪{X})]=o′[V−(U∪{X})],
o is preferred to o′ if and only if o[X]>o[X ′]. Intu-
itively, the rule (X,u :>) can be read: “Whenever u is
the case, outcomes are ordered as their values for X
are ordered by >, everything else being equal”.

Example 1. Assuming a set of binary variables V=
{X1, . . . , X4}, the rule (x3, x̄2 :x3>x̄3) entails that o=
x1x̄2x3x4 is preferred to o′=x1x̄2x̄3x4. On the other
hand, it tells nothing about the preference between o
and o′′= x̄1x̄2x̄3x4 (everything else is not equal), nor
between x1x2x3x4 and x1x2x̄3x4 (it does not apply).

Considering the transitive closure of the relation over
swap pairs, the set of all outcomes can be (partially)
ordered by a set R of such rules using the notion of flip.
An R-worsening flip is an ordered swap pair (o, o′)
for which there is a rule r=(X,u :>)∈R satisfying:
o[U ]=o′[U ]=u, o[V \ (U ∪ {X})]=o′[V \ (U ∪ {X})],
and o[X]>o′[X]. A sequence of outcomes o1, . . . , ok is
an R-worsening sequence if for 1≤ i≤k−1, (oi, oi+1) is
an R-worsening flip. We write o�R o′ whenever there
is an R-worsening sequence from o to o′. By construc-
tion, the relation �R precisely captures the transitive
closure of the relation induced by R on swap pairs.
We say that the set of rules R is consistent if �R is
irreflexive, and inconsistent otherwise.

Conditional Preference Networks With a con-
ditional preference network (CP-net), one can specify
preferential dependencies between variables by means
of a directed graph G=(V, E): an edge (X,Y ) indi-
cates that the preference over the domain of Y may
depend on the values of X. Given such a graph and a
vertex X∈V, we write pa(X) for the set of parents of
X in (V, E): pa(X)={Y ∈V |(Y,X)∈E}.
Definition 1 (CP-net). A (deterministic) CP-net N
over a set of variables V is defined by a directed graph
(V, E), and by a conditional preference table for each
vertex / variable X∈V, written CPT(X). The table
CPT(X) gives a local preference rule (X,u :>) for each
combination of values u∈pa(X) for the parents of X.

A B

C

CP-Table A

a>ā
CP-Table B

ac :b>b̄
ac̄ : b̄>b
āc : b̄>b
āc̄ : b̄>b

CP-Table C

a : c̄>c
ā :c>c̄

Figure 1: A deterministic CP-net

The graph G is called the structure of N .

When X is clear from the context, we write u :> in-
stead of (X,u :>) for a conditional rule. For instance,
given a CP-net and a binary variable B with a single
parent A, we write a :b>b̄ for the rule (B, a :b>b̄). We
also write >uN,X for the total order over X specified by
a CP-net N for some variable X and some assignment
u∈pa(X). Finally, if no ambiguity can arise, we use
the same notation for a CP-net and its set of local
preference rules. In particular, we write o�N o′ to in-
dicate that there is a worsening sequence from o to o′

using the rules of N . When this is the case, we also
say that N entails o�o′.
For complexity analysis, we write |N | for the size of
N , defined to be the number of symbols needed to
write all rules, where writing a rule (X,u :>) is con-
sidered to require |U |+ |X| symbols. We also use spe-
cific classes of CP-nets, defined by restrictions on their
structure G. For instance, the class of acyclic (resp.
tree-structured) CP-nets is the class of CP-nets whose
structure is an acyclic graph (resp. a forest).

A CP-net N is said to be inconsistent if the set of rules
of N is inconsistent, and consistent otherwise. It is
known [Boutilier et al., 2004] that all acyclic CP-nets
are consistent, but the converse is not true in general.

Example 2. Figure 1 shows a CP-net over three vari-
ables A,B,C. This CP-net is consistent (it is acyclic),
and it entails abc� āb̄c, as can be seen from the wors-
ening sequence abc�ab̄c� āb̄c, which uses the first rule
in CPT(B), then the rule on A.

Given a (consistent) CP-net N the two main reason-
ing problems are dominance and optimisation. Dom-
inance is the problem of deciding whether N entails
o�o′ for two given outcomes o, o′, and optimisation
consists in computing the “best” outcomes according
to N ; that is, the outcomes which are undominated
under �N . For acyclic CP-nets, optimisation is fea-
sible in linear time, and there is always a unique op-
timal outcome. Contrastingly, testing dominance is
PSPACE-complete for unrestricted CP-nets, NP-hard
for acyclic ones, and quadratic for tree-structured
ones [Goldsmith et al., 2005].
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3 Probabilistic CP-Nets

When the preferences of the user are ill-known, typi-
cally because they depend on the value of non control-
lable state variables, or because the system has few in-
formation about the user, we would like to be able to
answer questions like “What is the probability that o is
preferred to o′ by some unknown agent?”. Probabilistic
CP-nets enable to compactly represent a probability
distribution over CP-nets and answer such queries. A
typical application is recommendation, where the pref-
erences of the current (anonymous) user are extrapo-
lated from profiles or from information gathered from
previous customers in order to estimate how likely it
is that a new customer makes a given choice.

Definition 2 (PCP-net). A probabilistic conditional
preference network N , or PCP-net, over a set of vari-
ables V, is defined by a directed graph G=(V, E) and,
for each vertex / variable X∈V, a probabilistic condi-
tional preference table, written PCPT(X). The PCP-
table on X gives, for each assignment u∈pa(X), a
probability distribution over the set of the total orders
on X. We write puN ,X for this distribution. We also
call G the structure of N .

In particular, when all variables are binary, a PCP-
table on X gives for each assignment u∈pa(X) a prob-
ability distribution on the set of two orders {x>x̄, x̄>
x}1 . For brevity, we write u :x>x̄ (p) for the distri-
bution which assigns probability p to u :x>x̄ and 1−p
to u : x̄>x, as in Figure 2.

Taken as a whole, a PCP-net N is not intended to
represent a preference relation. Rather, it represents
a probability distribution over a set of (deterministic)
CP-nets, namely, those which are compatible with N .

Definition 3 (compatibility, probability). A (deter-
ministic) CP-net N is said to be compatible with a
PCP-net N , or to be N -compatible, if it has the same
structure as N . In this case we write N∝N . If N is
N -compatible, we define the probability of N accord-
ing to N by pN (N)=

∏
X∈V,u∈pa(X) p

u
N ,X(>uN,X).

It easily comes that pN is a probability distribution
over the set of deterministic N -compatible CP-nets.

Example 3. Figure 2 shows a PCP-net N over vari-
ables X,Y, Z, T, U, V . The first rule on Y , for in-
stance, says that there is a .2 probability that a de-

1The situation might become less simple when the size
of the domains increases: the PCP-table on X gives for
each assignment u∈pa(X) a probability distribution on the

possible orders on X. Allthrough there are |X|! potential
orders, only a few may receive a significant probability and
shall explicity appear in the PCP table; the remaining mass
of probabilty is then assumed to be shared by the other,
less significant, preference orders.

X

Y

Z T

U

V

x>x̄ (.1)
x y>ȳ (.2)
x̄ y>ȳ (.3)
y z>z̄ (.5)
ȳ z>z̄ (.5)
y t>t̄ (.2)
ȳ t> t̄ (.7)
t u>ū (.1)
t̄ u>ū (.8)
u v>v̄ (.7)
ū v>v̄ (.6)

Figure 2: A probabilistic CP-net

terministic CP-net drawn at random contains the rule
x :y>ȳ; otherwise (i.e. with probability 1−0.2) it con-
tains the opposite rule x : ȳ>y. Independently, there is
a .3 probability that it contains x̄ :y>ȳ. In particular,
there is a .2× .3= .06 probability that it contains both
and hence, that y is unconditionally preferred to ȳ.

The deterministic, N -compatible CP-net with the
negated value of each variable always preferred has
probability p=(1−.1)×(1−.2)×· · ·×(1−.7)×(1−.6).

Observe that when N contains cycles, pN may be
nonzero for some inconsistent CP-nets, which seems
undesirable. Moreover , while deciding whether a
given (cyclic) CP-net is consistent is a PSPACE-hard
problem [Goldsmith et al., 2005], the task is tractable
in the acyclic case. Therefore, the remainder of the
paper considers acyclic structures only.

Motivation Our motivation for studying PCP-nets
stems from several different applicative settings. In the
first one, the preference of the current (anonymous)
user are unknown but the system has at its disposal
the preferences of each of m individuals (e.g., past cus-
tomers), and for each one the preferences are given by
a (deterministic) CP-net Ni over some common struc-
ture G. Then the probabilistic CP-net N over the
graph G defined by puN ,X(>)=#{i |(X,u :>)∈Ni}/m
(proportion of Ni’s which contains this rule, indepen-
dently from other rules) provides a compact summary
of the set of all individual preferences.

Such aggregation obviously induces a certain approxi-
mation of the distribution of preferences in the popu-
lation. Namely, the probability of a given CP-net N as
computed from the PCP-netN (Definition 3) is in gen-
eral different from the proportion of individuals which
indeed have the preferences encoded by N . Precisely,
the construction amounts to approximate the distri-
bution of preference relations as an independent one,
considering each rule as a random variable. This may
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look like a crude approximation; still, as shown below,
it is sound and complete for some restricted queries.
Moreover, we discuss in Section 6 how PCP-nets can
be extended to richer representations of distributions.

A close setting in which PCP-nets may prove useful
is the one where a system interacts with a lot of in-
dividuals, but each one gives only a few preferences.
For instance, in a recommender system, assume that
each customer implicitly gives a preference of the form
u :x>x̄, by choosing one of two objects in a swap pair.
This is the case when, say, a customer chooses the
colour for a car in a context of interactive configura-
tion [Gelle and Weigel, 1996]: she implicitly expresses
a preference of the form u :x>x̄, where U is the set
of variables that have already been assigned and x is
the chosen colour. Individual (deterministic) rules are
thus obtained from different customers and, in the ab-
sence of other information, it clearly makes sense to
aggregate these rules independently from each other.

A third applicative context is one in which only one
person or agent expresses her preferences, but some
noise must be taken into account, due to the elic-
itation process, or possibly from the person’s pref-
erences themselves (e.g., “for dinner, with pasta
bolognese I most often prefer having parmiggiano”).
Assuming independent noise on each rule, PCP-
nets are well suited for representing such preferences
(through a rule like: dinner∧bolognese :parmiggiano>
¬parmiggiano(.9) for the above example).

In all these settings, a PCP-net comes with a structure,
which constrains the dependencies among variables.
In case several CP-nets are aggregated into a PCP-
net, it is natural to build the latter with the union
of all individual graphs as its own structure. Indeed,
an individual CP-net with structure (V,E) can always
be seen as one over (V,E′), for any superset E′ of E.
In the remainder of this paper we will mainly focus
on tree-structured (P)CP-nets. While this is a clear
restriction on expressivity, as we will see even such
networks raise nontrivial computational problems.

Reasoning Tasks Since a PCP-net represents a
probability distribution on a set of deterministic CP-
nets, the most natural queries are the following.

Definition 4 (probability of dominance). Given a
PCP-net N and two outcomes o, o′, the probability of
o�o′, written pN (o�o′), is defined to be the probabil-
ity mass of N -compatible CP-nets which entail o�o′:

pN (o�o′)=
∑

N∝N ,o�No′

pN (N)

Clearly enough, the probability of o�o′ given N is
precisely the probability, when drawing a CP-net at

random according to pN , of obtaining one which en-
tails o�o′. In the remainder of the paper, we will
essentially study how to compute such probability.

The second query is the probabilistic counterpart of
optimisation in deterministic CP-nets.

Definition 5 (probability of being optimal). Given an
acyclic PCP-net N and an outcome o, the probability
for o to be optimal, written pN (o), is defined to be the
probability mass of N -compatible CP-nets which have
o as their optimal outcome 2.

Interestingly, despite the important approximation in-
duced when summarising a population of CP-nets
into a single PCP-net, some reasoning tasks can be
performed exactly with the approximation (PCP-net)
only. So let N be an acyclic PCP-net built from the
rulewise aggregation of individual CP-nets.

Proposition 1. Let N be an acyclic PCP-net and
{o, o′} a swap pair of outcomes, differing only on the
value of X. The probability pN (o�o′) is precisely the
proportion of individual CP-nets which entail o�o′.

Proof. This follows from the fact that for acyclic
G, a deterministic CP-net N entails o�o′ if
and only if it contains the rule o[pa(X)] :o[X]>
ō[X] [Koriche and Zanuttini, 2009, Lemma 1]. �
Another interesting property is the preserva-
tion of local Condorcet winners [Xia et al., 2008,
Li et al., 2011], also called ”hypercubewise Condorcet
winners” by Conitzer et al. [2011]: they are the
outcomes o which are preferred by at least one half of
the individual CP-nets to all o′ that differ from o in
the value of one variable only. Proposition 1 proves
that the hypercubewise Condorcet winners are the
outcomes that dominate each of their neighbors in the
aggregated PCP-net with a probability of at least 0.5.

Moreover, let us insist that PCP-nets may serve other
purposes than preference aggregation, as, for instance,
modelling ill-known preferences of a single user, and
that in such settings no approximation occurs.

4 Complexity of Dominance Testing

We now study the complexity of the dominance prob-
lem, namely, of computing the probability of o�o′
given a PCP-net N . We restrict our attention to tree-
structured CP-nets, that is, to the case when G is
acyclic and assigns at most one parent to each vari-
able. This arguably cannot capture all interesting de-
pendency structures among variables, but as we will
see this is already a nontrivial setting.

2Under our assumption of acyclicity, each CP-net is
guaranteed to have a unique optimal outcome, hence the
soundness of the definition.
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We first give a generic construction, and use it for de-
riving a fixed-parameter tractability result, with the
number of variables over which o, o′ differ as the pa-
rameter. Then as a by-product, we derive an interest-
ing result for deterministic CP-nets, namely, an O(n)
algorithm for dominance testing. Finally, we show that
with slightly more general structures, computing the
probability of dominance is #P-hard.

4.1 Construction

The cornerstone of our results is a characterisation of
all deterministic CP-nets for which there exists a wors-
ening sequence from o to o′, given a tree structure G.
The characterisation is given as a propositional for-
mula for each leaf X, written worseno,o

′
(X), over vari-

ables of the form y :x>x̄, ȳ :x>x̄, etc., with Y the
parent of X in G. An assignment of, say, y :x>x̄ to
>, means that the corresponding CP-net contains the
rule; a complete assignment to all variables thus de-
fines a deterministic CP-net with structure G.

Precisely, fix a forest G=(V,E) and two outcomes
o, o′. For each variable X with no parent in G, we in-
troduce the propositional variable x>x̄, and we write
x̄>x for its negation (because > is total, x>x̄ is true
iff x̄>x is false) . Similarly, for each variable X with
pa(X)={Y }, and yε∈{y, ȳ}, we introduce the propo-
sitional variables y :x>x̄ and ȳ :x>x̄ and we write
y : x̄>x and ȳ : x̄>x for their respective negations.

Boutilier et al. [2004, Appendix A] show that a wors-
ening sequence may include up to Θ(n) changes of
the value of some variable, even with binary tree-
structured CP-nets. We exploit it by reasoning on the
number of changes of each variable.

Precisely, the formula changeo,o
′

k (X) means that there
is a worsening sequence in which X alternates value at
least k times, starting from its value in o and ending
with its value in o′. For instance, changex...,x̄...3 (X)
means that there is a worsening sequence in which X
successively takes values x, x̄, x, x̄ (at least 4 values

and 3 alternations). Formula changeo,o
′

k (X) is defined
inductively in Table 1, where Y denotes the parent
of X. We give the formulas for the case where o[X]=
x, o[Y ]=y, the other cases can be obtained by symetry.
Then worseno,o

′
(X) is defined as follows:

• worseno,o
′
(X)=changeo,o

′

0 (X) if o[X]=o′[X];

• worseno,o
′
(X)=changeo,o

′

1 (X) otherwise.

Example 4. Consider again the PCP-net depicted in
Figure 2, and let o=xyztuv, o′= x̄yz̄tūv. The corre-
sponding formulas are given in Table 2.

In the following, we write o[≥X] for o restricted to the
variables which are ascendants of X in G (X included).

Proposition 2. There is a worsening sequence from
o[≥X] to o′[≥X] in which X changes value at least k

times if and only if N is a model of changeo,o
′

k (X).

Proof. The proof goes by induction on the definition
of the formula. For lack of space, we omit the proof
for the base cases.

For the inductive step, we give a proof only for
Rule 1 (Case o[X]=o′[X]=x, o[Y ]=o′[Y ]=y). The
other rules are proved in exactly the same manner.
So assume first that N satisfies the formula in Rule 1.
Then by IH there is a worsening sequence

ω1y, ω2ȳ, . . . , ωkȳ, ωk+1y

in which all ωi’s are assignments to the proper ascen-
dants of Y and ω1y (resp. ωk+1y) is o[≥Y ] (resp.
o′[≥Y ]). If moreover N satisfies the first disjunct
(y :x>x̄ ∧ ȳ : x̄>x), since the value of X has no in-
fluence on the preference over the values of Y we can
build the sequence

ω1yx, ω1yx̄, ω2ȳx̄, ω2ȳx, . . . , ωkȳx̄, ωkȳx, ωk+1yx

which is a worsening sequence from o[≥X] to o′[≥X]
where X changes value k times, as desired. Similarly,
if N satisfies the second disjunct, we can build the fol-
lowing sequence, where X also changes value k times.

ω1yx, ω2ȳx, ω2ȳx̄, . . . , ωkȳx, ωkȳx̄, ωk+1yx̄, ωk+1yx

Conversely, we show that if there is a sequence as in
the claim, then N satisfies the formula in Rule 1. Let

ω1x, ω2x̄, . . . , ωkx̄, ωk+1x

be a sequence from o[≥X] to o′[≥X] in which x
changes value at least k≥2 times. There must be two
opposite rules on X, for otherwise X cannot change
value back and forth. Hence the disjunction in the def-

inition of changeo,o
′

k (X) is satisfied. Moreover, these
rules must fire alternatively at least k times overall,
hence Y must take at least k different values in the se-
quence ω1, ω2, . . . , ωk+1, that is, change value at least
k−1 times. But since it starts and ends with the same
value y and k−1 is odd, in fact it must change at least

k times. Hence by IH, N must satisfy changeo,o
′

k (Y ).
�
Proposition 3. There is a worsening sequence from
o to o′ if and only if N satisfies the formula∧
X worseno,o

′
(X), where X ranges over all leaves in

the tree structure of N .

Proof. Proposition 2 shows the claim if G is reduced
to a chain. For the more general setting, consider two
branches with a common part above X (included), and
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Base cases (Pa(X)=∅ or k≤1)

Pa(X) o,o′ k changeo,o
′

k (X)

∅ o[X]=o′[X] 0 >
∅ o[X]=o′[X] >0 ⊥
∅ o[X]=x, o′[X]= x̄ 0 changeo,o

′

1 (X)
∅ o[X]=x, o′[X]= x̄ 1 x>x̄
∅ o[X]=x, o′[X]= x̄ >1 ⊥
{Y } o[X]=o′[X] 0 changeo,o

′

0 (Y )

{Y } o[X] 6=o′[X] 0 changeo,o
′

1 (X)

{Y } o[X]=o′[X] 1 changeo,o
′

2 (X)

{Y } o[X]=x, o′[X]= x̄, o[Y ]=o′[Y ]=y 1 (y :x>x̄∧changeo,o
′

0 (Y )) ∨ (ȳ :x>x̄∧changeo,o
′

2 (Y ))

{Y } o[X]=x, o′[X]= x̄, o[Y ]=y, o′[Y ]= ȳ 1 (y :x>x̄∨ȳ :x>x̄) ∧ changeo,o
′

1 (Y )

Inductive step (Pa(X) 6=∅ and k>1)

Rule k o[X],o′[X],o[Y],o′[Y] changeo,o
′

k (X)

0 odd x, x, indifferent, indiff. changeo,o
′

k+1(X)

1 even x, x, y, y ((y :x>x̄∧ȳ : x̄>x)∨(y : x̄>x∧ȳ :x>x̄)) ∧ changeo,o
′

k (Y )

2 even x, x, y, ȳ (y :x>x̄∧ȳ : x̄>x∧changeo,o
′

k−1(Y )) ∨ (y : x̄>x∧ȳ :x>x̄∧changeo,o
′

k+1(Y )

3 even x, x̄, indifferent, indiff. changeo,o
′

k+1(X)

4 odd x, x̄, y, y (y :x>x̄∧ȳ : x̄>x∧changeo,o
′

k−1(Y )) ∨ (y : x̄>x∧ȳ :x>x̄∧changeo,o
′

k+1(Y )

5 odd x, x̄, y, ȳ ((y :x>x̄∧ȳ : x̄>x)∨(y : x̄>x∧ȳ :x>x̄)) ∧ changeo,o
′

k (Y )

Table 1: Inductive definition of the formula changeo,o
′

k (X)

worseno,o
′
(V ) = worseno,o

′
(U)

worseno,o
′
(U) = (t :u>ū ∧ changeo,o

′

0 (T )) ∨ (t̄ :u>ū ∧ changeo,o
′

2 (T ))

changeo,o
′

0 (T ) = worseno,o
′
(Y )

changeo,o
′

2 (T ) = ((y : t>t̄ ∧ ȳ : t̄>t) ∨ (y : t̄>t ∧ ȳ : t>t̄)) ∧ changeo,o
′

2 (Y )

worseno,o
′
(Z) = (y :z>z̄ ∧ changeo,o

′

0 (Y )) ∨ (ȳ :z>z̄ ∧ changeo,o
′

2 (Y ))

worseno,o
′
(Y ) = changeo,o

′

0 (Y )

changeo,o
′

0 (Y ) = worseno,o
′
(X)

changeo,o
′

2 (Y ) = (x :y>ȳ ∧ x̄ : ȳ>y ∧ changeo,o
′

1 (X)) ∨ (x : ȳ>y ∧ x̄ :y>ȳ ∧ changeo,o
′

3 (X)

changeo,o
′

1 (X) = x>x̄

changeo,o
′

3 (X) = ⊥

Table 2: Formulas for the example of Figure 2 with o=xyztuv, o′= x̄yz̄tūv

write X ,Y,Z for the set of variables above X (in-
cluded), in the left subtree below X, and in the right
subtree below X, respectively.

Clearly, if there is a worsening sequence from o to o′,
then N must satisfy the formula for both branches (by
Proposition 2). For the converse, if N satisfies both

formulas, by Proposition 2 again there is a worsening
sequence from the outcome o[≥Y ]=o[X ]o[Y] to o′[≥
Y ]=o′[X ]o′[Y], and one from o[X ]o[Z] to o′[X ]o′[Z].
By construction of the formula worseno,o

′
(·), there is

one of these sequences in which the values of the vari-
ables above X change most, say, the one for Y. Then
since Y and Z are independent of each other, all flips
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over Z can also be performed in this sequence and in-
terleaved with those over Y. In this manner we get a
worsening sequence from o to o′, as desired.

The proof for a generic forest is obtained by applying
this reasoning inductively on the set of branches. �

4.2 Efficient Dominance Testing

From Propositions 2–3 we first derive a fixed-parameter
tractable (FPT) algorithm for dominance testing in
tree-structured PCP-nets. Recall that a FPT algo-
rithm is one with running time O(f(k) .nc), where
n is the size of the input, c is a constant, f is a
computable function, and k is some measure of the
input size, called the parameter and assumed to be
small [Flum and Grohe, 2006]. The running time of
such an algorithm is essentially a polynomial modulo
a factor which may be exponential (or more) in the
value of the parameter.

As a parameter for the dominance problem in PCP-
nets, we take the number of variables which have a
different value in o and o′. This makes sense in prac-
tice since typically, in applications, one does not have
to compare objects which are completely different from
each other. For instance, in recommender systems a
recommendation is likely to take place once the cus-
tomer has fixed a number of features of the product
which she wants to buy (e.g., “I want a recent Blues
album, cheaper than such price, etc.”).

Definition 6. The parameterized dominance
problem for tree-structured PCP-nets, written
p-Tree-PDominance, is defined by:

Input: a tree-structured PCP-net N , o, o′

Parameter: k= |{X∈V |o[X] 6=o′[X]}|
Output: the probability of o�o′ according to N

Theorem 1. The problem p-Tree-Dominance is
fixed-parameter tractable. Precisely, it admits an al-
gorithm with running time in O(22k2n).

Proof. For each leaf variable X in the tree of N ,
the algorithm first unrolls the formula worseno,o

′
(X).

Each time if finds two different recursive calls (e.g., on
k−1 and k+1 in the second rule), it splits the formula
into two parts. By construction the algorithm ends up
with

ΦX ={ϕX1 , ϕX2 , . . . , ϕXnX
}.

The ϕXi are mutually inconsistent, since the recursive
calls in each rule are conditioned on mutually incon-
sistent formulas about the current node. Moreover, by
Proposition 2, a CP-net N∝N satisfies o[≥X]�o′[≥
X] if and only if it satisfies one of these formulas.

Now define Φ to be the set of formulas

Φ={ϕX1 ∧ ϕX2 ∧ · · · ∧ ϕXk |Xi a leaf, ϕXi ∈ΦXi}

that is, the “cartesian products” of the ΦX ’s (over all
leaves). By construction, the conjunctions in Φ are
mutually inconsistent, and a CP-net N∝N satisfies
o�o′ if and only if it satisfies one of them (Propo-
sition 3). It follows that the probability sought for
can be computed in time O(|Φ| . n): the weight of
each conjunction of Φ can be obtained by multiply-
ing the probabilities of the corresponding rules in N ,
in time O(n), and by mutual inconsistency the result
is obtained by summing up over the elements of Φ.
Observe that some elements of Φ may be inconsistent
formulas, but this can be detected efficiently since by
construction they are conjunctions of literals.

To complete the proof we only need to bound the size
of Φ. First consider ΦX for some variable X: by con-
struction, |ΦX | is 2`, where ` is the number of rules
used which result in two different recursive calls. This
is the case for the second and third rules of Table 1
only, that is, when exactly one of X,Y has a different
value in o and o′. It follows `≤2k, hence |ΦX |≤22k

for all X and finally, |Φ|≤(22k)k=22k2 , as claimed. �

4.3 The Deterministic Case

As an interesting by-product, we now derive a
linear-time algorithm for dominance testing in tree-
structured deterministic CP-nets. This improves on
the quadratic running time of the TreeDT algorithm
of Boutilier et al. [2004], and may seem odd since the
smallest worsening sequence may be of quadratic size.
This is actually not contradictory: our result says that
it is possible to decide whether this sequence exists,
without explicitly constructing it.

Theorem 2. The dominance problem for tree-
structured (deterministic) CP-nets on n variables can
be solved in linear time O(n).

Proof. The algorithm3 simply consists of decid-
ing whether N satisfies the formula

∧
X worseno,o

′
(X),

where X ranges over all leaves in the structure of N .
This can be done efficiently because for all four gen-
eral rules, N necessarily satisfies at most one of the
two disjuncts and hence, only one recursive call is in-
volved at each step. The only point to be checked
is that the algorithm can avoid considering the same
variable several times along different branches.

To do so, the algorithm unrolls the formulas
worseno,o

′
(X) in parallel. Each time two branches

meet at a node X, this must be through recursive calls
fired by the children of X. By construction, these calls

3This proof is a direct application of our PCP-algorithm
to the deterministic case; but the query may be addressed
by more dedicated and simpler (linear) algorithms. We
thank an anonymous reviewer for pointing this to us.
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are all of the form changeo,o
′

ki
(X), and by construction

and Proposition 3, all of them must be satisfied.

Recall that changeo,o
′

ki
(X) reads “X changes value at

least ki times”. Then the algorithm simply needs to
replace all recursive calls by a unique one, namely,

changeo,o
′

maxi(ki)
(X). In the end each variable is visited

once, and the algorithm is indeed linear-time. �
Interestingly, a top-down algorithm is also possible:
starting from the root nodes in the structure of N , in-
ductively computes for each node X the greatest value

k such thatN satisfies the formula changeo,o
′

k (X). This
algorithm allows us to derive the following result about
incomplete deterministic CP-nets.

Say that a deterministic CP-net N is incomplete with a
given structure if it comes with a graph G but for some
variables X and assignments u to their parents, N con-
tains neither the rule u :x>x̄ nor the opposite rule u :
x̄>x. Incomplete CP-nets arise naturally in the pro-
cess of elicitation [Koriche and Zanuttini, 2009], and
more generally when a user is indifferent to some ob-
jects (for instance: “I have no preferred colour for mo-
torbikes, since I don’t like motorbikes at all”). Then a
completion of N is a (complete, deterministic) CP-net
with structure G and containing the rules of N .

Theorem 3. The problem of deciding whether there is
at least one completion of a given, incomplete CP-net
N with a given tree structure, which entails o>o′ for
given o, o′, can be solved in linear time O(n).

Proof. As evoked above, proceed top-down in the tree,
by computing for each node X the greatest k for which

there is a completion of N satisfying changeo,o
′

k (X). To
do so, complete all missing rules in a greedy manner.
For instance, if the current node Y and its child X
are in the setting of Inductive Step 2 of Table 1, and
N contains no rule over X, choose the rules in the
first disjunct to add in the completion of N . In this
manner, from the value k for Y we get k + 1 for X.

Obviously (because changeo,o
′

k (X) reads “at least k
times”), the greater the value k at each node, the more
chances there are that the current completion indeed
entails o�o′, hence the algorithm is correct. �

4.4 Hardness Result

We conclude this section by giving a hardness result,
which sheds light on the difficulty of testing dominance
in PCP-nets with a more general structure than a tree.

Theorem 4. The problem of computing pN (o�o′),
given a PCP-net N and two outcomes o and o′, is
#P-hard. This holds even if the structure is acyclic,
the longest path has length 3, each node has at most
one outgoing edge and at most 4 parents.

X

Y1 Yp

ZY1
ZYpp(zY1>z̄Y1)=1 p(zYp>z̄Yp)=1

zy1 :p(y1>ȳ1)=0.5
z̄y1 :p(y1>ȳ1)=0

zyp :p(yp>ȳp)=0.5
z̄yp :p(yp>ȳp)=0

y1 ...yp :p(x>x̄)=0.5
ȳ1 ...ȳp :p(x>x̄)=1
otherwise:p(x>x̄)=0

Figure 3: Reduction scheme

Proof. We give a reduction from #Monotone (2-4µ)
Bipartite CNF, which is #P-complete [Vadhan, 2002].

Let X and Y be two disjoint sets of variables. A mono-
tone (2-4µ)-bipartite CNF is a conjunction of clauses
of the form X ∨ Y , with X∈X and Y ∈Y, such that
no variable appears more than 4 times in the formula.
Given such a formula φ, we build a PCP-net N over
V=X ∪ Y ∪ Z, where Z contains one fresh variable,
written ZY , for each Y ∈Y. The variables of Z have no
parent, each Y ∈Y has a single parent ZY , and each
X∈X has for parents the Y ’s such that the clause
X∨Y appears in φ (there are at most 4 of them). This
structure and the probability of each rule are given in
Figure 3, where we show the portion of the PCP-net
that corresponds to clauses X ∨ Y1, . . . , X ∨ Yp.
Now consider the two outcomes o, o′ defined by o[X]=
x, o′[X]= x̄ for every X∈X , o[Y ]=o′[Y ]=y for every
Y ∈Y, and o[Z]=z, o′[Z]= z̄ for every Z∈Z. We show
that pN (o�o′) is exactly the proportion of interpreta-
tions of V in which φ is true.

Let I be an interpretation of X ∪ Y, and define the
deterministic CP-net NI∝N as follows:

(1) for every Z∈Z, NI contains z>z̄; and

(2) for every Y∈Y: (a) NI contains z̄Y : ȳ>y, and
(b) if I(Y )=> then NI contains zY :y>ȳ, otherwise
it contains the opposite rule

(3) for every X∈X : (a) NI contains ȳ1 . . . ȳp :x>x̄,
(b) if I(X)=> then NI contains y1 . . . yp :x>x̄, other-
wise it contains the opposite rule, and (c) for all other
assignments u to pa(X), NI contains u : x̄>x.

We show that NI entails o>o′ if and only if
I satisfies φ. Clearly, we can reason on sets
{X,Y1, . . . , Yp, ZY1

, . . . , ZYp
} independently. So as-

sume first that I satisfies (X ∨ Y1) ∧ · · · ∧ (X ∨ Yp).
If I satisfiesX, then I entails o�o′ using the worsening
flips zY1>z̄Y1 , . . . , zYp>z̄Yp and y1 . . . yp :x>x̄ (which
can be performed in any order). Otherwise, I must
satisfy Y1∧· · ·∧Yp, hence I entails o�o′ using the flips
zY1

:y1>ȳ1, . . . , zYp
:yp>ȳp, then the flip ȳ1 . . . ȳp :x>

x̄, then the flips zY1
>z̄Y1

, . . . , zYp
>z̄Yp

, and finally the
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flips z̄Y1 : ȳ1>y1, . . . , z̄Yp : ȳp>yp.

The converse is shown similarly, and finally we have
that NI entails o>o′ if and only if I satisfies φ. Now
by construction, each NI built in this manner has a
probability 1/2n according to N . Hence the probabil-
ity with which N entails o�o′ is m/2n if and only if
φ has m models, which completes the reduction. �

5 Complexity of Optimisation

We now show that optimisation with tree-structured
PCP-nets is both computationally easy and simple.
The first result even holds for the much more general
class of acyclic PCP-nets.

Proposition 4. The probability for a given outcome
o to be optimal for a given acyclic PCP-net N can be
computed in linear time O(n).

Proof. In the spirit of the “forward sweeping” proce-
dure of Boutilier et al. [2004], it can be easily shown
that o is optimal for a deterministic CP-net N∝N if
and only if N contains (1) the rule o[X]>ō[X] for all
root nodes X, and (2) the rule o[pa(X)] :o[X]>ō[X]
for all other nodes X. It follows that the probability
sought for is the product of the probabilities of all these
rules, which can clearly be computed in time O(n). �

Proposition 5. The outcome with the maximal proba-
bility of being optimal for a given, tree-structured PCP-
net N can be computed in linear time O(n).

Proof. The algorithm is a simple dynamic pro-
gramming algorithm, operating bottom-up in the tree.
First, given a leaf node X with parent Y , the algorithm
determines the optimal assignment to X given Y =y,
by taking the highest probability between rules y :x>x̄
and y : x̄>x, and similarly for Y = ȳ.

Now in the general case, given a variable Y with parent
Z and children X1, . . . , Xk, the algorithm first consid-
ers the value z for Z, and given this value searches for
the most probable assignment to Y,X1, . . . , Xk and
their descendants. This can be done efficiently by
comparing (1) py × py1 × · · · × pyk, where py is the
probability of the rule z :y>ȳ and pyi (i=1, . . . , k) is
the previously computed probability of the best as-
signment to Xi and its descendants given Y =y, and
(2) pȳ × pȳ1× · · ·× pȳk. Then the algorithm computes
in a similar manner the probability of the most proba-
ble assignment given Z= z̄, and based on this decides
on the value y or ȳ for each of z, z̄. Clearly, when
all variables have been examined, the algorithm has
computed the desired outcome. �

6 Conclusion

We proposed a “probabilistic” extension of conditional
preference networks (CP-nets) for representing the
preferences of a group of individuals over a set of com-
binatorial objects, or for representing ill-known prefer-
ences. We studied the probabilistic counterparts of the
main reasoning tasks for CP-nets, namely dominance
testing and optimisation, from the algorithmical and
complexity viewpoints. We gave efficient algorithms
for tree-structured probabilistic CP-nets, and as a by-
product we obtained a linear-time algorithm for dom-
inance testing in standard, tree-structured CP-nets.

As studied here, the expressiveness of our formalism
is limited in two aspects. First, assuming a common,
tree-like structure is unrealistic in some applicative set-
tings. As future work, we plan to extend our results,
in particular using a notion inspired from treewidth.
The second limitation is due to the fact that the prob-
ability distribution on deterministic CP-nets which is
represented by a probabilistic CP-net, is by definition
an independent one (with rules as random variables).
So as to allow PCP-net to model more realistic distri-
butions, we plan to extend the representation by sepa-
rating the probability distribution from the structure.
An obvious choice is to use a Bayesian networks over
the rules induced by the structure as random variables.
Even with simple networks, this would allow, for in-
stance, to represent fact such as: 3/4 of those individ-
uals who prefer x to x̄ given y also prefer z to z̄ given
t, u. While one could fear a jump in complexity, it is
worth noticing that our main result for tree-structured
CP-nets goes through, in the sense that with such rep-
resentation, computing the probability of o�o′ would
amount to estimate the probability of 22k2 determinis-
tic CP-nets, that is, to call an oracle for inference only
a small number of times. This leaves hope that the
framework can be extended to richer representations
while preserving the low complexity of certain tasks.
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Abstract

Boosting is known to be sensitive to label
noise. We studied two approaches to improve
AdaBoost’s robustness against labelling er-
rors. One is to employ a label-noise robust
classifier as a base learner, while the other
is to modify the AdaBoost algorithm to be
more robust. Empirical evaluation shows
that a committee of robust classifiers, al-
though converges faster than non label-noise
aware AdaBoost, is still susceptible to label
noise. However, pairing it with the new ro-
bust Boosting algorithm we propose here re-
sults in a more resilient algorithm under mis-
labelling.

1 Introduction

It is well known to practitioners that boosting is sen-
sitive to label noise. The issue stems directly from
the fundamental concept of boosting in that the ef-
fort is directed towards classifying the difficult sam-
ples. In fact, the complexity of the traditional boost-
ing is very high, so much so that for a dataset with any
configuration of its labels, it is possible to draw a de-
cision boundary with zero training error. This seems
to be a good approach to the classification problem
if the difficult samples are not mislabelled samples in
the first place. In reality however, there are no firm
guarantees about the correctness of the class labels
provided with the training set. In many applications,
such as e.g. crowdsourcing data, and certain biomedi-
cal data, perfect training labels are almost impossible
to obtain. A seemingly straightforward way to control
boosting’s complexity is by means of regularisation.
However, regularisation alone might not be enough to
solve this issue – as pointed out in Long & Servedio
(2010), random misclassification defeats all boosters
that optimise a convex objective. Yet, rather curi-

ously, almost all of the existing robust boosters are still
optimising a convex exponential loss. These boosters
include the LogitBoost by Friedman et al. (1998) that
optimises the binary log-loss, the Gentle-AdaBoost by
Friedman et al. (1998) that is more stable because of a
more conservative update step; the Modest-AdaBoost
by Vezhnevets & Vezhnevets (2005) which penalises
the ensemble when it makes a correct prediction on
previously correctly predicted instances; the BB al-
gorithm by Krieger et al. (2001) in which bagging is
combined with boosting to average out the adverse ef-
fect of noisy labelled data. There is also a heuristic
approach by Karmaker & Kwek (2006) where too dif-
ficult samples, i.e., those with very high weights, are
removed from the training set according to a prede-
fined threshold.

Motivated by the finding of Long and Servedio, Freund
(2009) proposed a more robust boosting algorithm
which optimises a non-convex potential function in-
stead of the traditional exponential loss function. The
general idea is to incorporate an early stopping as well
as a mechanism to give up if the instance is to far away
on the wrong side of the decision boundary. It shows
promising results but unfortunately the boosting pro-
cess becomes more complicated in that it also intro-
duces a free parameter that has to be tuned. Freund
suggests using cross-validation to tune the parameter
however we can not rely on the cross-validation if our
labels are noisy, unless we have a trusted validation
set with correct labels.

Inspired by the work of Long and Servedio and Freund,
we propose a different modification to AdaBoost for
tackling label noise. We engineer our objective to be a
combination of two complementary loss functions. Our
new objective is somewhat related to those employed
in the cost-sensitive boosting literature. However, in
cost sensitive literature the cost associated with each
instance is assumed to be given or known prior to the
learning, and there is no label noise involved. By con-
trast, the primary task in robust boosting is to learn
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the mislabelling probabilities (which could be seen to
be analogous to costs).

Recent developments on label-noise robust
classifiers such as the robust Fisher Dis-
criminant by Lawrence & Schölkopf (2001);
Bouveyron & Girard (2009), the robust Logis-
tic Regression by Bootkrajang & Kabán (2012);
Raykar et al. (2010), the robust Gaussian Process by
Hernández-Lobato et al. (2011) or the robust Nearest
Neighbours by Barandela & Gasca (2000) suggest
a new possibility to improve the existing booster
without making any adjustment to the boosting
algorithm by employing a robust classifier as a base
learner. To the best of our knowledge, there are no
attempts in the literature to pursue this direction and
this is our starting point in this work.

To summarise, we investigate the solution to boost-
ing in the presence of random misclassification noise
at two different levels. At the lower level we study
the robust committee where robust classifiers are com-
bined and boosted using existing AdaBoost algorithm.
At the higher level, we propose a new robust boosting
algorithm that we call ‘rBoost’ where the objective
function is a convex combination of two exponential
losses. The coefficients of the combination represent
uncertainty in the observed labels. The new boosting
algorithm is closely related to AdaBoost and requires
a relatively minor modification to the existing algo-
rithm. Moreover our new objective is non-convex and
exhibits robustness to labelling errors.

The paper is organised as follows. Section 2 reviews
recent literature in label-noise robust classifiers and in-
troduces the robust classifier that will be used through-
out the paper. Section 3 presents the rBoost algo-
rithm. Section 4 reports experimental results, and
Section 6 draws conclusions of the study.

2 A robust base learner

In recent years many classifiers have been introduced
to tackle the problem of learning in the presence of
label noise. To date, there are a number of classifiers
developed specifically for dealing with label noise: ro-
bust logistic regression, robust fisher discriminant, ro-
bust Gaussian Process or robust Nearest Neighbours.
All of these can potentially be used as a base classifier,
and it is then interesting to see how would such clas-
sifiers behave collectively in an ensemble. One way to
construct a robust classifier is through a probabilistic
latent variable model. Under the model, a robust clas-
sifier attempts to learn a posterior probability of the
true labels via the likelihood of the observed labels.

We will deal with random label flipping noise, that

is we assume the noise is independent of the spe-
cific features of individual data points, and flips the
latent true label y ∈ {0, 1} from class k to class j
into the observed label ỹ ∈ {0, 1}, with probability
ωjk := p(ỹ = k|y = j). We define the likelihood of
the observed label ỹ of a point xi given the current
parameter setting as the following:

P̃ k
i = p(ỹ = k|xi, θ, {ωjk}1

j,k=0) =

1∑

j=0

ωjkp(y = j|xi, θ)

(1)
that is, a linear combination of the ‘true’ class posteri-
ors. From this assumption the modified log-likelihood
is given by

L(θ, {ωjk}1
j,k=0) =

n∑

i=1

1∑

k=0

1(ỹi = k) log(P̃ k
i ) (2)

where 1(·) is 1 if its argument is true and 0 otherwise,
and n is the number of training points. Note that any
probabilistic classifier yielding class posterior proba-
bility will fit the framework and can be converted into
a robust classifier using the technique shown.

For the sake of concreteness we will employ logistic
regression with parameter θ = β in our study. We call
the model ‘robust Logistic Regression’ (rLR), in which
the likelihood of ỹ = 1 is defined as:

P̃ 1
i = ω11σ(βT xi) + ω01(1 − σ(βT xi)) (3)

Here, β is the weight vector orthogonal to the deci-
sion boundary and it determines the orientation of the
separating plane and σ(a) = 1/(1+exp(−a)) is the sig-
moid function. Learning the robust logistic regression
model involves estimating β and well as ωjk. We fol-
low the steps in Bootkrajang & Kabán (2012) where
the conjugate gradient method is used to optimise β.
The gradient of the log-likelihood w.r.t the weight vec-
tor is, ∇βL(θ, {ωjk}1

j,k=0) =

n∑

i=1

[(
ỹi(ω11 − ω01)

P̃ 1
i

+
(1 − ỹi)(ω10 − ω00)

P̃ 0
i

)

× σ(βT xi)(1 − σ(βT xi)) × xi

]
(4)

The following multiplicative updates are then used to
estimate ωjk:

ω10 =
g10

g10 + g11
, ω11 =

g11

g10 + g11
(5)

ω00 =
g00

g00 + g01
, ω01 =

g01

g00 + g01
(6)
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where

g11 = ω11

n∑

i=1

(
ỹiσ(βT xi)

P̃ 1
i

)

g10 = ω10

n∑

i=1

(
(1 − ỹi)σ(βT xi)

P̃ 0
i

)

g01 = ω01

n∑

i=1

(
ỹi(1 − σ(βT xi))

P̃ 1
i

)

g00 = ω00

n∑

i=1

(
(1 − ỹi)(1 − σ(βT xi))

P̃ 0
i

)
(7)

3 The Robust Boosting

Suppose we have a training set with corrupted labels
D = {(xi, ỹi)}n

i=1, where xi ∈ ℜm and ỹi ∈ {+1, −1}.
Let a base hypothesis be a decision function h : x → ỹ.
Under the boosting framework, a final hypothesis is a
linear combination of the base hypotheses and it takes
the following additive form:

H(x) =

T∑

t=1

αtht(x) (8)

In boosting, the 0/1 misclassification loss incurred by
the final hypothesis is measured by the exponential
loss:

n∑

i=1

1(ỹi = 1)e−H(xi) + 1(ỹi = −1)eH(xi) (9)

This forms a boosting objective that has to be op-
timised. However, in the situation where labels are
contaminated the loss in eq.(9) is not ideal, for obvi-
ous reasons. Instead, we form a new objective that
explicitly takes into account uncertainties in labels:

n∑

i=1

1(ỹi = 1)
{

γ00e
−H(xi) + γ01e

H(xi)
}

+ 1(ỹi = −1)
{

γ11e
H(xi) + γ10e

−H(xi)
}

(10)

Here, γjk = p(ỹ = k|y = j) are probabilistic factors
representing uncertainties in labels. Intuitively, the
loss is weighed up or down depending on the gamma
parameters γjk. For example, γ01 = 0.3 and γ10 = 0
indicates the situation where labels in the negative
class (or class 0) are all correct – because no flip-
ping from positive to negative occurred – but labels
in the positive class are contaminated. Accordingly,
the new loss accounts for this by adjusting the loss for
the positive class (class 1) to: 0.7 ∗ e−H + 0.3 ∗ eH .
This is a hyperbolic cosine with the two tails adjusted
and it represents the modified loss associated with the

positive class. The shapes of such modified loss func-
tions are depicted in Figure 1. From the figure we see
that the classification that is ‘too correct’ will be pe-
nalised, hence reducing the overfitting problem. Mean-
while the loss of the negative class (class 0), which is
eH + 0 ∗ e−H = eH , reduces to traditional boosting.
It may be interesting to note that a similar shape of
the loss can also be obtained by truncating the Tay-
lor expansion of the exponential function to some fi-
nite degree. This could also be used to implement the
same idea, although it would not have the transparent
formulation given above.
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Figure 1: Various setups of the Γ and their associated
loss shape.

3.1 Adding a new base learner ht(·)

Consider the case ỹ = 1, and define d00 = e−H(x),
d01 = eH(x). Likewise, when ỹ = −1 define d11 =
eH(x), d10 = e−H(x) to be an unnormalised distribution
of the data (x, ỹ). It can be shown that at the iteration
t of boosting, minimising the loss in eq.(10) w.r.t the
new ht(x) is equivalent to minimising the following
(the derivation details are given in the Appendix):

arg min
h,α

2 sinh(α)

n∑

i=1

{
wi1(h(xi) 6= ỹi)

}

+ e−α
n∑

i=1

{
1(ỹi = 1)w00 + 1(ỹi = −1)w11

}

+ eα
n∑

i=1

{
1(ỹi = 1)w01 + 1(ỹi = −1)w10

}

(11)

where

wi =

{
(w00 − w01), if ỹi = +1.

(w11 − w10), if ỹi = −1.
(12)

and
wjk = γjk · djk (13)

From this, it is immediate to see that in order to min-
imise the loss we have to seek for ht(x) that minimises
the misclassification error ǫt =

∑n
i=1 wi1(ỹi 6= h(xi)).
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This step is identical to the traditional AdaBoost ex-
cept that the misclassification error of the current clas-
sifier is measured against different weighting factors
which take into account the uncertainty of the ob-
served noisy label as indicated by γjk. Note that the
expression is fully compatible with the traditional Ad-
aBoost such that the rBoost reduces to the original
AdaBoost when γ01 = 0 and γ10 = 0. We emphasise
that the weights in the rBoost need not be normalised.
In fact in the original AdaBoost the normalisation sim-
ply facilitates the algebra in deriving a closed-form up-
date for αt.

3.2 Updating αt

Now in our case, to get the update for αt we take
derivative of eq.(11) w.r.t αt, equate it to zero:

2 cosh(α)
n∑

i=1

{
wi1(h(xi) 6= ỹi)

}

− e−α
n∑

i=1

{
1(ỹi = 1)w00 + 1(ỹi = −1)w11

}

+ eα
n∑

i=1

{
1(ỹi = 1)w01 + 1(ỹi = −1)w10

}
= 0

(14)

Now, this equation cannot be solved in closed form.
We resort to numerical optimisation to solve for the
αt. Note the term which gets multiplied by 2 cosh(α)
is nothing but our error ǫt defined earlier.

3.3 Updating the sample weights

Next, to derive the update for the weight vectors, re-
call that we define wjk = γjke−ỹiH(xi). It follows, for
example, that the update for w00 can be written as:

wt+1
00 = γ00e

−ỹi(H+αh)

= γ00e
−ỹiH · e−ỹiαh

= γ00d
t
00 · eα(21(h(xi) 6=ỹi)−1)

= γ00d
t
00 · e2α1(h(xi) 6=1) · e−α

∝ γ00d
t
00 · e2α1(h(xi) 6=1) (15)

where we used the rewriting: −ỹh = 21(h(x) 6= ỹ)−1;
and since e−α are shared among all wjk it does not
affect the optimisation. Similarly for the rest of the
weight vectors we get:

wt+1
01 = γ01d

t
01 · e2α1(h(xi) 6=−1) (16)

wt+1
11 = γ11d

t
11 · e2α1(h(xi) 6=−1) (17)

wt+1
01 = γ10d

t
10 · e2α1(h(xi) 6=1) (18)

One way to implement this is to keep the distribution
djk separately and multiply it by γjk to get a new wjk

in each iteration.

3.4 Updating γjk

Finally, as mentioned earlier, we would also like to es-
timate the label flipping coefficients, γjk. We could
take derivative of the loss incurred by the current en-
semble, eq.(10), w.r.t each gamma and try to solve
this direcly. This did not yield satisfactory results
in our experience, most likely because the loss lacks
probabilistic semantics. The workaround is to con-
vert the output of boosting i.e. H into a probability.
There are three popular approaches to do that: 1) Lo-
gistic calibration p(y = 1|x, H) = 1/(1 + exp(−H))
Friedman et al. (1998), 2) Platt’s calibration p(y =
1|x, H) = 1/(1 + exp(AH + B)) where A and B need
to be learnt Platt (1999), and 3) Isotronic regression
Robertson (1988). Niculescu-Mizil & Caruana (2005)
empirically shows that Platt’s technique and Isotronic
regression are superior to a simple logistic transform.
In addition, Platt’s method has a slight advantage over
IsoReg on small sample size. Hence, in this study, we
will employ Platt’s method to get calibrated posterior
probabilities.

By converting H to p(y = 1|x, H), we can estimate the
gamma from the following binomial log-loss, or cross-
entropy. Using the notation P (x) = p(y = 1|x, H) and
P̄ (x) = 1 − P (x), this is:

−
n∑

i=1

1(ỹi = 1) log
{

γ11P (xi) + γ01P̄ (xi)
}

+ 1(ỹi = −1) log
{

γ00P̄ (xi) + γ10P (xi)
}

(19)

Following the Lagrangian method which imposes γ00+
γ01 = 1 and γ11+γ10 = 1, similarly to the technique in
the latent variable model (outlined in Section 2), the
multiplicative updates for γjk are found to be:

γ10 =
g10

g10 + g11
, γ11 =

g11

g10 + g11
(20)

γ00 =
g00

g00 + g01
, γ01 =

g01

g00 + g01
(21)

where

g11 = γ11

n∑

i=1

(
1(ỹi = 1)Pi

γ11Pi + γ01P̄i

)

g10 = γ10

n∑

i=1

(
1(ỹi = −1)Pi

γ10Pi + γ00P̄i

)

g01 = γ01

n∑

i=1

(
1(ỹi = 1)P̄i

γ11Pi + γ01P̄i

)

g00 = γ00

n∑

i=1

(
1(ỹi = −1)P̄i

γ10Pi + γ00P̄i

)
(22)

Our method is summarised in Algorithm 1.
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As mentioned in the introduction, our rBoost algo-
rithm has some analogies with cost-sensitive boosting
Fan & Stolfo (1999); Masnadi-Shirazi & Vasconcelos
(2011). One major difference is that the weighting fac-
tors in our case are outside of the exponential, whereas
they are inside the exp in the mentioned works. In
Fan & Stolfo (1999) the author did briefly discuss the
possibility of having the weighting factors outside of
the exponential, however their update of the weight is
different from ours. Besides, the goal of cost-sensitive
methods is different from ours. In cost-sensitive frame-
work the cost is assumed to be known or given by the
expert, and there is no implication of labelling errors.

Algorithm 1 rBoost

Input: data {x, ỹ}n, boosting round T
Initialize wjk = γjk

for t = 1 to T do
(1)ht = arg maxβ eq.(2) weighted by wi.
(2)Calculate the error w.r.t wi defined in eq.(12)

ǫt =
∑n

i=1 wi1(ỹi 6= ht(xi))
(3)Optimise αt numerically using the gradient in
eq.(14)
(4)Update wjk according to eq.(15)–(18).
(5)Calculate p(y = 1|x, H) using Platt’s method.
(6)Update γjk using eq.(20)-(21).

end for
Output the final classifier sign(

∑T
t=1 αtht).

4 Empirical Evaluation

This section will investigate the performance of our
robust boosting methods in practice. In addition,
our new rBoost algorithm will be compared to the
standard AdaBoost, GentleAdaBoost and ModestAd-
aBoost.

4.1 Methodology

We will study 4 configurations of base-learner and
booster pairs: 1) LR + AdaBoost, 2) rLR + AdaBoost,
3) LR + rBoost and 4) rLR + rBoost. These four
combinations will shed light on whether 1) a robust
committee is robust against label errors?, 2) the new
rBoost can counteract the bad effects of label noise?
and finally 3) What can we get from pairing them to-
gether? We set our baseline to be the GentleAdaBoost
and ModestAdaBoost where the base learner is a de-
cision tree with maximum node splits of 2. For LR to
serve as a weak learner, we employ random subsam-
pling to create diversity in the ensemble. Further, we
create two types of training sets by artificially injecting
symmetric and asymmetric label noise at rate 10%, as
well as at rate 30% into the training data. We train

Table 1: Characteristic of the dataset used.

Data set # of pos. samp. # of neg. samp. dim.
Banana 2375(45%) 2924(55%) 2
Diabetes 268(35%) 500(65%) 8
Heart 120(44%) 150(56%) 13
Image 1188(57%) 898(43%) 18
Titanic 14(58%) 10(42%) 3
Twonorm 3703(50%) 3697(50%) 20
Waveform 1647(33%) 3353(67%) 21

on the corrupted training set and validate the perfor-
mance of the ensemble on a clean test set. We report
the average and standard deviation of the misclassifi-
cation rates from 10 independent random repetitions
of 150 rounds of boosting each.

4.2 Datasets

We select seven UCI machine learning datasets
Frank & Asuncion (2010) namely Banana, Diabetes,
Heart, Image, Twonorm and Waveform to use to eval-
uate the proposed boosting combinations. We use 80%
of the dataset for training and 20% for testing pur-
pose. The characteristics of the datasets used are sum-
marised in Table 1.

4.3 Results

We first investigate the behaviour of the robust clas-
sifiers as weak learners within the original AdaBoost
algorithm. From the leftmost column of Tables 2-5,
we see that when a robust classifier is used as a base
learner the generalisation error of the ensemble is al-
ready lower in comparison to the original non-robust
AdaBoost in 4 out of 7 datasets. The finding is con-
sistent across all noise levels. It is very interesting
to observe this because even though the base classi-
fier is robust, it is still under the control of the orig-
inal AdaBoost. Namely, the boosting will still guide
the classifiers to focus on the more difficult parts of
the dataset (which of course are likely to contain the
points whose labels are wrong). Why is then this com-
mittee of robust classifiers more accurate? Lower error
can come from two different sources: Either the robust
committee is indeed robust against labelling errors, or
it simply converges faster. To check this we run both
configurations for more rounds to see the dynamics
of the ensemble. Plotted in Figure 2 are the training
and test errors of AdaBoost using the robust classifiers
(rLR) as well as using the traditional classifiers (LR)
on selected datasets. Superimposed for reference are
ModestAdaBoost and rLR + rBoost.

It turns out that the robust committee converges
much quicker than the non-robust committee. How-
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ever when boosted long enough we are starting to see
that their classification performances become very sim-
ilar. This answers our first research question. The
robust classifiers as weak learners introduce what is
understood to be a ‘good diversity’ in the ensemble,
and drives the ensemble to convergence much quicker
than the non-robust committee. Unfortunately how-
ever, the robustness of the base learner is not enough
to withstand the effect of labelling errors.
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Figure 2: Test error(left) and traing error(right) for
‘Banana’,‘Diabetes’,‘Twonorm’,‘Waveform’ datasets.
The x-axis indicates boosting rounds while the y-axis
shows classification errors.

Now we see that having rLR as a base learner alone is
not enough to counteract the bad effect of mislabelling.
We investigate further if we can pair rLR which has a
fast convergence rate with our new rBoost algorithm.

Before proceeding, we need to establish that rBoost
is superior to original AdaBoost when there is label
noise. To this end, we consider two combinations:
1) AdaBoost+LR and 2)rBoost + LR in Tables 2-5.
From the tables we see that rBoost+LR performs com-
parably to its non-robust booster counterpart when
the noise rate is relatively low, and in the case of

symmetric label case (i.e. the easy cases in terms of
label noise). However when the noise is asymmet-
ric and more severe (Table 5), rBoost significantly
outperforms the original AdaBoost in all the cases
tested. This answers our second research question.
That is, rBoost significantly improves over the orig-
inal AdaBoost in terms of classification performance
especially in higher label contamination rate condi-
tions and in asymmetric label noise conditions (i.e. the
difficult cases).

Next, we equip our rBoost method with the robust
base classifiers that enjoy fast convergence to obtain
our final robust boosting algorithm. These results are
shown in the fourth column of Table 5. The superior
performance of this approach is most apparent, and we
also give an illustrative example of the working of our
rBoost on the ‘Banana’ dataset in Figure 3. We see
that the original AdaBoost generated a patchy decision
boundary as a result of label noise, while our rBoost
returned a smoother and more appropriate decision
boundary.

Further, we validate our approach for estimating the
flip probabilities γjk using the multiplicative updates
given in eq.(20) and eq.(21). Disappointingly, we see
that the results (5th and 6th column of Tables 2-5) are
not as good as the ideal setting where the γjk are fixed
to the true value (rBoost-Fixed gamma). However,
and more interestingly, we observe that the quality of
the estimated gammas depends highly on the quality
of the calibrated probability used in the update. As-
suming that we have a trusted validation set that we
can use to obtain a more accurate calibrated proba-
bility, we ask how well can we estimate the gammas?
We hold out a small subset of the dataset, where all of
the labels are clean. This will be our trusted valida-
tion set, and we took this set as tiny as 20 points only.
We feed this small trusted dataset into the Platt’s cal-
ibration method. We carried out this experiment on
Banana, Image and Twonorm. The classification error
from 10 repeated runs of our rBoost algorithm with the
use of the trusted validation set as a source for cali-
brating the probability is 15.74±0.23% on ‘Banana’ at
30% asymmetric noise, compared to 23.83% without.
This is taken from the sixth column of Table 5. On
Image at 30% asymmetric noise the error is as low as
7.61±0.19% and on Twonorm it is 9.73±0.31%. In-
triguingly, a tiny trusted set of 20 points is able to
improve the situation even for the Image data, where
the training set size is as large as 1300 (80% of total
number of samples in Image). Thus we can conclude
that the trusted validation set approach may be seen
as a technique to effectively and efficiently incorpo-
rate extra knowledge about the labels into the rBoost
algorithm. We should note, this differs from simply in-

87



cluding the trusted samples into the training set, since
the latter would simply make a slight reduction of the
noise rate. Of course, the larger the trusted valida-
tion set for calibration, the better probability calibra-
tion we can expect, and consequently this should lead
to more accurate estimates of the gammas (γjk), and
hence to better classification performance.
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Figure 3: Comparison of the decision boundaries ob-
tained from AdaBoost(left) and rBoost(right) in noise-
free case(top) and 30% asymmetric noise case(bottom)
on banana dataset.

5 Discussion

We have assumed throughout the study that the la-
bel noise is random and it occurs independently from
the input sample. Worth mentioning that there exist
other types of noise such as a non-random label noise,
malicious or adverserial noise, which may require a
different treatment. The random noise treated here is
simpler and more generic as it does not require spe-
cial knowledge about the noise process. By contrast,
modelling a non-random noise requires us to encode
domain expertise into the formulation, and as a conse-
quence it will yield a model specific to the application.
Interestingly, despite its simplicity, the random noise
model finds its use even in the cases where the random
assumption does not perfectly hold true, as it microar-
ray anaylsis (Bootkrajang & Kabán (2013)). In the
context of boosting, there is an attempt to tackle non-
random noise in Takenouchi et al. (2008) where both
binary and multi-class problems are investigated.

6 Conclusion

We presented a robust boosting algorithm based on the
famous AdaBoost algorithm, which we called rBoost.
The rBoost has some advantageous properties, namely
its objective is non-convex, hence more robust, and it

incorporates label noise parameters that can be es-
timated efficiently using the proposed multiplicative
update rules. The new algorithm is also appealing
since it requires a minor modification to the existing
AdaBoost algorithm. We further demonstrated that
the label noise parameters can be more accurately es-
timated by using a trusted validation set for Platt’s
calibration algorithm as a form of extra information.
It shows good result close to the rBoost with label
noise parameters fixed to the true values. In addition,
we have empirically shown that simply employing a ro-
bust classifier as a base learner in the AdaBoost does
not help alleviating the bad effect of label noise. How-
ever, rather interestingly, its effect is to speed up the
boosting process. This could be advantageous in cases
of low noise. An intriguing future direction are the
theoretical analysis of our proposed rBoost and exten-
sions to multi-class problems.
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Appendix

This section shows derivation details of the rBoost algo-
rithm. The loss of the rBoost is defined as:

L(H) =

n∑

i=1

1(ỹi = 1)
{

γ00e
−H(xi) + γ01e

H(xi)
}

+ 1(ỹi = −1)
{

γ11e
H(xi) + γ10e

−H(xi)
}

(23)

Here, γjk are again probabilistic factors representing un-
certainty in labels. We write out the form of H(xi) for the
next round of AdaBoost. Minimising this loss of eq. (23)
in a step-wise manner is then equivalent to minimising the
following:

arg min
h,α

( n∑

i=1

1(ỹi = 1)
{

γ00e
−(H(xi)+αh(xi)) + γ01e

H(xi)+αh(xi)
}

+ 1(ỹi = −1)
{

γ11e
H(xi)+αh(xi) + γ10e

−(H(xi)+αh(xi))
})

(24)

= arg min
h,α

n∑

i=1

{
1(ỹi = 1)γ00e

−H(xi)e−αh(xi) (25)

+ 1(ỹi = 1)γ01e
H(xi)eαh(xi) (26)

+ 1(ỹi = −1)γ11e
H(xi)eαh(xi) (27)

+ 1(ỹi = −1)γ10e
−H(xi)e−αh(xi)

}
(28)
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Table 2: Average classification errors and their standard deviations for AdaBoost and rBoost at 10% symmetric
noise. Boldface font shows the result which is statistically significant as tested with Wilcoxon ranksum test at
the 5% level.

Dataset
AdaBoost rBoost-Fixed gamma rBoost Gentle Modest

LR rLR LR rLR LR rLR Boost Boost
Banana 18.53±1.0 13.13±1.1 17.53±1.8 12.94±0.9 17.44±1.8 12.96±0.9 16.09±1.6 21.87±3.4
Diabetes 24.00±2.7 25.80±2.3 24.10±1.7 25.63±1.5 23.87±1.9 25.20±2.4 27.40±2.0 24.33±1.9
Heart 21.20±4.4 21.60±3.1 22.40±3.9 20.30±3.5 22.10±4.8 20.90±4.4 23.60±3.1 22.40±3.5
Image 14.61±1.3 4.08±1.0 15.29±1.5 4.49±0.8 13.51±1.4 4.12±0.8 4.43±0.7 15.91±3.1
Titanic 22.76±1.3 22.32±1.1 22.97±1.4 22.37±1.1 22.76±1.2 22.37±1.4 22.30±1.7 23.28±1.4
Twonorm 5.78±0.8 4.30±0.8 5.75±0.7 4.42±0.9 5.72±1.0 4.41±0.7 9.65±1.0 7.21±0.5
Waveform 16.67±1.5 13.40±0.7 16.43±0.7 14.65±0.8 16.12±1.2 13.47±0.6 14.98±0.8 14.77±1.5
All 17.65±1.8 14.95±1.5 17.78±1.6 14.97±1.3 17.36±1.9 14.78±1.6 16.92±1.5 18.54±2.2

Table 3: Average classification errors and their standard deviations for AdaBoost and rBoost at 30% symmetric
noise.

Dataset
AdaBoost rBoost-Fixed gamma rBoost Gentle Modest

LR rLR LR rLR LR rLR Boost Boost
Banana 18.71±3.1 14.73±3.0 18.14±1.7 14.47±2.1 18.05±1.6 14.94±2.7 20.62±1.6 24.69±2.5
Diabetes 25.37±2.3 27.47±1.9 24.90±2.3 29.57±2.4 25.23±2.7 28.57±2.3 30.60±2.9 26.67±2.3
Heart 22.10±5.7 21.50±4.0 22.70±4.0 22.60±6.5 22.90±4.9 21.90±4.3 30.00±5.5 24.80±3.7
Image 14.67±1.4 6.94±1.0 15.23±1.0 6.67±1.0 14.30±0.9 6.52±0.9 7.51±1.0 20.10±4.4
Titanic 23.12±1.6 23.01±1.8 23.27±1.5 22.92±1.4 23.09±1.4 23.11±1.8 22.80±1.9 23.41±1.3
Twonorm 8.53±1.1 6.67±0.9 8.77±1.0 6.87±1.3 8.63±1.0 6.60±1.1 16.06±2.0 8.84±0.9
Waveform 21.02±2.1 16.88±1.8 20.80±2.4 18.16±2.0 20.41±2.2 16.96±1.6 20.26±2.2 15.57±0.9
All 19.07±2.5 16.74±2.1 19.11±1.9 17.32±2.4 18.94±2.1 16.94±2.1 21.12±2.4 20.58±2.3

Now consider each term in the sum.

(25) =
∑

i|h(xi)=ỹi

1(ỹi = 1)γ00e
−H(xi)e−α

+
∑

i|h(xi) 6=ỹi

1(ỹi = 1)γ00e
−H(xi)eα

=

n∑

i=1

(
1 − 1(h(xi) 6= ỹi)

)
1(ỹi = 1)γ00e

−H(xi)e−α

+
∑

i|h(xi) 6=ỹi

1(ỹi = 1)γ00e
−H(xi)eα

=
n∑

i=1

1(ỹi = 1)γ00e
−H(xi)e−α

−
n∑

i=1

1(ỹi = 1)1(h(xi) 6= ỹi)γ00e
−H(xi)e−α

+
n∑

i=1

1(ỹi = 1)1(h(xi) 6= ỹi)γ00e
−H(xi)eα

=
(
eα − e−α

) n∑

i=1

1(ỹi = 1)1(h(xi) 6= ỹi)γ00e
−H(xi)

+
n∑

i=1

1(ỹi = 1)γ00e
−H(xi)e−α (29)

Using similar substitution and grouping, we also have the
following:

(26) =
(
e−α − eα

) n∑

i=1

1(ỹi = 1)1(h(xi) 6= ỹi)γ01e
H(xi)

+

n∑

i=1

1(ỹi = 1)γ01e
H(xi)eα (30)

(27) =
(
eα − e−α

) n∑

i=1

1(ỹi = −1)1(h(xi) 6= ỹi)γ11e
H(xi)

+

n∑

i=1

1(ỹi = −1)γ11e
H(xi)e−α (31)

(28) =
(
e−α − eα

) n∑

i=1

1(ỹi = −1)1(h(xi) 6= ỹi)γ10e
−H(xi)

+

n∑

i=1

1(ỹi = −1)γ10e
−H(xi)eα (32)

Summing all four expressions we have the objective:

arg min
h,α

(eα − e−α)
n∑

i=1

{
1(ỹi = 1)γ00e

−H(xi)1(h(xi) 6= ỹi)

+ 1(ỹi = −1)γ11e
H(xi)1(h(xi) 6= ỹi)

}

+ e−α
n∑

i=1

{
1(ỹi = 1)γ00e

−H(xi) + 1(ỹi = −1)γ11e
H(xi)

}

− (eα − e−α)

n∑

i=1

{
1(ỹi = 1)γ01e

H(xi)1(h(xi) 6= ỹi)

+ 1(ỹi = −1)γ10e
−H(xi)1(h(xi) 6= ỹi)

}

+ eα
n∑

i=1

{
1(ỹi = 1)γ01e

H(xi) + 1(ỹi = −1)γ10e
−H(xi)

}

(33)
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Table 4: Average classification errors and their standard deviations for AdaBoost and rBoost at 10% asymmetric
noise.

Dataset
AdaBoost rBoost-Fixed gamma rBoost Gentle Modest

LR rLR LR rLR LR rLR Boost Boost
Banana 17.85±2.7 13.54±1.3 16.78±1.7 12.55±1.1 17.81±2.4 13.65±1.2 16.81±1.5 22.27±2.8
Diabetes 24.70±1.6 25.67±1.6 24.27±1.7 25.57±1.5 24.23±1.6 25.97±1.7 27.80±2.1 24.93±1.6
Heart 21.70±4.4 21.50±3.9 21.60±3.7 22.20±2.9 21.30±3.7 21.10±2.7 26.10±3.2 21.70±4.2
Image 15.88±1.0 4.52±1.0 15.20±1.6 4.06±0.9 15.15±1.5 4.40±1.2 4.45±0.7 24.12±1.9
Titanic 22.87±1.3 23.06±1.3 22.65±1.3 22.23±1.1 23.58±1.6 22.44±1.0 22.83±1.5 23.63±1.5
Twonorm 7.02±1.6 5.21±1.1 6.16±1.4 4.51±0.8 6.56±1.4 5.34±1.1 9.19±1.0 7.71±1.2
Waveform 18.10±1.3 14.48±1.1 17.83±1.2 16.23±1.5 17.71±1.2 14.54±1.4 16.52±1.0 14.19±0.7
All 18.30±1.9 15.42±1.6 17.78±1.7 15.33±1.4 18.04±1.9 15.34±1.5 17.67±1.6 19.79±1.9

Table 5: Average classification errors and their standard deviations for AdaBoost and rBoost at 30% asymmetric
noise.

Dataset
AdaBoost rBoost-Fixed gamma rBoost Gentle Modest

LR rLR LR rLR LR rLR Boost Boost
Banana 31.45±5.2 23.53±4.7 27.31±4.5 14.27±1.0 32.39±3.9 23.83±4.1 25.38±2.7 33.04±6.8
Diabetes 32.20±2.1 33.43±3.9 29.47±3.0 30.20±2.6 32.80±3.3 33.27±3.1 38.37±3.6 32.07±3.5
Heart 27.60±5.5 27.30±6.8 23.00±4.3 24.30±3.8 28.20±6.3 28.00±6.9 32.00±7.2 29.60±11.7
Image 22.48±1.6 10.70±0.9 16.96±1.8 5.47 ±1.0 20.53±1.6 9.82 ±1.5 11.94±1.1 26.44±1.3
Titanic 32.60±8.4 31.21±8.7 23.88±1.8 22.14±1.5 33.17±9.3 30.73±8.7 32.94±9.0 33.49±13.7
Twonorm 16.02±2.4 12.07±2.0 8.89 ±1.5 6.51 ±1.3 14.68±2.3 12.19±2.0 17.85±1.8 16.62±3.1
Waveform 28.83±2.8 23.43±2.5 24.27±2.1 19.95±1.6 28.39±3.1 23.02±2.5 27.31±2.5 21.10±2.2
All 27.31±3.9 23.09±4.2 21.96±2.7 17.54±1.8 27.16±4.2 22.97±4.1 26.54±3.9 27.47±6.0

= arg min
h,α

2 sinh(α)×
n∑

i=1

{
1(ỹi = 1)1(h(xi) 6= ỹi)[γ00e

−H(xi) − γ01e
H(xi)]

}

+ 2 sinh(α)×
n∑

i=1

{
1(ỹi = −1)1(h(xi) 6= ỹi)[γ11e

H(xi) − γ10e
−H(xi)]

}

+ e−α
n∑

i=1

{
1(ỹi = 1)γ00e

−H(xi) + 1(ỹi = −1)γ11e
H(xi)

}

+ eα
n∑

i=1

{
1(ỹi = 1)γ01e

H(xi) + 1(ỹi = −1)γ10e
−H(xi)

}

(34)

Define w00 = γ00e
−H(xi), w01 = γ01e

H(xi), w11 =
γ11e

H(xi) and w10 = γ10e
−H(xi) , we simplify the objec-

tive into.

arg min
h,α

2 sinh(α)

n∑

i=1

{
wi1(h(xi) 6= ỹi)

}

+ e−α
n∑

i=1

{
1(ỹi = 1)w00 + 1(ỹi = −1)w11

}

+ eα
n∑

i=1

{
1(ỹi = 1)w01 + 1(ỹi = −1)w10

}
(35)

where

wi =

{
(w00 − w01), if ỹi = +1.

(w11 − w10), if ỹi = −1.
(36)
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José Miguel, and Dupont, Pierre. Robust Multi-
Class Gaussian Process Classification. In NIPS, pp.
280–288, 2011.

Karmaker, Amitava and Kwek, Stephen. A boosting
approach to remove class label noise. International
Journal of Hybrid Intelligent Systems, 3(3):169–177,
August 2006.

Krieger, Abba, Long, Chuan, and Wyner, Abra-
ham. Boosting Noisy Data. In Proceedings of the
18th International Conference on Machine Learn-
ing, ICML’01, pp. 274–281. Morgan Kaufmann,
2001.

Lawrence, Neil D. and Schölkopf, Bernhard. Estimat-
ing a Kernel Fisher Discriminant in the Presence of
Label Noise. In Proceedings of the 18th International

Conference on Machine Learning, pp. 306–313. Mor-
gan Kaufmann, 2001.

Long, Philip M. and Servedio, Rocco A. Random clas-
sification noise defeats all convex potential boosters.
Machine Learning, 78(3):287–304, March 2010.

Masnadi-Shirazi, Hamed and Vasconcelos, Nuno.
Cost-sensitive boosting. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 33(2):294–
309, 2011.

Niculescu-Mizil, Alexandru and Caruana, Rich. Ob-
taining Calibrated Probabilities from Boosting. In
Proceedings of the 21st Conference on Uncertainty
in Artificial Intelligence, UAI’05, pp. 413–420.
AUAI Press, 2005.

Platt, John C. Probabilistic Outputs for Support Vec-
tor Machines and Comparisons to Regularized Like-
lihood Methods. In Advances in large margin clas-
sifiers, pp. 61–74. MIT Press, 1999.

Raykar, Vikas C., Yu, Shipeng, Zhao, Linda H.,
Valadez, Gerardo Hermosillo, Florin, Charles, Bo-
goni, Luca, and Moy, Linda. Learning From Crowds.
Journal of Machine Learning Research, 11:1297–
1322, 2010.

Robertson, Tim. Wright F. T. Dykstra Richard L. Or-
der Restricted Statistical Inference. John Wiley and
Sons, New York, 1988.

Takenouchi, Takashi, Eguchi, Shinto, Murata,
Noboru, and Kanamori, Takafumi. Robust boost-
ing algorithm against mislabeling in multiclass prob-
lems. Neural Computation, 20(6):1596–1630, June
2008.

Vezhnevets, Alexander and Vezhnevets, Vladimir.
Modest AdaBoost’ – Teaching AdaBoost to Gen-
eralize Better. In GraphiCon, Novosibirsk Akadem-
gorodok, Russia, 2005.

91



Hilbert Space Embeddings of Predictive State Representations

Byron Boots
Computer Science and Engineering Dept.

University of Washington
Seattle, WA

Arthur Gretton
Gatsby Unit

University College London
London, UK

Geoffrey J. Gordon
Machine Learning Dept.

Carnegie Mellon University
Pittsburgh, PA

Abstract

Predictive State Representations (PSRs) are
an expressive class of models for controlled
stochastic processes. PSRs represent state
as a set of predictions of future observable
events. Because PSRs are defined entirely
in terms of observable data, statistically con-
sistent estimates of PSR parameters can be
learned efficiently by manipulating moments
of observed training data. Most learning al-
gorithms for PSRs have assumed that actions
and observations are finite with low cardinal-
ity. In this paper, we generalize PSRs to in-
finite sets of observations and actions, using
the recent concept of Hilbert space embed-
dings of distributions. The essence is to rep-
resent the state as one or more nonparamet-
ric conditional embedding operators in a Re-
producing Kernel Hilbert Space (RKHS) and
leverage recent work in kernel methods to es-
timate, predict, and update the representa-
tion. We show that these Hilbert space em-
beddings of PSRs are able to gracefully han-
dle continuous actions and observations, and
that our learned models outperform compet-
ing system identification algorithms on sev-
eral prediction benchmarks.

1 INTRODUCTION

Many problems in machine learning and artificial intel-
ligence involve discrete-time partially observable non-
linear dynamical systems. If the observations are
discrete, then Hidden Markov Models (HMMs) [1]
or, in the control setting, Input-Output HMMs (IO-
HMMs) [2], can be used to represent belief as a discrete
distribution over latent states. Predictive State Repre-
sentations (PSRs) [3] are generalizations of IO-HMMs
that have attracted interest because they can have
greater representational capacity for a fixed model di-
mension. In contrast to latent-variable representa-

tions like HMMs, PSRs represent the state of a dy-
namical system by tracking occurrence probabilities
of future observable events (called tests) conditioned
on past observable events (called histories). One of
the prime motivations for modeling dynamical systems
with PSRs was that, because tests and histories are
observable quantities, learning PSRs should be easier
than learning IO-HMMs by heuristics like Expectation
Maximization (EM), which suffer from bad local op-
tima and slow convergence rates.

For example, Boots et al. [4] proposed a spectral algo-
rithm for learning PSRs with discrete observations and
actions. At its core, the algorithm performs a singular
value decomposition of a matrix of joint probabilities
of tests and partitions of histories (the moments men-
tioned above), and then uses linear algebra to recover
parameters that allow predicting, simulating, and fil-
tering in the modeled system. As hinted above, the
algorithm is statistically consistent, and does not need
to resort to local search—an important benefit com-
pared to typical heuristics (like EM) for learning latent
variable representations.

Despite their positive properties, many algorithms for
PSRs are restricted to discrete observations and ac-
tions with only moderate cardinality. For continuous
actions and observations, and for actions and observa-
tions with large cardinalities, learning algorithms for
PSRs often run into trouble: we cannot hope to see
each action or observation more than a small num-
ber of times, so we cannot gather enough data to es-
timate the PSR parameters accurately without addi-
tional assumptions. Previous approaches attempt to
learn continuous PSRs by leveraging kernel density es-
timation [4] or modeling PSR distributions with expo-
nential families [5, 6]; each of these methods must con-
tend with drawbacks such as slow rates of statistical
convergence and difficult numerical integration.

In this paper, we fully generalize PSRs to continu-
ous observations and actions using a recent concept
called Hilbert space embeddings of distributions [7, 8].
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The essence of our method is to represent distributions
of tests, histories, observations, and actions as points
in (possibly) infinite-dimensional reproducing kernel
Hilbert spaces. During filtering we update these em-
bedded distributions using a kernel version of Bayes’
rule [9]. The advantage of this approach is that embed-
ded distributions can be estimated accurately without
having to contend with problems such as density esti-
mation and numerical integration. Depending on the
kernel, the model can be parametric or nonparamet-
ric. We focus on the nonparametric case: we leverage
the “kernel trick” to represent the state and required
operators implicitly and maintain a state vector with
length proportional to the size of the training dataset.

1.1 RELATED WORK

Our approach is similar to recent work that applies
kernel methods to dynamical system modeling and re-
inforcement learning, which we summarize here. Song
et al. [10] proposed a nonparametric approach to learn-
ing HMM representations in RKHSs. The resulting
dynamical system model, called Hilbert Space Embed-
dings of Hidden Markov Models (HSE-HMMs), proved
to be more accurate compared to competing models
on several experimental benchmarks [10, 11]. Despite
these successes, HSE-HMMs have two major limita-
tions: first, the update rule for the HMM relies on den-
sity estimation instead of Bayesian inference in Hilbert
space, which results in an awkward model with poor
theoretical guarantees. Second, the model lacks the ca-
pacity to reason about actions, which limits the scope
of the algorithm. Our model can be viewed as an ex-
tension of HSE-HMMs that adds inputs and updates
state using a kernelized version of Bayes’ rule.

Grünewälder et al. [12] proposed a nonparametric ap-
proach to learning transition dynamics in Markov de-
cision processes (MDPs) by representing the stochas-
tic transitions as conditional distributions in RKHS.
This work was extended to POMDPs by Nishiyama et
al. [13]. Like the approach we propose here, the result-
ing Hilbert space embedding of POMDPs represents
distributions over the states, observations, and actions
as embeddings in RKHS and uses kernel Bayes’ rule to
update these distribution embeddings. Critically, the
algorithm requires training data that includes labels
for the true latent states. This is a serious limitation:
it precludes learning dynamical systems directly from
sensory data. By contrast, our algorithm only requires
access to an unlabeled sequence of actions and obser-
vations, and learns the more expressive PSR model,
which includes POMDPs as a special case.

2 PSRS

A PSR represents the state of a controlled stochas-
tic process as a set of predictions of observable ex-

periments or tests that can be performed in the
system. Specifically, a test of length N is an or-
dered sequence of future action-observations pairs τ =
a1, o1, . . . aN , oN that can be selected and observed at
any time t. Likewise, a history is an ordered sequence
of actions and observations h = a1, o1, . . . , aM , oM
that have been selected and observed prior to t.

A test τi is executed at time t if we intervene [14]
to select the sequence of actions specified by the test
τAi = a1, . . . , aN . It is said to succeed at time t if it is
executed and the sequence of observations in the test
τOi = o1, . . . , oN matches the observations generated
by the system. The prediction for test i at time t is
the probability of the test succeeding given a history
ht and given that we execute it:1

P
[
τOi,t | τAi,t, ht

]
=

P
[
τOi , τ

A
i | ht

]

P
[
τAi | ht

] (1)

The key idea behind a PSR is that if we know the
expected outcomes of executing all possible tests, then
we know everything there is to know about the state
of a dynamical system [16]. In practice we will work
with the predictions of some set of tests; therefore, let
T = {τi} be a set of d tests. We write

s(ht) =
(
P
[
τOi,t | τAi,t, ht

])d
i=1

(2)

for the prediction vector of success probabilities for the
tests τi ∈ T given a history ht.

Knowing the success probabilities of some tests may
allow us to compute the success probabilities of other
tests. That is, given a test τl and a prediction vector
s(ht), there may exist a prediction function fτl such
that P

[
τOl | τAl , ht

]
= fτl(s(ht)). In this case, we say

s(ht) is a sufficient statistic for P
[
τOl | τAl , ht

]
. A core

set of tests is a set whose prediction vector s(ht) is a
sufficient statistic for the predictions of all tests τl at
time t. Therefore, s(ht) is a state for our PSR: i.e., at
each time step t we can remember s(ht) instead ht.

Formally, a PSR is a tuple 〈O,A, T ,F , so〉. O is the
set of possible observations and A is the set of possible
actions. T is a core set of tests. F is the set of pre-
diction functions fτl for all tests τl (which must exist
since T is a core set), and s0 = s(h0) is the initial
prediction vector after seeing the empty history h0.

In this paper we restrict ourselves to linear PSRs, in
which all prediction functions are linear: fτl(s(ht)) =

1For simplicity, we assume that all probabilities involv-
ing actions refer to our PSR as controlled by an arbitrary
blind or open-loop policy [15] (also called exogenous in-
puts). In this case, conditioning on do(a1, . . . , aM ) is equiv-
alent to conditioning on observing a1, . . . , aM , which allows
us to avoid some complex notation and derivations.
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fTτls(ht) for some vector fτl ∈ R|T |. Note that the re-
striction to linear prediction functions is only a restric-
tion to linear relationships between conditional proba-
bilities of tests; linear PSRs can still represent systems
with nonlinear dynamics.

2.1 FILTERING WITH BAYES’ RULE

After taking action a and seeing observation o, we can
update the state s(ht) to the state s(ht+1) by Bayes’
rule. The key idea is that the set of functions F allows
us to predict any test from our core set of tests.

The state update proceeds as follows: first, we predict
the success of any core test τi prepended by an action
a and an observation o, which we call aoτi, as a linear
function of our core test predictions s(ht):

P
[
τOi,t+1, ot=o | τAi,t+1, at=a, ht

]
= fTaoτis(ht) (3)

Second, we predict the likelihood of any observation o
given that we select action a (i.e., the test ao):

P [ot = o | at = a, ht] = fTaos(ht) (4)

After executing action a and seeing observation o,
Equations 3 and 4 allow us to find the prediction for
a core test τi from s(ht) using Bayes’ Rule:

si(ht+1) = P
[
τOi,t+1 | τAi,t+1, at = a, ot = o, ht

]

=
P
[
τOi,t+1, ot = o | τAi,t+1, at = a, ht

]

P [ot = o | at = a, ht]

=
fTaoτis(ht)

fTaos(ht)
(5)

This recursive application of Bayes’ rule to a belief
state is called a Bayes filter.

3 HILBERT SPACE EMBEDDINGS

The key idea in this paper is to represent (possibly con-
tinuous) distributions of tests, histories, observations,
and actions nonparametrically as points in (possibly
infinite dimensional) Hilbert spaces. During filtering
these points are updated entirely in Hilbert space, mir-
roring the finite-dimensional updates, using a kernel
version of Bayes’ rule.

3.1 MEAN MAPS

Let F be a reproducing kernel Hilbert space (RKHS)

associated with kernel KX(x, x′)
def
=
〈
φX(x), φX(x′)

〉
F

for x ∈ X . Let P be the set of probability distributions
on X , and X be a random variable with distribution
P ∈ P. Following Smola et al. [7], we define the mean
map (or the embedding) of P ∈ P into RKHS F to be

µX
def
= E

[
φX(X)

]
.

A characteristic RKHS is one for which the mean map
is injective: that is, each distribution P has a unique

embedding [8]. This property holds for many com-
monly used kernels, e.g., the Gaussian and Laplace
kernels when X = Rd.

Given i.i.d. observations xt, t = 1 . . . T , an estimate of
the mean map is straightforward:

µ̂X
def
=

1

T

T∑

t=1

φX(xt) =
1

T
ΥX1T (6)

where ΥX def
= (φX(x1), . . . , φX(xT )) is the linear oper-

ator which maps the tth unit vector of RT to φX(xt).

Below, we’ll sometimes need to embed a joint distribu-
tion P[X,Y ]. It is natural to embed P[X,Y ] into a ten-
sor product RKHS: let KY (y, y′) =

〈
φY (y), φY (y′)

〉
G

be a kernel on Y with associated RKHS G. Then we
write µXY for the mean map of P[X,Y ] under the ker-

nel KXY ((x, y), (x′, y′))
def
= KX(x, x′)KY (y, y′) for the

tensor product RKHS F ⊗ G.

3.2 COVARIANCE OPERATORS

The covariance operator is a generalization of the co-
variance matrix. Given a joint distribution P [X,Y ]
over two variables X on X and Y on Y, the uncen-
tered covariance operator CXY is the linear operator
which satisfies [17]

〈f, CXY g〉F = EXY [f(X)g(Y )] ∀f ∈ F , g ∈ G (7)

Both µXY and CXY represent the distribution P [X,Y ].
One is defined as an element of F⊗G, and the other as
a linear operator from G to F , but they are isomorphic
under the standard identification of these spaces [9], so
we abuse notation and write µXY = CXY .

Given T i.i.d. pairs of observations (xt, yt), de-
fine ΥX =

(
φX(x1), . . . , φX(xT )

)
and ΥY =(

φY (y1), . . . , φY (yT )
)
. Write Υ∗ for the adjoint of Υ.

Analogous to (6), we can estimate

ĈXY =
1

T
ΥXΥY ∗ (8)

3.3 CONDITIONAL OPERATORS

Based on covariance operators, Song et al. [18] de-
fine a linear operator WY |X : F 7→ G that allows

us to compute conditional expectations E
[
φY (Y ) | x

]

in RKHSs. Given some smoothness assumptions [18],
this conditional embedding operator is

WY |X
def
= CY XC−1XX (9)

and for all g ∈ G we have

E[g(Y ) | x] = 〈g,WY |Xφ
X(x)〉G

Given T i.i.d. pairs (xt, yt) from P[X,Y ], we can esti-
mate WY |X by kernel ridge regression [18, 19]:

ŴY |X = (1/T )ΥY
(
(1/T )ΥX

)†
λ
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where the regularized pseudoinverse Υ†λ is given by

Υ†λ = Υ∗(ΥΥ∗+λI)−1. (The regularization parameter
λ helps to avoid overfitting and to ensure invertibility,
and thus that the resulting operator is well defined.)
Equivalently,

ŴY |X = ΥY (GX,X + λTI)−1ΥX∗

where the Gram matrix GX,X
def
= ΥX∗ΥX has (i, j)th

entry KX(xi, xj).

3.4 KERNEL BAYES’ RULE

We are now in a position to define the kernel mean
map implementation of Bayes’ rule (called the Kernel
Bayes’ Rule, or KBR). In particular, we want the ker-
nel analog of P [X | y, z] = P [X, y | z] /P [y | z]. In
deriving the kernel realization of this rule we need
the kernel mean representation of a conditional joint
probability P [X,Y | z]. Given Hilbert spaces F , G,
and H corresponding to the random variables X, Y ,
and Z respectively, P [X,Y | z] can be represented as

a mean map µXY |z
def
= E

[
φX(X)⊗ φY (Y ) | z

]
or the

corresponding operator CXY |z. Under some assump-
tions [9], and with a similar abuse of notation as be-
fore, this operator satisfies:

CXY |z = µXY |z
def
= C(XY )ZC−1ZZφ(z) (10)

Here the operator C(XY )Z represents the covariance of
the random variable (X,Y ) with the random variable
Z. (We can view (10) as applying a conditional embed-
ding operator WXY |Z to an observation z.) We now
define KBR in terms of conditional covariance opera-
tors [9]:

µX|y,z = CXY |zC−1Y Y |zφ(y) (11)

To map the KBR to the ordinary Bayes’ rule above,
µX|y,z is the embedding of P [X | y, z]; CXY |z is the

embedding of P [X,Y | z]; and the action of C−1Y Y |zφ(y)

corresponds to substituting Y = y into P [X,Y | z] and
dividing by P [y | z].
To use KBR in practice, we need to estimate the
operators on the RKHS of (11) from data. Given
T i.i.d. triples (xt, yt, zt) from P [X,Y, Z], write ΥX =(
φX(x1), . . . , φX(xT )

)
, ΥY =

(
φY (y1), . . . , φY (yT )

)
,

and ΥZ =
(
φZ(z1), . . . , φZ(zT )

)
. We can now es-

timate the covariance operators ĈXY |z and ĈY Y |z
via Equation 10; applying KBR, we get ĈX|y,z =

ĈXY |z
(
ĈY Y |z + λI

)−1
φY (y). We express this process

with Gram matrices, using a ridge parameter λ that
goes to zero at an appropriate rate with T [9]:

Λz = diag((GZ,Z + λTI)−1ΥZ∗φZ(z)) (12)

ŴX|Y,z = ΥX(ΛzGY,Y + λTI)−1ΛzΥ
Y ∗ (13)

µ̂X|y,z = ŴX|Y,zφ
Y (y) (14)

where GY,Y
def
= ΥY ∗ΥY has (i, j)th entry KY (yi, yj),

and GZ,Z
def
= ΥZ∗ΥZ has (i, j)th entry KZ(zi, zj). The

diagonal elements of Λz weight the samples, encoding
the conditioning information from z.

4 RKHS EMBEDDINGS OF PSRS

We are now ready to apply Hilbert space embeddings
to PSRs. For now we ignore the question of learning,
and simply suppose that we are given representations
of the RKHS operators described below. In Section 4.1
we show how predictive states can be represented as
mean embeddings. In Section 4.2 we generalize the
notion of a core set of tests and define the Hilbert
space embedding of PSRs. Finally, in Section 4.3 we
show how to perform filtering in our embedded PSR
with Kernel Bayes’ Rule. We return to learning in
Section 5.

4.1 PREDICTIVE STATE EMBEDDINGS

We begin by defining kernels on length-N sequences
of test observations τO, test actions τA, and his-

tories h: KT O (τO, τ ′O)
def
= 〈φT O (τO), φT

O
(τ ′O)〉F ,

KT A(τA, τ ′A)
def
= 〈φT A(τA), φT

A
(τ ′A)〉G , and

KH (h, h′)
def
=

〈
φH (h) , φH (h′)

〉
L. Define also the

mean maps

µT A,T A,H
def
= E

[
φT
A

(τA)⊗ φT A(τA)⊗ φH(Ht)
]

(15)

µT O,T A,H
def
= E

[
φT
O

(τO)⊗ φT A(τA)⊗ φH(Ht)
]

(16)

which correspond to operators CT A,T A,H and
CT O,T A,H. We now take our PSR state to be the
conditional embedding operator which predicts test
observations from test actions:

S(ht) =WT O|T A,ht
= CT O,T A|ht

C−1T A,T A|ht
(17)

where CT O,T A|ht
= CT O,T A,HC−1H,HφH(ht) and CT A,T A|ht

= CT A,T A,HC−1H,HφH(ht). This definition is analogous
to the finite-dimensional case, in which the PSR state
is a conditional probability table instead of a condi-
tional embedding operator.2

Given characteristic RKHSs, the operator S(ht)
uniquely encodes the predictive densities of future ob-
servation sequences given that we take future action
sequences. This is an expressive representation: we
can model near-arbitrary continuous-valued distribu-
tions, limited only by the existence of the conditional

2In contrast to discrete PSRs, we typically consider the
entire set of length-N tests at once; this change makes
notation simpler, and is no loss of generality since the em-
bedding includes the information needed to predict any
individual test of length up to N . (Computationally, we
always work with sample-based representations, so the size
of our set of tests doesn’t matter.)
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embedding operatorWT O|T A,ht
(and therefore the as-

sumptions in Section 3.3).

4.2 CORE TESTS AND HSE-PSRS

As defined above, the embedding S(ht) lets us com-
pute predictions for a special set of tests, namely
length-N futures. As with discrete PSRs, knowing the
predictions for some tests may allow us to compute
the predictions for other tests. For example, given
the embedding S(ht) and another set of tests T , there
may exist a function FT such the predictions for T
can be computed as WT O|T A,ht

= FT (S(ht)). In this
case, S(ht) is a sufficient statistic for T . Here, as with
discrete PSRs, we focus on prediction functions that
are linear operators; however, this assumption is mild
compared to the finite case, since linear operators on
infinite-dimensional RKHSs are very expressive.

A core set of tests is defined similarly to the discrete
PSR case (Section 2): a core set is one whose embed-
ding S(ht) is a linearly sufficient statistic for the pre-
diction of distribution embeddings of any finite length.
Therefore, S(ht) is a state for an embedded PSR: at
each time step t we remember the embedding of test
predictions S(ht) instead of ht.

Formally, a Hilbert space embedding of a PSR
(HSE-PSR) is a tuple 〈KO(o, o′),KA(a, a′), N,F ,So〉.
KO(o, o′) is a characteristic kernel on observations and
KA(a, a′) is a characteristic kernel on actions. N is a
positive integer such that the set of length-N tests is
core. F is the set of linear operators for predicting
embeddings of any-length test predictions from the
length-N embedding (which must exist since length-
N tests are a core set), and S0 = S(h0) is the initial
prediction for our core tests given the null history h0.

4.3 UPDATING STATE WITH KERNEL
BAYES’ RULE

Given an action a and an observation o, the HSE-PSR
state update is computed using the kernel versions of
conditioning and Bayes rule given in Section 3. As in
Section 2, the key idea is that the set of functions F
allows us to predict the embedding of the predictive
distribution of any sequence of observations from the
embedding of our core set of tests S(ht).

The first step in updating the state is finding the em-
bedding of tests of length N + 1. By our assumptions,
a linear operator FAOT exists which accomplishes this:

WT O′ ,O|T A′ ,A,ht
= FAOT S(ht) (18)

The second step is finding the embedding of observa-
tion likelihoods at time t given actions. By our as-
sumptions, we can do so with an operator FAO:

WO,O|A,ht
= FAOS(ht) (19)

With the two embeddings WT O′ ,O|T A′ ,A,ht
and

WO,O|A,ht
, we can update the state given a new action

and observation. First, when we choose an action at,
we compute the conditional embeddings:

CO,O|ht,at = µO,O|ht,at=WO,O|A,ht
φA(at) (20)

WT O′,O|T A′ ,ht,at
=WT O′ ,O|T A′ ,A,ht

×A φA(at) (21)

Here, ×A specifies that we are thinking of
WT O′ ,O|T A′ ,A,ht

as a tensor with 4 modes, one for each

of T O′ , O, T A′ , A, and contracting along the mode A
corresponding to the current action. Finally, when we
receive the observation ot, we calculate the next state
by KBR:

S(ht+1) ≡ WT O′ |T A′ ,ht,at,ot

=WT O′ ,O|T A′ ,ht,at
×O C−1O,O|ht,at

φO(ot) (22)

Here, ×O specifies that we are thinking of
WT O′ ,O|T A′ ,ht,at

as a tensor with 3 modes and con-
tracting along the mode corresponding to the current
observation.

5 LEARNING HSE-PSRS

If the RKHS embeddings are finite and low-
dimensional, then the learning algorithm and state
update are straightforward: we estimate the condi-
tional embedding operators directly, learn the func-
tions FAOT and FAO by linear regression, and update
our state with Bayes’ rule via Eqs. 18–22. See, for
example [4] or [20]. However, if the RKHS is infinite,
e.g., if we use Gaussian RBF kernels, then it is not pos-
sible to store or manipulate HSE-PSR state directly.
In Sections 5.1–5.3, we show how learn a HSE-PSR in
potentially-infinite RKHSs by leveraging the “kernel
trick” and Gram matrices to represent all of the re-
quired operators implicitly. Section 5.1 describes how
to represent HSE-PSR states as vectors of weights on
sample histories; Section 5.2 describes how to learn the
operators needed for updating states; and Section 5.3
describes how to update the state weights recursively
using these operators.

5.1 A GRAM MATRIX FORMULATION

5.1.1 The HSE-PSR State

We begin by describing how to represent the HSE-PSR
state in Eq. 17 as a weighted combination of training

data samples. Given T i.i.d. tuples
{

(τOt , τ
A
t , ht)

}T
t=1

generated by a stochastic process controlled by a blind
policy, we denote:3

3To get independent samples, we’d need to reset our
process between samples, or run it long enough that it
mixes. In practice we can use dependent samples (as we’d
get from a single long trace) at the cost of reducing the
convergence rate in proportion to the mixing time. We
can also use dependent samples in Sec. 5.1.2 due to our
careful choice of which operators to estimate.
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ΥT
O

=
(
φT
O

(τO1 ), . . . , φT
O

(τOT )
)

(23)

ΥT
A

=
(
φT
A

(τA1 ), . . . , φT
A

(τAT )
)

(24)

ΥH =
(
φH(h1), . . . , φH(hT )

)
(25)

and define Gram matrices:

GT A,T A = ΥT
A∗ΥT

A
(26)

GH,H = ΥH∗ΥH (27)

We can then calculate an estimate of the state at time
t in our training sample (Eq. 17) using Eqs. 12 and 13
from the kernel Bayes’ rule derivation:

αht
= (GH,H + λTI)−1ΥH

∗
φH(ht) (28)

Λht
= diag (αht

) (29)

Ŝ(ht) = ΥT
O

(ΛhtGT A,T A + λTI)−1ΛhtΥ
T A∗ (30)

We will use these training set state estimates below to
help learn state update operators for our HSE-PSR.

5.1.2 Vectorized States

The state update operators treat states as vectors
(e.g., mapping a current state to an expected future
state). The state in Eq. 30 is written as an operator,
so to put it in the more-convenient vector form, we
want to do the infinite-dimensional equivalent of re-
shaping a matrix to a vector. To see how, we can look
at the example of the covariance operator ĈT O,T A|ht

and its equivalent mean map vector µ̂T OT A|ht
:

ĈT O,T A|ht
= ΥT

O
Λht

ΥT
A∗

≡ µ̂T OT A|ht
= (ΥT

O
?ΥT

A
)αht

(31)

where ? is the Khatri-Rao (column-wise tensor) prod-
uct. The last line is analogous to Eq. 6: each column

of ΥT
O
? ΥT

A
is a single feature vector φT

O
(τOt ) ⊗

φT
A

(τAt ) in the joint RKHS for test observations and
test actions; multiplying by αht

gives a weighted aver-
age of these feature vectors.

Similarly, the HSE-PSR state can be written:

Ŝ(ht) = ĈT O,T A|ht
Ĉ−1T A,T A|ht

= ΥT
O

(Λht
GT A,T A + λTI)−1Λht

ΥT
A∗

≡ (ΥT
O

(ΛhtGT A,T A + λTI)−1 ?ΥT
A

)αht (32)

We can collect all the estimated HSE-PSR states, from
all the histories in our training data, into one operator

ΥT
O|T A :

WT O|T A,h1:T
≡ ΥT

O|T A =
(
Ŝ(h1), . . . , Ŝ(hT )

)
(33)

We need several similar operators which represent lists
of vectorized conditional embedding operators. Write:

ΥT
O′

=
(
φT
O

(τO2 ), . . . , φT
O

(τOT+1)
)

(34)

ΥT
A′

=
(
φT
A

(τA2 ), . . . , φT
A

(τAT+1)
)

(35)

ΥO =
(
φO(o1), . . . , φO(oT )

)
(36)

ΥA =
(
φA(a1), . . . , φA(aT )

)
(37)

(Our convention is that primes indicate tests shifted
forward in time by one step.) Now we can
compute lists of: expected next HSE-PSR states
WT O′|T A′,h1:T

; embeddings of length-1 predictive dis-
tributions WO|A,h1:T

; embeddings of length-1 predic-
tive distributions WO,O|A,h1:T

; and finally extended
tests WT O′,O|T A′,A,h1:T

. Vectorized, these become:

WT O′|T A′,h1:T
= ΥT

O′|T A′ (38)

WO|A,h1:T
= ΥO|A (39)

WO,O|A,h1:T
= ΥO,O|A (40)

WT O′,O|T A′,A,h1:T
= ΥT

O′,O|T A′,A (41)

Each of these operators is computed analogously to
Eqs. 32 and 33 above. The expanded columns of
Eqs. 40 and 41 are of particular importance for future
derivations:

Υ
O,O|A
t = ΥO,O(ΛhtGA,A + λTI)−1ΛhtΥ

A∗ (42)

Υ
TO′,O|TA′,A
t = ΥT

O′,O|TA′(ΛhtGA,A + λTI)−1ΛhtΥ
A∗

(43)

Finally, the finite-dimensional product of any two lists
of vectorized states is a Gram matrix. In particular, we
need GT ,T and GT ,T ′ , Gram matrices corresponding
to HSE-PSR states and time-shifted HSE-PSR states:

GT ,T = ΥT
O|T A∗ΥT

O|T A (44)

GT ,T ′ = ΥT
O|T A∗ΥT

O′|T A′ (45)

5.2 LEARNING THE UPDATE RULE

The above derivation shows how to get a state esti-
mate by embedding an entire history; for a dynamical
system model, though, we want to avoid remember-
ing the entire history, and instead recursively update
the state of the HSE-PSR given new actions and ob-
servations. We are now in a position to do so. We
first show how to learn a feasible HSE-PSR state that
we can use to initialize filtering (Section 5.2.1), and
then show how to learn the prediction operators (Sec-
tion 5.2.2). Finally, we show how to perform filtering
with KBR (Section 5.3).

5.2.1 Estimating a Feasible State

If our data consists of a single long trajectory, we can-
not estimate the initial state S0, since we only see the
null history once. So, instead, we will estimate an ar-
bitrary feasible state S∗, which is enough information
to enable prediction after an initial tracking phase if
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we assume that our process mixes. If we have multi-
ple trajectories, a straightforward modification of (46)
will allow us to estimate S0 as well.

In particular, we take S∗ to be the RKHS representa-
tion of the stationary distribution of core test predic-
tions given the blind policy that we used to collect the
data. We estimate S∗ as the empirical average of state

estimates: ŴT O|T A,h∗ = ΥT
O|T Aαh∗ where

αh∗ =
1

T
1T (46)

5.2.2 Estimating the Prediction Operators

The linear prediction operators FAO and FAOT from
Eqs. 18 and 19 are the critical parameters of the HSE-
PSR used to update state. In particular, we note that
FAO is a linear mapping from WT O|T A,ht

to WO|A,ht

and FAOT is a linear mapping from WT O|T A,ht
to

WT O,O|T A,A,ht
. So, we estimate these prediction op-

erators by kernel ridge regression:

F̂AO = ΥO,O|A
(

ΥT
O|T A

)†
λT

(47)

F̂AOT = ΥT
O,O|T A,A

(
ΥT

O|T A
)†
λT

(48)

These operators are (possibly) infinite-dimensional, so
we never actually build them; instead, we show how to
use Gram matrices to apply these operators implicitly.

5.3 GRAM MATRIX STATE UPDATES

We now apply kernel Bayes’ rule to update state
given a new action and observation, i.e., to implement
Eqs. 18–22 via Gram matrices. We start from the cur-
rent weight vector αt, which represents our current

state S(ht) = ΥT
O′|T A′αt.

Predicting forward in time means applying Eqs. 47
and 48 to state. We do this in several steps. First we
apply the regularized pseudoinverse in Eqs. 47 and 48,
which can be written in terms of Gram matrices:
(

ΥT
O|TA

)†
λT

= ΥT
O|TA∗

(
ΥT
O|TAΥT

O|TA∗ + λTI
)−1

= (GT ,T+λTI)−1ΥT
O|TA∗ (49)

Applying Eq. 49 to the state ΥT
O′|T A′αt results in

α̂t = (GT ,T + λTI)−1ΥT
O|T A∗ΥT

O′|T A′αt

= (GT ,T + λTI)−1GT ,T ′αt (50)

Here the weight vector α̂t allows us to predict the ex-
tended tests at time t conditioned on actions and ob-
servations up to time t− 1. That is, from Eqs. 47, 48
and 50 we can write the estimates of Eqs. 18 and 19:

FAOS(ht) = ΥO,O|Aα̂t

FAOT S(ht) = ΥT
O,O|T A,Aα̂t

And, from Eqs. 42 and 43 we see that

ΥO,O|Aα̂t =

T∑

i=1

[α̂t]i ΥO,O(ΛhiGA,A + λTI)−1ΛhiΥ
A∗(51)

ΥT
O′,O|TA′,Aα̂t

=

T∑

i=1

[α̂t]i ΥT
O′,O|TA′(ΛhiGA,A + λTI)−1ΛhiΥ

A∗ (52)

After choosing action at, we can condition the em-
bedded tests by right-multiplying Eqs. 51 and 52 by
φA(at). We do this by first collecting the common part
of Eqs. 51 and 52 into a new weight vector αat :

αat =

T∑

i=1

[α̂t]i (ΛhiGA,A+λTI)−1ΛhiΥ
A∗φA(at) (53)

The estimated conditional embeddings (Eqs. 20–21)
are therefore:

ĈO,O|ht,at = ΥO,Oαat

ŴT O′ ,O|T A′ ,ht,at
= ΥT

O′O|T A′αat

Or, given a diagonal matrix with the weights αat along
the diagonal, Λat = diag(αat ), the estimated conditional
embeddings can be written:

ĈO,O|ht,at = ΥOΛatΥO
∗

(54)

ŴT O′ ,O|T A′ ,ht,at
= ΥT

O′ |T A′ΛatΥO
∗

(55)

Given a new observation ot, we apply KBR (Eq. 22):

αaot = (ΛatGO,O + λTI)−1ΛatΥO
∗
φO(ot) (56)

Finally, given the coefficients αaot , the HSE-PSR state
at time t+ 1 is:

Ŝ(ht) = ŴT O′ |T A′ ,ht+1
= ΥT

O′|T A′αaot (57)

This completes the state update. The nonparametric
state at time t+ 1 is represented by the weight vector
αt+1 = αaot . We can continue to recursively filter on
actions and observations by repeating Eqs. 50–57.

6 PREDICTIONS

In the previous sections we have shown how to main-
tain the HSE-PSR state by implicitly tracking the
operator WT O|T A . However, the goal of modeling a
stochastic process is usually to make predictions, i.e.,
reason about properties of future observations. We
can do so via mean embeddings: for example, given
the state after some history h, WT O|T A,h, we can fill
in a sequence of test actions to find the mean embed-
ding of the distribution over test observations:

µT O|h,a1:M =WT O|T A,hφT
A

(a1:M ) (58)

As is typical with mean embeddings, we can now pre-
dict the expected value of any function f in our RKHS:
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Figure 1: Synthetic data prediction performance. (A)
Mean Squared Error for prediction with different esti-
mated models. Each model was evaluated 1000 times;
see text for details. (B) Example of the HSE-HMM’s
predicted observations given a sequence of 100 control
inputs. As expected, the prediction is very accurate
at the current time-step but degrades over time.

E[f(o1:M ) | h, a1:M ] =
〈
f, µT O|h,a1:M

〉
(59)

The range of predictions we can make therefore de-
pends on our RKHS. For example, write πij(o1:M ) for
the function which extracts the ith coordinate of the
jth future observation. If these coordinate projections
are in our RKHS, we can compute E[(oj)i | h, a1:M ]
as the inner product of µT O|h,a1:M with πij . (Coordi-
nate projection functions are present, for example, in
the RKHS for a polynomial kernel, or in the RKHS
for a Gaussian kernel on any compact subset of a real
vector space.) Or, if our RKHS contains an indicator
function for a region A, we can predict the probability
that the future observations fall in A.

Sometimes the desired function is absent from our
RKHS. In this case, we can learn an approximation
from our training data by kernel linear regression. This
approximation has a particularly simple and pleasing
form: we compute fs = f(os:s+M−1) at each training
time point s, collect these fs into a single vector f , and
predict E[f(o1:M ) | h, a1:M ] = f>αh, where αh is the
vector of weights representing our state after history
h. In the experiments in Section 7 below, we use this
trick to evaluate the expected next observation.

7 EXPERIMENTS

7.1 SYNTHETIC DATA

First we tested our algorithm on a benchmark syn-
thetic nonlinear dynamical system [21, 22]:

ẋ1(t) = x2(t)− 0.1 cos (x1(t))
(
5x1(t)− 4x31(t) + x51(t)

)

− 0.5 cos (x1(t))u(t),

ẋ2(t) = − 65x1(t) + 50x31(t)− 15x51(t)− x2(t)− 100u(t),

y(t) = x1(t)

The output is y; the policy for the control input u
is zero-order hold white noise, uniformly distributed

between −0.5 and 0.5. We collected a single trajectory
of 1600 observations and actions at 20Hz, and split it
into 500 training and 1200 test data points.

For each model, discussed below, we filtered for 1000
different extents t1 = 101, . . . , 1100, then predicted the
system output a further t2 steps in the future, for t2 =
1, . . . , 100. We averaged the squared prediction error
over all t1; results are plotted in Figure 1(A).

We trained a HSE-PSR using the algorithm described
in Section 5 with Gaussian RBF kernels and tests and
histories consisting of 10 consecutive actions and ob-
servations. The bandwidth parameter of the Gaussian
RBF kernels is set with the “median trick.” For com-
parison, we learned several additional models with pa-
rameters set to maximize each model’s performance:
a 5-dimensional nonlinear model using a kernelized
version of linear system identification (K-LDS) [22],
a 5-dimensional linear dynamical system (LDS) us-
ing a stabilized version of spectral subspace identifi-
cation [23, 24] with Hankel matrices of 10 time steps;
and a 50-state input-output HMM (IO-HMM) trained
via EM [2], with observations and actions discretized
into 100 bins. We also compared to simple baselines:
the mean observation and the previous observation.
The results (Figure 1(A)) demonstrate that the HSE-
PSR algorithm meets or exceeds the performance of
the competing models.

7.2 SLOT CAR

The second experiment was to model inertial measure-
ments from a slot car (1:32 scale) racing around a
track. Figure 2(A) shows the car and attached 6-axis
IMU (an Intel Inertiadot), as well as the 14m track.
(Song et al. [20, 10] used a similar dataset.) We col-
lected the estimated 3D acceleration and angles of the
car (observations) from the IMU as well as the ve-
locity of the car (the control input) at 10Hz for 2500
steps. We split our data into 500 training and 2000
test data points. The control policy was designed to
maximize speed—it is not blind, but our learning al-
gorithm works well despite this fact.

For each model, we performed filtering for 1000 dif-
ferent extents t1 = 501, . . . , 1500, then predicted an
IMU reading a further t2 steps in the future, for
t2 = 1, . . . , 500, using the given control signal. We
averaged the squared prediction error over all t1; re-
sults are plotted in Figure 2(B).

The models are: an HSE-PSR with Gaussian RBF ker-
nels on tests and histories consisting of 150 consecutive
actions and observations; a 40-dimensional nonlinear
model trained by K-LDS with the same settings as
our HSE-PSR; a stablized 40-dimensional LDS with
Hankel matrices of 150 time steps; and a 50-state IO-
HMM, with observations and actions discretized into
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Figure 2: Slot car experiment. (A) The slot car plat-
form: the car and IMU (top) and the racetrack (bot-
tom). (B) Mean Squared Error for prediction with
different estimated models. Each model was evaluated
1000 times; see text for details.

200 bins. We again included mean and previous obser-
vation as baselines.4 In general, the dynamical systems
designed for continuous observations and controls per-
formed well, but the HSE-PSR consistently yields the
lowest RMSE.

7.3 ARM END-EFFECTOR PREDICTION

In the final experiment we look at the problem of pre-
dicting the 3-d position of the end-effector of a simu-
lated Barrett WAM robot arm observed by a depth-
camera. Figure 3(A) shows example depth images.

We collected 1000 successive observations of the arm
motor babbling. The data set consisted of depth maps
and the 3D position of the end-effector along with the
joint angles of the robot arm (which we treat as the
control signal). The goal was to learn a nonlinear dy-
namical model of the depth images and 3D locations
in response to the joint angles, both to remove noise
and to account for hysteresis in the reported angles.
After filtering on the joint angles and depth images,
we predict current and future 3D locations of the end-
effector. We used the first 500 data points as training
data, and held out the last 500 data points for testing
the learned models.

For each model described below, we performed filter-
ing for 400 different extents t1 = 51, . . . , 450 based
on the depth camera data and the joint angles, then
predicted the end effector position a further t2 steps
in the future, for t2 = 1, 2..., 50 using just the inputs.
The squared error of the predicted end-effector posi-
tion was recorded, and averaged over all of the extents
t1 to obtain the means plotted in Figure 2(B).

We trained a HSE-PSR with Gaussian RBF kernels
and tests and histories consisting of 5 consecutive ac-

4Like a stopped clock, the previous observation (the
green dotted line) is a good predictor every 130 steps or so
as the car returns to a similar configuration on the track.
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Figure 3: Robot end-effector prediction. (A) Observa-
tions consisted 640x480 pixel depth images of a robot
arm. (B) Mean Squared Error (in cm) for end-effector
prediction with different learned models. Each model
was evaluated 400 times; see text for details.

tions and observations. For comparison, we learned
a 100-dimensional nonlinear model using K-LDS with
the same settings as our HSE-PSR, a stabilized 100-
dimensional LDS with Hankel matrices of 5 time steps;
and a 100-state discrete IO-HMM where observations
and actions were discretized into 100 values. This is a
very challenging problem and most of the approaches
had difficulty making good predictions. For example,
the K-LDS learning algorithm generated an unstable
model and the stabilized LDS had poor predictive ac-
curacy. The HSE-PSR yields significantly lower mean
prediction error compared to the alternatives.

8 CONCLUSION

In this paper we attack the problem of learning a con-
trolled stochastic process directly from sequences of ac-
tions and observations. We propose a novel and highly
expressive model: Hilbert space embeddings of predic-
tive state representations. This model extends discrete
linear PSRs to large and continuous-valued dynamical
systems. With the proper choice of kernel, HSE-PSRs
can represent near-arbitrary continuous and discrete-
valued stochastic processes.

HSE-PSRs also admit a powerful learning algorithm.
As with ordinary PSRs, the parameters of the model
can be written entirely in terms of predictive distribu-
tions of observable events. (This is in stark contrast
to latent variable models, which have unobservable pa-
rameters that are usually estimated by heuristics such
as EM.) Unlike previous work on continuous-valued
PSRs, we do not assume that predictive distributions
conform to particular parametric families. Instead, we
define the HSE-PSR state as the nonparametric em-
bedding of a conditional probability operator in a char-
acteristic RKHS, and use recent theory developed for
RKHS embeddings of distributions to derive sample-
based learning and filtering algorithms.
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Abstract

A significant theoretical advantage of search-
and-score methods for learning Bayesian Net-
works is that they can accept informative
prior beliefs for each possible network, thus
complementing the data. In this paper,
a method is presented for assigning priors
based on beliefs on the presence or absence of
certain paths in the true network. Such be-
liefs correspond to knowledge about the pos-
sible causal and associative relations between
pairs of variables. This type of knowledge
naturally arises from prior experimental and
observational data, among others. In addi-
tion, a novel search-operator is proposed to
take advantage of such prior knowledge. Ex-
periments show that, using path beliefs im-
proves the learning of the skeleton, as well as
the edge directions in the network.

1 INTRODUCTION

One theoretical advantage of the search-and-score ap-
proach to learning Bayesian Networks [Cooper and
Herskovits, 1992] versus the constraint-based approach
[Spirtes et al., 2000] is that the former naturally ac-
cepts priors for each network. Since the number of pos-
sible networks is exponential to the number of nodes,
in a practical setting one has to assign priors in an
implicit way. In this paper, we consider prior beliefs
on the possible paths between variable pairs. Such
paths directly correspond to causal or associative
relations. The joint beliefs on the paths is then em-
ployed to assign a prior on each network.

Causal knowledge naturally derives from prior exper-
imental data while associative knowledge stems from
observational data. For example, consider a dataset D
measuring the average amount of exercise per week E,
calcium in diet C, occurrence of osteoporosis by 60yrs

O and smoking S in a cohort of women. A Bayesian
Network could be induced by any appropriate learning
method. However, if a prior experimental study showed
that increasing the amount of exercise reduces the oc-
currence of the disease, then the knowledge belief that
[E causes (that is, causally affects) O] with probability
p should be incorporated during learning. Similarly, if
a prior cohort study (observational study) has shown
that smoking correlates with reduced exercising, then
knowledge [S and E are associated] with probability p′

should also be included. The belief strengths p and p′

depend on several factors, such as the statistical power
of the study. Notice that the fact [E causes O] does
not correspond to the presence of the edge E → O in
the network: the edge implies a direct causal relation
(in some context of modeled variables) while [E causes
O] does not depend on the context.

Path beliefs are inherently dependent. For exam-
ple, if one believes with certainty that [X causes Y ]
and [Y causes Z], then one has to believe that [X
causes Z] to be consistent. Therefore, one should
consider the joint distribution of the input path be-
liefs, instead of the marginal distributions separately.
However, it is very unlikely that the complete joint
distribution is available. Instead, one could use
the marginal distributions to infer a joint distribu-
tion. However, there are several technical difficul-
ties to consider. For example, assume we are given
P (X causes Y ) = 0.8 and P (Y causes Z) = 0.8 and
wish to compute P (X causes Y, Y causes Z). On one
hand, there may be several choices for the joint given
the same marginal beliefs. In the above scenario we
can infer P (X causes Y, Y causes Z) ∈ [0.6, 1]. On
the other hand, the beliefs maybe incoherent [Hansen
et al., 2000], that is, not extendable to a joint distri-
bution that satisfies the probability axioms.

We present a method that computes a joint distribu-
tion of the path beliefs such that: if the path beliefs
are coherent the joint is the closest to uninformative
priors; if they are incoherent the joint is chosen to be
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coherent and induces path probabilities that are close
to the input beliefs. Once the joint is computed, it
can be employed to efficiently compute the prior of a
network. Furthermore, to take advantage of the prior
knowledge, we introduce a novel search-operator.

In simulated proof-of-concept experiments we show
that the new scoring method can indeed take advan-
tage of prior knowledge. When provided with causal
knowledge, it is able to better learn the orientations of
the edges and the causal relations. Informative priors
can also facilitate learning the skeleton of the network.
Finally, we show that the proposed search-operator
significantly improves the quality of the learned model.

There are several other methods that make use of prior
knowledge when learning a network (see [Angelopou-
los and Cussens, 2008] for a review). For example, us-
ing knowledge regarding the parameters of the network
[Niculescu et al., 2006], a causal total order of the vari-
ables [Cooper and Herskovits, 1992], the presence or
absence of directed edges in the network [Meek, 1995]
possibly with beliefs assigned to them [Buntine, 1991,
Robert and Arno, 2000], or a prior network, used to
assign prior probabilities to each network based on the
distance from this network [Heckerman et al., 1995]. In
general, it can be argued that the type of knowledge
the existing methods can incorporate during learning
is not in a form that can be easily acquired. As a
result, uniform - and thus uninformative - priors are
commonly used when learning Bayesian Networks from
data. The problem of incorporating informative priors
while learning is listed in the list of open problems in
a recent causality editorial [Spirtes, 2010].

There also is prior work that specifically considers path
constraints or beliefs. The methods in [Borboudakis
et al., 2011, Borboudakis and Tsamardinos, 2012]
assume one first learns a Markov-Equivalence class
of Bayesian Networks or Maximal Ancestral Graphs
[Spirtes et al., 2000] (a generalization of Bayesian Net-
works that admits hidden variables) from data and
then, path constraints are imposed on the graph. In
contrast, in this work the network is learned with the
help of the prior knowledge. In [O’Donnell et al., 2006]
a method is presented for incorporating beliefs on
paths, but relies on computationally expensive Markov
Chain Monte Carlo (MCMC) simulations. However,
neither the latter, nor any other method dealing with
prior knowledge deals with the issues of dependent and
possibly incoherent beliefs.

2 BACKGROUND

We assume the reader’s familiarity with Bayesian Net-
works [Pearl, 2000, Neapolitan, 2003] and learning al-
gorithms and just briefly review the basic concepts.

Let V be a set of k random variables {Vi}k
i=1.

A Bayesian Network (BN) over V is a pair
B = 〈GV , PV〉, where GV is a Directed Acyclic
Graph (DAG) representing conditional independen-
cies between variables V , and PV is the joint proba-
bility distribution (j.p.d.) of V . The graph and dis-
tribution must be connected by the equation PV =∏

P (Vi|PaG(Vi)), where PaG(Vi) are the parents of Vi

in G. The above equation is equivalent to what is called
the Markov Condition. When the network is fixed
in a context we drop the indexes V , G from the equa-
tions. The skeleton of a BN G is the undirected graph
which can be constructed by ignoring the orientations
of G. A triple of vertices 〈X, Y, Z〉 is called a collider
in G, if X → Y ← Z is in G. A collider 〈X, Y, Z〉 is
unshielded if X and Z are not adjacent in G. Two
BNs are called Markov equivalent if: (a) they have
the same skeleton, and (b) they have the same set of
unshielded colliders. A Partially Directed Acyclic
Graph (PDAG) (also known as essential graph) is a
graph representing a set of Markov equivalent BNs. It
has the same skeleton as all BN representatives and
an edge is directed if and only if it is invariant in all
BN representatives. A directed path from X to Y
is denoted as X ⇒ Y . We denote as X ⇔ Y the
case where X and Y share a common ancestor in G,
but neither X is an ancestor of Y nor the reverse. A
d-connecting path (given the empty set) between X
and Y exists if either X ⇒ Y , X ⇐ Y , or X ⇔ Y .
The absence of a d-connecting path between X and
Y is denoted as X � Y . In the rest of the paper,
we assume the Faithfulness Condition [Spirtes et al.,
2000] that (together with the Markov Condition) im-
plies that there is a d-connecting path between X and
Y , if and only if the two nodes are statistically associ-
ated (dependent).

Let D be a complete multinomial dataset over vari-
ables V . The probability of a network G over V is
P (G|D) ∝ P (D|G) · P (G). The score of a network
is often obtained by taking the logarithm of P (G|D),
and equals Sc(G|D) = Sc(D|G) + Sc(G) . Bayesian
scoring methods such as K2 [Cooper and Herskovits,
1992] and BDe, BDeu, [Heckerman et al., 1995] try to
approximate the log-likelihood based on different as-
sumptions. When priors are uniform, the term Sc(G)
can be ignored during maximization. In our setting
however, this term may become important.

3 REPRESENTING PATH BELIEFS

For any pair X, Y ∈ V we may have a prior belief
on the possible paths connecting the two nodes in the
network. It is important that we devise cases for such
paths that are mutually exclusive and allow the rep-
resentation of common types of causal and associa-

103



tive knowledge. This is possible as follows: we define
the path variables ri,j taking values in the domain
{⇒, ⇐, ⇔, �} with the semantics Vi ⇒ Vj , Vi ⇐ Vj ,
Vi ⇔ Vj , and Vi � Vj respectively. When the specific
nodes Vi, Vj we refer to are not important we will use
a single index: rk. Each variable ri,j has a probability
distribution Πri,j = 〈π⇒, π⇐, π⇔, π�〉 over each pos-
sible value. The input to our method is a set of path
beliefs K = 〈R,Π〉, where R is a set of path variables
and Π the set of probability distributions associated
with them. An example is shown in Table 1a(Top) ex-
pressing the belief that most likely there is a directed
path from X to Y and from Y to Z.

The possible paths between nodes dictate their possi-
ble causal and associative relations. When the BN is
interpreted causally, then X ⇒ Y is equivalent to [X
causes Y ]. In addition, as discussed in the previous
section: X ⇒ Y or X ⇐ Y or X ⇔ Y is equiva-
lent to [X is associated with Y ]. Thus, a distribu-
tion ΠrX,Y = 〈π⇒, π⇐, π⇔, π�〉 corresponds to beliefs
about the causal and associative relations.

In practice, it is useful to allow the user to spec-
ify prior beliefs directly on the events [X does (not)
cause Y ] and [X is (not) associated with Y ] from
which the distribution ΠrXY can be derived, than the
opposite. This is not difficult: for example given
P (X causes Y ) = π⇒ the mass of probability 1 − π⇒
has to be distributed in a reasonable way to the other
three values. However, we avoid this belief represen-
tation to simplify the presentation of the method.

4 SCORING PATH BELIEFS

In this section, we derive a score for DAG G given data
D and n path beliefs in K. An important requirement
for the computation of the score is knowledge of a joint
distribution J = P (r1, . . . , rn|Π) = P (R|Π) such that
its marginals correspond to the distributions in Π. We
assume J is already computed; the following sections
describe the details of this computation. The j.p.d. J
stemming from K in Table 1a is shown in Table 1b.

We denote with C (configuration) a given joint instan-
tiation of values to path variables R = 〈r1, . . . rn〉, and
define JC = P (R = C|Π). It is important to notice
that for each graph G the configuration C is uniquely
determined. For example, in the j.p.d. of Table 1b, if
in a graph G X ⇒ Y , Y ⇒ Z and X ⇒ Z hold, then
r = C1. Thus, it makes sense to denote with CG the
joint instantiation of variables R in graph G.

Let G be a DAG and D a dataset over the same vari-
ables. We now compute the probability P (G|D, J):

P (G|D, J) =
P (D|G, J) · P (G|J)

P (D|J)
=

P (D|G) · P (G|J)

P (D|J)

The second equation stems from the fact that given
the graph G the data D are independent of J (J does
not provide any additional information about the data
once the graph is known). The factor P (D|J) is a
normalizing constant that does not need be computed
when we maximize the above equation over different
graphs. In Section 2 we mention several approxima-
tions for computing the factor P (D|G). We now focus
on the prior P (G|J):

P (G|J) =P (G, CG|J) = P (G|J, CG) · P (CG|J) =

P (G|CG) · P (CG|J) = P (G|CG) · JCG

The first equation holds because CG is a function of G.
The factor P (G|CG) is our prior on a graph G given
that a specific configuration holds. Given no other
preference or knowledge we assign the same prior to
all graphs with the same configuration. Let NC be
the number of DAGs over nodes V sharing the same
configuration C. Then P (G|CG) = 1/NCG and so:

P (G|J) =
JCG

NCG

and Sc(G|J) = log

(
JCG

NCG

)
(1)

The overall score of a graph is then defined as:

Sc(G|D, J) = Sc(D|G) + Sc(G|J) (2)

The score Sc(G|D, J) has two desirable properties:

1. Markov-Equivalent graphs that satisfy the
same path-beliefs obtain the same score.
The last term in the equation above is the
same for graphs sharing the same configuration.
The first term is the same for Markov-equivalent
graphs provided one employs an appropriate scor-
ing function, such as the BDe score [Heckerman
et al., 1995].

2. For uninformative prior beliefs, all graphs
are equiprobable a priori, that is, P (G|J) =
1/N , where N is the number of graphs over nodes
V . With uninformative beliefs we expect to en-
counter a given configuration with probability
equal to the proportion of the graphs satisfying
the configuration, i.e,. JC = NC

N . In that case,

P (G|J) = NC

N · 1
NC

= 1
N and we end up with

uniform priors as we would expect.

While Eq. 1 follows the above two properties, we point
out to the fact that the factor 1/NCG may seem to pro-
vide counter-intuitive results at a first glance. The rea-
son is that, everything else being equal, higher priors
will tend to be assigned to graphs in “small” configu-
rations, that is, consistent with only a few graphs. If
this is not desirable then one can drop the 1/NC fac-
tor. However, if this score is used in place of Eq. 1
then Property 2 above is not satisfied any more.
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Table 1: (a) (Top Part) Path beliefs K for three pairs of nodes. The beliefs are incoherent: P (X ⇒ Y ) = 0.8
and P (Y ⇒ Z) = 0.9 imply that P (X ⇒ Z) ∈ [0.7, 1]. (a) (Bottom Part) Induced coherent beliefs K′ stemming
from K by solving the problem in Eq. 6. (b) A part of the j.p.d. J computed by solving Eq. 6 with input K′.
The number of DAGs with 5 nodes for each configurations NC is also shown. Notice that C2 and C3 have both
zero counts and zero probability, because they are invalid.

(a)

K π⇒ π⇐ π⇔ π�
rX,Y (r1) 0.8 0.132 0.028 0.04
rY,Z(r2) 0.9 0.066 0.014 0.02
rX,Z(r3) 0.6 0.264 0.056 0.08

K′ π⇒ π⇐ π⇔ π�
rX,Y (r1) 0.764 0.159 0.032 0.045
rY,Z(r2) 0.879 0.082 0.016 0.023
rX,Z(r3) 0.646 0.231 0.051 0.073

(b)

rX,Y rY,Z rX,Z JC NC

C1 ⇒ ⇒ ⇒ 0.6443 2800
C2 ⇒ ⇒ ⇐ 0 0
C3 ⇒ ⇒ ⇔ 0 0
. . . . . . . . . . . . . . . . . .
C49 � ⇒ ⇒ 4.55 · 10−4 1045
. . . . . . . . . . . . . . . . . .
C64 � � � 2.78 · 10−5 309

5 COMPUTING THE NUMBER OF
DAGS NC

The number N of DAGs over nodes V has been solved
in closed-form [Robinson, 1973]. However, to the best
of our knowledge, there is no closed-form for the num-
ber NC of DAGs that satisfy certain path-constraints.
When the number of nodes is small (up to 5-6) one can
enumerate all DAGs and compute each NC by count-
ing. The number of possible DAGs however, grows
exponentially to the number of nodes and complete
enumeration is not an option. In this case, we esti-
mate these counts by sampling a number S of DAGs
uniformly at random. Specifically, we implemented the
recent method in [Kuipers and Moffa, 2013] that, un-
like prior work [Melancon et al., 2000], avoids the use
of expensive MCMC methods. N̂C can be estimated
as N ·SC/S, where SC is the number of sampled DAGs
that conform to configuration C.

When the number of configurations c is large or NC/N
is small, one may never sample any graph consistent
with C, resulting in zero estimates. This may happen
even for small sets of path variables, as c grows ex-
ponentially with the number of path variables n. To
avoid zero estimates, one can apply the Laplace correc-
tion: N̂C = SC+l

S+cl N , where l is an arbitrary parameter.
We suggest l to be close to zero. Later on we will refer
to this method as FULLl.

In order to get a good estimate of NC using FULLl,
one may have to sample a huge number of DAGs. To
improve upon this we developed another method to
approximate NC . This method is based on the obser-
vation that, often, certain subsets of path variables are
“almost independent”. We exploit this to factorize the
uninformative prior distribution U of each configura-
tion, denoted with UC for configuration C. NC can
then be computed as UC · N .

5.1 FACTORING THE UNINFORMATIVE
PRIOR DISTRIBUTION U

To give an intuitive understanding of the main idea,
consider the following scenario: we are given two path
variables, rX,Y and rW,Z . Notice that they do not
have any nodes in common. Assume that we fix the
value of rW,Z . Depending on that value, some values
of rX,Y will become more or less likely. For example,
if W � Z holds, the values X ⇒ Y , X ⇐ Y and
X ⇔ Y become less likely since W � Z restricts the
graph to contain fewer edges, effectively reducing the
possibility to form paths between X and Y . On the
other hand, X � Y becomes more likely. To put it for-
mally, UX⇒Y |W�Z < UX⇒Y , UX⇐Y |W�Z < UX⇐Y ,
UX⇔Y |W�Z < UX⇔Y and UX�Y |W�Z > UX�Y .
However, we claim that if the number of nodes V is
sufficiently large, the difference is negligible, or for-
mally that UrX,Y |rW,Z

� UrX,Y , that is, they are “al-
most independent”. We illustrate this with a simple
example. Assume that V = {X, Y, W, Z}. In this case
it is clear that any value of rW,Z heavily constrains the
graph, since it only contains 4 nodes. If however we
keep adding nodes to V , more and more possibilities
are created to satisfy any value of rX,Y .

Next we show an example with dependent path vari-
ables. We are given the path variables rX,Y and rY,Z .
Notice that Y appears in both path variables. Now
consider the configurations C1 = {X ⇒ Y, Y ⇒ Z}
and C2 = {X ⇒ Y, Y ⇐ Z}. Note that the prior
probability of a directed path between any two nodes is
equal for any pair of nodes. Assuming U can be factor-
ized, UY ⇒Z|X⇒Y = UY ⇒Z , and UY ⇐Z|X⇒Y = UY ⇐Z

hold. Because UY ⇒Z = UY ⇐Z holds, UY ⇒Z|X⇒Y =
UY ⇐Z|X⇒Y follows. However, given X ⇒ Y , Y ⇒ Z
becomes less likely since there are no DAGs with
Z ⇒ X (acyclicity), which is not the case for Y ⇐ Z.
For example, for V = {X, Y, Z} there are only 2 DAGs
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with configuration C1, but 4 DAGs with configuration
C2. Thus U cannot be factorized in this case.

Those scenarios only give a rough and intuitive un-
derstanding of the basic idea. In the next subsection
we will provide experimental results to support our
claims. Before doing so, we will generalize the basic
ideas to any set of path beliefs.

Definition 1. Let R be a set of path variables. We de-
note with VR the set of all nodes appearing in any vari-
able in R. The constraint graph GR = (VR, ER) of
R is an undirected graph, where ER = {X−Y }rX,Y ∈R.

Definition 2. Let R be a set of path variables and P
a partition of R. Let VRi denote the set of all nodes
appearing in any variable in the i-th part of P, Pi.
P is called an independent partition if ∀Pi,Pj ∈
P, i 
= j, Vi

⋂ Vj = ∅.

Since the parts of an independent partition do not have
any nodes in common, the configuration of a part does
not directly influence any other part; they do however
have an indirect influence through other nodes of the
graph which, as we will see, is negligible. On the other
hand, path variables of the same part do directly affect
each other (see dependent case above).

The independent partition of a set of path variables
R can be computed as follows: (a) construct the con-
straint graph GR of R and, (b) find the connected
components of GR. It is easy to see that the connected
components of GR are an independent partition of R.

It remains to show how to compute U for given set of
path variables R and set of nodes V . First we sample
S DAGs over V uniformly at random. Then we find
an independent partition P of R. UC is factorized as
UC =

∏
i UCi , where Ci and UCi denote the configura-

tion and the prior distribution of the i-th part Pi of P
respectively. UCi is estimated as SCi/S, where SCi is
the number of sampled DAGs that conform to configu-
ration Ci in Pi. Finally, N̂C = N · UC . Again, we rec-
ommend a Laplace correction. Then, N̂C = N · S·UC+l

S+l·c .
We will refer to this method as FACTl.

5.2 EXPERIMENTAL VALIDATION

The first experiment is to determine how FACTl ap-
proximates FULLl, as the number of nodes |V| in-
creases. We denote with UFACTl

and UFULLl
the esti-

mation of U by the methods FACTl and FULLl.

Setup: The number of nodes is varied between 10 and
35, with a step-size of 1. We used three sets of path
variables: R1 = {r1,2, r3,4}, R2 = {r1,2, r2,3, r4,5, r5,6},
and R3 = {r1,2, r2,3, r3,4, r5,6, r6,7, r7,8}. The number
of independent partitions is 2 and each paritition con-
sists of 1,2 and 3 path beliefs for R1, R2 and R3 respec-
tively. The number of valid configurations c is 16, 256

and 1681 for R1, R2 and R3 respectively. The number
of sampled DAGs S was set to 106, sufficiently large
for FULLl to approximate U well. The Laplace cor-
rection parameter l was set to 0, since no correction is
necessary in this case. We used the KL-divergence to
measure the distance between two probability distribu-
tions, with UFULLl

representing the true distribution.

Results: The results are shown in Figure 1a. As
claimed, for a fixed set of path beliefs, UFACTl

ap-
proaches UFULLl

(which should be close to U in this
experiment, as S is large relative to c) as the number
of nodes increases. Similar results are expected with
more and larger independent partitions.

In the second experiment we show that if S is rela-
tively small compared to c, FACTl provides a better
approximation of U than FULLl. This is important
because sampling a large number of DAGs costs time
and memory, essentially setting an upper limit to S
which, if c is relatively large, will result in a poor ap-
proximation of U by FULLl. To show this, one has
to know the exact distribution U . However, as this is
computationally infeasible for large numbers of nodes,
we ran the experiment only for small |V |.
Setup: The number of nodes is |V| = {4, 5, 6}, and
the number of DAGs is 543, 29281 and 3781503 re-
spectively. Because |V| is small, we used only two path
variables R = {r1,2, r3,4}. For each V we sampled be-
tween 100 and 10000 DAGs, with a step-size of 100.
This was done to simulate the case where no access
to the complete set of DAGs is given. The Laplace
correction constant l was set to 1. For each |V| and S
we measured the KL-divergence between UFULLl

and
U , as well as between UFACTl

and U . The experiment
was repeated 1000 times and averages are reported.

Results: The results are shown in Figures 1b to 1d.
When S is small, FACTl provides a better approxima-
tion of U than FULLl. The reason this works is that,
if R is partitioned into multiple sets, each containing
a relatively small number of path variables, their dis-
tributions are easier to approximate.

6 COMPUTING THE J.P.D. J

In this section, we show how to compute the joint
probability distribution J . We denote with πk,j the
probability that rk takes value j ∈ {⇒, ⇐, ⇔, �}:
πk,j = P (rk = j). The unknown quantities are JC for
each configuration C in J . Let Ck,j = {C, s.t. rk = j},
that is, the set of configurations where variable rk ob-
tains value j. For each k and j we obtain the following
constraints:

πk,j =
∑

C∈Ck,j

JC (3)

106



10 15 20 25 30 35
0

1

2

3

4x 10−3

Number of nodes |V|

K
L−

D
iv

er
ge

nc
e

KL−Divergence of FULL0 and FACT0, S = 106

K1
K2
K3

(a)

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

Approximation quality, |V| = 4

Number of samples S

A
ve

ra
ge

 K
L−

D
iv

er
ge

nc
e

FULL1
FACT1

(b)

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

Approximation quality, |V| = 5

Number of samples S

A
ve

ra
ge

 K
L−

D
iv

er
ge

nc
e

FULL1
FACT1

(c)

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

Approximation quality, |V| = 6

Number of samples S

A
ve

ra
ge

 K
L−

D
iv

er
ge

nc
e

FULL1
FACT1

(d)

Figure 1: (a) KL-divergence between FULL0 and FACT0 with S = 106 for different sets of path variables. The
distance between FACT0 and the true distribution, approximated by FACT0, decreases as the number of nodes
increases. (b,c,d) KL-divergence between the true distribution and the approximation methods, as the number
of samples S increases. For small S FACT1 provides a better approximation of the true distribution than FULL1.

In other words, the marginals of the j.p.d. should equal
our input path beliefs. Recall that path beliefs are
not independent in general. Thus, it is important to
consider the following constraints, stemming from the
path semantics of the variables R:

JC = 0, when C is invalid (4)

A configuration is invalid if it cannot be satisfied by
any DAG over V , for example, it contains directed cy-
cles. The algorithm to detect invalid configurations
is discussed in Section 6.5. To complete the problem
specification we impose that:

∑

C

JC = 1 and JC ≥ 0 (5)

If constraints in Eqs. 3, 4, 5 can be satisfied then a
j.p.d. adhering to the probability axioms can be found
such that the prior marginal beliefs hold. In this case,
by definition, K is coherent, otherwise it is incoherent.

6.1 THE CASE OF COHERENT BELIEFS

The system of equations contains 4n constraints from
Eq. 3, 1 constraint from Eq. 5 and c = O(4n) un-
knowns. For most typical problems, 4n + 1 � c and
so the system may have infinite solutions. We argue
that one should choose a solution j.p.d. J as close
to the uninformative one as possible. Any other dis-
tribution may introduce bias towards certain configu-
rations, even if the prior knowledge does not suggest
preference over those configurations. In other words,
if the uninformative j.p.d. U is a coherent extension of
the path beliefs, there is no reason to prefer any other
solution over it. A natural, information-theoretic ap-
proach is to select a j.p.d. J that minimizes the KL-
divergence from U . The problem is formulated as:

min
J

DKL(J ‖ U) =
c∑

k=1

Jk · ln Jk

Uk
, s.t. Eqs. 3, 5 (6)

This optimization problem can be solved accurately
and efficiently with the Iterative Scaling procedure
[Darroch and Ratcliff, 1972, Csiszar, 1975], a general-
ization of the Iterative Proportional Fitting Procedure
(IPFP) [Deming and Stephan, 1940].

6.2 DEALING WITH INCOHERENT
BELIEFS

In the case of incoherent beliefs there is no j.p.d. that
can equal the marginal input beliefs. Instead of re-
questing coherent beliefs or ignoring the incoherency,
we seek for joints with marginals as close as possible
to the user’s input beliefs. To solve this problem, we
implemented the method proposed in [Vomlel, 2004],
called GEMA. GEMA is an extension of IPFP which
converges even with incoherent beliefs. In order to
solve the problem it allows the marginals to change by
a small amount, which is measured with the so-called
I-aggregate criteria. Although GEMA tends to mini-
mize this criteria, no guarantee about its convergence
to a global or local minima is provided. We conducted
some anecdotal experiments and GEMA seems to pro-
duce reasonable results.

Table 1b contains the j.p.d. J stemming from K of
Table 1a(Top) computed by GEMA. For comparison
with the input beliefs K, Table 1a(Bottom) contains
the marginal beliefs K′ implied by GEMA. The val-
ues in Table 1a(Top) and Table 1a(Bottom) are close,
with the latter one representing coherent beliefs. Fig-
ure 2 shows two DAGs with different configurations
obtaining different prior scores.

6.3 FACTORING THE J.P.D. J

The cost of solving Eq. 6 is dominated by the number
of variables c, which can be as high as 4n. In practice,
the optimization problem can not be solved efficiently
(or at all, due to memory limitations) with more than
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(a) (b)

Figure 2: We assume the path beliefs K in Table 1a and the corresponding J in Table 1b. (a) The configuration
C1 = {X ⇒ Y, Y ⇒ Z, X ⇒ Z} holds in the graph. For p1 = 0.6443 we obtain the score Sc(G1|J) =
log(0.6443) − log(2800) = −8.3769. (b) The configuration C49 = {X � Y, Y ⇒ Z, X ⇒ Z} holds in the graph.
For p49 = 4.55 · 10−4 we obtain the score Sc(G2|J) = log(4.55 · 10−4) − log(1045) = −14.6471. As expected, G1

has a higher prior than G2 since X ⇒ Y is given a higher probability than X � Y in Table 1a.

10-12 path beliefs. It is obvious that, even in the best
case, one would need at least Ω(c) time and memory,
if the output of the procedure is the full j.p.d. over c.

One natural way to improve upon this is to factorize J .
Unfortunately, in general, it seems that it is not pos-
sible without loss of information. However, as stated
in [Vomlel, 2004], if the uninformative joint distribu-
tion U factorizes with respect to some sets of variables,
then the result of IPFP also factorizes with respect to
the same sets of variables, that is, if ∃{Ri}k

i=1, Ri ⊆ R
s.t. U =

∏
Ri

URi then J =
∏

Ri
JRi . Thus, if we use

FACTl instead of FULLl to compute U , we can usu-
ally compute J significantly faster and for larger sets
of path beliefs, that is, instead of a total limit of 10-
12 path beliefs, each part of the independent partition
used in FACTl has a limit of 10-12 path beliefs.

6.4 ADJUSTING MISLEADING PRIORS

In practice, it may be the case that some priors are
misleading, that is, the correct value of a path variable
r has a lower probability than any other value of r. It is
not always possible to detect those cases; however, it is
possible to do so when the path beliefs are dependent,
and the majority of them gives preference to the cor-
rect relation. We illustrate this with a simple example.
Assume that the correct relation between two variables
X and Y is X ⇒ Y , and that an expert suggests that
P (X ⇒ Y ) = 0.1. Now assume that we have path be-
liefs that P (X ⇒ V ) = P (V ⇒ Y ) = 0.9. They are in-
coherent: by the probability axioms, P (X ⇒ Y ) ≥ 0.8
follows. Our method will implicitly consider this and
will increase P (X ⇒ Y ) while reducing P (X ⇒ V )
and P (V ⇒ Y ). The effect will be even higher if
more path beliefs suggest that P (X ⇒ Y ) is high.
For example, if P (X ⇒ Y ) = 0.1 and we have 4 such
pairs of path beliefs P (X ⇒ Vi) = P (Vi ⇒ Y ) = 0.9,
our method will assign P (X ⇒ Y ) = 0.632 and
P (X ⇒ Vi) = P (Vi ⇒ Y ) = 0.814 ∀i. We see that,
although P (X ⇒ Y ) was low initially, it was given a
high probability by our method because the other be-
liefs supported X ⇒ Y . Thus, considering dependent
beliefs and dealing with incoherence may identify and
adjust misleading beliefs.

6.5 INVALID CONFIGURATIONS

Let C be a configuration of path variables R. C is
invalid if ∃rX,Y ∈ R, s.t.: (a) rX,Y = “ ⇒ ” and
rX,Y = “ ⇐ ” is implied by C (acyclicity), or (b)
rX,Y = “ ⇔ ” and rX,Y ∈ {⇒, ⇐} is implied by C
(definition of “ ⇔ ”), or (c) rX,Y = “ � ” and rX,Y ∈
{⇒, ⇐, ⇔} is implied by C (definition of “ � ”).

These conditions are sufficient to identify invalid con-
figurations, but not necessary. The simplest example
is a dataset with two variables X and Y : the config-
uration rX,Y = “ ⇔ ” is invalid as there is no other
variable to serve as a common ancestor. Yet, the above
cases will not identify it as such. However, when the
number of variables in the data is large relative to the
number of path variables (specifically if |V| ≥ |VR|+n
holds)1, these conditions are also necessary. From now
on we assume that the number of nodes in V is suffi-
ciently large.

7 SEARCH AND OPERATORS

In this paper we will use the Greedy Search method,
searching in the space of DAGs. The method starts
from a given initial DAG G0 (usually chosen to be
the empty DAG) and performs a hill-climbing search,
considering all DAGs resulting by a edge-insertion,
edge-removal or edge-reversal operation.

7.1 EXTENDING GREEDY SEARCH

Greedy Search can be trivially extended to addition-
ally consider the prior score Sc(G|J) of a DAG G. To
do this, it first has to determine the configuration CG

of G, which can be computed in time O(|V | · n) given
the transitive closure of G (stored as an adjacency ma-
trix). The transitive closure of a DAG can be com-
puted in time O(|V |2 + |V | · |E|); run a DFS for each
node and keep track of all visited nodes. There are
faster and more complex algorithms [Simon, 1988], but
the trivial method is usually faster for smaller graphs
(we used the trivial method in our implementation).

1There are cases where a smaller number of variables is
sufficient, but we did not further investigate it.
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A problem is that, at each step of the search, the tran-
sitive closure has to be computed for all DAGs result-
ing by one of the search operators, whose number is
Θ(|V |2). The total cost is then O(|V |4 + |V |3 · |E| +
|V |3 ·n), which is a significant computational overhead.
A straight-forward optimization is to dynamically up-
date the closure after each edge insertion or removal.
Various methods exist [Demetrescu and Italiano, 2008]
trading off the time it takes to update the closure and
querying for reachability. Assuming unit query time, a
O(|V |2) update time is optimal [Demetrescu and Ital-
iano, 2008]. Using this method, the time-complexity
can be reduced to O(|V |4 + |V |3 · n).

7.2 SWAP-EQUIVALENT OPERATOR

To take advantage of the extra information provided
by the path beliefs, one may have to use additional
search-operators. That is because the standard opera-
tors make only small local improvements, without con-
sidering the global information provided by the path
beliefs. Thus, an operator is desirable which is able to
simultaneously make multiple adjustments in order to
also change the configuration of the path variables.

We propose the swap-equivalent-operator. The
idea is simple: at each step, after the application of
a standard operator, we allow the algorithm to swap
to a Markov equivalent DAG with the highest path be-
lief score Sc(G|J) increase. If the data score Sc(G|D)
has the score-equivalence property (e.g. BDe), the re-
sulting DAG has the same data score but may have a
higher prior score. This DAG can be computed with a
simple modification of an algorithm presented in [Bor-
boudakis and Tsamardinos, 2012]. Due to space limi-
tations, the algorithm will not be described here.

8 EXPERIMENTAL RESULTS

Employing Causal Knowledge. We consider the
graph X → Y → Z. We use the path belief P (X ⇒
Z) = 0.9 and distribute the remaining 0.1 mass of
probability to the remaining values of rXZ propor-
tional to the values that correspond to a uniform prior.
We repeat the following experiment 10000 times: (a)
we randomly select the number of states for each vari-
able to be either 3 or 4, (b) we sample the cpts for
each variable from the gamma distribution Γ(k, θ),
with shape parameter k set to 0.5 and scale param-
eter θ set to 1, (c) we sample a dataset of size 200,
(d) we increase the samples of the dataset provided
to the scoring method from 10 to 200 with step size
of 10, (e) we identify the highest scoring network out
of all 25 possible DAGs using informative and unin-
formative priors and the BDeu score with Equivalent
Sample Size (ESS) set to 1.

Results: Figure 3a plots the percentage of the time
the PDAG X − Y − Z of the true network was found
exactly, with and without informative priors. First no-
tice, that when the true PDAG is found, the edges are
also always oriented correctly since the true network
has a higher prior than any other Markov-equivalent
graph. Perhaps more surprising though, notice that
the informative priors also improve the learning of the
skeleton. The belief X ⇒ Z tends to add a path from
X to Z. The associations X −Y and Y −Z are always
higher than or equal to the association between X −Z
[Cover and Thomas, 2006]. Thus, it is the correct path
X − Y − Z that tends to be induced, rather than any
other network with a path X ⇒ Z.

Employing Associative Knowledge. We run a
similar proof-of-concept experiment where the true
network is a single collider X → Y ← Z. We use the
same settings as before for three cases: correct associa-
tive priors P (X � Z) = 0.9, uniform priors, and incor-
rect associative priors P (X associated with Z) = 0.9.

Results: The results are shown in Figure 3b. As ex-
pected, correct prior beliefs clearly improve the chances
of identifying the true PDAG; the effect is exactly the
opposite when misleading, incorrect beliefs are provided
to the algorithm. Of course, asymptotically any non-
zero priors play no role.

Learning Larger Networks. To generate path be-
liefs we use three parameters: the number of indepen-
dent components nc, the number of nodes appearing in
an independent component cs, and whether we want
them to be coherent or incoherent. Path variables
were generated as follows: for given cs and nc, we ran-
domly pick nc non-overlapping sets, each containing cs
nodes of the network, and consider all possible pairs
between them as path variables, resulting in a total of
nc·cs·(cs−1)/2 path variables. This is done in order to
be able to consider large sets of path variables. Then,
we randomly assign a probability p ∈ [0.5, 0.99] to the
true value of each path variable, and split the remain-
ing 1 − p mass probability in an uninformative way to
the remaining values. This process is repeated for each
independent component until it is coherent or incoher-
ent, depending on the input parameter. To estimate
U we sampled S = 106 DAGs and l was set to the ma-
chine epsilon. We used the ALARM [Beinlich et al.,
1989] and the INSURANCE [Binder et al., 1997] net-
works to evaluate our methods. We employed Greedy
Search with the BDeu metric and ESS=1. We run
the method starting from the empty graph with unin-
formative and informative priors, as well as with and
without the swap-equivalent-operator in the case of in-
formative priors. Finally, we compute the Structural
Hamming Distance [Tsamardinos et al., 2006] from the
PDAG of the true network. We used the PDAG to

109



0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
True DAG: X−>Y−>Z

Sample Size

P
er

ce
nt

ag
e 

of
 e

xa
ct

 P
D

A
G

 le
ar

ne
d

(X causes Z Priors)
Uninformative Priors

(a)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
True DAG: X−>Y<−Z

Sample Size

P
er

ce
nt

ag
e 

of
 e

xa
ct

 P
D

A
G

 le
ar

ne
d

(X not associated with Z) Priors
Uninformative Priors
(X associated with Z) Priors

(b)

100 200 500 1K 2K 5K 10K
30

40

50

60

70

80

90

100
alarm network, incoherent, nc = 3, cs = 4

Sample Size

A
ve

ra
ge

 S
H

D
 b

et
w

ee
n 

P
D

A
G

s Uninformative Priors
Informative Priors, Swap Off
Informative Priors, Swap On

(c)

100 200 500 1K 2K 5K 10K
20

30

40

50

60

70

80

90
insurance network, incoherent, nc = 3, cs = 4

Sample Size

A
ve

ra
ge

 S
H

D
 b

et
w

ee
n 

P
D

A
G

s Uninformative Priors
Informative Priors, Swap Off
Informative Priors, Swap On

(d)

Figure 3: (a) Learning the orientations and the skeleton is facilitated by causal prior knowledge. (b) Learning
the graph is facilitated by correct associative prior knowledge and hindered by incorrect priors. (c-d) Learning
the ALARM and INSURANCE networks. The average Structural Hamming Distance (SHD) is shown with
increasing sample size, for component size (cs) 4 and number of components (nc) set to 3, and incoherent beliefs.
Using path beliefs, especially combined with the swap-equivalent operator, produces better networks on average.

avoid introducing an unfair advantage for our meth-
ods; all methods may find Markov equivalent DAGs,
but the ones using path beliefs may find more correctly
oriented edges. The sample size was varied within
{100, 200, 500, 1000, 2000, 5000, 10000}. The path be-
lief parameters were varied within {1, 2, 3, 4, 5} and for
nc and cs respectively, for both the coherent and inco-
herent cases. The experiment was repeated 100 times,
for randomly sampled datasets and path beliefs, with
all combinations of input parameters.

Results: Due to space limitations we report only the
results for incoherent path beliefs, with nc = 3 and
sc = 4 (18 beliefs). The results were similar for both,
coherent and incoherent priors. Also, with smaller
(larger) nc and sc, the difference between the uninfor-
mative and informative methods was smaller (larger).

The results are shown in Figures 3c and 3d. In all
cases, the SHD is smaller with the informative priors
than with uninformative priors. For the ALARM net-
work, notice that the SHD difference between the unin-
formative method and the informative method without
the operator decreases as sample size increases. The
reason is that, as sample size increases, the data score
becomes more important and the prior score tends to
be ignored; it usually is considered only close to local
maxima, where only small improvements in the data
score can be made. If however the swap-equivalent op-
erator is used, this does not happen, as it tries to main-
tain a high prior score during the whole search. Fi-
nally, notice the counter-intuitive behavior of increas-
ing SHD with increasing sample size in Figure 3d for
10K samples. Anecdotal experiments suggest that the
value of the ESS parameter is the reason for that be-
havior. However, when the swap-equivalent operator
is used, this phenomenon is almost nonexistent.

9 CONCLUSIONS

We present a method for computing informative pri-
ors given a set of causal and associative beliefs on
pairs of variables, as well as a novel search-operator
to take advantage of them. The priors can then be
employed by any search-and-score learning algorithm.
The method, for the first time, addresses the issues of
incoherent and possibly dependent priors. Providing
correct priors about pairwise causal or associative re-
lations improves learning both in terms of identifying
the orientation of the edges (for causal priors), but also
in terms of identifying the skeleton of the network.

There are numerous issues to still address regarding
both the method and the general problem. The al-
gorithm has exponential worst-case time complexity,
thus more efficient algorithms are desirable. Closed-
form solutions for computing the number of graphs
given path constraints are also desirable. Finally, in-
cluding other types of prior knowledge, as well as in-
corporating the strength of the causal effects or associ-
ations and other prior knowledge characteristics is an
interesting future direction to pursue.
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Abstract

We give a new consistent scoring function for
structure learning of Bayesian networks. In
contrast to traditional approaches to score-
based structure learning, such as BDeu or
MDL, the complexity penalty that we pro-
pose is data-dependent and is given by the
probability that a conditional independence
test correctly shows that an edge cannot ex-
ist. What really distinguishes this new scor-
ing function from earlier work is that it has
the property of becoming computationally
easier to maximize as the amount of data in-
creases. We prove a polynomial sample com-
plexity result, showing that maximizing this
score is guaranteed to correctly learn a struc-
ture with no false edges and a distribution
close to the generating distribution, when-
ever there exists a Bayesian network which is
a perfect map for the data generating distri-
bution. Although the new score can be used
with any search algorithm, we give empirical
results showing that it is particularly effec-
tive when used together with a linear pro-
gramming relaxation approach to Bayesian
network structure learning.

1 Introduction

We consider a fundamental problem in statistics and
machine learning: how can one automatically extract
structure from data? Mathematically this problem can
be formalized as that of learning the structure of a
Bayesian network with discrete variables. Bayesian
networks refer to a compact factorization of a mul-
tivariate probability distribution, one-to-one with an

∗Current Affiliation: Search & Algorithms, Shutter-
stock Inc., New York

acyclic graph structure, in which the conditional prob-
ability distribution of each random variable depends
only on the values of its parent variables. One ap-
plication of Bayesian network structure learning is for
the discovery of protein regulatory networks from gene
expression or flow cytometry data (Sachs et al. , 2005).

Existing approaches to structure learning follow two
basic methodologies: they either search over struc-
tures that maximize the likelihood of the observed data
(score-based methods), or they test for conditional in-
dependencies and use these to constrain the space of
possible structures. The former approach leads to ex-
tremely difficult combinatorial optimization problems,
as the space of all possible Bayesian networks is expo-
nentially large, and no efficient algorithms are known
for maximizing the scores. The latter approach gives
fast algorithms but often leads to poor structure re-
covery because the outcomes of the independence tests
can be inconsistent, due to sample size problems and
violations of assumptions.

We formulate a new objective function for structure
learning from complete data which obtains the best of
both worlds: it is a score-based method, based pre-
dominantly on the likelihood, but it also makes use of
conditional independence information. In particular,
the new objective has a “sparsity boost” corresponding
to the log-probability that a conditional independence
test correctly shows that an edge cannot exist. We
show empirically that this new objective substantially
outperforms the previous state-of-the-art methods for
structure learning. In particular, on synthetic distri-
butions we find that it learns the true network struc-
ture with less than half the data and one tenth the
computation.

The contributions of this paper are the introduction
of this new scoring function, a proof of its consistency
(we show polynomial sample complexity), and a care-
fully designed importance sampling algorithm for ef-
ficiently computing the confidence scores used in the
objective. For both the proof of sample complexity and
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the importance sampling algorithm, we develop several
new results in information theory, constructing precise
mappings between a parametrization of distributions
on two variables and mutual information, and charac-
terizing the rate of convergence of various quantities
relating to mutual information. We expect that many
of the techniques that we developed will be broadly
useful beyond Bayesian network structure learning.

2 Background

This paper considers the problem of learning Bayesian
network structure from complete data (no hid-
den variables or unobserved factors). Let X =
(X1, X2, . . . , Xn) be a collection of random variables.
For reasons that we explain in the next section, our
results are restricted to the case when the variables
Xi are binary, i.e. Val(Xi) = {0, 1}. Formally, a
Bayesian network over X is specified by a pair (G,P ),
where G = (V,E) is a directed acyclic graph (DAG)
satisfying the following conditions: the nodes V cor-
respond to the variables Xi ∈ X and E is such that
every variable is conditionally independent of its non-
descendants given its parents. The joint distribution
can then be shown to factorize as P (x1, . . . , xn) =∏
i∈V P (Xi = xi | XPa(i) = xPa(i)), where Pa(i) de-

notes the parent set of variable Xi in the DAG G, and
xPa(i) refers to an assignment to the parents.

A Bayesian network G is called an independence map
(I-map) for a distribution P if all the (conditional)
independence relationships implied by G are present
in P . Going one step further, G is called a perfect
map for P if it is an independence map and the con-
ditional independence relationships implied by G are
the only ones present in P . By ωN (or in some con-
texts, YN ) we denote a sequence of observations of the
random variables X , generated i.i.d. from an unknown
Bayesian network (G,P ), where G is a perfect map
for P . The problem that we study is that of learn-
ing the Bayesian network structure and distribution
(G,P ) from the samples ωN .

The simplest case of learning BN structure is when we
have two random variables, which we will call XA and
XB . There are only two nonequivalent BN structures:

G0 : XA XB (“disconnected”),

G1 : XA −→ XB (“connected”).

The structure learning problem in this case is to re-
turn, based on ωN , a decision XA ⊥⊥ XB (G0) or
XA 6⊥⊥ XB (G1). In other words, in this case, the
structure learning problem is strictly equivalent to one
case of hypothesis testing, a well-studied and classic
problem in statistics, specifically testing the hypothe-
sis of whether XA and XB are independent.

In the case of three or more variables, the equivalence
no longer holds in any strict sense. Constraint-based
approaches use the results of conditional independence
tests to infer the model structure. These methods solve
the structure learning problem sequentially by first
learning the undirected skeleton of the graph, Skel(G),
and then orienting the edges to obtain a DAG. Assum-
ing that G is a perfect map for P , if A is conditionally
independent of B then we can conclude that neither
A→ B nor B → A can be in G. It can be shown that
either A’s parents or B’s parents will be a separat-
ing set proving their conditional independence (there
may be others). Thus, if we make the key assump-
tion that each variable has at most a fixed number of
parents d, then this can yield a polynomial time al-
gorithm for structure learning (Spirtes et al. , 2001;
Pearl & Verma, 1991). However, this approach has
a number of drawbacks: difficulty setting thresholds,
propagation of errors, and inconsistencies.

Let p = p(ωN , A,B | s) denote the empirical distribu-
tion of A and B conditioned on an assignment S = s
for S ⊆ V \{A,B}, and marginalized over all of the
other variables. The mutual information statistic,

MI(p) =
∑

a∈Val(A), b∈Val(B)

p(a, b|s) log

(
p(a, b|s)

p(a|s)p(b|s)

)

is a measure of the conditional independence of A and
B conditioned on S = s. Given infinite data, two
variables are independent if and only if their mutual
information is zero. However, with finite data, mutual
information is biased away from zero (Paninski, 2003).
As a result, it can be very difficult to distinguish be-
tween independence and dependence.

An alternative approach is to construct a scoring func-
tion which assigns a value to every possible structure,
and then to find the structure which maximizes the
score (Lam & Bacchus, 1994; Heckerman et al. , 1995).
Perhaps the most popular score is the BIC (Bayesian
Information Criterion) score:

Sψ1
(ωN , G) = LL(ωN |G)− ψ1(N) · |G|. (1)

Here, LL(ωN |G) is the log-likelihood of the data
given G, |G| is the number of parameters of G, and
ψ1(N) is a weighting function with the property that
ψ1(N) → ∞ and ψ1(N)/N → 0 as N → ∞. When
ψ1(N) := logN

2 , the score, now called MDL, can be
theoretically justified in terms of Bayesian probabil-
ity. Intuitively, we can explain the BIC/MDL score
as a log-likelihood regularized by a complexity penalty
to keep fully connected models (with the most pa-
rameters) from always winning. Finding the struc-
ture which maximizes the score is known to be NP-
hard (Chickering, 1996; Chickering et al. , 2004; Das-
gupta, 1999). Heuristic algorithms have been proposed
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for maximizing this score, such as greedy hill-climbing
(Chickering, 2002; Friedman et al. , 1999) and, more
recently, by formulating the structure learning prob-
lem as an integer linear program and solving using
branch-and-cut (Cussens, 2011; Jaakkola et al. , 2010).

The running time of solving the integer linear pro-
grams dramatically increases as the amount of data
used for learning increases (see, e.g., Fig 4). This is
counter-intuitive: more data should make the learning
problem easier, not harder. The core problem is that
as the amount of data increases, the likelihood term
grows in magnitude whereas the complexity penalty
shrinks. This is necessary to prove that these scoring
functions are consistent, i.e. that in the limit of infi-
nite data the structure which maximizes the score in
fact is the true structure. As a consequence, however,
the score becomes very flat near the optimum with a
large number of local maxima, making the optimiza-
tion problem extremely difficult to solve.

3 SparsityBoost: A New Score for
Structure Learning

We design a new scoring function for structure learning
that is both consistent and easy to solve regardless of
the amount of data that is available for learning. The
key property that we want our new scoring function
to have is that as the amount of data increases, opti-
mization becomes easier, not harder. When little data
is available, it should reduce to the existing scoring
functions.

Our approach is to add, to the BIC score, new terms
derived from statistical independence tests. Before in-
troducing the new score we provide some background
on hypothesis testing. Let P denote the simplex of
(joint) probability distributions over a pair of random
variables, and let P0 denote the subset of product dis-
tributions: P0 = {q ∈ P | MI(q) = 0}. For q /∈ P0,
the magnitude of MI(q) provides a measure of how far
q is from the set of product distributions. For η > 0, we
define Pη := {q | MI(q) ≥ η}. The testing procedure
has ωN as input, null hypothesis H0 (independence)
for p ∈ P0, and alternative hypothesis H1 for p ∈ Pη.
The Type I error αN is defined as the probability of
the test rejecting a true H0, the Type II error βN is
defined as the probability of the test falsely accepting
H0, and the power is defined as 1− βN .

The theory of Neyman-Pearson hypothesis testing for
composite hypotheses tells us how to construct a hy-
pothesis test of maximal power for any αN (Hoeffd-
ing, 1965; Dembo & Zeitouni, 2009). In our set-
ting, the test corresponds to computing MI(ωN ) :=
MI(p(ωN )) and deciding on H1 if the test statistic ex-

ceeds a threshold γ. Let βN (γ) denote the Type II
error of the Neyman-Pearson test with threshold γ.

We propose using in our score the Type II error of the
test with threshold MI(ωN ),

βp
η

N (MI(ωN )) := PrYN∼pη {MI(YN ) ≤MI(ωN )} ,

where pη is the M -projection of p(ωN ) onto Pη, that is,
with H(·‖·) denoting the Kullback-Leibler divergence,

pη := argmin
p∈Pη

H(p(ωN )‖p). (2)

An intuitive explanation for the Type II error is that
βp

η

N (γ) is the probability of obtaining a test statis-
tic MI(YN ), YN ∼ pη, that is more extreme, in the
wrong direction of independence, than the observed
test statistic γ. On the one hand, if ωN ∼ p0 ∈ P0,
then with high probability the power of the test with
threshold MI(ωN ) approaches 1 and βp

η

N (MI(ωN ))
approaches 0, exponentially fast as N → ∞; on the
other hand, if ωN ∼ p1 ∈ Pε, where ε > η, then
with high probability the power approaches 0 and
βp

η

N (MI(ωN )) approaches 1, as N →∞.

Now we can state our new score for structure learning
and explain its remaining features:

Sη,ψ1,ψ2
(ωN , G) = LL(ωN |G)− ψ1(N) · |G|+ ψ2(N) ·

∑

(A,B)/∈G
max

S∈SA,B(G)
min

s∈val(S)
− ln

[
βp

η

N (MI(p(ωN , A,B|s)))
]

The first line is the BIC score. In the second line
ψ2(N) is a weighting function such that ψ2(N)/N → 0
as N → ∞: ψ2(N) := 1 in the experiments. Each
term in the sum is called a sparsity boost. The sum
contains one sparsity boost for each nonexistent edge
(A,B) /∈ G. If A ⊥⊥ B|(S = s), then the sparsity boost
is Θ(N) as N → ∞, and if A 6⊥⊥ B|(S = s), then it
is O(1), and further, in that case the sparsity boost
becomes insignificant compared to the LL term (since
ψ2(N)/N → 0).

Second, the sets SA,B(G), called separating sets, are
certain subsets of the power set of V − {A,B}, which
provide certificates for statistical recovery of G. More
precisely, we have (A,B) /∈ G, if and only if there is a
witness S ∈ SA,B(G) such that A ⊥⊥ B|S. The most
common ways of defining SA,B(G) are as follows:

SA,B(G) = {S ⊂ V \{A,B} | |S| ≤ d}, (3)

SA,B(G) = {PaG(A)\B, PaG(B)\A}. (4)

The family of assignments (A,B,G) 7→ SA,B(G) for
all (A,B) ranging over distinct pairs of vertices and G
over some family G of DAGs, constitutes a collection
of separating sets, denoted by S.
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In order for A ⊥⊥ B|S to hold, we must have A ⊥⊥ B|s,
for every joint assignment s ∈ Val(S). This is the
reason for taking the minimum over s ∈ Val(S) of
the possible sparsity boosts. The existence of just one
S ∈ SA,B(G) such that A ⊥⊥ B|S suffices to rule out
(A,B) as an edge in G. This is the reason for taking
the maximum over S ∈ SA,B(G). The sparsity boost is
O(1) for an (A,B) ∈ G, and Θ(N) for an (A,B) /∈ G.

It remains to explain how to compute βp
η

N (γ) in the im-
plementation of the score Sη,ψ1,ψ2

. According to the
definition (2), pη is data-dependent, and this makes it

impractical to compute βp
η

N (MI(ωN )) quickly enough
for use in our algorithm. We make an approximation
by fixing pη to be a single“reference”distribution, with
uniform marginals and satisfying MI(pη) = η. In the
case when Val(Xi) = {0, 1}, there are two such distri-
butions. Namely, let p0 denote the uniform distribu-
tion, and let

p0(t) =




1
4 + t 1

4 − t
1
4 − t 1

4 + t


 for all t ∈

(
−1

4
,

1

4

)
. (5)

Clearly, p0(t) has uniform marginals. Consider the
function MI(p0(t)) for t ∈

(
0, 14
)
. On this inter-

val MI(p0(t)) is positive, increasing, and has range(
0,MI

(
p0
(
1
4

)))
. Thus for each η in the range, there is

a unique parameter value t+η such that MI(p0(t+η )) =
η. By symmetry, we also have MI(p0(−t+η ))) = η; fix

pη := p0(t+η ). (6)

We compute t+η by a binary search in the interval(
0, 14
)
; by (5) and (6) this suffices to compute pη, and

has to be done only once during the algorithm’s setup.

Having computed pη, we can compute βp
η

N (γ) for many
values of N, γ, and store them in a table. During the
learning phase, we evaluate βp

η

N (MI(ωN )) by interpo-
lation. We explain more details in Sec. 5.

Related work. Our new score is similar to other “hy-
brid” algorithms that use both conditional indepen-
dence tests and score-based search for structure learn-
ing, notably Fast 2010’s Greedy Relaxation algorithm
(Relax) and Tsamardinos et al. 2006’s Max-Min Hill-
Climbing (MMHC) algorithm. The MMHC algorithm
has two stages, first using independence tests to con-
struct a skeleton of the Bayesian network, and then
performing a greedy search over orientations of the
edges using the BDeu score. The Relax algorithm
starts by performing conditional independence tests to
learn constraints, followed by edge orientation to pro-
duce an initial model. After the first model has been
identified, Relax uses a local greedy search over pos-
sible relaxations of the constraints, at each step choos-
ing the single constraint which, if relaxed, leads to the

largest improvement in the score. Both of these al-
gorithms separate the constraint- and score-based ap-
proaches into two distinct steps, in contrast to our
approach which directly incorporates the conditional
independence tests as a term in the score itself.

The only other work that we are aware of that has
studied the incorporation of reliability of independence
tests in score-based structure search is de Campos
(2006). Their objective function is very different from
ours, comparing the empirical mutual information to
its expected value assuming independence (using the
χ2 distribution). In contrast to de Campos’s MIT
score, the SparsityBoost score is consistent, provably
able to recover the true structure.

Importance of using Type II error. To our knowl-
edge, all previous approaches for Bayesian network
structure learning use the Type I error αN in assessing
the reliability of an independence test, which is asymp-
totically given by the χ2 distribution. A relatively high
threshold needs to be specified in order to prevent the
false rejection of independence and to correct for multi-
ple hypothesis testing. One of our key contributions is
to show how to use βN , the Type II error. Minimizing
the Type II error is essential because we want to err on
the side of caution, only having a large sparsity boost
if we are sure that the corresponding edge does not ex-
ist. Type I errors, on the other hand, can be corrected
by the part of the objective corresponding to the BIC
score. If we had instead used the Type I error prob-
ability within our score, it would have corresponded
to a dependence boost rather than independence, and
would be fooled if we failed to find a good separating
set (e.g., for computational reasons).

4 Polynomial Sample Complexity of
the SparsityBoost Score

4.1 Statement of Main Results

In this section, we prove the consistency of the Spar-
sityBoost score. In order to state our main results, we
need to define certain additional parameters. First,
there is a (small) positive integer, d, which bounds the
in-degree of all vertices in G. The family of BNs on n
vertices satisfying this condition is called Gd.
Second, we formalize the notion of the
minimal edge strength ε in G. Define

SA,B(Gd) :=
⋃

G∈Gd
SA,B(G).

Recall that the witness sets in S provide certificates
for statistical recovery of G. We quantify the edge
strength of (A,B) ∈ G with respect to SA,B(Gd), i.e.
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the amount of dependence even after conditioning, by

ε((A,B), SA,B(Gd)) := min
S∈SA,B(Gd)

max
s∈Val(S)

MI(p(A,B|s))

Then, let ε = ε(G) = min(A,B)∈G ε((A,B), SA,B(Gd)).
Next, we need the notion of an error tolerance ζ >
0, which in turn follows from a notion of a G′ ∈ Gd
being ζ-far from the true network (G,P ). For any
G′ ∈ Gd, define the probability distribution pG′,P over
X to be the distribution which factors according to G′

and minimizes the KL-divergence from P , i.e.

pG′,P := argmin
Q :G′ is an I-map for Q

H(P‖Q).

We call H(P‖pG′,P ) the divergence of P from
G′, and if H(P‖pG′,P ) > ζ we say that G′ is ζ-far
from (G,P ). In Theorem 1(a) we set an error tol-
erance of ζ, which is to say that we specify that our
learning algorithm should rule out all G′ which are
ζ-far from (G,P ).

Finally, we need m, the (maximum) inverse probability
of an assignment to a separating set. More precisely,
for any A,B ∈ V 2, A 6= B, and S ∈ SA,B(Gd), let
mP (S) := maxs∈Val(S)[P (S = s)]−1. Then let

m = mP (G,Gd,S) = max
(A,B)∈G

max
S∈SA,B(Gd)

mP (S). (7)

For all (A,B) /∈ G, there will be at least one witness
S ∈ SA,B(G) such that A ⊥⊥ B|S. Let

ŜP ((A,B), G) := argmin
S∈SA,B(G) : A⊥⊥B|S

mP (S).

Finally, let

m̂P (G,S) := max
(A,B)/∈G

mP (ŜP ((A,B), G)). (8)

Theorem 1 Suppose that (G,P ) ∈ Gd is a Bayesian
network of n binary random variables and G is a per-
fect map for P . Set SA,B(G) = {S ⊂ V \{A,B} | |S| ≤
d}. Assume that (G,P ) ∈ Gd has minimal edge
strength ε > 0, and minimal assignment probabilities
m, as defined in (7) and m̂P (G,S), as defined in (8).
Fix η = λε for λ ∈ (0, 1), an error probability δ > 0,
and a tolerance ζ > 0. Let Sη denote our score Sη,ψ1,ψ2

for ψ1(N) := κ log(N) and ψ2(N) = 1. Let ωN be a
sequence of observations sampled i.i.d. from P .

(a) There is a function N(ε,m, n; δ, ζ; η, κ) in

Õ

(
max

( log(n)m

ε2
,
n2

ζ2

)
log

1

δ

)

as ε, ζ, δ → 0+, n,m→∞, such that for all N >
N(ε,m, n; δ, ζ; η, κ), with probability 1−δ, we have

Sη(G,ωN ) > Sη(G′, ωN ),

for all G′ ∈ Gd which are ζ-far from G.

(b) Then there is a function N(ε,m, m̂P , n; δ; η, κ) in

Õ

(
max

( log(n)m

ε2
,
n2m̂2

P

ε2

)
log

1

δ

)

as ε, δ → 0+, n,m, m̂P → ∞, such that for all
N > N(ε,m, m̂P , n; δ; η, κ), with probability 1− δ,
we have

Sη(G,ωN ) > Sη(G′, ωN ),

for all G′ ∈ Gd such that Skel(G′) 6⊆ Skel(G).

In order to explain the significance of this result, it
is helpful to relate it to three representative sample
complexity results in the literature: Höffgen (1993),
Friedman & Yakhini (1996), Zuk et al. (2006). The
result of Zuk et al. differs from the other two and
from our result because it only gives conditions for the
(BIC) score of G to beat that of an individual compet-
ing network G′, not a family, such as Gd. The main
difference between Höffgen and Friedman & Yakhini
is that, like our result, Höffgen assumes that the com-
peting network lies in Gd and achieves a sample com-
plexity that is polynomial in n = card(V ), while Fried-
man & Yakhini puts no restriction on the in-degree of
competing networks, and obtains complexity that is
exponential in n. Our result and Zuk et al. differ
from both Höffgen and Friedman & Yakhini in that
we provide guarantees for learning the correct DAG
structure G (or at least a G without false edges), not
just a distribution P ′ which is ζ-close to P . For this
reason, only our paper and Zuk et al. need to define
a minimal edge strength as a parameter, whereas for
Höffgen and Friedman & Yakhini the main parameter
is the error tolerance ζ, which they call ε.

4.2 Overview of Proofs

The proof of Theorem 1 consists of showing that for
all sufficiently large N we can find a (probable) lower
bound on the score difference,

Sη(G,ωN )− Sη(G′, ωN ), G,G′ ∈ Gd, ωN ∼ G. (9)

The score difference breaks down into a sum of the
following terms:

(a) The difference of log-likelihood terms,
LL(G,ωN )− LL(G′, ωN ).

(b) The difference of complexity penalties,
κ log(N)(|G′| − |G|).

(c) For each distinct pair of vertices A,B ∈ V such
that neither G nor G′ has (A,B) as an edge, the
difference of the sparsity boosts in the objective
functions of G and G′, for that nonexistent edge.
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(d) For each true edge (A,B) ∈ G missing from G′,
the negative of the sparsity boost for (A,B) /∈ G′.

(e) For each false edge (A,B) 6∈ G present in G′, the
(positive) sparsity boost for (A,B) /∈ G.

With the choice of S in the Theorem, SA,B(G′) =
SA,B(G) for all A,B ∈ V 2, which implies that (c) is
exactly 0. Furthermore, (b) is clearly O(logN) for
G,G′ ∈ Gd, while both (a) and (e) will turn out to be
Θ(Nα) for α > 0, so that (b) has only minor impact
on the sample complexity.

So we will focus on how to estimate (a), (d), and
(e). Conceptually, estimating each of these terms calls
for the same type of result : a concentration lemma
stating how quickly the empirical LL(·, ωN ) (for (a)),
respectively MI(ωN , A,B|s) (for (d) and (e)) con-
verges to the “ideal” counterpart LL(I)(·, P ), respec-
tively MI(P,A,B|s). In fact, both of the latter consist
of a polynomial in n number of terms (which is where
we use the hypothesis G ∈ Gd) of the form p log p for
parameters p of certain Bernoulli random variables.

Proposition 1 Let p ∈ (0, 1) be given and X(p)
the Bernoulli random variable with parameter p. Let
ε̂, δ ≥ 0 be given. For YN ∼ p, denote the empirical
parameter pYN by p̃N . Then there is a function

N(ε̂, δ) ∈ O
((

1

ε̂

)2

log
1

δ

)
, (10)

as ε̂, δ → 0+ with the property that for N > N(ε̂, δ),

Pr (|p̃N log p̃N − p log p| < ε̂) ≥ 1− δ.

Proposition 1 improves slightly on Lemma 1 in Höffgen
(1993), by replacing Õ(·) with O(·) in (10).

A key feature of Proposition 1, for obtaining our con-
centration results for LL and MI is that (10) is in-
dependent of the Bernoulli parameter p. From the
concentration result for LL, we can show that (a) is
with high probability positive and larger than Nζ/3,
for all G′ which are ζ-far from G and for sufficiently
large N . From the concentration result for MI we can
show that a sparsity boost from a true edge is bounded
above by a constant for sufficiently large N (linear in
m). So the negative contribution of (d) is bounded.
These bounds suffice to prove Theorem 1(a).

In the proof of Theorem 1(b), from the concentra-
tion result for LL, we can show that (a) is with high
probability larger than a constant times −n

√
log(n)N .

Furthermore, a sparsity boost from a false edge is
Ω(Γ(η)N), where the speed Γ(η) of the linear growth
is on the order of η2 as η → 0+. To show the latter,
we first apply Proposition 1, given a witness, to prove

that MI(ωN , A,B|s) is (likely) less than η/2. Second,

using a Chernoff bound, we show that − log βp
η

N (γ) is
Ω(η2N) for γ less than η/2. So, with high probability
the positive contribution of (e) eventually overwhelms
any negative contribution of (a).

The techniques derived from the Chernoff bound yield
a version of Theorem 1(b) with an exponent of 4 on
the ε in the denominator of the term n2m̂2

P /ε
2. To

improve the exponent to 2, we need a strengthened
result on the linear growth of a sparsity boost from a
false edge, in which the speed Γ(η) is on the order of
only η instead of η2, as η → 0+.

We have to use a new method derived from Sanov’s
Theorem instead of Chernoff’s Bound. To our knowl-
edge, the way we use Sanov’s Theorem to study the
concentration of mutual information is a novel contri-
bution to information theory. For all of the following
we are assuming that Val(Xi) = {0, 1} for all Xi ∈ V
so that P is the space of probability distributions over
the alphabet {0, 1}2. We have already, in (5), given
a parameterization of the path of distributions of uni-
form marginals in P. We now generalize (5) and the
associated parameterization by defining

p(pA,0, pB,0, t) :=

[
pA,0pB,0 + t pA,1pB,0 − t
pA,0pB,1 − t pA,1pB,1 + t

]
(11)

where pA,1 := 1 − pA,0 and pB,1 := 1 − pB,0. When
(pA,0, pB,0) ranges over [0, 1]2 and t over (tmin, tmax)
(an interval depending on pA,0, pB,0), (11) parameter-
izes the whole space P.

Since the t parameter is a measure of how far p is from
P0, it is not surprising that we can derive formulas
relating t to

√
MI. In order to carry this out, we

consider the function MI(p(pA,0, pB,0, t)) as a function
of t and carefully study the Taylor series expansion of
this function around the basepoint t = 0.

The reason for preferring the t parameter to MI itself
is that by means of Sanov’s Theorem and Pinsker’s In-
equality, we obtain a very general result which bounds
− log βp

η

N (γ) from below by N times the squared L∞-
distance of pη from a distribution qγ . More specifically,
defining the complement of Pγ by

Aγ := {p ∈ P |MI(p) ≤ γ} , (12)

the distribution qγ is defined as the I-projection of
pη onto Aγ . We would like to relate ‖pη − qγ‖∞ to
|MI(pη)−MI(qγ)| = |η−γ|, and the t-parameters act
as an effective intermediary, because it is easy to show
that ‖pη − qγ‖∞ is on the order of |t+η − t+γ |, where t+γ
is the t-parameter of qγ . Applying the relation of the
preceding paragraph between t and

√
MI, we obtain

a bound, from below, of − log βp
η

N (γ) by something on
the order of (

√
η −√γ)2N .
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5 Computation of β values

Exact computation. Here we give an exact for-
mula for βp

η

N (γ) using the Method of Types (Cover
& Thomas, 2006, Chapter 11). Denoting the entries of
pη ∈ P by (p0,0, p0,1, p1,0, p1,1), we have

βp
η

N (γ) =
∑

YN

1∏

i,j=0

p
Ti,j(YN )
i,j 1[MI(YN ) ≤ γ],

where Ti,j(YN ) is the number of observations of (i, j)
in the sampled sequence YN of length N . Consider
the set TN of length-4 vectors of nonnegative integers
(T0,0, T0,1, T1,0, T1,1) summing to N . Every T ∈ TN
corresponds one-to-one with a distribution pT ∈ P
(obtained by dividing every entry in T by N). Let
|T | denote the number of sequences YN corresponding
to type T . Then it is not difficult to see that |T | is
given by a multinomial coefficient and that

βp
η

N (γ) =
∑

T∈TN
|T |

1∏

i,j=0

p
Ti,j
i,j 1Aγ (pT ), (13)

where 1Aγ is the characteristic function of Aγ (see

Eq. 12). We can use (13) to exactly compute βp
η

N (γ),
but because of the summation over TN the running
time of this algorithm is O(N3), which will not scale
to the range of N we need for our experiments.

Monte Carlo computation. In place of exact cal-
culation, we estimate βp

η

N by means of Monte Carlo
integration, using importance sampling of the domain
to reduce the variance. In order to implement this, we
first observe that (13) is essentially a Riemann sum for
a definite integral, so that we may replace the summa-
tion with an integral. Second, the integrand we ini-
tially obtain in this manner has numerous discontinu-
ities, because of the |T | factor. It makes the next steps
easier to implement if we replace |T | with a (slightly
larger) continuous approximation (Csiszar & Körner,
2011, p. 39). We finally obtain the following integral

which approximates βp
η

N (γ) given in (13):

(
N

2π

)(|X|−1)/2∫

P
e−NH(q‖pη)

1∏

i,j=0

q
− 1

2
i,j 1Aγ (q) dq.

For the Monte Carlo integration we use an importance
sampling scheme based on the following idea: the in-
tegrand is largest when H(q‖pη) is small and q ∈ Aγ ,
and so it should be strongly concentrated around qγ

(the I-projection of pη onto Aγ). We have an un-
proven conjecture, supported by numerical evidence,
that qγ = pγ := p0(t+γ ) (the unproven part of this is
that qγ has uniform marginals) for η less than approx-
imately 0.1109. The importance sampling algorithm
samples points p ∈ P i.i.d., favoring points near pγ .

We use the parameterization (11) of P and sample the
parameters pA,0, pB,0 & t independently according to
Gaussian distributions. For the selection of the two
marginals, we use identical Gaussians centered at 1

2
and becoming more concentrated (exponentially fast)
around their mean as N → ∞. For the t parame-
ter, we use use a third Gaussian centered at t+γ . For
each (N, γ) we determine the concentration of the third
Gaussian by sampling the integrand along the path
p
(
1
2 ,

1
2 , t
)
, in the segment (0, t+γ ).

Since we cannot possibly tabulate βp
η

N (ωN ) for ev-
ery empirical sequence that might arise, we tabulate
βp

η

N (γ) for N, γ in a strategically chosen grid of values,
and during the learning phase we interpolate or extrap-
olate (as the need arises) from these tabulated values.

We interpolate/extrapolate − lnβp
η

N (γ) linearly in the
statistics N and H(pγ‖pη). Sanov’s Theorem gives
heuristic support to this procedure, but ultimately our
justification for this procedure rests on the empirical
results presented in Section 6 below.

6 Experimental Results

Computing the confidence measure. In Figure 1
we present several empirical results that help to justify
our methods for calculating βp

η

N (γ), our new measure
of the reliability of an independence test. First, in (a),
we show that using the method of summing over types
to calculate βp

η

N (γ) has a running time which is O(N4),
whereas the Monte Carlo method explained in Section
5 is O(1) as N → ∞. Thus, although it is feasible

to pre-compute βp
η

N (γ) for small values of N , exact
calculation is impractical for N much larger than 200.

As for the accuracy of the Monte Carlo estimation,
the table in Figure 2 shows that for very small N , e.g.
N < 50, some multiplicative errors for our method of
≈ 30% are observed, but by the time we reach N =
100, the errors are consistently < 10%. Figure 1(b)
shows that, for N = 200, the Monte Carlo estimate
has a consistently small error over the range of γ.

The linear interpolation procedure for obtaining
lnβp

η

N (MI(ωN )) from the pre-computed tables of

lnβp
η

N (γ) receives heuristic support from Sanov’s The-
orem; it receives empirical support from Figure 1(c)
(resp. (d)), which shows that the dependence of

lnβp
η

N (γ) on N (resp., H(pγ‖pη)), assuming all other
inputs are fixed, is roughly linear.

Sample Complexity. In this section we study the
accuracy of our learning algorithm as a function of
the amount of data we provide it. We compare our
algorithm to two baselines: BIC and Max-Min Hill-
Climbing. BIC is equivalent to our score without
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Figure 1: Computation of βp
η

N . All results shown are for η = 0.01. (a) Running time of the exact algorithm to compute

βp
η

N grows cubically in N , but for Monte Carlo approximation remains constant (results shown for γ = 0.005 and 0.001

combined). (b) Monte Carlo estimate of βp
η

N (γ) for fixed η, N = 200. (c) Exponential decay of βp
η

N (γ) in N for fixed γ.

(d) Exponential decay of βp
η

N (γ) as a function of KL-divergence H(pγ‖pη), as γ is varied, for large N = 9000.

γ
N 0.001 0.005
20 12.20% 29.15%
30 24.65% 1.18%
40 39.77% 7.07%
50 2.45% 4.88%
60 3.52% 0.30%

γ
N 0.001 0.005
70 1.03% 3.59%
80 9.06% 4.13%
90 0.77% 4.05%

100 1.01% 0.03%
110 2.27% 3.01%

Figure 2: Multiplicative error of Monte Carlo approxima-

tion, |βpηN − β̂p
η

N |/βp
η

N , for η = 0.01 as N, γ vary.

the sparsity boost terms. MMHC is state-of-the-art
in terms of both speed and quality of recovery, and
has been shown to outperform most other constraint-
based approaches (Tsamardinos et al. , 2006). As we
discussed earlier, MMHC is also a hybrid algorithm,
using both conditional independence tests and score-
based search. We use the implementation of MMHC
provided by the authors as part of Causal Explorer 1.4
(Aliferis et al. , 2003), with the default parameters.1

We use an integer linear program to exactly solve
for the Bayesian network that maximizes the BIC or
SparsityBoost scores (Jaakkola et al. , 2010; Cussens,
2011). To solve the ILP, we use Cussens’ GOB-
NILP 1.2 software together with SCIP 3.0 (Achter-
berg, 2009). Conveniently, since the sparsity boost
terms in our objective can be subsumed into the par-
ent set scores, we can use these off-the-shelf Bayesian
network solvers without any modification.

The data that we use for learning is sampled from
synthetic distributions based on the Alarm network
structure (Beinlich et al. , 1989). The Alarm net-
work has 37 variables, 46 edges, and a maximum
in-degree of 4. In our synthetic distributions, ev-
ery variable has only two states, and its conditional
probability distribution is given by a logistic function,

p(Xi = 1 | xPa(i)) = 1/(1 + e−
~θi·xPa(i)−ui). We sam-

1Threshold for χ2 test of .05 and Dirichlet hyperparam-
eters equal to 10. Varying these did not improve results.
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Figure 3: Comparison of the sample complexity of
MMHC, BIC, and our new SparsityBoost objective. Each
point is the average of the SHD of the learned network from
truth for 10 synthetic distributions.

pled 10 different distributions, with parameters drawn
according to θij ∼ U [−.5, .5] + 1

4N (0, 1) for j ∈ Pa(i)
and ui ∼ 1

4N (0, 1). For each value of N , a new set
of N samples were drawn from the corresponding syn-
thetic distribution. The results shown are the average
for each of these 10 synthetic distributions.

We use SA,B(G) from Eq. 3 with d = 2, enumerating
over all separating sets of size at most two. Larger
separating sets are less useful because they lead to
a smaller ε, less data, and more computation to cre-
ate the objective. In the Alarm network, for every
(A,B) 6∈ G there is a separating set S such that |S| ≤ 2
and A ⊥ B|S. Regardless, if a separating set for an
inexistent edge cannot be found, our score simply re-
duces to the BIC score, so no harm is done.

Our results are shown in Figure 3. We measure the
quality of structure recovery using the Structural Ham-
ming Distance (SHD) between the partially directed
acyclic graphs (PDAG) representing the equivalence
classes of the true and learned networks (Tsamardi-
nos et al. , 2006). The SHD is defined as the number

119



0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

1400

Number of samples

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

 

 

BIC
SparsityBoost eta=0.01
MMHC

Figure 4: Total running time to learn a Bayesian net-
work from data for BIC, SparsityBoost, and MMHC. We
maximize the BIC and SparsityBoost scores by solving an
integer linear program to optimality.

of edge additions, deletions, or reversals to make the
two PDAGs match. The plots for SparsityBoost with
η = 0.005 and η = 0.02 (not shown) are nearly iden-
tical to that of η = 0.01. SparsityBoost consistently
learns better structures than MMHC or BIC, and often
perfectly recovers the networks after only 1600 sam-
ples. SparsityBoost obtains a smaller average error
with 3000 samples than BIC does with 6000, repre-
senting a more than 50% reduction in the number of
samples needed for learning. We also found that the
SparsityBoost results had substantially less variance
than either BIC or MMHC.

Our theoretical results only guarantee exact recovery
when η < ε. For each of the synthetic distributions
we computed ε(A,B) for all of the edges (A,B) in the
true structure (see Sec. 4.1 for definition). The mini-
mum of these, that is to say ε, ranged from .000028 to
.0047, which is in fact smaller than the largest value of
η considered in our experiments (.005). Despite this,
we obtained excellent empirical results for Sparsity-
Boost with η ∈ {.005, .01, .02}. This may be partially
explained by the average value of ε(A,B) being .062.
Even when we push η to be as high as .04, Sparsity-
Boost converges to an average SHD of at most 3 (see
Fig. 3). Thus, our new objective appears to be partic-
ularly robust to choosing the wrong value of η.

Running Time. We show the running time of our
new objective compared to BIC in Figure 4. The fig-
ure shows the total time, which includes both the time
to compute the score of all parent sets and the time to
solve the ILP to optimality. These results confirm our
hypothesis that the new score would be substantially
easier to optimize. We found that the linear program-
ming relaxation for SparsityBoost (with η = 0.01) was
tight on nearly all instances: branch-and-bound did
not need to be performed. Once the SparsityBoost
objective has been computed, the ILP is solved within

6 seconds in every single instance.

The timing experiments reported in this section were
performed on a single core of a 2.66 Ghz Intel Core
i7 processor with 4 GB of memory. MMHC’s average
running time was less than 8 seconds for all sample
sizes. MMHC is significantly faster because it quickly
prunes edges that cannot exist and in its second step
uses a greedy (rather than exact) optimization algo-
rithm for score-based search.

7 Discussion

Our approach maintains the advantages of other score-
based approaches to structure learning, such as the
ability to find the K-best Bayesian networks and ease
of introducing additional constraints (e.g., from inter-
ventional data). In order to optimize our score, virtu-
ally any optimization procedure can be used. Since the
ILP is easy to solve, this suggests that greedy structure
search may also be able to easily find the best-scoring
Bayesian network under the SparsityBoost score.

One subject for future investigations is to generalize
and sharpen our results in various ways. Using a simi-
lar construction for pη, we believe it should be possible
to extend our score and proof of consistency to non-
binary variables. We also believe it will be possible to
eliminate the dependence of N(ε,m, m̂P , n; δ, ζ; η, κ) in
both parts of Theorem 1 on the parameter m, leaving
only the dependence on m̂P in part (b), which is in
some cases much smaller than m.

Another issue to be explored as a future line of investi-
gation is the choice of pη in our measure of reliability,
βp

η

N (γ). The overall motivation for βp
η

N (γ) is to capture
the probability of Type II error of a statistical test with
independent distributions P0 as the null hypothesis H0

and all distributions Pη as the alternative hypothesis
H1. The choice of uniform marginals for pη represents
an expedient choice, providing an objective function
that is manageable to implement and compute, yet
still has a reasonable theoretical and empirical sam-
ple complexity. Better results might be obtained by
setting the marginals of pη to approximate those of
p(ωN ). More generally, one can contemplate incorpo-
rating various other statistically derived probabilities
into the objective function.

This leads to the broader point that objective func-
tions, and the optimization of them over discrete
spaces of structures, are ubiquitous throughout com-
puter science and statistics. Our work suggests a new
paradigm for incorporating information from “classi-
cal” hypothesis tests into the objective functions used
for machine learning. This new paradigm provides
both computational and statistical efficiency.
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Abstract

Transferring knowledge across a sequence of
reinforcement-learning tasks is challenging, and
has a number of important applications. Though
there is encouraging empirical evidence that
transfer can improve performance in subsequent
reinforcement-learning tasks, there has been very
little theoretical analysis. In this paper, we intro-
duce a new multi-task algorithm for a sequence
of reinforcement-learning tasks when each task is
sampled independently from (an unknown) dis-
tribution over a finite set of Markov decision pro-
cesses whose parameters are initially unknown.
For this setting, we prove under certain assump-
tions that the per-task sample complexity of ex-
ploration is reduced significantly due to trans-
fer compared to standard single-task algorithms.
Our multi-task algorithm also has the desired
characteristic that it is guaranteed not to exhibit
negative transfer: in the worst case its per-task
sample complexity is comparable to the corre-
sponding single-task algorithm.

1 INTRODUCTION

A dream of artificial intelligence is to have lifelong learn-
ing agents that learn from prior experience to improve their
performance on future tasks. Our interest in the present
paper is in how to transfer knowledge and improve perfor-
mance across a sequence of reinforcement-learning [Sut-
ton and Barto, 1998] problems, where each task itself in-
volves sequential decision making under uncertainty in an
unknown environment. We assume that each task is drawn
from a finite set of Markov decision processes with identi-
cal state and action spaces, but different reward and/or tran-
sition model parameters; however, the MDP parameters are
initially unknown and the MDP identity of each new task
is also unknown. This model is sufficiently rich to capture
important applications like tutoring systems that teach a se-

ries of students whose initially unknown learning dynam-
ics can be captured by a small set of types (such as hon-
ors, standard and remedial), marketing systems that may
characterize a customer into a finite set of types and use
that to adaptively provide targeted advertising over time,
and medical decision support systems that seek to provide
good care to patients suffering from the same condition for
whom the best treatment strategy may be characterized by
a discrete hidden latent variable that captures the patient’s
physiology.

Although there is encouraging empirical evidence that
transferring information across tasks can improve rein-
forcement learning performance (see Taylor and Stone
[2009] for a recent survey), there has been almost no theo-
retical work to justify or quantify the benefits. This is high-
lighted as one of the key limitations of the existing research
by Taylor and Stone [2009], and there have been only a
few papers since then that provide any theoretical analy-
sis [Lazaric and Restelli, 2011, Mann and Choe, 2012].
In particular, we are aware of no work that seeks to for-
mally analyze how transferred knowledge can accelerate
reinforcement learning in a multi-task settings.

In contrast, there has been a substantial amount of inter-
est over the last decade on Probably Approximately Cor-
rect (PAC) reinforcement learning in the single-task setting
(e.g. [Kearns and Singh, 2002, Brafman and Tennenholtz,
2002]). This line of work formally quantifies the worst-
case learning speed of a reinforcement-learning algorithm,
defined as the number of steps in which the agent may fail
to follow an ε-optimal policy.

In this paper, we introduce a new algorithm for multi-task
reinforcement learning, and prove under certain assump-
tions that the per-task sample complexity is significantly
reduced due to transfer compared to the single-task sam-
ple complexity. Furthermore, unlike most prior multi-task
or transfer reinforcement learning algorithms, our proposed
algorithm is guaranteed to avoid negative transfer: the de-
crease in performance that can arise when misleading in-
formation is transferred from a source to target task.
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2 PRELIMINARIES

This paper focuses on discrete-time, finite Markov decision
processes (MDPs) defined as a tuple 〈S,A, P,R, γ〉, where
S is the finite state space, A the finite action space, P is
the transition probability function, R the reward function,
and γ ∈ (0, 1) the discount factor. The reward function
is bounded and without loss of generality takes values in
[0, 1]. For convenience, we also use S and A to denote the
cardinality of the state and action spaces, respectively.

A deterministic policy π : S → A defines what action to
take in a given state. Its value function, V π(s), is defined as
the expected total discounted reward received by executing
π starting from state s ∈ S. Similarly, the state–action
value function, Qπ(s, a), is defined as the expected total
discounted reward received by taking action a in state s
and following π thereafter. It is known [Puterman, 1994]
that there exist optimal value functions satisfying: V ∗ =
maxπ V

π and Q∗ = maxπ Q
π; furthermore, the greedy

policy with respective to Q∗ is optimal.

Typically, a reinforcement-learning (RL) [Sutton and
Barto, 1998] agent does not know the transition probabil-
ity and reward functions, and aims to optimize its policy
via interaction with the MDP. The main objective of RL
is to approximate an optimal policy with as few interac-
tions as possible. One formal framework for analyzing the
speed of learning in RL, which we adopt here, is the sample
complexity of exploration [Kakade, 2003], or sample com-
plexity for short. Fix parameters ε > 0 and δ > 0. An
RL algorithm A can be viewed as a nonstationary policy
whose value functions can be defined similarly to station-
ary policies π above. At any timestep h, we compare the
policy value to the optimal policy value in the current state
sh. If V ∗(sh) − V Ah > ε, then A is not near-optimal in
timestep h, and a mistake happens. If, with probability at
least 1− δ, the total number of mistakes made by an algo-
rithm is at most ζ(ε, δ), then ζ is called the sample com-
plexity of exploration. RL algorithms with a polynomial
sample complexity is called PAC-MDP. Further details and
related works are found in the survey of Strehl et al. [2009].

In this paper, we consider multi-task RL across a series of
T reinforcement-learning tasks, each run for H steps. We
assume each task is sampled from a set M of C MDPs,
which share the same state and action spaces, and discount
factor, but have different reward and/or transition dynam-
ics. Finally, we denote by Vmax an upper bound of the
value function. Note that Vmax ≤ 1/(1 − γ), but can be
much smaller than this upper bound in many problems.

3 PAC-MDP MULTI-TASK RL

We are interested in exploring whether it is possible to re-
duce sample complexity when the agent faces a sequences
of tasks drawn i.i.d. from a distribution, and if so, how this

Algorithm 1 Multi-task RL Algorithm
0: Input: T1, C̄.
1: for t = 1, 2, . . . , T1 do
2: Receives an unknown MDP Mt ∈M
3: Run E3 in Mt for H steps to get counts o(s, a, s′, t)
4: end for
5: Combine counts into Ĉ ≤ C̄ groups where
ō(s, a, s′, c) is the counts for the c-th group.

6: for t = T1 + 1, . . . , T do
7: Receive unknown Mt ∈M.
8: Run Finite-Model-RL on Mt

9: if MDP group of task Mt is identified then
10: Incorporate state–action visitation counts from

Mt to the group.
11: end if
12: end for

benefit can be achieved by an algorithm.

Prior work suggests that higher performance is achievable
when there is some known structure about the RL MDP pa-
rameters. In particular, past research has shown that when a
task is drawn from a known distribution over a known finite
set MDPs, the problem can be cast as a partially observable
MDP planning problem, and solved to yield the Bayes op-
timal solution if the set cardinality is small [Poupart et al.,
2006, Brunskill, 2012]. Although the past work did not
examine the sample complexity of this setting, it does sug-
gest the possibility of significant improvements when this
structure can be leveraged.

Encouraged by this work, we introduce a two-phase multi-
task RL algorithm. Since at the beginning the agent does
not know the model parameters, it does single-task learn-
ing, and uses the observed transitions and rewards to esti-
mate the parameters of the set of underlying MDPs at the
end of phase one. In the second phase, the agent uses these
learned models to “accelerate” learning in each new task.
We will shortly provide details about both phases of this
algorithm, whose performance is formally analyzed in the
next section. Before doing so, we also note that our multi-
task RL algorithm is designed to minimize or eliminate the
potential of negative transfer: tasks where the algorithm
performs much worse than a single-task RL algorithm.

Compared to Bayesian approaches, our algorithm develop-
ment is motivated and guided by sample-complexity anal-
ysis. In addition to the guard against negative transfer, our
approach is robust, as guaranteed by the theory; this benefit
can be shown empirically even in a toy example.

In the following discussion, for clarity we first present a
slightly simplified version of our approach (Algorithm 1),
before discussing a few additional details in Section 3.3 that
involve subtle technicalities required in the analysis.
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Algorithm 2 Finite-Model-RL

0: Input: S, A, ō, Ĉ, m, ξ, ε.
1: Initialize the version space: C ← {1, . . . , Ĉ}.
2: ∀1 ≤ i < j ≤ Ĉ: cij ← 0, ∆ij ← 0,
3: ∀s, a : o(s, a)← 0 (Initialize counts in current task)
4: KNOWN← Check-Known(S,A, ε, ō, C, o,m)
5: Use E3 algorithm to compute an explore-or-exploit

policy and the corresponding value function.
6: Initialize start state s
7: for h = 1, . . . ,H do
8: Take action a, receive reward r, and transition to the

next state s′

9: for all c ∈ C do
10: Predict the model dynamics by empirical means:

θ̂c ← 〈p̂(s1|s, a, c), . . . , p̂(s|S||s, a, c), r̂c〉
11: Compute the `2-confidence interval of θ̂c (by, say,

Lemma 5); denote the confidence interval by δθc.
12: end for
13: Encode the transition (s, a, r, s′) by a vector (where

I is the indicator function)
z ← 〈I(1 = s′), I(2 = s′), . . . I(|S| = s′), r〉

14: for all i, j ∈ C such that i < j and
∥∥∥θ̂i − θ̂j

∥∥∥ ≥
8 maxc∈C δθc do

15: cij ← cij + 1
4

∥∥∥θ̂i − θ̂j
∥∥∥

2

16: ∆ij ← ∆ij +
∥∥∥θ̂i − z

∥∥∥
2

−
∥∥∥θ̂j − z

∥∥∥
2

17: if cij ≥ ξ then
18: C ← C \ {c} where c = i if ∆ij > 0 and c = j

otherwise.
19: end if
20: end for
21: KNOWN← Check-Known(S,A, ε, ō, C, o,m)
22: If KNOWN has changed, use E3 to re-compute the

policy.
23: end for

3.1 PHASE ONE

In the first phase, T1 tasks are drawn i.i.d. from the underly-
ing unknown distribution. On each task, the agent follows
the single-task algorithmE3 [Kearns and Singh, 2002]. All
observed transitions and rewards are stored for each task.

At the end of the first phase, this data is clustered to identify
a set of at most C̄ MDPs. To do this, the transition and re-
ward parameters are estimated by the empirical means for
each task, and tasks whose parameters differ by no more
than a fixed threshold are clustered together. After this clus-
tering completes, all the observed transitions and rewards
for all tasks in the same cluster are merged to yield a single
set of data. Our analysis below shows that, under certain
assumptions, tasks corresponding to the same MDP will be
grouped correctly.

Algorithm 3 Check-Known
0: Input: S, A, ε, ō, C, o, m.
1: for (s, a) ∈ S ×A do
2: if All MDPs in C have ε-close (in `2-norm) estimates

of the transition and reward functions at (s, a) then
3: KNOWN(s, a)← true
4: else if o(s, a) ≥ m then
5: KNOWN(s, a)← true
6: else
7: KNOWN(s, a)← false
8: end if
9: end for

3.2 PHASE TWO

At the start of phase two, the agent now has access to a
set of (at most) C̄ MDPs which approximate the true set of
MDP models from which each new task is sampled. The
key insight is that the agent can use these candidate mod-
els to identify the model of the current task, and then act
according to the policy of identified model, and that this
process of model identification is generally faster than stan-
dard exploration needed in single-task learning.

To accomplish this, we introduce a new single-task RL al-
gorithm, Finite-Model-RL (Algorithm 2), that draws upon
but extends the noisy-union algorithm of Li et al. [2011].
One critical distinction is that our approach can be used to
compare models that themselves do not have perfect esti-
mates of their own parameters, and do so in way that allows
us to eliminate models that are sufficiently unlikely to have
generated the observed data.

Like many single-task PAC-MDP RL algorithms, Finite-
Model-RL partitions all state–action pairs into known and
unknown, where a known state–action pair is one for which
we have an ε-accurate estimate of its parameters. Follow-
ing E3, Finite-Model-RL maintains two MDP models for
the present task. In the exploration MDP, the algorithm as-
signs unity rewards to unknown states and zero rewards to
others. This MDP will be useful for computing a policy
to explore unknown states. The other MDP, called the ex-
ploitation MDP, is identical to the underlying MDP except
for unknown states, where rewards are all zero and state
transitions are self-loops. This MDP is used to exploit ex-
isting knowledge about the current MDP in order to follow
a reward-maximization policy.

Similar to E3, our algorithm prioritizes exploration over ex-
ploitation: if the optimal value function of the current state
in the exploration MDP is above a threshold, the estimated
exploration MDP’s optimal policy is followed; otherwise,
the estimated exploitation MDP’s optimal policy is used.
In addition, Finite-Model-RL tracks which of the possible
set of Ĉ MDP models could be the underlying MDP of the
current task. It eliminates a model when there is sufficient
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evidence in the observed transitions that it is not the true
model (see lines 14–21 in Algorithm 2). We do this by
tracking the difference in the sum of the `2 error between
the current task’s observed (s, a, s′, r) transitions and the
transitions predicted given each of the Ĉ MDP models ob-
tained at the end of phase 1.

A particular state–action pair becomes known when either
there are sufficient observations from the current task that
the parameters of that state–action pair can be accurately
estimated (as in single-task PAC-MDP RL), or if the re-
maining possible MDP models have ε-close estimates of
the state–action pair’s parameter in question. If the MDP
of the current task is identified (only a single model re-
mains possible in the set), then all the observed data counts
from that MDP can be merged with the current task ob-
served data counts. This frequently causes all state–action
pairs to become immediately known, and then the algo-
rithm switches to exploitation for the remainder of the task.
At the end of each task, the underlying MDP will be iden-
tified with high probability, and the observed counts from
the current task will be added to the counts for that MDP.

Since the base algorithm in Finite-Model-RL is very much
like E3, we preserve the standard single-task sample-
complexity guarantee. Thus, negative transfer is avoided
in any single task in phase 2, 1 compared to single-task E3.

Across tasks, the observations accumulate and the Ĉ MDP
models will eventually have ε-accurate estimates of all
state–action parameters. Once this occurs, when facing a
new task, as soon as the agent identifies the task model out
of the Ĉ candidates, all state–action pairs become known.
We will shortly see that the sample complexity for this
identification to occur can be much smaller than standard
single-task sample complexity bounds.

3.3 ADDITIONAL ALGORITHM DETAILS

We now describe a few additional algorithmic details that
have been avoided on purpose to make the main ideas clear.
In our analysis later, as well as in some practical situations,
these technical details are important.

The key additional detail is that the E3 algorithm is run
with two different knownness threshold parameters at dif-
ferent stages of the multi-task algorithm: this parameter
specifies the accuracy on the parameter estimates required
for a state–action pair to be considered known in standard
E3. Usually, this parameter is set to O(V 2

max/(ε
2(1−γ)2))

so that once a state–action is known, its dynamics can be
estimated sufficiently accurately. However, in multi-task
RL, we also need to identify task identity in order to facili-
tate knowledge transfer to benefit future task.

This observation motivates the use of two different values

1Up to log factors, as shown in Section 4.

for this parameter. At the beginning of a task, one may
want to use a relatively small value just to do a more bal-
anced random walk in the whole state space, with the pri-
mary goal to identify the present task by visiting “informa-
tive” states. Here, a state is informative if two MDP mod-
els have a sufficient disagreement in its reward or transi-
tion dynamics; formal details are given in the next section.
Only after the identity is known does the algorithm switch
to a larger value, on the order of O(V 2

max/(ε
2(1 − γ)2)),

to learn a near-optimal policy. If, on the other hand, the
learner chooses the large value as specified in single-task
PAC-MDP algorithms, it is possible that the learner does
not visit informative states often enough by the end of a
task to know its identity, and the samples collected cannot
be transferred to benefit solving future tasks.

More precisely, in phase 1, we first execute E3 with known-
ness threshold O(Γ−2), where Γ, to be defined in the
next section, measures the model discrepancy between
two MDPs in M, and is in general much larger than
ε. Once E3 has finished its exploration phase (meaning
all state–action pairs have O(Γ)-accurate parameter esti-
mates), we switch to running E3 with the regular thresh-
old of O(V 2

max/(ε
2(1 − γ)2)). Since E3 performs all ex-

ploration before commencing exploitation, and ε < Γ, the
sample complexity of the resulting method stays the same
as initially running E3 with an input ε parameter. This en-
sures that we maintain the single-task sample-complexity
guarantees, but also that we gain enough samples of each
state–action pair so as to reliably cluster the tasks at the end
of phase 1. With the same approach in phase 2, we can en-
sure that the task will be identified (with high probability).2

Finally, we note that information can also be transferred
to the current task through tighter optimistic bounds on the
value function that shrink as models are eliminated. Briefly,
in phase 2, we can compute an upper bound Q̄i of the state–
action values of the i ∈ Ĉ MDPs that also accounts for
any uncertainty in the model parameters. At each step, the
value of each unknown state–action pair (s, a) can then be
set to maxi∈C Q̄i(s, a). Since this modification does not
seem to impact the worst-case sample complexity, for clar-
ity we did not include it in the description of Algorithm 2,
although it may lead to practical improvement.

4 ANALYSIS

This section provides an analysis of our multi-task RL al-
gorithm. As mentioned in Section 3.3, two values are used
to define the knownness threshold in E3. Due to space lim-
itation, some of the proof details are left to a full version.

To simplify exposition, we use θi to denote MDP i’s dy-
2Note that in phase 2, once the MDP identity of the present

task is known, the knownness threshold can switch to the larger
value, without having to wait until all state–actions visitation
counts reach the O(Γ−2) threshold.
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namics including reward and transitions: the model dy-
namics in state–action (s, a) is denoted as an (S + 1)-
dimensional vector θi(·|s, a), where the first S compo-
nents are the transition probabilities to corresponding next
states, and the last component the average reward. The
model difference between two MDPs,Mi andMj , in state–
action (s, a) is defined as ‖θi(·|s, a)− θj(·|s, a)‖, the `2-
difference between their transition probabilities and reward
in that state–action. Furthermore, we let N be an upper
bound on the number of next states in the transition models
in all MDPs in M; while N can be as large as S, it can
often be much smaller in many realistic problems.

We make the following assumptions in the analysis:

1. Tasks inM are drawn from an unknown multinomial
distribution, and each task has at least pmin > 0 task-
prior probability;

2. There is a known upper bound C̄ on C = |M|, the
number of MDPs in our multi-task RL setting;

3. There is a known gap Γ of model difference in M;
that is, for all Mi,Mj ∈ M, there exists some (s, a)
such that ‖θi(·|s, a)− θj(·|s, a)‖ > Γ.

4. There is a known diameter D, such that for every
MDP in M, any state s′ is reachable from any state
s in at most D steps on average;

5. All tasks are run for H = Ω
(
DSA

Γ2 log T
δ

)
steps;

The first assumption essentially ignores extremely rare
MDPs. While it is possible to adapt our results to avoid
the assumption of pmin, we keep it mostly for the sake of
simplicity of the exposition. The second assumption says
there are not too many different underlying MDPs. In prac-
tice, one may choose C to balance flexibility and complex-
ity of multi-task learning. The third assumption says two
distinct MDPs inM must differ by a sufficient amount in
their model parameters; otherwise, there would be little
need to distinguish them in practice. The fourth assump-
tion about the diameter, introduced by Jaksch et al. [2010],
is the major assumption we need in this work. Basically,
it ensures that on average every state can be reached from
other states sufficiently fast. Consequently, it is possible to
quickly identify the underlying MDP of a task.

Our main result is the following theorem: the overall sam-
ple complexity in solving T tasks is substantially smaller
than solving them individually without transfer.

Theorem 1 Given any ε and δ, run Algorithm 1 for T
tasks, each for H = Ω

(
DSA

Γ2 log T
δ

)
steps. Then, the algo-

rithm will follow an ε-optimal policy on all but Õ
(
ζVmax

ε(1−γ)

)

steps, with probability at least 1− δ, where

ζ = Õ

(
T1ζs + C̄ζs + (T − T1)

(
NV 2

maxC̄

ε2(1− γ)2
+
DC2

Γ2

))
,

and ζs = Õ
(
NSAV 2

max

ε2(1−γ)2

)
, with probability at least 1− δ.

In particular, in phase 2, our Algorithm 1 has a sample com-
plexity that is independent of the size of the state and ac-
tion spaces, trading this for a dependence on the number of
models C̄ and diameterD. In contrast, applying single-task
learning without transfer in T tasks can lead to an overall
sample complexity of Õ(Tζs) = Õ(TNSA). Since we ex-
pect C̄ � SA, this yields a significant improvement over
single-task reinforcement learners (as long as D is not too
large), whose sample complexity has at least a linear de-
pendence on the size of the state–action space [Strehl et al.,
2006b, Szita and Szepesvári, 2010], and some have a poly-
nomial dependence on the size of the state and/or action
spaces. We expect this reduction in sample complexity to
also lead to improved empirical performance, and verify
this in an experiment later.

A few lemmas are needed to prove the main theorem.

Lemma 1 If we set T1 = p−1
min ln C̄/δ, then with probabil-

ity 1− δ, all MDPs will be encountered in phase 1.

Proof. In the T1 samples in phase 1, the probability that
every MDP is seen at least once is no smaller than 1 −
C̄(1− pmin)T1 . Setting this lower bound to 1− δ, solving
for T1, and using the inequality ln(1 − x) < −x, we get
T1 = 1

pmin
ln C̄

δ is sufficient. �

Lemma 2 If all tasks are run for H = Õ
(
DSA

Γ2

)
steps,

then with probability 1− δ, the following hold:

1. Every state–action in every task receives at least
Ω(Γ−2 lnT/δ) samples from that task;

2. The tasks encountered in phase 1 will be grouped cor-
rectly with all other tasks corresponding to the same
(hidden) MDP;

3. Each task in phase 2 will be identified correctly and
its counts added to the correct MDP.

Proof. Assumption 4 ensures that any state is reachable
from any other state within 2D steps with probability at
least 0.5, by Markov’s inequality. Chernoff’s inequality,
combined with a union bound over all T tasks and all SA
state–action pairs, implies that with probability at least 1−
δ, all state–actions can be visited Ω(Γ−2 ln TSA

δ ) times as
long as sufficiently large H .

The second statement is proved by Hoeffding’s inequality.
After phase 1 each task will have at least Ω(Γ−2 lnT/δ)
samples for each state–action with high probability. In
order to accurately merge tasks into groups implicitly as-
sociated with the same underlying MDP, we note that by
assumption, any two different MDPs must have dynamics
that differ by at least Γ in at least one state–action. In order
to detect such a difference, it is sufficient to estimate the
models of each state–action to an `2-accuracy of Γ/4. In
this case, the `2-difference between any two MDPs must
exceed Γ/2 in at least one state–action pair. A similar anal-
ysis of two tasks which come from the same MDP implies
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that the difference estimated mean rewards can be at most
Γ/2 for all state–actions. This implies that tasks can be
clustered into groups corresponding to all tasks from the
same MDP by combining tasks whose reward models dif-
fer by no more than Γ/2 across all state–action pairs. This
is ensured by Hoeffding’s inequality with a union bound,
resulting in the sample size of Ω

(
Γ−2 ln TSA

δ

)
.

The third part requires that each tasks’s MDP identity can
be correctly identified with high probability in phase 2,
which can be proved similarly to the second part. �
The next lemma shows, on average, each state transition
contains information to distinguish the true MDP model
from others. Let θ1 and θ2 be two (S+1)-dimensional vec-
tors, representing two MDP models for some state–action
(s, a). Let θ̂1 and θ̂2 be their estimates that have confidence
radius δθ1 and δθ2, respectively; that is,

∥∥∥θ1 − θ̂1

∥∥∥ ≤ δθ1

and similar for θ2. For a transition (s, a, r, s′), define the
square loss of estimated model θ̂i by

`(θ̂i) =
∑

1≤τ≤S,τ 6=s′
θ̂i(τ)2+(θ̂i(s

′)−1)2+(θ̂i(S+1)−r)2.

Lemma 3 If θ1 is the true model for generating the transi-
tion (s, a, r, s′), then

Eθ1
[
`(θ̂2)− `(θ̂1)

]
≥
∥∥∥θ̂1 − θ̂2

∥∥∥
(∥∥∥θ̂1 − θ̂2

∥∥∥− 2 ‖δθ1‖
)
.

Proof. Written out explicitly, the left-hand side becomes
∑

i

(
θ1(i)

(
(1− θ̂2(i))2 − (1− θ̂1(i))2

)

+ (1− θ1(i))(θ̂2(i)2 − θ̂1(i)2)
)

+Er∼θ1
[
(r − θ2(S + 1))2 − (r − θ1(S + 1))2

]
.

Some algebra simplifies the above as:

S+1∑

τ=1

(
θ̂1(τ)− θ̂2(τ)

)(
2θ1(τ)− θ̂1(τ)− θ̂2(τ)

)

=
S+1∑

τ=1

(
θ̂1(τ)− θ̂2(τ)

)(
θ̂1(τ)− θ̂2(τ)2θ1(τ)− 2θ̂1(τ)

)

=
∥∥∥θ̂1 − θ̂2

∥∥∥
2

+ 2〈θ̂1 − θ̂2, θ1 − θ̂1〉

≥
∥∥∥θ̂1 − θ̂2

∥∥∥
2

− 2
∥∥∥θ̂1 − θ̂2

∥∥∥
∥∥∥θ1 − θ̂1

∥∥∥

≥
∥∥∥θ̂1 − θ̂2

∥∥∥
(∥∥∥θ̂1 − θ̂2

∥∥∥− 2 ‖δθ1‖
)
,

where the first inequality is due to Cauchy inequality, and
the second to the condition in the lemma. �
We are going to apply a generic PAC-MDP theorem of
Strehl et al. [2006a] to analyze the sample complexity
of our algorithm. As usual, define a state–action to be

known if its reward estimate is within Θ(ε(1 − γ)) ac-
curacy, and its next-state transition probability estimate is
within Θ(ε(1 − γ)/Vmax) in terms of total variation. The
next lemma bounds the number of visits to unknown state–
actions in the entire second phase.

Lemma 4 The total number of visits to unknown state–
actions in the the second phase is

Õ

(
(T − T1)DC2

Γ2
+
NV 2

maxC(T − T1)

ε2(1− γ)2
ln
C

δ
+ Cζs

)
.

Proof. (sketch) As explained earlier, Algorithm 2 starts
with model identification, and then switches to single-task
E3. The first term in the bound corresponds to the model
identification step. Note that, for a set of C models, there
are at most C-choose-2, namely O(C2), many informa-
tive states to fully identify a model. Therefore, our al-
gorithm only needs to reach these informative states be-
fore figuring out the true model. Similar to the proof of
Lemma 2 (part 1), each such state can be visited Θ(Γ−2)
times in Õ(DΓ−2) steps. So, Õ(DΓ−2C2) steps suffice to
visit all these informative states sufficiently often.

The rest of the proof (for the second and third terms) con-
sists of two parts. The first assumes the underlying MDP
identity is known at the beginning of each task. In our algo-
rithm, however, the MDP identity is unknown until all but
one model is eliminated. Then, the second part shows such
a delay of MDP identification is insignificant with respect
to the number of visits to unknown state–actions.

We begin with the assumption that the underlying MDP
identity is given at the beginning of each task. Although
the algorithm knows which MDP it is in in the current task,
it still follows the same logic in the pseudocode for model
elimination and identification. The only advantage it has
is to “boost” its history with samples of previous tasks of
the same MDP right after the task begins, rather than at
the end of the task. This is like single-task learning by
“concatenating” tasks of the same MDP into one big task.

In this scenario, an unknown state–action (s, a) implies at
least one of the following must be true. The first is when
the number of samples of (s, a) in some model has not
exceeded the known threshold ζs/(SA). For this case,
since the samples of (s, a) for the same MDP accumu-
lates over tasks, there can be at most ζs/(SA) visits to un-
known (s, a) pairs for a single MDP model, and a total of
Cζs/(SA) visits to unknown (s, a) across all C models. In
the other case, at least two models in M has a sufficient
difference in their estimates of the model parameters for
(s, a). Using Lemma 3, one can calculate the expected dif-
ference in square loss between the true model and a wrong
model. Following similar steps as in [Li et al., 2011],3

we can see the squared difference on average is at least
3The noisy union algorithm of [Li et al., 2011] is based on
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Θ(ε2(1−γ)2/(V 2
maxN)), and afterO(

NV 2
maxC

ε2(1−γ)2 ln CT
δ ) vis-

its to such state–actions, all models but the true one will be
eliminated, with probability at least 1− δ

CT . Using a union
bound over all tasks in phase 2, we have that, with proba-
bility at least 1 − δ, the same statement holds for all tasks
in phase 2. Details will be given in a full version.

The first part of the proof is now completed, showing that
when the task identity is given at the beginning of a task,
the total number of visits to unknown state–actions is at
most O

(
NV 2

maxC(T−T1)
ε2(1−γ)2 ln C

δ + Cζs

)
.

We now handle the need for MDP identification, which pre-
vents samples in the present task to contribute to the cor-
responding model until the underlying MDP is identified.
Consider any state–action pair (s, a), and a fixed task in
phase 2. At the beginning of the task, the algorithm has
access to C models, the i-th of which has accumulated Ui
samples for (s, a). After the task, the true MDP (say, model
1, without loss of generality) is identified, whose sample
count for (s, a) becomes U ′1 ← U1 + U0, where U0 is the
number of visits to (s, a) in the present task. For other
models i > 1, U ′i ← Ui.

Consider three situations regarding the sample sizes U1

and U ′1. In the first case, U1 < U ′1 < ζs/(SA), so
our multi-task RL algorithm behaves identically no mat-
ter whether the samples contribute to the true model esti-
mation immediately or at the end of the task, since (s, a)
will remain unknown in either situation. In the second
case, ζs/(SA) ≤ U1 < U ′1, so (s, a) is already know
at the beginning of the task, and additional samples for
(s, a) does not change the algorithm, or increase the num-
ber of visits to unknown state–actions. In the last case, we
have U1 < ζs/(SA) ≤ U ′1. Recall that our algorithm
declares a state–action to be known if it has been visited
ζs/(SA) times in a single task, so U0 ≤ ζs/(SA). Hence,
U ′1 = U1 +U0 < 2ζs/(SA). Applying this inequality to all
state–actions and all MDPs, we conclude that the number
of visits to unknown states is at most 2Cζs.

Part II above shows the delay in sample accumulation can
only cause up to a constant factor increase in the number
of visits to unknown state–actions. The lemma follows im-
mediately from the conclusion of part I. �
We are now fully equipped to prove the main result:

Proof. (of Theorem 1) We will use the generic PAC-MDP
theorem of Strehl et al. [2006a] by verifying the three
needed conditions hold. Although the theorem of [Strehl
et al., 2006a] is stated for single-task RL, the proof works
without essential changes in multi-task RL.

The first condition holds since the value function is opti-

scalar predictions and observations, while we are dealing with
(S+1)-dimensional vectors. The only substantial change to their
proof is to replace the application of Hoeffding’s inequality with
its vector-valued extensions, such as Lemma 5 in the appendix.
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Figure 1: Gridworld domain

mistic with high probability, by construction of the known-
state MDPs when running E3 in the tasks.

The second condition also holds. Whenever a state–
action becomes known, its reward estimate is within ε(1−
γ) accuracy, and the transition estimate is within ε(1 −
γ)/(Vmax

√
N) accuracy measured by `2 error. Using the

inequality ‖v‖1 ≤ ‖v‖2
√
d, where d is the dimension

of vector v, we know the transition estimate is within
ε(1 − γ)/Vmax accuracy measured by total variation. The
simulation lemma (see, e.g., [Strehl et al., 2006a]) then im-
plies the accuracy condition holds.

What remains to be shown is that the third condition holds;
namely, we will find a bound on the total number of times
an unknown state–action pair is visited, across all T tasks.
E3 is executed on each task in phase 1. Prior analysis
for Rmax and MBIE (see e.g. [Kakade, 2003, Strehl and
Littman, 2008]) applies similarly to E3, implying that the
number of visits to unknown state–action pairs on a sin-
gle MDP at most

(
SANV 2

max

ε2(1−γ)2

)
. From Lemma 1, after T1

tasks, all tasks in C have been encountered with probability
at least 1 − δ. Therefore, with probability at least 1 − δ,
the total number of visits to unknown state–action pairs in
phase 1 is at most ζsT1.

In Phase 2, Algorithm 1 runs E3 in individual tasks
but transfers samples from one task to another of the
same underlying MDP. We have shown in Lemma 4
the number of visits to unknown state–actions is at
most O

(
(T−T1)DC2

Γ2 +
NV 2

maxC(T−T1)
ε2(1−γ)2 ln C

δ + Cζs

)
.

Hence, the total number of visits to unknown
state–actions during all T tasks is at most
O
(
ζsT1 + (T − T1)

(
DC2

Γ2 +
NV 2

maxC
ε2(1−γ)2 ln C

δ

)
+ Cζs

)
.

The theorem follows immediately by the PAC-MDP
theorem of [Strehl et al., 2006a]. �

5 EXPERIMENTS

Although the main contribution of our paper is to provide
the first theoretical justification for online multi-task Rl,
we also provide numerical evidence showing the empirical
benefit of our proposed approach over single-task learning
as well as a state-of-the-art multi-task algorithm.
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There are C = 3 possible MDPs, each with the same 5× 5
state space as shown in the gridworld layout of Figure 5.
The start state is always the center state (s13). There are 4
actions that succeed in generally moving the agent in the
intended cardinal direction with probability 0.85, going in
the other directions (unless there is a wall) with probability
0.05 each. Three of the corners (s5, s21, s25) exhibit differ-
ent dynamics: the agent stays in the state with probability
0.95, or otherwise transitions back to the start state. The
three MDPs differ only in their reward models. The reward
for each state is drawn from a binomial model. Intuitively,
in each MDP, one of the corners provides a high reward,
two others provide low reward, and there is one additional
state whose medium reward can help distinguish the MDPs.
More precisely, In MDP 1, s21 has a binomial parameter of
0.99, s6 has a parameter of 0.6, s5 and s25 have a param-
eter of 0, and all other states have a parameter of 0.1. In
MDP 2, s5 has a binomial parameter of 0.99, s2 has a pa-
rameter of 0.6, s21 and s25 have a parameter of 0, and all
other states have a parameter of 0.1. In MDP 3 s25 has a
binomial parameter of 0.99, s1 has a parameter of 0.6, s21

and s25 have a parameter of 0, and all other states have a
parameter of 0.1. A new task is sampled from one of these
three MDPs with equal probability.

We compare our proposed approach to the most closely re-
lated approach we are aware of, Wilson et al. [2007]’s algo-
rithm on hierarchical multi-task learning (HMTL). Wilson
et al. learn a Bayesian mixture model over a set of MDP
classes as the agent acts in a series of MDPs, and use prior
to transfer knowledge to a new task sampled from one of
those classes. When acting in a new MDP, their approach
does not explicitly balance exploration and exploitation; in-
stead, it selects the current maximum a posterior (MAP) es-
timate of the model parameters, computes a policy for this
model, and uses this policy for a fixed number of steps, be-
fore re-computing the MAP model. Wilson et al. did not
provide formal performance guarantees for their approach,
but they did achieve promising results on both a simulated
domain and a real-time strategy game with HMTL. When
applying their approach to our setting, we limit the hierar-
chy to one level, ensuring that tasks are directly sampled
from a mixture of MDPs. We also provide their algorithm
with an upper bound on the number of MDPs, though their
algorithm is capable to learning this directly.

In both our algorithm and HMTL there are several param-
eters to be set. For HMTL we set the interval between
recomputing the MAP model parameters at 10 steps: this
was chosen after informal experimentation suggested this
improved performance compared to longer intervals. In
our approach we set the threshold for a parameter to be
known at m = 5. The number of tasks in phase 1 was
set to d3 ln(3/0.05)e = 13, matching the required length
specified by Lemma 1. We ran each task for a horizon of
H = 3000 steps, and performed multi-task reinforcement
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Figure 2: Cumulative average reward per task.

learning across 150 tasks per round. We then repeated this
process for 20 rounds.

Figure 5 displays the cumulative per-task reward for each
method, averaged across 20 rounds. As expected, our ap-
proach performs worse during phase 1, before it has ob-
tained a good estimate of each of the 3 MDPs. In phase
2, our approach performs well, successfully leveraging its
knowledge of the models to quickly determine the new
task’s MDP identity, and then act optimally for that MDP
for the remainder of the task. Since phase 1 of our al-
gorithm runs single-task E3, we can see that transferring
knowledge enables our approach to perform substantially
better than single-task E3 (p < 10−4 in a Mann-Whitney
U test comparing the first task performance to the last).

HMTL does quite well even at the start, because the al-
gorithm directly exploits the current estimated parameters,
and once the agent bumps into a good state, the algorithm
can leverage that information for the remainder of the task.
However, HMTL does not significantly improve beyond its
original performance, and performs similarly across the en-
tire length of a multi-task round. We hypothesize that this
is because in each task, this approach is not explicitly per-
forming exploration, and therefore may only get good esti-
mates of the parameters of some of the state–action pairs.
This means it can be harder to learn a good estimate of
the mixture model over the MDPs. Indeed, when we ex-
amine the multi-task posterior learned by HMTL, we find
that the resulting MDPs appear to be mixtures of the true
set of MDPs. We compare the total reward obtained in a
single round (of all 150 tasks in both phases) of the two ap-
proaches, and our approach achieved significantly higher
total reward (p = 0.03 in a Mann-Whitney U test).

These results provide empirical evidence that our algo-
rithm both achieves significantly better sample-complexity
results than prior single-task algorithms as well as a state-
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of-the-art multi-task algorithm, and these gains can indeed
translate to improved empirical performance.

6 RELATED WORK

Our setting most closely matches that of Wilson et al.
[2007]; however, they consider a more general two-level
hierarchical model where tasks are sampled from a class
distribution, and there is a mixture over classes. The au-
thors update a Bayesian prior over the hierarchical model
parameters after finishing acting in each task using MCMC,
and use and update a local version of this prior during each
single-task by sampling an MDP from this prior, following
the model’s optimal policy for a fixed number of steps, up-
dating the prior, and repeating. Though the authors demon-
strate promising empirical learning improvements due to
transfer, unlike our work, no formal analysis is provided.

Other work studies the related problem of transfer RL.
For example, Lazaric and Restelli [2011] provide value-
function approximation error bounds of the target task in
a batch setting, as opposed to our online setting where the
agent has to balance exploration and exploitation. Their
bounds quantify the error potentially introduced by trans-
ferring source-task samples to an unrelated target task as
well as the reduction in error due to increasing the num-
ber of samples from the source. Sorg and Singh [2009]
prove bounds on transferring the state–action values from
a source MDP to a target MDP, where both MDP models
are known and there exists a soft homomorphism between
the two state spaces. If the target MDP model is unknown,
the authors present a promising heuristic approach without
performance guarantees. More recently, Mann and Choe
[2012] introduce an algorithm that uses a slight modifica-
tion of a source task’s optimal value as an optimistic ini-
tial value for a subset of the target task’s state–action pairs,
given a mapping between the tasks that ensures the associ-
ated value functions have similar values. The authors pro-
vide characteristics of this mapping that will improve sam-
ple complexity of their algorithm. While interesting, no al-
gorithm was given that could meet these conditions, and no
sample-complexity bounds were provided. Perhaps most
similar to us is Mehta et al. [2008], who consider sample
complexity for transfer learning across semi-MDPs with
identical (S,A) and transition models, and a distribution
of reward weight vectors. The authors provide a bound on
the number of tasks needed until they will be able to imme-
diately identify a close-to-optimal policy for a future task.
Compared to our work: (1) the authors only use transferred
information to initialize the value function in the new task,
(2) their algorithm can produce negative transfer, and more
significantly, (3) the authors assume that the model of each
new semi-MDP is completely specified.

The model-elimination idea in our Algorithm 2 is related
to several previous work on single-task RL. The most rel-

evant is probably the (more special) noisy union algorithm
of Li et al. [2011] and its application to Met-Rmax [Diuk
et al., 2009]. Here, the noisy union algorithm is general-
ized so that model elimination is possible even before a
state–action becomes fully known. Similar ideas are also
found in the Parameter Elimination algorithm [Dyagilev
et al., 2008], which uses Wald’s Sequential Probability Ra-
tio Test (SPRT) to eliminate models, as opposed to the sim-
pler square loss metric we use here. Finally, Lattimore et al.
[2013] employ model elimination in their Maximum Ex-
ploration algorithm that works in general reinforcement-
learning problems beyond MDPs.

7 CONCLUSIONS

In this paper, we analyze the sample complexity of explo-
ration for a multi-task reinforcement-learning algorithm,
and show substantial advantage compared to single-task
learning. In contrast to the majority of the literature, this
work is theoretically grounded, using tools in the PAC-
MDP framework. Furthermore, we also show the possi-
bility of avoiding negative transfer in multi-task RL.

These promising results suggest several interesting direc-
tions for future research. One of them is to relax some of
the assumptions and to develop more broadly applicable al-
gorithms. Second, we intend to test the proposed algorithm
in benchmark problems and investigate its empirical advan-
tage compared to single-task RL, as well as its robustness
with respect to parameters like C̄. Third, it is interesting
to extend the current results beyond finite MDPs, possi-
bly relying on function approximation or compact model
representations like dynamic Bayes networks [Dean and
Kanazawa, 1989]. Finally, our algorithm makes use only
of the learned MDP parameters, not of the task distribution
overM. Although our own attempt has not yet identified
theoretical benefits from such information, we suspect at
the least that it will be empirically beneficial.

A A CONCENTRATION INEQUALITY

The following result extends Hoeffding’s inequality from
real-valued random variables to vector-valued random vari-
ables. The tail probability upper bound here is only a con-
stant factor worse than that of Hoeffding’s.

Lemma 5 (Hayes [2005]) For vector-valued martingale,
Pr (‖Xn‖ ≥ a) ≤ 2 exp

(
2− a2

2n

)
; or equivalently,

Pr
(∥∥Xn

n

∥∥ ≥ ε
)
≤ 2 exp

(
2− nε2

2

)
.
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Abstract

Using the theory of group action, we first in-
troduce the concept of the automorphism group
of an exponential family or a graphical model,
thus formalizing the general notion of symme-
try of a probabilistic model. This automorphism
group provides a precise mathematical frame-
work for lifted inference in the general exponen-
tial family. Its group action partitions the set
of random variables and feature functions into
equivalent classes (called orbits) having identical
marginals and expectations. Then the inference
problem is effectively reduced to that of com-
puting marginals or expectations for each class,
thus avoiding the need to deal with each individ-
ual variable or feature. We demonstrate the use-
fulness of this general framework in lifting two
classes of variational approximation for maxi-
mum a posteriori (MAP) inference: local linear
programming (LP) relaxation and local LP re-
laxation with cycle constraints; the latter yields
the first lifted variational inference algorithm that
operates on a bound tighter than the local con-
straints.

1 Introduction
Classical approaches to probabilistic inference an area
now reasonably well understood have traditionally ex-
ploited low tree-width and sparsity of the graphical model
for efficient exact and approximate inference. A more re-
cent approach known as lifted inference [4, 16, 7, 8] has
demonstrated the possibility to perform very efficient in-
ference in highly-connected, but symmetric models, such as
those arising in the context of relational (first-order) prob-
abilistic models.

Symmetry is the essential element of lifted inference.
But currently, no formally defined notion of symmetry of
a probabilistic model exists, and thus no formal account of
what “exploiting symmetry” means in lifted inference has
been defined. As a result, most previous work has derived
lifted versions of existing propositional algorithms from a

procedural perspective: for models that exhibit symme-
tries, propositional inference algorithms tend to perform
the same computations several times, and their lifted coun-
terparts are designed to perform these operation once. This
approach severely limits the theoretical understanding of
the nature of lifted inference. In practice, this approach
also limits the class of inference algorithms that we can
lift. For example, many ground inference updates (e.g.,
asynchronous belief propagation, max-product linear pro-
gramming (MPLP) [5]) are made in a sequence that breaks
the symmetry of the original model. Likewise, with the
advance in modern optimization, many algorithms rely on
off-the-shelf solvers in their inner loop, and lifting these
solvers is not practical.

In this work, we propose an alternative approach: rather
than lifting inference algorithms, we lift their variational
formulations, the optimization problems that variational in-
ference algorithms seek to solve. These lifted formulations
can then be tackled with the usual optimization toolbox
(off-the-shelf solvers, cutting plane algorithms, dual block
coordinate descent updates etc.). If the original model ex-
hibits symmetry, then the lifted formulations will generally
be more compact than their propositional counterparts, and
hence their optimization is likely to be more efficient. This
declarative approach to lifting gives rise to a new class of
algorithms, including the first lifted variational algorithm
that operates on a bound tighter than the local constraints.

This paper is divided into three parts: In the first part,
we show how to find a lifting partition: sets of random
variables and feature functions that have identical expecta-
tions. We present a formal account of symmetry in graph-
ical models through automorphism groups of exponential
families. When there is parameter-tying, the automorphism
group leads to a subgroup, termed the lifting group, which
also captures symmetry in the parameters. By linking the
lifting group to the well-known subject of graph auto-
morphisms [10, 6], we can leverage off-the-shelf tools to
find lifting partitions as orbits of the lifting group. Fur-
ther, by connecting the lifting group to renaming permuta-
tions of logical constants in Markov Logic Network (MLN)
[14], we find lifting partitions without unrolling the MLN.
In work done concurrently and independently from ours,
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Niepert [12, 13] presented similar ideas for exploiting or-
bits of permutation groups in lifting Markov Chain Monte
Carlo (MCMC) algorithms. Though the ideas are similar,
unique to our contribution is the rigorously defined auto-
morphism group of a general exponential family that en-
ables formal proofs of all subsequent results.

In the second part, we are given a lifting partition, and we
use it to collapse the variational variables and constraint
set. In particular, we investigate two popular variational
relaxations of MAP inference. The first one is based on the
local polytope, and the second one is based on a tightening
of the local polytope with cycle constraints. For the latter,
we also develop a lifted separation oracle to find violated
constraints in the reduced yet still exponential lifted cycle
polytope.

In the third part, we evaluate the novel algorithms that our
framework gives rise to. Using an off-the-shelf LP solver,
we show that for models with symmetry, lifted MAP in the
local polytope is more efficient than propositional MAP.
Likewise, for models with symmetry and repulsion, the
lifted cycle polytope yields more accurate results than its
local counterpart, and requires less runtime than the propo-
sitional version. Finally, we show the effectiveness of the
renaming approach to finding lifting partitions. Although
the proofs are non-trivial, due to space restrictions, they
are omitted but can be found in [3].

2 Background on Groups and Graph
Automorphisms

A partition ∆ = {∆1 . . .∆k} of a set V is a set of disjoint
nonempty subsets of V whose union is V . Each element
∆i is called a cell; |∆| is thus the number of cells or the
size of the partition. A partition ∆ defines an equivalence
relation ∆∼ on V by letting u ∆∼ v iff u and v are in the same
cell. A partition Λ is finer than ∆ if every cell of Λ is a
subset of some cell of ∆.

We now briefly review the important concepts in group
theory and graph automorphisms [6]. A mathematical
group (G, ·) is a non-empty set G containing an identity
element, denoted by 1, and a binary operation · which is
associative and closed in G. The group identity satisfies
∀g ∈ G, 1 ·g = g ·1 = g, and every element of G is invert-
ible, i.e., ∃g−1 such that g · g−1 = g−1 · g = 1. A group
containing 1 as its only element is called a trivial group. A
subgroup of G is a subset of G that forms a group with the
same binary operation as G. We write G1 ≤ G2 when G1

is a subgroup1 of G2.
A permutation of a set V is a bijective mapping from

V to itself. Two permutations can be composed together
via the usual composition of two mappings. Any set of
permutations (on V ) that contains the identity permutation
and is closed under composition and taking inverse thus
forms a group. The set of all permutations of V is called
the symmetric group S(V ). The symmetric group Sn is the

1We use the notation G1 � G2 to mean G1 is isomorphic to a
subgroup of G2.

set of all permutations of {1, 2, . . . , n}. For a permutation
π ∈ Sn, π(i) is the image of i under π. For each vector
x ∈ Xn, the vector x permuted by π, denoted by xπ , is
(xπ(1) . . . xπ(n)); for a set A ⊂ Xn, the set A permuted by
π, denoted by Aπ is {xπ|x ∈ A}.

A subgroup G of S(V ) induces the following equivalence
relation on V : v ∼ v′ iff there exists g ∈ G such that
g(v) = v′ (the fact that∼ is an equivalence relation follows
from the definition of a group). G therefore induces a parti-
tion on V , called the orbit partition, denoted by OrbG(V ).
The orbit of an element v ∈ V is the set of elements in V
equivalent to v: orbG(v) = {v′ ∈ V| v′ ∼ v}.

A group G can induce an orbit partition on any set U as
long as members of G can be viewed as (not necessarily
distinct) permutations of U . In this case, there is a group
homomorphism from G to a subgroup of S(U), and the
group G is said to act on the set U . A subgroup G1 ≤ G
will also act on U and induces a finer orbit partition. Given
a set element u ∈ U and a group element g ∈ G, if g(u) =
u then g is said to stabilize u. If ∀g ∈ G, g(u) = u, then
the group G is said to stabilize u.

Group action is a powerful concept since it allows the
same group G to act (hence induce orbit partitions) on
many different sets. For example, Sn acts on the set of
n-dimension vectors Xn via the action π(x) = xπ . Sn also
acts on the set of n-vertex graphs in the following way. Ev-
ery permutation π ∈ Sn transforms a graph G to its isomor-
phic variant G

′
(i.e., {i, j} is an edge in G iff {π(i), π(j)}

is an edge in G
′
). Hence, it can be viewed as a bijection

(permutation) on the set of n-vertex graphs. If π(G) = G
then π stabilizes G and is called an automorphism of the
graph G. The set of all automorphisms of G forms a group
named the automorphism group of G, denoted by A(G)
(see Figure 1). It is clear that A(G) is a subgroup of Sn.
The cardinality of A(G) indicates the level of symmetry
in G. If A(G) is the trivial group then G is asymmetric;
if A(G) = Sn then G either is fully connected or has no
edges. This concept of graph automorphism directly gen-
eralizes to graphs with additional structures such as direc-
tions, colors, etc.

If we now ask what elements of G are indistinguish-
able up to symmetry, the automorphism group A(G) can
give us the precise answer. For example, if v′ can be ob-
tained from a node v via some permutation π in A(G),
then these two nodes are indistinguishable and must have
the same the graph properties (e.g., degree, averaged dis-
tance to other nodes, etc.). A(G) thus partitions the set
of nodes V into the node-orbits OrbA(G)(V ) where each
node orbit is a set of vertices equivalent to one another
up to some node relabeling. Furthermore, A(G) also acts
on the set of graph edges E of G by letting π({u, v}) =
{π(u), π(v)} and this action partitionsE into a set of edge-
orbits OrbA(G)(E). Similarly, we can also obtain the set of

arc-orbits OrbA(G)(
→
E).

Computing the automorphism group of a graph is as dif-
ficult as determining whether two graphs are isomorphic, a
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S5 S4 x S3 D5 

(a) (b) (c) (d) 

1 

Figure 1: Graphs and their automorphism groups: (a) A(K5) =
S5; (b) A(K4×3) = S4 × S3; (c) this graph can be rotated or
flipped, yielding the automorphism dihedral group D5; and (d)
this is known as the Frucht’s graph, a regular but asymmetric
graph. Blue and red colors in (a)-(c) denote different node orbits.

problem that is known to be in NP, but for which it is un-
known whether it has a polynomial time algorithm or is NP-
complete. In practice, efficient computer programs, such as
nauty2 [10], exist for computing automorphism groups of
graphs.

3 Symmetry of the Exponential Family
3.1 Exponential Family and Graphical Model
Consider an exponential family over n random variables
(xi)i∈V where V = {1 . . . n}, xi ∈ X with density func-
tion

F(x | θ) = h(x) exp (〈Φ(x), θ〉 −A(θ))

where h is the base density, Φ(x) = (φj(x))j∈I , I =
{1, 2, . . . ,m} is an m-dimensional feature vector, θ ∈ Rm
is the natural parameter, and A(θ) the log-partition func-
tion. Let Θ = {θ |A(θ) <∞} be the set of natural param-
eters,M = {µ ∈ Rm | ∃p, µ = EpΦ(x)} the set of realiz-
able mean parameters, A∗ :M→ R the convex dual of A,
and m : Θ → M the mean parameter mapping that maps
θ 7→ m(θ) = EθΦ(x). Note that m(Θ) = riM is the
relative interior ofM. For more details, see [19].

Often, a feature function φi depends only on a subset
of the variables in V . In this case we will write φi more
compactly in factorized form as φi(x) = fi(xi1 . . . xiK )
where the indices ij are distinct, i1 < i2 . . . < iK , and
fi cannot be reduced further, i.e., it must depend on all of
its arguments. To keep track of variable indices of argu-
ments of fi, we let scope(fi) denote its set of arguments,
ηi(k) = ik the k-th argument and |ηi| its number of ar-
guments. Factored forms of features can be encoded as a
hypergraph G [F ] of F (called the graph structure or graph-
ical model of F) with nodes V , and hyperedges (clusters)
{C|∃i, scope(fi) = C}. For models with pairwise features,
G is a standard graph.

For discrete random variables (i.e., X is finite), we of-
ten want to work with the overcomplete family Fo that
we now describe for the case with pairwise features. The
set of overcomplete features Io are indicator functions
on the nodes and edges of the graphical model G of
F : φou:t(x) = I {xu = t} , t ∈ X for each node u ∈
V (G); and φo{u:t,v:t′}(x) = I {xu = t, xv = t′} , t, t′ ∈ X
for each edge {u, v} ∈ E(G). The set of overcom-
plete realizable mean parameters Mo is also called the
marginal polytope because the overcomplete mean param-

2http://cs.anu.edu.au/people/bdm/nauty/

eter corresponds to node and edge marginal probabili-
ties. Given a parameter θ, the transformation of F(x|θ)
to its overcomplete representation is done by letting θo be
the corresponding parameter in the overcomplete family:
θou:t =

∑
i s.t. scope(fi)={u} fi(t)θi and (assuming u < v)

θo{u:t,v:t′} =
∑
i s.t. scope(fi)={u,v} fi(t, t

′)θi. Verifying that
Fo(x|θo) = F(x|θ) is straightforward.

3.2 Automorphism Group of an Exponential Family
We define the symmetry of an exponential family F as the
group of transformations that preserve F (hence preserve
h and Φ). The kind of transformation used will be a pair of
permutations (π, γ) where π permutes the set of variables
and γ permutes the feature vector.
Definition 1. An automorphism of the exponential family
F is a pair of permutations (π, γ) where π ∈ Sn, γ ∈ Sm
such that for all vectors x: h(xπ) = h(x) and Φγ

−1

(xπ) =
Φ(x) (or equivalently, Φ(xπ) = Φγ(x)).

Showing that the set of all automorphisms of F , denoted
by A[F ], forms a subgroup of Sn × Sm is straightforward.
This group acts on I by the permuting action of γ, and
on V by the permuting action of π. In the remainder of
this paper, h is always a symmetric function (e.g., h ≡ 1);
therefore, the condition h(xπ) = h(x) automatically holds.
Example 1. Let V = {1 . . . 4} and Φ = {f1 . . . f5} where
f1(x1, x2) = x1(1 − x2), f2(x1, x3) = x1(1 − x3),
f3(x2, x3) = x2x3, f4(x2, x4) = x4(1− x2), f5(x3, x4) =
x4(1 − x3). Then π = (1 ↔ 4) (2 ↔ 3), γ = (1 ↔
5) (2↔ 4) form an automorphism ofF , since Φγ

−1

(xπ) =
(φ5(x4 . . . x1), φ4(x4 . . . x1), . . . , φ1(x4 . . . x1)) =
(f5(x2, x1), f4(x3, x1), f3(x3, x2), f2(x4, x2), f1(x4, x3)) =

(x1(1−x2), x1(1−x3), x3x2, x4(1−x2), x4(1−x3))=
Φ(x1 . . . x4).

An automorphism as defined above preserves a number
of key characteristics of the exponential family F (such as
its natural parameter space, its mean parameter space, and
its log-partition function), as shown in the following theo-
rem.
Theorem 1. If (π, γ) ∈ A[F ] then

1. π ∈ A(G[F ]), i.e. π is an automorphism of the graph-
ical model graph G[F ].

2. Θγ = Θ and A(θγ) = A(θ) for all θ ∈ Θ.

3. F(xπ|θγ) = F(x|θ) for all x ∈ Xn, θ ∈ Θ.

4. mγ(θ) = m(θγ) for all θ ∈ Θ.

5. Mγ =M and A∗(µγ) = A∗(µ) for all µ ∈M.

3.3 Parameter Tying and the Lifting Group
We now consider a parameter-tying setting where some
components of θ are the same. Formally, a parti-
tion ∆ of I is called the parameter-tying partition iff
j

∆∼ j
′ ⇒ θj = θj′ . Let Rm∆ denote the subspace{

r ∈ Rm | rj = rj′ if j ∆∼ j′
}

. For any set S ⊂ Rm, let
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S∆ denote the set intersection S ∩ Rm∆ . Parameter ty-
ing is equivalent to restricting the natural parameter θ to
the set Θ∆. This is also equivalent to working with a
different exponential family with |∆| aggregating features(∑

j∈∆i
φj

)
i
. While this family has fewer parameters, it

is not obvious how it would help inference; moreover, in
working directly with the aggregation features, the struc-
ture of the original family is lost. Our goal is to study how
parameter-tying, coupled with the symmetry of the family
F , can lead to more efficient inference.

The automorphism group A[F ] preserves the family of
distributions F ; however, this group does not take any spe-
cific parameter θ into account. Of special interest is the
set of automorphisms that also preserve θ for every tied
parameter θ ∈ Θ∆. We will now formalize this con-
cept. Given a partition ∆, a permutation λ on I is con-
sistent with ∆ iff λ permutes only among elements of the
same cell of ∆. Clearly, for all θ ∈ Θ∆, θλ = θ. If
G is a group acting on I, we let G∆ denote the set of
group elements whose actions are consistent with ∆, that is
G∆ =

{
g ∈ G|∀u ∈ I, g(u)

∆∼ u
}

. It is straightforward
to verify that G∆ is a subgroup of G.
Definition 2. (Lifting Group) The lifting group corre-
sponding to the parameter-tying partition ∆ is A∆(F), the
subgroup of A[F ] whose member’s action is consistent
with ∆.

The lifting group A∆(F) thus stabilizes not just the fam-
ily F , but also every parameter θ ∈ Θ∆. Furthermore,
features in the same orbit induced by the lifting group must
have the same expectation (a consequence of theorem 1,
part 4). As we shall see in the later section, the lifting group
A∆(F) and its induced orbit partitions on the set of vari-
ables and features play a central role in our lifted variational
inference framework.

4 Detecting Symmetries in Exponential
Families

We now discuss the computation of the lifting group
A∆(F) and its orbit partitions. In practice, computing and
working with a subgroup of the lifting group suffice.
4.1 Detecting Symmetries via Graph Automorphisms
Our first approach is to construct a suitable graph whose
automorphism group is guaranteed to be a subgroup of
A∆(F), and thus any tool and algorithm for computing
graph automorphism can be applied. The constructed graph
resembles a factor graph representation of F . However, we
also use colors of factor nodes to mark feature functions
that are both identical and in the same cell of ∆, and col-
ors of edges to encode symmetry of the feature functions
themselves.
Definition 3. The colored factor graph induced by F and
∆, denoted by G∆[F ] is a bipartite graph with nodes
V (G) = {x1 . . . xn} ∪ {fi . . . fm} and edges E(G) ={{
xηi(k), fi

}
| i ∈ I, k = 1 . . . |ηi|

}
. Variable nodes are

assigned the same color which is different from the col-
ors of factor nodes. Factor nodes fi and fj have the same
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3 
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2 

f1 f2 f3 

f4 f5 

(b) 

1,4 

2,3 
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(a) 
Figure 2: Graph construction for computing the lifting group and
its orbits: (a) original graphical model of example 1; (b) con-
structed colored factor graphs, assuming all parameters are the
same (arrows represent first arguments of the asymmetric factors);
and (c) lifted graphical model with nodes representing node or-
bits and edges representing edge orbits of the original graphical
model.

color iff fi ≡ fj and i ∆∼ j. If the function fi is symmetric,
then all edges adjacent to fi have the same color; otherwise,
they are colored according to the argument number of fi,
i.e.,

{
xηi(k), fi

}
is assigned the k-th color.

Figure 2 shows the construction of the colored factor
graph for the exponential family in example 1 where we
have assumed that all the parameters are the same.
Theorem 2. The automorphism group A[G∆] of G∆[F ] is
a subgroup of A∆(F), i.e., A[G∆] ≤ A∆[F ].

Finding the automorphism group A[G∆] of the graph
G∆[F ] therefore yields a procedure to compute a subgroup
of A∆[F ]. Nauty, for example, directly implements opera-
tions of computing the automorphism group of a graph and
extracting the induced node orbits and edge orbits.
4.2 Symmetries of Markov Logic Networks
Markov Logic Network (MLN) [14] is a first-order prob-
abilistic model that defines an exponential family on ran-
dom structures (i.e., random graphs, hypergraphs, or more
generally random Herbrand models of the first-order lan-
guage). In this case, a subgroup of the lifting group can be
obtained via the symmetry of the unobserved constants in
the domain without the need to consider the ground graph-
ical model.

An MLN is prescribed by a list of weighted formulas
F1 . . . FK (consisting of a set of predicates, logical vari-
ables, constants, and a weight vector w) and a logical do-
mainD = {a1...a|D|}. LetD0 be the set of objects appear-
ing as constants in these formulas, then D∗ = D\D0 is the
set of objects inD that do not appear in these formulas. Let
Gr be the set of all ground predicates p(a1 . . . a`)’s. Given
a substitution s, Fi[s] denotes the result of applying the
substitution s to Fi and is a grounding of Fi if it does not
contain any free logical variables. The set of all ground-
ings of Fi is GrFi, and let GrF = GrF1 ∪ . . . ∪ GrFK .
Let ω be a truth assignment to all the ground predicates
in Gr and wi be the weight of the formula Fi. The MLN
corresponds to an exponential family FMLN where Gr is
the variable index set and each grounding Fi[s] ∈ GrFi
is a feature function φFi[s](ω) = I(ω � Fi[s]) with the
associated parameter θFi[s] = wi. Since all the ground fea-
tures of the formula Fi have the same parameter wi, the
MLN also induces the parameter-tying partition ∆MLN =
{{φF1[s](ω)} . . . {φFK [s](ω)}}.
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Let a renaming permutation r be a permutation over D
that fixes every object in D0 (i.e., r only permutes ob-
jects in D∗). Thus, the set of all such renaming permu-
tations is a group Gre isomorphic to the symmetric group
S(D∗). Consider the following action of Gre on Gr : πr :
p(a1 . . . a`) 7→ p(r(a1) . . . r(a`)), and the action on GrF
γr : Fi[s] 7→ Fi[r(s)] where r(s = (x1/a1, ..., xk/ak)) =
(x1/r(a1), ..., xk/r(ak)). Intuitively, πr and γr rename
the constants in each ground predicate p(a1 . . . a`) and
ground formula Fi[s] according to the renaming permuta-
tion r. The following is a consequence of Lemma 1 from
Bui et al. [2].
Theorem 3. For every renaming permutation r, (πr, γr) ∈
A[FMLN ]. Further, the renaming group Gre is isomor-
phic to a subgroup of the MLN’s lifting group: Gre �
A∆MLN

[FMLN ].
Orbit partitions induced by Gre on the set of pred-

icate groundings can be derived directly from the
first-order representation of an MLN without consid-
ering its ground graphical model. The size of this
orbit partition depends only on the number of ob-
served constants |Do|, and does not depend on ac-
tual domain size |D|. For example, if q(., .) is a
2-ary predicate and there is one observed constant a,
then we obtain the following partition of the ground-
ings of q: {q(a, a)}, {q(x, x)|x 6= a}, {q(a, x)|x 6= a},
{q(x, a)|x 6= a}, {q(x, y)|x 6= y, x 6= a, y 6= a}. Similar
partitions on the set of factors and variable clusters can also
be obtained with complexity polynomial in |Do| and inde-
pendent of |D|.
5 Lifted Variational Inference Framework
We now discuss the principle of how to exploit the sym-
metry of the exponential family graphical model for lifted
variational inference. In the general variational inference
framework [19], marginal inference is viewed as a means
to compute the mean parameter µ = m(θ) given a natural
parameter θ by solving the optimization problem

sup
µ∈M

〈θ, µ〉 −A∗(µ). (1)

For discrete models, the variational problem is more con-
veniently posed using the overcomplete parameterization,
for marginal and MAP inference

sup
µo∈Mo

〈µo, θo〉 −Ao∗(µo) (2)

max
x∈Xn

lnF(x|θ) = sup
µo∈Mo

〈µo, θo〉+ const. (3)

We first focus on lifting the main variational problem in (1)
and leave discussions of the other problems to subsection
5.3.

5.1 Lifting Partition
Consider the parameter-tying scenario where θ ∈ Θ∆ for a
given partition ∆ on the feature set I. With this restriction,
the mean parameter by definition must lie inside m(Θ∆),

Objective function 

Marginal Polytope 
Relaxed Polytope 

Symmetrized 
subspace 

Lifte
d Polyto

pe 

Figure 3: (Best viewed in color) Symmetrized subspace

so in theory, the domain of the variational optimization
problems can be restricted to m(Θ∆). The main difficulty
here lies in how to characterize m(Θ∆).

We first make a rather intuitive observation: for general
convex optimization problems with symmetric objective
functions and constraints, the optimal solutions are trapped
in a lower-dimensional symmetrized subspace (see Figure
5.1). This is formalized in lemma 1, whose proof makes
use of the orbit-stabilizer theorem, an elementary result in
group theory.
Definition 4. (Lifting partition) Consider the convex op-
timization infx∈S J(x) where S ⊂ Rm is a convex set
and J is a convex function. A partition ϕ of {1 . . .m}
is a lifting partition for the aforementioned problem iff
infx∈S J(x) = infx∈Sϕ

J(x) (i.e., the constraint set S
can be restricted to Sϕ = S ∩ Rmϕ ).
Lemma 1. Let G act on I = {1 . . .m}, so that every g ∈
G corresponds to some permutation on {1 . . .m}. If Sg =
S and J(xg) = J(x) for every g ∈ G (i.e., G stabilizes
both S and J) then the induced orbit partition OrbG(I) is
a lifting partition for infx∈S J(x).

The second key observation is that all the above vari-
ational problems inherit the same symmetries of the
parameter-tying exponential family, as captured in the lift-
ing group A∆[F ]. Therefore, the lifting group will play the
role of G in lemma 1 in lifting all of our variational prob-
lems.

Returning to (1), our general principle of lifted varia-
tional inference is captured in the following therem.
Theorem 4. Let ϕ = ϕ(∆) = OrbA∆[F ](I). Then for all
θ ∈ Θ∆, ϕ is a lifting partition for (1), i.e.

sup
µ∈M

〈θ, µ〉 −A∗(µ) = sup
µ∈Mϕ

〈θ, µ〉 −A∗(µ) (4)

Sktech of proof. From theorem 1, A[F ] stabilizesM and
A∗; further, its subgroup A∆(F) stabilizes every parameter
θ ∈ Θ∆. Thus, the lifting group A∆(F) stabilizes both the
constraint set and the objective function of (1). Invoking
lemma 1, the induced orbit partition on I therefore yields
a lifting partition.

In (4), we call the LHS the ground formulation of the
variational problem, and the RHS the lifted formulation.
Let ` = |ϕ| be the number of cells of ϕ, the lifted mean
parameter space Mϕ then effectively lies inside an `-
dimensional subspace where ` ≤ m. This forms the core of
our principle of lifted variational inference: to perform op-
timization over the lower dimensional (and hopefully eas-
ier) constraint setMϕ instead ofM.
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Remark. Because (1) has a unique solution µ = m(θ), the-
orem 4 implies that m(Θ∆) ⊂ Mϕ. Further, the theorem
also holds if we replace A∆(F) with one of its subgroups
G: since ϕG = OrbG(I) is finer than ϕ, it is obvious that
ϕG is also a lifting partition. However, the smaller is the
group G, the finer is the lifting partition ϕG, and the less
symmetry can be exploited. In the extreme, G can be the
trivial group, ϕG is the discrete partition putting each ele-
ment of I in its own cell, and MϕG = M, which corre-
sponds to no lifting.

5.2 Characterization ofMϕ

We now give a characterization of the lifted mean pa-
rameter space Mϕ in the case of discrete random
variables. Note that M is the convex hull M =
conv {Φ(x)|x ∈ Xn} which is a polytope in Rm, and
A[F ] acts on the set of configurations Xn by the permuting
action of π which maps x 7→ xπ for x ∈ Xn.
Theorem 5. Let O = OrbA∆[F ](Xn) be the set of X -
configuration orbits. For each orbit C ∈ O, let Φ̄(C) =
1
|C|
∑
x∈C Φ(x) be the feature-centroid of all the configura-

tions in C. ThenMϕ(∆) = conv
{

Φ̄(C)|C ∈ O
}

.
Thus, the lifted polytope Mϕ can have at most |O| ex-

treme points. The number of configuration orbits |O| can
be much smaller than the total number of configurations
|X |n when the model is highly symmetric. For example,
for a fully connected graphical model with identical pair-
wise and unary potentials and X = {0, 1} then every per-
mutation π ∈ Sn is part of an automorphism; thus, every
configuration with the same number of 1’s belongs to the
same orbit, and hence |O| = n + 1. In general, however,
|O| often is still exponential in n. We discuss approxima-
tions ofMϕ in Section 6.

A representation of the lifted polytope Mϕ by a set of
constraints in R|ϕ| can be directly obtained from the con-
straints of the polytopeM. First, we enforce the constraint
µ ∈ Rmϕ : for each cell ϕj (j = 1, . . . , |ϕ|) of ϕ, let µ̄j be
the common value of the variables µi, i ∈ ϕj . Let ρ be the
orbit mapping function that maps each element i ∈ I to the
corresponding cell ρ(i) = j that contains i. Next, substi-
tuting µi by µ̄ρ(i) in the constraints ofM, we obtain a set
of constraints in µ̄ (in vector form, we substitute µ by Dµ̄
where Dij = 1 if i ∈ ϕj and 0 otherwise). In doing this,
some constraints will become identical and thus redundant.
In general, the number of non-redundant constraints can
still be exponential.

5.3 Overcomplete Variational Problems

We now state analogous results in lifting the overcomplete
variational problems (2) and (3) when X is finite. To sim-
plify notation, we only present the case where features are
unary or pairwise. As before, the lifting group A∆[F ] will
be used to induce a lifting partition. However, we need to
define the action of this group on the set of overcomplete
features Io.

For each automorphism (π, γ) ∈ A[F ], γ gives us the
permutation on I. In order to obtain a permutation on Io,

we will need to use π. By theorem 1, π is an automor-
phism of the graphical model graph G. Since overcomplete
features naturally correspond to nodes and edges of G, π in-
duces a natural bijection on Io that maps v:t 7→ π(v):t and
{u:t, v:t′} 7→ {π(u):t, π(v):t′}. Define ϕo = ϕo(∆) =
OrbA∆[F ](Io) to be the orbits of A∆[F ] acting on the set
of overcomplete features. Then
Theorem 6. For all θ ∈ Θ∆, ϕo is a lifting partition for
the variational problems (2) and (3).

Thus, the optimization domain can be restricted toMo
ϕo

which we term the lifted marginal polytope. The cells of ϕo

are intimately connected to the node, edge and arc orbits of
the graph G induced by A∆[F ]. We now list all the cells of
ϕo in the case where X = {0, 1}: each node orbit v corre-
sponds to 2 cells {v : t|v ∈ v} , t ∈ {0, 1}; each edge orbit
e corresponds to 2 cells {{u : t, v : t} | {u, v} ∈ e} , t ∈
{0, 1}; and each arc orbit a corresponds to the cell
{{u : 0, v : 1} |(u, v) ∈ a}. The orbit mapping function ρ
maps each element of Io to its orbit as follows: ρ(v:t) =
v:t, ρ({u:t, v:t}) = {u, v}:t, ρ({u:0, v:1}) = (u, v):01
where v represents the node-orbit of v, {u, v} represents
the edge-orbit of {u, v} and (u, v) represents the arc-orbit
of (u, v).

The total number of cells of ϕo is 2|V̄ |+2|Ē|+|Ā|where
|V̄ |, |Ē| and |Ā| are the number of node, edge and arc orbits
of G (note that |Ā| ≤ 2|Ē|). Therefore, in working with
Mo

ϕo , the big-O order of the number of variables is reduced
from the number of nodes and edges in G to the number of
node and edge orbits.

For MAP inference, (3) is equivalent to the lifted prob-
lem supµo∈Mo

ϕo
〈θo, µo〉. A single ground MAP solution

x̂ leads to an entire configuration orbit C = orbA∆[F ](x̂)

of MAP solutions. The feature-centroid µ̄o = Φ̄o(C) =
1
|C|
∑
x∈C Φo(x) then lies inside Mo

ϕo and is the cor-
responding lifted MAP solution. Furthermore, µ̄ov:t =
1
|v|
∑
v′∈v φ

o
v′ :t

(x̂) is the fraction of the ground variables
in x̂v assigned the value t, and similarly for pairwise fea-
tures. Note that from the learning (parameter estimation)
point of view, the lifted MAP solution is more useful than
any single MAP solution alone.

6 Lifted Approximate MAP Inference
Approximate convex variational inference typically works
with a tractable convex approximation ofM and a tractable
convex approximation of the negative entropy function A∗.
In this paper we consider only lifted outer bounds ofMo

(and thus restrict ourselves to the discrete case). We leave
the problem of handling approximations of A∗ to future
work. Our focus is the LP relaxation of the MAP inference
problem (3) and its lifted formulation.

To find an approximate lifted solution, since any outer
bound OUTER ⊃ Mo yields an outer bound OUTERϕo

of Mo
ϕo , we can always relax the lifted problem and re-

placeMϕo by OUTERϕo . But is the relaxed lifted problem
on OUTERϕo equivalent to the relaxed ground problem on
OUTER? This depends on whether ϕo is a lifting partition
for the relaxed ground problem.
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Theorem 7. If the set OUTER = OUTER(G) depends only
on the graphical model structure G of F , then ∀θ ∈ Θ∆,
ϕo is a lifting partition for the relaxed MAP problem

sup
µo∈OUTER

〈θo, µo〉 = sup
µo∈OUTERϕo

〈θo, µo〉

The most often used outer bound of Mo is the local
marginal polytope LOCAL(G) [19], which enforces con-
sistency for marginals on nodes and between nodes and
edges of G. [17, 18] used CYCLE(G), which is a tighter
bound that also enforces consistency of edge marginals
on the same cycle of G. The Sherali-Adams hierarchy3

[15] provides a sequence of outer bounds ofMo, starting
from LOCAL(G) and progressively tightening it to the ex-
act marginal polytope Mo. All of these outer bounds de-
pend only on the structure of the graphical model G, and
thus the corresponding relaxed MAP problems admit ϕo

as a lifting partition. Note that with the exception when
OUTER = LOCAL, equitable partitions [6] of G such as
those used in [11] are not lifting partitions for the approxi-
mate variational problem in theorem 7.4

7 Lifted MAP Inference on the Local
Polytope

We now focus on lifted approximate MAP inference us-
ing the local marginal polytope LOCAL. From this point
on, we also restrict ourselves to models where the fea-
tures are pairwise or unary, and the variables are binary
(X = {0, 1}).

We first aim to give an explicit characterization of the
constraints of the lifted local polytope LOCALϕo . The lo-
cal polytope LOCAL(G) is defined as the set of locally con-
sistent pseudo-marginals.



τ ≥ 0

∣∣∣∣∣∣∣∣∣

τv:0 + τv:1 = 1 ∀v ∈ V(G)
τ{u:0,v:0} + τ{u:0,v:1} = τu:0

τ{u:0,v:0} + τ{v:0,u:1} = τv:0 ∀ {u, v} ∈ E(G)
τ{u:1,v:1} + τ{u:0,v:1} = τv:1

τ{u:1,v:1} + τ{v:0,u:1} = τu:1





Substituting τi by the corresponding τ̄ρ(i) where ρ() is
given in subsection 5.3, and by noting that constraints
generated by {u, v} in the same edge orbits are redun-
dant, we obtain the constraints for the lifted local polytope
LOCALϕo as follows.



τ̄ ≥ 0

∣∣∣∣∣∣∣∣∣

τ̄v:0 + τ̄v:1 = 1 ∀ node orbit v
τ̄e:00 + τ̄(u,v):01 = τ̄ū:0

τ̄e:00 + τ̄(v,u):01 = τ̄v̄:0 ∀ edge orbit e with
τ̄e:11 + τ̄(u,v):01 = τ̄v̄:1 {u, v} a representative of e
τ̄e:11 + τ̄(v,u):01 = τ̄ū:1





3A note about terminology: Following the tradition in lifted
inference, this paper uses the term lift to refer to the exploitation
of symmetry for avoiding doing inference on the ground model.
It is unfortunate that the term lift has also been used in the con-
text of coming up with better bounds for the marginal polytopes.
There, lift (as in lift-and-project) means to move to a higher di-
mensional space where constraints can be more easily expressed
with auxiliary variables.

4As a counter example, consider a graphical model whose
structure is the Frucht graph (Fig. 1(d)). Since this is a regular
graph, LOCAL approximation yields identical constraints for ev-
ery node. However, the nodes on this graph participate in cycles
of different length, hence are subject to different cycle constraints.

Thus, the number of constraints needed to describe the
lifted local polytope LOCALϕo is O(|V̄ |+ |Ē|). Similar to
the ground problem, these constraints can be derived from
a graph representation of the node and edge orbits. Define
the lifted graph Ḡ to be a graph whose nodes are the set
of node orbits V̄ of G. For each edge orbit e with a rep-
resentative {u, v} ∈ e, there is a corresponding edge on Ḡ
that connects the two node orbits ū and v̄. Note that unlike
G, the lifted graph Ḡ in general is not a simple graph and
can contain self-loops and multi-edges between two nodes.
Figure 2(a) and (c) show the ground graphical model G and
the lifted graph Ḡ for the example 1.

Next consider the linear objective function 〈θo, τ〉. Sub-
stituting τi by the corresponding τ̄ρ(i), we can rewrite the
objective function in terms of τ̄ as

〈
θ̄, τ̄
〉

where the coeffi-
cients θ̄ are defined on nodes and edges of the lifted graph
Ḡ as follows. For each node orbit v, θ̄v:t =

∑
v′∈v θ

o
v′:t =

|v̄|θov:t where t ∈ {0, 1} and v is any representative mem-
ber of v. For each edge orbit e with a representative
{u, v} ∈ e, θ̄e:tt =

∑
{u′,v′}∈e θ

o
{u′:t,v′:t} = |e|θo{u:t,v:t}

where t ∈ {0, 1}, θ̄(u,v):01 =
∑

(u′,v′)∈(u,v) θ
o
{u′:0,v′:1} =

|(u, v)|θo{u:0,v:1}. Note that typically the two arc-orbits
(u, v) and (v, u) are not the same, in which case |(u, v)| =
|(v, u)| = |e|. However, in the case (u, v) = (v, u), then
|(u, v)| = |(v, u)| = 2|e|.

We have shown that the lifted formulation for MAP infer-
ence on the local polytope can be described in terms of the
lifted variables τ̄ and the lifted parameters θ̄. These lifted
variables and parameters are associated with the orbits of
the ground graphical model. Thus, the derived lifted for-
mulation can also be read out directly from the lifted graph
Ḡ. In fact, the derived lifted formulation is the local relaxed
MAP problem of the lifted graphical model Ḡ. Therefore,
any algorithm for solving the local relaxed MAP problem
on G can also be used to solve the derived lifted formu-
lation on Ḡ. For example, performing coordinate descent
in the dual formulation [5] of the lifted local LP yields the
lifted MPLP. Note that MPLP is an asynchronous message
passing algorithms that cannot be lifted by grouping iden-
tical messages.

8 Beyond Local Polytope: Lifted MAP
Inference with Cycle Inequalities

We now discuss lifting the MAP relaxation on CYCLE(G),
a bound obtained by tightening LOCAL(G) with an addi-
tional set of linear constraints that hold on cycles of the
graphical model structure G, called cycle constraints [17].
These constraints mean the number of cuts (transitions
from 0 to 1 or vice versa) in any configuration on a cy-
cle of G must be even. Cycle constraints can be expressed
as linear constraints as follows. For every cycle C (set of
edges that form a cycle in G) and every odd-sized subset
F ⊆ C
∑

{u,v}∈F
nocut({u, v}, τ) +

∑

{u,v}∈C\F
cut({u, v}, τ) ≥ 1

(5)
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where nocut({u, v}, τ) = τ{u:0,v:0} + τ{u:1,v:1} and
cut({u, v}, τ) = τ{u:0,v:1} + τ{v:0,u:1}.

Theorem 7 guarantees that MAP inference on CYCLE
can be lifted by restricting the feasible domain to
CYCLEϕo , which we term the lifted cycle polytope. Sub-
stituting the original variables τ by the lifted variables τ̄ ,
we obtain the lifted cycle constraints in terms of τ̄
∑

{u,v}∈F
nocut({u, v}, τ̄) +

∑

{u,v}∈C\F
cut({u, v}, τ̄) ≥ 1

(6)
where nocut({u, v}, τ̄) = τ̄{u,v}:00 + τ̄{u,v}:11 and
cut({u, v}, τ̄) = τ̄(u,v):01 + τ̄(v,u):01 where (u, v) and
(v, u) are the arc-orbits corresponding to the node-orbit
{u, v}.
8.1 Lifted Cycle Constraints on All Cycles Passing

Through a Fixed Node
It is not possible to extract all lifted cycle constraints just
by examining the lifted graphical model Ḡ since there could
be cycles in Ḡ that do not correspond to any cycles in G.
However, we can characterize all constraints on all cycles
passing through a fix node i in G.

Let Cyc[i] be the set of (ground) cycle constraints gen-
erated from all cycles passing through i. A cycle is sim-
ple if it does not intersect with itself or contain repeated
edges; [17] considers only simple cycles, but we will also
consider any cycle, including non-simple cycles in Cyc[i].
Adding non-simple cycles to the mix does not change the
story since constraints on non-simple cycles of G are redun-
dant. We now give a precise characterization of Cyc[i], the
set of lifted cycle constraints obtained by lifting all cycle
constraints in Cyc[i] via the transformation from (5) to (6).

The lifted graph fixing i, Ḡ[i] is defined as follows. Let
A∆[F , i] be the subgroup of A∆[F ] that fixes i, that is
π(i) = i. The set of nodes of Ḡ[i] is the set of node or-
bits V̄ [i] of G induced by A∆[F , i], and the set of edges is
the set of edge orbits Ē[i] of G. Each edge orbit connects
to the orbits of the two adjacent nodes (which could form
just one node orbit). Since i is fixed, {i} is a node orbit,
and hence is a node on Ḡ[i]. Note that Ḡ[i] in general is not
a simple graph: it can have multi-edges and loops.
Theorem 8. Let C̄ be a cycle (not necessarily simple) in
Ḡ[i] that passes through the node {i}. For any odd-sized
F̄ ⊂ C̄

∑

e∈F̄
nocut(e, τ̄) +

∑

e∈C̄\F̄
cut(e, τ̄) ≥ 1 (7)

is a constraint in Cyc[i]. Further, all constraints in Cyc[i]
can be expressed this way.
8.2 Separation of Lifted Cycle Constraints
While the number of cycle constraints may be reduced sig-
nificantly in the lifted space, it may still be computationally
expensive to list all of them. To address this issue, we fol-
low [17] and employ a cutting plane approach in which we
find and add only the most violated lifted cycle constraint
in each iteration (separation operation).

For finding the most violated lifted cycle constraint, we
propose a lifted version of the method presented by [17],
which performs the separation by iterating over the nodes
of the graph G and for each node i finds the most violated
cycle constraint from all cycles passing through i. The-
orem 8 suggests that all lifted cycle constraints in Cyc[i]
can be separated by mirroring Ḡ[i] and performing a short-
est path search from {i} to its mirrored node, similar to the
way separation is performed on ground cycle constraints
[17].

To find the most violated lifted cycle constraint, we could
first find the most violated lifted cycle constraint Ci in
Cyc[i] for each node i, and then take the most violated con-
straints over all Ci. However, note that if i and i′ are in
the same node orbit, then Cyc[i] = Cyc[i′]. Hence, we can
perform separation using the following algorithm:

1. For each node orbit v̄ ∈ V̄ , choose a representative
i ∈ v̄ and find its most violated lifted cycle constraint
Cv̄ ∈ Cyc[i] using a shortest path algorithm on the
mirror graph of Ḡ[i].

2. Return the most violated constraint over all Cv̄ .

Notice that both Ḡ[i] and its mirror graph have to be cal-
culated only once per graph. In each separation iteration
we can reuse these structures, provided that we adapt the
edge weights in the mirror graph according to the current
marginals.

9 Experiments
First, we evaluate methods for detecting symmetries de-
scribed in Section 4 on the “Friends & Smokers” MLN5

[16]. The first method (nauty) grounds the MLN then finds
a lifting partition. The second (renaming) does not require
grounding, but uses the renaming group to find a lifting par-
tition. Table 1 presents the results for varying domain sizes
where for a random 10% of all people it is known whether
they smoke or not. Although nauty finds a more compact
lifted graph, it takes significantly more time than using the
renaming group. For this reason, our subsequent experi-
ment only makes use of the renaming group and orbits.6

Figure 4 shows the run time performance of MAP infer-
ence using local and cycle LP formulations (both ground
and lifted algorithms use the off-the-shelf Gurobi LP
solver). For cutting plane, we use the in-out variant [1]
with parameter α = 0.99 to improve convergence. All
lifted variants are several order-of-magnitude faster than
their ground counterparts. We also find that for this par-
ticular MLN, all solutions found by the local LP formu-
lation immediately satisfy all the cycle constraints. Closer
examination reveals that this MLN prescribes attractive po-
tentials on the pairs (Smoke(x), Smoke(y)), thus MAP

5The ground graphical model of this MLN has tree-width
equals to the domain size.

6Independent result reported in [13] seems to suggest better
performance can be obtained using SAUCY, a more modern tool
for finding graph automorphism.
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Table 1: Symmetries detection on the Friends & Smokers MLN
with 10% known people. * means the process did not finish within
a day.

10 20 50 100 200 1000

Nauty #Orbits 12 23 25 27 * *
Time(s) .49 1.77 172.79 9680.48 * *

Renaming #Orbits 12 23 80 255 905 20505
Time(s) .08 .09 .221 .4 .84 2.19

assignments to unknown smokers are either all true or all
false.

Next, we conduct experiments with the following
“Lovers & Smokers” MLN.

100 Male(x)⇔ ¬Female(x)

2 Male(x) ∧ Smokes(x)

2 Female(x) ∧ ¬Smokes(x)

0.5 x 6= y ∧Male(x) ∧ Female(y) ∧ Loves(x, y)

0.5 x 6= y ∧ Loves(x, y)⇒ (Smokes(x)⇔ Smokes(y))

−100 x 6= y ∧ y 6= z ∧ z 6= x ∧ Loves(x, y) ∧ Loves(y, z) ∧ Loves(x, z)

Note that this model is much more difficult because the last
formula has a repulsive potential and is fully transitive. As
far as we know, to date, no exact lifted inference algorithms
can handle transitive clauses in polynomial time.

The first experiment assumes no evidence, a situation
commonly encountered during the inference step [9] of any
perceptron-style generative parameter learning method. As
before, we compare local and cycle LP formulations, both
ground and lifted while varying the domain size of the
MLN. Figure 5(a) shows the lifted variants achieve con-
stant running time regardless of the actual domain size, and
are significantly more efficient than their ground counter-
parts as the domain size increase. Figure 5(b) illustrates
how the objective value changes over cutting plane iter-
ations (and hence time), for domain size = 5. Both the
local polytope (ground and lifted) approaches have no cut-
ting plane iterations, and hence are represented as single
points. We use Integer Linear Programming (ILP) to com-
pute a reference point of the lowest possible optimal ob-
jective value. Notice all methods are based on outer/upper
bounds on the variational objective, and hence are decreas-
ing over time. First, we can observe that the CYCLE
methods converge to a solution substantially better than the
LOCAL methods. However, although lifted CYCLE con-
verges quickly, the ground CYCLE algorithm converges
very slowly.

The second experiment varies the number of observed
constants with random soft evidence while fixing the do-
main size to 100. Because ground methods do not scale
to this size, we only compare lifted LOCAL and lifted
CYCLE. Figure 6 shows both the running time and the
obtained objective value. Observe that lifted CYCLE sig-
nificantly improves the MAP objective value but at a signif-
icant computational cost when the number of observed con-
stants increases. We note that with soft evidence, the lifted
model essentially becomes a ground model which contains
a large number of cycles induced by the transitive clause in
the model.
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Figure 4: (Best viewed in color) “Friends & Smokers” MLN with
10% known people.
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Figure 5: (Best viewed in color) “Lovers & Smokers” MLN with-
out evidence. The local and cycle methods did not finish within a
day for larger domain sizes.
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Figure 6: “Lovers & Smokers” MLN with random soft evidence,
domain size = 100.

10 Conclusion
We presented a new general framework for lifted vari-
ational inference by introducing and studying a precise
mathematical definition of symmetry of graphical models
via the construction of their automorphism groups. Using
the device of automorphism groups, orbits of random vari-
ables are obtained, and lifted variational inference materi-
alizes as performing the corresponding convex variational
optimization problem in the space of per-orbit random vari-
ables. Our framework enables lifting a large class of ap-
proximate variational MAP inference algorithms, including
the first lifted algorithm for MAP inference with cycle con-
straints. We presented experimental results demonstrating
the clear benefits of the lifted over the ground formulations.
Future extension includes how to handle approximations of
the convex upper-bounds of negative entropy function A∗,
which would enable lifting the full class of approximate
convex variational marginal inference.
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Abstract

We consider partially observable Markov
decision processes (POMDPs) with limit-
average payoff, where a reward value in the
interval [0, 1] is associated to every transi-
tion, and the payoff of an infinite path is
the long-run average of the rewards. We con-
sider two types of path constraints: (i) quan-
titative constraint defines the set of paths
where the payoff is at least a given thresh-
old λ1 ∈ (0, 1]; and (ii) qualitative constraint
which is a special case of quantitative con-
straint with λ1 = 1. We consider the compu-
tation of the almost-sure winning set, where
the controller needs to ensure that the path
constraint is satisfied with probability 1. Our
main results for qualitative path constraint
are as follows: (i) the problem of deciding
the existence of a finite-memory controller is
EXPTIME-complete; and (ii) the problem of
deciding the existence of an infinite-memory
controller is undecidable. For quantitative
path constraint we show that the problem
of deciding the existence of a finite-memory
controller is undecidable.

1 Introduction

Partially observable Markov decision processes
(POMDPs). Markov decision processes (MDPs) are
standard models for probabilistic systems that ex-
hibit both probabilistic and nondeterministic behav-
ior [10]. MDPs have been used to model and solve
control problems for stochastic systems [7, 23]: nonde-
terminism represents the freedom of the controller to
choose a control action, while the probabilistic com-
ponent of the behavior describes the system response
to control actions. In perfect-observation (or perfect-
information) MDPs (PIMDPs) the controller can ob-

serve the current state of the system to choose the next
control actions, whereas in partially observable MDPs
(POMDPs) the state space is partitioned according
to observations that the controller can observe, i.e.,
given the current state, the controller can only view
the observation of the state (the partition the state
belongs to), but not the precise state [20]. POMDPs
provide the appropriate model to study a wide va-
riety of applications such as in computational biol-
ogy [5], speech processing [19], image processing [4],
robot planning [13, 11], reinforcement learning [12],
to name a few. POMDPs also subsume many other
powerful computational models such as probabilistic
finite automata (PFA) [24, 21] (since probabilistic fi-
nite automata (aka blind POMDPs) are a special case
of POMDPs with a single observation).

Limit-average payoff. A payoff function maps every
infinite path (infinite sequence of state action pairs)
of a POMDP to a real value. The most well-studied
payoff in the setting of POMDPs is the limit-average
payoff where every state action pair is assigned a real-
valued reward in the interval [0, 1] and the payoff of
an infinite path is the long-run average of the rewards
on the path [7, 23]. POMDPs with limit-average pay-
off provide the theoretical framework to study many
important problems of practical relevance, including
probabilistic planning and several stochastic optimiza-
tion problems [11, 2, 16, 17, 27].

Expectation vs probabilistic semantics. Tradi-
tionally, MDPs with limit-average payoff have been
studied with the expectation semantics, where the goal
of the controller is to maximize the expected limit-
average payoff. The expected payoff value can be 1

2
when with probability 1

2 the payoff is 1, and with
remaining probability the payoff is 0. In many ap-
plications of system analysis (such as robot planning
and control) the relevant question is the probability
measure of the paths that satisfy certain criteria, e.g.,
whether the probability measure of the paths such that
the limit-average payoff is 1 (or the payoff is at least
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1
2 ) is at least a given threshold (e.g., see [1, 13]). We
classify the path constraints for limit-average payoff
as follows: (1) quantitative constraint that defines the
set of paths with limit-average payoff at least λ1, for
a threshold λ1 ∈ (0, 1]; and (2) qualitative constraint
is the special case of quantitative constraint that de-
fines the set of paths with limit-average payoff 1 (i.e.,
the special case with λ1 = 1). We refer to the prob-
lem where the controller must satisfy a path constraint
with a probability threshold λ2 ∈ (0, 1] as the proba-
bilistic semantics. An important special case of prob-
abilistic semantics is the almost-sure semantics, where
the probability threshold is 1. The almost-sure seman-
tics is of great importance because there are many ap-
plications where the requirement is to know whether
the correct behavior arises with probability 1. For in-
stance, when analyzing a randomized embedded sched-
uler, the relevant question is whether every thread pro-
gresses with probability 1. Even in settings where it
suffices to satisfy certain specifications with probabil-
ity λ2 < 1, the correct choice of λ2 is a challenging
problem, due to the simplifications introduced during
modeling. For example, in the analysis of randomized
distributed algorithms it is quite common to require
correctness with probability 1 (e.g., [22, 26]). Besides
its importance in practical applications, almost-sure
convergence, is a fundamental concept in probability
theory, and provide stronger convergence guarantee
than convergence in expectation [6].

Previous results. There are several deep undecid-
ability results established for the special case of proba-
bilistic finite automata (PFA) (that immediately imply
undecidability for POMDPs). The basic undecidabil-
ity results are for PFA over finite words: The empti-
ness problem for PFA under probabilistic semantics is
undecidable over finite words [24, 21, 3]; and it was
shown in [16] that even the following approximation
version is undecidable: for any fixed 0 < ε < 1

2 , given
a probabilistic automaton and the guarantee that ei-
ther (a) there is a word accepted with probability at
least 1−ε; or (ii) all words are accepted with probabil-
ity at most ε; decide whether it is case (i) or case (ii).
The almost-sure problem for probabilistic automata
over finite words reduces to the non-emptiness ques-
tion of universal automata over finite words and is
PSPACE-complete. However, another related decision
question whether for every ε > 0 there is a word that
is accepted with probability at least 1 − ε (called the
value 1 problem) is undecidable for probabilistic au-
tomata over finite words [8]. Also observe that all
undecidability results for probabilistic automata over
finite words carry over to POMDPs where the con-
troller is restricted to finite-memory strategies. The
importance of finite-memory strategies in applications
has been established in [9, 14, 18].

Table 1: Complexity: New results are in bold fonts
Almost-sure semantics Prob. semantics

Fin. mem. Inf. mem. Fin./Inf. mem.

PFA PSPACE-c PSPACE-c Undec.
POMDP Qual. Constr. EXPTIME-c Undec. Undec.
POMDP Quan. Constr. Undec. Undec. Undec.

Our contributions. Since under the general proba-
bilistic semantics, the decision problems are undecid-
able even for PFA, we consider POMDPs with limit-
average payoff under the almost-sure semantics. We
present a complete picture of decidability as well as
optimal complexity.

(Almost-sure winning for qualitative constraint). We
first consider limit-average payoff with qualitative
constraint under almost-sure semantics. We show
that belief-based strategies are not sufficient (where
a belief-based strategy is based on the subset con-
struction that remembers the possible set of current
states): we show that there exist POMDPs with limit-
average payoff with qualitative constraint where finite-
memory almost-sure winning strategy exists but there
exists no belief-based almost-sure winning strategy.
Our counter-example shows that standard techniques
based on subset construction (to construct an expo-
nential size PIMDP) are not adequate to solve the
problem. We then show one of our main result that
given a POMDP with |S| states and |A| actions, if
there is a finite-memory almost-sure winning strategy
to satisfy the limit-average payoff with qualitative con-
straint, then there is an almost-sure winning strategy
that uses at most 23·|S|+|A| memory. Our exponen-
tial memory upper bound is asymptotically optimal,
as even for PFA over finite words, exponential memory
is required for almost-sure winning (follows from the
fact that the shortest witness word for non-emptiness
of universal finite automata is at least exponential).
We then show that the problem of deciding the exis-
tence of a finite-memory almost-sure winning strategy
for limit-average payoff with qualitative constraint is
EXPTIME-complete for POMDPs. In contrast to our
result for finite-memory strategies, we show that de-
ciding the existence of an infinite-memory almost-sure
winning strategy for limit-average payoff with qualita-
tive constraint is undecidable for POMDPs.

(Almost-sure winning with quantitative constraint). In
contrast to our decidability result under finite-memory
strategies for qualitative constraint, we show that the
almost-sure winning problem for limit-average payoff
with quantitative constraint is undecidable even for
finite-memory strategies for POMDPs.

In summary we establish the precise decidability fron-
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tier for POMDPs with limit-average payoff under
probabilistic semantics (see Table 1). For practical
purposes, the most prominent question is the prob-
lem of finite-memory strategies, and for finite-memory
strategies we establish decidability with EXPTIME-
complete complexity for the important special case of
qualitative constraint under almost-sure semantics.

2 Definitions

We present the definitions of POMDPs, strategies, ob-
jectives, and other basic notions required for our re-
sults. We follow standard notations from [23, 15].

Notations. Given a finite set X, we denote by P(X)
the set of subsets of X, i.e., P(X) is the power set of
X. A probability distribution f on X is a function
f : X → [0, 1] such that

∑
x∈X f(x) = 1, and we

denote by D(X) the set of all probability distributions
on X. For f ∈ D(X) we denote by Supp(f) = {x ∈
X | f(x) > 0} the support of f .

Definition 1 (POMDP). A Partially Observable
Markov Decision Process (POMDP) is a tuple G =
(S,A, δ,O, γ, s0) where: (i) S is a finite set of states;
(ii) A is a finite alphabet of actions; (iii) δ : S×A →
D(S) is a probabilistic transition function that given
a state s and an action a ∈ A gives the probability
distribution over the successor states, i.e., δ(s, a)(s′)
denotes the transition probability from s to s′ given
action a; (iv) O is a finite set of observations; (v) γ :
S → O is an observation function that maps every
state to an observation; and (vi) s0 is the initial state.

Given s, s′ ∈ S and a ∈ A, we also write δ(s′|s, a) for
δ(s, a)(s′). A state s is absorbing if for all actions a
we have δ(s, a)(s) = 1 (i.e., s is never left from s).
For an observation o, we denote by γ−1(o) = {s ∈
S | γ(s) = o} the set of states with observation o.
For a set U ⊆ S of states and O ⊆ O of observations
we denote γ(U) = {o ∈ O | ∃s ∈ U. γ(s) = o} and
γ−1(O) =

⋃
o∈O γ

−1(o).

Plays and belief-updates. A play (or a
path) in a POMDP is an infinite sequence
(s0, a0, s1, a1, s2, a2, . . .) of states and actions such
that for all i ≥ 0 we have δ(si, ai)(si+1) > 0.
We write Ω for the set of all plays. For a fi-
nite prefix w = (s0, a0, s1, a1, . . . , sn) we denote by
γ(w) = (γ(s0), a0, γ(s1), a1, . . . , γ(sn)) the observa-
tion and action sequence associated with w. For a
finite sequence ρ = (o0, a0, o1, a1, . . . , on) of obser-
vations and actions, the belief B(ρ) after the pre-
fix ρ is the set of states in which a finite prefix of
a play can be after the sequence ρ of observations
and actions, i.e., B(ρ) = {sn = Last(w) | w =
(s0, a0, s1, a1, . . . , sn), w is a prefix of a play, and for

all 0 ≤ i ≤ n. γ(si) = oi}. The belief-updates associ-
ated with finite-prefixes are as follows: for prefixes w
and w′ = w·a·s the belief update is defined inductively

B(γ(w′)) =
(⋃

s1∈B(γ(w)) Supp(δ(s1, a))
)
∩ γ−1(γ(s)).

Strategies. A strategy (or a policy) is a recipe
to extend prefixes of plays and is a function σ :
(S · A)∗ · S → D(A) that given a finite history
(i.e., a finite prefix of a play) selects a probabil-
ity distribution over the actions. Since we consider
POMDPs, strategies are observation-based, i.e., for all
histories w = (s0, a0, s1, a1, . . . , an−1, sn) and w′ =
(s′0, a0, s

′
1, a1, . . . , an−1, s

′
n) such that for all 0 ≤ i ≤ n

we have γ(si) = γ(s′i) (i.e., γ(w) = γ(w′)), we must
have σ(w) = σ(w′). In other words, if the obser-
vation sequence is the same, then the strategy can-
not distinguish between the prefixes and must play
the same. We now present an equivalent definition of
observation-based strategies such that the memory of
the strategy is explicitly specified, and will be required
to present finite-memory strategies.

Definition 2 (Strategies with memory and
finite-memory strategies). A strategy with mem-
ory is a tuple σ = (σu, σn,M,m0) where:(i) (Memory
set). M is a denumerable set (finite or infinite) of
memory elements (or memory states). (ii) (Action
selection function). The function σn : M → D(A) is
the action selection function that given the current
memory state gives the probability distribution over
actions. (iii) (Memory update function). The func-
tion σu : M ×O ×A → D(M) is the memory update
function that given the current memory state, the
current observation and action, updates the memory
state probabilistically. (iv) (Initial memory). The
memory state m0 ∈ M is the initial memory state.
A strategy is a finite-memory strategy if the set M
of memory elements is finite. A strategy is pure (or
deterministic) if the memory update function and
the action selection function are deterministic, i.e.,
σu : M ×O×A →M and σn : M → A. A strategy is
memoryless (or stationary) if it is independent of the
history but depends only on the current observation,
and can be represented as a function σ : O → D(A).

Objectives. An objective in a POMDPG is a measur-
able set ϕ ⊆ Ω of plays. We first define limit-average
payoff (aka mean-payoff) function. Given a POMDP
we consider a reward function r : S × A → [0, 1]
that maps every state action pair to a real-valued re-
ward in the interval [0, 1]. The LimAvg payoff func-
tion maps every play to a real-valued reward that
is the long-run average of the rewards of the play.
Formally, given a play ρ = (s0, a0, s1, a1, s2, a2, . . .)
we have LimAvg(r, ρ) = lim infn→∞ 1

n ·
∑n
i=0 r(si, ai).

When the reward function r is clear from the context,
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we drop it for simplicity. For a reward function r, we
consider two types of limit-average payoff constraints:
(i) Qualitative constraint. The qualitative constraint
limit-average objective LimAvg=1 defines the set of
paths such that the limit-average payoff is 1; i.e.,
LimAvg=1 = {ρ | LimAvg(ρ) = 1}. (ii) Quantitative
constraints. Given a threshold λ1 ∈ (0, 1), the quan-
titative constraint limit-average objective LimAvg>λ1

defines the set of paths such that the limit-average
payoff is strictly greater than λ1; i.e., LimAvg>λ1

=
{ρ | LimAvg(ρ) > λ1}.

Probabilistic and almost-sure winning. Given a
POMDP, an objective ϕ, and a class C of strategies, we
say that: (i) a strategy σ ∈ C is almost-sure winning
if Pσ(ϕ) = 1; (ii) a strategy σ ∈ C is probabilistic
winning, for a threshold λ2 ∈ (0, 1), if Pσ(ϕ) ≥ λ2.

Theorem 1 (Results for PFA (probabilistic automata
over finite words) [21]). The following assertions hold
for the class C of all infinite-memory as well as finite-
memory strategies: (1) the probabilistic winning prob-
lem is undecidable for PFA; and (2) the almost-sure
winning problem is PSPACE-complete for PFA.

Since PFA are a special case of POMDPs, the undecid-
ability of the probabilistic winning problem for PFA
implies the undecidability of the probabilistic win-
ning problem for POMDPs with both qualitative and
quantitative constraint limit-average objectives. The
almost-sure winning problem is PSPACE-complete for
PFAs, and we study the complexity of the almost-sure
winning problem for POMDPs with both qualitative
and quantitative constraint limit-average objectives,
under infinite-memory and finite-memory strategies.

Basic properties of Markov Chains. Since our
proofs will use results of Markov chains, we start with
some basic results related to Markov chains.

Markov chains and recurrent classes. A Markov chain
G = (S, δ) consists of a finite set S of states and a prob-
abilistic transition function δ : S → D(S). Given the
Markov chain, we consider the directed graph (S,E)
where E = {(s, s′) | δ(s′ | s) > 0}. A recurrent class
C ⊆ S of the Markov chain is a bottom strongly con-
nected component (scc) in the graph (S,E) (a bottom
scc is an scc with no edges out of the scc). We denote
by Rec(G) the set of recurrent classes of the Markov
chain, i.e., Rec(G) = {C | C is a recurrent class}.
Given a state s and a set U of states, we say that
U is reachable from s if there is a path from s to some
state in U in the graph (S,E). Given a state s of the
Markov chain we denote by Rec(G)(s) ⊆ Rec(G) the
subset of the recurrent classes reachable from s in G.
A state is recurrent if it belongs to a recurrent class.
The following standard properties of reachability and
the recurrent classes will be used in our proofs:

• Property 1. (a) For a set T ⊆ S, if for all states
s ∈ S there is a path to T (i.e., for all states there
is a positive probability to reach T ), then from
all states the set T is reached with probability 1.
(b) For all states s, if the Markov chain starts at s,
then the set C =

⋃
C∈Rec(G)(s) C is reached with

probability 1, i.e., the set of recurrent classes is
reached with probability 1.

• Property 2. For a recurrent class C, for all states
s ∈ C, if the Markov chain starts at s, then for
all states t ∈ C the state t is visited infinitely
often with probability 1, and is visited with posi-
tive average frequency (i.e., positive limit-average
frequency) with probability 1.

Lemma 1 is a consequence of the above properties.

Lemma 1. Let G = (S, δ) be a Markov chain with a
reward function r : S → [0, 1], and s ∈ S a state of the
Markov chain. The state s is almost-sure winning for
the objective LimAvg=1 iff for all recurrent classes C ∈
Rec(G)(s) and for all states s1 ∈ C we have r(s1) = 1.

Markov chains under finite memory strategies. We
now define Markov chains obtained by fixing a finite-
memory strategy in a POMDP G. A finite-memory
strategy σ = (σu, σn,M,m0) induces a Markov chain
(S ×M, δσ), denoted G�σ, with the probabilistic tran-
sition function δσ : S×M → D(S×M): given s, s′ ∈ S
and m,m′ ∈ M , the transition δσ

(
(s′,m′) | (s,m)

)
is

the probability to go from state (s,m) to state (s′,m′)
in one step under the strategy σ. The probability
of transition can be decomposed as follows: (i) First
an action a ∈ A is sampled according to the dis-
tribution σn(m); (ii) then the next state s′ is sam-
pled according to the distribution δ(s, a); and (iii) fi-
nally the new memory m′ is sampled according to the
distribution σu(m, γ(s′), a) (i.e., the new memory is
sampled according σu given the old memory, new ob-
servation and the action). More formally, we have:
δσ
(
(s′,m′) | (s,m)

)
=
∑
a∈A σn(m)(a) · δ(s, a)(s′) ·

σu(m, γ(s′), a)(m′).

3 Finite-memory strategies with
Qualitative Constraint

In this section we show the following three results
for finite-memory strategies: (i) in POMDPs with
LimAvg=1 objectives belief-based strategies are not
sufficient for almost-sure winning; (ii) an exponential
upper bound on the memory required by an almost-
sure winning strategy for LimAvg=1 objectives; and
(iii) the decision problem is EXPTIME-complete.

Belief is not sufficient. We now show with an ex-
ample that there exist POMDPs with LimAvg=1 ob-
jectives, where finite-memory randomized almost-sure
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winning strategies exist, but there exists no belief-
based randomized almost-sure winning strategy (a
belief-based strategy only uses memory that relies on
the subset construction where the subset denotes the
possible current states called belief). We will present
the counter-example even for POMDPs with restricted
reward function r assigning only Boolean rewards 0
and 1 to the states (does not depend on the action).

Example 1. We consider a POMDP with state space
{s0, X,X ′, Y, Y ′, Z, Z ′} and action set {a, b}, and let
U = {X,X ′, Y, Y ′, Z, Z ′}. From the initial state s0 all
the other states are reached with uniform probability in
one-step, i.e., for all s′ ∈ U = {X,X ′, Y, Y ′, Z, Z ′} we
have δ(s0, a)(s′) = δ(s0, b)(s

′) = 1
6 . The transitions

from the other states are shown in Figure 1. All states
in U have the same observation. The reward function
r assigns the reward 1 to states X,X ′, Z, Z ′ and 0 to
states Y and Y ′. The belief initially after one-step is
the set U = {X,X ′, Y, Y ′, Z, Z ′} since from s0 all of
them are reached with positive probability. The belief
is always the set U since every state has an input edge
for every action, i.e., if the current belief is U (the
set of states that the POMDP is currently in with pos-
itive probability is U), then irrespective of whether a
or b is chosen all states of U are reached with positive
probability and thus the belief is again U . There are
three belief-based strategies: (i) σ1 that plays always a;
(ii) σ2 that plays always b; or (iii) σ3 that plays both
a and b with positive probability. The Markov chains
G�σ1

and G�σ2
are also shown in Figure 1, and the

graph of G �σ3
is the same as the POMDP G (with

edge labels removed). For all the three strategies, the
Markov chains contain the whole set U as the reachable
recurrent class, and it follows by Lemma 1 that none
of the belief-based strategies σ1, σ2 or σ3 are almost-
sure winning for the LimAvg=1 objective. The strategy
σ4 that plays action a and b alternately gives rise to a
Markov chain where the recurrent classes do not inter-
sect with Y or Y ′, and is a finite-memory almost-sure
winning strategy for the LimAvg=1 objective.

3.1 Strategy complexity

For the rest of the subsection we fix a finite-memory
almost-sure winning strategy σ = (σu, σn,M,m0) on
the POMDP G = (S,A, δ,O, γ, s0) with a reward
function r for the objective LimAvg=1. Our goal is
to construct an almost-sure winning strategy for the
LimAvg=1 objective with memory size at most Mem∗ =
23·|S| · 2|A|. We start with a few definitions associated
with strategy σ. For m ∈M :

• The function RecFunσ(m) : S → {0, 1} is such
that RecFunσ(m)(s) is 1 iff the state (s,m) is re-
current in the Markov chain G�σ and 0 otherwise.
• The function AWFunσ(m) : S → {0, 1} is such
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Figure 1: Belief is not sufficient

that AWFunσ(m)(s) is 1 iff the state (s,m) is
almost-sure winning for the LimAvg=1 objective
in the Markov chain G�σ and 0 otherwise.

• We also consider Actσ(m) = Supp(σn(m)) that
for every memory element gives the support of the
probability distribution over actions played at m.

Remark 1. Let (s′,m′) be reachable from (s,m) in
G �σ. If the state (s,m) is almost-sure winning for
the LimAvg=1 objective, then the state (s′,m′) is also
almost-sure winning for the LimAvg=1 objective.

Collapsed graph of σ. Given the strategy σ we
define the notion of a collapsed graph CoGr(σ) =
(V,E). The states of the graph are elements from
the set V = {(Y,AWFunσ(m),RecFunσ(m),Actσ(m)) |
Y ⊆ S and m ∈ M} and the initial state is
({s0},AWFunσ(m0),RecFunσ(m0),Actσ(m0)). The
edges in E are labeled by actions in A. In-
tuitively, the action labeled edges of the graph
depict the updates of the belief and the func-
tions upon a particular action. Formally, there
is an edge (Y,AWFunσ(m),RecFunσ(m),Actσ(m))

a→
(Y ′,AWFunσ(m′),RecFunσ(m′),Actσ(m′)) in the col-
lapsed graph CoGr(σ) iff there exists an observa-
tion o ∈ O such that (i) the action a ∈ Actσ(m);
(ii) the set Y ′ is non-empty and it is the belief up-
date from Y , under action a and the observation o,
i.e., Y ′ =

⋃
s∈Y Supp(δ(s, a)) ∩ γ−1(o); and (iii) m′ ∈

Supp(σu(m, o, a)). Note that the number of states in
the graph is bounded by |V | ≤ 23·|S| · 2|A| = Mem∗.

We now define the collapsed strategy for σ. Intuitively
we collapse memory elements of σ whenever they agree
on all the RecFun, AWFun, and Act functions. The
collapsed strategy plays uniformly all the actions from
the set given by Act in the collapsed state.

Collapsed strategy. We now construct the collapsed
strategy σ′ = (σ′u, σ

′
n,M

′,m′0) of σ based on the col-
lapsed graph CoGr(σ) = (V,E). We will refer to this
construction by σ′ = CoSt(σ).

• The memory set M ′ are the vertices of the col-
lapsed graph CoGr(σ) = (V,E), i.e., M ′ = V =
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{(Y,AWFunσ(m),RecFunσ(m),Actσ(m)) | Y ⊆
S and m ∈M}. Note that |M ′| ≤ Mem∗.

• The initial memory is m′0 =
({s0},AWFunσ(m0),RecFunσ(m0),Actσ(m0)).

• The next action function given a memory
(Y,W,R,A) ∈ M ′ is the uniform distribution
over the set of actions {a | ∃(Y ′,W ′, R′, A′) ∈
M ′ and (Y,W,R,A)

a→ (Y ′,W ′, R′, A′) ∈ E},
where E are the edges of the collapsed graph.

• The memory update function
σ′u((Y,W,R,A), o, a) given a memory ele-
ment (Y,W,R,A) ∈ M ′, a ∈ A, and o ∈ O
is the uniform distribution over the set
of states {(Y ′,W ′, R′, A′) | (Y,W,R,A)

a→
(Y ′,W ′, R′, A′) ∈ E and Y ′ ⊆ γ−1(o)}.

Random variable notation. For all n ≥ 0 we
write Xn, Yn,Wn, Rn, An, Ln for the random variables
that correspond to the projection of the nth state
of the Markov chain G�σ′ on the S component, the
belief P(S) component, the AWFunσ component, the
RecFunσ component, the Actσ component, and the nth

action, respectively.

Run of the Markov chain G �σ′ . A run of the
Markov chain G�σ′ is an infinite sequence

(X0, Y0,W0, R0, A0)
L0→ (X1, Y1,W1, R1, A1)

L1→ · · ·

such that each finite prefix of the run is
generated with positive probability on the
Markov chain, i.e., for all i ≥ 0, we have
(i) Li ∈ Supp(σ′n(Yi,Wi, Ri, Ai)); (ii) Xi+1 ∈
Supp(δ(Xi, Li)); and (iii) (Yi+1,Wi+1, Ri+1, Ai+1) ∈
Supp(σ′u((Yi,Wi, Ri, Ai), γ(Xi+1), Li)). In the follow-
ing lemma we establish important properties of the
Markov chain G�σ′ that are essential for our proof.

Lemma 2. Let (X0, Y0,W0, R0, A0)
L0→

(X1, Y1,W1, R1, A1)
L1→ · · · be a run of the Markov

chain G �σ′ , then the following assertions hold
for all i ≥ 0: 1. Xi+1 ∈ Supp(δ(Xi, Li)) ∩ Yi+1;

2. (Yi,Wi, Ri, Ai)
Li→ (Yi+1,Wi+1, Ri+1, Ai+1) is

an edge in the collapsed graph CoGr(σ); 3. if
Wi(Xi) = 1, then Wi+1(Xi+1) = 1; 4. if Ri(Xi) = 1,
then Ri+1(Xi+1) = 1; and 5. if Wi(Xi) = 1 and
Ri(Xi) = 1, then r(Xi, Li) = 1.

Proof. We present the proof of the fifth point, and the
other points are straight-forward. For the fifth point
consider that Wi(Xi) = 1 and Ri(Xi) = 1. Then there
exists a memory m ∈ M such that (i) AWFunσ(m) =
Wi, and (ii) RecFunσ(m) = Ri. Moreover, the state
(Xi,m) is a recurrent (since Ri(Xi) = 1) and almost-
sure winning state (since Wi(Xi) = 1) in the Markov
chain G �σ. As Li ∈ Actσ(m) it follows that Li ∈

Supp(σn(m)), i.e., the action Li is played with pos-
itive probability in state Xi given memory m, and
(Xi,m) is in an almost-sure winning recurrent class.
By Lemma 1 it follows that the reward r(Xi, Li) must
be 1. The desired result follows.

We now introduce the final notion of a collapsed-
recurrent state that is required to complete the proof.
A state (X,Y,W,R,A) of the Markov chain G�σ′ is
collapsed-recurrent, if for all memory elements m ∈M
that were merged to the memory element (Y,W,R,A),
the state (X,m) of the Markov chain G �σ is recur-
rent. It will turn out that every recurrent state of the
Markov chain G�σ is also collapsed-recurrent.

Definition 3. A state (X,Y,W,R,A) of the Markov
chain G�σ′ is called collapsed-recurrent iff R(X) = 1.

Note that due to point 4 of Lemma 2 all the states
reachable from a collapsed-recurrent state are also
collapsed-recurrent. In the following lemma we show
that the set of collapsed-recurrent states is reached
with probability 1; and the key fact we show is that
from every state in G�σ′ a collapsed-recurrent state is
reached with positive probability, and then use Prop-
erty 1 (a) of Markov chains to establish the lemma.

Lemma 3. With probability 1 a run of the Markov
chain G�σ′ reaches a collapsed-recurrent state.

Lemma 4. The collapsed strategy σ′ is a finite-
memory almost-sure winning strategy for the
LimAvg=1 objective on the POMDP G with the
reward function r.

Proof. The initial state of the Markov chain G �σ′

is ({s0},AWFunσ(m0),RecFunσ(m0),Actσ(m0)) and as
the strategy σ is an almost-sure winning strategy we
have that AWFunσ(m0)(s0) = 1. It follows from the
third point of Lemma 2 that every reachable state
(X,Y,W,R,A) in the Markov chain G �σ′ satisfies
that W (X) = 1. From the initial state a collapsed-
recurrent state is reached with probability 1. It follows
that all the recurrent states in the Markov chain G�σ′

are also collapsed-recurrent states. As in all reach-
able states (X,Y,W,R,A) we have W (X) = 1, by the
fifth point of Lemma 2 it follows that every action
L played in a collapsed-recurrent state (X,Y,W,R,A)
satisfies that the reward r(X,L) = 1. As this true for
every reachable recurrent class, the fact that the col-
lapsed strategy is an almost-sure winning strategy for
LimAvg=1 objective follows from Lemma 1.

Theorem 2 (Strategy complexity). The follow-
ing assertions hold: (1) If there exists a finite-
memory almost-sure winning strategy in the POMDP
G = (S,A, δ,O, γ, s0) with reward function r for the
LimAvg=1 objective, then there exists a finite-memory
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almost-sure winning strategy with memory size at
most 23·|S|+|A|. (2) Finite-memory almost-sure win-
ning strategies for LimAvg=1 objectives in POMDPs
in general require exponential memory and belief-based
strategies are not sufficient.

Proof. The first point follows from Lemma 4 and the
fact that the size of the memory set of the collapsed
strategy σ′ of any finite-memory strategy σ (which is
the size of the vertex set of the collapsed graph of σ)
is bounded by 23·|S|+|A|.

3.2 Computational complexity

A naive double-exponential time algorithm would be
to enumerate all finite-memory strategies with mem-
ory bounded by 23·|S|+|A| (by Theorem 2). Our
improved exponential-time algorithm consists of two
steps: (i) first it constructs a special type of a belief-
observation POMDP G from a POMDP G (and G
is exponential in G); and we show that there exists
a finite-memory almost-sure winning strategy for the
objective LimAvg=1 in G iff there exists a randomized
memoryless almost-sure winning strategy in G for the
objective LimAvg=1; and (ii) then we show how to de-
termine whether there exists a randomized memoryless
almost-sure winning strategy in G for the LimAvg=1

objective in polynomial time with respect to the size
of G. For a belief-observation POMDP the current be-
lief is always the set of states with current observation.

Definition 4. A POMDP G = (S,A, δ,O, γ, s0) is
a belief-observation POMDP iff for every finite prefix
w = (s0, a0, s1, a1, . . . , an−1, sn) the belief associated
with the observation sequence ρ = γ(w) is the set of
states with the last observation γ(sn) of the observa-
tion sequence ρ, i.e., B(ρ) = γ−1(γ(sn)).

Construction of the belief-observation
POMDP. Intuitively, the construction of G from G
will proceed as follows: if there exists an almost-sure
winning finite-memory strategy, then there exists an
almost-sure winning collapsed strategy with memory
bounded by 23·|S|+|A|. This allows us to consider the
memory elements M = 2S × {0, 1}|S| × {0, 1}|S| × 2A;
and intuitively construct the product of the memory
M with the POMDP G. The POMDP G is con-
structed such that it allows all possible ways the
collapsed strategy of a finite-memory almost-sure
winning strategy could play. The reward function r in
G is obtained from the reward function r in G. In the
POMDP G the belief is already included in the state
space itself of the POMDP, and the belief represents
exactly the set of states in which the POMDP can be
with positive probability. Therefore, the POMDP G is
a belief-observation POMDP. Since possible memory

states of collapsed strategies are part of state space,
we only need to consider memoryless strategies in G.

Lemma 5. The POMDP G is a belief-observation
POMDP, such that there exists a finite-memory
almost-sure winning strategy for the LimAvg=1 objec-
tive with the reward function r in the POMDP G iff
there exists a memoryless almost-sure winning strategy
for the LimAvg=1 objective with the reward function r
in the POMDP G.

Almost-sure winning observations. Given a
POMDP G = (S,A, δ,O, γ) and an objective ψ, let
AlmostM(ψ) denote the set of observations o ∈ O,
such that there exists a memoryless almost-sure win-
ning strategy to ensure ψ from every state s ∈ γ−1(o).

Almost-sure winning for LimAvg=1 objectives.
Our goal is to compute the set AlmostM(LimAvg=1)
given the belief-observation POMDP G (of our con-
struction of G with product with M). Let F ⊆ S
be the set of states of G where some actions can be
played consistently with the collapsed strategy of any
finite-memory almost-sure winning strategy. Let G̃
denote the POMDP G restricted to F . We define
a subset of states of the belief-observation POMDP
G̃ that intuitively correspond to winning collapsed-
recurrent states (wcs), i.e., S̃wcs = {(s, (Y,W,R,A)) |
W (s) = 1, R(s) = 1}. Then, we compute the set of

observations ÃW that can ensure to reach Swcs almost-
surely in the the POMDP G̃. We show that the set

of observations ÃW is equal to the set of observa-
tions AlmostM(LimAvg=1) in the POMDP G. Thus
the computation reduces to computation of almost-
sure states for reachability objectives. Finally we show
that almost-sure reachability set can be computed in
quadratic time for belief-observation POMDPs. The
quadratic time algorithm is obtained as follows: we
show almost-sure winning observations to ensure to
reach a target set T with probability 1 is the greatest
fixpoint of a set Y of observations such that playing
all actions uniformly that ensures Y is not left, ensures
to reach T almost-surely. This characterization gives
a nested iterative algorithm that is quadratic time.

Lemma 6. ÃW = AlmostM(LimAvg=1); and ÃW can
be computed in quadratic time in the size of G.

The EXPTIME-completeness. In this section we
first showed that given a POMDP G with a LimAvg=1

objective we can construct an exponential size belief-
observation POMDP G and the computation of the
almost-sure winning set for LimAvg=1 objectives is
reduced to the computation of the almost-sure win-
ning set for reachability objectives, which we solve in
quadratic time in G. This gives us an exponential-
time algorithm to decide (and construct if one ex-
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ists) the existence of finite-memory almost-sure win-
ning strategies in POMDPs with LimAvg=1 objectives.
The EXPTIME-hardness for almost-sure winning can
be obtained easily from the result of Reif for two-player
partial-observation games with safety objectives [25].

Theorem 3. The following assertions hold: (1) Given
a POMDP G with |S| states, |A| actions, and a
LimAvg=1 objective, the existence (and construction
if one exists) of a finite-memory almost-sure winning
strategy can be achieved in 2O(|S|+|A|) time. (2) The
decision problem of given a POMDP and a LimAvg=1

objective whether there exists a finite-memory almost-
sure winning strategy is EXPTIME-complete.

Remark 2. We considered observation function that
assigns an observation to every state. In general the
observation function γ : S → 2O \ ∅ may assign mul-
tiple observations to a single state. In that case we
consider the set of observations as O′ = 2O \ ∅ and
consider the mapping that assigns to every state an
observation from O′ and then apply our results.

4 Finite-memory strategies with
Quantitative Constraint

We will show that the problem of deciding whether
there exists a finite-memory (as well as an infinite-
memory) almost-sure winning strategy for the objec-
tive LimAvg> 1

2
is undecidable. We present a reduction

from the standard undecidable problem for probabilis-
tic finite automata (PFA). A PFA P = (S,A, δ, F, s0)
is a special case of a POMDP G = (S,A, δ,O, γ, s0)
with a single observation O = {o} such that for all
states s ∈ S we have γ(s) = o. Moreover, the PFA
proceeds for only finitely many steps, and has a set
F of desired final states. The strict emptiness prob-
lem asks for the existence of a strategy w (a finite
word over the alphabet A) such that the measure of
the runs ending in the desired final states F is strictly
greater than 1

2 ; and the strict emptiness problem for
PFA is undecidable [21].

Reduction. Given a PFA P = (S,A, δ, F, s0) we
construct a POMDP G = (S′,A′, δ′,O, γ, s′0) with a
Boolean reward function r such that there exists a word
w ∈ A∗ accepted with probability strictly greater than
1
2 in P iff there exists a finite-memory almost-sure win-

ning strategy in G for the objective LimAvg> 1
2
. Intu-

itively, the construction of the POMDP G is as fol-
lows: for every state s ∈ S of P we construct a pair
of states (s, 1) and (s, 0) in S′ with the property that
(s, 0) can only be reached with a new action $ (not in
A) played in state (s, 1). The transition function δ′

from the state (s, 0) mimics the transition function δ,
i.e., δ′((s, 0), a)((s′, 1)) = δ(s, a)(s′). The reward r of
(s, 1) (resp. (s, 0)) is 1 (resp. 0), ensuring the average
of the pair to be 1

2 . We add a new available action
# that when played in a final state reaches a state
good ∈ S′ with reward 1, and when played in a non-
final state reaches a state bad ∈ S′ with reward 0, and
for states good and bad given action # the next state
is the initial state. An illustration of the construction
on an example is depicted on Figure 2. Whenever an
action is played in a state where it is not available,
the POMDP reaches a loosing absorbing state, i.e., an
absorbing state with reward 0, and for brevity we omit
transitions to the loosing absorbing state. We present
key proof ideas to establish the correctness:

(Strict emptiness implies almost-sure LimAvg> 1
2
). Let

w ∈ A∗ be a word accepted in P with probability
µ > 1

2 and let the length of the word be |w| =
n. We construct a pure finite-memory almost-sure
winning strategy for the objective LimAvg> 1

2
in the

POMDP G as follows: We denote by w[i] the ith ac-
tion in the word w. The finite-memory strategy we
construct is specified as an ultimately periodic word
($w[1]$w[2] . . . $w[n]##)ω. Observe that by the con-
struction of the POMDP G, the sequence of rewards
(that appear on the transitions) is (10)n followed by
(i) 1 with probability µ (when F is reached), and (ii) 0
otherwise; and the whole sequence is repeated ad in-
finitum. Then using the Strong Law of Large Numbers
(SLLN) [6, Theorem 7.1, page 56] we show that with
probability 1 the objective LimAvg> 1

2
is satisfied.

(Almost-sure LimAvg> 1
2

implies strict emptiness).
Conversely, if there is a pure finite-memory strategy
σ to ensure the objective LimAvg> 1

2
in the POMDP,

then the strategy σ can be viewed as an ultimately
periodic infinite word of the form u · vω, where u, v
are finite words from A′. Note that v must contain
the subsequence ##, as otherwise the LimAvg pay-
off would be only 1

2 . Similarly, before every letter
a ∈ A in the words u, v, the strategy must necessarily
play the $ action, as otherwise the loosing absorbing
state is reached. Again using SLLN we show that from
the word v we can extract a word w that is accepted
in the PFA with probability strictly greater than 1

2 .
Finally, we show that if there is randomized (possi-
bly infinite-memory strategy) to ensure the objective
LimAvg> 1

2
in the POMDP, then there is a pure finite-

memory strategy as well (the technical proof uses Fa-

149



s0 s
a

b

s0 s

goodbad

a
b

$$

##

$$

Figure 3: PFA P to a POMDP G

tou’s lemma [6]).

Theorem 4. The problem whether there exists a finite
(or infinite-memory) almost-sure winning strategy in a
POMDP for the objective LimAvg> 1

2
is undecidable.

5 Infinite-memory strategies with
Qualitative Constraint

In this section we show that the problem of deciding
the existence of infinite-memory almost-sure winning
strategies in POMDPs with LimAvg=1 objectives is un-
decidable. We prove this fact by a reduction from the
value 1 problem in PFA, which is undecidable [8]. The
value 1 problem given a PFA P asks whether for every
ε > 0 there exists a finite word w such that the word
is accepted in P with probability at least 1 − ε (i.e.,
the limit of the acceptance probabilities is 1).

Reduction. Given a PFA P = (S,A, δ, F, s0), we
construct a POMDP G′ = (S′,A′, δ′,O′, γ′, s′0) with
a reward function r′, such that P satisfies the value 1
problem iff there exists an infinite-memory almost-sure
winning strategy in G′ for the objective LimAvg=1. In-
tuitively, the construction adds two additional states
good and bad. We add an edge from every state of the
PFA under a new action $, this edge leads to the state
good when played in a final state, and to the state bad
otherwise. In the states good and bad we add self-loops
under a new action #. The action $ in the states good
or bad leads back to the initial state. An example of
the construction is illustrated with Figure 3. All the
states belong to a single observation, and we will use
Boolean reward function on states. The reward for all
states except the newly added state good is 0, and the
reward for the state good is 1.

The key proof ideas for correctness are as follows:

(Value 1 implies almost-sure LimAvg=1). If P satisfies
the value 1 problem, then there exists a sequence of fi-
nite words (wi)i≥1, such that each wi is accepted in P
with probability at least 1− 1

2i+1 . We construct an infi-
nite word w1·$·#n1 ·w2·$·#n2 · · · , where each ni ∈ N is
a natural number that satisfies the following condition:
let ki = |wi+1 · $| +

∑i
j=1(|wj · $| + nj) be the length

of the word sequence before #ni+1 , then we must have
ni

ki
≥ 1− 1

i . The construction ensures that if the state

bad appears only finitely often with probability 1, then
LimAvg=1 is ensured with probability 1. The argument
to show that bad is visited infinitely often with prob-
ability 0 is as follows. We first upper bound the prob-
ability uk+1 to visit the state bad at least k+ 1 times,
given k visits to state bad. The probability uk+1 is at
most 1

2k+1 (1+ 1
2 + 1

4 + · · · ). The above bound for uk+1

is obtained as follows: following the visit to bad for k
times, the words wj , for j ≥ k are played; and hence
the probability to reach bad decreases by 1

2 every time
the next word is played; and after k visits the probabil-
ity is always smaller than 1

2k+1 . Hence the probability
to visit bad at least k+1 times, given k visits, is at most
the sum above, which is 1

2k
. Let Ek denote the event

that bad is visited at least k + 1 times given k visits
to bad. Then we have

∑
k≥0 P(Ek) ≤ ∑k≥1

1
2k

< ∞.
By Borel-Cantelli lemma [6, Theorem 6.1, page 47] we
have that the probability that bad is visited infinitely
often is 0.

(Almost-sure LimAvg=1 implies value 1). We prove
the converse. Consider that the PFA P does not sat-
isfy the value 1 problem, i.e., there exists a constant
c > 0 such that for all w ∈ A∗ we have that the proba-
bility that w is accepted in P is at most 1− c < 1. We
will show that there is no almost-sure winning strat-
egy. Assume towards contradiction that there exists
an infinite-memory almost-sure winning strategy σ in
the POMDP G′; and the infinite word correspond-
ing to σ must play infinitely many sequences of #’s
to ensure LimAvg=1. Let Xi be the random variable
for the rewards for the i-th sequence of #’s. Then
we have that Xi = 1 with probability at most 1 − c
and 0 otherwise. The expected LimAvg payoff is then
at most: E(lim inf

n→∞
1
n

∑n
i=0Xi). Since Xi’s are non-

negative measurable function, by Fatou’s lemma [6,
Theorem 3.5, page 16]

E(lim inf
n→∞

1

n

n∑

i=0

Xi) ≤ lim inf
n→∞

E(
1

n

n∑

i=0

Xi) ≤ 1− c.

It follows that Eσ(LimAvg) ≤ 1 − c. Note that if
the strategy σ was almost-sure winning for the ob-
jective LimAvg=1 (i.e., Pσ(LimAvg=1) = 1), then the
expectation of the LimAvg payoff would also be 1 (i.e.,
Eσ(LimAvg) = 1). Therefore we have reached a con-
tradiction to the fact that the strategy σ is almost-sure
winning for the objective LimAvg=1.

Theorem 5. The problem whether there exists an
infinite-memory almost-sure winning strategy in a
POMDP with the objective LimAvg=1 is undecidable.
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Abstract
Gaussian processes (GP) are Bayesian non-
parametric models that are widely used for prob-
abilistic regression. Unfortunately, it cannot
scale well with large data nor perform real-time
predictions due to its cubic time cost in the data
size. This paper presents two parallel GP re-
gression methods that exploit low-rank covari-
ance matrix approximations for distributing the
computational load among parallel machines to
achieve time efficiency and scalability. We the-
oretically guarantee the predictive performances
of our proposed parallel GPs to be equivalent to
that of some centralized approximate GP regres-
sion methods: The computation of their central-
ized counterparts can be distributed among par-
allel machines, hence achieving greater time effi-
ciency and scalability. We analytically compare
the properties of our parallel GPs such as time,
space, and communication complexity. Empir-
ical evaluation on two real-world datasets in a
cluster of 20 computing nodes shows that our
parallel GPs are significantly more time-efficient
and scalable than their centralized counterparts
and exact/full GP while achieving predictive per-
formances comparable to full GP.

1 Introduction
Gaussian processes (GP) are Bayesian non-parametric
models for performing nonlinear regression, which offer an
important advantage of providing fully probabilistic predic-
tive distributions with formal measures of the uncertainty
of the predictions. The key limitation hindering the prac-
tical use of GP for large data is the high computational
cost: It incurs cubic time and quadratic memory in the
size of the data. To reduce the computational cost, two
classes of approximate GP regression methods have been
proposed: (a) Low-rank covariance matrix approximation
methods (Quiñonero-Candela and Rasmussen, 2005; Snel-
son and Ghahramani, 2005; Williams and Seeger, 2000) are
especially suitable for modeling smoothly-varying func-

tions with high correlation (i.e., long length-scales) and
they utilize all the data for predictions like the exact/full
GP; and (b) localized regression methods (e.g., local GPs
(Das and Srivastava, 2010; Choudhury et al., 2002; Park
et al., 2011) and compactly supported covariance func-
tions (Furrer et al., 2006)) are capable of modeling highly-
varying functions with low correlation (i.e., short length-
scales) but they use only local data for predictions, hence
predicting poorly in input regions with sparse data. Recent
approximate GP regression methods of Snelson (2007) and
Vanhatalo and Vehtari (2008) have attempted to combine
the best of both worlds.

Despite these various efforts to scale up GP, it remains
computationally impractical for performing real-time pre-
dictions necessary in many time-critical applications and
decision support systems (e.g., ocean sensing (Cao et al.,
2013; Dolan et al., 2009; Low et al., 2007, 2011, 2012;
Podnar et al., 2010), traffic monitoring (Chen et al., 2012;
Yu et al., 2012), geographical information systems) that
need to process and analyze huge quantities of data col-
lected over short time durations (e.g., in astronomy, inter-
net traffic, meteorology, surveillance). To resolve this, the
work in this paper considers exploiting clusters of paral-
lel machines to achieve efficient and scalable predictions
in real time. Such an idea of scaling up machine learn-
ing techniques (e.g., clustering, support vector machines,
graphical models) has recently attracted widespread inter-
est in the machine learning community (Bekkerman et al.,
2011). For the case of Gaussian process regression, the
local GPs method (Das and Srivastava, 2010; Choudhury
et al., 2002) appears most straightforward to be “embar-
rassingly” parallelized but they suffer from discontinuities
in predictions on the boundaries of different local GPs. The
work of Park et al. (2011) rectifies this problem by impos-
ing continuity constraints along the boundaries in a central-
ized manner. But, its use is restricted strictly to data with
1- and 2-dimensional input features.

This paper presents two parallel GP regression methods
(Sections 3 and 4) that, in particular, exploit low-rank co-
variance matrix approximations for distributing the compu-
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tational load among parallel machines to achieve time effi-
ciency and scalability. Different from the above-mentioned
parallel local GPs method, our proposed parallel GPs
do not suffer from boundary effects, work with multi-
dimensional input features, and exploit all the data for pre-
dictions but do not incur the cubic time cost of the full/exact
GP. The specific contributions of our work include:

• Theoretically guaranteeing the predictive performances
of our parallel GPs (i.e., parallel partially independent
conditional (pPIC) and parallel incomplete Cholesky
factorization (pICF)-based approximations of GP re-
gression model) to be equivalent to that of some cen-
tralized approaches to approximate GP regression (Sec-
tions 3 and 4). An important practical implication of
these results is that the computation of their centralized
counterparts can be distributed among a cluster of par-
allel machines, hence achieving greater time efficiency
and scalability. Furthermore, our parallel GPs inherit an
advantage of their centralized counterparts in providing a
parameter (i.e., size of support set for pPIC and reduced
rank for pICF-based GP) to be adjusted in order to trade
off between predictive performance and time efficiency;

• Analytically comparing the properties of our parallel
GPs such as time, space, and communication complex-
ity, capability of online learning, and practical implica-
tions of the structural assumptions (Section 5);

• Implementing our parallel GPs using the message pass-
ing interface (MPI) framework to run in a cluster of 20
computing nodes and empirically evaluating their pre-
dictive performances, time efficiency, scalability, and
speedups on two real-world datasets (Section 6).

2 Gaussian Process Regression
The Gaussian process (GP) can be used to perform proba-
bilistic regression as follows: Let X be a set representing
the input domain such that each input x ∈ X denotes a
d-dimensional feature vector and is associated with a re-
alized output value yx (random output variable Yx) if it is
observed (unobserved). Let {Yx}x∈X denote a GP, that is,
every finite subset of {Yx}x∈X follows a multivariate Gaus-
sian distribution (Rasmussen and Williams, 2006). Then,
the GP is fully specified by its prior mean µx , E[Yx] and
covariance σxx′ , cov[Yx, Yx′ ] for all x, x′ ∈ X .

Given that a column vector yD of realized outputs is ob-
served for some set D ⊂ X of inputs, the GP can ex-
ploit this data (D, yD) to provide predictions of the unob-
served outputs for any set U ⊆ X \ D of inputs and their
corresponding predictive uncertainties using the following
Gaussian posterior mean vector and covariance matrix, re-
spectively:

µU|D , µU + ΣUDΣ−1DD(yD − µD) (1)

ΣUU|D , ΣUU − ΣUDΣ−1DDΣDU (2)

where µU (µD) is a column vector with mean components
µx for all x ∈ U (x ∈ D), ΣUD (ΣDD) is a covariance ma-

trix with covariance components σxx′ for all x ∈ U , x′ ∈ D
(x, x′ ∈ D), and ΣDU is the transpose of ΣUD. The un-
certainty of predicting the unobserved outputs can be mea-
sured using the trace of ΣUU|D (2) (i.e., sum of posterior
variances Σxx|D over all x ∈ U), which is independent of
the realized outputs yD.

3 Parallel Gaussian Process Regression
using Support Set

The centralized approach to exact/full GP regression de-
scribed in Section 2, which we call the full Gaussian pro-
cess (FGP), unfortunately cannot scale well and be per-
formed in real time due to its cubic time complexity in the
size |D| of the data. In this section, we will present a class
of parallel Gaussian processes (pPITC and pPIC) that dis-
tributes the computational load among parallel machines to
achieve efficient and scalable approximate GP regression
by exploiting the notion of a support set.

The parallel partially independent training conditional
(pPITC) approximation of FGP model is adapted from our
previous work on decentralized data fusion (Chen et al.,
2012) for sampling environmental phenomena with mobile
sensors. But, the latter does not address the practical imple-
mentation issues of parallelization on a cluster of machines
nor demonstrate scalability with large data. So, we present
pPITC here under the setting of parallel machines and then
show how its shortcomings can be overcome by extend-
ing it to pPIC. The key idea of pPITC is as follows: After
distributing the data evenly among M machines (Step 1),
each machine encapsulates its local data, based on a com-
mon prior support set S ⊂ X where |S| � |D|, into a local
summary that is communicated to the master1 (Step 2). The
master assimilates the local summaries into a global sum-
mary (Step 3), which is then sent back to the M machines
to be used for predictions distributed among them (Step 4).
These steps are detailed below:

STEP 1: DISTRIBUTE DATA AMONG M MACHINES.

The data (D, yD) is partitioned evenly into M blocks, each
of which is assigned to a machine, as defined below:

Definition 1 (Local Data) The local data of machine m is
defined as a tuple (Dm, yDm) whereDm ⊆ D,Dm

⋂Di =
∅ and |Dm| = |Di| = |D|/M for i 6= m.

STEP 2: EACH MACHINE CONSTRUCTS AND SENDS LO-
CAL SUMMARY TO MASTER.

Definition 2 (Local Summary) Given a common support
set S ⊂ X known to all M machines and the local data
(Dm, yDm

), the local summary of machine m is defined as
a tuple (ẏmS , Σ̇

m
SS) where

ẏmB , ΣBDmΣ−1DmDm|S (yDm − µDm) (3)

1One of the M machines can be assigned to be the master.
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Σ̇mBB′ , ΣBDmΣ−1DmDm|SΣDmB′ (4)

such that ΣDmDm|S is defined in a similar manner as (2)
and B,B′ ⊂ X .

Remark. Since the local summary is independent of the
outputs yS , they need not be observed. So, the support set
S does not have to be a subset of D and can be selected
prior to data collection. Predictive performances of pPITC
and pPIC are sensitive to the selection of S. An informa-
tive support set S can be selected from domain X using an
iterative greedy active selection procedure (Krause et al.,
2008; Lawrence et al., 2003; Seeger and Williams, 2003)
prior to observing data. For example, the differential en-
tropy score criterion (Lawrence et al., 2003) can be used to
greedily select an input x ∈ X \S with the largest posterior
variance Σxx|S (2) to be included in S in each iteration.

STEP 3: MASTER CONSTRUCTS AND SENDS GLOBAL
SUMMARY TO M MACHINES.

Definition 3 (Global Summary) Given a common sup-
port set S ⊂ X known to all M machines and the local
summary (ẏmS , Σ̇

m
SS) of every machine m = 1, . . . ,M , the

global summary is defined as a tuple (ÿS , Σ̈SS) where

ÿS ,
M∑

m=1

ẏmS (5)

Σ̈SS , ΣSS +

M∑

m=1

Σ̇mSS . (6)

STEP 4: DISTRIBUTE PREDICTIONS AMONG M MA-
CHINES.

To predict the unobserved outputs for any set U of inputs, U
is partitioned evenly into disjoint subsets U1, . . . ,UM to be
assigned to the respective machines 1, . . . ,M . So, |Um| =
|U|/M for m = 1, . . . ,M .

Definition 4 (pPITC) Given a common support set S ⊂
X known to all M machines and the global summary
(ÿS , Σ̈SS), each machine m computes a predictive Gaus-
sian distribution N (µ̂Um , Σ̂UmUm) of the unobserved out-
puts for the set Um of inputs where

µ̂Um , µUm + ΣUmSΣ̈−1SS ÿS (7)

Σ̂UmUm , ΣUmUm − ΣUmS
(

Σ−1SS − Σ̈−1SS

)
ΣSUm . (8)

Theorem 1 [Chen et al. (2012)] Let a common sup-
port set S ⊂ X be known to all M machines. Let
N (µPITC

U|D,Σ
PITC
UU|D) be the predictive Gaussian distribu-

tion computed by the centralized partially independent
training conditional (PITC) approximation of FGP model
(Quiñonero-Candela and Rasmussen, 2005) where

µPITC
U|D , µU + ΓUD (ΓDD + Λ)

−1
(yD − µD) (9)

ΣPITC
UU|D , ΣUU − ΓUD (ΓDD + Λ)

−1
ΓDU (10)

such that
ΓBB′ , ΣBSΣ−1SSΣSB′ (11)

and Λ is a block-diagonal matrix constructed from the
M diagonal blocks of ΣDD|S , each of which is a matrix
ΣDmDm|S for m = 1, . . . ,M where D =

⋃M
m=1Dm.

Then, µ̂U = µPITC
U|D and Σ̂UU = ΣPITC

UU|D.

The proof of Theorem 1 is previously reported in (Chen
et al., 2012) and reproduced in Appendix A of Chen et al.
(2013) to reflect our notations.

Remark. Since PITC generalizes the Bayesian Commit-
tee Machine (BCM) of Schwaighofer and Tresp (2002),
pPITC generalizes parallel BCM (Ingram and Cornford,
2010), the latter of which assumes the support set S to be
U (Quiñonero-Candela and Rasmussen, 2005). As a result,
parallel BCM does not scale well with large U .

Though pPITC scales very well with large data (Table 1),
it can predict poorly due to (a) loss of information caused
by summarizing the realized outputs and correlation struc-
ture of the original data; and (b) sparse coverage of U by
the support set. We propose a novel parallel Gaussian pro-
cess regression method called pPIC that combines the best
of both worlds, that is, the predictive power of FGP and
time efficiency of pPITC. pPIC is based on the following
intuition: A machine can exploit its local data to improve
the predictions of the unobserved outputs that are highly
correlated with its data. At the same time, pPIC can pre-
serve the time efficiency of pPITC by exploiting its idea of
encapsulating information into local and global summaries.

Definition 5 (pPIC) Given a common support set S ⊂
X known to all M machines, the global summary
(ÿS , Σ̈SS), the local summary (ẏmS , Σ̇

m
SS), and the local

data (Dm, yDm
), each machine m computes a predictive

Gaussian distribution N (µ̂+
Um , Σ̂

+
UmUm) of the unobserved

outputs for the set Um of inputs where

µ̂+
Um , µUm +

(
ΦmUmSΣ̈−1SS ÿS − ΣUmSΣ−1SS ẏ

m
S
)

+ ẏmUm
(12)

Σ̂+
UmUm,ΣUmUm −

(
ΦmUmSΣ−1SSΣSUm − ΣUmSΣ−1SSΣ̇mSUm

− ΦmUmSΣ̈−1SSΦmSUm

)
− Σ̇mUmUm

(13)
such that

ΦmUmS , ΣUmS + ΣUmSΣ−1SSΣ̇mSS − Σ̇mUmS (14)

and ΦmSUm is the transpose of ΦmUmS .

Remark 1. The predictive Gaussian mean µ̂+
Um (12) and

covariance Σ̂+
UmUm (13) of pPIC exploit both summary in-

formation (i.e., bracketed term) and local information (i.e.,
last term). In contrast, pPITC only exploits the global sum-
mary (see (7) and (8)).
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Remark 2. To improve the predictive performance of
pPIC, D and U should be partitioned into tuples of
(D1,U1), . . . , (DM ,UM ) such that the outputs yDm

and
YUm are as highly correlated as possible form = 1, . . . ,M .
To achieve this, we employ a simple parallelized clustering
scheme in our experiments: Each machine m randomly se-
lects a cluster center from its local data Dm and informs
the other machines about its chosen cluster center. Then,
each input in Dm and Um is simply assigned to the “near-
est” cluster center i and sent to the corresponding machine
i while being subject to the constraints of the new Di and
Ui not exceeding |D|/M and |U|/M , respectively. More
sophisticated clustering schemes can be utilized at the ex-
pense of greater time and communication complexity.

Remark 3. Predictive performances of pPITC and pPIC are
improved by increasing size of S at the expense of greater
time, space, and communication complexity (Table 1).

Theorem 2 Let a common support set S ⊂ X be known
to all M machines. Let N (µPIC

U|D,Σ
PIC
UU|D) be the predic-

tive Gaussian distribution computed by the centralized par-
tially independent conditional (PIC) approximation of FGP
model (Snelson, 2007) where

µPIC
U|D , µU + Γ̃UD (ΓDD + Λ)

−1
(yD − µD) (15)

ΣPIC
UU|D , ΣUU − Γ̃UD (ΓDD + Λ)

−1
Γ̃DU (16)

and Γ̃DU is the transpose of Γ̃UD such that

Γ̃UD ,
(

Γ̃UiDm

)
i,m=1,...,M

(17)

Γ̃UiDm ,
{

ΣUiDm
if i = m,

ΓUiDm otherwise. (18)

Then, µ̂+
U = µPIC

U|D and Σ̂+
UU = ΣPIC

UU|D.

Its proof is given in Appendix B of Chen et al. (2013).

Remark 1. The equivalence results of Theorems 1 and 2
imply that the computational load of the centralized PITC
and PIC approximations of FGP can be distributed among
M parallel machines, hence improving the time efficiency
and scalability of approximate GP regression (Table 1).

Remark 2. The equivalence results also shed some light
on the underlying properties of pPITC and pPIC based on
the structural assumptions of PITC and PIC, respectively:
pPITC assumes that YD1

, . . . , YDM
, YU1 , . . . , YUM are con-

ditionally independent given YS . In contrast, pPIC can pre-
dict the unobserved outputs YU better since it imposes a
less restrictive assumption of conditional independence be-
tween YD1

⋃U1 , . . . , YDM

⋃UM given YS . This assumption
further supports an earlier remark just before Theorem 2 on
clustering inputsDm and Um whose corresponding outputs
are highly correlated for improving predictive performance
of pPIC. Experimental results on two real-world datasets

(Section 6) show that pPIC achieves predictive accuracy
comparable to FGP and significantly better than pPITC,
thus justifying the practicality of such an assumption.

4 Parallel Gaussian Process Regression
using Incomplete Cholesky Factorization

In this section, we will present another parallel Gaussian
process called pICF-based GP that distributes the compu-
tational load among parallel machines to achieve efficient
and scalable approximate GP regression by exploiting in-
complete Cholesky factorization (ICF). A fundamental step
of pICF-based GP is to use ICF to approximate the covari-
ance matrix ΣDD in (1) and (2) of FGP by a low-rank sym-
metric positive semidefinite matrix: ΣDD ≈ F>F + σ2

nI
where F ∈ RR×|D| denotes the upper triangular incom-
plete Cholesky factor and R � |D| is the reduced rank.
The steps of performing pICF-based GP are as follows:

STEP 1: DISTRIBUTE DATA AMONG M MACHINES.

This step is the same as that of pPITC and pPIC in Sec-
tion 3.

STEP 2: RUN PARALLEL ICF TO PRODUCE INCOMPLETE
CHOLESKY FACTOR AND DISTRIBUTE ITS STORAGE.

ICF can in fact be parallelized: Instead of using a column-
based parallel ICF (Golub and Van Loan, 1996), our pro-
posed pICF-based GP employs a row-based parallel ICF,
the latter of which incurs lower time, space, and com-
munication complexity. Interested readers are referred to
(Chang et al., 2007) for a detailed implementation of the
row-based parallel ICF, which is beyond the scope of this
paper. More importantly, it produces an upper triangular in-
complete Cholesky factor F , (F1 · · ·FM ) and each sub-
matrix Fm ∈ RR×|Dm| is stored distributedly on machine
m for m = 1, . . . ,M .

STEP 3: EACH MACHINE CONSTRUCTS AND SENDS LO-
CAL SUMMARY TO MASTER.

Definition 6 (Local Summary) Given the local data
(Dm, yDm) and incomplete Cholesky factor Fm, the local
summary of machinem is defined as a tuple (ẏm, Σ̇m,Φm)
where

ẏm , Fm(yDm
− µDm

) (19)

Σ̇m , FmΣDmU (20)

Φm , FmF
>
m . (21)

STEP 4: MASTER CONSTRUCTS AND SENDS GLOBAL
SUMMARY TO M MACHINES.

Definition 7 (Global Summary) Given the local sum-
mary (ẏm, Σ̇m,Φm) of every machine m = 1, . . . ,M , the
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global summary is defined as a tuple (ÿ, Σ̈) where

ÿ , Φ−1
M∑

m=1

ẏm (22)

Σ̈ , Φ−1
M∑

m=1

Σ̇m (23)

such that Φ , I + σ−2n
∑M
m=1 Φm.

Remark. If |U| is large, the computation of (23) can be par-
allelized by partitioning U : Let Σ̇m , (Σ̇1

m · · · Σ̇Mm ) where
Σ̇im , FmΣDmUi is defined in a similar way as (20) and
|U|i = |U|/M . So, in Step 3, instead of sending Σ̇m to
the master, each machine m sends Σ̇im to machine i for
i = 1, . . . ,M . Then, each machine i computes and sends
Σ̈i , Φ−1

∑M
m=1 Σ̇im to every other machine to obtain

Σ̈ = (Σ̈1 · · · Σ̈M ).

STEP 5: EACH MACHINE CONSTRUCTS AND SENDS PRE-
DICTIVE COMPONENT TO MASTER.

Definition 8 (Predictive Component) Given the local
data (Dm, yDm), a component Σ̇m of the local summary,
and the global summary (ÿ, Σ̈), the predictive component
of machine m is defined as a tuple (µ̃mU , Σ̃

m
UU ) where

µ̃mU , σ−2n ΣUDm(yDm − µDm)− σ−4n Σ̇>mÿ (24)

Σ̃mUU , σ−2n ΣUDm
ΣDmU − σ−4n Σ̇>mΣ̈ . (25)

STEP 6: MASTER PERFORMS PREDICTIONS.

Definition 9 (pICF-based GP) Given the predictive com-
ponent (µ̃mU , Σ̃

m
UU ) of every machine m = 1, . . . ,M ,

the master computes a predictive Gaussian distribution
N (µ̃U , Σ̃UU ) of the unobserved outputs for any set U of
inputs where

µ̃U , µU +
M∑

m=1

µ̃mU (26)

Σ̃UU , ΣUU −
M∑

m=1

Σ̃mUU . (27)

Remark. Predictive performance of pICF-based GP can be
improved by increasing rank R at the expense of greater
time, space, and communication complexity (Table 1).

Theorem 3 Let N (µICF
U|D,Σ

ICF
UU|D) be the predictive Gaus-

sian distribution computed by the centralized ICF approxi-
mation of FGP model where

µICF
U|D , µU + ΣUD(F>F + σ2

nI)−1(yD − µD) (28)

ΣICF
UU|D , ΣUU − ΣUD(F>F + σ2

nI)−1ΣDU . (29)

Then, µ̃U = µICF
U|D and Σ̃UU = ΣICF

UU|D.

Its proof is given in Appendix C of Chen et al. (2013).

Remark 1. The equivalence result of Theorem 3 implies
that the computational load of the centralized ICF approx-
imation of FGP can be distributed among the M parallel
machines, hence improving the time efficiency and scala-
bility of approximate GP regression (Table 1).

Remark 2. By approximating the covariance matrix ΣDD
in (1) and (2) of FGP with F>F + σ2

nI , Σ̃UU = ΣICF
UU|D is

not guaranteed to be positive semidefinite, hence rendering
such a measure of predictive uncertainty not very useful.
However, it is observed in our experiments (Section 6) that
this problem can be alleviated by choosing a sufficiently
large rank R.

5 Analytical Comparison

This section compares and contrasts the properties of the
proposed parallel GPs analytically.

5.1 Time, Space, and Communication Complexity

Table 1 analytically compares the time, space, and com-
munication complexity between pPITC, pPIC, pICF-based
GP, PITC, PIC, ICF-based GP, and FGP based on the fol-
lowing assumptions: (a) These respective methods com-
pute the predictive means (i.e., µ̂U (7), µ̂+

U (12), µ̃U (26),
µPITC
U|D (9), µPIC

U|D (15), µICF
U|D (28), and µU|D (1)) and their

corresponding predictive variances (i.e., Σ̂xx (8), Σ̂+
xx (13),

Σ̃xx (27), ΣPITC
xx|D (10), ΣPIC

xx|D (16), ΣICF
xx|D (29), and Σxx|D

(2) for all x ∈ U); (b) |U| < |D| and recall |S|, R �
|D|; (c) the data is already distributed among M parallel
machines for pPITC, pPIC, and pICF-based GP; and (d)
for MPI, a broadcast operation in the communication net-
work ofM machines incursO(logM) messages (Pjesivac-
Grbovic et al., 2007). The observations are as follows:

(a) Our pPITC, pPIC, and pICF-based GP improve the
scalability of their centralized counterparts (respec-
tively, PITC, PIC, and ICF-based GP) in the size |D| of
data by distributing their computational loads among
the M parallel machines.

(b) The speedups of pPITC, pPIC, and pICF-based GP
over their centralized counterparts deviate further from
ideal speedup with increasing number M of machines
due to their additional O(|S|2M) or O(R2M) time.

(c) The speedups of pPITC and pPIC grow with in-
creasing size |D| of data because, unlike the addi-
tional O(|S|2|D|) time of PITC and PIC that in-
crease with more data, they do not have corresponding
O(|S|2|D|/M) terms.

(d) Our pPIC incurs additional O(|D|) time and
O((|D|/M) logM)-sized messages over pPITC
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Table 1: Comparison of time, space, and communication complexity between pPITC, pPIC, pICF-based GP, PITC, PIC,
ICF-based GP, and FGP. Note that PITC, PIC, and ICF-based GP are, respectively, the centralized counterparts of pPITC,
pPIC, and pICF-based GP, as proven in Theorems 1, 2, and 3.

GP Time complexity Space complexity Communication complexity

pPITC O
(
|S|2

(
|S|+M +

|U|
M

)
+

( |D|
M

)3
)

O
(
|S|2 +

( |D|
M

)2
)

O
(
|S|2 logM

)

pPIC O
(
|S|2

(
|S|+M +

|U|
M

)
+

( |D|
M

)3

+ |D|
)
O
(
|S|2 +

( |D|
M

)2
)

O
((
|S|2 +

|D|
M

)
logM

)

pICF-based O
(
R2

(
R+M +

|D|
M

)
+R|U|

(
M +

|D|
M

))
O
(
R2 +R

|D|
M

)
O
((
R2 +R|U|

)
logM

)

PITC O
(
|S|2|D|+ |D|

( |D|
M

)2
)

O
(
|S|2 +

( |D|
M

)2
)

−

PIC O
(
|S|2|D|+ |D|

( |D|
M

)2

+M |D|
)

O
(
|S|2 +

( |D|
M

)2
)

−

ICF-based O
(
R2|D|+R|U||D|

)
O(R|D|) −

FGP O
(
|D|3

)
O
(
|D|2

)
−

due to its parallelized clustering (see Remark 2 after
Definition 5).

(e) Keeping the other variables fixed, an increasing num-
ber M of machines reduces the time and space com-
plexity of pPITC and pPIC at a faster rate than pICF-
based GP while increasing size |D| of data raises the
time and space complexity of pICF-based GP at a
slower rate than pPITC and pPIC.

(f) Our pICF-based GP distributes the memory require-
ment of ICF-based GP among the M parallel machines.

(g) The communication complexity of pICF-based GP de-
pends on the number |U| of predictions whereas that of
pPITC and pPIC are independent of it.

5.2 Online/Incremental Learning

Supposing new data (D′, yD′) becomes available, pPITC
and pPIC do not have to run Steps 1 to 4 (Section 3) on the
entire data (D⋃D′, yD⋃D′). The local and global sum-
maries of the old data (D, yD) can in fact be reused and
assimilated with that of the new data, thus saving the need
of recomputing the computationally expensive matrix in-
verses in (3) and (4) for the old data. The exact mathemati-
cal details are omitted due to lack of space. As a result, the
time complexity of pPITC and pPIC can be greatly reduced
in situations where new data is expected to stream in at reg-
ular intervals. In contrast, pICF-based GP does not seem to
share this advantage.

5.3 Structural Assumptions

The above advantage of online learning for pPITC and
pPIC results from their assumptions of conditional inde-

pendence (see Remark 2 after Theorem 2) given the sup-
port set. With fewer machines, such an assumption is
violated less, thus potentially improving their predictive
performances. In contrast, the predictive performance of
pICF-based GP is not affected by varying the number of
machines. However, it suffers from a different problem:
Utilizing a reduced-rank matrix approximation of ΣDD, its
resulting predictive covariance matrix Σ̃UU is not guaran-
teed to be positive semidefinite (see Remark 2 after The-
orem 3), thus rendering such a measure of predictive un-
certainty not very useful. It is observed in our experiments
(Section 6) that this problem can be alleviated by choosing
a sufficiently large rank R.

6 Experiments and Discussion

This section empirically evaluates the predictive perfor-
mances, time efficiency, scalability, and speedups of our
proposed parallel GPs against their centralized counterparts
and FGP on two real-world datasets: (a) The AIMPEAK
dataset of size |D| = 41850 contains traffic speeds (km/h)
along 775 road segments of an urban road network (includ-
ing highways, arterials, slip roads, etc.) during the morning
peak hours (6-10:30 a.m.) on April 20, 2011. The traffic
speeds are the outputs. The mean speed is 49.5 km/h and
the standard deviation is 21.7 km/h. Each input (i.e., road
segment) is specified by a 5-dimensional vector of features:
length, number of lanes, speed limit, direction, and time.
The time dimension comprises 54 five-minute time slots.
This spatiotemporal traffic phenomenon is modeled using a
relational GP (previously developed in (Chen et al., 2012))
whose correlation structure can exploit both the road seg-
ment features and road network topology information; (b)
The SARCOS dataset (Vijayakumar et al., 2005) of size
|D| = 48933 pertains to an inverse dynamics problem for a
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seven degrees-of-freedom SARCOS robot arm. Each input
denotes a 21-dimensional vector of features: 7 joint posi-
tions, 7 joint velocities, and 7 joint accelerations. Only one
of the 7 joint torques is used as the output. The mean torque
is 13.7 and the standard deviation is 20.5.

Both datasets are modeled using GPs whose prior covari-
ance σxx′ is defined by the squared exponential covariance
function2:

σxx′ , σ2
s exp

(
−1

2

d∑

i=1

(
xi − x′i
`i

)2
)

+ σ2
nδxx′

where xi (x′i) is the i-th component of the input feature
vector x (x′), the hyperparameters σ2

s , σ
2
n, `1, . . . , `d are,

respectively, signal variance, noise variance, and length-
scales; and δxx′ is a Kronecker delta that is 1 if x = x′ and
0 otherwise. The hyperparameters are learned using ran-
domly selected data of size 10000 via maximum likelihood
estimation (Rasmussen and Williams, 2006).

For each dataset, 10% of the data is randomly selected as
test data for predictions (i.e., as U). From the remaining
data, training data of varying sizes |D| = 8000, 16000,
24000, and 32000 are randomly selected. The training data
are distributed among M machines based on the simple
parallelized clustering scheme in Remark 2 after Defini-
tion 5. Our pPITC and pPIC are evaluated using support
sets of varying sizes |S| = 256, 512, 1024, and 2048 that
are selected using differential entropy score criterion (see
remark just after Definition 2). Our pICF-based GP is eval-
uated using varying reduced ranks R of the same values as
|S| in the AIMPEAK domain and twice the values of |S| in
the SARCOS domain.

Our experimental platform is a cluster of 20 computing
nodes connected via gigabit links: Each node runs a Linux
system with Intelr Xeonr CPU E5520 at 2.27 GHz and
20 GB memory. Our parallel GPs are tested with different
number M = 4, 8, 12, 16, and 20 of computing nodes.

6.1 Performance Metrics

The tested GP regression methods are evaluated with
four different performance metrics: (a) Root mean

square error (RMSE)
√
|U|−1∑x∈U

(
yx − µx|D

)2
;

(b) mean negative log probability (MNLP)
0.5|U|−1∑x∈U

(
(yx − µx|D)2/Σxx|D + log(2πΣxx|D)

)

(Rasmussen and Williams, 2006); (c) incurred time;
and (d) speedup is defined as the incurred time of a
sequential/centralized algorithm divided by that of its
corresponding parallel algorithm. For the first two metrics,
the tested methods have to plug their predictive mean and
variance into µu|D and Σuu|D, respectively.

2For the AIMPEAK dataset, the domain of road segments is
embedded into the Euclidean space using multi-dimensional scal-
ing (Chen et al., 2012) so that a squared exponential covariance
function can then be applied.

6.2 Results and Analysis

In this section, we analyze the results that are obtained by
averaging over 5 random instances.

6.2.1 Varying size |D| of data

Figs. 1a-b and 1e-f show that the predictive performances
of our parallel GPs improve with more data and are com-
parable to that of FGP, hence justifying the practicality of
their inherent structural assumptions.

From Figs. 1e-f, it can be observed that the predictive per-
formance of pICF-based GP is very close to that of FGP
when |D| is relatively small (i.e., |D| = 8000, 16000). But,
its performance approaches that of pPIC as |D| increases
further because the reduced rank R = 4096 of pICF-based
GP is not large enough (relative to |D|) to maintain its close
performance to FGP. In addition, pPIC achieves better pre-
dictive performance than pPITC since the former can ex-
ploit local information (see Remark 1 after Definition 5).

Figs. 1c and 1g indicate that our parallel GPs are signifi-
cantly more time-efficient and scalable than FGP (i.e., 1-
2 orders of magnitude faster) while achieving compara-
ble predictive performance. Among the three parallel GPs,
pPITC and pPIC are more time-efficient and thus more ca-
pable of meeting the real-time prediction requirement of a
time-critical application/system.

Figs. 1d and 1h show that the speedups of our parallel GPs
over their centralized counterparts increase with more data,
which agree with observation c in Section 5.1. pPITC and
pPIC achieve better speedups than pICF-based GP.

6.2.2 Varying number M of machines

Figs. 2a-b and 2e-f show that pPIC and pICF-based GP
achieve predictive performance comparable to that of FGP
with different number M of machines. pPIC achieves bet-
ter predictive performance than pPITC due to its use of lo-
cal information (see Remark 1 after Definition 5).

From Figs. 2e-f, it can be observed that as the number M
of machines increases, the predictive performance of pPIC
drops slightly due to smaller size of local dataDm assigned
to each machine. In contrast, the predictive performance of
pPITC improves: If the number M of machines is small as
compared to the actual number of clusters in the data, then
the clustering scheme (see Remark 2 after Definition 5)
may assign data from different clusters to the same ma-
chine or data from the same cluster to multiple machines.
Consequently, the conditional independence assumption is
violated. Such an issue is mitigated by increasing the num-
ber M of machines to achieve better clustering, hence re-
sulting in better predictive performance.

Figs. 2c and 2g show that pPIC and pICF-based GP are
significantly more time-efficient than FGP (i.e., 1-2 orders
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Figure 1: Performance of parallel GPs with varying data
sizes |D| = 8000, 16000, 24000, and 32000, number
M = 20 of machines, support set size |S| = 2048, and
reduced rank R = 2048 (4096) in the AIMPEAK (SAR-
COS) domain.

of magnitude faster) while achieving comparable predictive
performance. This is previously explained in the analysis
of their time complexity (Table 1).

Figs. 2c and 2g also reveal that as the number M of ma-
chines increases, the incurred time of pPITC and pPIC de-
creases at a faster rate than that of pICF-based GP, which
agree with observation e in Section 5.1. Hence, we expect
pPITC and pPIC to be more time-efficient than pICF-based
GP when the number M of machines increases beyond 20.

Figs. 2d and 2h show that the speedups of our parallel GPs
over their centralized counterparts deviate further from the
ideal speedup with a greater numberM of machines, which
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Figure 2: Performance of parallel GPs with varying number
M = 4, 8, 12, 16, 20 of machines, data size |D| = 32000,
support set size S = 2048, and reduced rank R = 2048
(4096) in the AIMPEAK (SARCOS) domain. The ideal
speedup of a parallel algorithm is defined to be the number
M of machines running it.

agree with observation b in Section 5.1. The speedups of
pPITC and pPIC are closer to the ideal speedup than that of
pICF-based GP.

6.2.3 Varying support set size |S| and reduced rank R
Figs. 3a and 3e show that the predictive performance of
pICF-based GP is extremely poor when the reduced rank
R is not large enough (relative to |D|), thus resulting in
a poor ICF approximation of the covariance matrix ΣDD.
In addition, it can be observed that the reduced rank R of
pICF-based GP needs to be much larger than the support set
size |S| of pPITC and pPIC in order to achieve comparable

159



predictive performance. These results also indicate that the
heuristic R =

√
|D|, which is used by Chang et al. (2007)

to determine the reduced rank R, fails to work well in both
our datasets (e.g., R = 1024 >

√
32000 ≈ 179).

From Figs. 3b and 3f, it can be observed that pICF-based
GP incurs negative MNLP for R ≤ 1024 (R ≤ 2048) in
the AIMPEAK (SARCOS) domain. This is because pICF-
based GP cannot guarantee positivity of predictive vari-
ance, as explained in Remark 2 after Theorem 3. But, it
appears that when R is sufficiently large (i.e., R = 2048
(R = 4096) in the AIMPEAK (SARCOS) domain), this
problem can be alleviated.

It can be observed in Figs. 3c and 3g that pPITC and pPIC
are significantly more time-efficient than FGP (i.e., 2-4
orders of magnitude faster) while achieving comparable
predictive performance. To ensure high predictive perfor-
mance, pICF-based GP has to select a large enough rank
R = 2048 (R = 4096) in the AIMPEAK (SARCOS)
domain, thus making it less time-efficient than pPITC
and pPIC. But, it can still incur 1-2 orders of magnitude
less time than FGP. These results indicate that pPITC and
pPIC are more capable than pICF-based GP of meeting the
real-time prediction requirement of a time-critical applica-
tion/system.

Figs. 3d and 3h show that pPITC and pPIC achieve better
speedups than pICF-based GP.

6.2.4 Summary of results
pPIC and pICF-based GP are significantly more time-
efficient and scalable than FGP (i.e., 1-4 orders of mag-
nitude faster) while achieving comparable predictive per-
formance, hence justifying the practicality of their struc-
tural assumptions. pPITC and pPIC are expected to be
more time-efficient than pICF-based GP with an increas-
ing number M of machines because their incurred time de-
creases at a faster rate than that of pICF-based GP. Since the
predictive performances of pPITC and pPIC drop slightly
(i.e., more stable) with smaller |S| as compared to that of
pICF-based GP dropping rapidly with smaller R, pPITC
and pPIC are more capable than pICF-based GP of meeting
the real-time prediction requirement of time-critical appli-
cations. The speedups of our parallel GPs over their cen-
tralized counterparts improve with more data but deviate
further from ideal speedup with larger number of machines.

7 Conclusion
This paper describes parallel GP regression methods called
pPIC and pICF-based GP that, respectively, distribute the
computational load of the centralized PIC and ICF-based
GP among parallel machines to achieve greater time ef-
ficiency and scalability. Analytical and empirical re-
sults have demonstrated that our parallel GPs are signifi-
cantly more time-efficient and scalable than their central-
ized counterparts and FGP while achieving predictive per-
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Figure 3: Performance of parallel GPs with data size |D| =
32000, number M = 20 of machines, and varying param-
eter P = 256, 512, 1024, 2048 where P = |S| = R
(P = |S| = R/2) in the AIMPEAK (SARCOS) domain.

formance comparable to FGP. As a result, by exploiting
large clusters of machines, our parallel GPs become sub-
stantially more capable of performing real-time predictions
necessary in many time-critical applications/systems. We
have also implemented pPITC and pPIC in the MapRe-
duce framework for running in a Linux server with 2
Intelr Xeonr CPU E5-2670 at 2.60 GHz and 96 GB
memory (i.e., 16 cores); due to shared memory, they in-
cur slightly longer time than that in a cluster of 16 com-
puting nodes. We plan to release the source code at
http://code.google.com/p/pgpr/.
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Abstract

Although many convex relaxations of clustering
have been proposed in the past decade, current
formulations remain restricted to spherical Gaus-
sian or discriminative models and are susceptible
to imbalanced clusters. To address these short-
comings, we propose a new class of convex re-
laxations that can be flexibly applied to more
general forms of Bregman divergence clustering.
By basing these new formulations on normalized
equivalence relations we retain additional control
on relaxation quality, which allows improvement
in clustering quality. We furthermore develop
optimization methods that improve scalability by
exploiting recent implicit matrix norm methods.
In practice, we find that the new formulations are
able to efficiently produce tighter clusterings that
improve the accuracy of state of the art methods.

1 Introduction
Discovering latent class structure in data, i.e. clustering,
is a fundamental problem in machine learning and statis-
tics. Given data, the task is to assign each observation a
latent cluster label or distribution over cluster labels. Clus-
tering has a long history, with diverse approaches proposed.
Unfortunately, computational tractability remains a funda-
mental challenge: standard clustering formulations are NP-
hard (Aloise et al., 2009; Dasgupta, 2008; Arora & Kan-
nan, 2005) and additional problem structure must be pos-
tulated before efficient solutions can be guaranteed. Fortu-
nately, standard clustering formulations are also efficiently
approximable (Kumar et al., 2004), and much work has
sought practical algorithms that improve solution quality,
even in lieu of theoretical bounds. In this paper we con-
tribute a new family of convex relaxations that improve
clustering quality while admitting efficient algorithms.

The techniques we propose are applicable to a variety
of clustering formulations. Two of the most important
paradigms for clustering are based on generative versus

discriminative modeling, with generative clustering con-
sisting of hard clustering with conditional models, hard
clustering with joint models, and soft clustering with joint
models. We address all but soft clustering in this paper.

Traditionally, clustering formulations have used generative
models to discover interesting latent structure in data. Let
X denote the observation variable and Y denote the latent
class variable. The simplest generative approach optimizes
the conditional model P (X|Y) only, with Y assigned to
the most likely value. This is also known as hard condi-
tional clustering. When P (X|Y) is Gaussian, a popular
approach is hard k-means (MacQueen, 1967) where one
alternates between optimizing Y and the model. Banerjee
et al. (2005) extended the formulation to general exponen-
tial family forms for P (X|Y) via Bregman divergences.
Although hard conditional clustering provides a standard
baseline, finding global solutions in this case is intractable;
efficient methods are only known when the number of
clusters or the dimensionality of the space is constrained
(Hansen et al., 1998; Inaba et al., 1994). Consequently,
there has been significant work on developing approxima-
tions, particularly via convex relaxations that can be solved
in polynomial time. For example, Zha et al. (2001) derived
a convex quadratic reformulation of conditional Gaussian
clustering, and Peng & Wei (2007) obtained a tighter semi-
definite programming (SDP) relaxation. By analyzing the
complete positivity (CP) properties of the resulting con-
straint, Zass & Shashua (2005) propose an approximation
for Gaussian clustering based on CP factorization. These
can be further extended to relaxations of normalized graph-
cut clustering (Xing & Jordan, 2003; Ng et al., 2001). Un-
fortunately, all these relaxations are restricted to Gaussian
P (X|Y), and the optimization algorithms depend heavily
on the linearity of the SDP objective.

The conditional clustering approach can be extended to
hard joint clustering by explicitly including the class prior,
thus optimizing the joint likelihood P (X,Y) with the most
likely Y. Again, efficient solution methods are not gener-
ally known, leaving local approaches as the only option.

To smooth these objectives, the soft joint model optimizes
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the marginal likelihood, P (X) =
∑
Y P (Y)P (X|Y)

(Neal & Hinton, 1998; Banerjee et al., 2005), which has tra-
ditionally been tackled by expectation-maximization (EM)
(Dempster et al., 1977). The EM algorithm remains sus-
ceptible to local optima however. Intensive research has
been devoted to understanding properties of the Gaussian
mixture model in particular (Moitra & Valiant, 2010; Kalai
et al., 2010; Dasgupta & Schulman, 2007; Chaudhuri et al.,
2009). Although run time can be reduced to polynomial
when the number of clusters or data dimensionality is con-
strained, it remains exponential in these quantities jointly.
A few convex relaxations for soft joint clustering mod-
els have therefore been proposed. For example, Lashkari
& Golland (2007) restrict cluster centers to data points,
while Nowozin & Bakir (2008) exert sparsity inducing reg-
ularization over the class priors (while still embedding an
intractable subproblem). Recent spectral techniques can
provably recover an approximate estimate of Gaussian mix-
tures in polynomial time (Hsu & Kakade, 2013; Anandku-
mar et al., 2012). Unfortunately, this formulation remains
restricted to spherical Gaussian forms of P (X|Y).

Finally, discriminative models provide a distinct paradigm
for clustering that can be more effective when the goal of
learning is to predict labels from the observation X, e.g.
as in semi-supervised learning (Chapelle et al., 2006). In
this approach, one maximizes the reverse conditional like-
lihood P (Y|X), with Y imputed by the most likely label.
A straightforward optimization strategy can alternate be-
tween optimizing Y and the model, but this quickly leads
to local optima. Thus, here too, convex relaxation has been
a popular approximation strategy, either in the case of a
large margin loss (Xu & Schuurmans, 2005) or logistic loss
(Joulin & Bach, 2012; Joulin et al., 2010; Bach & Har-
chaoui, 2007; Guo & Schuurmans, 2007). To date, such
formulations have been entirely based on SDP relaxations
with unnormalized equivalence matrices, whose elements
indicate whether two examples belong to the same cluster.
Such an approach is hampered by imbalanced clustering,
since the model employs no mechanism to avoid assigning
all examples to a single cluster.

In this paper we present new convex relaxations for hard
conditional, hard joint, and discriminative clustering. One
of the key results is a tighter convex relaxation of hard
generative models for Bregman divergence clustering that
also accounts for cluster size. We design efficient new al-
gorithms that optimize the resulting nonlinear SDPs us-
ing recent induced matrix norm techniques. By applying
standard rounding methods, we observe that the resulting
clustering algorithms deliver lower sum of intra-cluster di-
vergences and more faithful alignment with class labels in
practice. Finally, applying our formulation to discrimina-
tive models immediately leads to normalized equivalence
relations, which automatically alleviate the problem of im-
balanced cluster assignment faced by current relaxations.

2 Background

Following (Banerjee et al., 2005), we formulate clustering
as maximum likelihood estimation in an exponential fam-
ily model with a latent variable Y ∈ {1, . . . , d} (the class
indicator). The observed variable X is in Rn, from which
an iid sample X = (x1, . . . ,xt)

′ has been collected.

Generative models. In generative modeling we parame-
terize the joint distribution over (X,Y) as Y→X:

p(Y = j) = qj , (1)
p(X = x|Y = j) = exp (−DF (x,µj))Zj(x). (2)

Here Θ :={qj ,µj}dj=1 are the parameters, where q ∈ ∆d,
the d dimensional simplex. We assume P (X|Y) is an ex-
ponential family model defined by the Bregman divergence
DF , where F is a strictly convex function with gradient
f = ∇F (the transfer function), such that

DF (x,y) := F (x)− F (y)− 〈x− y, f(y)〉 . (3)

Here it is known that DF (x,y) = DF∗(f(y), f(x)),
where F ∗ is the Fenchel conjugate of F . Also, f−1 is well
defined by the strict convexity of F , and f−1 = ∇F ∗. Ex-
amples of commonly used Bregman divergences include
Euclidean (f(x) = x), and sigmoid (f(x) = log x

1−x ).

Given data X , the parameters Θ can be estimated via

argmax
Θ

max
Y

p(X,Y |Θ) (4)

or argmax
Θ

p(X|Θ) = max
Θ

∑

Y

p(X,Y |Θ), (5)

depending on whether Y is to be maximized (hard cluster-
ing) or summed out (soft clustering). Here we are letting Y
denote a t×d assignment matrix such that Yij ∈ {0, 1} and
Y 1 = 1 (a vector of all 1’s with proper dimension). If we
additionally let Γ = (µ1, . . . ,µd) and B = (b1, . . . ,bd),
such that bj = f(µj), then the conditional likelihood (2)
can be rewritten over the entire data set as

p(X|Y ) = exp (−DF (X,Y Γ))Z(X) (6)
= exp (−DF∗(Y B, f(X)))Z(X), (7)

where DF (X,Y Γ) :=
∑t
i=1DF (Xi:, Yi:Γ) and

DF∗(Y B, f(X)) :=
∑t
i=1DF∗(Yi:B, f(Xi:)) are

row-wise sums such that Xi: stands for the i-th row of X .

Discriminative models. As an alternative, discriminative
clustering uses a graphical model X→Y, and focuses on
modeling the dependence of the labels Y given X:

p(Y |X;W,b) = exp(−DF∗(Y, f(XW + 1b′)))Z(X),

where b ∈ Rd is the offset for all clusters. A soft clustering
model cannot be applied in this case, since

∑
Y p(X,Y ) =

p(X). Instead, hard optimization of Y leads to

min
W,b,Y

DF (XW + 1b′, f−1(Y )). (8)
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All of these problems involve a mix of discrete and contin-
uous variables, which raises considerable challenges. Our
goal is to develop convex relaxations that can be solved
efficiently while leading (after rounding) to higher quality
solutions than those obtained by naive local optimization.

3 Conditional Generative Clustering
We first consider the case of hard conditional clustering,
where the prior q has been fixed to some value beforehand.

3.1 Case 1: Jointly Convex Bregman Divergence

First note that by using (6), the estimator (4) can be re-
duced to minY,Γ DF (X,Y Γ). Here Banerjee et al. (2005)
showed that for any fixed assignment Y the optimal Γ is
given by Γ = (Y ′Y )†Y ′X , for any Bregman divergence
DF . Plugging the solution back into the formulation, the
problem becomes minY DF (X,Y (Y ′Y )†Y ′X). Let us in-
troduce the normalized equivalence matrix

M = Y (Y ′Y )†Y ′ = Y diag(Y ′1)†Y ′, (9)
whereM is the set of possibilities. It then suffices to solve

min
M∈M

DF (X,MX). (10)

This problem remains challenging for two reasons. First,
the objective is not convex in M , since DF is only guar-
anteed to be convex in its first argument. However, many
Bregman divergences are jointly convex in both arguments;
e.g. Mahalonobis distance, KL divergence, Bernoulli en-
tropy, Bose-Einstein entropy, Itakura-Saito distortion, and
von Neumann divergence (Wang & Schuurmans, 2003;
Tsuda et al., 2004). We consider this simpler case first.

The second challenge lies in the non-convexity of the con-
straint setM. Peng & Wei (2007) have shown that

M =
{
M : M = M ′,M2 = M, tr(M) ≤ d,Mi: ∈ ∆t

}
.

Since M2 = M is the source of non-convexity, its convex
hull can be used to construct a convex outer approximation
ofM (note that this is not taking the convex hull ofM):
M1 :=conv

{
M :M=M ′=M2

}
∩
{
M ∈∆t

t : tr(M) ≤ d
}

= {M : 0 �M � I, tr(M) ≤ d,Mi: ∈ ∆t} ,
where by M � 0 we also encode M = M ′. Note that
M � I is implied by 0 � M and Mi: ∈ ∆t (e.g. Mirsky,
1955, Theorem 7.5.4). Conveniently, M1 can be relaxed
further by keeping only the spectral constraints
M2 := {M : 0 �M � I, tr(M) ≤ d,M1 = 1} .

Although this set M1 has been widely used, it is still not
clear whether it is the tightest convex relaxation ofM; that
is, whetherM1 = convM? With some surprise, we show
that this conjecture is not true in Appendix A.

3.1.1 Optimization

Assuming DF is convex in its second argument, one can
easily minimize DF (X,MX) over M ∈M1 by using the

alternating direction method of multipliers (ADMM)
(Boyd et al., 2010). In particular, we split the constraints
into two groups: spectral and non-spectral, leading to the
following augmented Lagrangian:

L(M,Z,Λ)=DF (X,MX)+δ(Mi: ∈ ∆t)+δ(Z ∈M2)

− 〈Λ,M − Z〉+
1

2µ
‖M − Z‖2F ,

where δ(·) = 0 if · is true;∞ otherwise. The ADMM then
proceeds as follows in each iteration:

1. Mt ← argminM L(M,Zt−1,Λt−1); i.e. optimize ob-
jective under non-spectral constraints.

2. Zt ← argminZ L(Mt, Z,Λt−1); i.e. project to satisfy
the spectral constraints.

3. Λt←Λt−1 + 1
µ (Zt −Mt); i.e. update the multipliers.

Note that since we constrain Mi: ∈ ∆t, the objective
DF (X,MX) remains well defined in Step 1. Furthermore,
since the objective decomposes row-wise, each row of M
can be optimized independently, which constitutes a key
advantage of this scheme. Second, since Step 2 merely in-
volves projection onto spectral constraints M2, a closed
form solution exists based on eigen-decomposition, as es-
tablished in the following lemma.
Lemma 1. Let H = I − 1

t11
′. Then

M2 =
{
HMH + 1

t11
′ : M ∈M3

}
, (11)

whereM3 = {M : 0 �M � I, tr(M) ≤ d− 1} . (12)

Proof. Clearly the right-hand side of (11) is contained in
M2. Conversely, for any M2 ∈M2, we construct an M ∈
M3 as M = M2 − 1

t11
′. Note that M21 = 1 implies

1/
√
t is an eigenvector ofM2 with eigenvalue 1. Therefore

M � 0. The rest is easy to verify.

By Proposition 1, the problem of projecting any matrix A
toM2 can be accomplished by solving

min
Z∈M2

‖Z −A‖2 = min
S∈M3

∥∥HSH − (A− 1
t11

′)
∥∥2
.

LetB = A− 1
t11

′ and V = B−HBH . ThenHVH = 0,
hence the probem reduces to solving

min
S∈M3

‖HSH−HBH−V ‖2= min
S∈M3

‖HSH−HBH‖2+‖V ‖2.

Now it suffices to solve minT∈M3
‖T −HBH‖2 and

show the optimal T satisfies HTH = T . Suppose HBH
has eigenvalues σi and eigenvectors φi. Then the optimal
T must have eigenvalues µi and eigenvectors φi such that

min
µi

∑

i

(µi−σi)2, s.t. µi ∈ [0, 1],
∑

i

µi ≤ d−1. (13)

Since 1 is an eigenvector of HBH with eigenvalue 0, it is
trivial that the corresponding µi in the optimal solution is
also 0. Therefore, T1 = 0 and HTH = T . Finally the
optimal Z is simply given by T + 1

t11
′.
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3.2 Case 2: Arbitrary Bregman Divergence

When the Bregman divergence is not convex in its second
argument, we require a more general treatment. The key
idea we exploit is to introduce a regularizer that allows a
useful form of representer theorem to be applied. In partic-
ular, we augment the negative log likelihood of P (Y |X) in
(7) with a regularizer on the basis B, weighted by the num-
ber of points in the corresponding cluster. The resulting
objective can be written:

min
Y,B

DF∗(Y B, f(X)) +
α

2
‖Y B‖2F . (14)

Note B must be in the range of f . By the representer theo-
rem, there exists a matrix A ∈ Rt×n such that the optimal
B can be written B = (Y ′Y )†Y ′A, which yields

min
M,A

DF∗(MA, f(X)) +
α

2
tr(A′MA), (15)

where M is defined in (9). We will work with this formu-
lation by relaxing the domain of M to M2. Extension to
M ∈M1 is also straightforward by ADMM.

3.2.1 Optimization

Although (15) does not immediately exhibit joint convexity
in M and A, a change of variable immediately leads to a
convex formulation. Denote T = MA, then Im(T ) ⊆
Im(M) where Im(M) is the range of M . Also, denote
L(Z) := DF∗(Z, f(X)) for clarity.

Proposition 2. The problem (15) is equivalent to

min
M∈M3

min
T :Im(T )⊆Im(M)

L(T ) +
α

2
tr(T ′M†T ) (16)

= min
T
L(T ) +

α

2
min

M∈M3:Im(T )⊆Im(M)
tr(T ′M†T )

︸ ︷︷ ︸
:=Ω2(T ), with Ω(T )≥0

. (17)

That is, any optimal (M,A) for (15) provides an optimal
solution to (16) via T = MA. Conversely, given any
optimal (M,T ) for (16), Im(T ) ⊆ Im(M) guarantees
T = MA for some A. Thus (M,A) is optimal for (15).

This proposition allows one to solve a convex problem in
T , provided that Ω2(T ) is convex and easy to compute. In-
terestingly, Ω(T ) has other favorable properties to exploit.

Theorem 3. Ω(T ) defines a norm on T . Ω and its dual
norm Ω∗ can be computed in O(t3) and O(t2d) time resp.1

With these conclusions, we can optimize (17) using a gen-
eralized conditional gradient method, accelerated by local
search (Laue, 2012; Zhang et al., 2012); see Algorithm 1
(further details are given in Appendix C). At each iteration,
the algorithm employs a linear approximation of L The in-
ner oracle searches for a steepest descent direction by com-
puting a subgradient of the dual norm Ω∗. Algorithm 1 is

1 The same conclusion holds for M ∈M2 (see Appendix B).

Algorithm 1 Conditional gradient for optimizing (17)

1: Initialize T0 = 0. s0 = 0.
2: for k = 0, 1, . . . do
3: Set Sk ∈ ∂Ω∗(∇L(Tk)), i.e. find a minimizer of

minS 〈∇L(Tk), S〉+ α
2 Ω2(S) up to scaling.

4: Line search:
(a, b) := argmina≥0,b≥0 L(aTk+bSk)+α

2 (ask+b)
2.

5: Set Tk+1 = aTk + bSk, sk+1 = ask + b.
6: end for

guaranteed to find an ε accurate solution to (17) in O(1/ε)
iterations; see e.g. (Zhang et al., 2012). The optimalM can
then be recovered by evaluating Ω at the optimal T .2

We prove Theorem 3 in three steps.

1. Computing Ω. Let the singular values of T be s1 ≥
. . . ≥ st. Since Ω2(T ) = minM∈M3 tr(TT ′M†), by von
Neumann’s trace inequality (Mirsky, 1975) the optimal M
must have eigenvectors equal to the left singular vectors of
T . The minimal objective value is then

∑
i s

2
i /σi, where

σi are the eigenvalues of M . It suffices to solve

f(s) := min
{σi}

t∑

i=1

s2
i

σi
, s.t. σi∈ [0, 1],

t∑

i=1

σi ≤ d−1 (18)

= min
σi∈[0,1]

max
λ≥0

t∑

i=1

s2
i

σi
+ λ

(
1− d+

t∑

i=1

σi

)
(19)

= max
λ≥0

{
λ(1−d) + min

σi∈[0,1]

t∑

i=1

(
s2
i

σi
+λσi

)}
. (20)

Fixing λ, the optimal σi is attained at σi(λ) = si√
λ

if
λ ≥ s2

i , and 1 if λ < s2
i . Note that σi(λ) decreases

monotonically for λ ≥ s2
t , hence we only need to find a

λ that satisfies
∑t
i=1 σi(λ) = d − 1, since the constraint∑

i σi ≤ d− 1 must be equality at the optimum. This only
requires a line search over λ, which can be conducted effi-
ciently as follows. Suppose the optimal λ lies in [s2

k, s
2
k+1].

Then σi(λ) = 1 for all i ≤ k and σi(λ) = si/
√
λ for all

i > k. So k + 1√
λ

∑t
i=k+1si = d− 1, hence

√
λ=

1

d−1−k
t∑

i=k+1

si∈ [sk, sk+1]⇒




k+

∑t
i=k+1si
sk

≤d−1

k+
∑t
i=k+1si
sk+1

≥d−1.

Now note there must be a k satisfying these two conditions.
Since both k+ 1

sk

∑t
i=k+1 si and k+ 1

sk+1

∑t
i=k+1 si grow

monotonically in k, the smallest k that satisfies the second
condition must also satisfy the first condition. Hence the
optimal solution is σi = 1 for all i ≤ k, and σi = (d− 1−
k)si/

∑t
i=k+1 si for i > k.

2 This solution is valid since (16) minimizes overM and T . If
the problem were minT maxM instead, the optimal M could not
be generally recovered by maximizing M for fixed optimal T .
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Algorithm 2 Compute f(s) with given d.

1: for k = 0, 1, . . . , d− 2 do
2: if

∑t
i=k+1 si ≥ (d− 1− k)sk+1 then break

3: end for
4: Return f(s) =

∑k
i=1 s

2
i + 1

d−1−k

(∑t
i=k+1 si

)2

.

The algorithm for evaluating f(s) = Ω2(T ) is given in
Algorithm 2. The ‘if’ condition in step 2 must be met when
k = d − 2. The computational cost is dominated by a full
SVD of T , and fortunately our method needs to compute
Ω(T ) only once at the optimal T .

2. Ω is a norm. Note that Ω(T ) depends only on the
singular values of T . So it suffices to show that κ(s) :=√
f(s) is a symmetric gauge (Horn & Johnson, 1985, The-

orem 3.5.18), where f(s) is defined in (18). Clearly κ(s)
is permutation invariant, κ(as)= |a|κ(s) for all a∈R, and
κ(s) = 0 iff s = 0. So it suffices to prove the triangle in-
equality for κ(s). For any s1 and s2, let t1 = κ(s1) and
t2 =κ(s2). Then κ( s1

t1
) = κ( s2

t2
) =1, and

s1 + s2

t1 + t2
=

t1
t1 + t2

s1

t1
+

t2
t1 + t2

s2

t2
. (21)

Note f(s) is convex because
∑
i s

2
i /σi is jointly convex in

(s,σ), and f(s) just minimizes out σ. So the sub-level
set at level 1 for f (and κ) is convex. Therefore by (21),
κ((s1 + s2)/(t1 + t2)) ≤ 1, and so κ(s1 + s2) ≤ t1 + t2 =
κ(s1) + κ(s2). The claim follows.

3. Compute the subgradient of Ω∗. Given a matrix R,
the dual norm is Ω∗(R) = maxT :Ω(T )≤1 tr(R′T ). Let the
SVD of R be R = U diag{r1, . . . , rt}V ′, where r1 ≥
. . . ≥ rt. Since Ω is defined via the singular values of T ,
again by von Neumann’s trace inequality the maximum is
attained when the left and right singular values of T are U
and V , respectively. Then Ω∗(R)=maxs:f(s)≤1 r

′s, which
by (18) is equivalent to

max
s,σ

r′s, s.t. σi ∈ [0, 1],
t∑

i=1

σi ≤ d−1,
t∑

i=1

s2
i

σi
≤ 1. (22)

Using the Cauchy-Schwarz inequality, we have

r′s =

t∑

i=1

si√
σi
· ri
√
σi ≤

(
t∑

i=1

s2
i

σi

)1/2( t∑

i=1

r2
i σi

)1/2

≤
(

t∑

i=1

r2
i σi

)1/2

≤ ‖(r1, r2, . . . , rd−1)′‖ . (23)

where the last two inequalities use the constraints in
(22). The equalities can all be attained by setting si =
ri/ ‖(r1, r2, . . . , rd−1)′‖ and σi = 1 for i ≤ d − 1, and
si = 0 and σi = 0 for i ≥ d. Clearly U diag(s)V ′ is a
subgradient of Ω∗ at R. Evaluating the dual norm is inex-
pensive, since it requires only the top d− 1 singular values
of R.

4 Discriminative Clustering

Although generative models can often reveal useful latent
structure in data, many problems such as semi-supervised
learning and multiple instance learning are more concerned
with accurate label prediction. In such settings, discrimina-
tive models X→ Y can often be more effective (Joulin &
Bach, 2012; Bach & Harchaoui, 2007; Guo & Schuurmans,
2007; Xu & Schuurmans, 2005).

Before attempting a convex relaxation for the discrimina-
tive model (8), it is important to recognize that a plain op-
timization over (W, b, Y ) will lead to vacuous solutions,
where all examples are assigned to a single cluster j and
bj = ∞. A common solution is to add a regularizer on Y
to enforce a more balanced cluster distribution. Note that
this situation is opposite of generative clustering, where
one must upper bound d, since otherwise the joint likeli-
hood would be trivially maximized by assigning each data
point to its own cluster.

For discriminative clustering, we consider a special case
F (x) = log

∑
i exp(xi), i.e. where the transfer ∇F is sig-

moidal (Joulin & Bach, 2012). A natural choice of regu-
larizer on Y is the entropy of cluster sizes, i.e. −h(Y ′1)
where h(x) =

∑
i xilog xi. In this setting, we derive a

convex relaxation for discriminative clustering that uses the
normalized equivalence matrix.

By adding value regularization ‖WY ′‖2 to (8), one obtains

min
W,b,Y

1

t
DF (XW+1b′, f−1(Y )) +

γ

2
‖WY ′‖2+h(Y ′1)

= min
W,b,Y

1

t
F (XW + 1b′)− 1

t
tr((XW + 1b′)Y ′)

− 1

t
F (Y ) +

γ

2
‖WY ′‖2 + h(Y ′1)

= min
W,b,Y

max
Λ:Λi:∈∆

−1

t
F ∗(Λ) +

1

t
tr(Λ′(XW + 1b′))

− 1

t
F (Y )−tr((XW + 1b′)Y ′)+

γ

2
‖WY ′‖2+h(Y ′1)

= min
W,b,Y

max
Ω:Ωi:∈∆

−1

t
F ∗(ΩY ) +

1

t
tr(Y ′Ω′(XW + 1b′))

− 1

t
F (Y )− 1

t
tr((XW+1b′)Y ′)+

γ

2
‖WY ′‖2+h(Y ′1).

Here, the second step follows from Fenchel’s identity
F (x) = maxz∈domF∗ x

′z − F ∗(z), where dom denotes
the effective domain of a convex function. The last step
involves a change of variable, Λ = ΩY , and converted the
constraints on Λ to Ωi:∈∆ (Guo & Schuurmans, 2007). By
taking the gradient with respect to W and b, one obtains

W = 1
tX
′(I − Ω)Y (Y ′Y )†, and Ω′1 = 1. (24)

Note that − 1
tF
∗(ΩY ) + h(Y ′1) ≤ − 1

tF
∗(Ω) + c0 where

c0 is some constant (Joulin & Bach, 2012, Eq 3). Using

166



(24) and the fact that F (Y ) is a constant, one can upper
bound the objective by

min
M∈M

max
Ω:Ωi:∈∆,Ω′1=1

−1

t
F ∗(Ω)− 1

2γt2
‖X ′(I−Ω)M‖2. (25)

Importantly, this formulation is expressed completely in
terms of the normalized equivalence matrix M , which con-
stitutes a significant advantage over (Joulin & Bach, 2012;
Guo & Schuurmans, 2007). Rather than resort to the prox-
imal gradient method to solve for Ω given M (Joulin &
Bach, 2012), which is slow in practice, we can harness the
power of second order solvers like L-BFGS by dualizing
the problem back to the primal form, which leads to an un-
constrained problem. This reformulation also sheds light
on the nature of the relaxation (25).

Fixing M ∈ M, we add a Lagrange multiplier τ ∈ Rt to
enforce Ω′1 = 1. By introducing the change of variable
Ψ = I −Ω, the optimization over Ω becomes equivalent to

min
Ψ≤I:Ψ1=0

1

t
F ∗(I −Ψ)+

1

2γt2
‖X ′ΨM‖2+

1

t
τ ′Ψ1. (26)

The tool we use for dualization is provided by the following
lemma.
Lemma 4. (Borwein & Lewis, 2000, Theorem 3.3.5)
Let J and G be convex functions, and A a linear trans-
form. Suppose Adom J has nonempty intersection with
{x ∈ domG∗ : G∗ is continuous at x}. Then

min
x
J(x) +G(Ax) = max

y
−J∗(−A′y)−G∗(y). (27)

To apply Lemma 4 to (26), choose the linear transform
A to be Ψ 7→ 1

tX
′ΨM , G(Ψ) = 1

2γ tr(ΨM†Ψ′),3 and
J(Ψ) = 1

tF
∗(I − Ψ) + 1

t τ
′Ψ1 over Ψ1 = 0 and Ψ ≤ I

(elementwise). Then the problem (26) becomes equivalent
to

min
M,τ ,Υ∈Rt×n

1

t

∑

i

[F ( 1
tXi:Υ

′M+τ ′)− ( 1
tXi:Υ

′M:i+τi)]

+
γ

2
tr(Υ′MΥ). (28)

Note that F = g can be interpreted as a soft max, hence
the result is related to the typical max-margin style model.
The loss of each example i is the soft max of Xi:Υ

′M +τ ′

(a row vector) minus Xi:Υ
′M:i + τi. Here τi is an off-

set associated with each training example (cf. bj for each
cluster).

4.1 Optimization

The most straightforward method for optimizing (28) is to
treat it as a convex function of M , whose gradient and ob-
jective value can be evaluated by minimizing out Υ and τ .

3 Since M2 = M for M ∈ M, (26) can also be recovered
by setting G(Ψ) = 1

2γ
tr(ΨΨ′). However, to reformulate the

problem into (29), which is the key to efficient optimization, it is
crucial to include M† in G.

Since both Υ and τ are unconstrained, this can be easily
accomplished by quasi-Newton methods like L-BFGS. In-
terestingly, thanks to the structure of the problem, we can
optimize (28) even more efficiently by applying the same
change of variable as in §3.2.1. Letting V = MΥ ∈ Rt×n
and constraining M toM3, the problem (28) becomes

min
V,τ

γ

2
Ω2(V )+

1

t

∑

i

[F ( 1
tXi:V

′+τ ′)−( 1
tXi:V

′
i:+τi)]. (29)

This objective again absorbs the spectral constraints on M
into the norm Ω, and can be readily solved by generalized
conditional gradient in Algorithm 1. The extension toM ∈
M2 is also immediate.

5 Joint Generative Clustering

In all models considered so far, we have ignored the clus-
ter prior q. This quantity is often useful in practice for
inference at the cluster level, and can often be effectively
learned by joint generative models. In this section, we ex-
tend our convex relaxation technique to this setting.

Assume a multinomial distribution over cluster prior pa-
rameterized by w ∈ Rd: p(Y = j) = exp(wj − g(w))
where g(w) = log

∑
i exp(xi). Then by (1) and (7),

the negative log joint likelihood is: −1′Yw + tg(w) +
L(Y B) + const. As above, one can add regularizers on w
andB, as well as an entropic regularizer h(Y ′1) to encour-
age cluster diversity, yielding:

min
w,B,Y

− 1

t
1′Yw + g(w) +

β

2
‖Yw‖2 + h(Y ′1) (30)

+
1

t
L(Y B) +

α

2
‖Y B‖2F .

This formulation can be convexified in terms ofM by using
the same techniques as §4 and §3.2, respectively. In par-
ticular, consider the prior p(Y ) as a discriminative model
Z → Y , where Z can only take a constant scalar value 1.
Then treating Z as the X in §4, it is easy to show that the
first line of (30) can be relaxed into (ignoring the offset τ ):

min
s∈Rt

β

2
tr(s′Ms)− 1

t
1′Ms + g

(
1

t
Ms

)
. (31)

Finally by applying the same technique that converted (14)
to (15) in conditional model, one can reformulate (30) into:

min
A,M,s

β

2
tr(s′Ms)− 1

t
1′Ms + g( 1

tMs) (32)

+
1

t
L(MA) +

α

2
tr(A′MA).

To optimize this formulation, let u = Ms ∈ Rt and T =
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Data set t n d Data set t n d

Yale 165 1024 15 Diabetes 768 8 2

ORL 400 1024 40 Heart 270 13 2

E-mail 1000 57 2 Breast 699 9 2

Balance 625 4 2

Table 1: Properties of the data sets used in the experiments.

MA ∈ Rt×n. Then with M ∈M3, (32) becomes

min
u,T

g
(u
t

)
− 1

t
1′u+

1

t
L(T )+min

M∈M3

β

2
u′M†u+

α

2
tr(T ′M†T )

=min
u,T

g
(u
t

)
− 1

t
1′u+

1

t
L(T )+

1

2
Ω2([

√
βu,
√
αT ]), (33)

which can be solved by the methods outlined above.

6 Experimental Evaluation

We evaluated the proposed convex relaxations for the three
models developed in this paper: conditional (jointly convex
or arbitrary Bregman divergence), joint, and discriminative.

Data sets. We used seven labeled data sets for these exper-
iments. Five of them are from the UCI repository (Frank &
Asuncion, 2010): Balance, Breast Cancer, Diabetes, Heart,
and Spam E-mail. The two others are multiclass face data
sets: ORL4 and Yale5. We down-sampled Spam-Email to
1000 points while preserving the class ratio. The proper-
ties of these data sets are summarized in Table 1, giving the
values of t, n, and d. We shifted all features to be nonneg-
ative so that all transfer functions can be applied. Finally
the features were normalized to unit variance.

Transfer functions. For all generative models, we tested
two transfer functions: linear and sigmoid.

Parameters settings. To closely approximate the original
objective without creating numerical difficulty, we chose
all the regularization parameters α, β and γ to be rea-
sonably small α ∈ {10−5, 10−9}, β ∈ {10−5, 10−9},
γ ∈ {10−6, 10−9} and report the experimental results for
the choices that obtain highest accuracy. However, the re-
sults were not sensitive to these values.

6.1 Conditional: Jointly Convex Bregman Divergence

Algorithms. Our method (cvxCondJC) first minimizes
DF (X,MX) as in (10), but over M ∈M1. The optimal
M is then rounded to a hard cluster assignment via spec-
tral clustering (SC rounding, Shi & Malik, 2000). The re-
sult is further used to initialize a local re-optimization using
the original objective DF (X,Y Γ). Since k-class spectral
clustering involves a k-means algorithm, with random ele-
ments, this was repeated 10 times and variance reported.

4cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
5http://cvc.yale.edu/projects/yalefaces/yalefaces.html

cvxCondJC cvxCondJC
altCondJC+SC rounding +SC+re-opt

Spam E-mail

lin obj(×102) 9.4± 0.1 9.3± 0.0 9.3± 0.0

lin acc(%) 71.5±11.6 76.3±13.6 75.1±12.6

sigm obj(×103) 7.8± 0.1 7.7± 0.1 7.7± 0.1

sigm acc(%) 75.1±12.0 80.0± 9.4 76.0± 7.2

ORL

lin obj(×103) 3.3± 0.1 2.0± 0.0 2.1± 0.0

lin acc(%) 57.0± 3.5 55.4± 2.9 40.6± 2.3

sigm obj(×102) 3.8± 0.1 3.5± 0.1 3.7± 0.1

sigm acc(%) 57.8± 3.6 58.2± 4.1 48.2± 3.0

Yale

lin obj(×101) 5.6± 0.1 5.5± 0.0 5.8± 0.1

lin acc(%) 46.8± 1.7 47.0± 2.1 44.5± 4.2

sigm obj(×102) 9.6± 0.4 9.2± 0.1 9.6± 0.3

sigm acc(%) 49.9± 2.1 51.5± 2.1 46.6± 4.1

Balance

lin obj(×101) 7.2± 0.0 7.1± 0.0 7.2± 0.0

lin acc(%) 57.1± 6.9 57.3± 7.1 54.2± 4.6

sigm obj(×102) 5.0± 0.3 3.9± 0.0 4.0± 0.0

sigm acc(%) 49.3± 5.1 50.5± 5.1 49.4± 4.3

Breast Cancer

lin obj(×102) 1.8± 0.2 1.6± 0.0 1.7± 0.0

lin acc(%) 72.5±12.7 84.7± 8.8 78.7±10.4

sigm obj(×102) 8.5± 0.2 8.5± 0.1 8.5± 0.1

sigm acc(%) 72.4±13.7 72.5±13.7 70.6±11.6

Diabetes

lin obj(×102) 2.0± 0.1 2.0± 0.0 2.0± 0.0

lin acc(%) 57.1± 0.5 58.5± 0.0 58.5± 0.1

sigm obj(×103) 1.2± 0.1 1.1± 0.0 1.1± 0.0

sigm acc(%) 58.8± 3.9 58.2± 0.1 58.0± 0.6

Heart

lin obj(×102) 1.3± 0.0 1.3± 0.0 1.3± 0.0

lin acc(%) 68.1±10.0 65.6± 7.8 65.4± 5.0

sigm obj(×102) 7.5± 0.2 7.2± 0.2 7.2± 0.2

sigm acc(%) 63.4± 5.9 64.9± 6.6 64.4± 7.8

Table 2: Experimental results for the conditional model with
jointly convex Bregman divergences. Here “lin” and “sigm” refer
to linear and sigmoid transfers respectively. Best results in bold.

We compared our algorithm with altCondJC (hard EM),
which optimizes DF (X,Y Γ) by alternating, with Y reini-
tialized randomly 30 times.

Results. In Table 2, the first and third rows of each
block gives the optimal value of DF (X,Y Γ) found by
altCondJC, and by cvxCondJC (both after SC rounding
and re-optimization). The second and fourth lines give the
highest accuracy among all possible matchings between the
clusters and ground truth labels. Across all data sets and
transfer functions, cvxCondJC with SC rounding and re-
optimization finds a lower objective value and higher accu-
racy than altCondJC. In addition, although the objective
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cvxCond cvxCond
altCond+SC rounding +SC rounding

& re-opt

Spam E-mail

lin obj(×102) 9.3± 0.1 9.3± 0.0 9.3± 0.0

lin acc(%) 75.0± 9.0 79.8±10.2 73.9±13.3

sigm obj(×103) 8.0± 0.2 7.7± 0.1 7.7± 0.1

sigm acc(%) 64.8±12.5 78.7± 7.8 75.3± 5.5

ORL

lin obj(×103) 2.7± 0.1 2.0± 0.0 2.1± 0.0

lin acc(%) 62.6± 3.0 59.4± 2.4 40.1± 2.3

sigm obj(×102) 4.0± 0.1 3.4± 0.0 3.7± 0.1

sigm acc(%) 60.1± 6.1 60.0± 4.9 48.6± 2.7

Yale

lin obj(×101) 6.1± 0.2 5.7± 0.1 5.8± 0.1

lin acc(%) 43.3± 3.2 45.2± 3.2 44.4± 4.0

sigm obj(×102) 10.3± 0.2 9.3± 0.1 9.5± 0.2

sigm acc(%) 46.6± 2.6 51.1± 2.7 46.2± 3.0

Balance

lin obj(×101) 8.0± 0.4 7.1± 0.0 7.1± 0.0

lin acc(%) 57.1± 6.9 57.3± 7.1 55.5± 5.1

sigm obj(×102) 4.0± 0.0 3.9± 0.0 4.0± 0.1

sigm acc(%) 54.1± 8.3 53.0± 6.0 50.9± 5.2

Breast Cancer

lin obj(×102) 1.7± 0.1 1.6± 0.0 1.7± 0.0

lin acc(%) 75.4±13.3 85.8± 6.6 78.7±10.9

sigm obj(×102) 8.8± 0.2 8.5± 0.1 8.6± 0.2

sigm acc(%) 66.8± 8.4 72.3±12.5 70.3±11.0

Diabetes

lin obj(×102) 2.0± 0.0 2.0± 0.0 2.0± 0.0

lin acc(%) 58.1± 0.6 58.3± 0.0 58.2± 0.1

sigm obj(×103) 1.2± 0.1 1.1± 0.0 1.0± 0.0

sigm acc(%) 54.7± 3.0 58.2± 0.2 58.1± 0.5

Heart

lin obj(×102) 1.3± 0.0 1.3± 0.0 1.3± 0.0

lin acc(%) 69.4± 9.3 67.0± 5.5 66.1± 5.2

sigm obj(×102) 7.2± 0.1 7.1± 0.1 7.3± 0.2

sigm acc(%) 66.9±10.7 64.9± 8.2 65.8± 6.3

Table 3: Experimental results for the conditional model with ar-
bitrary Bregman divergences. Best results shown in bold.

achieved after rounding might be higher than that of alt-
CondJC, the accuracy is usually comparable. Overall, the
final clustering found by cvxCondJC is superior to ran-
domized local optimization.

6.2 Conditional: Arbitrary Bregman Divergence

Algorithms. Our method (cvxCond) first optimized (15)
overM ∈M2 using Algorithm 1. Then similar to §6.1, the
optimalM was rounded by spectral clustering (10 repeats).
Here subsequent re-optimization (based on local optimiza-
tion) was performed on the objective DF∗(Y B, f(X)).
The competing algorithm, altCond, optimizes this objec-
tive by alternating with 30 random initializations of Y .

cvxDisc JB GS
Spam E-mail

run time (×104s) 0.005 0.651 2.148
obj w/ SC rounding (×103) 8.0± 0.2 8.7± 0.0 8.2± 0.2

obj w/ SC + re-opt (×103) 7.6± 0.0 7.9± 0.2 7.6± 0.0

acc w/ SC rounding (%) 69.9±14.3 60.7± 0.1 62.8± 9.2

acc w/ SC + re-opt (%) 83.5± 7.8 61.3± 9.2 81.4± 5.6

ORL

run time (×104s) 0.080 0.695 6.372
obj w/ SC rounding (×102) 4.1± 0.1 7.1± 0.0 3.6± 0.0

obj w/ SC + re-opt (×103) 3.5± 0.0 3.8± 0.1 3.6± 0.0

acc w/ SC rounding (%) 59.4± 2.7 20.0± 1.1 54.6± 2.1

acc w/ SC + re-opt (%) 59.5± 2.8 45.2± 2.5 54.6± 2.4

Yale

run time (×103s) 0.050 0.648 6.745
obj w/ SC rounding (×103) 8.6± 0.2 13.2± 0.0 10.2± 0.3

obj w/ SC + re-opt (×103) 7.6± 0.1 8.3± 0.1 7.8± 0.3

acc w/ SC rounding (%) 44.3± 2.5 16.2± 0.6 33.8± 3.6

acc w/ SC + re-opt (%) 46.1± 2.9 34.1± 2.6 42.4± 2.7

Balance

run time (×104s) 0.004 0.155 0.078
obj w/ SC rounding (×102) 5.1± 0.0 6.1± 0.0 4.9± 0.1

obj w/ SC + re-opt (×102) 3.9± 0.0 4.5± 0.0 4.1± 0.2

acc w/ SC rounding (%) 62.0± 2.3 47.0± 1.8 46.5± 6.3

acc w/ SC + re-opt (%) 58.7± 0.0 62.3± 1.8 52.2± 5.2

Breast Cancer

run time (×104s) 0.006 0.479 1.758
obj w/ SC rounding (×102) 8.5± 0.0 10.0± 0.0 9.1± 0.2

obj w/ SC + re-opt (×102) 8.4± 0.0 8.7± 0.3 8.4± 0.1

acc w/ SC rounding (%) 79.8±15.7 60.4± 3.6 72.3±10.3

acc w/ SC + re-opt (%) 80.7±12.5 60.0± 4.2 84.4± 8.8

Diabetes

run time (×104s) 0.012 1.722 2.731
obj w/ SC rounding (×103) 1.2± 0.1 1.4± 0.0 1.3± 0.1

obj w/ SC + re-opt (×103) 1.1± 0.0 1.1± 0.0 1.1± 0.0

acc w/ SC rounding (%) 53.5± 3.1 64.8± 0.0 56.6± 4.2

acc w/ SC + re-opt (%) 58.3± 0.2 58.6± 0.0 58.3± 0.2

Heart

run time (×104s) 0.001 0.212 6.848
obj w/ SC rounding (×102) 7.6± 0.4 8.6± 0.0 7.7± 0.4

obj w/ SC + re-opt (×103) 7.3± 0.3 7.9± 0.0 7.3± 0.2

acc w/ SC rounding (%) 61.7± 5.8 55.2± 0.0 64.4± 9.5

acc w/ SC + re-opt (%) 66.0± 5.7 51.1± 0.0 65.2± 8.4

Table 4: Experimental results for the discriminative models.

Results. The results in Table 3 are organized in the same
manner as Table 2. Here it can be observed that for all
data sets and transfer functions, cvxCond with SC round-
ing and reoptimization yields lower optimal objective value
and higher accuracy than altCond (except Diabetes/sigm).
Moreover, the objective values also exhibits lower standard
deviation than altCond, which suggests that the value reg-
ularization scheme helps stabilize the reoptimization. Fi-
nally note the accuracy of cvxCond with rounding is al-
ready comparable with that of altCond on most data sets.

6.3 Discriminative Models

Algorithms. Our method (cvxDisc) optimized (28) over
M ∈M2 by solving (29). We also tested on the algorithms
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of (Joulin & Bach, 2012) and (Guo & Schuurmans, 2007),
which we refer to as JB and GS respectively. The result
of all the three methods were rounded by spectral clus-
tering, then used to initialize a local re-optimization over
DF (X,Y Γ). Since the discriminative model is logistic, we
used the sigmoid transfer in DF only.

Results. According to Table 4, it is clear that even without
reoptimization, cvxDisc after rounding already achieves
higher or comparable accuracy to both JB and GS in all
cases. Further improvements are obtained by reoptimiza-
tion. Regarding the run time for solving the respective
convex relaxations, cvxDisc is at least 10 times faster than
both JB and GS. This confirms the computational advan-
tage of our primal reformulation (28), compared to other
implementations of convex relaxation.

6.4 Joint Generative Models

Algorithms. Our proposed method, cvxJoint, optimizes
(32) over M ∈ M2 by solving (33). As before, we
rounded the optimal M by spectral clustering, and used the
Y to initialize local reoptimization of the joint likelihood
−1′Yw + tg(w) + L(Y B).

We compared the results to those of three soft generative
models. The standard soft EM (Banerjee et al., 2005, Al-
gorithm 3) was randomly reinitialized 20 times. The other
two algorithms are LG (Lashkari & Golland, 2007), and
NB6 (Nowozin & Bakir, 2008). Since they do not directly
control the number of clusters, we tuned their parameters
so that the resulting number of cluster is d, or a little higher
than d which could be truncated based on the cluster prior.

Results. Since joint models also learn a cluster prior, ac-
curacy can take two forms. The hard accuracy is computed
by argmaxy p(y|xi) = argmaxy p(y)p(xi|y) in the case
of soft EM, LG, and NB. Our model outputs a hard accu-
racy by locally reoptimizing the joint likelihood. For all
methods, we define the soft accuracy based on the poste-
rior distribution: maxπ EY∼p(Y |X)[Accuracy(Y, π(Y ∗))],
where Y ∗ is the ground truth label and π is a matching be-
tween the cluster and label.

As can be observed from Table 5, cvxJoint with rounding
and reoptimization achieves superior or comparable perfor-
mance to the competing algorithms in most cases (except
three settings in Balanced and one each in Yale and Dia-
betes), both in terms of hard and soft accuracy.

7 Conclusion
In this paper we constructed convex relaxations for cluster-
ing with Bregman divergences. Using normalized equiv-
alence relations, we also designed efficient algorithms for

6 http://www.nowozin.net/sebastian/infex. Since their ap-
proach relies heavily on the Gaussian model, we put NA in the
corresponding cells in Table 5.

linear sigmoid
acc(%) soft acc(%) acc(%) soft acc(%)

Spam E-mail
cvxJoint1 55.7±1.9 55.9±1.4 62.6±9.0 67.7±11.0

cvxJoint2 60.5±0.0 60.5±0.0 81.5±16.4 79.2±15.1

softEM 60.5±0.0 54.5±2.6 58.2±7.4 52.9±2.0

LG 60.0 0.1 40.6 1.8
NB 60.5 51.4 NA NA

ORL
cvxJoint1 61.0±1.3 52.6±1.5 63.0±2.3 58.6±1.8

cvxJoint2 55.9±1.4 52.8±1.2 58.7±2.7 58.7±2.7

softEM 39.6±2.1 37.0±2.0 44.9±3.1 44.7±3.1

LG 40.0 1.9 36.0 0.5
NB 12.0 5.3 NA NA

Yale
cvxJoint1 47.9±3.8 45.9±3.1 61.9±8.3 55.9±1.4

cvxJoint2 45.8±3.4 45.1±3.1 60.5±0.0 60.5±0.0

softEM 39.6±2.1 37.0±2.0 60.5±0.0 60.5±0.0

LG 35.2 4.8 66.9 0.1
NB 20.6 10.4 NA NA

Balance
cvxJoint1 50.5±2.3 36.3±0.7 51.6±2.7 39.5±1.2

cvxJoint2 46.1±0.0 46.1±0.0 46.1±0.0 46.1±0.0

softEM 46.1±0.0 38.1±2.8 46.1±0.0 39.6±0.0

LG 57.4 0.2 59.0 0.2
NB 54.2 54.7 NA NA

Breast Cancer
cvxJoint1 71.0±11.9 56.9±4.7 70.9±13.0 63.9±8.1

cvxJoint2 65.5±0.0 65.5±0.0 65.5±0.0 65.5±0.0

softEM 65.5±0.0 57.7±4.5 65.5±0.0 55.5±5.4

LG 61.8 0.1 65.5 0.1
NB 69.8 50.3 NA NA

Diabetes
cvxJoint1 56.0±2.6 53.6±2.5 57.5±5.5 57.6±5.6

cvxJoint2 65.1±0.0 65.1±0.0 62.0±3.3 62.6±2.6

softEM 65.1±0.00 57.6±4.6 65.1±0.0 57.4±5.2

LG 56.8 0.1 58.5 0.1
NB 65.1 60.2 NA NA

Heart
cvxJoint1 63.0±6.4 53.3±1.8 63.0±7.4 61.0±6.2

cvxJoint2 55.6±0.0 55.5±0.0 64.0±7.5 61.3±7.1

softEM 55.6±0.0 51.7±1.6 55.6±0.0 52.7±0.0

LG 57.4 0.4 55.2 0.4
NB 55.6 53.0 NA NA

Table 5: Experimental results for the joint generative model.
Here cvxJoint1 is cvxJoint followed by SC rounding, whereas
cvxJoint2 uses additional re-optimization. Best results in bold.

optimizing the models. For future work, it will be interest-
ing to extend these approaches to generative soft clustering,
and further scale up the optimization to large applications.
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Abstract

This paper shows that causal model discov-
ery is not an NP-hard problem, in the sense
that for sparse graphs bounded by node de-
gree k the sound and complete causal model
can be obtained in worst case order N2(k+2)

independence tests, even when latent vari-
ables and selection bias may be present. We
present a modification of the well-known FCI
algorithm that implements the method for
an independence oracle, and suggest improve-
ments for sample/real-world data versions. It
does not contradict any known hardness re-
sults, and does not solve an NP-hard prob-
lem: it just proves that sparse causal discov-
ery is perhaps more complicated, but not as
hard as learning minimal Bayesian networks.

1 Introduction

Causal discovery is one of the cornerstones behind sci-
entific progress. In recent years, significant break-
throughs have been made in causal inference under
very reasonable assumptions, even when only data
from observations are available (Pearl, 2000; Spirtes
et al., 2000). Still, it is probably safe to say that many
researchers consider causal discovery to be a difficult
problem, and that it is generally thought to be com-
putationally at least as hard as related problems such
as learning minimal Bayesian networks.

The class of NP problems (non-deterministic, polyno-
mial time) are problems for which a solution can be
verified in polynomial time: order O(Nk) for some
constant k given input size N , but for which no known
polynomial time algorithm exists (or is thought to ex-
ist) that finds such a solution. In many cases algo-
rithms exist that are able to find a solution quickly,
or at least provide good approximations, but still have

worst-case exponential running time order O(2N
k

).

Typical examples include finding the shortest path
through all nodes in a weighted graph (travelling sales-
man), coloring vertices in a graph so that no two ad-
jacent vertices share the same color, probabilistic in-
ference in a Bayesian network (Cooper, 1990), and the
Boolean satisfiability problem (k -SAT, the first known
NP-complete problem).

A problem is NP-hard if it is at least as hard as the
hardest problems in NP. Put differently, a problem is
NP-hard if there is a polynomial time reduction of an
NP-complete problem to it, so that any polynomial
time solution to the NP-hard problem implies that
all NP-complete problems can be solved in polynomial
time. See (Garey and Johnson, 1979) for a standard
introduction to the subject, and e.g. (Goldreich, 2008)
for a more modern approach.

In this article we focus on the problem of learning a
causal model from probabilistic information. We as-
sume there is a system that is characterized by a so-
called causal DAG GC that describes the causal in-
teractions between the variables in the system. The
structure of this causal DAG is invariant and respon-
sible for a probability distribution over the subset of
observed variables. The goal is to learn as much as pos-
sible about the presence or absence of certain causal
relations between variables in the underlying causal
DAG from the available probabilistic information.

Chickering et al. (2004) showed that finding an
inclusion-optimal (minimal) Bayesian network for a
given probability distribution is NP-hard, even when
a constant-time independence oracle is available (see
§2 for more details). Such hardness results have in-
spired many creative approaches to network learning,
e.g. methods that seek to find efficient approxima-
tions to minimal Bayesian networks through greedy
search (Chickering, 2002), or methods that employ
specialized heuristics or solver techniques to make ex-
act learning feasible from 30, up to even 60 variables
if the graph is sufficiently sparse (Yuan and Malone,
2012; Cussens, 2011).
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On the face of it, minimal Bayesian network inference
seems close to a simplified and idealized version of a
causal model discovery problem. Hence it may be un-
surprising to find that currently available methods also
have worst-case exponential complexity (see §3.2).

However, in this paper we show that causal model dis-
covery in sparse graphs is in fact not an NP-hard prob-
lem, even in the presence of latent confounders and/or
selection bias. We do this by providing an adaptation
of the well-known FCI algorithm (see §3.2) for learn-
ing the sound and complete causal model in the form
of a PAG with running time in the worst case poly-
nomial in the number of independence tests to order
O(N2(k+2)), where N is the number of variables and
k the maximum node degree in the causal model over
the observed variables.

Graphical causal models

A mixed graph G is a graphical model that can con-
tain three types of edges between pairs of nodes: di-
rected (→), bi-directed (↔), and undirected (−). In a
mixed graph, standard graph-theoretical notions, e.g.
child/parent, ancestor/descendant, directed path, cy-
cle, still apply, with natural extension to sets. In par-
ticular AdjG(X) indicates all nodes adjacent to (but
not in) the set of nodes X in the graph G, and AnG(X)
indicates all (ancestors of) nodes in X in the graph G.
A vertex Z is a collider on a path u = 〈. . . , X, Z, Y, . . .〉
if there are arrowheads at Z on both edges from X and
Y , otherwise it is a noncollider.

A mixed graph G is ancestral iff an arrowhead at X
on an edge to Y implies there is no directed path from
X to Y in G, and there are no arrowheads at nodes
with undirected edges. As a result, arrowhead marks
can be read as ‘is not an ancestor of’. In a mixed
graph G, a vertex X is m-connected to Y by a path
u, relative to a set of vertices Z, iff every noncollider
on u is not in Z, and every collider on u is an an-
cestor of Z. If there is no such path, then X and Y
are m-separated by Z. An ancestral graph is maxi-
mal (MAG) if for any two nonadjacent vertices there
is a set that separates them. A directed acyclic graph
(DAG) is a special kind of MAG, containing only →
edges, for which m-separation reduces to the familiar
d -separation criterion. The Markov property links the
structure of an ancestral graph G to observed prob-
abilistic independencies: X ⊥⊥ Y |Z, if X and Y are
m-separated by Z. Faithfulness implies that the only
observed independencies in a system are those entailed
by the Markov property. For more details, see (Koller
and Friedman, 2009; Spirtes et al., 2000).

A causal DAG GC is a directed acyclic model where
the arcs represent direct causal interactions (Pearl,

2000). In general, the independence relations between
observed variables in a causal DAG can be represented
in the form of a MAG (Richardson and Spirtes, 2002).
The (complete) partial ancestral graph (PAG) repre-
sents all invariant features that characterize the equiv-
alence class [G] of such a MAG, with a tail ‘−’ or ar-
rowhead ‘>’ end mark on an edge, iff it is invariant
in [G], otherwise it has a circle mark ‘◦’, see (Zhang,
2008). Figure 1 illustrates the relation between these
three types of graphs.

U

X

V

Y

ZT W

Canonical examples, with/out causal suffic iency

X

Y

Z

W

U

V

T

W,Z not necessary: both block same trek (lemma)

U

X

V

Y

Z

Y

W

Z

X

V

U

X][Y|[Z,W], but W does not actively block a trek X-Y

..

Z

W

..

X

Y

..
Z

W

X

Y

Z

W

X

Y

(a) (b) (c)

Figure 1: (a) Assumed underlying causal DAG GC ; (b)
corresponding MAGM over observed variables; (c) causal
model as PAG, with N = 4 and k ≤ 3.

C-LEARN

The completed PAG represents all valid causal infor-
mation that can be inferred from independencies be-
tween observed variables: this will be the target causal
model of the learning task (C-LEARN).

To distinguish between the contribution of the learning
task and the calculation of the independencies them-
selves, we introduce the following notion from (Chick-
ering et al., 2004):

Definition 1. An independence oracle for a dis-
tribution p(X) is an oracle that, in constant time,
can determine whether or not X ⊥⊥ Y |Z, for any
({X,Y } ∪ Z) ⊆ X.

The C-LEARN task can now be described as:
INSTANCE: Given an independence oracle O for a
set of variables X = {X1, .., XN} that is faithful to an
underlying causal DAG GC , and constant bound k.
TASK: Find the completed PAG model that matches
O with node degree ≤ k.

2 Why learning minimal Bayesian
networks is NP-hard

It has long been known that learning a minimal
Bayesian network is an NP-hard problem, even when
an independence oracle is available and each node in
the network has at most k ≥ 3 parents. An elegant
proof is provided in (Chickering et al., 2004) by in-
troducing a polynomial reduction from an established
NP-complete problem known as Degree-Bounded Feed-
back Arc Set (DBFAS) to an instance of learning a
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Figure 2: (a) DBFAS instance over 3 nodes; (b) corresponding Bayesian network reduction with distinct variables
{A,B,C,D,E, F,G,H} for each edge-component (nr. of states per variable in brackets below); (c) BN edge-component
configuration with 16 parameters to specify the distribution over C and F ; (d) idem, with 18 parameters.

minimal Bayesian network (B-LEARN) with maxi-
mum node degree k. Given an arbitrary network of
directed edges the target in DBFAS is to find the small-
est set of arcs (the ‘feedback set’) whose removal elim-
inates all directed cycles from the graph.

The reduction strategy from DBFAS to B-LEARN
is depicted in Figure 2. It replaces the DBFAS
instance with an equivalent Bayesian network, in
which each directed edge Vi → Vj in DBFAS is re-
placed by an edge-component over discrete variables
{A,B,C,D,E, F,G,H}. All DBFAS nodes Vi and all
nodes {A,D,G} in each edge-component get 9 states,
the nodes {B,E, F,H} get 2 states, and only the nodes
C get 3 states. Furthermore, the H nodes in each edge-
component are supposedly hidden, i.e. not in the set
of observed variables in the minimal Bayesian network
from B-LEARN, see Figure 2.

The connection between the instance of DBFAS and
B-LEARN relies on the fact that it is impossible to con-
struct a Bayesian network that can faithfully represent
the independence relations from the underlying causal
DAG when the H variables are not observed. As a re-
sult, each edge component is forced to choose between
configuration (c) or (d) in Figure 2, with a preference
for the smaller (c), unless this introduces a directed
cycle due to the connection via Vi → B → F → Vj .
In that case the cycle can be broken by opting for
(d). The (acyclic) minimal global Bayesian network
will have the fewest edge-components oriented as (d)
needed to break all cycles, and so all these edge com-
ponents together represent a minimal feedback arc set
for the original DBFAS problem.

The transformation from DBFAS to B-LEARN is poly-
nomial, which implies that if there is any method that

can solve B-LEARN in polynomial time, then it can
also solve DBFAS in polynomial time, and with it the
entire class of NP-complete problems. In particular,
it also applies when there is a constant time indepen-
dence oracle for B-LEARN and the max. node degree
in the optimal solution is bounded by any k ≥ 3. It is
exactly this subclass of problems that are the focus of
this paper in the context of learning a causal model.

Causal model reduction

An obvious question would be why the previous re-
sult should not apply to causal models in general, es-
pecially given the importance, explicit or implicit, of
minimality in many structure learning tasks.

The answer to this lies in the fact that the ‘Bayesian
network’ requirement itself imposes the additional re-
striction on the solution that only directed edges are
allowed, which does not come into play when causal
models are concerned. Therefore B-LEARN cannot
opt for the configuration depicted in Figure 3, due to
the edge C ↔ F , whereas C-LEARN has no such prob-
lem. This structure is actually smaller than the corre-
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Figure 3: Minimal edge-component configuration in causal
model, requiring 12 free parameters for variables C and F .
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sponding minimal Bayesian network component, as it
requires only 12 free parameters to specify the contri-
bution of each C−F pair in the network: 2×2×2 = 8
for the C node, 2 × 2 × 1 = 4 for F , and 1 for the H
node, giving a total of 13 parameters, one of which can
be marginalized out, see, e.g. (Evans and Richardson,
2010) for details on parameterizing acyclic directed
mixed graphs (ADMGs), allowing for both directed
and bi-directed edges.

As a result, a DBFAS reduction to C-LEARN along
the lines of (Chickering et al., 2004) will fail to solve
the original NP-complete problem, as the causal model
will have all edge components oriented as in Figure 3,
giving no information whatsoever on a minimal feed-
back arc set for the corresponding DBFAS instance.

We now turn to existing methods for causal discovery
to see where they run into exponential trouble.

3 Independence based Causal
Discovery

3.1 Causally sufficient systems

Many methods have been developed that efficiently
learn the correct causal model when there are no un-
observed common causes between the variables, e.g.
IC (Pearl and Verma, 1991), PC (Spirtes et al., 2000),
Grow-Shrink (Margaritis and Thrun, 1999), etc.

As a typical example, a version of PC is depicted in Al-
gorithm 1. From a fully connected undirected graph
G, it consists of two stages: an adjacency search to
remove edges, followed by an orientation phase. In
the first stage, for each pair of nodes X − Y (still)
connected in G it searches for a subset of adjacent
nodes Z that can separate them: X ⊥⊥Y |Z; if found
the edge is removed. By checking all adjacent node-
pairs in G for possible separating sets of increasing size,
the PC algorithm ensures that it finds separating sets
as small as possible. If the node degree in the true
causal model G is bounded by k, then worst case it
needs to check all subsets size 1..k from N nodes, for
N2 nodes on edges, resulting in a polynomial running
time dominated by order O(Nk+2) for the adjacency
search. Afterwards an orientation phase adds all in-
variant edge-marks (tails or arrowheads) by rules that
trigger on the existence of certain path-configurations
in G, which can be checked in order O(N3) (Spirtes
et al., 2000).

3.2 Causal discovery with latent confounders

Unfortunately, the PC algorithm can run into trouble
when applied to causal models where causal sufficiency
is not guaranteed. In that case it can miss certain

Algorithm 1 PC-algorithm

In : independence oracle O for variables V
Out: causal model G over V
Adjacency search

1: G ← fully connected undirected graph over V
2: n = 0
3: repeat
4: repeat
5: select X with |AdjG(X)| > n,
6: select Y ∈ AdjG(X)
7: repeat
8: select subset Z size n from AdjG(X)\Y ,
9: if X⊥⊥Y |Z then

10: Sepset(X,Y ) = Sepset(Y,X) = Z
11: remove edge X − Y from G
12: end if
13: until all subsets size n have been tested
14: until all edges X − Y in G have been checked
15: n = n+ 1
16: until no more nodes with |AdjG(X)| > n

Orientation phase
17: for all unshielded triples X − Z − Y in G do
18: if Z /∈ Sepset(X,Y ) then
19: orient v -structure X → Z ← Y
20: end for
21: run other orientation rules until no more new
22: return causal model G

separating sets that may require nodes not adjacent to
either of the separated nodes. Figure 4(b) depicts the
canonical 5-node example, where the edge X − Y can
be eliminated by the set {U, V, Z}, but this is not found
by the PC algorithm, as at that stage Z is no longer
adjacent to X or Y . As a result, edges may fail to be
eliminated from G, possibly leading to erroneous causal
conclusions in the orientation stage, see e.g. (Colombo
et al., 2012, §3) for more examples.

To tackle this problem, Spirtes et al. (1999) developed
the so-called Fast Causal Inference (FCI) algorithm
that introduces an additional stage to the adjacency
search. It searches for an extended set of nodes: the
D-SEP(A,B) set, roughly corresponding to ancestors
of {A,B} that are adjacent to A and/or reachable via a
bi-directed path, for which it can be shown that (with
observed variables O and selection set S):

Lemma 1. (Spirtes et al., 1999, Lemma 12) If there
is some subset W ⊆ O\{A,B} such that A and B are
d -separated by W ∪ S, then A and B are d -separated
given D-SEP(A,B) ∪ S.

The problem is that at that stage it is not yet known
which nodes exactly belong to An({A,B}). The so-
lution employed by FCI is as follows: after the initial
PC-adjacency search it adds some orientation informa-
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Figure 4: (a) With causal sufficiency (no confounders) we
only need to check subsets from Adj(X) or Adj(Y ), e.g.
X ⊥⊥ Y |V, T ; (b) Without causal sufficiency node Z /∈
Adj(X,Y ) is needed in the separating set: X⊥⊥Y |U, V, Z

tion to the resulting adjacency graph to obtain a par-
tially oriented graph π0, and from this identifies the
set Possible-D-SEP(A,B, π0) for edge A−B that is
a guaranteed superset of D-SEP(A,B). It then tests
for all subsets of Possible-D-SEP(A,B, π0) until a
separating set is found, or not, in which case the edge
should remain present.

But even for graphs with degree ≤ k, neither the size
of the Possible-D-SEP(A,B, π0) set, nor the size of
the target D-SEP set is bounded by k. As a result,
the worst case is now dominated by a term that could
involve searching through all subsets from N nodes,
which brings it back to exponential order time com-
plexity O(2N ).

In practice, the number of edges removed in the FCI
stage tends to be very small (relative to the PC-stage),
even though it is often the most expensive part of the
algorithm by far. This behaviour is exploited effec-
tively in the RFCI algorithm (Colombo et al., 2012): it
skips the additional FCI stage and ensures the output
is still sound (though no longer necessarily complete)
through a modified orientation phase that avoids some
of the erroneous causal conclusions PC could make
when edges are missed.

In this article we take a different approach by showing
that it is possible to build up an alternative D-SEP
set that is completely determined by nodes adjacent to
{A,B} and already inferred minimal separating sets
from the PC-adjacency search.

4 D-separating sets

First some terminology for the target nodes and edges:

Definition 2. In a MAGM, two nodes X and Y are
D-separated by Z iff they are d -separated by Z, and
all sets that can separate X and Y contain at least
one node Z /∈ Adj({X,Y }). Such a node Z ∈ Z that
cannot be made redundant by nodes adjacent to X or
Y is a D-sep node, and (X,Y ) is a D-sep link,

For example in Figure 4(b), X and Y are D-separated
by {U, V, Z}, including D-sep node Z.

After the PC-adjacency search all D-sep links are still
connected by an edge in the skeleton G. Below we first
discuss how to recognize possible D-sep links, and then
how to find an appropriate D-separating set, including
the elusive D-sep nodes. The third part puts it all
together into a sound and complete search strategy.
Proof details can be found in the Appendix and in
(Claassen et al., 2013).

4.1 Identifying D-sep links

To characterize D-separable nodes, we use a result
from (Spirtes et al., 1999; Claassen and Heskes, 2011):

Lemma 2. For disjoint (subsets of) nodes X,Y, Z,Z
from the observed variables O in a causal graph G with
selection set S,

(1) X⊥⊥�Y |Z ∪ [Z] ⇒ Z /∈ AnG({X,Y } ∪ Z ∪ S).

(2) X⊥⊥Y | [Z ∪ Z] ⇒ Z ∈ AnG({X,Y } ∪ S),

where square brackets indicate a minimal set of nodes.

Rule (1) identifies invariant arrowheads on edges; rule
(2) is used in §4.2 to build up a D-separating set. With
Lemma 2 it is easy to show the following properties:

Lemma 3. In a MAG M, if two nodes X and Y are
D-separated by a minimal set Z, then:

1. X /∈ An({Y } ∪ Z ∪ S)
2. Y /∈ An({X} ∪ Z ∪ S)
3. ∀Z ∈ Z : Z ∈ An({X,Y } ∪ S)

It motivates the following introduction:

Definition 3. The Augmented Skeleton G+ is ob-
tained from the skeleton G by adding all invariant ar-
rowheads that follow from single node minimal depen-
dencies X⊥⊥�Y |Z ∪ [W ] by Lemma 2, rule(1).

By testing for dependence on adding single nodes to
the minimal separating sets from the PC-adjacency
search all invariant arrowheads in G+ are found. Note
that only nodes Z adjacent to {X,Y }∪Z in G need to
be tested, and that all arrowheads from FCI’s partially
oriented graph π0 (see §3.2) are also in G+.

The important implication is that D-sep links take on
a very distinct pattern in G+:

Lemma 4. For a MAG M, let X and Y be D-
separable nodes that are adjacent in the corresponding
augmented skeleton G+. If there are no edges in G+ be-
tween (other) D-separable nodes in An({X,Y }), then
G+ contains the following pattern: U ↔ X ↔ Y ↔ V ,
with U and V not adjacent in G+, and paths V..→ X
and U..→ Y that do not go against an arrowhead.

For example, in the augmented skeleton in Figure 5(b),
D-sep link X−Z occurs in pattern S ↔ X ↔ Z ↔ T .
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Figure 5: (a) Hierarchical D-sep links: X⊥⊥Z | [S, T,W ],
with Z also appearing in X⊥⊥Y | [S, T, U, V,W,Z]; (b) cor-
responding augmented skeleton G+, with initially undis-
covered D-sep links X ↔ Z and X ↔ Y (bold)

There is a hierarchical structure between D-sep links
in the sense that if one pair of D-separated nodes is
part of the D-separating set of another, then not the
other way around.

Lemma 5. In a MAGM, for two pairs of D-separable
nodes X⊥⊥Y | [Z] and X⊥⊥Y | [W], if X ∈W and/or
Y ∈W, then U /∈ Z and/or V /∈ Z.

It implies that we may need to find one D-sep link in
a MAGM before we can find another, but there is no
vicious circle of complex intertwined D-sep links.

Though all this will facilitate (and speed up) identifi-
cation, it is not enough for a polynomial search algo-
rithm, as this is dominated by the number of possible
node-sets to consider for a single D-sep link.

4.2 Capturing the D-sep nodes

In this part we first show that all D-sep nodes needed
to separate (X,Y ) were already found as part of a min-
imal separating set between ancestors of {X,Y }. Then
we show that we can recursively include these to ob-
tain a D-separating set, starting from an appropriate
set of nodes adjacent to X and Y .

Using shorthand AA(X) ≡ (Adj(X) ∩An(X)) \X for
the set of adjacent ancestors of X, we find that:

Lemma 6. In a MAGM, if Z ∈ Z is a D-sep node in
X⊥⊥Y | [Z], then Z is also part of a minimal separating
set between another pair of nodes from {X,Y }∪Z\Z∪
AA({X,Y }), neither of which have selection bias.

As a result, if we know all minimal conditional in-
dependencies between nodes in An({X,Y }), then all
required D-separating nodes for X ⊥⊥ Y | [Z] already
appear in one of these minimal separating sets. We
want to use this information to guide the search for
D-separating sets, but unfortunately we do not know
what the ancestors are, and we do not have all mini-
mal independencies (as the PC search only finds one
minimal separating set for each eliminated edge).

Fortunately we can show that we do not need to know

all minimal separating sets to find the relevant nodes,
as it is sufficient to have just one minimal separating
set for each nonadjacent pair, and recursively include
these in the set. In formal terms:

Definition 4. An independence set I ⊆ I(M) is a
(sub)set of all minimal independence statements con-
sistent with MAGM, which contains at least one sep-
arating set for each pair of nonadjacent nodes in M.

And a recursive definition for a set of separating nodes:

Definition 5. Let I be an independence set, then for
a set X the hierarchy HIE(X, I) is the union of X
and all nodes that appear in a minimal separating set
in I between any pair of nodes in HIE(X, I).

By Lemma 2 all nodes in HIE(X, I) are ancestors of
one or more nodes in X; see also Example 1, below.

With this the key result can be stated as:

Lemma 7. Let X and Y be D-separable nodes in a
MAG M. If independence set I contains at least one
minimal separating set for each pair of nonadjacent
nodes in An({X,Y }) in M (except for {X,Y } itself),
then HIE

(
AA({X,Y }), I

)
\{X,Y } is a D-separating

set for X and Y .

In words: if X and Y are D-separable nodes, then they
are separated by the hierarchy of minimal separating
nodes implied by ancestors adjacent to X and/or Y .

If found, then the edge X ↔ Y is removed from
G+, and a corresponding minimal separating set is ob-
tained by eliminating redundant nodes one by one until
no more can be removed (Tian et al., 1998).
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Figure 6: Hierarchical inclusion of separating sets ensures
inclusion of D-sep node Z3.

Example 1. In Figure 6, X and Y are D-separated by
the set {S, T, U, V, Z1, Z2, Z3}. Lemma 6 states that
we can find D-sep node Z3 from S ⊥⊥ Z1 | [Z3], but
the PC-stage may have found S⊥⊥Z1 | [W ] instead,
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which would leave path X ↔ S ↔ W ↔ T ↔ Y
unblocked. However, Lemma 7 ensures that, whatever
the independencies found by PC, node Z3 is included
in HIE({X,Y, S, T, U, V }, I); indeed, we find Z3 from
either S⊥⊥Z1 | [Z3] and/or S⊥⊥W | [Z3].

At this point, for a given suspect D-sep link X ↔ Y
in G+ we do not know exactly which nodes are in
AA({X,Y }) in M. However, given that ∀{X,Y, Z}:

1. AA({X,Y }) ⊆ Adj(X) ∪Adj(Y ),
2. |Adj(X)| ≤ k in M, and
3. Z ∈ Adj(X) in M ⇒ Z ∈ Adj(X) in G+,

we can be sure that the set AA({X,Y }) inM consists
of a combination of at most k nodes from Adj(X) and
k nodes from Adj(Y ) in G+.

For bounded k those can be searched in worst case
polynomial time Nk × Nk = N2k, and so, if X ↔ Y
is indeed a D-sep link, we are guaranteed to find a
separating set within that number of steps.

4.3 Search strategy for D-sep links

There is just one more aspect before we can turn the
previous results into a complete causal discovery algo-
rithm: Lemma 7 assumes that a minimal separating
set is known for each separable pair in the ancestors of
the (possible) D-sep link X ↔ Y . If these in turn also
contain D-sep links, as for example X ↔ Z in Figure
5(b), then we may need to find one before we can find
the other. Therefore, if we find a new D-separating set
we have to check previously tried possible D-sep edges
in case the new set introduces more nodes into the cor-
responding hierarchies, after updating G+. By Lemma
5, as long as there are undiscovered D-sep links (still
corresponding to edges in G+), then there is always at
least one that cannot have undiscovered D-sep links
between its ancestors, and so can be recognized as the
pattern in Lemma 4 in the (updated) augmented skele-
ton G+. As a result, the procedure is guaranteed to
terminate only after all are found. Revisiting possible
D-sep links incurs an additional complexity factor N2.

Finally, in the discussions so far we largely ignored
the impact of possible selection bias, as all proofs re-
main valid with or without selection effects, see de-
tails in (Claassen et al., 2013). From (Richardson and
Spirtes, 2002, §4.2.1) we know that selection on a node
effectively destroys arrowheads on its ancestors, i.e. re-
moves detectable non-ancestor relations. In particular,
adding selection effects can overrule the D-sep pattern
from Lemma 4, and either turn it into a regular sepa-
rable pair (found by PC) or destroy the independence
altogether. As a result, D-sep links are much rarer
when selection bias is present, and the search for D-
sep nodes can often be avoided altogether.

5 Implementing C-LEARN as FCI+

We incorporate the previous results into a modified D-
SEP search of the FCI algorithm to obtain a sound
and complete method for constraint-based causal dis-
covery that is worst-case polynomial in the number of
independence tests between N variables, provided the
model is sparse (bounded by k). It assumes faithful-
ness and an underlying causal DAG, but does allow
for latent variables and selection bias.

Algorithm 2 FCI+ algorithm

In : variables V, oracle O, sparsity k
Out: causal model G over V

1: G, I ← PCAdjSearch(V,O, k)
2: G+ ← AugmentGraph(G, I,O)
3: PosDsepLinks← GetPDseps(G+)

D-SEP search
4: while PosDsepLinks 6= ∅ do
5: X,Y ← Pop(PosDsepLinks)
6: BaseX ← Adj(X)\Y
7: BaseY ← Adj(Y )\X
8: for n = 1..k do
9: for m = 1..k do

10: get subset ZX ⊆ BaseX, size n
11: get subset ZY ⊆ BaseY , size m
12: Z∗ ← HIE({X,Y }∪ZX ∪ZY , I)\{X,Y }
13: if X⊥⊥Y |Z∗ then
14: Z←MinimalDsep(X,Y,Z∗)
15: I ← UpdateSepsets(I, X, Y,Z)
16: G+ ← AugmentGraph(G+, I,O)
17: PosDsepLinks← GetPDseps(G+)
18: (continue while)
19: end if
20: end for
21: end for
22: end while
23: G ← RunOrientationRulesFCI(G, I)
24: return causal model G

The FCI+ algorithm in Algorithm 2 starts in line 1
from the output of the PC adjacency search (line 16
in Algorithm 1), that is the skeleton G and minimal
Sepset in I for each eliminated edge. Line 2 con-
structs the subsequent augmented skeleton G+ by test-
ing for single node additions that destroy the inde-
pendence, which is the basis for identifying the edges
corresponding to possible D-sep links in line 3. This
list is processed (and updated along the way) until no
more unchecked possible D-sep links remain. For a
pair of nodes X ↔ Y on a possible D-sep edge in G+
the ‘Base’ of adjacent nodes (possible ancestors) is de-
termined in lines 6/7. For each combination of max.
k nodes from this base around X and max. k nodes
from the base around Y the corresponding hierarchy
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is computed, and tested for independence in line 13. If
found it is turned into a minimal separating set, and
stored in the list of sepsets I. This is used to update
the augmented skeleton G+ (remove edge and check
for single node dependencies), and to update the set of
possible D-sep links, e.g. in case we have to reconsider
previously rejected edges or can now eliminate other
candidates. Finally line 23 runs the standard FCI-
orientation rules on the skeleton to return the target
causal model in the form of a complete PAG.

Complexity analysis

Now to derive a bound on the worst-case complex-
ity of the FCI+ algorithm. As stated, we assume a
causal model in the form of a completed PAG G over
N (observed) variables, with node degree ≤ k, and a
constant-time independence oracle.

Contributions of various stages in Algorithm 2:

- l.1: PCAdjSearch is order O(Nk+2), as it searches
for subsets ≤ k nodes from N −2 variables to separate
N2 nodes on edges (Spirtes et al., 2000)
- l.2: AugmentGraph is order O(N3), given tests for
at most N − 2 nodes for 1/2N2 eliminated edges,
- l.3: GetPDseps could find up to O(N2) possible
edges to process,
- l.10-12: there are O(N2k) different (implied) combi-
nations for possible D-sep sets in the hierarchy from
two subsets of at most k nodes from N − 2 variables,
- l.14: MinimalDsep is at most order O(N2), as nodes
can be removed one-by-one (Tian et al., 1998)
- l.16: AugmentGraph is again order O(N3),
- l.17: GetPDseps might put back previously tried-
but-failed D-sep edges, leading to a factor O(N2),
- l.23: RunOrientationRulesFCI is order O(N4): for
N2 edge marks it checks for certain paths in G which
can be done in O(N2k) by a ‘reachability’ algorithm,
with Nk ∼ nr. of edges, (Zhang, 2008, p.1881)

The dominant terms are O(N2k) possible hierarchies
to test for each of O(N2) possible edges which may
have to be repeated O(N2) times, leading to an overal
worst-case complexity of order O(N2(k+2)). In other
words: worst-case O(FCI+) ∼ O(PC2), but both
with a running time that is polynomial in the num-
ber of variables N given maximum node degree k.

Clearly, these bounds can be tightened, and many
steps can be implemented more efficiently. For exam-
ple the Augmentgraph procedure can be realized using
rules on the available I (instead of additional inde-
pendence tests), and include invariant tails as well.
The number of BaseX/Y combinations to test can be
reduced by eliminating adjacent nodes that cannot be
ancestor of X or Y , and making sure to always include

necessary nodes. The hierarchy can be pre-computed
for each pair of nodes, and only needs a (partial) up-
date when a new D-sep link is found, etc. However, we
are not (yet) looking for an optimal implementation,
just to verify that a polynomial solution is possible.

6 Discussion

We have shown that it is possible to learn a sound
and complete sparse causal model representation that
is polynomial in the number of independence tests,
even when latent variables and selection bias may be
present. We presented an implementation in the from
of the FCI+ algorihtm, which derives from standard
FCI but with a modified D-SEP search stage.

The exponential complexity can be avoided by exploit-
ing the inherent structure in the problem that stems
from the underlying causal network. The problem can
be broken down into a series of smaller steps, in con-
trast to, e.g. finding a minimal Bayesian network or a
travelling salesman problem, where the minimal solu-
tion only applies to the specific network as a whole.
This ‘breaking down into subproblems’ follows natu-
rally in the constraint-based paradigm; an intriguing
question is whether it is also possible to find a poly-
nomial score-based causal discovery method.

Effectively, FCI+ uses independence information from
previous stages to guide the D-SEP search, leading to
a theoretical worst-case running time O(N2(k+2)) in
the number of independence tests. This is significantly
better than exponential, but still unfeasible for large
N . However, in practice the typical performance is
vastly better: very few candidate D-sep links with even
fewer repeats, and in particular much smaller sizes for
the adjacent set An({X,Y }) ∼ O(2k) for BaseX/Y
(line 6/7 in Algorithm 2). This leads to a dramatic re-
duction in actual runtime, as the most expensive term
reduces from O(N2k) to O(22k) base combinations for
the D-sep set candidates.

A drawback for sample versions of FCI+ is that the
conditioning sets may become larger than strictly nec-
essary, leading to a loss of statistical power of the in-
dependence tests. Preliminary investigations in ran-
dom graphs up to 200 variables suggest this effect
is not very prominent (often the largest set remains
smaller than for standard FCI), but it may become
an issue in certain circumstances. An interesting so-
lution is to limit the maximum node sets by taking
the intersection of the hierarchical D-SEP candidate
and FCI’s Possible-D-SEP sets. Furthermore, many
tests in the AugmentGraph procedures (line 2,16) may
be avoided by applying some of FCI’s orientation rules
to the available strucuture. Finally we can try to re-
strict the number of possible D-sep-edges to check even
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further, and/or optimize the sequence in which to pro-
cess them. Ultimately our goal is to come as close to
the PC runtime as possible, while still handling hidden
variables correctly.
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Appendix A. Proofs

This section contains proof sketches for the results in
this paper; for details and examples, see (Claassen
et al., 2013).

Lemma 3. (D-separated nodes are non-ancestors)

Proof sketch. In the supplement we show that if X is
not independent of Y for any subset Adj(X), then Y
is not an ancestor of X and has no selection bias. For
a D-sep link (X,Y ) this applies to both; statement for
minimal Z follows immediately from Lemma 2-(2).
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Figure 7: Path configuration for D-sep link X · · ·Y .

Lemma 4. (bi-directed D-sep patterns in G+)

Proof sketch. In the supplement we show that the path
configuration in Figure 7 is always present for a D-sep
edge X − Y , resulting in identifiable independencies
X ⊥⊥ W | [Z′], Y ⊥⊥ T | [Z′′], and U1 ⊥⊥ V1 | [Z′′′] (for
some sets Z′ etc.). Furthermore, the first necessarily
becomes dependent when including either U1 or Y into
the separating set. Idem for the second when including
V1 or X, as for the third when including X or Y . In
combination with Lemma 2-(1) this implies identifiable
invariant arrowheads in G+ on all three edges U1 ↔
X ↔ Y ↔ V1, with U1 not adjacent to V1.

Lemma 5. (D-sep link hierarchy)

Proof sketch. Follows from Lemma 3, otherwise it
would introduce a cycle.
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Lemma 6. (all required D-sep nodes appear in other
minimal separating sets we already found)

Proof sketch. In the supplement we show that each D-
sep node Z blocks a path of the generic form depicted
in Figure 8. From this we construct a necessary non-
adjacency of neighboring node Zk with at least one of
the other {Z1, .., Zi} or X along the path, in which Z
is part of a minimal set that separates them.

Lemma 7. (for D-sep link X ↔ Y in G+ and inde-
pendence set I, the set HIE(AA({X,Y }), I)\{X,Y } is
a D-separating set)

Proof sketch. In the supplement we show that for
a D-sep link the set of nodes in the hierarchy
HIE({X,Y }, I) is independent of the specific (min-
imal) independence found for each pair of nodes that
are not adjacent in G+. We do this by showing that
if a node W is optional in a minimal separating set
between two nodes X and Y , so both X ⊥⊥ Y | [Z]
and X ⊥⊥ Y | [W] exist, with W ∈ (W \ Z), then
there is also an optional node Z ∈ (Z \W), and W
is part of a minimal separating set between Z and
either X or Y . This argument can be repeated un-
til the node is necessary in some minimal separating
set, and will be found in all independence sets I. So
every node that is optional in one minimal separat-
ing set (and so may not be included in the corre-
sponding Sepset from the PC adjacency search) is a
necessary node in a Sepset between some other pair
when ‘zooming in’ on the graph. As these are all
included, it follows that HIE({X,Y }, I) is indepen-
dent of the specific separating sets found in I. By
Lemma 6, all D-sep nodes we need to separate X and
Y als appear in some minimal set between two nodes
from the union of {X,Y } and the corresponding D-
separating set, for which the same applies again, un-
til ultimately an independence between two nodes in
Adj({X,Y })∪{X,Y } is reached. But that means they
are all part of HIE(AA({X,Y }), I)\{X,Y }, and so this
is guaranteed to be a D-separating set for X ↔ Y .
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Abstract

We consider the problem of learning Bayesian
networks (BNs) from complete discrete data.
This problem of discrete optimisation is for-
mulated as an integer program (IP). We de-
scribe the various steps we have taken to al-
low efficient solving of this IP. These are (i)
efficient search for cutting planes, (ii) a fast
greedy algorithm to find high-scoring (per-
haps not optimal) BNs and (iii) tightening
the linear relaxation of the IP. After relating
this BN learning problem to set covering and
the multidimensional 0-1 knapsack problem,
we present our empirical results. These show
improvements, sometimes dramatic, over ear-
lier results.

1 Introduction

Bayesian networks (BNs) use a directed acyclic graph
(DAG) to represent conditional independence relations
between random variables. Each BN defines a joint
probability distribution over joint instantiations of the
random variables. BNs are a very popular and effective
representation for probabilistic knowledge and there is
thus considerable interest in ‘learning’ them from data
(and perhaps also prior knowledge).

In this paper we present our approach to the ‘search-
and-score’ method of BN learning. As a score for any
candidate BN we choose the log marginal likelihood
with Dirichlet priors over the parameters. We choose
these Dirichlet priors so that our score is the well-
known BDeu score. Throughout we set the effective
sample size for the BDeu score to be 1. The learning
problem is a discrete optimisation problem: find the
BN structure (DAG) with the highest BDeu score.

In Section 2 we present our integer programming (IP)
encoding of the problem. Section 3 shows how we use

a ‘branch-and-cut’ approach to solve the IP problem.
Section 4 describes how we find ‘cutting planes’. Sec-
tion 5 describes our fast greedy algorithm for find-
ing good but typically sub-optimal BNs. Section 6
presents our investigation into the convex hull of DAGs
with 3 or 4 nodes, the facets of which turn out to be
useful for learning DAGs with any number of nodes.
Section 7 is more discursive in nature: pointing out
interesting connections to the set covering and multi-
dimensional knapsack problems. The central con-
tribution of the paper—faster solving for exact BN
learning—is established in Section 8 where we present
our empirical results. We finish, as is the custom, with
conclusions and pointers to future work.

This paper assumes familiarity with Bayesian networks
and basic knowledge concerning BN learning. See [14]
for a comprehensive treatment of both these topics and
much more besides. The rest of the paper assumes
the reader knows what an integer program is: it is
a discrete optimisation problem where the objective
function is a linear function of the (discrete) problem
variables and where the set of feasible solutions is de-
fined by a finite set of linear inequalities over these
variables. The linear relaxation of the IP is obtained
by removing the constraint that the problem variables
take only integer values. For further reading on inte-
ger programming, consult e.g. [16]. We refer to the
variables in the learned BN structure as ‘nodes’ rather
than ‘variables’ to more clearly distinguish them from
IP variables.

2 Integer program encoding

We encode our BN structure learning problems as an
integer program (IP) so that the log marginal likeli-
hood of any DAG is a linear function of the IP vari-
ables. This requires creating binary ‘family’ variables
I(W → v) for each node v and candidate parent set
W , where I(W → v) = 1 iff W is the parent set for v.
This encoding has been used in previous work [5, 13, 6].
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The objective function then becomes
∑

v,W

c(v,W )I(W → v) (1)

where c(v,W ) is the ‘local’ BDeu score for W being
the parents of v. This score is computed from the
data prior to the search for an optimal BN. Evidently
the number of such scores/variables increases exponen-
tially with p, the number of nodes in the BN. However
ifW ⊂W ′ and c(v,W ) > c(v,W ′) then, in the absence
of any user constraints on the DAG, it is obvious that
W cannot be the parent set for v in any optimal BN
and thus there is no need to create the unnecessary
variable I(W ′ → v). Moreover, using a pruning tech-
nique devised by de Campos and Ji [9] it is possible to
prune the search for necessary variables so that local
scores for many unnecessary variables need never be
computed. Nonetheless, unless p is small (e.g. ≤ 12),
even with this pruning we typically have to make some
restriction on the number of candidate parent sets for
any node. See Section 8 for more on this.

The I(W → v) variables encode DAGs, but in many
cases one is more interested in Markov equivalence
classes of DAGs [14] which group together DAGs rep-
resenting the same conditional independence relations.
This has motivated the standard imset and later char-
acteristic imset representation [12]. A characteristic
imset c is a zero-one vector indexed by subsets C of BN
nodes such that c(C) = 1 iff there is a node v ∈ C such
that all nodes in C \{v} are parents of v. Importantly
two DAGs have the same characteristic imset represen-
tation iff they are Markov equivalent. This represen-
tation lends itself to an IP approach to BN structure
learning. Existing [12] and ongoing work shows en-
couraging results. Connecting the characteristic imset
representation to our ‘family’ representation we have
that for any DAG and any subset of nodes C:

c(C) =
∑

v∈C

∑

W :C\{v}⊆W
I(W → v) (2)

Returning to our own encoding, to ensure that IP so-
lutions correspond to DAGs two families of linear con-
straints are used. Let V be the set of BN nodes. The
convexity constraints

∀v ∈ V :
∑

W

I(W → v) = 1 (3)

simply ensure that any variable has exactly one parent
set. The ‘cluster’ constraints

∀C ⊆ V :
∑

v∈C

∑

W :W∩C=∅
I(W → v) ≥ 1 (4)

introduced by Jaakkola et al [13], ensure that the
graph has no cycles. For each cluster C the associ-
ated constraint declares that at least one v ∈ C has

no parents in C. Since there are exponentially many
cluster constraints these are added as ‘cutting planes’
in the course of solving.

3 Branch-and-cut algorithm

Let n be the number of I(W → v) variables so that
any instantiation of these variables can be viewed as
a point in {0, 1}n ⊂ [0, 1]n ⊂ Rn. Let Pcluster be the
polytope of all points in Rn which satisfy the bounds
on the variables, convexity constraints (3) and clus-
ter constraints (4). If a point in Pcluster is entirely
integer-valued (i.e. is in {0, 1}n) then it corresponds
to a DAG, but Pcluster also contains infinitely many
non-DAG points. Due to the p convexity equations
(3) this polytope is of dimension n − p. Note that all
points in Pcluster have an objective value (1) not just
those with integer values.

Jaakkola et al [13] consider the problem of finding a
point in Pcluster with maximal objective value. They
consider the dual problem and iteratively add dual
variables corresponding to cluster constraints. This
process is continued until the problem is solved or there
are too many dual variables. In the latter case branch-
and-bound is used to continue the solving process. A
‘decoding’ approach is used to extract DAGs from val-
ues of the dual variables.

We instead take a fairly standard ‘branch-and-cut’ ap-
proach to the problem. The essentials of branch-and-
cut are as follows, where LP solution is short for ‘so-
lution of the current linear relaxation’:

1. Let x* be the LP solution.

2. If there are valid inequalities

not satisfied by x*

add them and go to 1.

Else if x* is integer-valued then

the current problem is solved

Else branch on a variable with

non-integer value in x*

to create two new sub-IPs.

The added valid inequalities are called ‘cutting planes’
since they ‘cut off’ the LP solution x∗. This process
of cutting and perhaps branching is performed on all
nodes in the search tree. If the objective value of the
LP solution of a sub-IP is worse than the current best
integer solution then the tree is pruned at that point.
Note that the term ‘branch-and-cut’ is a little mislead-
ing since there is typically much cutting in the root
node before any branching is done.

Where Jaakkola et al added dual variables to the dual
problem we add cluster constraints as cutting planes
(cluster cuts) to the original ‘primal’ problem. We do

183



a complete search for cluster cuts so that if none can
be found we have a guarantee that the LP solution x∗

satisfies all cluster constraints (4). Note that there is
no need to find all cluster cuts to have this guarantee;
in practice only a small fraction of the exponentially
many cluster cuts need be found.

If no cluster cuts can be found (and the problem is
not solved) we search for three other sorts of cutting
planes: Gomory, strong Chvátal-Gomory (CG) and
zero-half cuts. If none of these cuts can be found we
branch on a fractional I(W → v) variable to create two
new sub-IPs as described above. Solving the problem
returns a guaranteed optimal BN. Since we are working
with the primal representation there is no decoding
required to extract the BN from the optimal values of
the I(W → v) variables: we just return the p variables
which are set to 1.

The algorithm is implemented using the the SCIP [1]
callable library (scip.zib.de). Implementing a basic
branch-and-cut algorithm with SCIP amounts to little
more than setting SCIP parameter flags appropriately.
We used SCIP’s built-in functions to search for Go-
mory, strong CG and zero-half cuts. We also used
SCIP’s default approach to branching. See [1] and the
SCIP documentation for details. However the search
for cluster cuts we implemented ourselves, plugging
it into the branch-and-cut algorithm as a SCIP con-
straint handler. This search is described in Section 4.
Our greedy algorithm for finding good BNs is imple-
mented as a SCIP primal heuristic and is described in
Section 5.

4 Finding cluster cuts

Our system GOBNILP 1.3 uses a sub-IP to search for
cluster cuts. The approach is essentially the same as
that presented by Cussens [6]. Nonetheless we describe
it here for completeness and because our current imple-
mentation has a simple but very effective optimisation
that was missing from the earlier one.

To understand the sub-IP first note that, due to the
convexity constraints, the constraint (4) for cluster C
can be reformulated as a knapsack constraint (5):

∑

v∈C

∑

W :W∩C 6=∅
I(W → v) ≤ |C| − 1 (5)

In the sub-IP the cluster is represented by |V | = p bi-
nary variables I(v ∈ C) each with objective coefficient
of -1. Now let x∗(W → v) be the value of I(W → v)
in the LP solution. For each x∗(W → v) > 0 create a
sub-IP binary variable J(W → v) with an objective co-
efficient of x∗(W → v). Abbreviating

∑
v∈V I(v ∈ C)

to |C| the sub-IP is defined to be:

Maximise: − |C|+
∑

x∗(W → v)J(W → v) (6)

Subject to, for each J(W → v):

J(W → v)⇒ I(v ∈ C) (7)

J(W → v)⇒
∨

w∈W
I(w ∈ C) (8)

The constraints (7) and (8) are posted as SCIP
logicor clausal constraints and the sub-IP search is
set to depth-first, branching only on I(v ∈ C) vari-
ables. Note that logicor constraints are a special
type of linear constraint. It is a requirement that the
objective value is greater than -1. For efficiency this is
implemented directly as a limit on the objective value
(using SCIP’s SCIPsetObjlimit function) rather than
as a linear constraint. A final constraint dictates that
|C| ≥ 2.

In any feasible solution we have that

−|C|+
∑

x∗(W → v)J(W → v) > −1 (9)

Due to the constraints (7) and (8), for J(W → v) to
be non-zero v must be in the cluster C and at least
one element of W must also be in C. So (9) can be
rewritten as:

−|C|+
∑

v∈C

∑

W :W∩C 6=∅
x∗(W → v)J(W → v) > −1

(10)
It follows that the cluster C associated with a feasible
solution of the sub-IP has a cluster constraint which
is violated by the current LP solution x∗. Each fea-
sible solution of the IP thus corresponds to a valid
cutting plane. The sub-IP is always solved to optimal-
ity, (collecting any sub-optimal feasible solutions along
the way) so it follows that if the current LP solution
violates any cluster constraint then at least one will be
found.

In [6] a sub-IP was also used to find cutting planes.
However, there “a binary variable J(W → v) is created
for each family variable I(W → v) in the main IP.”
(our emphasis). In the current approach J(W → v)
variables are created only for I(W → v) variables
which are not zero in the LP solution. This greatly re-
duces the number of variables in the sub-IP (and thus
speeds up sub-IP solving) since typically most main
IP variables are set to zero in any LP solution.

5 Sink finding algorithm

Finding a good primal solution (i.e. a BN) early on
in the search is worthwhile even if it turns out to be
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I(W1,1 → 1) I(W1,2 → 1) . . . I(W1,k1 → 1)
I(W2,1 → 2) I(W2,2 → 2) . . . I(W2,k2 → 2)
I(W3,1 → 3) I(W3,2 → 3) . . . I(W3,k3 → 3)
. . . . . . . . . . . .
I(Wp,1 → p) I(Wp,2 → p) . . . I(Wp,kp → p)

Table 1: Example initial state of the sink-finding
heuristic for |V | = p. Rows need not be of the same
length.

suboptimal. High scoring solutions allow more effec-
tive branch-and-bound and may help in the root node
due to root reduced cost strengthening [1, §7.7]. If a
problem cannot be solved to optimality having a good,
albeit probably suboptimal, solution is even more im-
portant.

We have a ‘sink-finding’ algorithm which proposes pri-
mal solutions using the current LP solution. The al-
gorithm is based on two ideas: (i) that there might be
good primal solutions ‘near’ the current LP solution
and (ii) that an optimal BN is easily found if we can
correctly guess an optimal total ordering of BN nodes.
The first idea is common to all rounding heuristics.
SCIP has 6 built-in rounding heuristics and we allow
SCIP to run those that are fast and they do sometimes
find high scoring BNs. The second idea has been ex-
ploited in dynamic programming approaches to exact
BN learning [15].

To understand how the algorithm works consider Ta-
ble 1. The table has a row for each node and there
are p = |V | rows. The I(W → v) variables for each
node are ordered according to their objective coeffi-
cient c(v,W ), so that, for example, W1,1 is the ‘best’
parent set for node 1 and W1,k1 the worst. The objec-
tive coefficients c(v,W ) play no role in the sink-finding
algorithm other than to determine this ordering. Since
the number of available parent sets may differ between
nodes the rows will typically not be of the same length.

On the first iteration of the sink finding algorithm,
for each child variable the ‘cost’ of selecting its best-
scoring parent set is computed. This cost is 1 −
x∗(Wv,1 → v), where x∗(Wv,1 → v) is the value of
I(Wv,1 → v) in the LP solution.

Denote the child variable chosen as vp. In order to
ensure that the algorithm generates an acyclic graph
a total order is also generated. This is achieved by
setting I(W → v) to 0 if vp ∈ W . As a result vp
will be a sink node of the BN which the algorithm will
eventually construct.

Suppose that it turned out that vp = 2 and that node
2 was a member of parent sets W1,1, W3,2, Wp,1 and
Wp,2. The state of the algorithm at this point is illus-

I(W1,1 → 1) I(W1,2 → 1) . . . I(W1,k1 → 1)
I(W2,1 → 2) I(W2,2 → 2) . . . I(W2,k2 → 2)
I(W3,1 → 3) I(W3,2 → 3) . . . I(W3,k3 → 3)
. . . . . . . . . . . .
I(Wp,1 → p) I(Wp,2 → p) . . . I(Wp,kp → p)

Table 2: Example intermediate state of the sink-
finding heuristic.

trated in Table 2. In the next iteration I(W3,1 → 3)
remains available as the ‘best’ parent set for node 3
but for node 1 the best parent set now is I(W1,2 → 1).
In the second and subsequent iterations the algorithm
continues to choose the best available parent set for
some node according to which choice of node has min-
imal cost. However in these non-initial iterations cost
is computed as (

∑
W∈ok(v) x

∗(W → v))−x∗(Wv,best →
v), where I(Wv,best → v) is the best scoring remaining
choice for v and ok(v) is the set of remaining parent
set choices for v. After each such selection, parent set
choices for remaining nodes are updated just like for
the first iteration. Note that the node selected at any
iteration will be a sink node (in the final DAG) for the
subset of nodes available at that point.

There is an added complication if some I(W → v) are
already fixed to 1 when the sink-finding algorithm is
run. This can happen either due to user constraints
or due to branching on I(W → v). Trying to rule out
such a variable leads the algorithm to abort.

Due to its greedy nature the sink finding algorithm
is very fast and so we can afford to run it after solv-
ing every LP relaxation. For example, in one of our
bigger examples, Diabetes 100, the sink-finding algo-
rithm was called 9425 times taking only 30s in total.
Note that each new batch of cutting planes produces
a new LP and thus a new LP solution. In this way
we use the LP to help us move around to search for
high-scoring BNs.

6 Tightening the LP relaxation

Given a collection of n I(W → v) variables, each feasi-
ble DAG corresponds to a (binary) vector in Rn. Con-
sider now P, the convex hull of these points and recall
Pcluster, the polytope defined in Section 3 containing
all points satisfying the variable bounds, the convex-
ity constraints (3) and all cluster constraints (4). As
Jaakkola et al [13] note, P is strictly contained within
Pcluster, except in certain special cases. GOBNILP uses
SCIP to add Gomory, strong CG and zero-half cutting
planes in addition to cluster cuts. This produces a
linear relaxation which is tighter than Pcluster and, as
the results presented in Section 8 show, typically im-
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proves overall performance, although strong CG cuts
are generally not helpful. Denote the polytope de-
fined by adding these ‘extra’ cuts by P ′cluster. Since
the searches for Gomory, strong CG and zero-half cuts
are not complete P ′cluster is specific to the problem
instance and SCIP parameter settings.

In many cases it is not possible to separate a fractional
LP solution x∗ even with these extra cuts, so we have
x∗ 6∈ P but x∗ ∈ P ′cluster. This raises the question of
which inequalities are needed to define P. We have
approached this issue by carrying out empirical inves-
tigations into P when there are 3 or 4 nodes.

For 3 nodes {1, 2, 3} there are only 25 DAGs. We
eliminated the three I(∅ → v) variables using the
equations (3) and encoded each DAG using the re-
maining nine I(W → v) variables (3 remaining choices
of parent set for each node). The lrs algorithm [2] (
http://cgm.cs.mcgill.ca/~avis/C/lrs.html ) was
used to find the facets of the convex hull of these 25
vertices in R9.

Denoting this convex hull as P3, we find that it has
17 facets. These are: 9 lower bounds on the vari-
ables, 3 inequalities corresponding to the original con-
vexity constraints, cluster constraints for the 4 clusters
{1, 2}, {1, 3}, {2, 3}, and {1, 2, 3} and one additional
constraint:

I({2, 3} → 1) + I({1, 3} → 2) + I({1, 2} → 3) ≤ 1
(11)

Consider the point y∗ in R9 specified by setting
I({2, 3} → 1) = 1

2 , I({1, 3} → 2) = 1
2 , I({1, 2} → 3) =

1
2 and all other variables to zero. It is not difficult to
see that this point is on the surface of Pcluster (lying on
the hyperplanes defined by the cluster constraints for
{1, 2}, {1, 3} and {2, 3}). However it does not satisfy
(11) and so is outside of P3. Note that there are nine
3-node DAGs where one node has two parents. All of
these DAGs lie on the hyperplane defined by (11). It
is easy to show that these 9 DAGs ( = points in R9)
are affinely independent which establishes that (11) is
indeed a facet.

The point y∗ was also discussed by Jaakkola et al [13].
They considered the acyclic subgraph polytope Pdag
which is the convex hull of DAGs which results from
using binary variables to represent edges rather than
parent set choices. This polytope has been extensively
studied in discrete mathematics [11] and many (but
not all) classes of facets are known for it [10]. The
parent set representation can be projected onto the
edge representation (so that the former is an extended
formulation of the latter in the language of mathe-
matical programming). As Jaakkola et al observe the
projection of y∗ is a member of Pdag.

The inequality (11) can be generalised to give a class
of valid set packing inequalities:

∀C ⊆ V :
∑

v∈C

∑

W :C\{v}⊆W
I(W → v) ≤ 1 (12)

We have found that adding all non-trivial inequalities
of this sort for |C| ≤ 4 speeds up solving considerably
(see Section 8). This is because the LP relaxation is
tighter. Since there are not too many such inequali-
ties they are added directly to the IP rather than being
added as cutting planes. Note that making the con-
nection to characteristic imsets with (2) implies these
set packing constraints.

We have not found all facets of P4, which is a poly-
tope in R28 with 543 vertices (for the 543 4-node
DAGs). We terminated lrs after a week’s computation,
by which time it had found 64 facets. We detected 10
different types of facets which we have labelled 4A to
4J. We will provide a full description of these facet
classes in a forthcoming technical report. Here we just
give a brief overview.

Consider, as an example, 4B-type facets. They are
specified as follows:

∑

v4∈W∧{v2,v3}∩W 6=∅
I(W → v1)

+
∑

v3∈W∨{v1,v4}⊆W
I(W → v2)

+
∑

v2∈W∨{v1,v4}⊆W
I(W → v3)

+
∑

v1∈W∧{v2,v3}∩W 6=∅
I(W → v4) ≤ 2 (13)

Consider the point z∗ ∈ R28 where all variables take
zero value except: I({3, 4} → 1) = 1

2 , I({1, 3} →
2) = 1

2 , I({1, 4} → 2) = 1
2 , I({2, 4} → 3) = 1

2 ,
I({1, 2} → 4) = 1

2 . It is easy to check that z∗ sat-
isfies all cluster constraints and any constraint of type
(12). However, setting vi = i in (13) we have that the
left-hand side is 2 1

2 and so (13) separates (i.e. cuts off)
z∗. It follows that adding 4B-type linear inequalities
results in a strictly tighter linear relaxation.

We have implemented 6 distinct cutting plane algo-
rithms to search for inequalities of types 4B, 4C, 4E,
4F, 4G and 4H. We call cuts of this sort convex4 cuts.
Type 4A cuts are cluster cuts, and cuts of type 4D,
4I and 4J have not appeared useful in preliminary ex-
periments. We have also experimented with adding
a limited number of convex4 cuts directly to the IP
rather than finding them ‘on the fly’ as cutting planes.

In practice we have found LP solutions which vio-
late these constraints but which none of our other
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cutting planes can separate (the example z∗ was ex-
tracted from one such LP solution). Cuts of type 4B
appear to be particularly useful. Preliminary exper-
iments indicate that using convex4 cuts is typically
but not always beneficial. We have yet to do a con-
trolled evaluation, but using convex4 cuts with a dif-
ferent version of SCIP (SCIP 3.0) and a slightly dif-
ferent machine from that used to present our main re-
sults, we do have some partial preliminary results. Us-
ing convex4 cuts, problem instances alarm_3_10000,
carpo_3_100, carpo_3_1000, carpo_3_10000 and
Diabetes_2_100 took 54s, 612s, 92s, 660s and 1393s
to solve, respectively. All of these times are better
than using our properly evaluated system GOBNILP
1.3 (see Section 8). The improvement is particular
dramatic for alarm_3_10000 which takes 298s using
GOBNILP 1.3 and took 12872s using the system pre-
sented by Cussens [6]. On the other hand, prob-
lems hailfinder_3_1 and Pigs_2_1000 took 139s and
2809s respectively which is slower than GOBNILP 1.3.

7 Set covering and knapsack
representations

If the convexity constraints (3) are all relaxed to set
covering constraints: ∀v :

∑
W I(W → v) ≥ 1 then

the BN learning problem becomes a pure set cov-
ering problem—albeit one with exponentially many
constraints—since all the cluster constraints (4) are
already set covering constraints. It is not difficult to
show that any optimal solution to the set covering re-
laxation of our BN learning problem is also an optimal
solution to the original problem. This opens up the
possibility of applying known results concerning the
set covering polytope to the BN learning problem. In
particular, Balas and Ng [3] provide conditions for set
covering inequalities to be facets and also show that for
an inequality with integer coefficients and right-hand
side of 1 to be a facet it must be one of the set covering
inequalities defining the IP. This is a useful result for
BN learning. It shows there is no point looking for ‘ex-
tra’ set covering inequalities in the hope they might be
facets. Relaxed convexity constraints and cluster con-
straints are the only set covering inequalities that can
be facets.

As Balas and Ng [3] note, Chvátal’s procedure [4] can
be used to generate the convex hull of integer points
satisfying an IP after a finite number of applications.
They provide a specialised version of this procedure to
find a class of valid inequalities of the form αSx ≥ 2
for the set covering polytope. These inequalities dom-
inate all other valid inequalities of the form βx ≥ 2.
Each such inequality is defined by taking a set S of
set covering inequalities, and combining them to get a

new inequality (details omitted for space, see [3]).

We can use the procedure to get new inequal-
ities for the BN learning problem by combining
cluster constraints. For example combining the
constraints for C = {a, b}, C = {a, c}, C =
{a, d} produces:

∑
W :W∩{b,c,d}=∅ 2I(W → a) +∑

W :0<|W∩{b,c,d}|<3 I(W → a) +
∑
a6∈W I(W → b) +∑

a 6∈W I(W → c) +
∑
a 6∈W I(W → d) ≥ 2.

Our BN learning problem can also be reformulated as
a multi-dimensional 0-1 knapsack problem. Due to
the convexity constraints (4) we can eliminate each
I(∅ → v) variable by replacing it with the linear ex-
pression 1 −∑W 6=∅ I(W → v). Due to pre-pruning,
the objective value of I(∅ → v) will be lower than
that for all other I(W → v) variables and so once the
I(∅ → v) variables have been eliminated the remain-
ing variables will all have positive objective coefficient.
Eliminating I(∅ → v) variables from the cluster con-
straints produces the knapsack constraints (5) previ-
ously mentioned.

8 Results

The system GOBNILP 1.3 described in the previous
sections was implemented using C, with SCIP 2.1.1
used as the constraint solver. The underlying LP
solver was CPLEX 12.5. Both SCIP and CPLEX are
available for free under academic licences. All exper-
iments were performed using a single core of a 64-bit
Linux machine with a 2.80 GHz 4 core processor and
7.7 GB of RAM. A time out limit of 2 hours was
imposed across all experiments after which runs were
aborted. Our results can be reproduced by going to
http://www.cs.york.ac.uk/aig/sw/gobnilp.

Experiments were performed on data taken from a va-
riety of Bayesian networks, with different numbers of
observations, N , and with different limits, m, on the
maximum number of nodes considered as the parent
set of each node. The problem sets used are shown in
Table 3. Several of these problem sets were used in [6],
with additional larger networks and parent set sizes be-
ing added to assess performance on harder problems.
Local BDeu scores were computed for all experiments
external to the systems tested and the times taken to
compute and filter these are not included in the pre-
sented results. Score computation times ranged from
1 second to 5497 seconds in the longest case, diabetes
with N = 10000.

The primary experiment in this paper is to assess how
long GOBNILP 1.3 takes to find the BN with the high-
est score, and rule out the possibility of finding a BN
with a higher score for each dataset. In particular, we
compare how the system with all features introduced
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in previous sections compared to the earlier IP-based
BN learning system presented by [6] (henceforth re-
ferred to as Cussens 2011).

Additionally, we examine the behaviour of the systems
in those situations in which they failed to find the high-
est scoring BN within the 2 hour time limit. Integer
Programming can be used as an any-time learning al-
gorithm, where a current best solution can be taken at
any point during the search, though this may not turn
out to be the eventual best solution. Specifically, our
aim here is to examine the examples which reached the
two hour solving time limit and determine how close to
finding a provably best BN they are at that point. This
gives an idea of how good that system would be for use
as an any-time algorithm, and acts as an (imperfect)
proxy for comparing how much longer the search pro-
cess would take to reach completion.

The Cussens 2011 system is not publicly available.
However, GOBNILP 1.0 is available and is closely based
on Cussens 2011 with some inefficiencies taken out.
Therefore, comparisons were performed against GOB-
NILP 1.0 using exactly the same machine and SCIP
and CPLEX versions as those used to run GOBNILP
1.3. These results are shown in Table 3. As the results
reported in [6] are performed on a broadly similar ma-
chine to that used for the current experiments, times
taken directly from that paper are also shown in the
table for illustrative purposes. Results are not shown
in the table for some data sets, as [6] did not study
and report them.

The results show that in the vast majority of cases,
GOBNILP 1.3 outperforms GOBNILP 1.0, often being
2–3 times faster. GOBNILP 1.3 is also never slower
than Cussens 2011 and for the larger examples is usu-
ally an order of magnitude quicker. For example, the
alarm 3 10000 data set takes over 3.5 hours to solve
using Cussens 2011, but less than 5 minutes using
GOBNILP 1.3. Some of the difference in run times be-
tween GOBNILP 1.3 and Cussens 2011 may be due to
different machines being used, however the vastly im-
proved performance on the larger examples undoubt-
edly reflects an overwhelming improvement.

In order to discover which aspects of GOBNILP 1.3
were leading to this improvement in performance, a
second set of experiments was conducted in which the
performance of the full system was compared to that
resulting from removing parts of the system one at a
time. Three features were identified as being suitable
to remove while still leaving a system that would still
result in the best BN being found, albeit potentially
not as efficiently. These three features were

Set Packing Constraints (Section 6) As these

(12) are logically implied by the basic problem,
without them the IP for finding the BN is still
correct.

Sink Primal Heuristic (Section 5) The algo-
rithm for finding feasible solutions through sink
finding is not necessary, but may improve the
search process through tightening the lower
bound on the best BN.

Value Propagator Explicitly determining which
values must be fixed at zero or one at each
node of the search tree is not necessary as this
information will eventually be discovered through
search. However, by performing this propagation
as early as possible, a significant amount of
search may be saved.

In addition, three cutting plane algorithms which are
built into SCIP are used within GOBNILP 1.3. These
three were chosen from those available in SCIP based
on preliminary experiments to determine which poten-
tial cuts would be added reasonably often and reason-
ably quickly. Each of these was also turned off in turn
in order to assess whether it was positively contribut-
ing to the improved performance.

Six modified versions of the GOBNILP 1.3 resulted
from this; three which each had one feature turned
off and three which each had one type of cutting plane
turned off. Each of the data sets was run on each of
these systems and the time taken to find the optimal
solution recorded. The results of these experiments
are shown in Table 3.

The results show the biggest change in solution time
occurs when the set packing constraints are removed.
In nearly every case, this leads to an increase in solu-
tion time. In fact the situation can be even more ex-
treme than the table suggests; for the pigs 1000 data
set, the system without the set packing constraints was
allowed to continue running beyond the time out limit
and had still not finished after more than 30 hours,
when the full system finished in about 30 minutes.

Furthermore, in cases in which the two hour time limit
was reached, the gap between the upper and lower
bounds at that point was much larger in the version
without set packing constraints than that for the full
system. Closer examination revealed that this was
because the score of the best BN found so far was
the same as in the full system, but significantly less
progress had been made in reducing the upper (dual)
bound.

It is not immediately clear from this table if using the
sinks heuristic aids the system or not. There are a
number of problems for which it decreases solution
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time and a number for which it increases it. For the
most difficult problems, it appears to have little im-
pact on solving time. As with the version without
set packing constraints, the system without the primal
heuristic also resulted in much larger gaps between the
bounds in cases where it reached the time out limit.
For the version without the primal heuristic, the dif-
ference is due to the best BN found so far being sig-
nificantly worse after the time had elapsed, while the
upper bound on the best possible BN that could be
found was virtually identical to the full system. This
latter point suggests that, while the sinks heuristic was
of questionable value when solving problems to com-
pletion, on larger problems for which the algorithm
may run out of time or resources before successfully
finding the provably best BN, the heuristic plays an
import role in ensuring that the best BN found so far
is of high score.

The evidence for the effectiveness of the propagation
is also mixed. In some cases, the system performs
faster without the propagation, though study of the log
files reveals this is almost exclusively down to the time
spent directly carrying out propagation. Having noted
this, a new faster propagator was created and used to
replace the existing one. The result of running the full
system with this faster propagator was to achieve a
minor improvement over both the full system and the
system without a propagator, as shown in the final
column of Table 3.

The usefulness of each of the cutting plane algorithms
is much clearer. Without Gomory cuts, the system is
often slower and frequently by a large amount. On
the other hand, removing Strong CG cuts usually im-
proves the system’s performance with one notable ex-
ception. Though checking log files, it can be confirmed
that little time is spent generating Strong CG cuts and
hence the improvement without them is due to a bet-
ter search strategy rather than just a saving on the
time spent adding these cuts. Zero-half cuts appear to
have less effect than the other two studied but reduce
solving time noticeably on two fairly large problems.

9 Conclusions and future work

Our principal conclusion is that IP is an attractive
framework for exact BN learning from complete dis-
crete data. However, as our comparative experiments
demonstrate, some care (and empirical investigation)
is required to properly exploit its potential. We have
shown considerable advances over the results presented
by Cussens [6] who himself presented faster solving
times on four problems than [13]. However, it would
clearly be desirable to compare GOBNILP 1.3 against
further exact BN learning systems, not necessarily IP-

based. We intend to compare against the URLearning
system [17] in the immediate future.

In this paper we have focused on efficiently finding
BNs with maximal score subject to constraints on par-
ent set size. This raises the question of whether it is
worth the effort to do this if one’s ultimate goal is to
return a DAG with high structural accuracy. In the
context of ‘pedigree reconstruction’, work by Cussens
et al [8] answers this question in the positive. In that
paper an exact learning approach led to high structural
accuracy. However, in a pedigree ( a ‘family tree’) no
node can have more than two parents. In other ap-
plications where the ‘true’ structure may have nodes
with many parents our current restriction on parent
set size may lead to poor structural accuracy. This is
a clear limitation which we intend to address by the
IP technique of delayed column generation where IP
variables (i.e. parent sets) are created during solving
[7].

In practical applications one often has prior knowl-
edge concerning the (likely) structure of the ‘true’ BN.
Because our GOBNILP 1.3 system is an example of
declarative machine learning it is very easy to allow
the user to declare constraints on BN structure when
these can be encoded as linear constraints. Although
we have not exploited it in the experiments reported
here, GOBNILP 1.3 allows the user to declare the ab-
sence/presence of (i) particular directed edges, (ii) par-
ticular adjacencies and (iii) particular immoralities. In
addition upper and lower bounds on the number of
edges and founder nodes are possible. It is also pos-
sible to rule out specific BNs with a linear constraint.
This allows GOBNILP 1.3 to not only find the optimal
BN but also the top k BNs in decreasing order of score.
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Abstract

Possibilistic and qualitative POMDPs (π-
POMDPs) are counterparts of POMDPs
used to model situations where the agent’s
initial belief or observation probabilities are
imprecise due to lack of past experiences or
insufficient data collection. However, like
probabilistic POMDPs, optimally solving π-
POMDPs is intractable: the finite belief state
space exponentially grows with the number
of system’s states. In this paper, a possibilis-
tic version of Mixed-Observable MDPs is pre-
sented to get around this issue: the complex-
ity of solving π-POMDPs, some state vari-
ables of which are fully observable, can be
then dramatically reduced. A value iteration
algorithm for this new formulation under in-
finite horizon is next proposed and the op-
timality of the returned policy (for a spec-
ified criterion) is shown assuming the exis-
tence of a ”stay” action in some goal states.
Experimental work finally shows that this
possibilistic model outperforms probabilistic
POMDPs commonly used in robotics, for a
target recognition problem where the agent’s
observations are imprecise.

1 INTRODUCTION

Markov Decision Processes (MDPs) define a useful
formalism to express sequential decision problems
under uncertainty [2]. Partially Observable MDPs
(POMDPs) [15] are used to model situations in which
an agent does not know directly the current state of
the system: its decisions are based on a probability
distribution over the state space. This distribution
known as “belief” is updated at each stage t ∈ N of
the process using the current observation. This up-
date based on Bayes’ rule needs perfect knowledge of

the agent’s initial belief and of the transition and ob-
servation probability distributions.

Consider situations where the agent totally ignores the
system’s initial state, for instance a robot that is for
the first time in a room with an unknown exit location
(initial belief) and has to find the exit and reach it.
In practice, no experience can be repeated in order to
extract a frequency of the exit’s location. In this kind
of situation, uncertainty is not due to a random fact,
but to a lack of knowledge: no frequentist initial belief
can be used to define the model. A uniform probabil-
ity distribution is often chosen in order to assign the
same mass to each state. This choice can be justi-
fied based on the subjective probability theory [5] (the
probability distribution represents then an exchange-
able bet) but subjective probabilities and observation
frequencies are combined during the belief update.

In other cases, the agent may strongly believe that
the exit is located in a wall as in the vast majority of
rooms, but it still grants a very small probability pε to
the fact that the exit may be a staircase in the middle
of the room. Even if this is very unlikely to be the
case, this second option must be taken into account in
the belief, otherwise Bayes’ rule cannot correctly up-
date it if the exit is actually in the middle of the room.
Eliciting pε without past experience is not obvious at
all and does not rely on any rational reasons, yet it
dramatically impacts the agent’s policy. On the con-
trary, possibilistic uncertainty models allow the agent
to elicit beliefs with imprecise unbiased knowledge.

The π-POMDP model is a possibilistic and qualitative
counterpart of the probabilistic POMDP model [12]:
it allows a formal modeling of total ignorance using a
possibility distribution equal to 1 on all the states.
This distribution means that all states are equally
possible independently of how likely they are to hap-
pen (no necessary state). Moreover, consider robotic
missions using visual perception: observations of the
robot agent are outputs of image processing algorithms
whose semantics (image correlation, object matching,
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class inference, etc.) is so complex that probabilities
of occurrence are hard to rigorously extract. Finding
qualitative estimates of their recognition performance
is easier: the π-POMDP model only require qualita-
tive data, thus it allows to construct the model without
using more information than really available.

However, just like the probabilistic POMDP model,
this possibilistic model faces the difficulty of comput-
ing an optimal policy. Indeed, the size of its belief
space exponentially grows with the size of the state
space, which prevents the use of π-POMDPs in prac-
tice. In situations where most state variables are fully
observable, an alternative structuring of the model still
allows to solve the problem: the possibilistic Mixed-
Observable MDP model (π-MOMDP), which is the
first contribution of this paper, indeed allows us to rea-
son with beliefs over the partially observed states only.
In this model borrowed from probabilistic POMDPs
[9, 1], states are factorized into two sets of fully and
partially observable state variables. Whereas, in prob-
abilistic POMDPs, this factorized model permits to
reason about smaller continuous belief subspaces and
speed up α-vector operations, its impact is totally dif-
ferent in possibilistic POMDPs: it allows us to reduce
the size of the discrete belief state space.

Our second contribution is a possibilistic value itera-
tion algorithm for this extension, which exploits the
hybrid structure of the belief space. This algorithm is
derived from a π-MDP algorithm, Sabbadin’s work up-
date, whose optimality of the returned policy is proved
for an infinite horizon criterion which is made explicit.
It relies on intermediate “stay” actions that are needed
to guarantee convergence of the algorithm but that
vanish in the optimized policy for non goal states; they
are the possibilistic counterparts of the discount factor
in probabilistic POMDPs.

Finally, we experimentally demonstrate that in some
situations π-MOMDPs outperform their probabilis-
tic counterparts for instance on information-gathering
robotic problems where the observation function re-
sulting from complex image processing algorithms is
not precisely known, as it is often the case in realis-
tic applications. This result is significant for us, be-
cause roboticists commonly think that probabilistic
POMDPs, and more generally Bayesian approaches,
are first-choice reasoning models to solve sequential
information-gathering missions. We prove in this pa-
per that sometimes possibilistic uncertainty models
perform better in practice.

2 BACKGROUND

The Markov Decision Process framework models situ-
ations in which the system, for instance the physical
part of an agent and its environment, has a Marko-

vian dynamic over time. The different possible states
of the system are represented by the elements s of the
finite state space S. The initial system state is denoted
by s0 ∈ S. At each stage of the process, modeled by
non negative integers t ∈ N, the decisional part of the
agent can choose an action a in the finite set A. The
chosen action at determines the uncertainty over the
future state st+1 knowing the current state st.

2.1 Qualitative possibilistic MDPs

The work of Sabbadin [12] proposes a possibilistic
counterpart of Markov Decision Processes. In this
framework, the transition uncertainty is modeled as
qualitative possibility distributions over S. Let L be
the possibility scale i.e. a finite and totally ordered set
whose greatest element is denoted by 1L and the least
element by 0L (classically L={0, 1

k ,
2
k , . . . ,

k−1
k , 1} with

k ∈ N∗). A qualitative possibility distribution over S is
a function π : S → L such that maxs π(s) = 1L (possi-
bilistic normalization), implying that at least one en-
tirely possible state exists. Inequality π(s) < π(s′)
means that state s′ is more plausible than state s. This
modeling needs less information than the probabilistic
one since the plausibilities of events are “only” classi-
fied (in L) but not quantified.

The transition function Tπ is defined as follows: for
each pair of states (s, s′) ∈ S2 and action a ∈ A,
Tπ(s, a, s′) = π (s′ | s, a ) ∈ L, the possibility of reach-
ing the system state s′ conditionned on the current
state s and action a. Scale L serves as well to model
the preference over states: function µ : S → L mod-
els the agent’s preferences. A π-MDP is then entirely
defined by the tuple 〈S,A,L, Tπ, µ〉.
A policy is a sequence (δt)t>0 of decision rules δ : S →
A indexed by the stage of the process t ∈ N: δt(s) is the
action executed in state s at decision epoch t. We de-
note by ∆p the set of all p-sized policies (δ0, . . . , δp−1).
Let τ = (s1, . . . , sp) ∈ Sp be a p-sized trajectory and

(δ) = (δt)
p−1
t=0 a p-sized policy. The set of all the p-sized

trajectories is denoted by Tp.
The sequence (st)t>0 is a Markov process: the possi-
bility of the trajectory τ = (s1, . . . , sp) which starts
from s0 using (δ) ∈ ∆p is then

Π (τ | s0, (δ) ) =
p−1

min
t=0

π (st+1 | st, δt(st) ) .

We define the preference of τ ∈ Tp as the preference
of the last state: M(τ) = µ(sp). As advised in [13]
for problems in which there is no risk of being blocked
in an unsatisfactory state, we use here the optimistic
qualitative decision criterion [3] which is the Sugeno
integral of the preference distribution over trajectories
using possibility measure:

up (s0, (δ) ) = max
τ∈Tp

min {Π (τ | s0, (δ) ) ,M(τ)} . (1)
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A policy which maximizes criterion 1 ensures that
there exists a possible and satisfactory p-sized trajec-
tory. The finite horizon π-MDP is solved when such a
policy is found. The optimal p-sized horizon criterion
u∗p(s) = max(δ)∈∆p

up(s, (δ)) is the solution of the fol-
lowing dynamic programming equation, as proved in
[6]: ∀i ∈ {1 . . . p}, ∀s ∈ S,

u∗i (s) = max
a∈A

max
s′∈S

min
{
π (s′ | s, a ) , u∗i−1(s′)

}
, (2)

δ∗p−i(s) ∈ argmax
a∈A

max
s′∈S

min
{
π (s′ | s, a ) , u∗i−1(s′)

}

with the initialization u∗0(s) = µ(s).

2.2 The partially observable case

A possibilistic counterpart of POMDPs is also given
in [12]. As in the probabilistic framework, the agent
does not directly observe the system’s states. Here,
uncertainty over observations is also modeled as pos-
sibility distributions. The observation function Ωπ

is defined as follows: ∀o′ ∈ O, s ∈ S and a ∈ A,
Ωπ (s′, a, o′ ) = π (o′ | s, a ) the possibility of the cur-
rent observation o′ conditionned on the current state
s′ and the previous action a. Then a π-POMDP is de-
fined by the tuple 〈S,A,L, Tπ,O,Ωπ, µ, β0〉, where β0

is the initial possibilistic belief. The belief of the agent
is a possibility distribution over S; total ignorance is
defined by a belief equal to 1L on all states, whereas
a given state s is perfectly known if the belief is equal
to 1L on this state and to 0L on all other states.

The translation into π-MDP can be done in a similar
way as for POMDPs: we denote by Bπ ⊂ LS the
possibilistic belief state space which contains all the
possibility distributions defined on S. We can now
compute the possibilistic belief update. If at time t
the current belief is βt ∈ Bπ and the agent executes
action at, the belief over the future states is given by:

βatt+1(s′) = max
s∈S

min {π (s′ | s, at ) , βt(s)} ,

and the belief over the observations

βatt+1(o′) = max
s′∈S

min
{
π (o′ | s′, at ) , βatt+1(s′)

}
.

Next, if the agent observes ot+1 ∈ O, the possibilistic
counterpart of Bayes’ rule ensures that

βt+1(s′)=

{
1L if βatt+1(ot+1)= π (s′, ot+1 | βt, at )> 0L

π (s′, ot+1 | βt, at ) otherwise
(3)

where ∀(s′, o′) ∈ S × O, π (s′, o′ | β, a ) =
min {π (o′ | s′, a ) , βa(s′)} is the joint possibility of
(s′, o′). Such an update of a belief β is denoted by

βa,o
′
: βt+1 = βa,o

′

t . As the belief update is now
made explicit, its dynamics can be computed: let

Γβ,a (β′ ) =
{
o′ ∈ O | βa,o′ = β′

}
. Then π (β′ | β, a )

= max
o′∈Γβ,a(β′)

βa (o′ ) with the convention max∅ = 0L.

We now define the preference over belief states with a
pessimistic form in order to prefer informative beliefs:
a belief state has a good preference when it is unlikely
that the system is in an unsatisfactory state: µ(β) =
mins∈S max {µ(s), n(β(s))} , with n : L → L the order
reversing map i.e. the only decreasing function from L
to L. A π-MDP is then defined, and the new dynamic
programming equation is ∀i ∈ {1, . . . , p}, ∀β ∈ Bπ,

u∗p(β) = max
a∈A

max
β′∈Bπ

min
{
π (β′ | β, a ) , u∗p−1(β′)

}

= max
a∈A

max
o′∈O

min
(
βa(o′), u∗p−1(βa,o

′
)
)

with the initialization u∗0(β) = µ(β). Note that Bπ is a
finite set of cardinal #Bπ = #L#S − (#L−1)#S (the
total number of #S-size vectors valued in L, minus
(#L − 1)#S non-normalized distributions). However,
for concrete problems, the state space can be dramat-
ically large: #Bπ explodes and computations become
intractable like in standard probabilistic POMDPs.
The next section presents the first contribution of this
paper, which exploits a specific structure of the prob-
lem that is very common in practice.

3 Possibilistic and qualitative mixed
observable MDPs (π-MOMDPs)

The complexity issue of π-POMDP solving is due to
the fact that the size of the belief state space Bπ expo-
nentially grows with the size of the state space S. How-
ever, in practice, states are rarely totally hidden. Us-
ing mixed observability can be a solution: inspired by
a similar recent work in probabilistic POMDPs [9, 1],
we present in this section a structured modeling that
takes into account situations where the agent directly
observes some part of the state. This model general-
izes both π-MDPs and π-POMDPs.

Like in [1], we assume that the state space S can be
written as a Cartesian product of a visible state space
Sv and a hidden one Sh: S = Sv × Sh. Let s =
(sv, sh) be a state of the system. The component sv is
directly observed by the agent and sh is only partially
observed through the observations of the set Oh: we

st st+1

sv,t sv,t+1sh,t sh,t+1

atat−1

(oh)t (oh)t+1

(ov)t (ov)t+1

26664
1L 0L

.
.
.

0L 1L

37775

π
h ( (o

h )
t+

1 | s
t+

1 , a
t )

π (s
t+1 | s

t , a
t )

Figure 1: Graphical representation of a π-MOMDP
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denote by π (o′h | s′, a ) the possibility distribution over
the future observation o′h ∈ Oh knowing the future
state s′ ∈ S and the current action a ∈ A. Figure 1
illustrates this structured model.

The visible state space is integrated to the observation
space: Ov = Sv and O = Ov × Oh. Then, knowing
that the current visible component of the state is sv,
the agent necessarily observes ov = sv (if o′v 6= sv,
π (o′v | sv ) = 0L). Formally, seen as a π-POMDP, its
observation possibility distribution can be written as:

π (o′ | s′, a ) = π (o′v, o
′
h | s′v, s′h, a )

= min {π (o′h | s′v, s′h, a ) , π (o′v | s′v )}

=

{
π (o′h | s′, a ) if o′v = s′v

0L otherwise
(4)

since π (o′v | s′v ) = 1L if s′v = o′v and 0L otherwise.
The following theorem, based on this equality enables
the belief over hidden states to be defined.

Theorem 1. Each reachable belief state of a π-
MOMDP can be written as an element of Sv × Bπh
where Bπh is the set of possibility distributions over Sh:
any β ∈ Bπ can be written as (sv, βh) with βh(sh) =
maxsv∈Sv β(sv, sh) and sv = argmaxsv∈Sv β(sv, sh).

Proof. We proceed by induction on t ∈ N: as the initial
visible state sv,0 is known by the agent, only states
s = (sv, sh) for which sv = sv,0 are such that β0(s) >
0L. A belief over hidden states can be thus defined as
βh,0(sh) = maxsv∈Sv β0(sv, sh) = β0(sv,0, sh).

At time t, if βt(s) = 0L for each s = (sv, sh) ∈ S
such that sv 6= sv,t, the same notation can be adopted:
βh,t(sh) = βt(sv,t, sh). Thus, if the agent reaches state
st+1 = (sv,t+1, sh,t+1) and if s′ = (s′v, s

′
h) with s′v 6=

sv,t+1, then s′v 6= ov,t+1 and:

π (ot+1, s
′ | βt, at ) = min

{
π (ot+1 | s′, at ) , βatt+1(s′)

}

= 0L.

thanks to Equation (4). Finally, update Formula (3)
ensures that βt+1(s′) = 0L. Then, βt+1 is entirely
encoded by (sv,t+1, βh,t+1) with sv,t+1 = ov,t+1 and
βh,t+1(sh) = maxsv βt+1(sv, sh) ∀sh ∈ Sh.

As all needed belief states are in Sv × Bπh , the next
theorem redefines the dynamic programming equation
restricted to this product space.

Theorem 2. Over Sv×Bπh , the dynamic programming
equation becomes: ∀i ∈ {1, . . . , p}, ∀t ∈ N,
u∗i (sv, βh)

= max
a∈A

max
s′v∈Sv

max
o′h∈Oh

min
{
βa(s′v, o

′
h), u∗i−1(s′v, β

a,s′v,o
′
h

h )
}

with the initialization u∗0(sv, βh) = µ(sv, βh),

where µ(sv, βh) = min
sh∈Sh

max {µ(sv, sh), n(βh(sh))}
is the preference over Sv ×Bπh ,

βa(s′v, o
′
h) = max

s′h∈Sh
min {π (o′h | s′v, s′h, a ) , βa(s′v, s

′
h)} ,

and the belief update β
s′v,o

′
h,a

h (s′h)

=





1L if min {π (o′h | s′v, s′h, a ) , βa(s′v, s
′
h)}

= βa(s′v, o
′
h) > 0L

min{π (o′h | s′v, s′h, a ) , βa(s′v, s
′
h)} otherwise

Proof. Using the classical dynamic programming
equation, Theorem 1, and the fact that Sv = Ov,
u∗i (sv, βh) = u∗i (β)

= max
a∈A

max
(o′v,o

′
h)∈O

min
{
βa(o′v, o

′
h), u∗i−1(βa,(o

′
v,o
′
h))
}

= max
a∈A

max
s′v∈Sv

max
o′h∈Oh

min
{
βa(s′v, o

′
h), u∗i−1(βa,s

′
v,o
′
h)
}

= max
a∈A

max
s′v∈Sv

max
o′h∈Oh

min
{
βa(s′v, o

′
h), u∗i−1(s′v, β

a,s′v,o
′
h

h )
}

where ∀sh ∈ Sh, β
a,s′v,o

′
h

h (sh) = maxsv β
a,s′v,o

′
h(sv, sh)

= βa,s
′
v,o
′
h(s′v, sh). For the initialization, we just note

that n(β(sv, sh)) = 1L when sv 6= sv, then

µ(β) = min
s

max {µ(s), n(β(s))}
= min

sh
max {µ(sv, sh), n(β(sh, sv))} ,

which completes the procedure. The belief over ob-
servations defined in the last section can be written:
∀o′ = (o′v, o

′
h) ∈ O,

βa(o′) = max
s′∈S

min {π (o′v, o
′
h | s′, a ) , βatt (s′)}

= max
s′h∈Sh

min {π (o′h | s′v, s′h, at ) , βatt (s′v, s
′
h)}

with s′v = o′v since otherwise π (o′ | s′v, s′h, a ) = 0L
according to Equation (4). Then: βa(s′v, o

′
h) =

βa(o′v, o
′
h). Finally, using the standard update Equa-

tion (3) with o′v = s′v and Equation (4), we get the
new belief update.

A standard algorithm would have computed u∗p(β)
for each β ∈ Bπ while this new dynamic program-
ming equation leads to an algorithm which com-
putes it only for all (sv, βh) ∈ Sv × Bπh . The
size of the new belief space is #(Sv × Bπh ) =
#Sv ×

(
#L#Sh − (#L − 1)#Sh

)
, which is exponen-

tially smaller than the size of standard π-POMDPs’
belief space: #L#Sv×#Sh − (#L − 1)#Sv×#Sh .

4 Solving π-MOMDPs
A finite policy for possibilistic MOMDPs can now be
computed for larger problems using the dynamic pro-
gramming equation of Theorem 2 and selecting max-
imizing actions for each state (sv, βh) ∈ Sv × Bπ, as
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done in Equation (2) for each s ∈ S. However, for
many problems in practice, it is difficult to determine
a horizon size. The goal of this section is to present
an algorithm to solve π-MOMDPs with infinite hori-
zon, which is the first proved algorithm to solve π-
(MO)MDPs.

4.1 The π-MDP case

Previous work, [12, 14], on solving π-MDPs proposed
a Value Iteration algorithm that was proved to com-
pute optimal value functions, but not necessarily op-
timal policies for some problems with cycles. There
is a similar issue in undiscounted probabilistic MDPs
where the greedy policy at convergence of Value Iter-
ation does not need to be optimal [11]. It is not sur-
prising that we are facing the same issue in π-MDPs
since the possibilistic dynamic programming operator
does not rely on algebraic products so that it cannot
be contracted by some discount factor 0 < γ < 1.

Algorithm 1: π-MDP Value Iteration Algorithm

for s ∈ S do
u∗(s)← 0L ;
uc(s)← µ(s) ;
δ(s)← a ;

while u∗ 6= uc do
u∗ = uc ;
for s ∈ S do

uc(s)← max
a∈A

max
s′∈S

min {π (s′ | s, a ) , u∗(s′)} ;

if uc(s) > u∗(s) then
δ(s) ∈ argmax

a∈A
max
s′∈S

min {π (s′ | s, a ) , u∗(s′)} ;

return u∗, δ ;

To the best of our knowledge, we propose here the
first Value Iteration algorithm for π-MDPs, that prov-
ably returns an optimal policy, and that is differ-
ent from the one of [14]. Indeed, in the determin-
istic example of Figure 2, action a, which is clearly
suboptimal, was found to be optimal in state s1

with this algorithm: however it is clear that since
π (s2 | s1, b ) = 1L and µ(s2) = 1L, u∗1(s1) = 1L.
Obviously, u∗1(s2) = 1L and since π (s1 | s1, a ) =
1L, maxs′∈S min {π (s′ | s1, a ) , u∗1(s′)} = 1L ∀a ∈
{a, b} = A, i.e. all actions are optimal in s1. The
“if” condition of Algorithm 1 permits to select the
optimal action b during the first step. This condi-
tion and the initialization, which were not present in
previous algorithms of the literature, are needed to
prove the optimality of the policy. The proof, which is
quite lengthy and intricate, is presented in Appendix
A. This sound algorithm for π-MDPs will then be
extended to π-MOMDPs in the next section.

Figure 2: Example

s1 s2a
b a, b

µ(s1) = 0L

µ(s2) = 1L

As mentioned in [12], we assume the existence of an
action “stay”, denoted by a, which lets the system in
the same state with necessity 1L. This action is the
possibilistic counterpart of the discount parameter γ in
the probabilistic model, in order to guarantee conver-
gence of the Value Iteration algorithm. However, we
will see action a is finally used only on some particular
satisfactory states. We denote by δ is the decision rule
such that ∀s ∈ S, δ(s) = a. The set of all the finite
policies is ∆ = ∪i>1∆i, and #δ is the size of a policy
(δ) in terms of decision epochs. We can now define the
optimistic criterion for an infinite horizon: if (δ) ∈ ∆,

u(s, (δ)) = max
τ∈T#δ

min {Π (τ | s, (δ) ) ,M(τ)} . (5)

Theorem 3. If there exists an action a such that,
for each s ∈ S, π (s′ | s, a ) = 1L if s′ = s and 0L
otherwise, then Algorithm 1 computes the maximum
optimistic criterion and an optimal policy which is sta-
tionary i.e. which does not depend on the stage of the
process t.

Proof. See Appendix A.

Let s be a state such that δ(s) = a, where δ is the
returned policy. By looking at Algorithm 1, it can be
noted that u∗(s) always remains equal to 0L during the
algorithm: ∀s′ ∈ S, either ∀a ∈ A µ(s) > π (s′ | s, a ),
or µ(s) > u∗(s′). If the problem is non trivial, it means
that s is a goal (µ(s) > 0L) and that degrees of pos-
sibility of transitions to better goals are less than the
degree of preference for s.

4.2 Value Iteration for π-MOMDPs

We are now ready to propose the Value Iteration al-
gorithm for π-MOMDPs. In order to clarify this algo-
rithm, we set

U(a, s′v, o
′
h, βh) = min

{
βa(s′v, o

′
h), u∗(s′v, β

a,s′v,o
′
h

h )
}
.

Note that Algorithm 2 has the same structure as
Algorithm 1. Note that a π-MOMDP is a π-MDP
over Sv × Bπh . Let sv ∈ Sv, βh ∈ Bπh and now

Γβ,a,s′v (β′h) =
{
o′h ∈ Oh | β

a,s′v,o
′
h

h = β′h

}
. To satisfy

the assumption of Theorem 3, it suffices to ensure that
maxo′h∈Γβ,a,s′v (β′h) β

a(s′v, o
′
h) = 1L if s′v = sv and β′h =

βh and 0L otherwise. This property is verified when
π (s′ | s, a ) = 1L if s′ = s (and 0L otherwise) and there
exists an observation “nothing” o that is required for
each state when a is chosen: π (o′ | s′, a ) = 1L if o′ = o
and 0L otherwise.
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Algorithm 2: π-MOMDP Value Iteration Algorithm

for sv ∈ Sv and βh ∈ Bπh do
u∗(sv, βh)← 0L ;
uc(sv, βh)← µ(sv, βh) ;
δ(sv, βh)← a ;

while u∗ 6= uc do
u∗ = uc ;
for sv ∈ Sv and βh ∈ Bπh do

uc(s)← max
a∈A

max
s′v∈S

max
o′h∈Oh

U(a, s′v, o
′
h, βh) ;

if uc(sv, βh) > u∗(sv, βh) then
δ(s) ∈ argmax

a∈A
max
s′v∈S

max
o′h∈Oh

U(a, s′v, o
′
h, βh) ;

return u∗, δ ;

5 Experimental results

Consider a robot over a grid of size g × g, with g > 1.
It always perfectly knows its location on the grid
(x, y) ∈ {1, . . . , g}2, which forms the visible state space
Sv. It starts at location sv,0 = (1, 1). Two tar-
gets are located at (x1, y1) = (1, g) (“target 1”) and
(x2, y2) = (g, 1) (“target 2”) on the grid, and the robot
perfectly knows their positions. One of the targets is
A, the other B and the robot’s mission is to identify
and reach target A as soon as possible. The robot does
not know which target is A: the two situations, “tar-
get 1 is A” (A1) and “target 2 is A” (A2), constitute
the hidden state space Sh. The moves of the robot are
deterministic and its actions A consist in moving in
the four directions plus the action “stay”.
At each stage of the process, the robot analyzes pic-
tures of each target and gets then an observation of
the targets’ natures: the two targets (oAA) can be ob-
served as A, or target 1 (oAB), or target 2 (oBA) or
no target (oBB).

In the probabilistic framework, the probability of
having a good observation of target i ∈ {1, 2}, is not
really known but approximated by Pr(goodi | x, y )=

1
2

[
1 + exp

(
−
√

(x−xi)2+(y−yi)2
D

)]
where (x, y) = sv

∈ {1, . . . , g}2 is the location of the robot, (xi, yi)
the position of target i, and D a normalization
constant. Then, for instance, Pr (oAB | (x, y), A1)
is equal to Pr (good1 | (x, y) )Pr (good2 | (x, y) ),
Pr (oAA | (x, y), A1) to Pr (good1 | (x, y) )
× [ 1− Pr (good2 | (x, y) ) ], and so on. Each step
of the process before reaching a target costs 1,
reaching target A is rewarded by 100, and -100
for B. The probabilistic policy was computed in
mixed-observability settings with APPL [9], using a
precision of 0.046 (the memory limit is reached for
higher precisions) and γ = 0.99. This problem can

not be solved with the exact algorithm for MOMDPs
[1] because it consumes the entire RAM after 15
iterations.

Using qualitative possibility theory, it is always pos-
sible to observe the good target: π (good | x, y ) = 1.
Here L will be a finite subset of [0, 1], that is why 1L
can be denoted by 1. Secondly, the more the robot is
far away from target i, the more likely it can badly
observe it (e.g. observe A instead of B), which is a rea-
sonable assumption concerning the imprecisely known

observation model: π (badi |x, y ) =

√
(x−xi)2+(y−yi)2√

2(g−1)
.

Then for instance, π (oAB | (x, y), A1) = 1,
π (oAA | (x, y), A1) = π (bad2 |x, y ),
π(oBA | (x, y), A1)=min{π (bad1 |x, y ), π (bad2 |x, y )},
etc. Note that the situation is fully known when
the robot is at a target’s location: thus there is no
risk of being blocked in an unsatisfactory state, that
is why using the optimistic π-MOMDP works. L
thus consists in 0, 1, and all the other intermediate
possible values of π (bad | x, y ). Note that the con-
struction of this model with a probability-possibility
transformation [4] would have been equivalent. The
preference distribution µ is equal to 0 for all the
system’s states and to 1 for states [(x1, y1), A1] and
[(x2, y2), A2] where (xi, yi) is the position of target i.
As mentioned in [12], the computed policy guarantees
a shortest path to a goal state. The policy then aims
at reducing the mission’s time.

Standard π-POMDPs, which do not exploit mixed ob-
servability contrary to our π-MOMDP model, could
not solve even very small 3× 3 grids. Indeed, for this
problem, #L = 5, #Sv = 9, and #Sh = 2. Thus,
#S = #Sv × #Sh = 18 and the number of belief
states is then #Bπ = L#S−(L#S−1)#S = 518−418 >
3.7.1012 instead of 81 states with a π-MOMDP. There-
fore, the following experimental results could not be
conducted with standard π-POMDPs, which indeed
justifies our present work on π-MOMDPs.

In order to compare performances of the probabilistic
and possibilistic models, we compare their total re-
wards at execution: since the situation is fully known
when the robot is at a target’s location, it can not end
up choosing target B. If k is the number of time steps
to identify and reach the correct target, then the total
reward is 100− k.

We consider now that, in reality (thus here for the
simulations), used image processing algorithms badly
perform when the robot is far away from targets, i.e.,
if ∀i ∈ {1, 2},

√
(x− xi)2 + (y − yi)2 > C, with C a

positive constant, Pr (goodi | x, y ) = 1−Pbad < 1
2 . In

all other cases, we assume that the probabilistic model
is the good one. We used 104 simulations to compute
the statistical mean of the total reward at execution.
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The grid was 10× 10, D = 10 and C = 4.

Figure 3.a shows that the probabilistic is more af-
fected by the introduced error than the possibilistic
one: it shows the total reward at execution of each
model as a function of Pbad, the probability of badly
observing tagets when the robot’s location is such that√

(x− xi)2 + (y − xi)2 > C. This is due to the fact
that the possibilistic update of the belief does not
take into account new observations when the robot
has already obtained a more reliable one, whereas the
probabilistic model modifies the current belief at each
step. Indeed, as there are only two hidden states (that
we now denote by s1

h and s2
h ), if βh(s1

h) < 1, then
βh(s2

h) = 1 (possibilistic normalization). The defini-
tion of the joint possibility of a state and an obser-
vation (minimum of the belief in state and observa-
tion possibilities) imply that the joint possibility of s1

h

and the obtained observation, is smaller than βh(s1
h).

The possibilistic counterpart of the belief update equa-
tion (3) then ensures that the next belief is either
more skeptic about s1

h if the observation is more re-
liable and confirms the prior belief (π

(
oh | sv, s1

h, a
)

is smaller than βh(s1
h)); or changes to the opposite be-

lief if the observation is more reliable and contradicts
the prior belief (π

(
oh | sv, s2

h, a
)

is smaller than both

βh(s1
h) and π

(
oh | sv, s1

h, a
)
); or yet simply remains

unchanged if the observation is not more informative
than the current belief. The probabilistic belief update
does not have these capabilities to directly change to
the opposite belief and to disregard less reliable ob-
servations: the robot then proceed towards the wrong
target because it is initially far away and thus badly
observes targets. When it is close to this target, it
gets good observations and gradually modifies its be-
lief which becomes true enough to convince it to go
towards the right target. However it has to cross a re-
mote area away from targets: this yet gradually mod-
ifies its belief, which becomes wrong, and the robot
finds itself in the same initial situation: it loses thus
a lot of time to get out of this loop. We can observe
that the total reward increases for high probabilities
of misperceiving Pbad: this is because this high error
leads the robot to reach the wrong target faster, thus
to entirely know that the true target is the other one.

Now if we set Pbad = 0.8 and evaluate the total re-
ward at execution for different wrong initial beliefs,
we get Figure 3.b with the same parameters: we com-
pare here the possibilistic model and the probabilistic
one when the initial belief is strongly oriented towards
the wrong hidden states (i.e. the agent strongly be-
lieves that target 1 is B whereas it is A in reality).
Note that the possibilistic belief of the good target de-
creases when the necessity of the bad one increases.
This figure shows that the possibilistic model yields
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Figure 3: Comparison of the total reward gathered at
execution for possibilistic and probabilistic models.

higher rewards at execution if the initial belief is wrong
and the observation function is imprecise.

6 Conclusion and perspectives

We have proposed a Value Iteration algorithm for pos-
sibilistic MDPs, which can produce optimal station-
ary policies in infinite horizon contrary to previous
methods. We have provided a complete proof of con-
vergence that relies on the existence of intermediate
“stay” actions that vanish for non goal states in the
final optimal policy. Finally, we have extended this al-
gorithm to a new Mixed-Observable possibilistic MDP
model, whose complexity is exponentially smaller than
possibilistic POMDPs, so that we could compare π-
MOMDPs with their probabilistic counterparts on re-
alistic robotic problems. Our experimental results
show that possibilistic policies can outperform prob-
abilistic ones when the observation function yields im-
precise results.

Qualitative possibilistic frameworks can however be in-
appropriate when some probabilistic information is ac-
tually available: POMDPs with Imprecise Parameters
(POMDPIP) [7] and Bounded-parameter POMDPs
(BPOMDP) [8] integrate the lack of knowledge by con-
sidering spaces of possible probability distributions.
When such spaces can not be extracted or when a qual-
itative modeling suffices, π-POMDPs can be a good
alternative, especially as POMDPIPs and BPOMDPs
are extremely difficult to solve in practice. Yet, we
plan to compare our π-MOMDP model with these im-
precise probabilistic POMDPs in a near future.

The pessismistic version of π-MDPs can be easily con-
structed, but the optimality of the policy returned by
the associated value iteration algorithm seems hard to
prove, essentially because it is not enough to construct
a maximizing trajectory, as the proof of section A does.
The works [16, 10] could help us to get results about
pessimistic π-MDP in order to solve unsafe problems.

A Proof of Theorem 3

This appendix demonstrates that Algorithm 1 returns
the maximum value of Equation (5) and an optimal
policy. Note that the policy is optimal regardless of
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the initial state. We recall that ∃a ∈ A such that
∀s ∈ S, π (s′ | s, a ) = 1L if s′ = s, and 0L otherwise.
The existence of this action a makes the maximum
value of the criterion non-decreasing with respect to
the horizon size:

Lemma 1. ∀s ∈ S, ∀p > 0, u∗p(s) 6 u∗p+1(s).

Proof. Let s0 ∈ S. u∗p+1(s0)

= max
∆p+1

max
τ∈Tp+1

min

{
p

min
i=0

π (si+1 | si, δi(si) ) , µ(sp+1)

}
.

Consider the particular trajectories τ ′ ∈ T ′p+1 ⊂ Tp+1

such that τ ′ = (s1, . . . , sp, sp), and particular policies
(δ′) ∈ ∆′p+1 ⊂ ∆p+1 such that (δ′) = (δ0, . . . , δp−1, δ).
It is obvious that u∗p+1(s0) >

max
(δ′)∈∆′p+1

max
τ ′∈T ′p+1

min

{
p

min
i=0

π (si+1 | si, δi(si) ) , µ(sp+1)

}
.

But note that the right part of this in-
equality can be rewritten as max

(δ)∈∆p

max
τ∈Tp

min
{

minp−1
i=0 π (si+1 | si, δi(si) ) , π (sp | sp, a ) , µ(sp)

}

= u∗p(s0) since π (sp | sp, a ) = 1L.

The meaning of this lemma is: it is always more possi-
ble to reach a state s from s0 in at most p+1 steps than
in at most p steps. As for each s ∈ S, (u∗p(s))p∈N 6 1L,
Lemma 1 insures that the sequence (u∗p(s))p∈N con-
verges. The next lemma shows that the convergence
of this sequence occurs in finite time.

Lemma 2. For all ∀s ∈ S, the number of iterations of
the sequence (u∗p(s))p∈N up to convergence is bounded
by #S ×#L.

Proof. Recall first that values of the possibility and
preference distributions are in L which is finite and to-
tally ordered: we can write L={0L, l1, l2, . . . , 1L} with
0L < l1 < l2 < . . . < 1L. If two successive functions u∗k
and u∗k+1 are equal, then ∀s ∈ S sequences (u∗(s))p>k
are constant. Indeed this sequence can be defined by
the recursive formula

u∗p(s) = max
a∈A

max
s′∈S

min
{
π (s′ | s, a ) , u∗p−1(s′)

}
.

Thus if ∀s ∈ S, u∗p(s) = u∗p−1(s) then the next iteration
(p+ 1) faces the same situation (u∗p+1(s) = u∗p(s) ∀s ∈
S). The slowest convergence can then be described as
follows: for each p ∈ N only one s ∈ S is such that
u∗p+1(s) > u∗p(s). Moreover, for this s, if u∗p(s) = li,
then u∗p+1(s) = li+1. We can conclude that for p >
#L ×#S, the sequence is constant.

First note that the variable u∗(s) of Algorithm 1 is
equal to u∗p(s) after the pth iteration. We conclude
that u∗ converges to the maximal value of the criterion
for an (#L×#S)-size horizon and can not be greater:

the function u∗ returned is thus optimal with respect
to Equation (5) and is computed in a finite number of
steps.

In the following, we prove the optimality of the policy
(δ∗) returned by Algorithm 1. For this purpose, we will
construct a trajectory of size smaller than #S which
maximizes min {Π (τ | s0, (δ) ) ,M(τ)} with policy
(δ∗). The next two lemmas are needed for this con-
struction and require some notations.

Let s0 ∈ S and p be the smallest integer such that
∀p′ > p, u∗p′(s0) = u∗(s0), where u∗ is here the optimal
value of the infinite horizon criterion of Equation (5)
(variable u∗(s) of Algorithm 1 does not increase after p
iterations). Equation (2) can be used to return an op-
timal policy (not stationary) denoted by (δ(s0)) ∈ ∆p.

With this notation: ∀s ∈ S, δ∗(s) = δ
(s)
0 (s). Consider

now a trajectory τ = (s1, s2, . . . , sp) which maximizes

min
{

minp−1
i=0 π

(
si+1 | si, δ(s0)

i (si)
)
, µ(sp)

}
. This

trajectory is called optimal trajectory of minimal size
from s0.

Lemma 3. Let τ = (s1, . . . , sp) be an optimal trajec-
tory of minimal size from s0.
Then, ∀k ∈ {1, . . . , p− 1}, u∗(s0) 6 u∗(sk).

Proof. Let k ∈ {1, . . . , p− 1}.

u∗(s0) = min

{
p−1

min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, µ(sp)

}

6 min

{
p−1

min
i=k

π
(
si+1 | si, δ(s0)

i (si)
)
, µ(sp)

}

6 u∗p−k(sk) 6 u∗(sk) since (u∗p)p∈N is non-decreasing
(Lemma 1).

Lemma 4. Let τ = (s1, . . . , sp) be an optimal trajec-
tory of minimal size from s0 and k ∈ {1, . . . , p− 1}.
If u∗(s0) = u∗(sk), then δ∗(sk) = δ

(s0)
k (sk).

Proof. Suppose that u∗(s0) = u∗(sk). Since u∗(s0) 6
u∗p−k(sk) 6 u∗(sk) (Lemma 3), we obtain that
u∗p−k(sk) = u∗(sk). The criterion in sk is thus
optimized within a (p − k)-horizon. Moreover a
shorter horizon is not optimal: ∀m ∈ {1, . . . , p − k},
u∗p−k−m(sk) < u∗(sk) i.e. with a (p − k − m)-size
horizon the criterion in sk is not maximized. Indeed
if the contrary was true, the criterion in s0 would be
maximized within a (p−m)-size horizon: the policy

δ′ = (δ
(s0)
0 , δ

(s0)
1 , . . . , δ

(s0)
k−1, δ

(sk)
0 , . . . , δ

(sk)
p−k−m−1)∈∆p−m

would be optimal. Indeed, u∗(s0)

= min

{
k−1
min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, u∗p−k(sk)

}

= min

{
k−1
min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, u∗(sk)

}
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Then let τ = (s1, . . . , sp−k−m) ∈ Tp−k−m be
an optimal trajectory of minimal size from sk.
Setting s0 = sk, τ thus maximizes u∗(sk) =

min

{
p−k−m−1

min
i=0

π
(
si+1 | si, δ(sk)

i (si)
)
, µ(sp−k−m)

}
.

If (s′1, . . . , s
′
p−m) = (s1, . . . , sk−1, s0, . . . , sp−k−m),

u∗(s0) = min

{
p−m−1

min
i=0

π
(
s′i+1

∣∣ s′i, δ′i(si)
)
, µ(s′p−m)

}

i.e. ∃p′ < p such that u∗(s0) = u∗p′(s0): it contradicts
the assumption that (s1, . . . , sp) is an optimal tra-
jectory of minimum size. Thus p − k is the smallest
integer such that u∗p−k(sk) = u∗(sk): we finally

conclude that δ∗(sk) (:= δ
(sk)
0 (sk)) = δ

(s0)
k (sk).

Theorem 4. Let (δ∗) be the policy returned by Algo-
rithm 1; ∀s0 ∈ S, there exists p∗ 6 #S and a trajec-
tory (s1, . . . , sp∗) such that

u∗(s0) = min

{
p∗−1

min
i=0

π (si+1 | si, δ∗(si) ) , µ(sp∗)

}
:

i.e. δ∗ is an optimal policy.

Proof. Let s0 be in S and τ be an optimal trajectory
of minimal size p from s0. If ∀k ∈ {1, . . . , p− 1},
δ∗(sk) := δ

(sk)
0 (sk) = δ

(s0)
k (sk) then the criterion

in s0 is maximized with (δ∗) since it is maximized
with (δ(s0)) and the optimality is shown. If not,
let k be the smallest integer ∈ {1, . . . , p− 1} such

that δ
(sk)
0 (sk) 6= δ

(s0)
k (sk). Lemmas 3 and 4 ensure

that u∗(sk) > u∗(s0). Definition of k ensures that
u∗(sk) > u∗(si) ∀i ∈ {0, . . . , k − 1}.

Reiterate beginning with s
(1)
0 = sk: let p(1) be the

number of iterations until variable u∗(s(1)) of the
algorithm converges (the smallest integer such that

u∗(s(1)
0 ) = u∗

p(1)
(s

(1)
0 )). Let τ (1) ∈ Tp(1) which max-

imizes min{minp
(1)−1
i=0 π(si+1|si, δ(s

(1)
0 )

i (si)), µ(s
(1)
p )}

(τ (1) is an optimal trajectory of minimal size

from sk = s
(1)
0 ). We select k(1) in the same

way as previously and reiterate beginning with

s
(2)
0 = s

(1)

k(1)
which is such that u∗(s(1)

k(1)
) > u∗(s(1)

0 ),

and u∗(s(1)

k(1)
) > u∗(s(1)

i ) ∀i ∈ {0, . . . , k(1) − 1}
etc... Lemma 5 below shows that all selected states
(s0, . . . , sk−1, s

(1)
0 , . . . , s

(1)

k(1)−1
, s

(2)
0 . . . , s

(2)

k(2)−1
, s

(3)
0 , . . .),

are different. Thus this selection process ends since
#S is a finite set. The total number of selected states
is denoted by p∗ = k+

∑q−1
i=1 k

(i) + p(q) with q > 0 the
number of new selected trajectories. Then the policy

(δ′) = (δ0, . . . , δk−1, δ
(s

(1)
0 )

0 , . . . , δ
(s

(1)
0 )

k(1)−1
, . . . , δ

(s
(q)
0 )

p(q)
)

corresponds to (δ∗) over τ ′ = (s′1, . . . , s
′
p∗)

= (s0, s1, . . . , sk−1, s
(1)
0 , . . . , s

(1)

k(1)−1
, . . . , s

(m)

p(q)−1
) and

this policy is optimal because u∗(s0) = u(s0, (δ
∗)):

u∗(s0) = min

{
k−1
min
i=0

π
(
s′i+1

∣∣ s′i, δ′(s′i)
)
, u∗p−k(sk)

}

6 min

{
k−1
min
i=0

π
(
s′i+1

∣∣ s′i, δ′(s′i)
)
, u∗(sk)

}

= min

{
k(1)−1
min
i=0

π
(
s′i+1

∣∣ s′i, δ′(s′i)
)
, u∗p(1)−k(1)(sk(1))

}

. . . 6 min

{
min

i=0,...,p∗−1
π
(
s′i+1

∣∣ s′i, δ′(s′i)
)
, µ(s′p∗)

}

The “6” signs are in fact “=” since otherwise
we would find a policy such that u(s0, (δ

′)) >
u∗(s0). Thus (δ∗) is optimal: u∗(s0) =

min
{

minp
∗−1
i=0 π

(
s′i+1

∣∣ s′i, δ∗(s′i)
)
, µ(s′p∗)

}

Lemma 5. The process described in the previous proof
in order to construct a trajectory maximizing the cri-
terion with (δ∗) always selects different system states.

Proof. First, two equal states in the same selected
trajectory τ (m) would contradict the hypothesis that

p(m) is the smallest integer such that u∗
p(m)(s

(m)
0 ) =

u∗(s(m)
0 ). Indeed let k and l be such that 0 6 k <

l 6 p(m) and suppose that s
(m)
k = s

(m)
l . For clar-

ity in the next calculations, we omit “(m)”: p =

p(m) and ∀i ∈ {0, . . . , l}, si = s
(m)
i . u∗p−k(sk) =

min
{

minl−1
i=k π

(
si+1 | si, δ(s0)

i (si)
)
, u∗p−l(sl)

}

6 u∗p−l(sl) = u∗p−l(sk). However u∗p−k(sk) > u∗p−l(sk)
(non-decreasing sequence).
We finally get u∗p−k(sk) = u∗p−l(sk), thus

u∗(s0) = min

{
k−1
min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, u∗p−k(sk)

}

= min

{
k−1
min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, u∗p−l(sl)

}

=min

{
min

i=0,...,k−1,l,...,p−1
π
(
si+1 | si, δ(s0)

i (si)
)
, µ(sp)

}

Consequently, a (p(m) − l + k)-sized horizon is good
enough to reach the optimal value: it is a contradic-
tion. Finally, if we suppose that a state s appears
two times in the sequence of selected states, then
this state belongs to two different selected trajecto-
ries τ (m) and τ (m′) (with m′ < m). Lemma 3 and

the definition of k(m′) which implies that u∗(s(m′+1)
0 )

is strictly greater than the criterion’s optimal values

in each of the states s
(m′)
0 , . . . , s

(m′)
k(m′)−1

requires that

u∗(s(m)
0 ) 6 u∗(s) < u∗(s(m′+1)

0 ). It is a contradiction

because u∗(s(m′+1)
0 ) 6 u∗(s(m)

0 ) since m′ < m.
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Abstract

Many probabilistic inference tasks involve
summations over exponentially large sets.
Recently, it has been shown that these prob-
lems can be reduced to solving a polyno-
mial number of MAP inference queries for
a model augmented with randomly gener-
ated parity constraints. By exploiting a con-
nection with max-likelihood decoding of bi-
nary codes, we show that these optimizations
are computationally hard. Inspired by iter-
ative message passing decoding algorithms,
we propose an Integer Linear Programming
(ILP) formulation for the problem, enhanced
with new sparsification techniques to improve
decoding performance. By solving the ILP
through a sequence of LP relaxations, we get
both lower and upper bounds on the parti-
tion function, which hold with high probabil-
ity and are much tighter than those obtained
with variational methods.

1 INTRODUCTION

Discrete probabilistic graphical models [18, 31] are of-
ten defined up to a normalization factor involving a
summation over an exponentially large combinatorial
space. Computing these factors is an important prob-
lem, as they are needed, for instance, to evaluate the
probability of evidence, rank two alternative models,
and learn parameters from data. Unfortunately, com-
puting these discrete integrals exactly in very high
dimensional spaces quickly becomes intractable, and
approximation techniques are often needed. Among
them, sampling and variational methods are the most
popular approaches. Variational inference problems
are typically solved using message passing techniques,

∗ This work was supported by NSF Grant 0832782.

which are often guaranteed to converge to some lo-
cal minimum [30, 31], but without guarantees on the
quality of the solution found. Markov Chain Monte
Carlo [17, 21, 32] and Importance Sampling tech-
niques [10, 11, 13] are asymptotically correct, but the
number of samples required to obtain a statistically
reliable estimate can grow exponentially in the worst
case.

Recently, Ermon et al. [6] introduced a new technique
called WISH which comes with provable (probabilistic)
guarantees on the approximation error. Their method
combines combinatorial optimization techniques with
the use of universal hash functions to uniformly parti-
tion a large combinatorial space, originally introduced
by Valiant and Vazirani to study the Unique Satisfi-
ability problem and later exploited by Gomes et al.
[13, 14] for solution counting. Specifically, they show
that one can obtain the intractable normalization con-
stant (partition function) of a graphical model within
any desired degree of accuracy, by solving a polyno-
mial number of MAP queries for the original graphi-
cal model augmented with randomly generated parity
constraints as evidence. Although MAP inference is
NP-hard and thus also intractable, this is a significant
step forward as counting problems such as estimating
the partition function are #-P hard, a complexity class
believed to be significantly harder than NP.

In this work, we investigate the class of MAP infer-
ence queries with random parity constraints arising
from the WISH scheme. These optimization problems
turn out to be intimately connected with the funda-
mental problem of maximum likelihood decoding of a
binary code [3, 29]. We leverage this connection to
show that the inference queries generated by WISH
are NP-hard to solve and to approximate, even for
very simple graphical models. Although generally hard
in the worst case, message passing and related linear
programming techniques [7] are known to be very suc-
cessful in practice in decoding certain types of codes
such as low density parity check (LDPC) codes [8].
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Inspired by the success of these methods, we formu-
late the MAP inference queries generated by WISH as
Integer Linear Programs (ILP). Unfortunately, such
queries are typically harder than traditional decoding
problems because they involve more complex proba-
bilistic models, and because universal hash functions
naturally give rise to very “dense” parity constraints.
To address this issue, we propose a technique to con-
struct equivalent but sparser (and empirically easier
to solve) parity constraints. Further, we introduce a
more general version of WISH that relies directly on
arbitrarily sparse parity constraints, thus giving rise
to easier to solve MAP queries but providing weaker,
one-sided guarantees on the approximation error for
the partition function.

Our ILP formulation with sparsification techniques
provides very good lower bounds on the partition func-
tion, while at the same time providing also upper
bounds based on solving a sequence of LP relaxations.
These upper bounds are much tighter than those ob-
tained by tree decomposition and convexity [30]. This
is a significant advance, because other state-of-the-art
sampling based algorithms [10, 11, 13, 32] can usually
provide probabilistic guarantees on lower bounds, but
are not able to reason at all about upper bounds.

2 PROBLEM STATEMENT

We consider a discrete probabilistic graphical
model [31] with n = |V | random variables {xi, i ∈ V }
where each random variable xi takes values in a
finite set Xi. We consider a factor graph repre-
sentation for a joint probability distribution over
elements x ∈ X = X1 × · · · × Xn (also referred to as
configurations)

p(x) =
1

Z

∏

α∈I
ψα({x}α) (1)

This is a compact representation for p(x), which is
defined as the product of non-negative factors ψα :
{x}α 7→ R+, where I is an index set and {x}α ⊆ V
a subset of variables the factor ψα depends on. Z is
a normalization constant known as partition function
ensuring the probabilities sum up to one. Formally the
partition function Z is defined as

Z =
∑

x∈X

∏

α∈I
ψα({x}α) =

∑

x∈X
w(x) (2)

where for compactness we have introduced a weight
function w : X → R+ that assigns to each configura-
tion x ∈ X its unnormalized probability, namely

w(x) =
∏

α∈I
ψα({x}α) (3)

Computing the partition function Z is a #-P com-
plete, intractable problem because it involves a sum
over an exponentially large number of configurations.
However, the partition function is a key property of a
graphical model, needed e.g. to actually evaluate the
probability of a configuration x under p. In this paper,
we will focus on approximate techniques to estimate
and bound this quantity. For simplicity, we consider
the case of binary variables where xi ∈ Xi = {0, 1}.
The general case can be encoded using a bit represen-
tation and binary variables.

3 BACKGROUND

This paper extends previous work by Ermon et al. [6]
who introduced an algorithm called WISH to estimate
the partition function (2). WISH is a randomized ap-
proximation algorithm that gives a constant factor ap-
proximation of Z with high probability. It involves
solving a polynomial number of MAP inference queries
for the graphical model conditioned on randomly gen-
erated evidence based on universal hashing.

3.1 FAMILIES OF HASH FUNCTIONS

A key ingredient of the WISH algorithm is the concept
of pairwise independent hashing, originally intro-
duced by Carter and Wegman [5] and later recognized
as a tool that “should belong to the bag of tricks of
every computer scientist” [33]. There are several in-
depth expositions of the topic [cf. 12, 27, 28]. Here we
will also make use of a weaker notion of hashing, called
uniform hashing and defined as follows:

Definition 1. A family of functions H = {h :
{0, 1}n → {0, 1}m} is called uniform if for H ∈R H
it holds that ∀x ∈ {0, 1}n, the random variable H(x)
is uniformly distributed in {0, 1}m.

Here we use the notation H ∈R H to denote H being
chosen uniformly at random from H.

Definition 2. A family of functions H = {h :
{0, 1}n → {0, 1}m} is called pairwise independent
if it is uniform and for H ∈R H it holds that ∀x1, x2 ∈
{0, 1}n with x1 6= x2, the random variables H(x1) and
H(x2) are independent.

Many constructions of pairwise independent hash
functions are known. A simple and well-known one
was used by Ermon et al.:

Proposition 1 ([6]). Let A ∈ {0, 1}m×n, b ∈ {0, 1}m.
The family Hn,m = {hA,b(x) : {0, 1}n → {0, 1}m}
where hA,b(x) = Ax+ b mod 2 is a family of pairwise
independent hash functions.
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Algorithm 1 WISH (w, n = log2 |X |, δ, α, {Hn,i})
T ←

⌈
ln(1/δ)

α lnn
⌉

for i = 0, · · · , n do
for t = 1, · · · , T do

Sample hash function hi
A,b uniformly from Hn,i

wt
i ← maxσ w(σ) subject to hi

A,b(σ) = 0
end for
Mi ← Median(w1

i , · · · , wT
i )

end for
Return M0 +

∑n−1
i=0 Mi+12

i

3.2 THE WISH ALGORITHM FOR
DISCRETE INTEGRATION

The basic idea behind WISH is to (implicitly) ran-
domly partition the space of all possible configura-
tions by universally hashing configurations into 2m

buckets. This step is achieved using randomly gen-
erated parity constraints of the form Ax = b mod 2,
which may also be viewed as logical XOR opera-
tions acting on the binary variables of the problem:
Ai1x1 ⊕ Ai2x2 ⊕ · · · ⊕ Ainxn = bi. A combinatorial
optimization solver is then used to find a configura-
tion with the largest weight within a single bucket.
This corresponds to solving a MAP query, i.e., solving
an optimization problem subject to (randomly gen-
erated) parity constraints. By varying the number
of buckets and repeating the process a small number
of times, this strategy provably yields an estimate of
the intractable normalization factor (2) within any de-
sired degree of accuracy, with high probability and us-
ing only a polynomial number of MAP queries. For
completeness, we provide the pseudocode for WISH
as Algorithm 1, modified to have the hash families
Hn,i, i ∈ {0, 1, . . . , n}, as parameters whose variations
we will consider later1. We will write WISH({Hn,i})
when the values of the other parameters are implicit.

Although MAP inference itself is an NP-hard problem,
this strategy is still desirable considering that com-
puting Z is a #P-hard problem, a complexity class
believed to be even harder than NP. In practice, Er-
mon et al. [6] showed that the resulting MAP inference
can be solved reasonably well using a state-of-the-art
MAP inference engine called Toulbar [1], which was ex-
tended with custom propagators for parity constraints.

Theorem 1 ([6]). For any δ > 0, positive constant
α ≤ 0.0042, and the hash families Hn,i given by Propo-
sition 1, WISH({Hn,i}) makes Θ(n lnn ln 1/δ) MAP
queries and, with probability at least (1− δ), outputs a
16-approximation of Z =

∑
σ∈X w(σ).

1For i = 0, hi
A,b ≡ 0 and no constraint is added.

Further, even if the MAP instances in the inner loop of
Algorithm 1 are not solved to optimality, the output of
the algorithm using suboptimal MAP solutions is an
approximate lower bound for Z (specifically, no more
than 16Z) with probability at least (1− δ). If subop-
timal solutions are within a constant factor L of the
optimal, then the output is a 16L-approximation of Z
with probability at least (1−δ) [6]. Similarly, if one has
access to upper bounds to the values of the MAP in-
stances, the output of the algorithm using these upper
bounds is an approximate upper bound (specifically, at
least 1/16Z) for Z with probability at least (1− δ).

3.3 IMPROVING WISH: HASHING USING
TOEPLITZ MATRIX

The performance of Algorithm 1 can be improved by
constructing pairwise independent hash functions not
by choosing A ∈R {0, 1}i×n but rather letting A be
a random i × n Toeplitz matrix [24]. Specifically, the
first column and row of A are filled with uniform i.i.d.
Bernoulli variables in {0, 1}. The value of each entry
is then copied into the corresponding descending top-
left to bottom-right diagonal. This process requires
n + i − 1 random bits rather than ni = O(n2). Let
T (m,n) ⊆ {0, 1}m×n be the set of m × n Toeplitz
matrices with 0, 1 entries. Then:

Proposition 2 ([12, 27]). Let A ∈ T (m,n), b ∈
{0, 1}m. The family Hn,m

T = {hA,b(x) : {0, 1}n →
{0, 1}m} where hA,b(x) = Ax+ b mod 2 is a family of
pairwise independent hash functions.

WISH({Hn,m
T }) still provides the same theoretical

guarantees as Theorem 1 but has a more determinis-
tic and stable behavior as it requires only Θ(n2 log n)
random bits rather than Θ(n3 log n).

4 CONNECTIONS WITH CODING
THEORY

For a problem with n binary variables, WISH requires
solving Θ(n log n) optimization instances. If these
optimizations could be approximated (within a con-
stant factor of the true optimal value) in polynomial
time, this would give rise to a polynomial time algo-
rithm that gives, with high probability, a constant fac-
tor approximation for the original counting problem.
Note that this is a reasonable assumption, because
perhaps the most interesting #-P complete counting
problems are those whose corresponding decision prob-
lem are easy, e.g. counting weighted matchings in a
graph (computing the permanent). A natural ques-
tion arises: are there interesting counting problems
for which we can approximate maxσ w(σ) subject to
Aσ = b mod 2 in polynomial time?
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To shed some light on this question, we show a connec-
tion with a decision problem arising in coding theory:

Definition 3 (MAXIMUM-LIKELIHOOD DECOD-
ING). Given a binary m × n matrix A, a vector
b ∈ {0, 1}m, and an integer w > 0, is there a vec-
tor z ∈ {0, 1}n of Hamming weight ≤ w, such that
Az = b mod 2?

As noted by Vardy [29], Berlekamp et al. [3] showed
that this problem is NP-complete with a reduction
from 3-DIMENSIONAL MATCHING. Further, Stern
[26] and Arora et al. [2] proved that even approxi-
mating within any constant factor the solution to this
problem is NP-hard.

These hardness results restrict the kind of problems we
can hope to solve in our setting, which is more general.
In fact, we can define a graphical model with single
variable factors ψi(xi) = exp(−xi) for xi ∈ {0, 1}. Let
S = {x ∈ {0, 1}n : Ax = b mod 2}. Then

max
x∈S

w(x) = max
x∈S

n∏

i=1

ψi(xi) = exp

(
max
x∈S

n∑

i=1

logψi(xi)

)

= exp

(
max
x∈S
−H(x)

)
= exp

(
−min

x∈S
H(x)

)

where H(x) is the Hamming weight of x. Thus,
MAXIMUM-LIKELIHOOD DECODING of a binary
code is a special case of MAP inference subject to par-
ity constraints, but on a simple (disconnected) fac-
tor graph with factors acting only on single variable
nodes. Intuitively, in the context of coding theory,
there is a variable for each transmitted bit, and fac-
tors capture the probability of a transmission error on
each bit. Thus there are no interactions between the
variables, except for the ones introduced by the par-
ity constraints Ax = b mod 2, while in our context
we allow for more complex probabilistic dependencies
between variables specified as in Eq. (1). We therefore
have the following theorem:

Theorem 2. Given a binary m×n matrix A, a vector
b ∈ {0, 1}m, and w(x) as in Equation (3), the following
optimization problem

max
x∈{0,1}n

logw(x) subject to Ax = b mod 2

is NP-hard to solve and to approximate within any con-
stant factor.

Connections with coding theory is even deeper, and
is not just an artifact of the particular hash function
construction used. In fact, there is an intimate con-
nection and a correspondence between universal hash
functions and (binary) codes, where one can construct
hash functions from binary codes and vice versa [27].

4.1 MESSAGE PASSING DECODING

Iterative Message Passing (MP) methods are among
the most widely used decoding techniques. Although
the decoding problem is computationally intractable,
they usually have very good performance in prac-
tice [7, 19]. Since we can represent parity constraints
as additional factors in our original factor graph
model, MP techniques can also be heuristically applied
to solve the more general MAP inference queries with
parity constraints generated by WISH. Specifically, al-
though a parity constraint over k variables would re-
quire a conditional probability table (CPT) of size 2k

to be specified, efficient Dynamic-Programming-based
updates for parity constraints are known, see e.g. [19].
These updates have complexity which is linear in k,
and thus, by representing parity constraints implicitly,
we can directly use these techniques.

5 INTEGER PROGRAMMING
FORMULATION

The NP-hard combinatorial optimization problem
maxσ w(σ) subject to Aσ = b mod 2 can be formu-
lated as an Integer Program [4]. This is a promis-
ing approach because Integer Linear Programs and re-
lated Linear programming (LP) relaxations have been
shown to be a very effective at decoding binary codes
by Feldman et al. [7]. Further, the empirically suc-
cessful iterative message-passing decoding algorithms
are closely related to LP relaxations of certain Integer
Programs, either because they are directly trying to
solve an LP or its dual like the MPLP and TRWBP
[9, 25, 30], or attempting to approximately solve a vari-
ational problem over the same polytope like Loopy Be-
lief Propagation [31].

5.1 MAP INFERENCE AS AN ILP

For simplicity, we consider the case of bi-
nary factors (pairwise interactions between
variables), where equation (3) simplifies to
w(x) =

∏
i∈V ψi(xi)

∏
(i,j)∈E ψij(xi, xj) for some

edge set E. Rewriting in terms of the logarithms, the
unconstrained MAP inference problem can be stated
as maxx∈{0,1}n

∑
i∈V θi(xi) +

∑
(i,j)∈E θij(xi, xj)

which can be written as an Integer Linear Program
using binary indicator variables {µi, i ∈ V } and
{µij(xi, xj), (i, j) ∈ E, xi ∈ {0, 1}, xj ∈ {0, 1}} as
follows [31]:

max
µi,µij(xi,xj)

∑

i∈V

θi(1)µi + θi(0)(1− µi) +

∑

(i,j)∈E

∑

xi,xj

θij(xi, xj)µi,j(xi, xj)
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subject to

∀i ∈ V, (i, j) ∈ E,
∑

xj∈{0,1}
µi,j(0, xj) = 1 − µi

∀i ∈ V, (i, j) ∈ E,
∑

xj∈{0,1}
µi,j(1, xj) = µi

∀i ∈ V, (i, j) ∈ E,
∑

xi∈{0,1}
µi,j(xi, 0) = 1 − µj

∀i ∈ V, (i, j) ∈ E,
∑

xi∈{0,1}
µi,j(xi, 1) = µj

5.2 PARITY CONSTRAINTS

There are several possible encodings for the parity con-
straints Aσ = b mod 2, defining the so called parity
polytope over σ ∈ Rn. We summarize them next.
Let J be the set of parity constraints (one entry per
row of A). Let N (j) be the set of variables the j-
th parity constraint depends on, namely the indexes
of the non-zero columns of the j-th row of A2. We’ll
refer to |N (j)| as the length of the j-th XOR.

5.2.1 Exponential polytope representation

The simplest encoding is due to Jeroslow [16]. It re-
quires that for all j ∈ J , S ⊆ N (j), and |S| odd, the
following should hold

∑

i∈S

µi +
∑

i∈(N (j)\S)

(1− µi) ≤ |N (j)| − 1

Clearly, this requires a number of constraints that is
exponential in the length of the XOR.

Another representation exponential in the length of
the parity constraint is due to Feldman et al. [7]. For
each S in the set Ej = {S ⊆ N (j) : |S| even} there
is an extra binary variable wj,S ∈ {0, 1}. It requires
∀j ∈ J ,∑S∈Ej

wj,S = 1 and ∀j ∈ J , ∀i ∈ N (j), µi =∑
S∈Ej :i∈S wj,S .

5.2.2 Compact polytope representation

Yannakakis [34] introduced the following compact rep-
resentation which requires only O(n3) variables and
constraints, where n is the number of variables. For
each constraint j, define Tj = {0, 2, · · · , 2⌊|N (j)|/2⌋}
as the set of even numbers between 0 and |N (j)|.

• for all j ∈ J and for all k ∈ Tj we have a binary
variable αj,k ∈ {0, 1}

• for all j ∈ J and for all k ∈ Tj and for all i ∈
N (j) we have a binary variable zi,j,k ∈ {0, 1},
0 ≤ zi,j,k ≤ αj,k

2To represent the desired parity of the j-th constraint
imposed by bj we use a dummy variable d = 1, and include
d in N (j) whenever bj = 1.

Then the following constraints are enforced:

∀i ∈ V, j ∈ N (i), µi =
∑

k∈Tj

zi,j,k

∀j ∈ J ,
∑

k∈Tj

αj,k = 1

∀j ∈ J , ∀k ∈ Tj ,
∑

i∈N (j)

zi,j,k = kαj,k

For any set of parity constraints, these 3 encodings
are equivalent, in the sense that the subset of {µi}
satisfying the constraints is the same [7]. Thus, the
corresponding MAP inference problems are also equiv-
alent, as the objective function, by expressing each µi,j

in terms of the {µi} variables, can be re-written as a
(possibly non-linear) function of only {µi}.

5.3 SOLVING INTEGER PROGRAMS

Solving ILPs typically relies on solving a sequence of
Linear Programming (LP) relaxations obtained by re-
laxing the integrality constraints. The solution to the
relaxation provides an upper bound to the original in-
teger maximization problem. Since LP can be solved
in polynomial time, using Theorem 1 and following
remarks we have a polynomial time method to ob-
tain approximate upper bounds on the partition func-
tion which hold with high probability, although with-
out tightness guarantees. Notice that upper bounds of
this form could also be obtained using message pass-
ing techniques such as MPLP or TRWBP [9, 25, 30],
which can also provide upper bounds to the values of
the MAP inference queries in the inner loop of WISH.

IP solvers such as IBM ILOG CPLEX Optimization
Studio [15] solve a sequence of LP relaxations based on
branching on the problems’s variables, iteratively im-
proving the upper bound and keeping track of the best
integer solution found, until lower and upper bounds
match. Thus, one advantage of using an IP solver over
standard Message Passing techniques is that the upper
and lower bounds improve over time, and it is guaran-
teed to eventually provide an optimal solution for the
original integer problem. In Figure 1 we plot the upper
bound reported by CPLEX as a function of runtime for
a random 10×10 Ising model with mixed interactions.
It’s clear that there is quickly a dramatic improvement
over the value of the basic LP relaxation, which is the
value reported by CPLEX around time zero, and that
the upper bound keeps improving although at a slower
rate. We note that other techniques such as by Son-
tag et al. [25] could also be used to iteratively tighten
the LP relaxation, and might lead to better scaling
behavior on certain classes of very large problems [35].
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Figure 1: Upper bound as a function of runtime.

5.4 INDUCING SPARSITY

As we have shown, solving MAP inference queries sub-
ject to parity constraints is hard in general. However,
adding parity constraints can sometimes makes the op-
timization easier. For example, when A is the iden-
tity matrix, enforcing Aσ = b mod 2 corresponds to
fixing the values of all variables and leads to a triv-
ial optimization problem. Empirically, sparse con-
straints, such as the ones used in low density parity
check (LDPC) codes from Gallager [8], tend to be
much easier to solve. Unfortunately, constructions in
both Propositions 1 and 2 to create pairwise indepen-
dent hash functions require parity constraints that are
of average length n/2, i.e., the corresponding matrix
A is not sparse.

A set of parity constraints specified through matrices
A, b defines a set of solutions S = {x ∈ {0, 1}n : Ax =
b}, which is the translated nullspace of the matrix A.
The nullspace is a vector space, defined with opera-
tions over the finite field F(2), i.e. modular arithmetic.
Exploiting basic linear algebraic properties, it can be
shown that applying elementary row operations to
[A|b] does not change the solution set S and thus the
optimization problem. On the other hand, the parity
polytope we described earlier is not a function of the
solution set S but depends explicitly on the form of the
matrices A and b. This fact was also noted by Feld-
man et al. [7], who showed that a new matrix [A′|b′]
constructed from [A|b] by adding new rows that are
linear combinations of the rows of [A|b] can lead to a
tighter LP relaxation, although Ax = b and A′x = b′

define the same solution set S (because the constraints
added are all implied).

In this paper we propose to exploit these facts and
rewrite the constraints in a form that is equivalent, i.e.,
defines the same set of solutions, but is easier to solve.
Specifically, given a a set of parity constraints specified
through matrices A, b we look for matrices A′, b′ that

define the same set of solutions, namely {x ∈ {0, 1}n :
Ax = b} = {x ∈ {0, 1}n : A′x = b′} but are much
sparser, namely ||[A′|b′]||1 ≪ ||[A|b]||1. Unfortunately,
even finding a sparse linear combination of the rows
is computationally intractable, as it can be seen as an
instance of MAXIMUM-LIKELIHOOD DECODING,
where the code is given in terms of the generators (the
rows of A) rather than the check matrix. We therefore
propose to use two approaches:

• Perform Gauss-Jordan elimination on [A|b] to
convert [A|b] to reduced row echelon form;

• Try all combinations of up to k rows r1, · · · , rk of
[A|b], and if their sum r1⊕· · ·⊕rk is sparser than
any of the ri, substitute ri with r1 ⊕ · · · ⊕ rk.

Both techniques are based on elementary row oper-
ations and therefore are guaranteed to maintain the
solution set S and to improve sparsity.

In Figure 2 we show the median upper and lower
bounds found by CPLEX for several randomly gener-
ated constraints on a random 10× 10 Ising grid model
with mixed interactions. Starting with a matrix A
generated using the Toeplitz matrix construction in
Proposition 2, we run CPLEX for 10 minutes with and
without sparsification, reporting the best upper and
lower bounds found. We see that without any prepro-
cessing (NoPre) CPLEX fails at finding any integer so-
lution when there are more than 15 parity constraints.
Performing Gauss-Jordan elimination (Diag) signifi-
cantly improves both the upper bound and the lower
bound. The effect is particularly significant for a large
number of constraints, when the reduced row echelon
form of A is close to the identity matrix. Adding the
additional greedy substitution step (DiagGreedy, look-
ing at all combinations of up to k = 4 rows) slightly
improves the quality of the upper bound, but the lower
bound significantly degrades. Therefore, for the rest of
the paper we will use only Gauss-Jordan elimination
preprocessing.

6 LOWER BOUNDS: SHORT XORS

As mentioned in Section 3.2, one practical way to ob-
tain lower bounds from the WISH algorithm is to use
suboptimal solutions of the underlying MAP inference
problems. Here we explore a different way, namely, us-
ing sparse or short parity constraints (XORs), which
are often easier for constraint solvers to reason about.
This results in a family of hash functions that is uni-
form but not pairwise independent, leading to a weaker
but practically valuable version of Theorem 1.
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sparsification.

6.1 WISH WITH UNIFORM HASHING

Fix any subset Am×n ⊆ {0, 1}m×n of m× n matrices.
We will later create short XORs by choosing Am×n

such that every row of every matrix in this set has
only k ≪ n/2 non-zero entries.

Proposition 3. Let A ∈ Am×n and b ∈ {0, 1}m. The
family Hn,m = {hA,b(x) : {0, 1}n → {0, 1}m} where
hA,b(x) = Ax+ b mod 2 is a family of uniform hash
functions.

Proof. Let x ∈ {0, 1}n, A ∈R Am×n, b ∈R {0, 1}m,
and ai denote the i-th row of A. Then, for all i:

Pr[aix ⊕ bi = 0] =
∑

v∈{0,1}n

Pr[ai = v] Pr[vx ⊕ bi = 0]

=
∑

v∈{0,1}n

Pr[ai = v] Pr[bi = vx mod 2]

=
∑

v∈{0,1}n

Pr[ai = v]
1

2
=

1

2

Hence, Pr[Ax+b = 0 mod 2] =
∏

i Pr[aix+bi = 0 mod
2] = 1

2m for any x, proving uniformity.

With such a family of hash functions, Theorem 1 as
such does not hold, but the following weaker, one-
directional version still does:

Theorem 3. For any δ > 0, positive constant α ≤
0.0042, and families Hn,i of uniform (but not neces-
sarily pairwise independent) hash functions, with prob-
ability at least (1− δ), WISH({Hn,i}) outputs an esti-
mate no larger than 16Z = 16

∑
σ∈X w(σ).

In other words, even without pairwise independence,
the output divided by 16 is a lower bound with high
probability. To prove this result, we employ a proof
strategy similar to the one used by Ermon et al. [6].

For completeness, we start by stating some definitions
we borrow from that work:

Definition 4 ([6]). Fix an ordering σi, 1 ≤ i ≤ 2n,
of the configurations in X such that for 1 ≤ j <
2n, w(σj) ≥ w(σj+1). For i ∈ {0, 1, · · · , n}, de-

fine bi , w(σ2i). Define a special bin B , {σ1}
and, for i ∈ {0, 1, · · · , n − 1}, define bin Bi ,
{σ2i+1, σ2i+2, · · · , σ2i+1}.

Next we prove a new bound on Mi that holds regard-
less of pairwise independence:

Lemma 1. Suppose hi
A,b is chosen from a family Hn,i

of universal (but not necessarily pairwise independent)
hash functions. Let Mi = Median(w1

i , · · · , wT
i ) be de-

fined as in Algorithm 1 and bi as in Definition 4.
Then, for all c ≥ 2, there exists an α∗(c) > 0 such
that for 0 < α ≤ α∗(c),

Pr
[
Mi ≤ bmax{i−c,0}

]
≥ 1− exp(−αT )

Proof. The statement trivially holds when i − c ≤ 0.
Otherwise, let us define the set of the 2j heaviest con-
figurations as in Definition 4, Xj = {σ1, σ2, · · · , σ2j}.
Define the following random variable Sj(h

i
A,b) ,∑

σ∈Xj
1{Aσ=b mod 2} which gives the number of ele-

ments of Xj satisfying the random parity constraints
Aσ = b mod 2. The randomness is over the choice of
A and b when hi

A,b is sampled from Hn,i. Since Hn,i

is a family of uniform hash functions, by definition for
any σ the random variable 1{Aσ=b mod 2} is Bernoulli
distributed with probability 1/2i. Then it follows that

E[Sj(h
i
A,b)] =

∑
σ∈Xj

1/2i =
|Xj |
2i = 2j−i.

The random variable wi is defined as wi = maxσ w(σ)
subject to Aσ = b mod 2. Then we have:

Pr[wi ≤ bj ] = Pr[wi ≤ w(σ2j )] ≥ Pr[Sj(h
i
A,b) < 1]

which is the probability that no configuration from Xj

satisfies i randomly chosen parity constraints. Notice
that Sj(h

i
A,b) is non-negative, hence from Markov’s In-

equality, Pr[Sj(h
i
A,b) ≥ 1] ≤ E[Sj(h

i
A,b)] = 2j−i. Thus

for j = i− c and c ≥ 2, we have:

Pr[wi ≤ bi−c] ≥ Pr[Si−c(h
i
A,b) < 1] ≥ 1− 2−c ≥ 3/4

Finally, since w1
i , · · · , wT

i are i.i.d. realizations of wi,
we can apply Chernoff’s Inequality to the correspond-
ing indicator variables It = I(wt

i ≤ bi−c) each with
mean ≥ 3/4 and obtain:

Pr [Mi ≤ bi−c] = Pr

[∑

t

It ≥ T/2

]
≥ 1 − exp(−α∗(c)T )

where α∗(2) = 2(3/4− 1/2)2 = 1/8.

With this new lemma, we have all we need to prove
Theorem 3. The proof is similar to the one of Theorem
1 and is not included for space reasons.
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(a) Attractive 10 × 10. Length 4 Xors
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(b) Mixed 10 × 10. Length 4 Xors

Figure 3: Optimization with short parity constraints.

6.2 EVALUATION OF SHORT XORS

As briefly alluded to earlier, we will use short XORs
in order to make MAP inference more efficient in prac-
tice. Specifically, we will choose A uniformly from
Am×n

k ⊆ {0, 1}m×n, which is the set of matrices such
that every row has only k non-zero entries, where k
will typically be much smaller than n/2. In general,
smaller values of k lead to faster execution of WISH
but at the cost of weaker lower bounds.

Figure 3 compares several approaches to solve the
MAP inference problems constrained by random par-
ity constraints for a 10× 10 Ising grid model with at-
tractive and mixed interactions (external field f = 1.0
and weight w = 3.0; see below for a formal description
of the probabilistic model used). We compare three
message passing approaches, namely Belief Propaga-
tion (BP), Max-Product (MP), and MPLP [9], and two
combinatorial optimization solvers, namely Toulbar [1]
and CPLEX 12.3 [15], both with a 1 minute time limit.
We show the median value of the solution found over
50 realizations, for each number of parity constraints
added. We run the Message Passing methods until
they find a feasible solution satisfying the parity con-
straints or up to 10000 iterations. If no feasible solu-
tion is found, we round the final beliefs to an integer

solution and project it on the feasible set by solving
the linear equations with Gaussian Elimination, thus
changing the value of some of the variables. For this
problem, using “long” parity constraints of length 50,
Message Passing methods can only find feasible solu-
tions for up to 10 constraints (consistent with CPLEX
performance in Figure 2). In contrast, as shown in
Figure 3, using short XORs of length 4 (typical values
encountered e.g. for low density parity check codes),
Message Passing methods can find feasible solutions
for up to about 40−50 constraints, at which point there
is a significant performance drop caused by the need
for a projection step. We see that for the attractive
case, Message Passing methods are competitive with
combinatorial optimization approaches but only for a
moderate number of constraints. In the more chal-
lenging mixed interactions case, CPLEX and Toulbar
appear to be clearly superior. We think the the unsat-
isfactory performance of message passing techniques
(compared e.g. to when used for LDPC decoding) is
caused by the more complicated probabilistic depen-
dencies imposed by the Ising model, which is much
more intricate than a typical transmission error model.

7 EXPERIMENTS

We evaluate the performance of WISH augmented
with Toeplitz-matrix based hash functions (from
Proposition 2) and CPLEX 12.3 [15] to solve the ILP
formulation of the MAP queries. All the optimization
instances are solved in parallel on a compute cluster,
with a timeout of 10 minutes on Intel Xeon 5670 3GHz
machines.We use Gauss-Jordan elimination prepro-
cessing to improve the quality of the LP relaxations.
We use the Jaroslow encoding for parity constraints
j ∈ J such that |N(j)| ≤ 10, and the Yannakakis en-
coding otherwise. We evaluate the lower bound and
upper bounds for the partition functions of M × M
grid Ising models for M ∈ {10, 15}, with random in-
teractions (positive and negative) and external field
f ∈ {0.1, 1.0}. Specifically, there are M2 binary vari-
ables, with single node potentials ψi(xi) = exp(fixi)
and pairwise interactions ψij(xi, xj) = exp(wijxixj),
where wij ∈R [−w,w] and fi ∈R [−f, f ].

We compare with Loopy BP [23] which estimates Z,
Tree Reweighted BP [30] which gives a provable upper
bound, and the Mean Field approach [31] which gives
a provable lower bound. We use the implementations
in the LibDAI library [22] and compare with ground
truth obtained using the Junction Tree method [20].

Figure 4 shows the error in the resulting estimates, to-
gether with the upper and lower bounds obtained with
WISH augmented with Toeplitz-matrix hashing and
CPLEX. We immediately see that our lower bounds
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(a) Mixed 10 × 10. Field 0.1.
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(c) Mixed 15 × 15. Field 0.1.
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(d) Mixed 15 × 15. Field 1.0.

Figure 4: Results on spin glasses grids.

are highly accurate (error close to 0), which means
that the lower bounds provided by CPLEX for the
ILPs must be close to optimality. Similarly good
lower bounds can also be obtained using the original
WISH algorithm [6], and also using SampleSearch [11].
However, neither SampleSearch nor the original WISH
(without LP relaxations) provide upper bound guaran-
tees, only the TRWBP approach does. Specifically, the
original WISH algorithm with Toulbar [1] provides an
upper bound only upon proving optimality for all op-
timization instances in the inner loop. In contrast, the
ILP formulation provides us with anytime and gradu-
ally improving upper bounds based on LP relaxations
(cf. Figure 1), often well before it can actually solve
the problems to optimality (which might not be pos-
sible on larger instances) or, in principle, even before
it can find a feasible solution. Figure 4 shows that our
upper bounds are significantly tighter than the ones
obtained using TRWBP in the hard weights region.
Further, our ILP approach is guaranteed to eventu-
ally give an accurate answer, within a constant factor,
given enough time. In contrast, message passing tech-
niques are usually quite fast (if they converge) but do
not provide better results with more runtime.

8 CONCLUSIONS

We explored several extensions of the recent WISH [6]
algorithm for computing discrete integrals. First, we
used a better, more deterministic and thus more sta-
ble construction for pairwise independent hash func-
tions. Using a connection with max-likelihood decod-
ing of binary codes, we showed that the MAP infer-
ence queries generated by WISH are in general not
polynomial time solvable or even approximable. On
the positive side, this led to the use of an ILP formu-
lation for the problem, inspired by iterative message
passing decoding. To increase the practicality of the
ILP approach, we sparsified parity constraints while
preserving their desirable properties. Further, we ex-
tended WISH to directly utilize uniform but not nec-
essarily pairwise independent hash functions, leading
to computationally easier optimization problems while
still providing probabilistic lower bound guarantees.
Finally, we showed that by solving a sequence of LP
relaxations we can obtain not only very accurate lower
bounds but also upper bounds that are much tighter
than the ones provided by TRWBP, which is based on
tree decomposition and convexity.

210



References

[1] D. Allouche, S. de Givry, and T. Schiex. Toulbar2, an
open source exact cost function network solver. Tech-
nical report, INRIA, 2010.

[2] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The
hardness of approximate optima in lattices, codes, and
systems of linear equations. In Foundations of Com-
puter Science, 1993. Proceedings., 34th Annual Sym-
posium on, pp. 724–733. IEEE, 1993.

[3] E. Berlekamp, R. McEliece, and H. Van Tilborg. On
the inherent intractability of certain coding problems.
Information Theory, IEEE Transactions on, 24(3):
384–386, 1978.

[4] D. Bertsimas and J. N. Tsitsiklis. Introduction to
linear optimization. Athena Scientific Belmont, MA,
1997.

[5] J. L. Carter and M. N. Wegman. Universal classes
of hash functions. Journal of computer and system
sciences, 18(2):143–154, 1979.

[6] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman.
Taming the curse of dimensionality: Discrete integra-
tion by hashing and optimization. In ICML (To ap-
pear), 2013.

[7] J. Feldman, M. J. Wainwright, and D. R. Karger. Us-
ing linear programming to decode binary linear codes.
Information Theory, IEEE Transactions on, 51(3):
954–972, 2005.

[8] R. Gallager. Low-density parity-check codes. Informa-
tion Theory, IRE Transactions on, 8(1):21–28, 1962.

[9] A. Globerson and T. Jaakkola. Fixing max-product:
Convergent message passing algorithms for map lp-
relaxations. Advances in Neural Information Process-
ing Systems, 21(1.6), 2007.

[10] V. Gogate and R. Dechter. SampleSearch: A scheme
that searches for consistent samples. In Proc. 10th
International Conference on Artificial Intelligence and
Statistics (AISTATS), 2007.

[11] V. Gogate and R. Dechter. SampleSearch: Impor-
tance sampling in presence of determinism. Artificial
Intelligence, 175(2):694–729, 2011.

[12] O. Goldreich. Randomized methods in computation.
Lecture Notes, 2011.

[13] C. Gomes, A. Sabharwal, and B. Selman. Model
counting: A new strategy for obtaining good bounds.
In AAAI, pp. 54–61, 2006.

[14] C. Gomes, A. Sabharwal, and B. Selman. Near-
uniform sampling of combinatorial spaces using XOR
constraints. Advances In Neural Information Process-
ing Systems, 19:481–488, 2006.

[15] IBM ILOG. IBM ILOG CPLEX Optimization Studio
12.3, 2011.

[16] R. Jeroslow. On defining sets of vertices of the hyper-
cube by linear inequalities. Discrete Mathematics, 11
(2):119–124, 1975.

[17] M. Jerrum and A. Sinclair. The Markov chain Monte
Carlo method: an approach to approximate counting
and integration. Approximation algorithms for NP-
hard problems, pp. 482–520, 1997.

[18] D. Koller and N. Friedman. Probabilistic graphical
models: principles and techniques. MIT press, 2009.

[19] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Fac-
tor graphs and the sum-product algorithm. Informa-
tion Theory, IEEE Transactions on, 47(2):498–519,
2001.

[20] S. L. Lauritzen and D. J. Spiegelhalter. Local compu-
tations with probabilities on graphical structures and
their application to expert systems. Journal of the
Royal Statistical Society. Series B (Methodological),
pp. 157–224, 1988.

[21] N. Madras. Lectures on Monte Carlo Methods. Amer-
ican Mathematical Society, 2002. ISBN 0821829785.

[22] J. Mooij. libDAI: A free and open source c++ library
for discrete approximate inference in graphical mod-
els. JMLR, 11:2169–2173, 2010.

[23] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief
propagation for approximate inference: An empirical
study. In UAI, 1999.

[24] K. B. Petersen and M. S. Pedersen. The matrix cook-
book. Technical University of Denmark, pp. 7–15,
2008.

[25] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and
Y. Weiss. Tightening LP relaxations for MAP using
message passing. In UAI, 2008.

[26] J. Stern. Approximating the number of error locations
within a constant ratio is np-complete. In Proceed-
ings of the 10th International Symposium on Applied
Algebra, Algebraic Algorithms and Error-Correcting
Codes, pp. 325–331. Springer-Verlag, 1993.

[27] D. R. Stinson. On the connections between universal
hashing, combinatorial designs and error-correcting
codes. Congressus Numerantium, pp. 7–28, 1996.

[28] S. Vadhan. Pseudorandomness. Foundations and
Trends in Theoretical Computer Science, 2011.

[29] A. Vardy. Algorithmic complexity in coding theory
and the minimum distance problem. In STOC, 1997.

[30] M. Wainwright. Tree-reweighted belief propagation al-
gorithms and approximate ML estimation via pseudo-
moment matching. In AISTATS, 2003.

[31] M. Wainwright and M. Jordan. Graphical models, ex-
ponential families, and variational inference. Founda-
tions and Trends in Machine Learning, 1(1-2):1–305,
2008.

[32] W. Wei and B. Selman. A new approach to model
counting. In Theory and Applications of Satisfiability
Testing (SAT), pp. 324–339, 2005.

[33] A. Wigderson. Lectures on the fusion method and
derandomization. Technical report, Technical Report
SOCS-95.2, School of Computer Science, McGill Uni-
versity, 1995.

[34] M. Yannakakis. Expressing combinatorial optimiza-
tion problems by linear programs. Journal of Com-
puter and System Sciences, 43(3):441–466, 1991.

[35] C. Yanover, T. Meltzer, and Y. Weiss. Linear pro-
gramming relaxations and belief propagation–an em-
pirical study. The Journal of Machine Learning Re-
search, 7:1887–1907, 2006.

211



Monte-Carlo Planning: Theoretically Fast Convergence Meets
Practical Efficiency

Zohar Feldman and Carmel Domshlak
Faculty of Industrial Engineering and Management

Technion, Israel

Abstract

Popular Monte-Carlo tree search (MCTS) al-
gorithms for online planning, such as ε-greedy
tree search and UCT, aim at rapidly iden-
tifying a reasonably good action, but pro-
vide rather poor worst-case guarantees on
performance improvement over time. In con-
trast, a recently introduced MCTS algorithm
BRUE guarantees exponential-rate improve-
ment over time, yet it is not geared towards
identifying reasonably good choices right at
the go. We take a stand on the individual
strengths of these two classes of algorithms,
and show how they can be effectively con-
nected. We then rationalize a principle of
“selective tree expansion”, and suggest a con-
crete implementation of this principle within
MCTS. The resulting algorithms favorably
compete with other MCTS algorithms under
short planning times, while preserving the at-
tractive convergence properties of BRUE.

1 INTRODUCTION

Markov decision processes (MDPs) are a standard
model for planning under uncertainty [19]. An MDP
〈S,A, Tr,R〉 is defined by a set of possible agent states
S, a set of agent actions A, a stochastic transition func-
tion Tr : S × A × S → [0, 1], and a reward function
R : S × A × S → R. The current state of the agent
is fully observable, and the objective of the agent is
to act so to maximize its accumulated reward. In the
finite horizon setting considered here, the reward is
accumulated over some predefined number of steps H.
The description of the MDP is assumed to be con-
cise, and, depending on the problem domain and the
representation language, it can be either declarative
or generative (or mixed). While declarative models
provide the agents with greater algorithmic flexibility,

generative models are more expressive, and both types
of models allow for simulated execution of all feasible
action sequences, from any state of the MDP.

In online planning for MDPs, the agent focuses on its
current state only, deliberates about the set of pos-
sible policies from that state onwards and, when in-
terrupted, uses the outcome of that exploratory delib-
eration to choose what action to perform next. The
quality of the action a, chosen for state s with H steps-
to-go, is assessed in terms of the probability that a is
sub-optimal, or in terms of the (closely related) mea-
sure of simple regret. The latter captures the perfor-
mance loss that results from taking a and then follow-
ing an optimal policy π∗ for the remaining H−1 steps,
instead of following π∗ from the beginning [5].

With a few recent exceptions developed for declarative
MDPs [4, 16, 7], most algorithms for online MDP plan-
ning constitute variants of what is called Monte-Carlo
tree search (MCTS) [23, 18, 15, 9, 8, 21, 25]. Most
MCTS algorithms for online planning, such as ε-greedy
tree search and UCT, aim at rapidly identifying a rea-
sonably good action, but offer only polynomial-rate
reduction of simple regret over the deliberation time.
In contrast, a recently introduced MCTS algorithm
BRUE guarantees exponential-rate reduction of simple
regret over time, yet it does not make special efforts
to home in on a reasonable alternative fast [11]. Of
course, “good” is often the best one can hope for in
large MDPs of interest under practically reasonable
deliberation-time allowances. Therefore, as we recon-
firm by an evaluation on benchmarks from the recent
probabilistic planning competition, BRUE is often em-
pirically inferior to its (guarantees-wise inferior) com-
petitors.

Reflecting on the differences between the two types
of algorithms, here we show that BRUE can be re-
designed to perform extremely well also under early
interruptions of planning, and this without compro-
mising much neither the long-term empirical perfor-
mance nor theoretical guarantees. We do that in two
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steps. First, we connect between the iterative tree ex-
pansion of the standard MCTS scheme and the “sep-
aration of concerns” principle that underlies BRUE.
The resulting modification of BRUE, BRUEI , already
substantially improves over BRUE in short-term effec-
tiveness. Building upon BRUEI , we then introduce
a machinery of selective tree expansion that further
pushes the boundaries of online MDP planning. View-
ing MCTS as a message passing within the hierarchy
of forecasters, this mechanism is based on (i) classify-
ing the roles that different forecasters in the hierarchy
should fulfill in order to improve the quality of the de-
cision at the root, and on (ii) exploit this classification
to adaptively decide how each forecaster should aim at
fulfilling its role. As testified by our empirical evalua-
tion, the resulting algorithm, BRUEIC , favorably and
robustly competes with other MCTS algorithms under
short planning times, while preserving both the attrac-
tive formal properties of BRUE, as well as the empirical
strength of the latter under permissive deliberation-
time allowances.

2 BACKGROUND

Henceforth, Π denotes the set of all valid policies for
the MDP in question, A(s) ⊆ A denotes the actions
applicable in state s, the operation of drawing a sample
from a distribution D over set ℵ is denoted by ∼ D[ℵ],
U denotes uniform distribution, and JnK for n ∈ N
denotes the set {1, . . . , n}.

2.1 CANONICAL MCTS SCHEME

MCTS, a canonical scheme underlying various MCTS
algorithms for online MDP planning, is depicted in
Figure 1a. Starting with the current state s0, MCTS
performs an iterative construction of a tree1 T rooted
at s0. At each iteration, MCTS rollouts a state-space
sample ρ from s0, which is then used to update T .
First, each state/action pair (s, a) is associated with a

counter n(s, a) and a value accumulator Q̂(s, a), both
initialized to 0. When a sample ρ is rolled out, for
all states si ∈ ρ ∩ T , n(si, ai+1) and Q̂(si, ai+1) are
updated on the basis of ρ by the update-node proce-
dure. Second, T can also be expanded with any part
of ρ; The standard choice is to expand T with only the
first state along ρ that is new to T . In any case, once
the sampling is interrupted, MCTS uses the informa-
tion stored at the tree’s root to recommend an action
to perform in s0.

1In MDPs, there is no reason to distinguish between
nodes associated with the same state at the same depth.
Hence, the graph T constructed by MCTS instances typi-
cally forms a DAG. Nevertheless, for consistency with prior
literature, we stay with the term “tree”.

MCTS: [input: 〈S,A, Tr,R〉; s0 ∈ S]
search tree T ← root node s0

for n← 1 . . . time permits do
probe(s0, 0)

return arg maxa Q̂(s0, a)

probe (s : state, d : depth)
if end-of-probe(s, d) then return evaluate(s, d)
a← rollout-policy(s)
s′ ∼ P (S | s, a)
r ← R (s, a, s′) + probe(s′, d+ 1)
update-node(s, a, r)
return r

(a)

end-of-probe (s : state, d : depth)
if s 6∈ T then

add s to T and return true
else if d = H then return true else return false

evaluate (s : state, d : depth)
for t← d . . .H do

a ∼ U [A(s)]
s′ ∼ P (S | s, a)
r ← r +R (s, a, s′)
s← s′

return r

update-node (s : state, a: action, r : reward)
n (s, a)← n (s, a) + 1

Q̂(s, a)← Q̂(s, a) + r−Q̂(s,a)
n(s,a)

rollout-policy (s : state)
if n(s, a) = 0 for some a ∈ A(s) then

return a ∼ U [{a ∈ A(s) | n(s, a) = 0}]
else
n(s)←∑

a∈A(s) n(s, a)

return argmaxa

[
Q̂(s, a) + c

√
logn(s)
n(s,a)

]

(b)

Figure 1: (a) Monte-Carlo tree search template, and
(b) the UCT specifics.

Numerous concrete instances of MCTS have been pro-
posed, with ε-greedy [23] probably being the most
widely known, and UCT [15] and its modifications [9,
24] being the most popular such instances these
days [12, 22, 3, 2, 10, 14]. Concrete instances of
MCTS vary mostly along the implementation of the
rollout-policy sub-routine, that is, in their poli-
cies for directing the rollout within T . For instance,
the specific rollout-policy of UCT is shown in Fig-
ure 1b. This policy is based on the deterministic deci-
sion rule UCB1 [1], originally proposed for optimal bal-
ance between exploration and exploitation for cumu-
lative regret minimization in stochastic multi-armed
bandit (MAB) problems [20]. In general, different in-
stances of MCTS vary in their balance between ex-
ploration and exploitation. However, it has already
been noticed that exploitation may considerably slow
down the reduction of simple regret over time [6]. In-
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MCTS2e: [input: 〈S,A, Tr,R〉; s0 ∈ S]
search tree T ← root node s0; σ ← 0
for n← 1 . . . time permits do

σ ← switch-function(n, σ)
probe(s0, 0, σ)

return arg maxa Q̂(s0, a)

probe (s : state, d : depth, σ ∈ JHK)
if end-of-probe(s, d) then return evaluate(s, d)
if d < σ then
a← exploration-policy(s)

else
a← estimation-policy(s)

s′ ∼ P (S | s, a)
r ← R (s, a, s′) + probe(s′, d+ 1, σ)
if d = σ then update-node(s, a, r)
return r

(a)

end-of-probe (s : state, d : depth)
if d = H then return true else return false

evaluate (s : state, d : depth)
return 0

update-node (s : state, a: action, r : reward)
if s 6∈ T then add s to T
n (s, a)← n (s, a) + 1

Q̂(s, a)← Q̂(s, a) + r−Q̂(s,a)
n(s,a)

switch-function (n : iteration, σ ∈ JHK)
return H − ((n− 1) mod H) // round robin on JHK

exploration-policy (s : state)
return a ∼ U [A(s)]

estimation-policy (s : state)

return a ∼ U
[
{a | arg maxa∈A(s) Q̂(s, a)}

]

(b)

Figure 2: Monte-Carlo tree search with “separation of
concerns” (a), and the BRUE specifics (b).

deed, UCB1 (and thus UCT) achieves only polynomial-
rate reduction of simple regret over time [6], and the
number of samples after which the bounds of UCT on
simple regret become meaningful might be as high as
hyper-exponential in H [9]. In fact, no instance of the
MCTS scheme (Figure 1a) suggested so far breaks the
barrier of the worst-case polynomial-rate reduction of
simple regret over time.

2.2 SEPARATION OF CONCERNS

If fast convergence to optimal choice is of interest, then
Monte-Carlo planning should be as exploratory as pos-
sible [6]. However, what it means to be “as exploratory
as possible” with MDPs is less straightforward than it
is in MABs. In particular, recently it was observed
that “forecasters” s ∈ T should be devoted to two,

somewhat competing, exploratory objectives, namely
identifying an optimal action π∗(s), and estimating
the value of that action, because this information is
needed by the predecessor(s) of s in T [11].

Following this observation, Feldman and Domsh-
lak [11] introduced MCTS2e, a refinement of MCTS
scheme that implements the principle of “separation
of concerns,” whereby different parts of each sample
are devoted to different exploration objectives. In
MCTS2e (Figure 2a), rollouts are generated by a two-
phase process in which the actions are selected ac-
cording to an exploratory policy until an (iteration-
specific) switching point, and from that point on, the
actions are selected according to an estimation pol-
icy. The sub-routines end-of-probe and update
in MCTS2e are trivial, the update-node sub-routine
extends this of MCTS with tree expansion, and, in-
stead of rollout-policy of MCTS, specific instances
of MCTS2e are achieved by instantiating three new
sub-routines that determine the switching point for a
rollout, and the action selection protocols for the two
phases of the rollouts.

Feldman and Domshlak [11] show that a specific
instance of MCTS2e, dubbed BRUE, achieves an
exponential-rate reduction of simple regret over time,
with the bounds on simple regret becoming mean-
ingful after only exponential in H2 number of sam-
ples. The specific MCTS2e sub-routines that define
the BRUE algorithm are shown in Figure 2b. Simi-
larly to UCT, each node/action pair (s, a) is associ-

ated with variables n(s, a) and Q̂(s, a), but with the
latter being initialized to −∞. BRUE instantiates
MCTS2e by choosing actions uniformly at the explo-
ration phase of the sample, choosing the best empiri-
cal actions at the estimation phase, and changing the
switching point in a round-robin fashion over the en-
tire horizon. Importantly, if the switching point of a
rollout ρ = 〈s0, a1, s1, . . . , aH , sH〉 is σ, then only the
state/action pair (sσ−1, aσ) is updated by the informa-
tion collected by ρ. That is, the information obtained
by the estimation phase of ρ is used only for improving
the estimate at state sσ(n)−1, and is not pushed further
up the sample. While that may appear wasteful and
counterintuitive, this locality of update is required to
satisfy the formal guarantees of BRUE on exponential-
rate reduction of simple regret over time [11].

3 FAST OPTIMAL VS. FAST GOOD

A comparative evaluation on Sailing [18] and
PGame [15] domains showed that BRUE is contin-
ually improving towards an optimal solution, rather
quickly obtaining results better than UCT [11]. How-
ever, that evaluation also showed that UCT sometimes
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Figure 3: IPPC-2011 scores for the different MCTS algorithms under the (unknown to the algorithms) average
deliberation time allowance of 5 seconds per step.

manages to identify reasonably good actions rather
quickly, while BRUE is still “warming up”. Focusing
on tight deliberation deadlines, we conducted a wider
empirical evaluation on MDP benchmarks from the
last International Probabilistic Planning Competition
(IPPC-2011). These benchmarks appear ideal for our
purpose of evaluating algorithms under tight time con-
straints: Most IPPC-2011 domains induce very large
branching factors, and thus allow only a very shallow
sampling of the underlying search tree in reasonable
time.

We used five IPPC-2011 domains, Game-of-Life,
SysAdmin, Traffic, Crossing, and Navigation, with five
randomly picked problem instances from each domain.
Instances of Game-of-Life, SysAdmin, and Traffic were
ran with planning horizon of 20 steps, whereas in-
stances of (goal-driven) Crossing, and Navigation were
ran with horizon of 40 steps. Each algorithm was
allowed a (rather arbitrary chosen) deliberation time
that started with 10 seconds for the first step, and de-
creased linearly to 1 second at the last step. In addi-
tion to UCT and BRUE, the comparison includes a triv-
ial baseline of random action selection (Random), as
well as MAB-Uniform, a simple algorithm that chooses
actions everywhere uniformly at random, estimating
Q(s0, a) for each a ∈ A(s0) by the value of taking
a and then choosing actions uniformly at random for
the remaining H−1 steps. Obviously, the estimates of
MAB-Uniform are typically erroneous, and so a priori,
its only positive property appears to be its computa-
tional efficiency.

The results are presented in Figure 3; the names of
the problem instances on the x-axis are these from the
IPPC-2011 repository, and y-axis captures the IPPC-
2011 scoring scheme: The algorithms are scored rela-
tively to each other on each problem instance, with the
relative scores being then averaged over 300 runs on
that specific problem instance. The relative score of a
particular algorithm in a specific run is the difference
between the total reward achieved by that algorithm
and the worst total reward among all the algorithms,
divided by the difference between such best and worst
total rewards.

According to Figure 3, all the examined MCTS algo-
rithms, including the seemingly naive MAB-Uniform,
performed much better than Random, with SysAd-
min and Traffic being the most prominent examples
for that. In other words, even under severely lim-
ited deliberation time allowance, the value of deliber-
ation in the benchmarks in use was substantial. Like-
wise, the experiment reconfirmed that UCT is typically
more effective than BRUE under short deliberation
times. This suggests that the “fast optimal” scheme
of BRUE lacks some ingredients that make its MCTS
competitors “fast good”. Having said that, note that
different problems favored different approaches, with
MAB-Uniform being surprisingly superior on many of
the examined benchmarks. Hence, the quest for a clear
recipe for “fast good” remains open, especially if we do
not want to neglect striving for optimality, and even
more so, if we want that recipe to be robust on a wide
palette of MDPs. This is precisely the quest we con-
sider in what comes next.
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4 TWO TYPES OF FORECASTERS

Consider the state/steps-to-go pairs (s, h) as a hierar-
chy of forecasters, all acting on behalf of the root fore-
caster (s0, H) that aims at minimizing its own simple
regret in a stochastic MAB induced by the applicable
actions A(s0). In the setup of online planning, there
is a conceptual difference between the exploration ob-
jective of the root forecaster and this of all other fore-
casters in the hierarchy. To see that, suppose there is
an oracle that can provide each forecaster (s, h) either
with the identity of the optimal action π∗(s, h) but
without revealing its value Qh(s, π∗(s, h)), or with the
valueQh(s, π∗(s, h)) but without revealing the identity
of π∗(s, h). For the root forecaster (s0, H), the first
type of information is all he needs, while the second
type of information buys him very little, if anything.
In contrast, even if the oracle provides all the forecast-
ers (s, h) but (s0, H) with (only) the identities of the
respective optimal actions π∗(s, h), then the root fore-
caster (s0, H) in some sense remains as clueless as it
was before, and needs to explore the state space in or-
der to obtain at least some ordinal information about
the expected value of the alternative choices A(s0).
However, if the oracle provides a non-root forecaster
(s, h) (only) with the best Q-value among its alterna-
tive choices A(s), then (s, h) can stop working since
no further exploration of the sub-hierarchy rooted in
(s, h) is needed.

In sum, what matters to the root forecaster is only
what to execute, while all other forecaster care only
about the value they can provide to their ancestors in
the hierarchy, and not about how this value can actu-
ally be acquired. Of course, the reader may question
this classification by arguing that these two objectives
are just two sides of the same coin: estimating the
value of optimal action assumes aiming at identify-
ing an optimal action and vice versa. To some extent,
that is true, but only to some extent. For instance, the
very realization that this coin has two sides, and that
these two sides are somewhat competing, is precisely
what motivates the “separation of concerns” principle
behind the MCTS2e scheme. Turns out that this clas-
sification of objectives suggests further insights into
the dynamics of MCTS algorithms.

In all MCTS algorithms for online MDP planning, each
iteration corresponds to examining a chain of forecast-
ers within the overall hierarchy under (s0, H), with the
difference between the algorithm boiling down to two
decisions:

(I) which chain of forecasters to examine, and

(II) how to estimate Qh(s, π∗(s, h)) for each fore-
caster (s, h) in the hierarchy.

At first view, choosing the right strategy for (I) seems
to be the key to rapid homing in on “good” decisions.
The details of various MCTS algorithms suggest that
their design was indeed primarily guided by choices for
(I), with choices for (II) being implied by the former.
Here, however, we suggest that decoupling these two
decisions is important, and that the key to the quest
of our interest actually lies in decision (II).

A closer look at different Monte-Carlo planning algo-
rithms for MDPs reveals an interesting generalizing
perspective on the way they all approach decision (II).
Let V πh (s) be the value of (s, h) under policy π ∈ Π,
V ∗h (s) ≡ Qh(s, π∗(s, h)) be the value of (s, h) under

the optimal policy, and let V̂ πh (s), V̂ ∗h (s) denote em-
pirical estimates of these two quantities, respectively.
In all MCTS algorithms, at each point of time, the en-
tire hierarchy of forecasters can be seen as consisting
of two types of forecasters.

TOUT forecaster (s, h) (possibly schematically) esti-
mate V ∗h (s) by an estimate of Eπ∼U [Π]V

π
h (s), that

is, of the expected total reward of a policy sam-
pled from Π uniformly at random.

TIN forecaster (s, h) distinguishes between its choices
A(s), and estimates V ∗h (s) by an estimate of
maxa∈A(s)

∑
s′ P (s′ | s, a)

[
R(s, a, s′) + V ∗h−1(s′)

]
,

where the estimate of V ∗h−1(s′) is based on the in-
formation provided by s′ to s.

Consider the way in which the specific MCTS al-
gorithms approach decision (II) in terms of this
TOUT/TIN partition of the forecasters. In both UCT
and BRUE, TIN-forecasters correspond to the nodes of
T , while all other state/steps-to-go pairs correspond to
TOUT-forecasters. Note that these TOUT-forecasters
are very much not virtual. For instance, in UCT
they are queried by the evaluate sub-routine, and
in BRUE they are queried, possibly in interleaving
with TIN-forecasters, by both exploration-policy
and estimation-policy sub-routines.

At first view, TOUT-forecasters appear to be strangely
lazy and potentially very misleading, while TIN-
forecasters seem to be doing the right thing. How-
ever, it is not all that simple. First, while each TOUT-
forecaster samples a single random variable, each TIN-
forecaster (s, h) has to sample |A(s)| random variables.
Thus, TOUT-forecasters converge to quality estimates
of quantities of their interest much faster than their
TIN counterparts. Second, while TIN-forecasters try
to estimate the right thing, their success totally de-
pends on the quality of estimates of V ∗h−1(s′) they re-
ceive from their successors. Hence, it is not clear that
forecasters of type TIN are always more effective.
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We return to this issue in more detail later on. For
now, note only that both UCT and BRUE can be seen
as continuously reconsidering the typing of the forecast-
ers. Specifically, in both UCT and BRUE, (at most)
a single forecaster is “converted” from TOUT to TIN

at every iteration: in UCT it is the shallowest TOUT-
forecaster found along the rollout, and in BRUE, it is
the TOUT-forecaster that happens to lie at the rollout’s
switching point σ. This way, the set of TIN-forecasters
in UCT grows incrementally as a single community
connected to the root forecaster (s0, H). In contrast,
TIN-forecasters in BRUE evolve in H independent sets,
each distributed over the respective depth level of the
forecast hierarchy according to the transition distri-
bution induced by the uniform action selection at the
preceding levels.

This specific difference between UCT and BRUE is di-
rectly related to their relative efficiency under differ-
ent orders of deliberation time allowance. Populating
TIN-forecasters at all levels of the hierarchy is gener-
ally necessary to guarantee fast convergence to opti-
mal choice at the root. However, the marginal value
of TIN-forecasters at different levels vary with the de-
liberation time allowance: Information gathered by
TIN-forecasters at deep levels takes time to be prop-
agated to the root, making their near-term influence
on the choices at (s0, H) smaller than this of the TIN-
forecasters closer to the root.

In that respect, a modification of BRUE that suggests
itself almost immediately is as simple as it gets: In-
stead of converting the TOUT-forecaster at the switch-
ing point σ, we can resort to converting the shallowest
TOUT-forecaster on the exploratory part of the rollout,
that is, up to the level σ. By offering both exponential-
rate reduction of the simple regret at the root, as
well as incremental conversion of TOUT-forecasters as a
connected set around (s0, H), the resulting algorithm,
BRUEI , substantially improves over BRUE in short-
term effectiveness. (The specific empirical results for
BRUEI are shown later in the paper. ) However, this
simple modification of BRUE is not our final destina-
tion, and next we show that this simple bridge between
MCTS and MCTS2e opens a much wider window of op-
portunity.

5 SELECTIVE TREE EXPANSION

Similarly to UCT and BRUE, each iteration of
BRUEI either finds no candidate for type conver-
sion, or unconditionally converts a concrete sin-
gle TOUT-forecaster (s, h) to type TIN. How-
ever, suppose we know that Eπ∼U [Π]V

π
h (s) equals

maxa∈A(s)

∑
s′ P (s′ | s, a)

[
R(s, a, s′) + V ∗h−1(s′)

]
.

Since direct Monte-Carlo estimation of the quantity

on the left-hand side is substantially easier than this
of the right-hand side, converting (s, h) to type TIN

is clearly not a good idea. In fact, both (s, h) and
all of its exclusive descendants in the hierarchy would
better remain TOUT-forecasters for the entire deliber-
ation process, no matter how long it is. Of course, this
equality rarely holds, and, more importantly, we have
no prior knowledge about the size of the gap between
the quality of the best policy under (s, h) and the ex-
pected quality of the randomly picked policy. How-
ever, this extreme example still hints on the promise
of selective type conversion, and below we examine the
prospects of this direction.

The variance of a Monte-Carlo estimator Q̂h(s, a) of
the value of action a at state s stems from two sources.
The first source of variance comes from following dif-
ferent policies (aka action selections) along different
rollouts. The other source of variance comes from the
stochastic nature of the action outcomes. That is, if
r is the reward obtained by following policy π for h
steps starting from state s, then

Var [r] = E [Var [r | π]] + Var [E [r | π]] . (1)

At one extreme, we have all policies yielding the same
expected reward, and thus all the variance comes from
the action outcomes. In that case, distinguishing be-
tween the policies under (s, h) is not only useless, but
also computationally harmful. Thus both (s, h) and
its descendants should be left as type TOUT, that is,
not added to T . At the other extreme, we have all
actions being deterministic, but different policies yield
very different reward. In that case, it may be valuable
to convert (s, h) to TIN, increasing the resolution at
which the policies under (s, h) are examined. Unsur-
prisingly, in between these two extremes, the “value of
conversion” is less straightforward. In the absence of
any information about the stopping time, online plan-
ning algorithms should strive to do well under the as-
sumption that termination point is near, while ensur-
ing continuous improvement as more time is allowed.
And as long as the precise mixture of these two desider-
ata remains vague, so remains the precise formulation
of the value of conversion.

Having said that, as we do understand the high-level
factors that affect the value of conversion, we can try
estimating and combining these factors so to reflect
the purported value of conversion. Here we propose
and evaluate a simple and intuitive rule: The candi-
date TOUT-forecaster (s, h) should be converted iff the
variance of the expected reward over different policies
under (s, h) exceeds the average variance of the poli-
cies, that is, iff

Var
[
E
[
V̂ πh (s) | π

]]
> E

[
Var

[
V̂ πh (s) | π

]]
, (2)
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which is equivalent to

Var [E [r | π]] > E
[

Var [r | π]

n(s, π)

]
, (3)

where r is the reward obtained by following policy π
for h steps starting from state s, and n(s, π) is the

number of samples that induce the estimate V̂ πh (s).

The quantity on the left indicates the distance between
the average quality of the policies and the quality of
the optimal one, that is

Eπ∼U [Π]V
π
h (s)− V ∗h (s). (4)

The quantity on the right indicates the distance be-
tween the estimator and the mean of the policies value,
where the division by n(s, π) captures the effect of av-
eraging on the variance. As the number of samples
from each policy grows, estimators V̂ πh (s) approaches
their means V πh (s), and thus the gap captured by Eq. 4
becomes the dominant factor, in which case converting
(s, h) to TIN is estimated as valuable.

Based on this decision rule, we suggest a new instance
of MCTS2e, BRUEIC (standing for BRUE with incre-
mental and selective type conversion). The respective
MCTS2e sub-routines of BRUEIC are depicted in Fig-
ure 4.

• Similarly to BRUE, the actions are selected uni-
formly at random at the exploration phase of the
rollout, and the empirically best actions are se-
lected at the estimation phase.

• Similarly to UCT and BRUEI , the tree is ex-
panded in an incremental fashion, maintaining the
set of TIN forecasters connected to the root.

• Unlike UCT and BRUEI , after a forecaster (s, h) is
added to the tree, it goes through an “evaluation
period”, and remains of type TOUT until it passes
that evaluation. Hence, the leaves of T consist of
some TIN-forecasters, but also of all TOUT candi-
dates for TIN.

The evaluation of the “conditional candidates” (s, h) is
captured by the convert procedure depicted in Fig-
ure 5. This procedure estimates the two sources of
variance at (s, h) (lines 1-4, explained below), and only
when the variance of the policies’ values exceeds the
average variance of the policies value in the sense of
Eq. 2 (the condition in line 5 fails), (s, h) is converted
to a TIN-forecaster. At the actual conversion (lines 6-
9), the information gathered at the evaluation period

is used to initialize the standard node variables Q̂(s, a)
and n(s, a).

end-of-probe (s : state, d : depth)
if s 6∈ T then add s to T
if n(s) > 0 or convert(s) then return false
if d ≤ σ then
σ ← −1 // dummy value, to prevent node update

retract ← true
return true

evaluate (s : state, d : depth)
if
∣∣ΠA

s

∣∣ < φ then
π ← generate-policy(s,H − d)
add π to ΠA

s // and thus to Πs

else
π ∼ U

[
ΠA
s

]

for t← d . . .H do
a ∼ π(s, t)
s′ ∼ P (S | s, a)
r ← r +R (s, a, s′)
s← s′

update-node(s, π, r)

if V̂ar(s,π)
n(s,π)

< ψ then remove π from ΠA
s

return r

update-node (s: state, x: action or policy, r : reward)
n(s, x)← n(s, x) + 1

δ ← r − Q̂ (s, x)

Q̂(s, x)← Q̂(s, x) + δ
n(s,x)

V̂ar(s, x)← V̂ar(s,x)·(n(s,x)−2) + δ·(r−Q̂(s,x))
n(s,x)−1

switch-function (n : iteration, σ ∈ JHK)
if retract or σ = H then σ ← 0

else σ ← σ + 1
retract ← false
return σ

exploration-policy (s : state)
return a ∼ U [A(s)]

estimation-policy (s : state)

return a ∼ U
[
{a | arg maxa∈A(s) Q̂(s, a)}

]

Figure 4: MCTS2e sub-routines for BRUEIC . For the
convert procedure called by end-of-probe, see Fig-
ure 5.

Technically, candidate evaluation is performed as fol-
lows. For each TIN candidate (s, h), the algorithm
maintains a set of policies Πs, as well as a subset of
“active” policies ΠA

s ⊆ Πs, size of which is bounded by
a fixed parameter φ. The set ΠA

s is used by the sub-
routine evaluate that selects a policy from ΠA

s for
evaluation uniformly at random. In case φ allows ex-
panding the active subset ΠA

s , evaluate uses a newly
generated policy (e.g., by selecting actions uniformly
at all states that can be reached by following the ac-
tions at preceding states). The new policy is then
added to ΠA

s (and thus to Πs).

After a policy π is selected by evaluate, it is exe-
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convert (s : state)

1. m←∑
π∈Πs

n(s, π)

2. EE←∑
π∈Πs

n(s,π)
m

Q̂(s, π)

3. EV←∑
π∈Πs

n(s,π)
m

V̂ar(s, π)

4. VE←∑
π∈Πs

n(s,π)
m

(Q̂(s, π)−EE)2

5. if EV
m
≥ VE then

return false
else

6. for a ∈ A (s) do

7. πa ← arg max{π:π(s)=a} Q̂(s, π)

8. Q̂(s, a)← Q̂(s, πa)
9. n(s, a)← n(s, πa)

return true

Figure 5: Implementation of the decision rule of
BRUEIC for type conversion.

cuted once starting at (s, h). The resulting cumula-
tive reward r is then used to update statistics about
the particular policy π, including the empirical mean
Q̂(s, π) (which is just a more convenient for us nam-

ing for the estimator V̂ πh (s)), the empirical variance

V̂ar(s, π), and the counter n (s, π). The reward r is
also used later on, in the recursive rollback of probe
(Figure 2). When the variance of π decreases below
a predefined threshold ψ, it is removed from the ac-
tive subset ΠA

s to be replaced by a new policy. This
mechanism ensures that all policies will eventually be
sampled, which is essential to guarantee convergence
of our estimates of the two sources of variance.

The sub-routine end-of-probe bares similarity to
this of UCT, but it is extended with enforcing TIN-
candidates to remain leaves as long as the respective
convert attempts come out unsuccessful. In con-
vert, the statistics about policies are used to estimate
the mean of the policies’ variance EV, the variance in
the policies value VE, the overall mean value of the
policies EE, and m, the total number of samples from
all the policies in Πs. If the evaluated TIN-candidate
(s, h) meats the conversion condition, convert re-
turns true, and the newborn TIN-forecaster (s, h) is no
longer forced to remain a leaf. Just before that, the
standard node variables Q̂(s, a) and n(s, a) are initial-
ized with the information gathered around the empir-
ically best policy πa that starts with the respective
action a. Importantly, since the candidate evaluation
criterion is not blocking, all candidates eventually con-
vert to TIN and act as in BRUE. This provides BRUEIC
with BRUE’s quality convergence rate in long term.

At last, BRUEIC borrows its incremental tree expan-
sion mechanism from BRUEI : When a leaf is encoun-
tered before the switching point σ, no node is up-
dated, and a global flag retract is set to true, signal-

Table 1: Aggregated IPPC-2011 scores from Figure 6;
boldfacing indicates top performance in the respective
domain (and overall, in the last row).

MAB UCT BRUE BRUEI BRUEIC
Traffic 0.97 0.96 0.77 0.92 0.95
Crossing 0.83 0.84 0.85 0.83 0.87
Navigation 0.61 0.69 0.46 0.65 0.75
Game-of-Life 0.78 0.79 0.68 0.79 0.82
SysAdmin 0.86 0.81 0.73 0.86 0.87
total 0.81 0.82 0.70 0.81 0.85

ing switch-function to set the switching point to 0
in the subsequent iteration. This way, the switching
point is selected systematically as in BRUE, but now
ranging between the root and a leaf rather than on the
entire horizon.

This finalizes the description of BRUEIC . To examine
its relative effectiveness, we conducted a comparative
evaluation under the same experimental setup as de-
scribed in Section 3. We evaluated five algorithms:
MAB-Uniform, UCT, BRUE, BRUEI , and BRUEIC .
The results are presented in Figure 3 and summarized
in Table 1; all scores in Table 1 are within confidence
bounds of ±0.01. For the sake of readability, here
we excluded Random from the presentation. Over-
all, BRUEIC exhibited a robustly good performance
across the domains, finishing top performer on most
problem instances. BRUEIC is also consistently bet-
ter than BRUEI , indicating that selective type conver-
sion plays an important role in its performance. We
also notice that, in most cases, MAB-Uniform was not
very far off from the leader, falling short only in few
instances of Navigation. Since MAB-Uniform can be
seen as BRUEIC with an ultra-conservative, unsatisfi-
able condition for type conversion, this suggests that
further introspection into the specific decision rule of
BRUEIC , as well as into the impact of the parameters
in its implementation, should be valuable.

Finally, we examine the simple regret reduction of
BRUEIC under varying time budgets, using the ex-
perimental settings for Sailing domain from [11]. In
the bottom part of Figure 6, we plot the simple re-
gret of the actions recommended by MAB-Uniform,
UCT, BRUE, and BRUEIC under different planning
time windows, averaged over 300 instances of 10x10
and 20x20 grid sizes. The results reveal that not only
does BRUEIC significantly outperforms UCT uniformly
over time, right from the beginning of deliberation
when BRUE is still lagging behind, but also that its
simple regret reduction rate is rather comparable to
BRUE’s in the longer term.

219



1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

MAB−Uniform
UCT
BRUE
BRUEI
BRUEIC

1 4 5 8 10 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

MAB−Uniform
UCT
BRUE
BRUEI
BRUEIC

1 3 4 7 9 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

MAB−Uniform
UCT
BRUE
BRUEI
BRUEIC

2 3 4 7 9

Game-of-Life Crossing Navigation

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

MAB−Uniform
UCT
BRUE
BRUEI
BRUEIC

1 2 6 8 10 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

MAB−Uniform
UCT
BRUE
BRUEI
BRUEIC

1 3 5 7 9

SysAdmin Traffic

1 2 3 4 5 6 7 8 9 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Running Time (sec)

Av
er

ag
e 

Er
ro

r

 

 

MAB−Uniform

UCT
BRUE

BRUEIC

0 2 4 6 8 10 12 14 16 18 20

0.8

1

1.2

1.4

1.6

1.8

2

Running Time (sec)

Av
er

ag
e 

Er
ro

r

 

 
MAB−Uniform
UCT
BRUE
BRUEIC

0 10 20 30 40 50 60 70 80 90 100

0.8

1

1.2

1.4

1.6

1.8

2

Running Time (sec)

Av
er

ag
e 

Er
ro

r

 

 
MAB−Uniform
UCT
BRUE
BRUEIC

10×10 20×20 20×20 (zoom out)

Figure 6: Performance of the MCTS algorithms with and without selective tree expansion. Top: Per-instance
IPPC-2011 scores under the experimental setup as in Section 3. Bottom: Absolute performance of the algorithms
in terms of average simple regret on the Sailing domain problems with 10×10 and 20×20 grid maps.

6 SUMMARY

Considering online planning for generative MDPs, we
have investigated and combined the high-level prin-
ciples that underly different computational schemes
for this problem, and showed that their individual
strengths can be put together at work. We then ratio-
nalized a principle of selective tree expansion that aims
at automatically adapting Monte-Carlo exploration to
the specifics of the MDP in hand, and suggested a con-
crete implementation of this principle within Monte-
Carlo tree search methods. The resulting algorithm,
BRUEIC , favorably competes with other MCTS al-
gorithms under short planning times, while preserv-
ing the attractive convergence properties of the (not
so effective under short planning windows) algorithm
BRUE [11], as well as the empirical strength of the
latter under permissive planning windows.

In previous works, some forms of selective tree expan-
sion has been shown extremely effective in forward-
search planning for declarative MDPs [7, 4]. In that
context, our work can be seen as the first selective tree
expansion framework for Monte-Carlo planning, which
is applicable in generative MDPs as well. Likewise, our
work joins some other recent techniques for enhanc-
ing Monte-Carlo planning with adaptivity to the given
problem, such as hindsight optimization for declara-
tive MDPs [17, 26], and metalevel decision procedures
for sample routing for both declarative and generative
MDPs [13]. At the high level, these techniques ap-
pear complementary to selective tree expansion, and
thus studying their interplay and cumulative value is
a promising venue for future research.

Acknowledgements This work was partially sup-
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Abstract

We consider the problem of maximum a pos-
teriori (MAP) inference in discrete graphical
models. We present a parallel MAP infer-
ence algorithm called Bethe-ADMM based on
two ideas: tree-decomposition of the graph
and the alternating direction method of multi-
pliers (ADMM). However, unlike the standard
ADMM, we use an inexact ADMM augmented
with a Bethe-divergence based proximal func-
tion, which makes each subproblem in ADMM
easy to solve in parallel using the sum-product
algorithm. We rigorously prove global conver-
gence of Bethe-ADMM. The proposed algorithm
is extensively evaluated on both synthetic and
real datasets to illustrate its effectiveness. Fur-
ther, the parallel Bethe-ADMM is shown to scale
almost linearly with increasing number of cores.

1 Introduction

Given a discrete graphical model with known structure and
parameters, the problem of finding the most likely config-
uration of the states is known as the maximum a posteri-
ori (MAP) inference problem [23]. Existing approaches
to solving MAP inference problems on graphs with cycles
often consider a graph-based linear programming (LP) re-
laxation of the integer program [4, 18, 22] .

To solve the graph-based LP relaxation problem, two main
classes of algorithms have been proposed. The first class
of algorithms are dual LP algorithms [7, 9, 11, 19, 20, 21],
which uses the dual decomposition and solves the dual
problem. The two main approaches to solving the dual
problems are block coordinate descent [7] and sub-gradient
algorithms [11]. The coordinate descent algorithms are em-
pirically faster, however, they may not reach the dual opti-
mum since the dual problem is not strictly convex. Recent
advances in coordinate descent algorithms perform tree-
block updates [20, 21]. The sub-gradient methods, which

are guaranteed to converge to the global optimum, can be
slow in practice. For a detailed discussion on dual MAP
algorithms, we refer the readers to [19]. The second class
of algorithms are primal LP algorithms like the proximal
algorithm [18]. The advantage of such algorithms is that
it can choose different Bregman divergences as proximal
functions which can take the graph structure into account.
However, the proximal algorithms do not have a closed
form update at each iteration in general and thus lead to
double-loop algorithms.

As solving MAP inference in large scale graphical mod-
els is becoming increasingly important, in recent work,
parallel MAP inference algorithms [14, 15] based on the
alternating direction method of multipliers (ADMM) [1]
have been proposed. As a primal-dual algorithm, ADMM
combines the advantage of dual decomposition and the
method of multipliers, which is guaranteed to converge
globally and at a rate ofO(1/T ) even for non-smooth prob-
lems [24]. ADMM has also been successfully used to solve
large scale problem in a distributed manner [1].

Design of efficient parallel algorithms based on ADMM by
problem decomposition has to consider a key tradeoff be-
tween the number of subproblems and the size of each sub-
problem. Having several simple subproblems makes solv-
ing each problem easy, but one has to maintain numerous
dual variables to achieve consensus. On the other hand,
having a few subproblems makes the number of constraints
small, but each subproblem needs an elaborate often iter-
ative algorithm, yielding a double-loop. Existing ADMM
based algorithms for MAP inference [14, 15] decompose
the problem into several simple subproblems, often based
on single edges or local factors, so that the subproblems
are easy to solve. However, to enforce consensus among
the shared variables, such methods have to use dual vari-
ables proportional to the number of edges or local factors,
which can make convergence slow on large graphs.

To overcome the limitations of existing ADMM methods
for MAP inference, we propose a novel parallel algorithm
based on tree decomposition. The individual trees need
not be spanning and thus includes both edge decompo-

222



sition and spanning tree decomposition as special cases.
Compared to edge decomposition, tree decomposition has
the flexibility of increasing the size of subproblems and
reducing the number of subproblems by considering the
graph structure. Compared to the tree block coordinate de-
scent [20], which works with one tree at a time, our algo-
rithm updates all trees in parallel. Note that the tree block
coordinate descent algorithm in [21] updates disjoint trees
within a forest in parallel, whereas our updates consider
overlapping trees in parallel.

However, tree decomposition raises a new problem: the
subproblems cannot be solved efficiently in the ADMM
framework and requires an iterative algorithm, yielding a
double-loop algorithm [14, 18]. To efficiently solve the
subproblem on a tree, we propose a novel inexact ADMM
algorithm called Bethe-ADMM, which uses a Bregman di-
vergence induced by Bethe entropy on a tree, instead of
the standard quadratic divergence, as the proximal func-
tion. The resulting subproblems on each tree can be
solved exactly in linear time using the sum-product algo-
rithm [12]. However, the proof of convergence for the
standard ADMM does not apply to Bethe-ADMM. We
prove global convergence of Bethe-ADMM and establish
a O(1/T ) convergence rate, which is the same as the stan-
dard ADMM [8, 24]. Overall, Bethe-ADMM overcomes
the limitations of existing ADMM based MAP inference
algorithms [14, 15] and provides the flexibility required in
designing efficient parallel algorithm through: (i) Tree de-
composition, which can take the graph structure into ac-
count and greatly reduce the number of variables participat-
ing in the consensus and (ii) the Bethe-ADMM algorithm,
which yields efficient updates for each subproblem.

We compare the performance of Bethe-ADMM with exist-
ing methods on both synthetic and real datasets and illus-
trate four aspects. First, Bethe-ADMM is faster than exist-
ing primal LP methods in terms of convergence. Second,
Bethe-ADMM is competitive with existing dual methods
in terms of quality of solutions obtained. Third, in cer-
tain graphs, tree decomposition leads to faster convergence
than edge decomposition for Bethe-ADMM. Forth, parallel
Bethe-ADMM, based on Open MPI, gets substantial speed-
ups over sequential Bethe-ADMM. In particular, we show
almost linear speed-ups with increasing number of cores on
a graph with several million nodes.

The rest of the paper is organized as follows: We review
the MAP inference problem in Section 2. In Section 3, we
introduce the Bethe-ADMM algorithm and prove its global
convergence. We discuss empirical evaluation in Section 4,
and conclude in Section 5.

2 Background and Related Work

We first introduce some basic background on Markov Ran-
dom Fields (MRFs). Then we briefly review existing

ADMM based MAP inference algorithms in the literature.
We mainly focus on pairwise MRFs and the discussions
can be easily carried over to MRFs with general factors.

2.1 Problem Definition

A pairwise MRF is defined on an undirected graph G =
(V,E), where V is the vertex set and E is the edge set.
Each node u ∈ V has a random variable Xu associated
with it, which can take value xu in some discrete space
X = {1, . . . , k}. Concatenating all the random variables
Xu, ∀u ∈ V , we obtain an n dimensional random vector
X = {Xu|u ∈ V } ∈ Xn. We assume that the distribution
P of X is a Markov Random Field [23], meaning that it
factors according to the structure of the undirected graphG
as follows: With fu : X 7→ R, ∀u ∈ V and fuv : X ×X 7→
R, ∀(u, v) ∈ E denoting nodewise and edgewise poten-
tial functions respectively, the distribution takes the form
P (x) ∝ exp

{∑
u∈V fu(xu) +

∑
(u,v)∈E fuv(xu, xv)

}
.

An important problem in the context of MRF is that of max-
imum a posteriori (MAP) inference, which is the following
integer programming (IP) problem:

x∗ ∈ argmax
x∈Xn




∑

u∈V
fu(xu)+

∑

(u,v)∈E
fuv(xu, xv)



 . (1)

The complexity of (1) depends critically on the structure of
the underlying graph. When G is a tree structured graph,
the MAP inference problem can be solved efficiently via
the max-product algorithm [12]. However, for an arbitrary
graph G, the MAP inference algorithm is usually compu-
tationally intractable. The intractability motivates the de-
velopment of algorithms to solve the MAP inference prob-
lem approximately. In this paper, we focus on the linear
programming (LP) relaxation method [4, 22]. The LP re-
laxation of MAP inference problem is defined on a set of
pseudomarginals µu and µuv , which are non-negative, nor-
malized and locally consistent [4, 22]:

µu(xu) ≥ 0 , ∀u ∈ V ,
∑

xu∈Xu
µu(xu) = 1, ∀u ∈ V ,

µuv(xu, xv) ≥ 0, ∀(u, v) ∈ E ,
∑

xu∈Xu
µuv(xu, xv) = µv(xv), ∀(u, v) ∈ E .

(2)

We denote the polytope defined by (2) as L(G). The LP
relaxation of MAP inference problem (1) becomes solving
the following LP:

max
µ∈L(G)

〈µ,f〉 . (3)

If the solution µ to (3) is an integer solution, it is guaran-
teed to be the optimal solution of (1). Otherwise, one can
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apply rounding schemes [17, 18] to round the fractional so-
lution to an integer solution.

2.2 ADMM based MAP Inference Algorithms

In recent years, ADMM [14, 15] has been used to solve
large scale MAP inference problems. To solve (3) using
ADMM, we need to split nodes or/and edges and introduce
equality constraints to enforce consensus among the shared
variables. The algorithm in [14] adopts edge decomposi-
tion and introduces equality constraints for shared nodes.
Let di be the degree of node i. The number of equality
constraints in [14] isO(

∑|V |
i=1 dik), which is approximately

equal to O(|E|k). For binary pairwise MRFs, the subprob-
lems for the ADMM in [14] have closed-form solutions.
For multi-valued MRFs, however, one has to first binarize
the MRFs which introduces additional |V |k variables for
nodes and 2|E|k2 variables for edges. The binarization
process increases the number of factors to O(|V |+ 2|E|k)
and the complexity of solving each subproblem increases to
O(|E|k2 log k). We note that in a recent work [13], the ac-
tive set method is employed to solve the quadratic problem
for arbitrary factors. A generalized variant of [14] which
does not require binarization is presented in [15]. We refer
to this algorithm as Primal ADMM and use it as a baseline
in Section 4. Although each subproblem in primal ADMM
can be efficiently solved, the number of equality constraints
and dual variables isO(2|E|k+ |E|k2). In [15], ADMM is
also used to solve the dual of (1). We refer to this algorithm
as the Dual ADMM algorithm and use it as a baseline in
Section 4. The dual ADMM works for multi-valued MRFs
and has a linear time algorithm for each subproblem, but
the number of equality constraint is O(2|E|k + |E|k2).

3 Algorithm and Analysis

We first show how to solve (3) using ADMM based on tree
decomposition. The resulting algorithm can be a double-
loop algorithm since some updates do not have closed form
solutions. We then introduce the Bethe-ADMM algorithm
where every subproblem can be solved exactly and effi-
ciently, and analyze its convergence properties.

3.1 ADMM for MAP Inference

We first show how to decompose (3) into a series of
subproblems. We can decompose the graph G into
overlapping subgraphs and rewrite the optimization prob-
lem with consensus constraints to enforce the pseudo-
marginals on subgraphs (local variables) to agree with µ
(global variable). Throughout the paper, we focus on
tree-structured decompositions. To be more specific, let
T = {(V1, E1), . . . , (V|T|, E|T|)} be a collection of sub-
graphs of G which satisfies two criteria: (i) Each subgraph
τ = (Vτ , Eτ ) is a tree-structured graph and (ii) Each node

u ∈ V and each edge (u, v) ∈ E is included in at least
one subgraph τ ∈ T. We also introduce local variable
mτ ∈ L(τ) which is the pseudomarginal [4, 22] defined
on each subgraph τ . We use θτ to denote the potentials on
subgraph τ . We denote µτ as the components of global
variable µ that belong to subgraph τ . Note that since
µ ∈ L(G) and τ is a tree-structured subgraph of G, µτ
always lies in L(τ). In the newly formulated optimization
problem, we will impose consensus constraints for shared
nodes and edges. For the ease of exposition, we simply use
the equality constraint µτ = mτ to enforce the consensus.

The new optimization problem we formulate based on
graph decomposition is then as follows:

min
mτ ,µ

|T|∑

τ=1

ρτ 〈mτ ,θτ 〉 (4)

subject to mτ − µτ = 0, τ = 1, . . . , |T| (5)
mτ ∈ L(τ), τ = 1, . . . , |T| (6)

where ρτ is a positive constant associated with each sub-
graph. We use the consensus constraints (5) to make
sure that the pseudomarginals agree with each other in the
shared components across all the tree-structured subgraphs.
Besides the consensus constraints, we also impose feasibil-
ity constraints (6), which guarantee that, for each subgraph,
the local variablemτ lies inL(τ). When the constraints (5)
and (6) are satisfied, the global variable µ is guaranteed to
lie in L(G).

To make sure that problem (3) and (4)-(6) are equivalent,
we also need to guarantee that

min
mτ

|T|∑

τ=1

ρτ 〈mτ ,θτ 〉 = max
µ
〈µ,f〉 , (7)

assuming the constraints (5) and (6) are satisfied. It is easy
to verify that, as long as (7) is satisfied, the specific choice
of ρτ and θτ do not change the problem. Let 1[.] be a
binary indicator function and l = −f . For any positive
ρτ ,∀τ ∈ T, e.g., ρτ = 1, a simple approach to obtaining
the potential θτ can be:

θτ,u(xu) =
lu(xu)∑

τ ′ ρτ ′1[u ∈ Vτ ′ ]
, u ∈ Vτ ,

θτ,uv(xu, xv) =
luv(xu, xv)∑

τ ′ ρτ ′1[(u, v) ∈ Eτ ′ ]
, (u, v) ∈ E(τ) .

Let λτ be the dual variable and β > 0 be the penalty pa-
rameter. The following updates constitute a single iteration
of the ADMM [1]:

mt+1
τ = argmin

mτ∈L(τ)
〈mτ , ρτθτ+λtτ 〉+

β

2
||mτ−µtτ ||22 , (8)

µt+1 = argmin
µ

|T|∑

τ=1

(
−〈µτ ,λtτ 〉+

β

2
||mt+1

τ −µτ ||22
)
, (9)

λt+1
τ = λtτ + β(mt+1

τ − µt+1
τ ) . (10)
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In the tree based ADMM (8)-(10), the equality constraints
are only required for shared nodes and edges. Assume
there are m shared nodes and the shared node vi has Cvi
copies and there are n shared edges and the shared edge ej
has Cej copies. The total number of equality constraints is
O(
∑m
i=1 C

v
i k +

∑n
j=1 C

e
j k

2). A special case of tree de-
composition is edge decomposition, where only nodes are
shared. In edge decomposition, n = 0 and the number
of equality constraints is O(

∑m
i=1 C

v
i k), which is approxi-

mately equal toO(|E|k) and similar to [14]. In general, the
number of shared nodes and edges in tree decomposition is
much smaller than that in edge decomposition. The smaller
number of equality constraints usually lead to faster con-
vergence in achieving consensus. Now, the problem turns
to whether the updates (8) and (9) can be solved efficiently,
which we analyze below:

Updating µ: Since we have an unconstrained optimiza-
tion problem (9) and the objective function decomposes
component-wisely, taking the derivatives and setting them
to zero yield the solution. In particular, let Su be the set of
subgraphs which contain node u, for the node components,
we have:

µt+1
u (xu)=

1

|Su|β
∑

τ∈Su

(
βmt+1

τ,u (xu)+λtτ,u(xu)
)
. (11)

(11) can be further simplified by observing that∑
τ∈Su λ

t
τ,u(xu) = 0 [1]:

µt+1
u (xu) =

1

|Su|
T∑

τ=1

mt+1
τ,u (xu) . (12)

Let Suv be the subgraphs which contain edge (u, v). The
update for the edge components can be similarly derived
as:

µt+1
u,v (xu, xv) =

1

|Suv|
∑

τ∈Suv
mt+1
τ,uv(xu, xv) . (13)

Updating mτ : For (8), we need to solve a quadratic op-
timization problem for each tree-structured subgraph. Un-
fortunately, we do not have a close-form solution for (8)
in general. One possible approach, similar to the proximal
algorithm, is to first obtain the solution m̃τ to the uncon-
strained problem of (8) and then project m̃τ to L(τ):

mτ = argmin
m∈L(τ)

||m− m̃τ ||22 . (14)

If we adopt the cyclic Bregman projection algorithm [2] to
solve (14), the algorithm becomes a double-loop algorithm,
i.e., the cyclic projection algorithm projects the solution to
each individual constraint of L(τ) until convergence and
the projection algorithm itself is iterative. We refer to this
algorithm as the Exact ADMM and use it as a baseline in
Section 4.

3.2 Bethe-ADMM

Instead of solving (8) exactly, a common way in inexact
ADMMs [10, 25] is to linearize the objective function in
(8), i.e., the first order Taylor expansion at mt

τ , and add a
new quadratic penalty term such that

mt+1
τ = argmin

mτ∈L(τ)
〈ytτ ,mτ−mt

τ 〉+
α

2
‖mτ−mt

τ‖22 , (15)

where α is a positive constant and

ytτ = ρτθτ + λtτ + β(mt
τ − µtτ ) . (16)

However, as discussed in the previous section, the quadratic
problem (15) is generally difficult for a tree-structured
graph and thus the conventional inexact ADMM does not
lead to an efficient update formτ . By taking the tree struc-
ture into account, we propose an inexact minimization of
(8) augmented with a Bregman divergence induced by the
Bethe entropy. We show that the resulting proximal prob-
lem can be solved exactly and efficiently using the sum-
product algorithm [12]. We prove that the global conver-
gence of the Bethe-ADMM algorithm in Section 3.3.

The basic idea in the new algorithm is that we replace
the quadratic term in (15) with a Bregman-divergence term
dφ(mτ ||mt

τ ) such that

mt+1
τ = argmin

mτ∈L(τ)
〈ytτ ,mτ−mt

τ 〉+αdφ(mτ ||mt
τ ) , (17)

is efficient to solve for any tree τ . Expanding the Bregman
divergence and removing the constants, we can rewrite (17)
as

mt+1
τ = argmin

mτ∈L(τ)
〈ytτ/α−∇φ(mt

τ ),mτ 〉+φ(mτ ). (18)

For a tree-structured problem, what convex function
φ(mτ ) should we choose? Recall that mτ defines the
marginal distributions of a tree-structured distribution pmτ

over the nodes and edges:

mτ,u(xu)=
∑

¬xu
pmτ(x1, . . . , xu, . . . , xn), ∀u∈Vτ ,

mτ,uv(xu, xv)=
∑

¬xu,¬xv
pmτ

(x1,. . .,xu, xv, . . .,xn), ∀(uv)∈Eτ .

It is well known that the sum-product algorithm [12] effi-
ciently computes the marginal distributions for a tree struc-
tured graph. It can also be shown that the sum-product al-
gorithm solves the following optimization problem [23] for
tree τ for some constant ητ :

max
mτ∈L(τ)

〈mτ ,ητ 〉+HBethe(mτ ) , (19)

whereHBethe(mτ ) is the Bethe entropy ofmτ defined as:

HBethe(mτ )=
∑

u∈Vτ
Hu(mτ,u)−

∑

(u,v)∈Eτ
Iuv(mτ,uv) , (20)

225



where Hu(mτ,u) is the entropy function on each node u ∈
Vτ and Iuv(mτ,uv) is the mutual information on each edge
(u, v) ∈ Eτ .

Combing (18) and (19), we set ητ = ∇φ(mt
τ )−ytτ/α and

choose φ to be the negative Bethe entropy of mτ so that
(18) can be solved efficiently in linear time via the sum-
product algorithm.

For the sake of completeness, we summarize the Bethe-
ADMM algorithm as follows :

mt+1
τ = argmin

mτ∈L(τ)
〈ytτ/α−∇φ(mt

τ ),mτ 〉+φ(mτ ) , (21)

µt+1=argmin
µ

T∑

τ=1

(
−〈λtτ ,µτ 〉+

β

2
||mt+1

τ −µτ ||22
)
,(22)

λt+1
τ = λtτ + β(mt+1

τ − µt+1
τ ) , (23)

where ytτ is defined in (16) and −φ is defined in (20).

3.3 Convergence

We prove the global convergence of the Bethe-ADMM al-
gorithm. We first bound the Bregman divergence dφ:

Lemma 1 Let µτ and ντ be two concatenated vectors
of the pseudomarginals on a tree τ with nτ nodes. Let
dφ(µτ ||ντ ) be the Bregman divergence induced by the neg-
ative Bethe entropy φ. Assuming α ≥ maxτ{β(2nτ−1)2},
we have

αdφ(µτ ||ντ ) ≥ β

2
‖µτ − ντ‖22 . (24)

Proof: Let Pτ (x) be a tree-structured distribution on a
tree τ = (Vτ , Eτ ), where |Vτ | = nτ and |Eτ | = nτ − 1.
The pseudomarginal µτ has a total of 2nτ −1 components,
each being a marginal distribution. In particular, there are
nτ marginal distributions corresponding to each node u ∈
Vτ , given by

µτ,u(xu) =
∑

¬xu
Pτ (x1, . . . , xu, . . . , xn) . (25)

Thus, µu is the marginal probability for node u.

Further, there are nτ −1 marginal components correspond-
ing to each edge (u, v) ∈ Eτ , given by

µτ,uv(xu, xv) =
∑

¬(xu,xv)
P (x1, . . . , xu, . . . , xv, . . . , xn) . (26)

Thus, µuv is the marginal probability for nodes (u, v).

Let µτ ,ντ be two pseudomarginals defined on tree τ
and Pµτ , Pντ be the corresponding tree-structured distri-
butions. Making use of (25), we have

‖Pµτ − Pντ ‖1 ≥ ‖µτ,u − ντ,u‖1, ∀u ∈ Vτ . (27)

Similarly, for each edge, we have the following inequality
because of (26)

‖Pµτ−Pντ ‖1≥‖µτ,uv−ντ,uv‖1, ∀(u, v) ∈ Eτ . (28)

Adding them together gives

(2nτ−1)‖Pµτ−Pντ ‖1≥‖µτ−ντ‖1 ≥ ‖µτ−ντ‖2 . (29)

According to Pinsker’s inequality [3], we have

dφ(µτ ||ντ ) = KL(Pµτ , Pντ ) ≥ 1

2
‖Pµτ − Pντ ‖21

≥ 1

2(2nτ − 1)2
‖µτ − ντ‖22 . (30)

Multiplying α on both sides and letting α ≥ β(2nτ − 1)2

complete the proof.

To prove the convergence of the objective function, we de-
fine a residual term Rt+1

τ as

Rt+1
τ = ρτ 〈mt+1

τ − µ∗τ ,θτ 〉 , (31)

where µ∗τ is the optimal solution for tree τ . We show that
Rt+1
τ satisfies the following inequality:

Lemma 2 Let {mτ ,µτ ,λτ} be the sequences generated
by Bethe-ADMM. Assume α ≥ maxτ{β(2nτ − 1)2}. For
any µ∗τ ∈ L(τ), we have

Rt+1
τ ≤〈λtτ ,µ∗τ−mt+1

τ 〉+α
(
dφ(µ∗τ ||mt

τ )−dφ(µ∗τ ||mt+1
τ )

)

+
β

2

(
‖µ∗τ−µtτ‖22−‖µ∗τ−mt

τ‖22−‖mt+1
τ −µtτ‖22

)
, (32)

where Rt+1
τ is defined in (31).

Proof: Since mt+1
τ is the optimal solution for (21), for

any µ∗τ ∈ L(τ), we have the following inequality:

〈ytr+α(∇φ(mt+1
τ )−∇φ(mt

τ )),µ∗τ−mt+1
τ 〉≥0 . (33)

Substituting (16) into (33) and rearranging the terms, we
have

Rt+1
τ ≤ 〈λtτ ,µ∗τ −mt+1

τ 〉+ β〈mt
τ − µtτ ,µ∗τ −mt+1

τ 〉
+ α〈∇φ(mt+1

τ )−∇φ(mt
τ ),µ∗τ −mt+1

τ 〉 . (34)

The second term in the RHS of (34) is equivalent to

2〈mt
τ − µtτ ,µ∗τ −mt+1

τ 〉 = ‖mt
τ −mt+1

τ ‖22
+‖µ∗τ−µtτ‖22−‖µ∗τ−mt

τ‖22−‖mt+1
τ −µtτ‖22. (35)

The third term in the RHS of (34) can be rewritten as

〈∇φ(mt+1
τ )−∇φ(mt

τ ),µ∗τ −mt+1
τ 〉

=dφ(µ∗τ ||mt
τ )−dφ(µ∗τ ||mt+1

τ )−dφ(mt+1
τ ||mt

τ ). (36)

Substituting (35) and (36) into (34) and using Lemma 1
complete the proof.

We next show that the first term in the RHS of (32) satisfies
the following result:
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(a) Rounded solution with a = 0.5.
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(b) Relative error with a = 0.5.
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Figure 1: Results of Bethe-ADMM, Exact ADMM, Primal ADMM and proximal algorithms on two simulation datasets. Figure 1(a)
plots the value of the decoded integer solution as a function of runtime (seconds). Figure 1(b) and 1(c) plot the relative error with respect
to the optimal LP objective as a function of runtime (seconds). For Bethe-ADMM, we set α = β = 0.05. For Exact ADMM, we set
β = 0.05. For Primal ADMM, we set β = 0.5. Bethe-ADMM converges faster than other primal based algorithms.

Lemma 3 Let {mτ ,µτ ,λτ} be the sequences generated
by Bethe-ADMM. For any µ∗τ ∈ L(τ), we have

|T|∑

τ=1

〈λtτ ,µ∗τ −mt+1
τ 〉 ≤

1

2β
(‖λtτ‖22 − ‖λt+1

τ ‖22)

+
β

2

(
‖µ∗τ −mt+1

τ ‖22 − ‖µ∗τ − µt+1
τ ‖22

)
.

Proof: Let µi be the ith component of µ. We augment
µτ ,mτ and λτ in the following way: If µi is not a compo-
nent of µτ , we set µτ,i = 0,mτ,i = 0 and λτ,i = 0; other-
wise, they are the corresponding components from µτ ,mτ

and λτ respectively. We can then rewrite (22) in the fol-
lowing equivalent component-wise form:

µt+1
i =argmin

µi

|T|∑

τ=1

(
〈λtτ,i,mt+1

τ,i −µτ,i〉+
β

2
||mt+1

τ,i −µτ,i||22
)
.

For any µ∗τ ∈ L(τ), we have the following optimality con-
dition:

−
|T|∑

τ=1

〈λtτ,i + β(mt+1
τ,i − µt+1

τ,i ), µ∗τ,i − µt+1
τ,i 〉 ≥ 0 . (37)

Combining all the components ofµt+1, we can rewrite (37)
in the following vector form:

−
|T|∑

τ=1

〈λtτ + β(mt+1
τ − µt+1

τ ),µ∗τ − µt+1
τ 〉 ≥ 0 . (38)

Rearranging the terms yields

|T|∑

τ=1

〈λtτ ,µ∗τ −mt+1
τ 〉

≤
|T|∑

τ=1

〈λtτ ,µt+1
τ −mt+1

τ 〉−
|T|∑

τ=1

β〈mt+1
τ −µt+1

τ ,µ∗τ−µt+1
τ 〉

=

|T|∑

τ=1

〈λtτ ,µt+1
τ −mt+1

τ 〉+
β

2

|T|∑

τ=1

(
‖µ∗τ −mt+1

τ ‖22

−‖µ∗τ − µt+1
τ ‖22 − ‖µt+1

τ −mt+1
τ ‖22

)
. (39)

Recall µt+1
τ −mt+1

τ = 1
β (λtτ − λt+1

τ ) in (23), then

〈λtτ ,µt+1
τ −mt+1

τ 〉−
β

2
‖µt+1

τ −mt+1
τ ‖22=

1

2β
(‖λtτ‖22−‖λt+1

τ ‖22) .

(40)
Plugging (40) into (39) completes the proof.

We also need the following lemma which can be found in
[6]. We omit the proof due to lack of space.

Lemma 4 Let {mτ ,µτ ,λτ} be the sequences generated
by Bethe-ADMM. Then

|T|∑

τ=1

‖mt+1
τ −µtτ‖22 ≥

|T|∑

τ=1

‖mt+1
τ −µt+1

τ ‖22+‖µt+1
τ −µtτ‖22 .

Theorem 1 Assume the following hold: (1) m0
τ and µ0

τ

are uniform tree-structured distributions, ∀τ = 1, . . . , |T|
(2) λ0

τ = 0,∀τ = 1, . . . , |T|; (3) maxτ dφ(µ∗τ ||m0
τ ) =

Dµ; (4) α ≥ maxτ{β(2nτ − 1)2} holds. Denote m̄T
τ =

1
T

∑T−1
t=0 m

t
τ and µ̄Tτ = 1

T

∑T−1
t=0 µ

t
τ . For any T and the

optimal solution µ∗, we have

|T|∑

τ=1

(
ρτ 〈m̄T

τ − µ∗τ , θτ 〉+
β

2
‖m̄T

τ − µ̄Tτ ‖22
)
≤ Dµα|T|

T
.

Proof: Summing (32) over τ from 1 to |T| and using
Lemma 3, we have:

|T|∑

τ=1

(
Rt+1
τ +

β

2
‖mt+1

τ − µtτ‖22
)

≤
|T|∑

τ=1

1

2β
(‖λtτ‖22−‖λt+1

τ ‖22)+
β

2

(
‖µ∗τ−µtτ‖22−‖µ∗τ−µt+1

τ ‖22
)

+
β

2

(
‖µ∗τ −mt+1

τ ‖22 − ‖µ∗τ −mt
τ‖22
)

+ α
(
dφ(µ∗τ ||mt

τ )− dφ(µ∗τ ||mt+1
τ )

)
. (41)
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Summing over the above from t = 0 to T − 1, we have

T−1∑

t=0

|T|∑

τ=1

(
Rt+1
τ +

β

2
‖mt+1

τ − µtτ‖22
)

≤
|T|∑

τ=1

1

2β
(‖λ0

τ‖22−‖λTτ‖22)+
β

2

(
‖µ∗τ−µ0

τ‖22−‖µ∗τ−µTτ‖22
)

+
β

2

(
‖µ∗τ −mT

τ ‖22 − ‖µ∗τ −m0
τ‖22
)

+ α
(
dφ(µ∗τ ||m0

τ )− dφ(µ∗τ ||mT
τ )
)

≤
|T|∑

τ=1

β

2
‖µ∗τ −mT

τ ‖22 +α
(
dφ(µ∗τ ||m0

τ )−dφ(µ∗τ ||mT
τ )
)

≤
|T|∑

τ=1

αdφ(µ∗τ ||m0
τ ) , (42)

where we use Lemma 1 to derive (42). Applying Lemma 4
and Jensen’s inequality yield the desired bound.

Theorem 1 establishes the O(1/T ) convergence rate for
the Bethe-ADMM in ergodic sense. As T → ∞, the ob-
jective value

∑|T|
τ=1ρτ 〈m̄T

τ , θτ 〉 converges to the optimal
value and the equality constraints are also satisfied.

3.4 Extension to MRFs with General Factors

Although we present Bethe-ADMM in the context of pair-
wise MRFs, it can be easily generalized to handle MRFs
with general factors. For a general MRF, we can view
the dependency graph as a factor graph [12], a bipar-
tite graph G = (V ∪ F,E), where V and F are dis-
joint set of variable nodes and factor nodes and E is a
set of edges, each connecting a variable node and a fac-
tor node. The distribution P (x) takes the form: P (x) ∝
exp

{∑
u∈V fu(xu) +

∑
α∈F fα(xα)

}
. The relaxed LP

for general MRFs can be constructed in a similar fashion
with that for pairwise MRFs.

We can then decompose the relaxed LP to subproblems de-
fined on factor trees and impose equality constraints to en-
force consistency on the shared variables among the sub-
problems. Each subproblem can be solved efficiently using
the sum-product algorithm for factor trees and the Bethe-
ADMM algorithm for general MRFs bears similar structure
with that for pairwise MRFs.

4 Experimental Results

We compare the Bethe-ADMM algorithm with several
other state-of-the-art MAP inference algorithms. We show
the comparison results with primal based MAP inference
algorithms in Section 4.1 and dual based MAP inference
algorithm in Section 4.2 respectively. We also show in Sec-
tion 4.3 how tree decomposition benefits the performance
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Figure 2: Both Bethe-ADMM and MPLP are run for sufficiently
long, i.e., 50000 iterations. The dual objective value is plotted as
a function of runtime (seconds). The MPLP algorithm gets stuck
and does not reach the global optimum.

of Bethe-ADMM. We run experiments in Section 4.1-4.3
using sequential updates. To illustrate the scalability of our
algorithm, we run parallel Bethe-ADMM on a multicore
machine and show the linear speedup in Section 4.4.

4.1 Comparison with Primal based Algorithms

We compare the Bethe-ADMM algorithm with the prox-
imal algorithm [18], Exact ADMM algorithm and Pri-
mal ADMM algorithm [15]. For the proximal algorithm,
we choose the Bregman divergence as the sum of KL-
divergences across all node and edge distributions. Follow-
ing the methodology in [18], we terminate the inner loop
if the maximum constraint violation of L(G) is less than
10−3 and set wt = t. Similarly, in applying the Exact
ADMM algorithm, we terminate the loop for solving mτ

if the maximum constraint violation of L(τ) is less than
10−3. For the Exact ADMM and Bethe-ADMM algorithm,
we use ‘edge decomposition’: each τ is simply an edge of
the graph and |T| = |E|. To obtain the integer solution, we
use node-based rounding: x∗u = argmaxxu µu(xu).

We show experimental results on two synthetic datasets.
The underlying graph of each dataset is a three dimensional
m×n×t grid. We generate the potentials as follows: We set
the nodewise potentials as random numbers from [−a, a],
where a > 0. We set the edgewise potentials according to
the Potts model, i.e., θuv(xu, xv) = buv if xu = xv and
0 otherwise. We choose buv randomly from [−1, 1]. The
edgewise potentials penalize disagreement if buv > 0 and
penalize agreement if buv < 0. We generate datasets using
m = 20, n = 20, t = 16, k = 6 with varying a.

Figure 1(a) shows the plots of (1) on one synthetic dataset
and we find that the algorithms have similar performances
on other simulation datasets. We observe that all algo-
rithms converge to the optimal value 〈µ∗,f〉 of (3) and
we plot the relative error with respect to the optimal value
|〈µ∗ − µt,f〉| on the two datasets in Figure 1(b) and 1(c).

Overall, the Bethe-ADMM algorithm converges faster than
other primal algorithms. We observe that the proximal
algorithm and Exact ADMM algorithm are the slowest,
due to the sequential projection step. In terms of the de-
coded integer solution, the Bethe-ADMM, Exact ADMM
and proximal algorithm have similar performances. We
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(a) Rounded integer solution on 1jo8.
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(b) Dual value on 1jo8.
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Figure 3: Results of Bethe-ADMM, MPLP and Dual ADMM algorithms on two protein design datasets. Figure 3(a) plots the the value
of the decoded integer solution as a function of runtime (seconds). Figure 3(b) and 3(c) plot the dual value as a function of runtime
(seconds). For Dual ADMM, we set β = 0.05. For Bethe-ADMM, we set α = β = 0.1. Bethe-ADMM and Dual ADMM have similar
performance in terms of convergence. All three methods have comparable performances for the decoded integer solution.

also note that a higher objective function value does not
necessarily lead to a better decoded integer solution.

4.2 Comparison with Dual based Algorithms

In this section, we compare the Bethe-ADMM algorithm
with the MPLP algorithm [7] and the Dual ADMM al-
gorithm [15]. We conduct experiments on protein design
problems [26]. In these problems, we are given a 3D struc-
ture and the goal is to find a sequence of amino-acids that
is the most stable for that structure. The problems are mod-
eled by nodewise and pairwise factors and can be posed as
finding a MAP assignment for the given model. This is a
demanding setting in which each problem may have hun-
dreds of variables with 100 possible states on average.

We run the algorithms on two problems with different sizes
[26], i.e., 1jo8 (58 nodes and 981 edges) and 1or7 (180
nodes and 3005 edges). For the MPLP and Dual ADMM
algorithm, we plot the value of the integer programming
problem (1) and its dual.. For Bethe-ADMM algorithm,
we plot the value of dual LP of (3) and the integer pro-
gramming problem (1). Note that although Bethe-ADMM
and Dual ADMM have different duals, their optimal val-
ues are the same. We run the Bethe-ADMM based on edge
decomposition. Figure 3 shows the result.

We observe that the MPLP algorithm usually converges
faster, but since it is a coordinate ascent algorithm, it can
stop prematurely and yield suboptimal solutions. Figure 2
shows that on the 1fpo dataset, the MPLP algorithm con-
verges to a suboptimal solution. We note that the conver-
gence time of the Bethe-ADM and Dual ADM are similar.
The three algorithms have similar performance in terms of
the decoded integer solution.

4.3 Edge based vs Tree based

In the previous experiments, we use ‘edge decomposition’
for the Bethe-ADMM algorithm. Since our algorithm can
work for any tree-structured graph decomposition, we want
to empirically study how the decomposition affects the per-
formance of the Bethe-ADMM algorithm. In the follow-
ing experiments, we show that if we can utilize the graph

(a)

(b)

Figure 4: A simulation dataset with m = 2, s = 7 and n = 3.
In 4(a), the red nodes (S12) are sampled from tree 1 and the blue
nodes (D12) are sampled from tree 2. In 4(b) , sampled nodes are
connected by cross-tree edges (E12). Tree 1 with nodes in D12

and edges in E12 still form a tree, denoted by solid lines. This
augmented tree is a tree-structured subgraph for Bethe-ADMM.

structure when decomposing the graph, the Bethe-ADMM
algorithm will have better performance compared to simply
using ‘edge decomposition’, which does not take the graph
structure into account.

We conduct experiments on synthetic datasets. We gen-
erate MRFs whose dependency graphs consist of several
tree-structured graphs and cross-tree edges to introduce cy-
cles. To be more specific, we first generate m binary tree
structured MRFs each with s nodes. Then for each ordered
pair of tree-structured MRFs (i, j), 1 ≤ i, j ≤ m, i 6= j,
we uniformly sample n nodes from MRF i with replace-
ment and uniformly sample n (n ≤ s) nodes from MRF
j without replacement, resulting in two node sets Sij and
Dij . We then connect the nodes in Sij and Dij , denoting
them as Eij . We repeat this process for every pair of trees.
By construction, the graph consisting of tree i, nodes in
Dij and edges in Eij , ∀j 6= i is still a tree. We will use
these m augmented trees as the tree-structured subgraphs
for the Bethe-ADMM algorithm. Figure 4 illustrates the
graph generation and tree decomposition process. A sim-
ple calculation shows that for this particular tree decompo-
sition,O(m2nk) equality constraints are maintained, while
for edge decomposition, O(msk +m2nk) are maintained.
When the graph has dominant tree structure, tree decompo-
sition leads to much less number of equality constraints.

229



0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Time (seconds)

M
a
x
im

u
m

 C
o
n

st
ra

in
t 

V
io

la
ti

o
n

 

 

Tree Decomposition

Edge Decomposition 

(a) s = 1023.
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(b) s = 4095.
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(c) s = 16383.

Figure 5: Results of Bethe-ADMM algorithms based on tree and edge decomposition on three simulation datasets with m = 10, n =
20. The maximum constraint violation in L(G) is plotted as a function of runtime (seconds). For both algorithms, we set α = β = 0.05.
The tree based Bethe-ADMM algorithm has better performance than that of the edge based Bethe-ADMM when the tree structure is
more dominant in G.

For the experiments, we run the Bethe-ADMM algorithm
based on tree and edge decomposition with different values
of s, keeping m and n fixed. It is easy to see that the tree
structure becomes more dominant when s becomes larger.
Since we observe that both algorithms first converge to the
optimal value of (3) and then the equality constraints are
gradually satisfied, we evaluate the performance by com-
puting the maximum constraint violation of L(G) at each
iteration for both algorithms. The faster the constraints are
satisfied, the better the algorithm is. The results are shown
in Figure 5. When the tree structure is not obvious, the two
algorithms have similar performances. As we increase s
and the tree structure becomes more dominant, the differ-
ence between the two algorithms is more pronounced. We
attribute the superior performance to the fact that for the
tree decomposition case, much fewer number of equality
constraints are imposed and each subproblem on tree can
be solved efficiently using the sum-product algorithm.

4.4 Scalability Experiments on Multicores

The dataset used in this section is the Climate Research
Unit (CRU) precipitation dataset [16], which has monthly
precipitation from the years 1901-2006. The dataset is of
high gridded spatial resolution (360 × 720, i.e., 0.5 degree
latitude × 0.5 degree longitude) and includes the precipita-
tion over land.

Our goal is to detect major droughts based on precipita-
tion. We formulate the problem as the one of estimating
the most likely configuration of a binary MRF, where each
node represents a location. The underlying graph is a three
dimensional grid (360 × 720 × 106) with 7,146,520 nodes
and each node can be in two possible states: dry and nor-
mal. We run the Bethe-ADMM algorithm on the CRU
dataset and detect droughts based on the integer solution
after node-based rounding. For the details of the this ex-
periment, we refer to readers to [5]. Our algorithm suc-
cessfully detects nearly all the major droughts of the last
century. We also examine how the Bethe-ADMM algo-
rithm scales on the CRU dataset with more than 7 million
variables. We run the Open MPI code with different num-
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Figure 6: The Open MPI implementation of Bethe-ADMM has
almost linear speedup on the CRU dataset with more than 7 mil-
lion nodes.

ber of cores and the result in Figure 6 shows that we obtain
almost linear speedup with the number of cores.

5 Conclusions

We propose a provably convergent MAP inference algo-
rithm for large scale MRFs. The algorithm is based on the
‘tree decomposition’ idea from the MAP inference liter-
ature and the alternating direction method from the opti-
mization literature. Our algorithm solves the tree structured
subproblems efficiently via the sum-product algorithm and
is inherently parallel. The empirical results show that the
new algorithm, in its sequential version, compares favor-
ably to other existing approximate MAP inference algo-
rithm in terms of running time and accuracy. The exper-
imental results on large datasets demonstrate that the paral-
lel version scales almost linearly with the number of cores
in the multi-core setting.
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Abstract

In this paper we propose a multi-armed ban-
dit inspired, pool based active learning algo-
rithm for the problem of binary classification.
By carefully constructing an analogy between
active learning and multi-armed bandits, we
utilize ideas such as lower confidence bounds,
and self-concordant regularization from the
multi-armed bandit literature to design our
proposed algorithm. Our algorithm is a se-
quential algorithm, which in each round as-
signs a sampling distribution on the pool,
samples one point from this distribution, and
queries the oracle for the label of this sam-
pled point. The design of this sampling dis-
tribution is also inspired by the analogy be-
tween active learning and multi-armed ban-
dits. We show how to derive lower confidence
bounds required by our algorithm. Exper-
imental comparisons to previously proposed
active learning algorithms show superior per-
formance on some standard UCI data-sets.

1 Introduction

In the classical passive binary classification prob-
lem one has access to labeled samples S =
{(x1, y1), . . . , (xn, yn)}, drawn from an unknown dis-
tribution P defined on a domain X ×{−1,+1}, where
X ⊂ Rd. The points {x1, . . . , xn} are sampled i.i.d.
from the marginal distribution PX , and the labels
y1, . . . , yn are sampled from the conditional distribu-
tion PY |X=x. Classical learning algorithms, such as
boosting, SVMs, logistic regression choose a hypoth-
esis class H, and an appropriate loss function L(·),
and solve some sort of an empirical risk minimiza-
tion problem to return a hypothesis ĥ ∈ H, whose

risk R(h)
def
= Ex,y∼PL(yh(x)) is small. However, in

domains such as speech recognition, natural language

processing, there is generally a lacuna of labeled data,
and obtaining labels for unlabeled data is both tedious,
and expensive. In such cases it is of both theoretical
and practical interest to design learning algorithms,
which need only a few labeled examples for training,
and also guarantee good performance on unseen data.
In recent years active learning (AL) has emerged as a
very popular framework for solving machine learning
problems with limited labeled data (Settles, 2009). In
this framework the learning algorithm is “active”, and
is allowed to query, an oracle O, for the label of those
points which it feels are maximally informative for the
learning process. The hope is that by using few, but
wisely chosen labels the active learning algorithm will
be able to learn as well as a passive learning algorithm,
which has access to lots of labeled data.

Broadly speaking AL algorithms can be classified into
three kinds, namely membership query (MQ) based
algorithms, stream based algorithms and pool based
algorithms. All these three kinds of AL algorithms
query O for the label of the point, but differ from
each other in the nature of the queries. In MQ based
algorithms the active learner can query O, for the la-
bel of a point in the input space X . However, this
query need not necessarily be from the support of the
marginal distribution PX . MQ algorithms might work
poorly when the oracle O is a human annotator (Baum
and Lang, 1992). Stream based AL algorithms (Cohn
et al., 1994; Chu et al., 2011) sample a point x from
the marginal distribution PX , and decide on-the-fly
whether to query O for the label of x. Stream based
AL algorithms are computationally efficient, and most
appropriate when the underlying distribution changes
with time. In pool based AL we are provided with a
pool P = {x1, . . . xn} of unlabeled points, which have
been sampled i.i.d from the marginal distribution PX ,
and a labeling oracle O, which when queried for the
label of x, returns y ∼ PY |X=x. Algorithms in the
pool based setting have the luxury of deciding which
points to query by looking at the entire pool.
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Contributions. In this paper we shall deal with pool
based active learning. We shall also assume that we
have a query budget, B, of the maximum number of
queries the AL algorithm can issue to the oracle.

We view AL from the lens of exploration-exploitation
trade-off. The concept of exploration-exploitation is
central to problems in decision making under uncer-
tainty, and is best illustrated by the multi-armed ban-
dit (MAB) problem 1 2. The MAB problem is a B
round game, where in a generic round t, the player
has to pull one among k arms of a multi-armed ban-
dit. On doing so the player suffers a loss Lt. The
player does not get to know the loss he could have
suffered if he had pulled a different arm. The goal of
the player is to minimize the cumulative loss suffered
over B rounds. In each round the player needs to re-
solve the dilemma of whether to explore an arm which
has not been pulled in the past, or whether to exploit
the knowledge of the cumulative losses of the arms
that have been pulled in the past. We provide a pool
based, sequential AL algorithm called LCB-AL, which
is motivated by applying algorithmic ideas from the
problem of multi-armed bandits to the problem of AL.
In order to do so we build a bridge between the MAB
problem and AL problem, providing an equivalence
between the arms of a MAB problem, and the hypoth-
esis in H, and mitigating the problem of absence of
an explicit loss signal in AL, unlike MAB. Establish-
ing this analogy is not very straightforward, but once
done allows us to readily use tools such as lower confi-
dence bounds (Auer et al., 2002a), and self-concordant
regularization (Abernethy et al., 2008) in the design of
LCB-AL. To our knowledge, our work is one of the first
in trying to use bandit type ideas for active learning,
and we strongly believe that one can build extremely
practical, yet very simple and scalable algorithms by
understanding the interplay between multi-armed ban-
dits and active learning.

In section 2 we take the first steps towards building an
analogy between MAB and AL. This inspires us to use
a very successful algorithm from the MAB literature,
for the problem of AL. We build the technical tools
needed to fill in the details of our proposed algorithm
in section 3. Section 4 discusses related work, and
section 5 compares LCB-AL with other active learning
algorithms on various datasets.

1Usually in the literature on MAB it is common to talk
of rewards. For our purposes, it would be more convenient
to talk of losses rather than rewards.

2We shall consider the non-stochastic bandit problem

2 Towards an analogy between
Multi-armed bandits and Active
Learning

In active learning the goal is to find a hypothesis h ∈ H
with low risk, by using as little labeled data as possi-
ble. In other words, we want to quickly estimate the
risk of different hypothesis, and discard suboptimal hy-
pothesis. In MAB, the goal of the player is to design
a strategy, that minimize the cumulative loss suffered
by the player over T rounds. If the player knew the
arms with the smallest possible cumulative loss then
the optimal strategy would be to pull this arm in each
and every round. Hence, in MAB the player wants to
quickly detect the (near) optimal arm to pull. Look-
ing from the lens of MAB, it is now natural to think
of AL problem as a MAB problem, where the arms
of the MAB are the different hypothesis in H. While
this is a satisfying connection there are two issues that
still need to be resolved. 1) In the MAB problem, in
each round we pull an arm of the MAB. If arms of the
MAB were equivalent to the different hypothesis in H,
then how do we decide which “hypothesis to pull”. 2)
In MAB the player gets to see an explicit loss signal
at the end of each round. However, in AL there is no
such explicit loss signal, instead the feedback that is
received is the label of the queried point x. Hence,
the next question that arises is how could one use the
label information as some kind of a loss signal? The
following subsections attempt to resolve these issues.

2.1 Which hypothesis to pull?

A very popular approach in MAB to mitigate the
exploration-exploitation trade-off is via the use of
lower confidence bounds (LCB) (Auer et al., 2002b,a;
Audibert et al., 2009a; Bubeck and Cesa-Bianchi,
2012) 3. In the LCB approach, at the end of round
t, for each arm a in the set of arms, we build a lower
confidence bound, LCBt(a) for the cumulative loss
the player would have suffered, in hindsight, had he
pulled arm a for the first t rounds. The choice of arm
at+1 to be pulled in the next round, i.e. round t + 1
is the solution to the optimization problem at+1 ∈
arg min LCBt(a). Such lower confidence bounds can
be derived via concentration inequalities (Auer et al.,
2002b; Audibert et al., 2009b), and are generally ex-

pressed as LCBt(a)
def
= L̂t(a)− U(L̂t(a)), where L̂t(a)

is an estimate of the cumulative loss of arm a, the
player would have suffered had he pulled a each time
for the first t rounds, and U(L̂t(a)) is some measure
of uncertainty (typically variance) of the cumulative

3Traditionally it has been called as the upper-confidence
bound algorithm. Since, we are dealing with losses and not
rewards, it is useful for our purpose, to rename this as LCB
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loss of a, at the end of round t. The reason behind
the success of confidence bounds in the MAB prob-
lem can be explained by the fact that LCBt(a) cap-
tures both the knowledge of the cumulative loss, via
L̂t(a), as well as the uncertainty in this estimate, via
U(L̂t(at)). By pulling the arm at+1 in round t + 1 of
our MAB algorithm, and by updating our estimate of
the cumulative loss of arm at+1, our updated estimate
L̂t+1(at+1) is a better estimator as U(L̂t+1(at+1)) is
potentially smaller than U(L̂t(at+1)).

One could use a similar technique even in AL. If one
had some kind of a LCB on the risk of each hypothesis,
then we could equate pulling a hypothesis as solving
the optimization problem ht+1 ∈ arg minh∈H LCBt(h),
where LCBt(h) is the lower confidence bound on the
risk of h ∈ H. An LCB for R(h) can be obtained by
utilizing the labeled data gathered over the run of the
algorithm.

2.2 Absence of a loss signal in AL

When an arm is pulled in the MAB setting, the player
suffers a loss, and this loss is used to update the LCB
of the chosen arm. However, in AL there is no such
explicit loss signal. One might come up with a proxy
loss signal for the active learning problem which can
then be used to update the lower confidence bound of
all the hypothesis in H. However, we take a different
approach. The utility of the loss signal when the arm
at is pulled in round t of the MAB problem is two
folds. Firstly to update the cumulative loss of at, and
secondly to decrease the uncertainty in the estimate
of the cumulative loss of at. In AL when a certain
point x is queried for its label, then this label informa-
tion can be utilized to improve the error estimate of ht
as well as other hypothesis. Hence, it makes sense to
query O, for the label of some point x in P , such that
its label information maximally reduces the variance
of the estimate of risk of ht. Hence, by conceptually
viewing label information as a mechanism to reduce
the variance of the risk estimate of different hypothe-
sis, we have a disciplined way of deciding which points
to query. Table 1 summarizes the analogy between AL
and MAB.

2.3 Rough outline of LCB-AL.

LCB-AL is a sequential algorithm where in each round
a probability distribution is placed on P, and a single
point is sampled from P. We additionally assume that
the hypothesis class H is convex. For the sake of sim-
plicity we shall allow re-querying points in the pool,
i.e. if a point xi was first queried in some round t1,
then it might once again be queried in round t2. If
such a re-querying happens then we use the label that

was returned by O in round t1. 4 In order to construct
lower confidence bounds on the risk of h we use impor-
tance weighting along with Bernstein type inequalities
for martingales. The advantage of using importance
weights, is that they facilitate data reuse, when an ac-
tively sampled data with one hypothesis class, is used
in the future to learn a model from a different hypothe-
sis class. The problem with such importance weighted
estimators is that they have very high variance. The
seminal work of Abernethy et al. (2008) showed that
one could tackle the high variance of the importance
weighted estimators, via the use of self-concordant bar-
riers (Nesterov and Nemirovsky, 1994). This inspires
us to use the self-concordant barrier of H along with
lower confidence bounds in our algorithm. As a result
in each round (see step 14 of algorithm 1) we solve the
optimization problem

ht+1 ∈ arg min
h∈H

LCBt(h) +R(h),

where R(h) is the self-concordant barrier of H. Using
ht+1 we induce a sampling distribution over the pool
P, at the start of round t+1 (see step 4 of algorithm 1).
As discussed in section 2.2, the probability distribution
is such that it minimizes the (conditional) variance of
the estimate of risk of ht. We shall make this clear in
section 3.2.

3 Risk Estimates and Confidence
Bounds

We begin with the notation that will be required to de-
velop our confidence bounds. Let pti be the probability
of querying xi in round t, and Qti ∈ {0, 1} be the ran-
dom variable which takes the value 1 if xi was queried
in round t, and 0 otherwise. Hence E[Qti|pti] = 1. For
convenience, we shall denote by Q1:t

1:n the collection
of random variables Q1

1, . . . Q
t
1, . . . , Q

1
n, . . . , Q

t
n. Let

Zti
def
= yiQ

t
i. Denote by x1:n the collection of random

variables x1, . . . , xn. Also let [x]+ = max{x, 0}.
We shall make the following independence assumption:

Assumption 1. If xi has not been queried up until
the start of round t, then pti⊥⊥yi|x1:n, Z

1:t−1
1:n .

For any hypothesis h ∈ H, define

L̂t(h)
def
= 1

nt

∑n
i=1

∑t
τ=1

Qτi
pτi
L(yih(xi)). L̂t(h) is

an unbiased estimator of the risk of the hypothesis
h, and was first proposed by Ganti and Gray (2011).

4An algorithm similar to the one suggested in this pa-
per, can be designed such that re-querying is not allowed.
This requires different type of estimators, and the expres-
sions for LCBt(h) turned out to be rather complicated.
Hence, for simplicity of exposition we allow re-querying of
points in this paper.
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MAB AL
Arms Hypothesis

Loss signal on pulling an arm Sampling distribution
helps improve cumulative loss estimates designed to reduce variance of risk estimates of hypothesis

Table 1: The analogy between MAB and AL that is used as a guiding principle for the design of LCB-AL

Algorithm 1 LCB-AL Input: P = {x1, . . . , xn}, Loss
function L(·), Budget B, Labeling Oracle O, pmin

1: Set h1 = 0, t = 1.
2: while num queried ≤ B do
3: for xi ∈ P do
4:

ȳi =

{
yi if xi ∈ Qt−1

sign(ht(xi)) otherwise
(1)

5: pti ← pmin + (1− npmin) L(ȳiht(xi))∑
xi∈P L(ȳiht(xi))

.

6: end for
7: Sample a point (say x) from the probability vec-

tor pt.
8: if x was not queried in the past then
9: Query O for the label y of x.

10: num queried← num queried + 1
11: else
12: Reuse the label of x.
13: end if
14: Solve: ht+1 = arg minh∈H LCBt(h) + λtR(h).
15: t← t+ 1
16: end while
17: Return hB .

Finally let Qt def
= {xi ∈ P|

∑t
τ=1Q

τ
i > 0}. Let

Fτ def
= σ(x1:n, Z

1:τ
1:n) be the smallest sigma algebra that

makes the random variables x1:n, Z
1:τ
1:n measurable.

Clearly F1 ⊂ . . . ⊂ Ft form a filtration. Also we shall
assume that our loss function is a convex function of
the margin yh(x), and is upper bounded by Lmax <∞
for all x ∈ P, h ∈ H. Popular loss functions such as
logistic loss, exponential loss, squared loss all satisfy
these criteria.

3.1 Constructing lower confidence bounds

Utilizing the unbiased estimator L̂t(h), along with
Bernstein type inequalities for martingales allows us to
construct lower confidence bounds for R(h). We shall
begin with the standard Azuma-Hoeffding bound for
martingale difference sequences.

Theorem 1. [Azuma-Hoeffding inequality] Let
X1, X2, . . . be a martingale difference sequence w.r.t a
filtration F1 ⊂ F2 ⊂ . . .. If for each i ≥ 1, |Xi| ≤ ci.

Then,

P[|
n∑

i=1

Xi| ≥ ε] ≤ 2 exp

(
− 2ε2∑n

i=1 c
2
i

)

We shall also need the following Bernstein type result
from Bartlett et al. (2008).

Theorem 2. Let M1, . . . ,Mt be a martingale differ-
ence sequence (MDS), w.r.t. the filtration F1 ⊂ . . . ⊂
Ft, with |Mτ | ≤ b. Let VτMτ

def
= V(Mτ |Fτ−1), and

σ2 def
=
∑t
τ=1 VτMτ . Then we have, for any δ < 1/e,

and t ≥ 4, with probability at least 1− δ log(t)

t∑

τ=1

Mτ < 2 max{2σ, b
√

log(1/δ)}
√
log(1/δ).

Lemma 1. For any fixed h ∈ H, t ≥ 4, δ < 1/e, with
probability at least 1− δ log(t), we have

1

n

n∑

i=1

t∑

τ=1

Qτi
pτi
L(yih(xi))−

t

n

n∑

i=1

L(yih(xi)) ≤

2 max

(
2

n

√√√√
t∑

τ=1

n∑

i=1

L2(yih(xi))

pτi
−
( n∑

i=1

L(yih(xi))
)2

,

Lmax

(
1 +

1

npmin

)√
log(1/δ)

)
√

log(1/δ)

Proof. Let,

Mτ
def
=

1

n

n∑

i=1

Qτi
pτi
L(yih(xi))−

1

n

n∑

i=1

L(yih(xi)). (2)

Utilizing the independence assumption it is easy to
see that E[Mτ |Fτ−1] = 0. Hence M1, . . . ,Mt form
a martingale difference sequence w.r.t. the filtration
F1, . . . ,Ft. In order to apply theorem 2 we need es-
timates for the sum of conditional variances, and the
range of |Mτ |. We proceed to establish upper bounds
on these quantities now.

From equation 2 and triangle inequality we get

|Mτ | ≤
1

n
|
n∑

i=1

Qτi
pτi
L(yih(xi))|+

1

n
|
n∑

i=1

L(yih(xi))|

≤ Lmax

(
1 +

1

npmin

)
. (3)
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σ2 def
=

t∑

τ=1

E[M2
τ |Fτ−1]

=

t∑

τ=1

1

n2
E
[ Qτi

(pτi )2
L2(yih(xi))

+
2

n

∑

i 6=j

QτiQ
τ
j

pτi p
τ
j

L(yih(xi))L(yjh(xj))

︸ ︷︷ ︸
=0

− 1

n2

( n∑

i=1

L(yih(xi))
)2

|Fτ−1

]

(4)

=
1

n2

t∑

τ=1

n∑

i=1

L2(yih(xi))

pτi
− 1

n2

( n∑

i=1

L(yih(xi))
)2

.

(5)

In equation 4 we used the fact that in each round only
one point is queried. The result now follows by the
application of theorem 2 with b, σ2 defined as in equa-
tions 3, 5 respectively.

While this theorem enables us to construct lower
bounds for the risk of the hypothesis, the major prob-
lem is that the RHS of theorem 1 depends on the labels
of all the points in the pool and not just the queried
labels. We shall now provide an estimator for the vari-
ance term σ2.

Lemma 2. With probability at least 1− δ, we have

σ2 ≤ 1

n2

[∑

i=1:n
τ=1:t

Qτi
(pτi )2

L2(yih(xi))−
(∑

Qt
L(yih(xi)

))2

+
L2

max

√
2t log(1/δ)(n− 1)√

pmin

]
+

Proof. From the proof of theorem 1 we have

σ2 =
1

n2

t∑

τ=1

n∑

i=1

L2(yih(xi))

pτi︸ ︷︷ ︸
I1

− 1

n2

( n∑

i=1

L(yih(xi))
)2

︸ ︷︷ ︸
I2

.

A simple lower bound on I2 is

Î2
def
=

1

n2

(∑

Qt
L(yih(xi)

)2

. (6)

Now let

Î1
def
=

1

n2

t∑

τ=1

n∑

i=1

Qτi
(pτi )2

L2(yih(xi)).

Define

Mτ
def
=

1

n2

n∑

i=1

Qτi
(pτi )2

L2(yih(xi))−
1

n2

n∑

i=1

1

pτi
L2(yih(xi))

Once again utilizing our independence assumption, we
conclude that M1, . . .Mt form an MDS w.r.t. the fil-
tration F1, . . . ,Ft. Applying theorem 1 to this MDS,
we get with probability at least 1− δ

|
t∑

τ=1

Mτ | ≤
L2

max

√
2t log(1/δ)

n2

√
n− 1

pmin
. (7)

The result follows from equations 6, 7

We are now ready to establish a lower confidence
bound on the risk of hypotheses in H.

Theorem 3. Let |H| < ∞. With probability at least
1−|H|δ(2+T log(T/e)), for all h ∈ H, 4 ≤ t ≤ T , and
δ < 1/e, we have

R(h) ≥
[
L̂t(h)− 2

t
log(1/δ)Lmax

(
1 +

1

npmin

)

− 4

nt

√
Vt log(1/δ)−

√
L2

max log(1/δ)

2n

]
+

(8)

where

Vt
def
=
[∑

i=1:n
τ=1:t

Qτi
(pτi )2

L2(yih(xi))−
(∑

Qt
L(yih(xi)

))2

+
L2

max

√
2t log(1/δ)(n− 1)√

pmin

]
+

(9)

Proof. For any fixed h ∈ H, and t ≤ T , we have from
theorems 1, 2, Hoeffding inequality, and the union
bound that with probability at least 1− δ log(t)− 2δ

R(h) ≥
[
L̂t(h)− 2

t
log(1/δ)Lmax(1 +

1

npmin
)

− 4

nt

√
Vt log(1/δ)−

√
L2

max log(1/δ)

2n

]
+
. (10)

Applying union bound over all hypothesis and over all
t ≥ 4, and approximating n − 1 with n we get the
desired result.

Specification of LCBt(h). Theorem 3 provides us
with an expression for LCBt(h). For the purpose of
solving the optimization in step 7 of our LCB-AL al-
gorithm, we can set

LCBt(h)
def
= L̂t(h)− 4

nt

√
log(1/δ)Vt, (11)

where Vt is shown in equation 9.
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3.2 Query probability distribution in each
round of LCB-AL

The only thing that is left to be motivated in LCB-AL
is the choice of probability distribution in step 3. As
explained in section 2.2 we want to use a sampling dis-
tribution, such that the conditional variance of the risk
estimate L̂t(h) of ht is minimized. We shall now show
how the sampling distribution should be designed in
order to achieve this goal. Let ∆ ⊂ Rn+ be the prob-
ability simplex. Let Vt(·) denote the variance, condi-

tioned on x1:n, Z
1:t−1
1:n . Let pt

def
= (pt1, . . . , p

t
n) ∈ ∆. At

the start of round t, the desired sampling distribution,
pt should satisfy

pt = arg min
p̃t∈∆

Vt
[ 1

nt

∑

i=1:n
τ=1:t

Q̃τi
p̃τi
L(yiht(xi))

︸ ︷︷ ︸
L̂t(ht)

]

= arg min
p̃t∈∆

n∑

i=1

EtL2(yiht(xi))

p̃τi

Solving the above optimization problem yields the sim-
ple solution pti ∝

√
EtL2(yiht(xi)). If xi ∈ Qt−1,

then the label yi is known and hence, we let pti ∝
L(yiht(xi)). If xi /∈ Qt−1, then since yi is yet un-
known, we let pti ∝ L(|ht(xi)|). This is equivalent to
taking yi to be equal to sgn(ht(xi)) (see steps 3, 4 of
algorithm 1). This scheme encourages querying points
which have small margin w.r.t the current classifier,
ht, or points which have already been queried for their
label, but on which the current hypothesis, ht suffers
a large loss. In any round, the minimum probability
of querying any point is pmin. This guarantees that
L̂t(h) is an unbiased estimator of risk of h.

4 Related Work

A variety of pool based AL algorithms have been pro-
posed in the literature employing various query strate-
gies. Some of the popular querying strategies include
uncertainty sampling, where the active learner queries
the point whose label it is most uncertain about (Lewis
and Gale, 1994; Settles and Craven, 2008; Tong and
Chang, 2001). Usually the uncertainty in the label
is calculated using certain information-theoretic cri-
teria such as entropy, or variance of the label distri-
bution. Seung et al. (1992) introduced the query-by-
committee (QBC) framework where a committee of
potential models, which all agree on the currently la-
beled data is maintained and, the point where most
committee members disagree is considered for query-
ing. Other frameworks include querying the point,
which causes the maximum expected reduction in er-
ror (Zhu et al., 2003; Guo and Greiner, 2007), vari-

ance reducing query strategies such as the ones based
on optimal design (Flaherty et al., 2005; Zhang and
Oles, 2000). A very thorough literature survey of dif-
ferent active learning algorithms has been done by
Settles (2009). AL algorithms that are consistent
and have provable label complexity have been pro-
posed for the agnostic setting for the 0-1 loss in re-
cent years (Dasgupta et al., 2007; Balcan et al., 2009).
Hanneke and Yang (2012) recently provided a disagree-
ment region based algorithm, with provable guarantees
for active learning with general loss functions.

Algorithmically, LCB-AL is similar in flavor to the
UPAL algorithm introduced by Ganti and Gray
(2011). In the UPAL algorithm the authors suggested
minimizing an unbiased estimator of risk of h, and a
sampling distribution that was in proportion to the
entropy of the prediction on the pool. However as we
suggested the use of self-concordant regularizer is very
crucial in tackling the high variance of our estimators.
As we show in our experiments (see section 5) the use
of self-concordant barrier as a regularizer, helps lend
stability to our algorithm, and consequently LCB-AL
performs better than UPAL.

To our knowledge there has been only one other paper
bridging the world of active learning and MAB. Baram
et al. (2004) proposed a meta-active learning algorithm
called COMB. COMB was an implementation of the
EXP4 algorithm for MAB with expert advice, where
the different active learning algorithms are the vari-
ous “experts” and the different points in the pool are
the arms of the MAB. Briefly, in each round, each
of the experts suggest a sampling distribution on the
pool. COMB maintains an estimate of the error rate
of each expert, and uses exponential weighting to come
up with a sampling distribution on the pool. In order
to estimate the error rate of each of the experts, the
authors proposed a proxy reward function of querying
a point in terms of the entropy of label distribution of
the unlabeled pool, induced by the classifier obtained
on the labeled dataset gathered by COMB till the cur-
rent iteration. In a way, the concept of reward seems
inevitable in their formulation because the unlabeled
points in the pool are treated as arms of the MAB.
In contrast, we think of the arms of the bandit as the
different hypothesis, and querying a data point, as the
process of improving our estimate of the risk of the
different hypothesis. Hence, we bypass the need for an
explicit reward signal, yet utilize MAB ideas for AL.

5 Experiments

We implemented LCB-AL in MATLAB, and compared
it with some previously proposed active learning al-
gorithms on four UCI datasets. The competing algo-
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rithms are UPAL (Ganti and Gray, 2011), BMAL (Hoi
et al., 2006), and a passive learning (PL) algorithm
that minimizes the regularized logistic loss. UPAL is
a sequential, pool based algorithm that minimizes the
unbiased estimator L̂t(h), of the risk of a hypothe-
sis h, along with the squared L2 norm of h in each
round. BMAL is a batch mode active learning al-
gorithm introduced by Hoi et al. (2006). Hoi et al.
in their paper showed superior empirical performance
of BMAL over other pool based active learning algo-
rithms, and this is the primary motivation for using
BMAL in our experiments. Given a pool P, and a bud-
get B, BMAL chooses a set of B points that minimize
the Fisher information ratio between the set of un-
queried and the queried points. The authors then pro-
pose a monotonic submodular approximation to the
original Fisher ratio objective, which is optimized by
a greedy algorithm. In order to keep our experiments
simple, and to facilitate easy comparison, we restricted
our hypothesis class to the set of linear hypothesis of
bounded L2 norm H = {h : ||h|| ≤ R}. For this
set H, the self-concordant regularizer R(h) is equal
to − log(R2 − ||h||2) (Abernethy et al., 2008), where
R > 0 was provided as an input to LCB-AL. For our
implementation of LCB-AL, we used a slightly differ-
ent definition for LCBt(h), than the one proposed in
equation 11. Let

LCB′t(h)
def
= L̂t(h)−Ct

√
V ′t −λt log(R2−||h||2), (12)

where

V ′t
def
=
[∑

i=1:n
τ=1:t

Qτi
(pτi )2

L2(yih(xi))−
(∑

Qt
L(yih(xi)

))2]
+
.

The definition of LCB′t(h) is almost similar to the one
suggested by equation 11 except that the terms that
were independent of h, in LCBt(h) were dropped to
get LCB′t(h). Ct, and λt in all our experiments were

set to

√
log(t)

10 , and 100nt(∑n
i=1

∑t−1
τ=1

Qτ
i
pτ
i

)1/3 respectively. We

used minFunc 5 to solve all of our optimization prob-
lems. We used a budget of 300 points. Finally, each of
the dataset was scaled to [−1, 1]d. Since, UPAL and
LCB-AL are randomized algorithms, on each dataset,
we ran them 10 times each, and report averaged mea-
surements.

5.1 Experimental comparisons of different
algorithms

Figure 1 shows the test error of the hypothesis ob-
tained, corresponding to the number of unique queries

5minFunc can be downloaded from http://www.di.
ens.fr/~mschmidt/Software/minFunc.html

made to the oracle, by each algorithm. Table 2 shows
the error rate on the test set, of each algorithm, once
the budget is exhausted. On three of the datasets,
namely MNIST, Abalone, and Statlog utilizing an
active learner is better than a passive learner. On
MNIST, the performance of LCB-AL and UPAL are
nearly equal as far as the final test error goes, and both
are better than BMAL. On abalone LCB-AL is better
than both BMAL and UPAL, while on Statlog the fi-
nal error achieved by BMAL is better than UPAL, and
also LCB-AL, though the difference between LCB-AL
and BMAL is pretty narrow. On Whitewine, passive
learner is better than any of the active learners. In or-
der to gain an insight into how well each of the learn-
ing algorithm learns with each query to the oracle,
we also report the cumulative error rate of each algo-
rithm, summed over all the queries. The cumulative
error rate of a learning algorithm is nothing but the
area under the curve (AUC) of error-rate vs number of
queries to the oracle. Even on this measure, LCB-AL
and UPAL are better than BMAL on MNIST, Abalone
and Whitewine datasets. On Abalone, and Statlog the
AUC of LCB-AL is appreciably smaller than that of
UPAL.

5.2 Comparing UPAL with LCB-AL

From our first set of experiments it looks like UPAL
is just as good as LCB-AL if not any better. e.g. on
the MNIST dataset, there is almost no difference be-
tween LCB-AL and UPAL. Since, both LCB-AL and
UPAL are randomized algorithms it makes sense to
measure the fluctuations in the performance of both
the algorithms. Table 3 gives the standard devia-
tion of AUC over all the runs for both LCB-AL and
UPAL. It is clear that the standard deviation of AUC
for LCB-AL is uniformly smaller than that of UPAL
over all datasets, and the difference in the standard
deviations is largest for the MNIST dataset. This can
be explained by the fact that, the unbiased estima-
tor of risk used in UPAL is a high variance estima-
tor, and hence not a reliable estimator of the risk of
a hypothesis. In LCB-AL, by utilizing lower confi-
dence bounds, and the self-concordant regularizer, we
are able to tackle the high variance of our estimator,
and at the same time harness the variance for explo-
ration in the hypothesis space. In fact, a similar phe-
nomenon occurs even in the MAB setting, where al-
gorithms built only on unbiased estimators, such as
EXP3 (Auer et al., 2002b), achieve optimal perfor-
mance only on an average, whereas algorithm using
confidence bounds such as EXP3.P achieve optimal
performance with high probability.
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Figure 1: Error rate of different learning algorithms with the number of queries made to the oracle.

Dataset LCB-AL UPAL BMAL PL
MNIST 0.0808 33.27 0.0809 32.75 0.0958 34.89 0.0918 40.08
Abalone 0.2604 83.49 0.2747 86.60 0.2695 86.21 0.2766 93.60
Statlog 0.0354 12.59 0.0433 14.97 0.0330 11.33 0.05 18.06

Whitewine 0.2771 86.30 0.2682 86.21 0.2665 86.95 0.2517 80.94

Table 2: Comparison of various active learning algorithms and passive learner on various datasets.In this table we report
both the error rate of each learner after it has exhausted its budget, as well as the area under the curve of error rate vs
number of queries made for each learning algorithm.
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Dataset LCB-AL UPAL
MNIST 3.8604 5.0132
Abalone 2.6512 2.6869
Statlog 0.7944 1.6691

Whitewine 2.4097 2.9992

Table 3: Standard deviation of the AUC of LCB-AL and
UPAL on different datasets.

6 Discussion

We proposed LCB-AL a multi-armed bandit inspired
pool based active learning algorithm. By viewing the
problem of active learning as quickly detecting the hy-
pothesis with (near) optimal risk, we view the problem
of active learning as similar to a MAB problem with
the arms being the different hypothesis. By building
lower confidence bounds on the risk of each hypothe-
sis we are able to perform exploration in the hypoth-
esis space. By conceptually investigating the role of
a loss signal in MAB, we are able to design a sam-
pling distribution from which we sample the points to
be queried. Experimental results suggest that our al-
gorithm is both more accurate, and also more stabler
than competing active learning algorithms.

In the near future we would like to investigate LCB-
AL theoretically. Two properties of LCB-AL are worth
investigating. Firstly, can we guarantee that the excess
risk of our algorithm goes to 0, as n → ∞, B → ∞?
Secondly, what is the budget B, required in order to
guarantee an excess risk of ε?

An immediate extension of this work could be to in-
vestigate how different concentration inequalities can
be utilized to give different lower confidence bounds
for the risk of a hypothesis. This has proven to be an
attractive idea in the MAB setting and it is generally
accepted that tighter concentration inequalities lead
to better algorithms for MAB (Audibert et al., 2009a;
Salomon and Audibert, 2011). We would expect some-
thing similar to happen even in AL.

On a more high level we believe that there is tremen-
dous potential for ideas from multi-armed bandits, and
various other extensions of multi-armed bandits such
as contextual bandits, bandit optimization, to be used
for active learning problems. Most of these algorithms
are very simple, efficient and hence should be useful in
designing simple, efficient active learning algorithms.
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Exploration–exploitation tradeoff using variance es-
timates in multi-armed bandits. Theoretical Com-
puter Science, 410(19):1876–1902, 2009b.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2):235–256, 2002a.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E.
Schapire. The nonstochastic multiarmed bandit
problem. SIAM Journal on Computing, 32(1):48–
77, 2002b.

M.F. Balcan, A. Beygelzimer, and J. Langford. Ag-
nostic active learning. JCSS, 75(1), 2009.

Y. Baram, R. El-Yaniv, and K. Luz. Online choice of
active learning algorithms. The Journal of Machine
Learning Research, 5:255–291, 2004.

P.L. Bartlett, V. Dani, T. Hayes, S. Kakade,
A. Rakhlin, and A. Tewari. High-probability regret
bounds for bandit online linear optimization. COLT,
2008.

E.B. Baum and K. Lang. Query learning can work
poorly when a human oracle is used. In IJCNN,
1992.
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Abstract

Matching pursuit (MP) methods are a prom-
ising class of feature construction algorithms
for value function approximation. Yet exist-
ing MP methods require creating a pool of
potential features, mandating expert knowl-
edge or enumeration of a large feature pool,
both of which hinder scalability. This pa-
per introduces batch incremental feature de-
pendency discovery (Batch-iFDD) as an MP
method that inherits a provable convergence
property. Additionally, Batch-iFDD does
not require a large pool of features, leading
to lower computational complexity. Empiri-
cal policy evaluation results across three do-
mains with up to one million states highlight
the scalability of Batch-iFDD over the previ-
ous state of the art MP algorithm.

1 Introduction

In complex decision-making tasks, from stacking
blocks to flying surveillance missions, the number of
possible features used to represent a domain grows ex-
ponentially in the basic number of variables. It follows
that generating a small number of relevant features
that are sufficient for determining an optimal policy is
a critical component for tractable reinforcement learn-
ing in complex environments. However, even in the
well-studied case of linear value function approxima-
tion [Silver et al., 2008; Stone et al., 2005], finding the
“right” set of features remains a challenge.

In the linear value function approximation case, sev-
eral methods exist for automated feature construction
[e.g., Lin and Wright, 2010; Ratitch and Precup, 2004;
Whiteson et al., 2007]. Of these techniques, Matching
Pursuit (MP) algorithms [Painter-Wakefield and Parr,
2012] have shown great promise in incrementally ex-
panding the set of features to better model the value

function. However, all prior MP techniques begin with
a collection of potential features from which new fea-
tures are selected. In large MDPs, this pool of features
has to either be carefully selected by a domain expert
or be prohibitively large to include all critical features,
both hindering scalability. Still, despite such require-
ments, MP algorithms have various desirable proper-
ties [See Painter-Wakefield and Parr, 2012], making
them an attractive option for RL feature construction.

Some similar techniques avoid enumerating a set of po-
tential features, but are not scalable for other reasons.
For example, Bellman Error Basis Function (BEBF)
[Parr et al., 2007] iteratively constructs a set of ba-
sis vectors without an enumerated pool of potential
features. However, BEBF relies on supervised learn-
ing techniques to map states to their feature values.
This process can be as complex as determining the
value function itself, mitigating the tractability gains
of feature construction. Similarly, Proto-Value Func-
tions [Mahadevan et al., 2006] do not use a pool of
potential features but learn a complex manifold rep-
resentation that can be computationally intensive for
arbitrary MDPs.

This paper presents a new algorithm, Batch incremen-
tal Feature Dependency Discovery (Batch-iFDD), that
does not require a large set of potential features at ini-
tialization. Moreover, we prove Batch-iFDD is an MP
algorithm, thereby inheriting the theoretical benefits
associated with those techniques. Batch-iFDD extends
the previously described online incremental Feature
Dependency Discovery (iFDD) algorithm [Geramifard
et al., 2011], which creates increasingly finer features
that help to eliminate error of the value function ap-
proximation. Our contributions in this paper are to
(1) extend iFDD to the batch setting (Section 2.4),
(2) prove that Batch-iFDD is an MP algorithm (Corol-
lary 3.6) and derive its guaranteed rate of error-bound
reduction (Theorem 3.4), (3) derive a practical approx-
imation for iFDD’s objective function resulting in an
algorithm called Batch-iFDD+ (Equation 10), and (4)
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empirically compare Batch-iFDD with the state of the
art MP algorithm across three domains including a 20
dimensional version of the System Administrator do-
main with over one million states (Section 4).

2 Preliminaries

In this section we define data structures for modeling
RL domains and approximating value functions. We
also describe a basic reinforcement learning technique
(Temporal Difference Learning) for evaluating a pol-
icy’s value through experience. Finally, we provide
definitions of the relationships between features and
describe the feature search process.

2.1 Reinforcement Learning

A Markov Decision Process (MDP) is a tuple
(S,A,Pass′ ,Rass′ , γ) where S is a set of states, A is
a set of actions, Pass′ is the probability of getting to
state s′ by taking action a in state s, Rass′ is the cor-
responding reward, and γ ∈ [0, 1) is a discount factor
that balances current and future rewards . We focus
on MDPs with finite states. A trajectory is a sequence
s0, a0, r0, s1, a1, r1, s2, . . ., where the action at ∈ A is
chosen according to a deterministic policy π : S → A,
mapping each state to an action. Given a policy π, the
value function, V π(s) for each state, is the expected
sum of the discounted rewards for an agent starting at
state s and then following policy π thereafter:

V π(s) = Eπ

[ ∞∑

t=0

γtrt

∣∣∣∣s0 = s

]

=
∑

s′∈S
Pπ(s)
ss′

[
Rπ(s)
ss′ + γV π(s′)

]
.

Since this paper primarily addresses the policy eval-
uation problem (i.e., finding the value function of a
fixed policy), the π notation is dropped from this point
on and included implicitly. For a finite-state MDP,
the vector V |S|×1 represents the value function. The
matrix P |S|×|S| represents the transition model with

P ij = Pπ(si)
sisj , and the vector R|S|×1 is the reward

model, with Ri =
∑
j P

π(si)
sisj Rπ(si)

sisj . Hence V can be
calculated in the matrix form as V = R + γPV =
T(V ), where T is the Bellman operator.

Storing a unique value for each state is impractical
for large state spaces. A common approach is to use
a linear approximation of the form V (s) = θ>φ(s).
The feature function φ : S → Rn maps each state to
a vector of scalar values. Each element of the feature
function φ(s) is called a feature; φf (s) = c ∈ R denotes
that feature f has scalar value c for state s, where
f ∈ χ = {1, . . . , n}. χ represents the set of features;1

1Properties such as being close to a wall or having low

the vector θ ∈ Rn holds weights. Hence,

V ≈ Ṽ =




—– φ>(s1) —–
—– φ>(s2) —–

...
—– φ>(s|S|) —–


×




θ1

θ2

...
θn


 , Φθ.

Binary features (φf : S → {0, 1}) are of special interest
to practitioners [Silver et al., 2008; Stone et al., 2005;
Sturtevant and White, 2006], mainly because they are
computationally cheap, and are the focus of this paper.

The Temporal Difference Learning (TD) [Sut-
ton, 1988] algorithm is a traditional policy evaluation
method where the current V (s) estimate is adjusted
based on the difference between the current estimated
state value and a better approximation formed by
the actual observed reward and the estimated value
of the following state. Given (st, rt, st+1) and the
current value estimates, the TD-error, δt, is calcu-
lated as: δt(V ) = rt + γV (st+1) − V (st). The one-
step TD algorithm, also known as TD(0), updates
the value estimates using V (st) = V (st) + αδt(V ),
where α is the learning rate. In the case of linear
function approximation, the TD update can be used
to change the weights of the value function approx-
imator: θt+1 = θt + αδt(V ). In the batch setting,
the least-squares TD (LSTD) algorithm [Bradtke and
Barto, 1996] finds the weight vector directly by min-
imizing the sum of TD updates over all the observed
data.

2.2 Matching Pursuit Algorithms

This paper considers algorithms that expand features
during the learning process. The class of matching
pursuit (MP) algorithms, such as OMP-TD [Painter-
Wakefield and Parr, 2012] has been shown recently to
be a promising approach for feature expansion. An
algorithm is MP if it selects the new feature from the
pool of features that has the highest correlation with
the residual.

2.3 Finer (Coarser) Features and Search

We now define some properties of state features and
feature-search algorithms. The coverage of a feature
is the portion of the state space for which the feature
value is active (i.e., non-zero). We say that a feature
A is coarser than feature B (B is finer than A) if A
has a higher coverage than B. For example, consider
a task of administrating 3 computers (C1, C2 and C3)
that each can be up or down. Feature A (C1 = down)
is coarser than feature B (C3= down AND C2 = up),
because coverage(A) = 0.5 > coverage(B) = 0.25.

fuel can be considered as features. In our setting, we as-
sume all such properties are labeled with numbers and are
addressed with their corresponding number.
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Figure 1: A partial concept lattice showing poten-
tial features as identified by iFDD. With methods like
OMP-TD, all nodes are considered as potential fea-
tures, despite their location in the lattice.

High coverage is not always the best criterion for se-
lecting features because the resulting partitions may
not yield a good approximation of the value function.
For example, suppose that having C1 = down trans-
lates into negative values except when C3 = up. If
the weight corresponding to feature A (C1 = down) is
set to a negative value, the value function is reduced
for all parts of the state space covered by A, includ-
ing situations where C3 = up. The problem of feature
construction is to find a small set of features with high
coverage that still approximate the value function with
bounded error.

One approach is to assume a set of base binary fea-
tures that, in full combination, uniquely describe each
state. These features would have high coverage, and
constitute a very large set. Combining base features
with the conjunction operator would allow us to find
features with lower coverage. This search process can
be thought of as selecting nodes in a graph structure
(Figure 1). Each node represents a feature, with the
top level nodes corresponding to the domain’s base fea-
tures. An edge indicates the origin feature subsumes
the destination feature (and therefore the destination
is finer). For instance, in our example, ((C1 = up) →
(C1 = up ∧ C2 = up)) would be an edge.

Current MP methods such as OMP-TD require an
enumerated set of potential features (e.g., all possi-
ble feature conjunctions of base features) that can be
combinatorially large. MP methods iterate over this
set on every step of feature generation, leading to high
computational demand if the set is large, or poor per-
formance if only a few nodes in the lattice are con-
sidered. Methods such as BEBF [Parr et al., 2007]
adopt an alternative approach by creating new fea-
tures using supervised learning that often do not have
a clean logical interpretation and can be arbitrary com-
plex. Hence, this paper focuses on mapping states to
conjunctive features in the concept lattice. Ideally,
a search method would find relevant features in the
lattice by selectively growing the tree as opposed to
current MP techniques that have to be initialized with

the set of all potential features.

2.4 iFDD and Batch-iFDD

The iFDD algorithm [Geramifard et al., 2011] is an
online feature expansion technique with low computa-
tional complexity. Given an initial set of base features,
iFDD adds the conjunction of existing binary features
as new features. Following the original work, we re-
strict new features to be the conjunction of previously
selected features, which still gives us a rich set of po-
tential features without introducing complex reason-
ing into the search process. At each time-step, iFDD
performs the following steps:

1. Identify pair-wise combinations of active features.
2. Accumulate the absolute value of the observed TD-
error for all such pairs.
3. If the accumulated value for a pair of features f and
g exceeds a predefined threshold, add feature f ∧ g to
the pool of features.

Within the concept lattice described in Section 2.3,
the first step considers features where two parent con-
cepts are already in the feature space, and the con-
junction of these parents is equivalent to the potential
feature. Then potential features that also reduce the
value function approximation error significantly are
added to the feature set. This algorithm has the abil-
ity to include fine-grained features where they are nec-
essary to represent the value function, but can avoid
other (less helpful) features of similar complexity.

This paper uses iFDD for policy evaluation in a batch
setting where LSTD estimates the TD-error over all
samples and then the most “relevant” feature is added
to the features. We now analyze the behavior of Batch-
iFDD and through this analysis derive a new algo-
rithm, Batch-iFDD+, which better approximates the
best guaranteed rate of error-bound reduction.

3 Theoretical Results

Geramifard et al. [2011] introduced iFDD, empirically
verified the approach, and proved the asymptotic con-
vergence of iFDD combined with TD. This work ex-
tends those theoretical results by showing that exe-
cuting iFDD combined with TD in the batch setting
is equivalent to approximately finding the feature from
the conjunction of existing features with the maximum
guaranteed error-bound reduction.

In order to use the conjunction operator to define new
features, we redefine the notion of a feature. Given an
initial feature function φ outputting vectors in Rn, we
address each of its n output elements as an index rather
than a feature from this point on; φi(s) = c denotes
index i of the initial feature function has value c in
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state s.2 The set of all indices is Vn = {1, · · · , n}. A
feature, f , is redefined as an arbitrary subset of Vn,
where φf (s) ,

∧
i∈f φi(s), and

φ{}(s) ,
{

1 if ∀i ∈ Vn, φi(s) = 0
0 otherwise

,

where {} is the null feature. For example φ{1,3}(.) =
φ1(.)∧φ3(.). Notice that a single index can constitute
a feature (e.g., f = {1}). Further we assume that all
sets are ordered based on the cardinality size of each
element in ascending order, unless specified. Given a
set of features χ = {f1, f2, ...fN} , the definition of Φ
is extended as follows:

Φχ=




φf1(s1) φf2(s1) · · · φfN (s1)
φf1(s2) φf2(s2) · · · φfN (s2)

...
...

. . .
...

φf1(s|S|) φf2(s|S|) · · · φfN (s|S|)



|S|×N

.

For brevity, we define φf as a column of feature
matrix Φχ that corresponds to feature f . φf =

Φ{f} =
[
φf (s1) φf (s2) · · · φf (sm)

]>
. Also, de-

fine Bn ,
{
{}, {1}, {2}, · · · , {n}

}
, as the set of fea-

tures with cardinality less than 2, and Fn , ℘(Vn)
as the set of all possible features. ℘ is the power set
function (i.e., the function that returns the set of all
possible subsets). Hence, χ ⊆ Fn is an arbitrary set
of features. Further, define operator pair : χ1 → χ2,
where χ1,χ2 ⊆ Fn:

pair(χ) ,
{
f ∪ g

∣∣∣∣f, g ∈ χ, f ∪ g /∈ χ
}
,

pairk(χ) , pair(pair(· · · (pair(χ))))︸ ︷︷ ︸
k times

,

pair0(χ) , χ, full(χ) ,
⋃
i=0,··· ,n pair

i(χ). Essen-
tially, the pair operator provides the set of all possible
new features built on the top of a given set of features
using pairwise conjunction. The full operator gener-
ates all possible features given a set of features.

Now, given an MDP with a fixed policy, the feature
expansion problem can be formulated mathematically.
Given χ as a set of features and the corresponding
approximation of the value function under the fixed
policy, Ṽ χ = Φχθ, find f ∈ pair(χ) that maximizes
the following error reduction:

ER = ‖V − Ṽ χ‖ − ‖V − Ṽ χ∪{f}‖, (1)

where ||.|| is the `2 norm weighted by the steady state
distribution. Consequently, all our theoretical anal-
yses are performed in the weighted Euclidean space

2Note switch in subscript from f (feature) to i (index).

following the work of [Parr et al., 2007]. The theorem
and proof following the next set of assumptions pro-
vide an analytical solution that maximizes Equation 1.

Assumptions:
A1. The MDP has a binary d-dimensional state space,
d ∈ N+ (i.e., |S| = 2d). Furthermore, each vertex
in this binary space corresponds to one unique state;
s ∈ {0, 1}d.
A2. The agent’s policy, π, is fixed.
A3. Each initial feature corresponds to a coordinate
of the state space (i.e., φ(s) = s). Hence the number
of indices, n, is equal to the number of dimensions, d.

Assumption A1 is a more specific form of a general
assumption where each dimension of the MDP can be
represented as a finite vector and each dimension has a
finite number of possible values. It is simple to verify
that such an MDP can be transformed into an MDP
with binary dimensions. This can be done by trans-
forming each dimension of the state space with M pos-
sible values into M binary dimensions. The MDP with
binary dimensions was considered for brevity of the
proofs.

Definition The angle between two vectors X,Y ∈
Rd, d ∈ N+ is the smaller angle between the
lines formed by the two vectors: ∠(X,Y ) =

arccos
(
|〈X·Y 〉|
||X||.||Y ||

)
, where 〈·, ·〉 is the weighted inner

product operator. Note that 0 ≤ ∠(X,Y ) ≤ π
2 .

Theorem 3.1 Given Assumptions A1-A3 and a set
of features χ, where Bn ⊆ χ ⊆ Fn, then feature f∗ ∈
Ω = {f |f ∈ pair(χ),∠(φf , δ) < arccos(γ)} with the
maximum guaranteed error-bound reduction defined in
Equation 1 can be calculated as:

f∗ = argmax
f∈Ω

|∑s∈S,φf (s)=1 d(s)δ(s)|
√∑

s∈S,φf (s)=1 d(s)
, (2)

where δ = T(Ṽ χ) − Ṽ χ is the Bellman error vector,
and d is the steady state distribution vector.

The rest of this section provides the building blocks of
the proof, followed by a discussion of the theoretical
result. Theorem 3.2 states that given an initial set of
features, the feature matrix is always full column rank
through the process of adding new features using the
pair operator. Lemma 3.3 provides a geometric prop-
erty for vectors in d-dimensional space under certain
conditions. Theorem 3.4 provides a general guaran-
teed rate of error-bound reduction when adding arbi-
trary features to the representation in addition to the
convergence proof stated in Theorem 3.6 of [Parr et
al., 2007]. Theorem 3.5 narrows down Theorem 3.4
to the case of binary features, where new features are
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built using the pair operator. Finally Theorem 3.1,
as stated above, concludes that given the set of poten-
tial features obtained by the pair operator and filtered
based on the their angle with the Bellman error vector;
the one with the maximum guaranteed error-bound re-
duction is identified by Equation 2.

Theorem 3.2 Given Assumptions A1-A3, ∀χ ⊆
Fn,Φχ has full rank.

Proof In appendix.

Insight: Theorem 3.2 shows that the conjunction
operator creates a matrix ΦFn

that forms a basis
for R|S| (i.e., Φ will have |S| linearly independent
columns). The I matrix is another basis for R|S|, yet
no information flows between states (i.e., the coverage
of each feature is restricted to one state). When sort-
ing columns of ΦFn

based on the size of the features, it
starts with features with high coverage (excluding the
null feature). As more conjunctions are introduced,
the coverage is reduced exponentially (i.e., the number
of active features are decreased exponentially by the
size of the feature set). Next, we explain how adding
binary features can lead to guaranteed approximation
error-bound reduction. We begin with a geometric
Lemma used in Theorem 3.4.

Lemma 3.3 Let L be the plane specified by three dis-
tinct points P,Q,C ∈ Rd, with α = ∠(CQ,CP ) > 0.
Assume that the additional point X ∈ Rd is not nec-
essarily in L. Define the angles β = ∠(CX,CQ) and
ω = ∠(CX,CP ). Now let P ′ denote the orthogonal
projection of P on CX. If α+ β < π

2 , then ‖PP ′‖ is
maximized when CX ∈ L.

Proof In Appendix.

We now extend Theorem 3.6 of [Parr et al., 2007]
by deriving a lower bound (ζx) on the improvement
caused by adding a new feature.

Theorem 3.4 Given an MDP with a fixed policy,
where the value function is approximated as Ṽ , de-
fine δ = T(Ṽ ) − Ṽ , and ‖V − Ṽ ‖ = x > 0,
where V is the optimal value for all states. Then
∀φf ∈ R|S| : β = ∠(φf , δ) < arccos(γ)

∃ξ ∈ R : ‖V − Ṽ ‖ − ‖V − (Ṽ + ξφf )‖ ≥ ζx, (3)

where γ is the discount factor and

ζ = 1− γ cos(β)−
√

1− γ2 sin(β) < 1. (4)

Furthermore, if these conditions hold and Ṽ = Φθ
with φf /∈ span(Φ) then:

‖V −ΠV ‖ − ‖V −Π′V ‖ ≥ ζx, (5)

Ṽ

TṼ

↵ �

�x

x

x 0

Ṽ + ⇠⇤�f

�f

V

(a)

�f

�

�0

⇧0 ⇧

Ṽ

TṼ

� �

�x

x

x �

V�

Ṽ + ���f

�f

Figure 5: Geometrical view of V�, ⌅V,T⌅V, and ⇥f . As � shrinks x⇥ gets closer to ⇥x.

In order to prove the second part of the theorem, the argument has to be specialized to the linear function approximation
case, meaning ⌅V = ⇥⌅. Since the first part of the proof holds for any approximation, lets consider the case where
⌅V = �V�. Showing ⌅V + ⇧�⇥f = �⇥V� completes the proof as substituting ⌅V and ⌅V + ⇧�⇥f to �V� and �⇥V�

turns Inequality 5 to Inequality 6.
To proceed, decompose ⇥f into two vectors ⇥⌃

f and ⇥⌅
f , where ⇥

⌃
f ⌅ span(⇥) and ⇥⌅

f ⌥ span(⇥). Note that

since ⇥f /⌅ span(⇥), then ⇥⌅
f is not a null vector. Lets show that ⌅V + ⇧�⇥f = �⇥V� with the assumptions of

⇥
⌃
f = 0 (i.e., ⇥f = ⇥⌅

f ). This assumption will be relaxed shortly after. Notice that ⇥⇥ = [⇥ ⇥f ] has one extra
column rank defined by ⇥f which is perpendicular to the span(⇥). Since both � and �⇥ are orthogonal projections,
we have the following:

�⇥V� = �V� + ⌃�⇥f

where, ⌃� � argmin
�
⌦(V� ��V�)� ⌃⇥f⌦

= argmin
�
⌦V� � (⌅V + ⌃⇥f )⌦

= ⇧�

⇤ �⇥V� = �V� + ⇧�⇥f

= ⌅V + ⇧�⇥f

The extension to the case where ⇥
⌃
f ⇧= 0 is easy. Consider a subspace defined by two representation matrices ⇥1 and

⇥2 (i.e., span(⇥1) = span(⇥2)), and corresponding projection operators �1 and �2 as defined in Equation 3. Since
both operators provide orthogonal projection into the same space, their results are equal (while the corresponding
coordinates, ⌅, in each case can be different). This means that adding ⇥

⌃
f to the last column of ⇥⇥ does not change �⇥.

Theorem 3.6 Given Assumptions 1 and 2, where the value function is approximated as ⌅V, � = T⌅V � ⌅V, and
⌦V� � ⌅V⌦ = x > 0

⌃F ⇥ Fd, ⌃f ⌅ pair(F ) such that ⇤ =

⇤
�f (s)=1 d(s)�(s)

⇧�⇤
�f (s)=1 d(s)

⇥�⇤
s⇤S d(s)�2(s)

⇥ > ⇥, F ⇥ = F  f,

10

�0V

V

�V

(b)

Figure 2: a) geometric view of V , Ṽ ,T(Ṽ ), and φf .
As β shrinks x′ gets closer to γx. b) increasing the
dimensionality of the projection operator.

where Π and Π′ are orthogonal projection operators
using Φ and Φ′ = [Φ φf ] respectively.

Proof Consider both cases of the orientation of points
V and T(Ṽ ) with respect to each other:

Case T(Ṽ ) 6= V : Due to the contraction property
of the Bellman operator, if ‖V − Ṽ ‖ = x, then ‖V −
T(Ṽ )‖ ≤ γx. Define α as the ∠(V − Ṽ , δ), then using
the sine rule:

sin(α) ≤ ‖V −T(Ṽ )‖
‖V − Ṽ ‖

≤ γ ⇒ α ≤ arcsin(γ)

Furthermore, by assumption, 0 ≤ β < arccos(γ) =
π/2 − arcsin(γ). Combined, these conditions indicate
that α+ β < π/2.

For the next step, given ξ > 0, mapping the points
V , Ṽ ,T(Ṽ ), Ṽ + ξφf to P,C,Q,X in Lemma 3.3
shows that the orthogonal projection length of vector
V − Ṽ on Ṽ + ξφf − Ṽ is maximized when all four

points are coplanar and ω = ∠(V − Ṽ , ξφf ) = α+ β.
Notice that the coplanar argument is implicit in the
proof of Theorem 3.6 of Parr et al. [2007]. Figure
2(a) depicts the geometric view in such a plane, where
ξ∗ = argminξ ‖V − (Ṽ + ξφf )‖, x′ = x sin(ω).3 As
shown above, α ≤ arcsin(γ) and 0 ≤ α + β < π

2 ,
thus sin(α + β) ≤ sin(arcsin γ + β) = γ cos(β) +

sin(β)
√

1− γ2, Hence,

x′ ≤ x
(
γ cos(β) +

√
1− γ2 sin(β)

)

x− x′ ≥ x
(

1− γ cos(β)−
√

1− γ2 sin(β)
)
≡ ζx

Looking at Figure 2(a), it is easy to verify that x−x′ =
‖V −Ṽ ‖−‖V −(Ṽ +ξφf )‖, which completes the proof

for the case T(Ṽ ) 6= V .

Case T(Ṽ ) = V : This means that α = 0. If φf
crosses V , it means β = 0 and Ṽ + ξ∗φf = V . Hence

3Note that ξ can take negative values as well, rendering
φf important only as a line but not as a vector.
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ζ = 1 − γ cos(β) −
√

1− γ2 sin(β) = 1 − γ and ‖V −
Ṽ ‖−‖V − (Ṽ + ξ∗φf )‖ = ‖V − Ṽ ‖ = x ≥ ζx. When
φf does not cross V , together they form a plane in

which ‖V − Ṽ ‖− ‖V − (Ṽ + ξ∗φf )‖ = x (1− sin(β)).
In order to complete the proof, a lower bound for the
above error reduction is derived:

0 < β < arccos(γ) = π/2− arcsin(γ), 0 ≤ γ < 1

⇒ 0 < β + arcsin(γ) < π/2

⇒ sin(β) ≤ sin(β + arcsin(γ))

= γ cos(β) +
√

1− γ2 sin(β)

(1− sin(β))x ≥ (1− γ cos(β)−
√

1− γ2 sin(β))x ≡ ζx
Now we extend the proof to the linear function ap-

proximation case with Ṽ = Φθ. Since the first part of
the proof holds for any approximation, let us consider
the case where Ṽ = ΠV . Showing Ṽ + ξ∗φf = Π′V
completes the proof as it turns Inequality 3 into In-
equality 5. To proceed, we decompose φf into two

vectors φ
‖
f ∈ span(Φ) and φ⊥f ⊥ span(Φ). First,

consider the case where φf = φ⊥f , Figure 2(b) pro-
vides a geometric view of the situation. The blue line
and the green plane highlight span(Φ) and span(Φ′)
respectively. Both Π and Π′ are orthogonal pro-
jections into these subspaces. Hence, for any given
value function V , Π′V = ΠV + σ∗φf , where, σ∗ ,
argminσ ‖(V −ΠV )− σφf‖.

The extension to the case where φ
‖
f 6= 0 is straightfor-

ward. Consider a subspace defined by two representa-
tion matrices Φ1 and Φ2 (i.e., span(Φ1) = span(Φ2)),
and corresponding orthogonal projection operators Π1

and Π2. Since both operators provide the solution to
the same convex optimization (i.e., minθ ||V − Ṽ ||),
where both domain and target space are identical,
their outputs are equal (i.e., Ṽ 1 = Π1V = Π2V =

Ṽ 2).4 Hence if φ
‖
f is added as the last column of Φ′,

it does not change span(Φ′) and the result of the pro-
jection remains intact.

The next theorem specializes the above result to the
case of binary features, where new features are built
using the conjunction operator.

Theorem 3.5 Given Assumptions A1-A3, χ ⊆
Fn, Ṽ = Φχθ, δ = T(Ṽ )− Ṽ , and ‖V − Ṽ ‖ = x > 0,
then ∀f ∈ pair(χ), if

ηf =
|∑s∈S,φf (s)=1 d(s)δ(s)|

√(∑
s∈S,φf (s)=1 d(s)

)(∑
s∈S d(s)δ2(s)

) > γ

4While the corresponding coordinates, θ, in each case
can be different, the resulting Ṽ are identical.

∃ξ ∈ R : ‖V − Ṽ ‖ − ‖V − (Ṽ + ξφf )‖ ≥ ζx,(6)

‖V −ΠV ‖ − ‖V −Π′V ‖ ≥ ζx,(7)

where 1− γηf −
√

1− γ2
√

1− η2
f = ζ (8)

Proof Theorem 3.4 provides a general rate of con-
vergence for the error bound when arbitrary feature
vectors are added to the feature matrix. Hence it is
sufficient to show that the conditions of Theorem 3.4
holds in this new theorem, namely: 1) β = ∠(φf , δ) <
arccos(γ) and 2) φf /∈ span(Φχ) . The latter is al-
ready shown through Theorem 3.2. As for the former:

cos(β) =
|〈φf · δ〉|
‖φf‖.‖δ‖

(9)

=
|∑s∈S,φf (s)=1 d(s)δ(s)|

√(∑
s∈S,φf (s)=1 d(s)

)(∑
s∈S d(s)δ2(s)

) .

Therefore, β = arccos(ηf ). By the assumption made
earlier, ηf > γ. Hence β < arccos(γ). Satisfying the
preconditions of Theorem 3.4, both Equations 3 and 5
are obtained. Switching cos(β) with ηf in Equation 4
completes the proof.

Theorem 3.5 provides sufficient conditions for a guar-
anteed rate of convergence in the error bound of the
value function approximation by adding conjunctions
of existing features. It leads directly to Theorem 3.1.

Corollary 3.6 An algorithm that selects features
based on Equation 2, which maximizes Equation 9, is
by our definition in Section 2.2 an MP algorithm.

Insight: Equation 2 shows how feature coverage is
a double-edged sword; while greater coverage includes
more weighted Bellman error (i.e., the numerator) re-
sulting in a higher convergence rate, it also contributes
negatively to the rate of convergence (i.e., the denom-
inator). The ideal feature would be active in a sin-
gle state with all of the Bellman error. Intuitively,
this conclusion is expected, because adding this ideal
feature makes the approximation exact. When the
weighted sum of Bellman errors is equal for a set of
features, the feature with the least coverage is prefer-
able. On the other hand, when all features have the
same coverage, the one with the highest weighted Bell-
man error coverage is ideal. Another interesting obser-
vation is the relation between the difficulty of finding
features that give the guaranteed error-bound conver-
gence rate and the value of γ. In general, larger val-
ues of γ render the MDP harder to solve. Here we
can observe the same trend for finding good features
as higher values of γ reject more features in the set
pair(χ) due to the constraint ηf > γ. Finally, we
note that our theoretical results can be interpreted as
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a mathematical rationale for moving from a coarse to a
fine representation, explaining empirical observations
in both computer science [Whiteson et al., 2007] and
brain/cognitive science [Goodman et al., 2008].

4 Empirical Results

Here we provide experimental evidence of Batch-
iFDD’s efficiency at policy evaluation, a crucial step in
many reinforcement learning algorithms such as Pol-
icy Iteration. Policy evaluation is also the traditional
setting for comparing feature expansion techniques
[e.g., Mannor and Precup, 2006; Painter-Wakefield and
Parr, 2012]. We ran our experiments using the RLPy
framework, which is available online [Geramifard et
al., 2013]. Results are presented in three classical RL
domains: Mountain Car, Inverted Pendulum, and Sys-
tem Administrator. The last domain has more than
one million states. Our ability to handle such a large
domain is a direct consequence of the added efficiency
and targeted search in Batch-iFDD.

On each iteration the best weights were found by run-
ning LSTD on 104 samples gathered using the under-
lying policy. The A matrix in LSTD was regularized
by 10−6. Then the best feature was added to the rep-
resentation using the corresponding expansion tech-
nique. All results were averaged over 30 runs and on
each run all algorithms were exposed to the same set
of samples. Standard errors are shown as shaded areas
highlighting 95% confidence intervals.

We compared two approximations of Equation 2,
shown in Equations 10 and 11. The first one comes
from our theoretical analysis, where the steady state
distribution is approximated by the collected sam-
ples. The second one is borrowed from previous
work [Geramifard et al., 2011]. In this section, we
drop the implicit “Batch-” term and refer to these al-
gorithms as iFDD+ and iFDD[ICML-11] respectively.

δi = ri + [γφ(s′i)− φ(si)]
>θ.

f̃∗1 = argmax
f∈pair(χ)

|∑i∈{1,··· ,m},φf (si)=1 δi|√∑
i∈{1,··· ,m},φf (si)=1 1

, (10)

f̃∗2 = argmax
f∈pair(χ)

∑

i∈{1,...,m},φf (si)=1

|δi| (11)

We also implemented and compared against variants
of OMP-TD [Painter-Wakefield and Parr, 2012], the
previous state of the art MP algorithm in RL. Since
this algorithm requires a set of potential features at
initialization, we tested several different sizes of po-
tential feature sets, each built by including features in
increasingly finer levels of the concept lattice until the
cap was reached. Note that in two dimensional prob-
lems (where only one layer of conjunction is available),

if the OMP-TD potential feature pool contains every
possible feature then the results of running OMP-TD
and iFDD+ will be identical, since both algorithms run
the same optimization on the same set of features.

The first domain was Mountain Car [Sutton and Barto,
1998], with base features defined as discretizations of
position and velocity into 20 partitions each, leading
to 40 base features. The policy evaluated was to ac-
celerate in the direction of the car’s current velocity.
Figure 3(a)-top shows the ‖TD-Error‖2 over the sam-
ple set for the iFDD and OMP-TD methods versus the
number of feature-generating iterations. Since all the
techniques start with the same set of features, their er-
rors are identical at iteration zero. OMP-TD with pool
sizes up to 250 did not capture the value function well.
With 440 = 20× 20 + 40 potential features, OMP-TD
had access to all possible features, and as predicted it
performed identically to iFDD+. iFDD[ICML-11] per-
formed similar to the best results. Figure 3(a)-bottom
depicts the same results based on the wall-clock time.
The iFDD techniques were at least 30 seconds faster
than the OMP-TD methods as they considered fewer
features on each iteration.

Next we considered the classical Inverted Pendulum
domain [See Lagoudakis and Parr, 2003]. The feature
setting was identical to the Mountain Car problem.
The fixed policy pushed the pendulum in the opposite
direction of its angular velocity. TD-error results as
described before are presented for this domain in Fig-
ure 3(b). Again OMP-TD with 100 features did not
have access to the necessary features and performed
poorly. With 250 features, OMP-TD performed much
better, but converged to a relatively less accurate rep-
resentation after about 25 iterations. With access to
the full set of features, OMP-TD(440) mirrored the
performance of iFDD+, both achieving the best re-
sults. In this domain, the less accurate approximation
of Equation 2 used by iFDD[ICML-11] caused a sig-
nificant drop in its performance compared to iFDD+.
However, it eventually exceeded the performance of
OMP-TD(250) and caught up to iFDD+ by expand-
ing important features. There is a small initial rise
in error for most of the algorithms, which we believe
is due to the use of regularization. In terms of com-
putational complexity, we see the same pattern as in
the Mountain Car domain, where the iFDD methods
were computationally more efficient (about 20% faster)
than the OMP-TD techniques.

The third experiment considered the System Admin-
istrator domain [Guestrin et al., 2001] with 20 com-
puters and a fixed network topology. Each computer
can either be up or down (following our example in
Section 2.3), so there were 40 base features. The
size of the state space is 220. Computers go up or
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Figure 3: Empirical results from the a) Mountain Car, b) Inverted Pendulum, and c) System Administrator
domains. The Y-axis depicts the `2 norm of the TD prediction error plotted against (top) the number of feature
expansions and (bottom) wall clock time. The colored shaded areas highlight the 95% confidence intervals.

down depending on the status of their neighbors [See
Guestrin et al., 2001]. Allowed actions are to reboot
one machine at each timestep or do nothing: in our
case the policy uniformly randomly rebooted one of
the down machines. Results are shown in Figure 3(c).
The general theme remains the same, except for three
observations: 1) for the first eight iterations, OMP-
TD(2000) outperformed iFDD+, 2) after 10 iterations
iFDD+ outperformed all of the OMP-TD techniques
with pool sizes up to 2000, and 3) the speed advantage
of the iFDD techniques was much more prominent.
Based on clock time iFDD[ICML-11] was comparable
to the best OMP-TD technique, while iFDD+ achieved
the final performance of OMP-TD(2000) more than 4
times faster. The reason for the initial OMP-TD suc-
cess is that it was able to add complex features (con-
junctions of several terms) early on without adding
the coarser (subsumed) conjunctions that iFDD adds
first.5 The second observation is explained by the fact
that iFDD+ expands the set of potential features in a
guided way, allowing it to discover crucial fine-grained
features. Specifically iFDD+ discovered features with
8 terms. Finally, as the size of the potential feature
pool grew, the OMP-TD techniques required signif-
icantly more computation time. iFDD techniques on
the other hand, only considered possible new pair-wise

5The feature pool for OMP-TD(2000) consisted of 760
and 1, 200 features with 2 and 3 terms respectively.

features, and scaled much better to larger MDPs.

5 Conclusions

We introduced Batch-iFDD (and Batch-iFDD+) for
feature construction in an RL setting and proved that
it is a Matching Pursuit algorithm. Unlike previous
MP techniques, Batch-iFDD expands the pool of po-
tential features incrementally, hence searching the con-
cept lattice more efficiently than previous MP tech-
niques. Our empirical results support this finding as
Batch-iFDD+ outperformed the previous state of the
art MP algorithm in three benchmarks, including a
domain with over one million states.

It should be noted, that OMP-TD techniques are more
general than Batch-iFDD techniques as they can work
with arbitrary feature functions rather than binary
functions. Also, Batch-iFDD is not immune to the
poor selection of base features. For instance, in con-
tinuous state spaces base features can be built by dis-
cretizing each dimension using the indicator function,
yet finding the “right” discretization for high dimen-
sional problems can be challenging.

Beyond the results of this paper, Equation 2 provides
insight as to why it is beneficial to add coarse fea-
tures in the early stages of learning and finer features
later on. In the early stages of learning, when feature
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Figure 4: a) Depiction of ΦFk+1
using ΦFk

as the
building block. Note that features are not sorted based
on their cardinality order, but it does not change the
rank of the resulting matrix. b) A 3D visualization of
d dimensional points L and Q and vector X with C as
the center. ‖PP ′‖ is maximized when ω = α+ β.

weights have not been adjusted, the Bellman error is
generally large everywhere. Therefore coarse features
with large coverage have higher chances of having good
error-bound convergence rates due to the numerator of
Equation 2. As weights are updated, the Bellman er-
ror is reduced correspondingly. The reduced Bellman
error will make the denominator of Equation 2 the de-
ciding factor, rendering coarse features with large cov-
erage ineffective. This transition may partially explain
empirical results on RL agents exploring autonomously
[Whiteson et al., 2007] and human subjects performing
classification [Goodman et al., 2008], where both ben-
efited from using coarse features at the beginning of
learning but then progressed to finer-grained features
to make better sense of a complex world.
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A Proof of Theorem 3.2

Lemma A.1 Given m,n ∈ N+ and m ≤ n, if Xm×n
and Zm×n are full column rank matrices with real el-
ements and Ym×n is arbitrary matrix, then matrix[

X 0
Y Z

]
is a full column rank matrix.

Proof The proof follows from the definition of the ma-
trix as both X and Z have linear independent columns.

Theorem A.2 Given Assumptions A1-A3, ∀n ∈
N+,ΦFn

is invertible.

Proof First note that ΦFn is a square matrix as
|Fn| = |S| = 2n. Hence it is sufficient to show that
ΦFn

has independent columns. The rest of the proof
is through induction on n:

(n = 1): The MDP has two states. Hence ΦF1
=[

1 0
0 1

]
, det(ΦF1) = 1. Notice that the first column

corresponds to the null feature (i.e., {}) which returns
1 for the single state with no active features.

(n = k): Assume that ΦFk
has independent columns.

(n = k+ 1): Based on the previous assumption, ΦFk

has linearly independent columns. Hence it is suffi-

cient to show that ΦFk+1
can be written as

[
X 0
Y Z

]
,

where X = Y = ΦFk
, and Z has linearly independent

columns. Lemma A.1 then completes the proof.

The new added dimension, k + 1, doubles the num-
ber of states because |S| = 2k+1. The new dimension
also doubles the total number of possible features, as
for any given set with size k, the total number of its
subsets is 2k. Divide states into the two following sets:

Sk+1 = {s|φ{k+1}(s) = 1}, S̄k+1 = {s|φ{k+1}(s) = 0}.
Similarly, divide features into two sets:

χk+1 = {f |f ∈ Fk+1, k + 1 ∈ f},
χ̄k+1 = {f |f ∈ Fk+1, k + 1 /∈ f}.

Construct rows and columns of ΦFk+1
, following Fig-

ure 4. The values of the top left and bottom left of the
matrix are ΦFk

, and the value of the top right of the
matrix is 0. As for the bottom right (Z), note that for
all the corresponding states, φ{k+1}(s) = 1. Hence,

(φ{k+1}(s), φ{k+1,1}(s), · · · , φ{k+1,1,··· ,k}(s))

= (1, φ{1}(s), · · · , φ{1,··· ,k}(s)).
We know from the induction assumption that except
for the first column, all other columns are linearly in-
dependent. Finally observe that the first column is the
only column within Z, with a 1 corresponding to the
state with no active features and is independent of all
other columns.

Theorem 3.2 follows from Theorem A.2.

B Proof of Lemma 3.3

Proof Let us first assume that CX /∈ L, hence
there exists a three dimensional subspace defined
by CX and L. Figure 4 depicts such a space.
Then, argmaxω ‖PP ′‖ = argmaxω ‖CP ‖ sin(ω) =
argmaxω sin(ω). Since 0 < |α − β| ≤ ω ≤ α + β < π

2 ,
then argmaxω ‖PP ′‖ = α + β, which implies that
CX ∈ L and thus is a contradiction.
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Abstract

In this paper, we present structured message
passing (SMP), a unifying framework for ap-
proximate inference algorithms that take advan-
tage of structured representations such as al-
gebraic decision diagrams and sparse hash ta-
bles. These representations can yield signifi-
cant time and space savings over the conven-
tional tabular representation when the message
has several identical values (context-specific in-
dependence) or zeros (determinism) or both in
its range. Therefore, in order to fully exploit the
power of structured representations, we propose
to artificially introduce context-specific indepen-
dence and determinism in the messages. This
yields a new class of powerful approximate in-
ference algorithms which includes popular algo-
rithms such as cluster-graph Belief propagation
(BP), expectation propagation and particle BP
as special cases. We show that our new algo-
rithms introduce several interesting bias-variance
trade-offs. We evaluate these trade-offs empir-
ically and demonstrate that our new algorithms
are more accurate and scalable than state-of-the-
art techniques.

1 INTRODUCTION

Access to fast, scalable and accurate approximate inference
algorithms is the key to the successful application of graph-
ical models to real world problems. As a result, several
approximate inference algorithms have been proposed to
date, in a large body of literature spanning several decades.
Existing algorithms can be classified into two broad types:
message passing based and sampling or simulation based.
Message passing algorithms operate by passing messages
over the edges of a cluster graph derived from the graphi-
cal model while sampling algorithms operate by randomly
generating variable configurations. In this paper, we focus

on message passing algorithms and propose a new frame-
work, structured message passing (SMP) which provides a
principled approach for taking advantage of structured ap-
proaches for representing and manipulating messages.

We propose SMP because popular, approximate message
passing algorithms such as belief propagation (BP) [22],
its various generalizations [19, 34], and expectation prop-
agation (EP) [20, 21] rely on tabular representations. Tab-
ular representations, although easy to use and manipulate,
can be exponentially worse in terms of size and processing
time than structured approaches such as algebraic decision
diagrams (ADDs) [1] and sparse hash tables. As a result,
in presence of time and space resource constraints, which
is often the case in practice, we are unable to apply sev-
eral more efficient and potentially more accurate classes of
algorithms to real-world problems.

Over the last decade, there has been much research on de-
veloping exact inference algorithms that exploit the power
of structured representations. Notable examples are Cachet
[25], ACE [4], and ADD-based variable elimination [3].
The first two use weighted propositional features for rep-
resenting messages while ADD-based variable elimination
uses ADDs [1]. By taking advantage of structural features
such as context-specific independence (CSI) [2] and de-
terminism, the aforementioned algorithms can solve much
larger problems than the junction tree algorithm [17]. For
approximate inference, however, structured representations
have not been investigated as much (cf. [5, 10, 18, 27]) and
their power has not been fully realized.

The basic idea in SMP is quite simple. Unlike BP and EP
in which we associate each cluster and each edge in a clus-
ter graph with a single tabular function and a product of
tabular functions respectively [33], in SMP we associate
a structured representation of a function with each cluster
and each edge, yielding a structured cluster graph. We as-
sume that the structured representation not only defines a
suitable (computer) representation but also various infer-
ence operators such as sum and product. Thus, given a
cluster graph and a message passing schedule, each repre-
sentation defines a structured message passing algorithm.
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We show that in spite of its simplicity, SMP enables us
to define more powerful BP and EP algorithms as well
as several new classes of (principled) message passing al-
gorithms. In particular, when the inference operators are
lossless, i.e., they faithfully represent the message, we get
the cluster graph BP algorithm. When the inference oper-
ators are lossy and minimize the KL divergence between
the original function and the lossy representation, we get
the EP algorithm. Defining new lossy operators yields new
classes of algorithms. However, since the structured repre-
sentations can be exponentially more efficient than the tab-
ular representation, the resulting SMP algorithms are likely
to be much more efficient in terms of time and space com-
plexity. Thus, given a bound on time and space complexity,
SMP will allow much larger clusters than tabular BP and
EP. Since the accuracy typically increases with the cluster
size, it is likely that SMP algorithms will be more accurate
than tabular BP and EP.

We consider a possible instance of the class of SMP algo-
rithms in which we artificially introduce determinism and
CSI in the messages. Such messages can then be efficiently
represented using structured approaches, yielding a signif-
icant reduction in complexity. Moreover, if each new mes-
sage includes assignments that have relatively high infor-
mation content, the resulting algorithm will also have high
accuracy. We propose to introduce determinism via Monte
Carlo simulation (e.g., via Gibbs sampling or importance
sampling), retaining only the sampled (and therefore po-
tentially high-probability) partial assignments within each
cluster. Following [10, 30], we propose to introduce CSI
by quantizing messages, namely reducing the number of
distinct values in the range of the message by replacing a
number of values that are close to each other by a single
value.

We show that our new SMP algorithm introduces several
bias-variance trade-offs. Specifically, we show that given a
set of samples and a fixed error bound for quantization, in-
creasing the cluster size increases the variance but reduces
the bias. On the other hand, for a fixed error bound and
cluster size, increasing the sample size decreases the vari-
ance and therefore improves accuracy.

Within our algorithm and the SMP framework, we consider
two structured representations: sparse hash tables and al-
gebraic decision diagrams,1 define lossy and lossless op-
erators for them and empirically evaluate their efficacy on
various benchmarks. For comparison, we use iterative join
graph propagation (IJGP) [19], co-winner of 2010 UAI
competition [8], and evaluate our algorithms on the task of
computing all single variable marginal distributions. Our

1Note that SMP is a general approach for easily designing
message-passing algorithms and as such can be used with any
structured representation, not just ADDs and sparse hash tables.
For example, it is relatively straight-forward to extend our basic
framework to Affine ADDs [26].

experiments show that our new algorithm is superior to
IJGP.

The rest of the paper is organized as follows. In section 2,
we describe notation and preliminaries. In section 3, we
introduce structured cluster graphs and describe structured
representations and operators in section 4. In section 5,
we present our new algorithm that is a possible instance of
SMP and analyze bias-variance tradeoffs for it. We empir-
ically evaluate our new algorithm in section 6. We discuss
related work in section 7 and conclude in section 8.

2 PRELIMINARIES AND NOTATION

A (discrete) graphical model or a Markov network (cf.
[6, 15, 24]), denoted by G, is a triple (X,D,Φ), where
X = {X1, . . . , Xn} is a set of variables, D =
{D(X1), . . . , D(Xn)} is a set of domains of variables,
where D(Xi) is the domain of Xi and Φ = {φ1, . . . , φm}
is a set of functions (also called factors or potentials). Each
function φi is defined over a subset of variables, called
its scope, denoted by S(φi). Let D(X) denote the Carte-
sian product of the domains of all variables in X. Let
x = (x1, . . . , xn) ∈ D(X) where xi ∈ D(Xi) denote
an assignment of values to all variables in X. A Markov
network represents the following probability distribution.

PG(x) =

∏m
i=1 φi(xS(φi))∑

x∈D(X)

∏m
i=1 φi(xS(φi))

(1)

where xS(φi) is the projection of x on S(φi). We will of-
ten abuse notation and write φi(xS(φi)) as φi(x). The de-
nominator of Eq. (1) is a normalization constant, called the
partition function. Common queries over graphical mod-
els are computing the partition function and the marginal
distribution PG(Xi) for all variables Xi ∈ X.

Cluster graph belief propagation (BP) is an approxi-
mate message passing algorithm for computing variable
marginals. It operates on a data structure called the clus-
ter graph defined below:

Definition 1. Given a graphical model G = (X,D,Φ), a
cluster graph is a graphG(V,E) in which each vertex V ∈
V and edge E ∈ E is associated with a subset of variables,
denoted by L(V ) and L(E) respectively such that: (i) for
every function φ ∈ Φ, there exists a vertex L(V ) such that
S(φ) ⊆ L(V ); and (ii) for every variableX ∈ X, the set of
vertices and edges in G that mention X form a connected
sub-tree of G (running intersection property).

In cluster graph BP, we first put each function φ ∈ Φ in
a cluster V such that S(φ) ⊆ L(V ). Then each node Vi
sends the following message to a node Vj on the edge Ei,j ,
iteratively until convergence

mi→j(y) =
∑

z

∏

φ∈Φ(Vi)

φ(y, z)
∏

Vk∈N(i,j)\{Vj}
mk→i(y, z)
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where Y = L(Ei,j), y ∈ D(Y), Z = L(Vi) \ L(Ei,j),
z ∈ D(Z), Φ(Vi) is the set of functions from the graphical
model assigned to Vi, mi→j is the message sent from Vi to
Vj , and N(i, j) is the set of neighbors of Vi in G. Once
the messages have converged, we can recover the marginal
distribution for any variable Xi ∈ X by finding a clus-
ter V ∈ V that mentions Xi, multiplying all functions
and incoming messages to the cluster and then summing
out all variables other than Xi from the resulting function.
The cluster graph BP algorithm may not converge. In such
cases, we can put a bound on the number of iterations and
stop the algorithm once it exceeds this bound.

The message passing approach described above is called
sum-product message passing. An alternative approach,
which has smaller time complexity but higher space com-
plexity is belief-update message passing (see [15] for more
details). When the cluster graph is a tree, cluster graph
BP is exact and coincides with the junction tree algo-
rithm. The time and space complexity of cluster graph BP
is O(|V| exp(maxV ∈V |L(V )|)) assuming that each mes-
sage is represented using a table.

The expectation propagation algorithm (EP) [20] operates
on a cluster graph by passing approximate messages. In EP,
we associate a product of functions with each edge [33],
denoted by m̃i→j =

∏
k m̃i→j,k. The main idea here is

to approximate a large message which is computationally
infeasible using a tractable message m̃i→j such that the KL
divergence2 between the two is minimized.

Unlike cluster graph BP, in EP, sum-product and belief-
update message passing will yield different estimates. Of-
ten, however, we prefer belief-update message passing in
EP because it yields more accurate answers in practice.

3 STRUCTURED CLUSTER GRAPHS

In a cluster graph, each cluster and each edge is associated
with a tabular function or a product of tabular functions.
The main, fairly simple idea in structured cluster graphs is
to associate each edge and each cluster with a parametric
(i.e., structured) representation of a function. The paramet-
ric representation of a function is a pair (R,w) where R
denotes the structure and w is a set of real-valued param-
eters. We assume throughout that R determines the com-
plexity of representing the function. We also assume that
the structure is fixed or we have bound on its complexity.

Definition 2. Given a graphical model (X,D,Φ), a struc-
tured cluster graph (SCG) is a graph G(V,E) in which
each vertex V ∈ V and each edge E ∈ E is associated
with a parametric representation of a function, denoted by

2KL divergence between two distributionsP andQ is given by∑
x P (x) log(P (x)/Q(x)). To compute KL divergence between

two functions, we normalize the functions and then compute KL
divergence between them.

RV and RE respectively, such that: (i) for every function
φ ∈ Φ, there exists a vertex V such that S(φ) ⊆ S(RV )
and (ii) for every variable X ∈ X, the set of vertices and
edges inG that mentionX form a connected sub-tree ofG.

To perform message passing over a SCG, we need to define
the sum, product and division operators over the parametric
representation. We assume that the representation system
used defines these operators for us. In addition, we assume
that the system provides a projection operator, which takes
a function φ and a parametric representation (R,w) as in-
put and sets the parameters w. In other words, the projec-
tion operator yields an instantiation of (R,w), which we
will denote byR[φ]. We say thatR[φ] is lossless if we can
recover φ(y) for all y ∈ D(S(φ)), i.e., R[φ](y) = φ(y).
Otherwise, it is lossy.

The product and division operators take two instantiations
RA[φi] and RB [φj ], and a target representation RC as in-
put, and outputRC [φk] where φk = φi.φj and φk = φi/φj
respectively. The sum operator takes as input an instan-
tiation RA[φi], a representation RB , and a set of vari-
ables Y ⊆ S(φi) as input and outputs RB [φj ] where
φj =

∑
Y φi. We say that the sum, product and division

operators are lossless if their output is lossless. Otherwise,
they are lossy. The lossy sum, product and division opera-
tors can be defined in terms of their lossless analogues us-
ing the projection operator; the lossy instantiationRLY [φ],
is simply a projection of the lossless instantiation RLS [φ],
onRLY .

The message passing algorithm over a SCG, which we will
refer to as structured message passing (SMP) operates as
follows. First, we initialize the SCG by initializing the
parametric representation at each edge and each cluster
to the uniform distribution (or to some other distribution
based on prior knowledge). Then, for each function φ ∈ Φ,
we select a cluster V such that S(φ) ⊆ L(V ) and multi-
ply RV [φ] with the current structured representation, say
RV [φV ] at V , storing the result inRV [φV ]. Then, we pass
messages, as usual, between the clusters, using the sum,
division and product operators, until convergence. In sum-
product propagation only the sum and product operators
are used while in the belief update propagation all the three
operators are used. The complexity of structured message
passing is dependent on the representation system used.

It is straight-forward to show that:

Proposition 1. SMP is equivalent to the cluster graph BP
algorithm if all operators are lossless. Similarly, SMP is
equivalent to the EP algorithm under the restriction that
the sum, product and division operators are lossy and all
messages on all edges Ei,j = (Vi, Vj) are such that they
minimize the K-L divergence between the actual message
mi→j and the represented messageREi,j [mi→j ].

In spite of this equivalence, note that SMP with the afore-
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Figure 1: (a) Tabular representation of a Boolean function, (b)
Its ADD representation. In the ADD representation the solid and
dashed arcs correspond to the true and false assignments of the
parent variable respectively.

mentioned restrictions is more powerful than both tabular
BP and tabular EP because by using structured represen-
tations that are more efficient than tabular representations,
in practice, we can run SMP on graphs having much larger
cluster size than both BP and EP. As the accuracy typically
increases with the cluster size, we expect SMP to be more
accurate than tabular EP and BP algorithms having compa-
rable computational complexity.

4 STRUCTURED REPRESENTATIONS

In this section, we consider two structured representations,
sparse tables and algebraic decision diagrams, and describe
lossless sum, product, division and assignment operators
for them. Then, we show how we can exploit the power of
these representations by defining lossy operators.

Sparse Tables Sparse or zero-suppressed tables are often
useful when a substantial number of zeros are present in the
graphical model [13, 16]. Instead of storing a real number
for all possible configurations of variables, the function is
represented as a list of tuples having non-zero values. For
example, the sparse representation of the tabular represen-
tation given in Fig. 1(a) is a table that contains only the first
three entries. The non-zero tuples are typically stored in a
hash table for fast access. It is easy to define lossless sum,
product, division and assignment operators over this repre-
sentation. For instance, the product operator corresponds
to database hash join and the sum operator corresponds to
database project (cf. [28]). The complexity of these oper-
ations is linear in the size of the input and output tables,
assuming constant time table lookup. The lossless opera-
tors define a cluster graph BP algorithm, which is likely to
be more efficient than the tabular approach when determin-
ism is present. However, when no determinism is present,
the resulting BP algorithm will be slightly inefficient than
the tabular approach because of the constant time overhead
introduced by the sparse operators.

Algebraic Decision Diagrams Algebraic decision dia-
grams (ADDs) [1] are an efficient representation of real-

valued Boolean functions having many identical values in
their range. ADDs are directed acyclic graphs (DAG) and
have two types of nodes: leaf nodes which are labeled by
real-values and non-leaf nodes which are labeled by vari-
ables. Each decision node has two outgoing arcs corre-
sponding to the true and false assignments of the corre-
sponding variable. ADDs enforce a strict variable order-
ing from the root to the leaf node and impose the following
three constraints on the DAG: (i) no two arcs emanating
from a decision node can point to the same node, (ii) if
two decision nodes have the same variable label, then they
cannot have (both) the same true child node and the same
false child node and (iii) no two leaf nodes are labeled by
the same real value. ADDs that do not satisfy these con-
straints are referred to as unreduced ADDs while those that
do are called reduced ADDs. An unreduced ADD can be
reduced by merging isomorphic subgraphs and eliminat-
ing any nodes whose two children are isomorphic (see [1]
for more details). A reduced, ordered ADD is a canonical
representation. Namely, two functions will have the same
ADD (under the same variable ordering) iff they are the
same. For example, Fig. 1(b) shows the ADD representa-
tion of the function given in Fig. 1(a).

It is easy to define lossless sum, product and division oper-
ators using standard ADD operations (and in practice, im-
plement them using open-source ADD packages such as
CUDD [29]). The complexity of these operations is linear
in the size of the largest ADD. Note that any non-Boolean
function can be converted to a Boolean function by intro-
ducing a Boolean variable for each variable-value pair and
adding Boolean constraints which ensure that each variable
is assigned exactly one value (cf. [32]). Therefore, our ap-
proach is also applicable to multi-valued variables.

ADDs and Sparse Tables as Features ADDs and sparse
tables can be interpreted as representations of weighted fea-
tures (or propositional formulas) defined over their vari-
ables. Each entry in the sparse table represents a simple
conjunctive feature while each leaf node of an ADD repre-
sents a complex feature that is a disjunction of several con-
junctive features. For example, the first two entries in the
sparse table in Fig. 1(a) represent the conjunctive weighted
features [(¬A ∧ ¬B), 3] and [(¬A ∧ B), 3] respectively
while the rightmost leaf node in the ADD in Fig. 1(b) rep-
resents the complex weighted feature [((¬A∧¬B)∨(¬A∧
B)), 3], which is logically equivalent to [(¬A), 3].

4.1 Lossy Operators

In order to fully exploit the power of structured representa-
tions, we need lossy operators. Note that without lossy op-
erators, we cannot guarantee that the size of the computed
message will be bounded by the size of the structure asso-
ciated with each edge. Since lossy sum, product and divi-
sion operators are simply lossy projections of their lossless
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counterparts, we only have to define the lossy projection
operator.

Definition 3. Given a ADD (or sparse table) R, let [fi, vi]
be the weighted feature associated with a leaf node (entry)
i. Then, the lossy projection of a probability distribution
φ on i is vi = 1

|Sol(fi)|
∑

y∈Sol(fi) φ(y) where Sol(fi) is
the set of assignments that are consistent with fi. The lossy
projection of φ on R, denoted by R[φ] is the lossy projec-
tion of φ on all leaf nodes (entries) ofR.

We can show that:

Theorem 1. Given a ADD (or sparse table) R, the lossy
projection operator (see Definition 3) minimizes the KL di-
vergence between φ and R[φ]. In other words, there exists
no other ADD (or sparse table) that has the same structure
asR but has smaller KL divergence.

At first glance, the lossy projection operator may seem im-
practical because it involves computing the number of as-
signments that are consistent with a feature, i.e., it includes
solving the #P-complete model counting problem. How-
ever, for sparse hash tables and ADDs, this is not an issue
because model counting is constant time and linear time in
the size of the representation respectively.

5 A STRUCTURED MESSAGE PASSING
ALGORITHM

Clearly, in order to exploit the compactness of ADDs and
sparse tables, a majority of the messages should contain
determinism and/or CSI. To this end, we propose to artifi-
cially introduce CSI and determinism in the messages. In-
tuitively, if the introduced CSI and determinism captures
most of the probability mass in the message, the resulting
algorithm will be as accurate as cluster graph BP. However,
its time and space complexity will be much smaller.

We cannot add zeros or determinism arbitrarily, however.
Notice that in order to guarantee that the KL divergence
between the exact message and all possible projected mes-
sages does not equal infinity, all configurations of variables
that are consistent in the exact message should also be con-
sistent in the projected message. Otherwise, the minimum
KL distance will equal infinity. For example,

Example 1. Consider a cluster that is associated with an
ADD representing two features (A∨B ∨C, 5) and (¬A∧
¬B ∧ ¬C, 0) and an edge with its neighbor that is associ-
ated with an ADD representing two features (¬A∧¬B, v)
and (A ∨ B, 0). No matter what value of v is selected,
the KL divergence between the exact message obtained by
summing outC from the cluster and any message projected
on the structured representation will be infinity.

There are a number of ways in which we can add determin-
ism so that all clusters and edges satisfy the consistency

condition described above. We propose the following ap-
proach because of its simplicity: generate a set of samples
and project them on each cluster and each edge. The pro-
jected samples define a constraint that all partial assign-
ments that are not present in the generated samples have
zero weight. For example,

Example 2. Consider a graphical model with
three binary variables {X1, X2, X3}. Let S =
{(0, 1, 1), (1, 0, 0), (1, 0, 1)} be a set of samples over
the three variables. Consider a cluster defined over two
variables {X1, X2}. Then, the projection of S on the
cluster is the relation: {(0, 1), (1, 0)}. The other two
assignments {(1, 1), (0, 0)} have zero weight. The ADD
associated with this cluster will represent the following
set of features: {(¬X1 ∧ X2, v1), (X2 ∧ ¬X2, v2),
((¬X1 ∧ ¬X2) ∨ (X1 ∧X2), 0)}.

We can show that our approach that introduces determin-
ism via sampling is correct and yields a structured EP algo-
rithm. The only assumption we have to make is that each
tuple having non-zero value in each function in the graphi-
cal model is included in the samples. This will ensure that
the KL divergence between any function in the graphical
model and its lossy projection is finite. Formally,

Theorem 2. Given a graphical model G = (X,D,Φ), a
structured cluster graph G(V,E), let S be a set of sam-
ples over X such that: (1) For each cluster V ∈ V and
each edge E ∈ E, RV andRE are such that for any func-
tion φ and for all configurations x /∈ S, RV [φ](x) = 0
and RE [φ](x) = 0 and for all configurations x ∈ S,
RV [φ](x) > 0 and RE [φ](x) > 0 and (2) For each func-
tion φ ∈ Φ, all assignments x ∈ S(φ) such that φ(x) > 0
are included in S. Then, for each edge E, there exists
a lossy message such that the KL divergence between the
lossless message and the lossy one is finite.

To artificially introduce CSI in the message, we propose to
use quantization [10, 30]. In this approach, given a small
real number ε, we put all values in the range of the function
into multiple bins such that the absolute difference between
any two values in each bin is bounded by ε. The goal is to
minimize the number of bins. Then, we replace all values
in each bin by their average value in each function. Quan-
tization reduces the number of distinct values in the range
of the function and as a result reduces the size of the ADD
representing the message.

The discussion above yields Algorithm 1, which is a possi-
ble instance of SMP. The algorithm takes as input a graphi-
cal model G = (X,D,Φ), a cluster graph G(V,E), a rep-
resentation system R, an integer k denoting the number of
samples and a real number ε, which denotes the error bound
used for quantization. The algorithm first generates sam-
ples from the graphical model. The samples can be gener-
ated using either importance sampling or Gibbs sampling.
(For higher accuracy, the samples should be such that they
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Algorithm 1: Structured Message Passing
Input: A graphical model G = (X,D,Φ), a cluster graph

G = (V,E), a representation systemR, integer k > 0
and a real number 0 ≤ ε ≤ 1

Output: A structured cluster graph with (converged) messages
and potentials

begin
S=Generate k Samples from G;
for each V ∈ V and E ∈ E do

// Project S on V and E
InitializeRV [φV ] andRE [φE ] to zero;
for all configurations x ∈ S do

setRV [φV ](x) = 1 andRE [φE ](x) = 1;

Let G′ = (V′,E′) be the structured cluster graph obtained
in the above step;
for each function φ in Φ do

Find a cluster V ∈ V′ such that S(φ) ⊆ S(φV ) and
multiply φ withRV [φV ];

Run sum-product or belief-update message passing on G′

until convergence. Quantize each message using ε;

capture the modes of the distribution.) After the samples
are generated, we project the samples on each cluster and
each edge and use the representation system to yield a
structured cluster graphG′(V′,E′). Then, we initialize the
parameters of each cluster V ∈ V′ and each edge E ∈ E′

using the functions in the graphical model. Finally, the al-
gorithm runs either sum-product or belief-update message
passing on the structured cluster graph. Each message is
quantized using ε.

Algorithm 1 is equivalent to the cluster graph BP algorithm
when k =∞ and ε = 0. It is equivalent to the quantization-
based EP algorithm proposed in [10] when k = ∞ and
ε > 0. For other values of k and ε, Algorithm 1 yields a
Monte Carlo approximation of cluster graph BP and EP.

The algorithm just presented belongs to a class of al-
gorithms that combine sampling-based inference with
message-passing based inference. Many other advanced al-
gorithms proposed in literature such as Particle BP [14, 31],
AND/OR sampling [9], and sample propagation [23] be-
long to this class. The novelty in our proposed algo-
rithm is that we combine sampling-based inference with
message-passing inference over structured cluster-graphs.
This yields several interesting bias versus variance trade-
offs, which can be leveraged to improve the accuracy of
estimation. We discuss these tradeoffs next.

5.1 Analysis: Bias-Variance Tradeoffs

In this section, we analyze the bias-variance tradeoffs in
Algorithm 1. Let f(x) be the quantity that we want
to estimate (e.g., the partition function or the posterior
marginals). Given a set of samples S, a cluster graph
G and constant ε, let h(x;G, ε,S) denote the estimate of
f(x) computed using Algorithm 1 with G,S, ε as inputs.

Then, the expected mean squared error between f(x) and
h(x;G, ε,S) is

ES[{h(x;G, ε,S)−f(x)}2] = {ES[h(x;G, ε,S)]−f(x)}2

+ {ES[{h(x;G, ε,S)− ES[h(x;G, ε,S)]}2]} (2)

The first term in Eq. (2) equals bias squared and the second
term equals the variance.

We can show that:

Theorem 3. Increasing the cluster size (or decreasing ε) of
the cluster graph used by Algorithm 1 decreases the asymp-
totic bias lim|S|→∞ |ES[h(x;G, ε = 0,S)]− f(x)| but in-
creases the variance.

Proof. (Sketch) Notice that in the limit of infinite sam-
ples and assuming that ε = 0, Algorithm 1 is equivalent
to the cluster graph BP algorithm (we also assume that
the sampling algorithm generates every assignment having
non-zero probability in G with non-zero probability). Since
the set of cluster graphs whose cluster size is bounded by i
(along with the associated cluster potentials and messages)
is included in the set of cluster graphs whose cluster size is
bounded by i+1, the bias will never increase as we increase
the cluster size. Moreover, cardinality arguments (the num-
ber of different clusters of size i + 1 is far greater than the
number of different clusters of size i) dictate that there ex-
ists a particular setting of cluster potentials and messages in
a cluster graph whose cluster size is bounded by i+ 1 that
cannot be represented by any cluster graph whose cluster
size is bounded by i and therefore the asymptotic bias de-
creases as we increase the cluster size. (The asymptotic
bias of a junction tree is zero).

To prove that the variance increases as we increase the clus-
ter size, consider two clusters V and V ′ where V ′ is con-
structed from V by adding a variable to it. Clearly, project-
ing the given set S of samples on V will cover a greater
percentage of the tuples in the potential associated with V
as compared to the potential associated with V ′. As a re-
sult, the effective sample size at V is larger than the ef-
fective sample size at V ′. Since the variance decreases as
the sample size increases, the variance at V will be smaller
than the variance at V ′. Therefore, the variance increases
as we increase the cluster size. Increasing ε has the effect
of introducing new context specific (conditional) indepen-
dences, which is the same as decreasing the cluster size.
Therefore, the same arguments apply to decreasing ε.

From the central limit theorem, it is immediate that:

Theorem 4. Increasing the number of samples while fixing
G and ε decreases the variance. Moreover, the sample bias
converges to the asymptotic bias at the rate of O(|S|−1/2).

Theorems 3 and 4 summarize the bias-variance tradeoffs
associated with Algorithm 1. For a fixed sample size, clus-
ter graphs having large clusters will typically have low bias
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and high variance while cluster graphs having small clus-
ters will typically have large bias and low variance.
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Figure 2: Impact of varying k (number of samples), keeping
the i-bound and ε constant for (a) 20 × 20 Ising model with 10
evidence nodes, i = 9 and ε = 2−40, (b) Block coding instance
with 255 variables and 511 functions, i = 12 and ε = 2−100

and (c) Logistics instance with 1413 nodes and 29487 functions,
i = 15 and ε = 2−40.

6 EXPERIMENTS

In this section, we compare SMP with Iterative Join Graph
propagation (IJGP) [19], a state-of-the-art tabular clus-
ter graph BP algorithm. IJGP won two out of the three
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Figure 3: Impact of varying the quantization parameter ε, keep-
ing the i-bound and k constant for (a) 20 × 20 Ising model with
10 evidence nodes, i = 6 and k = 25, (b) Block coding instance
with 255 variables and 511 functions, i = 12 and k = 216 and (c)
Logistics instance with 1413 nodes and 29487 functions, i = 12
and k = 216.

marginal estimation categories in the 2010 UAI compe-
tition [8]. We experimented with instances from three
benchmark domains: (i) Ising models (these instances are
available from the PASCAL 2011 probabilistic inference
challenge), (ii) linear block coding (these instances avail-
able from the UAI 2008 evaluation), and (iii) logistic plan-
ning (these instances are available from the authors of Ca-
chet [25]). Ising models have no determinism, the linear
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Figure 4: Impact of varying the i-bound, keeping k and ε con-
stant for (a) 20 × 20 Ising model with 5 evidence nodes, k = 214

and ε = 2−30, (b) Block coding instance with 255 variables and
511 functions, k = 218 and ε = 2−35 and (c) Logistics instance
with 1413 nodes and 29487 functions, k = 216 and ε = 2−35.

block coding networks have determinism and CSI while the
logistic planning instances have determinism but no CSI.

We used the CUDD package [29] to implement ADDs. For
a fair comparison, we constructed the cluster graphs for
SMP using the same approach used by IJGP (see [19] for
details). In IJGP, the complexity of inference is controlled
by bounding the number of variables in each cluster by an
integer parameter i, called its i-bound. We varied the i-
bound from 3 to 15 in increments of 3. For the SMP algo-
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Figure 5: KL-divergence as a function of time (a) 21 × 21 Ising
model with 5 evidence nodes, (b) Block coding instance with 255
variables and 511 functions and (c) Logistics instance with 1413
nodes and 29487 functions.

rithm, we varied ε (which controls quantization) from 2−20

to 2−100 and k (number of samples) from 25 to 220. We
used Gibbs sampling on the Ising models and importance
sampling on the other two for generating samples (This is
because Gibbs sampling does not converge in presence of
determinism). We ran each algorithm until convergence or
until 15 minutes or until it exceeded a memory bound of
512 MB, whichever was earlier. We chose these values be-
cause the benchmarks can be solved exactly in roughly 1
hour of cpu time using up to 8 GB of RAM. We used av-
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erage KL divergence between the exact and approximate
marginal distribution to measure accuracy.

For lack of space, we only show a fraction of our results
in Figures 2-5. SMP-SH and SMP-ADD denote the sparse
hash table based and ADD based implementation of SMP
respectively. Note that each point in each figure denotes an
average over 10 random runs of IJGP, SMP-SH and SMP-
ADD respectively.

Figure 2 shows the impact of varying the number of sam-
ples k, keeping the i-bound and ε constant for three in-
stances, one from each domain. As expected, the accuracy
of SMP-SH and SMP-ADD improves with more samples.

Figure 3 shows the impact of varying the quantization pa-
rameter ε, keeping the i-bound and k constant for three in-
stances. In all three cases, we clearly see the bias versus
variance trade-off; as we decrease ε, the accuracy first im-
proves and then reduces before stabilizing to a fixed point.

Figure 4 shows the impact of varying the i-bound, keeping ε
and k constant for three instances. Again in all three cases,
we clearly see the bias versus variance trade-off; as we in-
crease the cluster size (i-bound), the accuracy improves un-
til a certain i-bound after which it starts decreasing.

Figure 5 shows the accuracy of various schemes as a func-
tion of time. For each time-point, we select the parameters
that yield the best accuracy for each of the three methods.
SMP-ADD is more accurate than SMP-SH which in turn is
more accurate than IJGP. Note the log-scale on the Y-axis
and therefore there is an order of magnitude difference.

7 RELATED WORK

Our work is related to the work on structured region graphs
(SRGs) by Welling et al. [33]. In it, the authors showed
that Yedidia et al.’s [34] generalized belief propagation al-
gorithm morphs into the EP algorithm [20] if each message
and cluster potential in the region graph is approximated
by a product of tractable tabular functions. Our work is
different from Welling et al.’s work in that we propose to
use structured representations which are often more com-
pact than the product of tabular functions representation.
Also, unlike our formulation, there is no straight-forward
way of introducing and exploiting determinism and CSI in
the SRG formalism.

Our work is also related to the work on non-parametric
BP by Sudderth et al. [31] and particle BP by Ihler and
McAllester [14], in which the authors propose to represent
BP messages using samples or particles. However, unlike
our work, these approaches do not exploit structured rep-
resentations and do not utilize both CSI and determinism.
Also, they do not investigate bias versus variance trade-offs
as we do. Our work connects particle BP with EP, yielding
a more unified perspective.

Another related work is that of [7, 12, 23] who perform
sampling based inference on junction trees. The main idea
in these papers is to perform message passing on a junc-
tion tree by substituting messages which are too hard to
compute exactly by their sampling-based approximations.
Unlike our work, however, they do not perform message
passing over arbitrary cluster graphs. This is problematic
because as we showed, for a small sample size, junction
trees will have low bias but high variance and as a result
they will likely yield inaccurate results.

Finally, our work is related to the work on approximation
by quantization (ABQ) by Gogate and Domingos [10]. Un-
like ABQ which only introduces CSI, we propose to intro-
duce both CSI and determinism which as we show often
yields better accuracy in practice.

8 SUMMARY AND FUTURE WORK

In this paper, we proposed structured message passing, a
unifying approach for taking advantage of structured rep-
resentations. We investigated the use of two structured rep-
resentations within this framework: algebraic decision di-
agrams (ADDs) and sparse hash tables. ADDs are useful
in the presence of CSI and/or determinism while sparse ta-
bles are useful only in the presence of determinism. There-
fore, in order to fully utilize the power of ADDs and sparse
tables, we proposed a new algorithm that artificially in-
troduces CSI via quantization and determinism via sam-
pling. Our new algorithm is quite powerful and includes
the cluster graph BP algorithm, the EP algorithm and the
particle BP algorithm as special cases. Our algorithm in-
troduces several bias versus variance tradeoffs. We inves-
tigated these tradeoffs both theoretically and empirically
and showed that our new algorithm is superior to state-of-
the-art approaches such as Iterative Join Graph Propaga-
tion [19].

Future work includes: applying our algorithm to contin-
uous and hybrid discrete/continuous graphical models; us-
ing other structured representations such as mixture models
and Affine ADDs [26] within SMP; combining SMP with
lifted inference (cf. [11]); using our algorithm for weight
learning; developing automatic tuning strategies for finding
the right balance between bias and variance; etc.
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Abstract

We introduce a graphical framework for
multiple instance learning (MIL) based on
Markov networks. This framework can be
used to model the traditional MIL definition
as well as more general MIL definitions. Dif-
ferent levels of ambiguity – the portion of
positive instances in a bag – can be explored
in weakly supervised data. To train these
models, we propose a discriminative max-
margin learning algorithm leveraging efficient
inference for cardinality-based cliques. The
efficacy of the proposed framework is evalu-
ated on a variety of data sets. Experimental
results verify that encoding or learning the
degree of ambiguity can improve classifica-
tion performance.

1 INTRODUCTION

Multiple instance learning aims to recognize patterns
from weakly supervised data. Contrary to standard
supervised learning, where each training instance is
labeled, in the MIL paradigm training instances are
given in positive and negative bags. In the traditional
MIL definition, a bag is positive if it contains at least
one positive instance, while in a negative bag all the
instances are negative. This ambiguity in the instance
labels is passed on to the learning algorithm, which
should incorporate the information to classify unseen
bags. In this paper we develop a novel framework for
MIL with a more general definition of a positive bag.

Multiple instance learning has been successfully used
in many applications such as image categoriza-
tion (Chen et al., 2006), text categorization (Andrews
et al., 2002), content-based image retrieval (Zhang and
Goldman, 2002), text-based image retrieval (Li et al.,
2011; Duan et al., 2011), object detection (Viola et al.,
2006) and tracking (Babenko et al., 2009). Chen et al.

(2006) treated each image as a bag of instances cor-
responding to blocks, regions, or patches of the im-
age for the purpose of image categorization. Andrews
et al. (2002) approached text categorization with a
MIL framework, where each document is represented
by a bag of passages. Li et al. (2011) and Duan et al.
(2011) used MIL to handle ambiguity in labels of train-
ing images incurred by coarse ranking of web images.
Viola et al. (2006) used MIL to overcome the ambigu-
ity in object annotation, by representing each image
with a bag of windows centered around the ground
truth. Likewise, in object tracking Babenko et al.
(2009) used several blocks around the estimated ob-
ject location to construct a positive training bag for
MIL.

The traditional MIL definition states that at least one
of the instances in a positive bag is positive. However,
this is a too weak statement in many MIL applications.
For example, in image retrieval most top-ranked train-
ing images are truly relevant to the query – they are
true positives and not just additional irrelevant ele-
ments in a bag (Li et al., 2011). Using this prior infor-
mation can help to train stronger and more robust clas-
sifiers. Further, in some applications, because of noisy,
imperfect, or low-quality feature representations, neg-
ative bags can contain instances that are effectively
indistinguishable from positive instances. In these sit-
uations more robust MIL definitions are needed.

To address these issues, we develop a MIL framework
based on Markov networks with a flexible notion of
a positive bag. This general MIL framework uses
cardinality-based measurements over bags, which ex-
tend from the notion of “at least one positive” to “at
least some positives” to “nearly all positives.” Thus,
it can explore different levels of ambiguity in the data.
In addition, this framework can be adapted to esti-
mate the appropriate MIL notion from training data
without prior information about the fraction of posi-
tives in the bags. We show that it is possible to use
efficient inference techniques (Gupta et al., 2007) to
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train and evaluate these general MIL models quickly.
For the learning criterion, we propose a max-margin
discriminative algorithm to train the models.

This paper is organized as follows. Section 2 reviews
related work. Section 3 describes our framework of
multiple instance learning with Markov networks. In
particular, the models for different MIL definitions, in-
cluding the traditional MIL definition and more gen-
eral MIL definitions are described in this section. In
Section 4 the inference and learning algorithms are ex-
plained. Section 5 provides experimental comparisons
to state-of-the-art MIL algorithms and an application
to video sequence classification. We conclude in Sec-
tion 6.

2 RELATED WORK

Dietterich et al. (1997) introduced the first algorithms
for multiple instance learning. The main idea was
to construct a hyper-rectangle maximizing the num-
ber of enclosed instances from positive bags while
excluding all the instances of negative bags. Based
on similar ideas, the general diverse density (DD)
framework (Maron and Lozano-Pérez, 1998) was pro-
posed. This algorithm works by finding a concept
point which is near to at least one instance of every
positive bag, but far from all negative instances. Next,
EM-DD (Zhang and Goldman, 2002), the expectation-
maximization version of DD, was proposed by incorpo-
rating the iterative EM approach of estimating positive
instances and refining the concept hypothesis within
the DD framework.

Gärtner et al. (2002) defined a kernel for multiple in-
stance data and used SVMs to learn a bag classifier.
Andrews et al. (2002) modified SVMs for MIL, propos-
ing two algorithms. The first, mi-SVM, aims to max-
imize the instance margin jointly over the hidden in-
stance labels. The second, MI-SVM, tries to maximize
the bag margin, where the bag margin is defined by
the most positive instance of each bag. Chen et al.
(2006) employed a DD function to map the instances
of a bag into a bag-level feature vector. Then, the im-
portant features were used by 1-norm SVM for image
categorization. Zhou et al. (2009) proposed MIGraph
and miGraph. In these methods, first a graph is con-
structed for each bag, and then an SVM is trained by
designing a graph kernel. Thus, by considering the re-
lations among the instances in a bag, the instances are
treated as non-i.i.d samples.

The very successful Latent SVM (Felzenszwalb et al.,
2010) is also a multiple instance learning framework.
For positive instances, a set of latent variable values
is used. One can consider the set of completed data
instances (latent variable values with observed input

feature values) as a “bag” in MIL, as in the MI-SVM
framework (Andrews et al., 2002). Latent SVMs have
been used in numerous applications, and often obtain
state of the art performance. However, they use the
“at least one positive instance” positive bag definition.
As noted above, for some applications this is limiting
since many latent variable settings could in fact be
positive and could aid in training a better classifier.
The more general MIL definition and algorithms in
this paper aim to remedy this.

In recent years, more advanced algorithms have been
developed to address non-traditional MIL definitions.
Gehler and Chapelle (2007) proposed SVM-like algo-
rithms, AL-SVM and AW-SVM, for MIL. They ar-
gued that different levels of ambiguity in positive bags
can influence the performance of MIL-based methods.
Hence, they provided the possibility to encode prior
knowledge about the data set, i.e., fraction of positive
instances (witnesses) in a bag. However, these algo-
rithms need a preset parameter which determines the
fixed ratio of witnesses.

Bunescu and Mooney (2007) used the transductive
SVM framework to propose a MIL algorithm for sparse
positive bags. Li and Sminchisescu (2010) proposed a
MIL model based on likelihood ratio estimation. The
likelihood ratio is estimated by a support vector regres-
sion scheme. For bag classification, an SVM is trained
to linearly combine the instance likelihood ratios in a
postprocessing step. Although, the original model for-
mulation follows the traditional MIL assumption, how-
ever, their experiments show that the postprocessing
makes this algorithm suboptimally adaptive to differ-
ent witness rates.

Duan et al. (2011) and Li et al. (2011) introduced a
generalized MIL definition, where the positive bags
contained at least a certain portion of positive in-
stances. They used a mixed-integer SVM formulation
with new constraints on instance labels of the bags.
It is shown that this NP-hard problem can be viewed
as a multiple kernel learning problem with an expo-
nential number of base kernels. Thus, this algorithm
requires some heuristics to solve the original problem.
Hajimirsadeghi and Mori (2012) proposed a boosting
algorithm for MIL, which can softly explore different
levels of ambiguity using linguistic aggregation func-
tions with different degrees of orness. However, this
algorithm also needs approximate before-hand knowl-
edge of the witness ratio, or uses cross-validation to
estimate it.

In this work, we propose a MIL framework based on
Markov networks. This framework is used to model
more general MIL definitions, and superior to previous
algorithms (Gehler and Chapelle, 2007; Duan et al.,
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2011; Li et al., 2011; Hajimirsadeghi and Mori, 2012),
it can also work without prior information about the
fraction of positive instances inside the bags. In fact,
the proposed model can be trained to discover this
knowledge directly from data. The inference and
learning of the proposed models is exact and no heuris-
tics are needed. Further, the Markov network allows
flexible modification and extensions, for instance mod-
eling bag structure. This framework could also be
modified to address issues such as training individ-
ual classifiers from group statistics of label propor-
tions (Kueck and de Freitas, 2005; Quadrianto et al.,
2009; Rueping, 2010).

Note that there are also some other MIL methods
based on Markov networks or conditional random
fields (CRFs). Deselaers and Ferrari (2010) proposed
MI-CRF. In this method, the bags are modelled as
nodes in a CRF, where each node can take one of the
instances in the bag as its state. So, the bags are
jointly trained and classified in this model. Warrell
and Torr (2011) proposed another CRF-based method.
This method provides a structured bag model, by con-
structing an undirecetd graph among the instances, in-
stance labels and the bag label. In this CRF, hard and
soft MIL constraints are incorporated in the model by
defining energy functions between the labels. How-
ever, infering the proposed CRFs is performed ap-
proximately by dual decomposition, and the models
are trained by deterministic annealing. Tarlow et al.
(2012) proposed a model to approach MIL by CRFs
with cardinality potentials over instance labels. How-
ever, this model works by sum-product (i.e., marginal-
ization) inference of cardinality potentials. Note that
maximum a posteriori (MAP) inference of cardinality
potentials, which is used in our proposed method, is
faster than the sum-product inference (Tarlow et al.,
2012). In addition, our max-margin learning algorithm
is different from their maximum likelihood approach to
learning.

3 MIL USING MARKOV
NETWORKS

In MIL, training examples are presented in bags where
the instances in a bag share a label. In this work,
we use Markov networks to model MIL problems and
develop a generalized notion of positive bags.

The Markov network is used to define a scoring func-
tion for a bag. A graphical representation of the pro-
posed Markov network for a bag is shown in Figure 1.
Each instance and its label are modeled by two nodes
in a clique. The clique potential specifies a classifier
for an individual instance. A second clique contains all
instance labels and the bag label. This clique is used to

define what makes a bag positive. Varying this clique
potential will lead to different MIL definitions, and is
the focus for our work.

3.1 MODEL DETAILS

More formally, let X = {x1, · · · ,xm} denote a bag
with m instances and a binary bag label y ∈ {−1, 1}.
The collective binary instance labels are denoted by
h = {h1, · · · , hm}. We use the Markov network in Fig-
ure 1 to define a scoring function over tuples (X,h, y).
In testing, this scoring function will be used to find the
label y for a test bag, inferring the bag and instance
labels that maximize the scoring function.

The network has cliques on each instance and its label,
and one clique on all instance labels and the bag label.
We define the scoring function on these cliques by:

fw(X,h, y) = φCw(h, y) +
∑

i

φIw(xi, hi), (1)

where φIw(xi, hi) represents the potential between each
instance and its label, and φCw(h, y) is the clique poten-
tial over all the instance labels and the bag label. Note
that the potential functions in (1) are parametrized by
w. We explain the details of these potential functions
as follows.
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Figure 1: Graphical illustration of the proposed model
for multiple instance learning. Potential functions re-
late instances xi to labels hi. A clique relates all in-
stance labels hi to the bag label y.

Instance-Label Potential φIw(xi, hi): This poten-
tial function models the compatibility between the
ith instance feature vector xi and its label hi. It is
parametrized as:

φIw(xi, hi) = w>I xi hi
= w>I ψI(xi, hi).
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Labels Clique Potential φCw(h, y): This potential
function models the relations between the instance la-
bels and the bag label. Since the MIL problems are
defined based on the number of positive and negative
instances, we can formulate this as a cardinality-based
clique potential. Cardinality-based potentials are only
a function of counts – in this case, the counts of the
numbers of positive and negative instances in the bag.

By modifying the form of the cardinality-based po-
tential, we can obtain different MIL definitions, which
will be shown in the subsequent section. Moreover,
while for arbitrary clique potentials inference could be
NP-complete, for cardinality-based potentials efficient
inference algorithms exist. This will lead to efficient
algorithms for training and testing, described in Sec-
tion 4.

In order to define the cardinality-based potentials, we
will use the notation m+/m− for the number of labels
in h which are positive/negative. The clique potential
depends on these counts, and the bag label y. We
parameterize two different clique potentials, one for
positive bags (C+

w) and one for negative bags (C−w):

φCw(h, y) = Cw

(
m+,m−, y

)

= C+
w

(
m+,m−

)
1(y = 1)

+ C−w
(
m+,m−

)
1(y = −1).

(2)

The following sections define functions C+
w and C−w

that lead to a variety of MIL models.

3.1.1 Multiple Instance Markov Network
(MIMN)

This network models the standard MIL problem, i.e.,
in a positive bag at least one of the instances is posi-
tive, and in a negative bag all the instances are nega-
tive. The labels clique potential is given by

C+
w(0,m) = −∞ (3)

C+
w(m+,m−m+) = w+

c m+ = 1, · · · ,m (4)

C−w(0,m) = w−c (5)

C−w(m+,m−m+) = −∞ m+ = 1, · · · ,m. (6)

This clique potential states that in a positive bag it
is impossible to have all the instances be negative (3),
but there is the same potential of having more than
one positive instance (4). However, for a negative bag,
it is only possible to have negative instances (5) & (6).
One might set w+

c and w−c to a constant value (e.g. 0),
but we treat them as the model parameters and show
how to learn them in Section 4.2.

3.1.2 Ratio-constrained Multiple Instance
Markov Network (RMIMN)

Ratio-constrained MIL extends the notion of positive
bags in MIL. In RMIMN, each positive bag contains
at least a certain portion of positive instances. For
example, at least x% of the instances should be posi-
tive in a positive bag. To model this problem with our
proposed Markov network, we can refine the functions
C+ and C−:

C+
w(m+,m−m+) = −∞ 0 ≤ m+

m
< ρ

C+
w(m+,m−m+) = w+

c ρ ≤ m+

m
≤ 1

C−w(m+,m−m+) = w−c 0 ≤ m+

m
< ρ

C−w(m+,m−m+) = −∞ ρ ≤ m+

m
≤ 1,

(7)

where ρ indicates the required portion of positive in-
stances in a positive bag.

3.1.3 Generalized Multiple Instance Markov
Network (GMIMN)

GMIMN allows a very flexible notion of positive bags.
We allow the portions of positive and negative in-
stances in bags to be a learned parameter, discovered
from the data. The MIL model will learn which frac-
tions of instances tend to be positive in a bag. This
network provides a very general model for multiple in-
stance learning and is parametrized by:

C+
w(0,m) = −∞

C+
w(m+,m−m+) =

K∑

k=1

w+
k 1(

k − 1

K
<
m+

m
≤ k

K
)

m+ = 1, · · · ,m

C−w(m+,m−m+) =
K∑

k=1

w−k 1(
k − 1

K
≤ m+

m
<

k

K
)

m+ = 0, · · · ,m− 1

C−w(m, 0) = −∞.
(8)

where K determines the number of weighted segments
of a bag. This model divides the bag size into K equal
parts, and the weight of each segment wk determines
how important it is that the number of positive in-
stances be placed inside that interval1. In other words,

1Note that the weights wk are not necessarily mono-
tonically increasing as k increases. For example, in a MIL
data set, there might be only a few true positive instances
in the positive bags, and so the potential of having many
instances be positive is low.
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these learning weights specify the importance or im-
pact of different witness ratios for labeling a bag as
positive or negative. Large values of K provide more
detailed and specific models of bag definition by learn-
ing cardinality-based measures with finer resolution,
while low values of K define a coarser model of bag.
So, by controlling the granularity, this parameter is
set in a trade-off between training accuracy and gen-
eralization ability2. Note that C+

w(0,m) = −∞ and
C−w(m, 0) = −∞ are the only required prior informa-
tion in this model.

With these definitions, we note that using C+
w and

C−w defined in any of the MIMN, RMIMN, or GMIMN
models makes the clique potential (i.e., φCw) a linear
function of the learning parameters. More formally:

φCw(h, y) = w>CΨC(h, y) + gC(h, y), (9)

where wC represents the concatenation of the learn-
ing parameters in C+

w and C−w , while ΨC(h, y) and
gC(h, y) are functions independent of w, which are
specified by aggregation of the indicator functions.

4 INFERENCE AND LEARNING

The MIL models above define scoring functions that
consider counts of instance labels in a bag. Using this,
for a given bag we can define a scoring function for
labeling a bag X with a label y:

Fw(X, y) = max
h

fw(X,h, y). (10)

Below, we describe how to use efficient inference al-
gorithms (Gupta et al., 2007) to efficiently solve this
inference problem for the cardinality-based cliques we
defined above.

Using this inference technique, learning can be per-
formed using a max-margin criterion, as in the Latent
SVM approach.

Classification of a new test bag can be done in a sim-
ilar manner. We can predict the bag label by simply
running inference, trying y = +1 and y = −1 and
taking the maximum scoring bag label:

y? = arg max
y

Fw(X, y). (11)

4.1 INFERENCE

The inference problem is to find the best set of instance
labels h given observed values for the data instances
X and the bag label y – the maximization problem in

2In the experiments of this paper, we use cross-
validation on the values K = 3, K = 5, and K = 10
to roughly estimate this parameter.

(10). Using (1) and (2), the inference problem can be
written as

max
h

∑

i

φIw(xi, hi) + Cw(m+,m−, y). (12)

This problem is an instance of inference in graph-
ical models with cardinality-based clique poten-
tials (Gupta et al., 2007). This class of clique poten-
tials is specified by two parts: the sum of individual
node potentials and a function over all the nodes which
only depends on the counts of the nodes which get spe-
cific labels. Efficient inference algorithms have been
proposed for this class of graphical model in (Gupta
et al., 2007). In this paper, we only work with the
binary case (i.e., hi ∈ {+1,−1}), for which there is an
exact inference algorithm with O(m logm) time com-
plexity. The inference algorithm is as follows.

First, sort the instances in decreasing order of
φIw(xi,+1) − φIw(xi,−1). Then, for k = 0, · · · ,m,
compute sk, the sum of the top-k instance poten-
tials φIw(xi,+1)−φIw(xi,−1) plus the clique potential
Cw(k,m−k, y). Finally, find k? which gets the largest
sk, and inference is accomplished by assigning the top
k? instances to positive labels and the rest to negative
labels.

4.2 LEARNING

The training set is given by
{
(
X1, y1

)
, · · · ,

(
XN , yN

)
}, and the goal is to train

the Markov models by learning the parameters w.
Inspired by the relations to latent SVM, we formulate
the learning problem as minimizing the regularized
hinge loss function:

min
w

N∑

n=1

(Ln −Rn) +
λ

2
‖w‖2

where Ln = max
y

max
h

(∆(y, yn) + fw(Xn,h, y)),

Rn = max
h

fw(Xn,h, yn),

∆(y, yn) =

{
1 if y 6= yn

0 if y = yn.

(13)

One approach to solve this problem approximately is
the iterative algorithm of alternating between infer-
ence of the latent variables and optimization of the
model parameters. So, the first step estimates the in-
stance labels and the second step learns a standard
SVM classifier given the estimated instance labels. It
can be shown that using this approach with the MIMN
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model leads to an algorithm very similar to mi-SVM
(Andrews et al., 2002).

However, we use the non-convex cutting plane method
(Do and Artières, 2009) to directly solve the optimiza-
tion problem in (13). This method is proved to con-
verge to a local optimum, unlike the heuristic itera-
tive algorithm of mi-SVM, which has no convergence
guarantee. The non-convex cutting plane method
iteratively makes an increasingly accurate piecewise
quadratic approximation of the objective function. At
each iteration, a new linear cutting plane is obtained
via the subgradient of the objective function and added
to the piecewise quadratic approximation. To use this
algorithm, the principal issue is to compute the sub-
gradients ∂wLn(w) and ∂wRn(w). To this end, we
need to know the subgradient of the network potential
function, i.e., ∂wfw(X,h, y).

It is simple to show that

∂wfw(X,h, y) = Ψ(X,h, y), (14)

where Ψ(X,h, y) =
[∑

i ψI(xi, hi)
>,ΨC(h, y)>

]>
.

Using equations (13) and (14), it can be shown that
∂wLn(w) = Ψ(Xn,h?, y?), where (h?, y?) is the solu-
tion to the inference problem:

max
y

max
h

(∆(y, yn) + fw(Xn,h, y)). (15)

This inference problem can be solved using the algo-
rithm in 4.1. In summary, for y = 1 and y = −1 we
find h by doing inference on the resulting graphical
model (which has cardinality-based clique potential).
Then, the y with the highest value gives the predicted
bag label y?.

In the same way, it can be shown that ∂wRn(w) =
Ψ(Xn,h?, yn), where h? is the solution to the inference
problem:

max
h

fw(Xn,h, yn). (16)

5 EXPERIMENTS

In this section we describe the evaluation of our MIL
models. First, the proposed models are evaluated
on MIL benchmark data sets to demonstrate they
can achieve state of the art performance on standard
datasets. Next, we evaluate the models on a challeng-
ing cyclist helmet recognition dataset, and show that
flexibility in the portion of positives in a bag can lead
to improved classification accuracy.

5.1 BENCHMARK DATA SETS

We evaluate the MIL models on five well-known MIL
datasets. These benchmark data sets are the Elephant,

Fox, Tiger image data sets (Andrews et al., 2002)
and Musk1 and Musk2 drug activity prediction data
sets (Dietterich et al., 1997). In the image data sets,
each bag represents an image, and the instances inside
the bag represent 230-D feature vectors of different
segmented blobs of the image. These data sets contain
100 positive and 100 negative bags. In the MUSK data
sets, each bag describes a molecule, and the instances
inside the bag represent 166-D feature vectors of the
low-energy configurations of the molecule. Musk1 has
47 positive bags and 45 negative bags with about 5
instances per bag. Musk2 has 39 positive bags and 63
negative bags with variable number of instances in a
bag, ranging from 1 to 1044 (average 64 instances per
bag). Note that in all experiments of this section, we
have used normalized data sets, which are obtained by
scaling the features of the original data sets3 to the
range [0, 1].

The 10-fold averaged classification accuracies for the
MIMN model on different data sets are shown in Table
1. At each trial, we run the non-convex cutting plane
algorithm with all the learning weights initialized to 0,
roughly optimized λ, and at most 300 iterations. This
table also includes the classification results with differ-
ent kernel feature maps. For these data sets (especially
Musk1 and Musk2), non-linear kernels are commonly
used for SVM-like algorithms. For example, in (An-
drews et al., 2002) mi-SVM and MI-SVM are trained
on Musk1 and Musk2 data sets by RBF kernels. Or in
(Ray and Craven, 2005) and (Bunescu and Mooney,
2007) quadratic kernels have shown successful classifi-
cation results. Since our algorithm works with linear
kernels, we exploit the idea of kernel feature maps.
We investigate the performance of quadratic features
in addition to the feature maps proposed in (Vedaldi
and Zisserman, 2012) for homogeneous kernels: inter-
section, χ2, and Jensen-Shannon.

Table 1: MIMN classification accuracy with different
kernel functions. The best results are marked in bold
face.

Method ElephantFox Tiger Musk1Musk2

MIMNLinear 85.5 62.5 87.0 78.3 77.6
MIMNQuadratic 82.50 64.0 87.0 85.9 81.9
MIMNIntersection 89.0 59.0 85.5 86.1 89.5
MIMNχ2 87.0 60.0 84.0 84.1 90.3
MIMNJensen-
Shannon

86.0 59.0 84.5 83.7 87.4

Now, we compare the best of MIMN with state-of-the-

3The original data sets are available online at http:
//www.cs.columbia.edu/~andrews/mil/datasets.html.
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art MIL methods in Table 24. The performance of
the methods varies depending on the data set. How-
ever, MIMN is always among the best methods. More
specifically, it achieves the best accuracy in the Ele-
phant, Fox, Tiger and Musk2 data sets.

Note that the competing methods miGraph and MI-
Graph (Zhou et al., 2009) treat the instances as non-
i.i.d samples and model correlations among the bags –
this incorporates different information into the model,
which is not directly present in our approach.

Next, the results of the experiments with the RMIMN
model are presented in Table 3. It can be observed
that for the image data sets RMIMN cannot improve
MIMN significantly. However, for Musk1 and Musk2
substantial performance gains can be made. The rea-
son might be that in an image usually one of the seg-
ments is the true segment (positive instance). So,
the prior information, at least one of the instances
is positive, is likely sufficient. However, in the Musk
data sets, more than one configuration of a molecule
might be positive. In fact, it has been previously
reported (Gehler and Chapelle, 2007; Hajimirsadeghi
and Mori, 2012) that the Musk data sets contain many
positive instances in each positive bag. This experi-
ment shows that our graphical approach to MIL allows
for exploring different levels of ambiguity in the bags
in order to enhance classification accuracy.

Table 3: RMIMN classification accuracy with different
ρ values, compared with MIMN. All results are based
on linear kernel functions.

Method ρ Elephant Fox Tiger Musk1 Musk2
MIMN - 85.5 62.5 87.0 78.3 77.6

RMIMN 0.1 85.5 62.0 85.5 80.4 79.9
RMIMN 0.2 83.5 61.0 85.0 88.1 82.8
RMIMN 0.3 84.0 56.5 83.5 83.9 88.6
RMIMN 0.4 83.5 60.0 83.0 82.7 84.6
RMIMN 0.5 83.5 59.5 83.5 86.0 86.6
RMIMN 0.6 84.0 59.5 84.0 85.8 86.3
RMIMN 0.7 84.5 58.0 84.0 85.0 84.5
RMIMN 0.8 84.0 57.5 83.5 83.8 82.6
RMIMN 0.9 85.0 61.0 83.5 83.8 82.8
RMIMN 1.0 87.5 62.5 84.5 89.1 84.8

Finally, the results of the experiments with the
GMIMN model are provided in Table 4. We evaluate
the performance of this model with K = 10 weighted
segments. It can be observed that although GMIMN
gets very weak prior information on the notion of pos-
itive bags, by learning the levels of ambiguity in data
it outperforms MIMN in most cases.

4Note that the reported results for some other methods
(e.g. mi-SVM and MI-SVM) on different data sets are also
based on the most successful kernels.

Table 4: GMIMN classification accuracy, compared
with MIMN. All results are based on linear kernel func-
tions.
Method Elephant Fox Tiger Musk1 Musk2
MIMN 85.5 62.5 87.0 78.3 77.6
GMIMN(K = 10) 89.0 61.5 86.5 87.1 81.4

Figure 2: Cyclist helmet classification – is she wear-
ing helmet? how many positives are in this bag? An
automatic cyclist detector/tracker is run, with head
position estimate in green rectangle. Data instances
are features defined on the head position estimates,
bags aggregate these over a track.

5.2 CYCLIST HELMET RECOGNITION

The previous experiments show that the proposed
method is comparable to the state-of-the-art on stan-
dard datasets. However, those datasets exhibit limited
ambiguity in positive bags. We now show that for more
complex situations, our framework can effectively dis-
cover the ambiguity in positive bags. In this section,
we use our proposed models to address a video classi-
fication task. This problem is illustrated in Figure 2.
Given an automatically-obtained cyclist trajectory, we
must determine whether the cyclist is wearing a hel-
met or not. One can treat this as a MIL problem –
each frame is an instance, and the trajectory forms
a bag. The bag (trajectory) should be classified as
containing a helmet-wearing cyclist or not. However,
the standard MIL or traditional supervised learning
approaches (e.g. classify each instance and majority
vote) cannot easily handle this problem. Because of
imperfection in tracking, it is unlikely that all the in-
stances in a positive bag are truly positive – some will
not be well centered on the cyclist’s head due to jitter,
regardless of the tracker used. Traditional supervised
learning would have many corrupted positive instances
of helmet-wearing cyclists. Standard MIL would not
make full use of the training data, since each track
would very likely have more than one positive instance.

5.2.1 Experimental Setup

We work with cyclist trajectories automatically ex-
tracted from video data. The data are collected for a
busy 4-legged intersection with vehicles, pedestrians,
and cyclists, over a two-day period. Kanade-Lucas-
Tomasi feature tracking and trajectory clustering are
used to extract moving objects. These clusters are
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Table 2: Comparison between state-of-the-art MIL methods. The best and second best results are highlighted
in bold and italic face respectively.

Method Elephant Fox Tiger Musk1 Musk2
MIMN 89 64 87 86 90
mi-SVM (Andrews et al., 2002) 82 58 79 87 84
MI-SVM (Andrews et al., 2002) 81 59 84 78 84
MI-Kernel (Gärtner et al., 2002) 84 60 84 88 89
MIRealBoost (Hajimirsadeghi and Mori, 2012) 83 63 73 91 77
MIForest (Leistner et al., 2010) 84 64 82 85 82
MILES (Chen et al., 2006) 81 62 80 88 83
AW-SVM (Gehler and Chapelle, 2007) 82 64 83 86 84
AL-SVM (Gehler and Chapelle, 2007) 79 63 78 86 83
EM-DD (Zhang and Goldman, 2002) 78 56 72 85 85
SVR-SVM (Li and Sminchisescu, 2010) 85 80 63 88 85
MIGraph (Zhou et al., 2009) 85 61 82 90 90
miGraph (Zhou et al., 2009) 87 62 86 90 90

then automatically classified (vehicle, pedestrian, cy-
clist) by analyzing speed profiles (e.g. the pedalling
cadence).

We chose a dataset of 24 cyclist tracks for our experi-
ments – 12 wearing helmets and 12 not. The head lo-
cation is estimated using background subtraction upon
the tracks. Samples of tracking the cyclists’ heads in
the videos are shown in Figure 3. We describe each
frame of a track using texton histograms (Malik et al.,
2001) in a region of size 20 × 20 around the head po-
sition (chosen after empirically examining other fea-
tures). We report the results of helmet classification
using leave-one-out cross-validation on this dataset.

We introduce a MIL approach to classify sequences.
Each video is treated as a bag of frames represented by
instances, and we use the proposed models in Section
3 to classify the bags. We also compare this approach
with non-MIL methods. In the non-MIL approach, all
frames from positive and negative training videos are
put together and labelled according to their video la-
bels. Next, a standard SVM classifier (Chang and Lin,
2011) is trained and used to predict each frame label
of the test videos. Finally, the bag label is predicted
by one of the following criteria:

• SVM-AtLeastOne: The bag label is positive if at
least one of the instance labels is positive.

• SVM-Majority: The bag label is specified by the
majority voting of the instance labels.

5.2.2 Experimental Results

The average classification accuracy of each method is
shown in Table 5. We include mi-SVM as an additional

baseline. The results of the RMIMN model have been
provided with different ρ values.

Table 5: Results of the experiments on cyclist helmet
classification problem.

Method Accuracy %
SVM-AtLeastOne 58.33
SVM-Majority 79.17
mi-SVM 62.50
MIMN 58.33
GMIMN (K = 5) 87.50
RMIMN (ρ = 0.1) 79.17
RMIMN (ρ = 0.2) 83.33
RMIMN (ρ = 0.3) 91.67
RMIMN (ρ = 0.4) 87.50
RMIMN (ρ = 0.5) 91.67
RMIMN (ρ = 0.6) 91.67
RMIMN (ρ = 0.7) 87.50
RMIMN (ρ = 0.8) 87.50
RMIMN (ρ = 0.9) 83.33
RMIMN (ρ = 1.0) 66.67

It can be observed that the classification accuracy of
SVM-AtLeastOne, MIMN, and mi-SVM are quite low.
This shows that the traditional classification approach
and MIL definition (used in SVM-AtLeastOne, MIMN,
and mi-SVM) are very inefficient in this problem. The
traditional MIL definition (i.e., at least one instance
of a positive bag is positive) fails because it is very
likely that at least one of the instances in a negative
bag is classified as positive, and consequently most of
the negative bags are assigned positive labels. This
problem is due to the imperfection in the classifier and
low-quality visual representation of the cyclist’s head
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Figure 3: Samples of tracking the cyclists’ heads in
the videos. Red + shows automatic head position es-
timate.

in the video. However, it is clearly evident that SVM-
Majority, RMIMN (with most ρ values), and GMIMN
are more robust to these defects. The results show that
RMIMN with ρ = 0.3, 0.5, and 0.6 outperform all the
other methods. Also, it is shown that GMIMN has
good performance, learning the MIL definition prop-
erly without any prior knowledge of ambiguity level
(e.g., parameter ρ) and classifying the videos success-
fully.

6 CONCLUSION

We proposed a novel graphical framework for MIL
based on Markov networks and max-margin discrim-
inative training. This framework is flexible and can
model the traditional MIL definition as well as more
general MIL definitions. Thus, it is more robust to
the amount of ambiguity (i.e. true positive instances)

in the bags. Especially, it can be helpful in vision ap-
plications which exhibit imperfect annotation or am-
biguous feature representations. For training the pro-
posed models, we formulated the learning process as a
max-margin optimization problem.

Experiments on MIL benchmark data sets showed that
the proposed algorithm is comparable with state-of-
the-art MIL methods. In addition, it was verified that
learning and encoding the degree of ambiguity in the
classifier can influence the accuracy of classification.
We used the proposed framework for classifying cyclist
trajectories. This is a challenging problem, where the
traditional supervised learning and traditional MIL
definitions fail. However, the RMIMN and GMIMN
models enhance classification performance by finding
more general and robust MIL definitions and mining
the degree of ambiguity.

The proposed graphical framework is flexible and can
be easily extended or modified. For example, it can
be modified to define a bag margin based on the most
positive instance of the bag, e.g. MI-SVM (Andrews
et al., 2002). It can be also extended for multi-class
classification. In addition, more potential functions
can be defined between the network nodes. For exam-
ple, a potential function can be added between a bag-
level feature vector and the bag label, or new potential
functions can be defined over neighbouring instance
labels to treat the instances as non-i.i.d. samples. Fi-
nally, this framework could be adapted for individ-
ual classification from group statistics, and applied to
tasks such as privacy-preserving data mining, election
results analysis, spam and fraud detection (Rueping,
2010).

Acknowledgements

This work was supported by grants from the Natural
Sciences and Engineering Research Council of Canada
(NSERC) and BCFRST NRAS Research Team Pro-
gram.

References

S. Andrews, I. Tsochantaridis, and T. Hofmann. Sup-
port vector machines for multiple-instance learning.
In NIPS, 2002.

B. Babenko, M.H. Yang, and S. Belongie. Visual
tracking with online multiple instance learning. In
Computer Vision and Pattern Recognition (CVPR),
2009.

R.C. Bunescu and R.J. Mooney. Multiple instance
learning for sparse positive bags. In Proceedings
of the 24th International Conference on Machine
Learning (ICML), pages 105–112. ACM, 2007.

270



C.C. Chang and C.J. Lin. Libsvm: a library for sup-
port vector machines. ACM Transactions on Intelli-
gent Systems and Technology (TIST), 2(3):27, 2011.

Y. Chen, J. Bi, and J.Z. Wang. Miles: Multiple-
instance learning via embedded instance selection.
T-PAMI, 28(12):1931–1947, 2006.

Thomas Deselaers and Vittorio Ferrari. A conditional
random field for multiple-instance learning. 2010.

T.G. Dietterich, R.H. Lathrop, and T. Lozano-Pérez.
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Abstract

This paper considers the problem of learn-
ing the parameters in Bayesian networks
of discrete variables with known structure
and hidden variables. Previous approaches
in these settings typically use expectation
maximization; when the network has high
treewidth, the required expectations might
be approximated using Monte Carlo or vari-
ational methods. We show how to avoid
inference altogether during learning by giv-
ing a polynomial-time algorithm based on
the method-of-moments, building upon re-
cent work on learning discrete-valued mix-
ture models. In particular, we show how to
learn the parameters for a family of bipartite
noisy-or Bayesian networks. In our experi-
mental results, we demonstrate an applica-
tion of our algorithm to learning QMR-DT,
a large Bayesian network used for medical di-
agnosis. We show that it is possible to fully
learn the parameters of QMR-DT even when
only the findings are observed in the training
data (ground truth diseases unknown).

1 Introduction

We address the problem of unsupervised learning of
the parameters of bipartite noisy-or Bayesian net-
works. Networks of this form are frequently used
models for expert systems and include the well-known
Quick Medical Reference (QMR-DT) model for medi-
cal diagnosis (Miller et al. , 1982; Shwe et al. , 1991).

Given that QMR-DT is one of the most well-studied
noisy-or Bayesian networks, we use it as a running ex-
ample for the type of network that we would like to
provably learn. It is a large bipartite network, describ-
ing the relationships between 570 binary disease vari-
ables and 4,075 binary symptom variables using 45,470

directed edges. It was laboriously assembled based on
information elicited from experts and represents an ex-
ample of a network that captures (at least some of) the
complexities of real-world medical diagnosis tasks.

Learning these parameters is important. Both the
structure and the parameters of the QMR-DT model
were manually specified, taking over 15 person-years
of work (Miller et al. , 1982). Each disease took one
to two weeks of full-time effort, involving in-depth re-
view of the medical literature, to incorporate into the
model. Despite this effort, the original INTERNIST-
1/QMR model still lacked an estimated 180 diseases
relevant to general internists (Miller et al. , 1986). Fur-
thermore, model parameters such as the priors over the
diseases can vary over time and location.

Although it is often possible to extract symptoms or
findings from unstructured clinical data, obtaining re-
liable ground truth for a patient’s underlying disease
state is much more difficult. Often all we have avail-
able are noisy and biased estimates of the patient’s
disease state in the form of billing or diagnosis codes
and free text. We can, however, treat these noisy la-
bels as additional findings (for training) and perform
unsupervised learning. The ability to learn parameters
from unlabeled data could make models like QMR-DT
much more widely applicable.

Exact inference in the QMR-DT network is known to
be intractable (Cooper, 1987), so it would be expected
to resort to expectation-maximization techniques us-
ing approximate inference in order to learn the param-
eters of the model (Jaakkola & Jordan, 1999; Šingliar
& Hauskrecht, 2006). However, these methods can be
computationally costly and are not guaranteed to re-
cover the true parameters of the network even when
presented with infinite data drawn from the model.

We give a polynomial-time algorithm for provably
learning a large family of bipartite noisy-or Bayesian
networks. It is important to note that this method
does not extend to all bipartite networks. It does not
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work on certain densely connected structures. We pro-
vide a criterion based on the network structure to de-
termine whether or not the network is learnable by our
algorithm. Though the algorithm is limited, the fam-
ily of networks for which we can learn parameters is
certainly non-trivial.

Our approach is based on the method-of-moments,
and builds upon recent work on learning discrete-
valued mixture models (Anandkumar et al. , 2012c;
Chang, 1996; Mossel & Roch, 2005). We assume that
the observed data is drawn independently and iden-
tically distributed from a model of known structure
and unknown parameters, and show that we can ac-
curately and efficiently recover those parameters with
high probability using a reasonable number of samples.
Making these additional assumptions allows us to cir-
cumvent the hardness of maximum likelihood learning.

Our parameter learning algorithm begins by finding
triplets of observed variables that are singly-coupled,
meaning that they are marginally mixture models. Af-
ter learning the parameters involving these, we show
how one can subtract their influence from the empir-
ical distribution, which then allows for more param-
eters to be learned. This process continues until no
new parameters can be learned. Surprisingly, we show
that this simple algorithm is able to learn almost all of
the parameters of the QMR-DT structure. Finally, we
study the identifiability of the learning problem with
hidden variables and show that even in dense networks,
the true model is often identifiable from third-order
moments. Our identifiability results suggest that the
final parameters of QMR-DT can be learned with a
grid search over a single parameter.

We see the significance of our work as presenting one
of the first polynomial-time algorithms for learning a
family of discrete-valued Bayesian networks with hid-
den variables where exact inference on the hidden vari-
ables is intractable. We believe that our algorithm will
be of practical interest in applications (such as med-
ical diagnosis) where prior knowledge can be used to
specify the Bayesian network structure involving the
hidden variables and the observed variables.

2 Background

We consider bipartite noisy-or Bayesian networks with
n binary latent variables, D = {D1, D2, ..., Dn}, Di ∈
{0, 1}, and m observed binary variables, S =
{S1, S2, ..., Sm}, Si ∈ {0, 1}. Continuing with the med-
ical diagnosis example, we refer to the latent variables
as diseases and the observed variables as symptoms.
The edges in the model are directed from the latent
diseases to the observed symptoms. We assume that
the diseases are never observed, neither at training nor

test time, and show how to recover the parameters of
the model in an unsupervised manner.

By using a noisy-or conditional distribution to model
the interactions from the latent variables to the ob-
served variables, the entire Bayesian network can be
parametrized by n×m+n+m parameters. These pa-
rameters consist of prior probabilities on the diseases
Π = {p1, p2, ..., pn}, failure probabilities between dis-

eases and symptoms, F = {~f1, ~f2, ... ~fn}, where each ~fi
is a vector of size m, and noise (or leak) probabilities
~ν = {ν1, ...νm}. An equivalent formulation includes
the noise in the model by introducing a single ‘noise’
disease, d0, which is present with probability p0 = 1
and has failure probabilities ~f0 = 1− ~ν.

Observations are sampled from the noisy-or network
by the following generative process:
— The set of present diseases is drawn according to
Bernoulli(Π).
— For each present disease Di, the set of active edges
~ai, is drawn according to Bernoulli(1− ~fi).
— The observed value of the jth symptom is then given
by sj =

⋃
i ai,j (this part is deterministic).

While the network can be described generally as being
fully connected, in practice many of the diseases have
zero probability of generating many of the symptoms
(ie. fail with probability 1). The Bayesian network
only has an edge between disease Di and symptom Sj
if fi,j < 1. As we explain in Section 3, our ability to
learn parameters will depend on the particular sparsity
pattern of these edges.

The marginal distribution over a set of symptoms, S,
in the noisy-or network has the following form:

p(S) =
∑

{D}

n∏

i=1

p(di)
∏

j∈S
p(sj |D), (1)

where {D} is the set of 2n configurations of the disease
variables {d1, ..., dn}. The disease priors are given by
p(di) = pdii (1 − pi)1−di , and the conditional distribu-
tion of the symptoms by a noisy-or distribution:

p(sj |D) =
(

1− f0,j

n∏

i=1

fdii,j

)sj(
f0,j

n∏

i=1

fdii,j

)1−sj
(2)

The algorithms described in this paper make substan-
tial use of sets of moments of the observed variables.
The first moment that will be important is the joint
distribution over a set of symptoms, S, which we call
TS . TS is a |S|th order tensor where each dimension is
of size 2. For a set of symptoms S = (Sa, Sb, Sc) the
elements of TS are defined as: TS(sa,sb,sc) = p(Sa =
sa, Sb = sb, Sc = sc). Throughout the paper we will
make use of sets of at most three variables, so the joint
distributions are of maximal size 2× 2× 2.
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We also make use of the negative moment of a set of
symptoms S, which we denote as M̄S , defined as the
marginal probability of observing all of the symptoms
in S to be absent. The negative moments of S have
the following compact form:

M̄S ≡ p(
⋂

Sj∈S
Sj = 0) =

n∏

i=0

(
1− pi + pi

∏

Sj∈S
fi,j

)
(3)

The form of Eq. 3 makes it clear that the parameters
associated with each parent are all grouped together in
a single term, which we call the influence of disease Di

on symptoms S. Define this influence term to be Ii,S ≡
1 − pi + pi

∏
Sj∈S fi,j . Using this, we rewrite Eq. 3

using influences as M̄S =
∏n
i=0 Ii,S . This formulation

is found in Heckerman (1990) and provides a compact
form that makes it easy to take advantage of the noisy-
or properties of the network.

2.1 Related Work

The problem of inference in bipartite noisy-or net-
works with fixed parameters has been studied and
exact inference in large models like the QMR-DT
model is known to be intractable (Cooper, 1987). The
Quickscore formulation by Heckerman (1990) takes ad-
vantage of the noisy-or parameterization to give an ex-
act inference algorithm that is polynomial in the num-
ber of negative findings but still exponential in the
number of positive findings.

Any expectation maximization (EM) approach to
learning the network parameters must contend with
the computational complexity of inference in these
models. Many approximate inference strategies have
been developed, notably Jaakkola & Jordan (1999)
and Ng & Jordan (2000). The closest related work to
our paper is by Šingliar & Hauskrecht (2006), who give
a variational EM algorithm for unsupervised learning
of the parameters of a noisy-or network. We will use
their algorithm as a baseline in our experimental re-
sults. Importantly, variational EM algorithms do not
have consistency guarantees.

Kearns & Mansour (1998) develop an inference-free
approach which is guaranteed to learn the exact struc-
ture and parameters of a noisy-or network under spe-
cific identifiability assumptions by performing a search
over network structures. In order to achieve their re-
sults, they impose strong constraints such as identical
priors on all of the parents. Their structure learning
algorithm is exponential in the maximal in-degree of
the symptom nodes, which for QMR-DT is 570. More
importantly, the overall approach relies on the model
family having a property called “unique polynomials”,
closely related to the question of identifiability, but
which is left mostly uncharacterized in their paper. It

A B 

a b c d e 

Figure 1: A small noisy-or network. The triplets (b,d,e)

and (c,d,e) are both singly-coupled by B. The presence

of disease B prevents (a,b,c) from being singly-coupled.

However, after learning the parameters of disease B, we can

subtract off its influence, leaving (a,b,c) singly-coupled.

is not clear whether their algorithm can be modified to
take advantage of a known structure. As such, no ex-
isting method is sufficient for learning the parameters
of a large network like the QMR-DT network.

Spectral approaches to learning mixture models orig-
inated with Chang’s spectral method (Chang 1996;
analyzed in Mossel & Roch 2005). These methods
have been successfully applied to learning discrete mix-
ture models and hidden Markov models (Anandkumar
et al. , 2012c), as well as continuous admixture models
such as latent Dirichlet allocation (Anandkumar et al.
, 2012b). In recent work, these have been generalized
to a large class of linear latent variable models (Anand-
kumar et al. , 2012d). However, the noisy-or model is
not linear, making it non-trivial to apply these meth-
ods that rely on linearity of expectation to relate the
general formula for observed moments to a low rank
matrix or tensor decomposition.

3 Parameter Learning with Known
Structure

In this section we present a learning algorithm that
takes advantage of the known structure of a noisy-
or network in order to learn parameters using only
low-order moments. We first identify singly-coupled
triplets, which are marginally mixture models and
therefore we can learn their parameters. Once some
parameters of the network are learned, we make ad-
justments to the observed moments, subtracting off
the influence of some parents, essentially removing
them from the network, making more triplets singly-
coupled (illustrated in Figure 1). Algorithm 1 outlines
the parameter learning procedure.

We discuss the running time in Section 3.4. The clean
up procedure is not part of the main algorithm and
may increase the runtime to exponential, depending
on the configuration of the network of remaining pa-
rameters at the end of the main algorithm. We present
it because it allows us to extend the algorithm to learn
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Algorithm 1 Learn Parameters

Inputs: A bipartite noisy-or network structure with
unknown parameters F,Π. N samples from the net-
work.
Outputs: Estimates of F and Π.
– Main Routine

1: unknown = {fi,j ∈ F} ∪ {pi ∈ Π}
2: knowns = {}
3: while not converged do
4: learned = {}
5: for all fi,a in unknown parameters do
6: for all (Sb, Sc), siblings of Sa do
7: Parents = parents of (Sa, Sb, Sc)
8: knownParents = All Dk in Parents for

which fk,a, fk,b and fk,c are known.
9: Remove knownParents from the graph.

10: if (Sa, Sb, Sc) are singly-coupled (Def. 1)
then

11: Form joint distribution Ta,b,c
12: for all Dk in knownParents do
13: Ta,b,c = RemoveInfluence(Ta,b,c, Dk)

(Section 3.2)
14: end for
15: Learn pi, fi,a, fi,b, fi,c. (Eq. 4)
16: unknown = unknown - (pi, fi,a, fi,b, fi,c).
17: learned = learned ∪(pi, fi,a, fi,b, fi,c)
18: end if
19: Add back knownParents to the graph.
20: end for
21: end for
22: known = known ∪ learned
23: Converge if no new parameters are learned.
24: end while
25: Learn noise parameters (Eq. 5).

– Clean up

1: Check identifiability of remaining parameters with
third-order moments and use clean up procedure
to learn remaining parameters. (Section 3.3)

the QMR-DT network which has a very simple net-
work of remaining parameters after running the main
algorithm to completion.

The algorithm can be further optimized by precom-
puting and storing dependencies between triplets (i.e.,
triplet A can be learned after triplet B is learned)
to avoid repeated searches for singly-coupled triplets.
The algorithm is also greedy in that it learns each fail-
ure parameter fi,j with the first suitable triplet it en-
counters. A more sophisticated version would attempt
to determine the best triplet to learn fi,j with high
confidence, which we do not explore in this paper.

The following sections go into more detail on the var-
ious steps of the algorithm, and assume that we have

access to the exact moments (i.e., infinite data). In
Section 3.4 we show that the error incurred by using
sample estimates of the expectations is bounded.

3.1 Learning Singly-coupled Symptoms

The condition that we require to learn the parameters
is that the observed variables be singly-coupled:

Definition 1. A set of symptoms, S is singly-coupled
by parent Di if Di is a parent of Sj for all Sj ∈ S and
there is no other parent, Dk ∈ {D1, ..., Dn}, such that
Dk is a parent of at least two symptoms in S.

The intuition behind using singly coupled symptoms is
they can be viewed locally as mixture models with two
mixture components corresponding to the states of the
coupling parent. For example, in Figure 1, (b, d, e) and
(c, d, e) form singly-coupled triplets coupled by disease
B. Their observations are independent conditioned on
the state of B. The noise disease, D0, does not have to
be considered here since it is present with probability
1, and so its state is always observed. Thus, the noise
parent can never act as a coupling parent.

Observing that the singly-coupled condition locally
creates a binary mixture model, we conclude that we
can learn the noisy-or parameters associated with a
singly-coupled triplet by using already existing meth-
ods for learning 3-view mixture models from the
third-order moment Ta,b,c. While the general method
of learning multi-view mixture models described in
Anandkumar et al. (2012a) would suffice, we employ
a simpler method (given in Algorithm 2) applicable to
mixture models of binary variables based on a tensor
decomposition described in Berge (1991). This proce-
dure uniquely decomposes Ta,b,c into two rank-1 ten-
sors which describe the conditional distributions of the
symptoms conditioned on the state of the parent.

The tensor decomposition returns the prior probabil-
ities of the parent states and the probabilities of the
children conditioned on the state of the parent. Am-
biguity in the labeling of the parent states is avoided
since for noisy-or networks p(Sj = 0|Di = 0) > p(Sj =
0|Di = 1). To obtain the noisy-or parameters, we ob-
serve that the prior for the disease is simply given by
the mixture prior, and the failure probability fi,j be-
tween the coupling disease Di and symptom Sj is the
ratio of two conditional probabilities:

pi = p(Di = 1), fi,j =
p(Sj = 0|Di = 1)

p(Sj = 0|Di = 0)
. (4)

The noise parameter f0,j is not learned using the above
equations since D0 never acts as a coupling parent.
However, once all of the other parameters are learned,
the noise parameter simply provides for any otherwise
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Algorithm 2 Binary Tensor Decomposition

Input: Tensor T of size 2×2×2 which is a joint prob-
ability distribution over three variables (Sa, Sb, Sc)
which are singly-coupled by disease Z.
Output: Prior probability p(Z = 1), and conditional
distributions p(sa, sb, sc|Z = 0), p(sa, sb, sc|Z = 1).

1: Matrix X1 = T(0,·,·)
2: Matrix X2 = T(1,·,·)
3: Y2 = X2X

−1
1

4: Find eigenvalues of Y2 using quadratic equation:
5: λ1, λ2 = roots(λ2 − Tr(Y2)λ+ Det(Y2))
6: ~u1~v

T
1 = (λ1 − λ2)−1(X2 − λ2X1)

7: ~u2~v
T
2 = −(λ1 − λ2)−1(X2 − λ1X1)

8: Decompose* ~u1~v
T
1 , ~u2~v

T
2 into ~u1, ~u2, ~v1, ~v2.

9: ~l1 =
(
1 λ1

)T
, ~l2 =

(
1 λ2

)T

10: T1 = ~u1 ⊗ ~v1 ⊗~l1, T2 = ~u2 ⊗ ~v2 ⊗~l2
11: if T1(0,0,0) > T2(0,0,0) then
12: swap T1, T2

13: end if
14: p(Z = 1) =

∑
i,j,k T2(i,j,k)

15: normalize p(sa, sb, sc|Z = 0) = T1/
∑
i,j,k T1(i,j,k)

16: normalize p(sa, sb, sc|Z = 1) = T2/
∑
i,j,k T2(i,j,k)

*To decompose the 2×2 matrix ~u~vT into vectors ~u and

~v, set ~vT to the top row and ~uT =
(

1
(~u~vT )(2,2)
(~u~vT )(1,2)

)
.

–Notation T = ~u⊗ ~v ⊗~l means that T(i,j,k) = uivj lk.

unaccounted observations, i.e.

f0,j =
M̄j∏

Di∈Parents(Sj) Ii,j
. (5)

3.2 Adjusting Moments

Consider a triplet (a, b, c) which has a common parent
A, but is not singly coupled due to the presence of a
parent B shared by b and c (Figure 1). If we wish to
learn the parameters involving this triplet and A using
the methods described above, we would need to form
an adjusted moment, T̃a,b,c which would describe the
joint distribution of (a, b, c) if B did not exist.

The influence of B on variables (b, c) is fully described
by the parameters pB , fB,b, fB,c. Thus, if we have es-
timates for these parameters, we can remove the influ-
ence of B to form the joint distribution over (a, b, c) as
though B did not exist. This can be seen explicitly in
Equation 3. In this form, the influence of each parent,
if known, can be isolated and removed from the nega-
tive moments with a division operation. Since all the
variables are binary, the mapping between the nega-
tive moments and the joint distribution is simple and
the adjusted joint distribution can be formed from the
power set of adjusted negative moments.

This procedure of adjusting moments by removing the
influence of parents vastly expands the class of net-
works whose parameters are fully learnable using the
singly-coupled triplet method from Section 3.1. Using
these methods, complicated real-world networks such
as the QMR-DT network can be learned almost fully.
The clean up procedure described in the next section
will make it possible to learn the remaining parameters
of the QMR-DT network.

3.3 Extensions of the Main Algorithm

Learning with singly-coupled pairs. It is not pos-
sible to identify the parameters of a noisy-or model by
only looking at singly-coupled pairs. However, once
we have information about some of the parameters
from looking at triplets, we can use it to find more
parameter values by examining pairs. For example, in
Figure 1, if pB and fB,d were learned using the triplet
(b, d, e), it would be possible to find fB,c using only the
pairwise moment between (c, d). More generally, for a
singly-coupled pair of observables (Si, Sj) coupled by
parent Di, the following linear equation holds and can
be used to solve for the unknown fi,k assuming fi,j
and pi are already estimated:

M̄{j,k}
M̄jM̄k

=
1− pi + pifi,jfi,k

(1− pi + pifi,j)(1− pi + pifi,k)
. (6)

Thus, once some parameters have been estimated,
singly-coupled pairs provide an alternative to singly-
coupled triplets. Extending Algorithm 1 to search for
singly-coupled pairs as well as triplets is trivial. For
complex networks, using pairs allows us to learn more
parameters with fewer adjustment steps.

Clean up procedure. For some Bayesian network
structures, after running the main algorithm to com-
pletion, we may be left with some unlearned parame-
ters. This occurs because it may be impossible to find
enough singly-coupled triplets and pairs.

In these settings, it is natural to ask whether it is pos-
sible to uniquely identify the remaining parameters.
We use a technique developed by Hsu et al. (2012) to
show that most fully connected bipartite networks are
locally identifiable, meaning that they are identifiable
on all but a measure zero set of parameter settings. In
particular, we use their CheckIdentifiability routine,
which computes the Jacobian matrix of the system of
moment constraint equations and evaluates its rank
at a random setting of the parameters. We start with
first-order moments and increase the order until the
Jacobian is full rank, which implies that the model
is locally identifiable with these moments. When the
test succeeds it gives hope that, for all but a very small
number of pathological cases, the networks can still be
identifiable (up to a trivial relabeling of parents).
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1	
   2	
   3	
   4	
   5	
   6	
   7	
  
1	
   -­‐1	
   -­‐1	
   3	
   3	
   3	
   3	
   3	
  
2	
   -­‐1	
   -­‐1	
   -­‐1	
   3	
   3	
   3	
   3	
  
3	
   -­‐1	
   -­‐1	
   -­‐1	
   -­‐1	
   3	
   3	
   3	
  
4	
   -­‐1	
   -­‐1	
   -­‐1	
   -­‐1	
   4	
   3	
   3	
  
5	
   -­‐1	
   -­‐1	
   -­‐1	
   -­‐1	
   -­‐1	
   3	
   3	
  
6	
   -­‐1	
   -­‐1	
   -­‐1	
   -­‐1	
   -­‐1	
   4	
   3	
  
7	
   -­‐1	
   -­‐1	
   -­‐1	
   -­‐1	
   -­‐1	
   4	
   3	
  

Table 1: Identifiability of parameters in fully-connected

bipartite networks. Each row represents a number of hid-

den variables and each column is the number of observed

variables. The value at location (i, j) is the number of mo-

ments required to make the model identifiable according

to the local identifiability criteria of the Jacobian method.

E.g., 3rd order moments are needed to learn with a sin-

gle hidden variable. The value -1 means the model is not

identifiable even with the highest possible order moments.

Table 1 summarizes the results on networks with vary-
ing number of children. Even for fully connected net-
works, third-order moments are sufficient to satisfy the
local identifiability criteria provided that there are a
sufficient number of children.1

At this point, we can make progress by relying on
the identifiability of the network from third-order mo-
ments and doing a grid search over parameter values
to find the values that best match the observed third-
order moments. For example, consider the network in
Figure 2. This could be a sub-network that is left to
learn after a number of other parameters have been
learned and possibly removed. If we knew the values
for the prior pA and failure probability fA,a, then we
would learn all of the edges from A and subtract them
off using the pairs learning procedure. When we do
not know pA and fA,a, we can search over the range
of values and choose the values that yield the closest
third-order moments to the observed moments.

Significantly, this method of doing a grid search over
two parameters can be used no matter how many chil-
dren are shared by A and B. It only depends on the
number of parents whose parameters are not learned.
Thus, even if there are a large number of parameters
left at the end of the main algorithm, we can proceed
efficiently if they belong to a small number of parents.
In Section 4.2 we note that in the QMR-DT network,
all of the parameters that are left at the end of the
main algorithm belong to only two parents and thus
can be learned efficiently using the clean up phase.

1Third-order moments are also necessary for identifia-
bility. Appendix G of Anandkumar et al. (2012a) gives
an example of two networks, each with a single latent vari-
able and three observations, that are indistinguishable us-
ing only second-order moments.

A B 

a b c d e 

Figure 2: Similar to Figure 1, with the addition of a single

edge from A to d. There are now no singly-coupled triplets

and learning cannot proceed. In the clean up procedure,

we perform a grid search over values for pA and fA,a, use

them to learn all of the edges leading to A and then proceed

to subtract off the influence of A and learn the edges of B.

3.4 Theoretical Properties

Valid schedule. We call a schedule, describing an
order of adjustment and learning steps, valid if every
learning step operates on a singly-coupled triplet (pos-
sibly after adjustment) and every parameter used in an
adjustment is learned in a preceding step.

Note that a schedule is completely data independent,
and depends only on the structure of the network. Al-
gorithm 1 can be used to find a valid schedule if one
exists. A valid schedule can also be used as a certifi-
cate of parameter identifiability for noisy-or networks
with known structure:

Theorem 1. If there exists a valid schedule for a
noisy-or network, then all parameters are uniquely
identifiable using only third-order moments.

The proof follows from the uniqueness of the tensor
decomposition described in Berge (1991).

Computational complexity. We run Algorithm 1
in two passes. In the first pass, we take as input the
structure and find a valid schedule. The schedule will
use one triplet per edge fij ∈ F , resulting in at most
|F | triplets for which to estimate the moments. Next,
we iterate through the data, computing the required
statistics. Finally, we do a second pass with the sched-
ule to learn the parameters. The running time without
the clean up procedure is O(nm2|F |2 + |F |N), where
N is the number of samples.

Sample complexity. The parameter learning and
adjustments presented above recover the parameters of
the network exactly under the assumption that perfect
estimates of the moments are available. With finite
data sampled i.i.d. from a noisy-or network, the esti-
mates of the moments are subject to sampling noise.
In what follows, we bound the error accumulation due
to using imperfect estimates of the moments.

Since error accumulates with each learning and ad-
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justment step, we define the depth of a parameter θ
to be the number of extraction and adjustment steps
required to reach the state in which θ can be learned.
This depth is defined recursively:

Definition 2. Denote the parameters used in the ad-
justment step before learning θ as Θadj. Depth(θ) =
maxθi∈Θadj

Depth(θi) + 1. If no adjustment is needed
to learn θ then we say its depth is 0.

To ensure that parameters are learned with the min-
imum depth, we construct the schedule in rounds. In
round k we learn all parameters that can be learned
using parameters learned in previous rounds. We only
update the set of known parameters at the end of the
round. In this manner we are ensured that at each
round, the algorithm learns all of the parameters that
can be learned at a given depth.

The sample complexity result will depend on how close
the parameters of the model are to 0 or 1. In par-
ticular, we define pmin, pmax as the minimum and
maximum disease priors, and fmax as the maximum
failure probability. Additionally, we define M̄min =
minSj∈S Pr(Sj = 0) to be the minimum marginal prob-
ability of any symptom being absent.

Our algorithm makes black-box use of an algorithm
for learning mixture models of binary variables. In
giving our sample complexity result, we abstract the
dependence on the particular mixture model learning
algorithm as follows:

Definition 3. Let f(M̄min, fmax, pmax, pmin, δ̂) be a
function that represents the multiplicative increase in
error incurred by learning the parameters of a mixture
model from an estimate T̂a,b,c of the third-order mo-
ment Ta,b,c, such that for all mixture parameters θ,

||T̂a,b,c − Ta,b,c||1 < ε̂ =⇒
|θ̂ − θ| < f(M̄min, fmax, pmax, pmin, δ̂)ε̂

with probability at least 1− δ̂.

Using this, we obtain the sample complexity result (K
refers to the maximal in-degree of any symptom):

Theorem 2. Let Θ be the set of parameters to be
learned. Given a noisy-or network with known struc-
ture and a valid schedule with some constant maximal
depth d, after a number of samples equal to

N = Õ
((
f
(
M̄min, fmax, pmax, pmin,

δ

|Θ|Kd

))2d+2

·

K2dM̄−6d
min · ε−2 · ln(|Θ|/δ)

)

and with probability 1 − δ, for all θ ∈ Θ Algorithm 1
returns an estimate θ̂ such that |θ̂− θ| < ε. This holds

for ε < 1
2f
(
M̄min, fmax, pmax, pmin,

δ
|Θ|Kd

)−1 (
M̄3

min

15K

)
.

The proof consists of bounding the error incurred at
each successive operation of learning parameters, using
them to adjust the joint distributions, and applying
standard sampling error bounds. The multiplicative
increase in error with every adjustment and learning
step leads to an exponential increase in error when
these steps are applied repeatedly in series. The de-
pendence on the maximal in-degree, K, comes from
the possibility that in any adjustment step it may be
necessary to subtract off the influence of all but one
parent of the symptoms in the triplet. The maximum
value for ε comes from division operations in both the
learning and adjustment steps. If ε is not sufficiently
small then the error can blow up in these steps.

Using the bounds presented for the mixture model
learning approach in Anandkumar et al. (2012a) gives

f(M̄min, fmax, pmax, pmin, δ̂) ∝ M̄−11
min(1− fmax)−10

· (min{1− pmax, pmin})−2 · ln(1/δ̂)

δ̂
,

though these bounds may not be tight. In particularly,
the 1

δ dependency in f comes from a randomized step
of the learning procedure. For binary variables this
step may not be necessary and the 1

δ dependency may
be avoidable.

We emphasize that although the sample complexity
is exponential in the depth, even complex networks
like the QMR-DT network can be shown to have very
small maximal depths. In fact, the vast majority of the
parameters of the QMR-DT network can be learned
with no adjustment at all (i.e., at a depth of 0).

4 Experiments

Our first set of experiments look at parameter recov-
ery in samples drawn from a simple synthetic network
with the structure of Figure 1, and compare against
the variational EM algorithm of Šingliar & Hauskrecht
(2006). This network was chosen because it is the sim-
plest network that requires our method to perform the
adjustment procedure to learn some of the parameters.

The comparison is done on a small model to show that
that even in this simple case, the variational EM base-
line performs poorly. Any larger network could have
a subnetwork that looks like the network in Figure 1.
In our second set of experiments, we apply our algo-
rithm to the large QMR-DT network and show that
our algorithm’s performance scales to large models.

4.1 Comparison with (Variational) EM

Our method-of-moments algorithm is compared to
variational EM on 64 networks with the structure of
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Figure 3: (left) Sum of L1 errors from the true parame-

ters. Error bars show standard deviation from the mean.

The dotted line for Uniform denotes the average error from

estimating the failures of the noise parent as 1 and failures

and priors of all other parents uniformly as 0.5. (right) Run

time in seconds of a single run using the network structure

from Figure 1 (shown in log scale).

Figure 1 and random parameters. The failure and
prior parameters of each network were generated uni-
formly at random in the range [0.2, 0.8]. The noise
probabilities are set to ν = 0.01. For all algorithms,
the true structure of the network was provided and
only the parameters were left to be estimated. With
insufficient data, method-of-moments can estimate pa-
rameters outside of the range [0,1]. Any invalid param-
eters are clipped to lie within [10−6, 1 − 10−6]. Since
the variational algorithm can become stuck at local
maxima, it was seeded with 64 random seeds for each
random network and the run that has the best varia-
tional lower bound on the likelihood was reported.

Figure 3 shows the L1 error in parameters and run
times of the algorithms as a function of the number
of samples, averaged over the 64 different networks.
Error bars show standard deviation from the mean.
The timing test was run on a single machine. Vari-
ational EM was run using the authors’ C++ imple-
mentation of the algorithm2 and Algorithm 1 was run
using a Python implementation. In the large data set-
ting, the method-of-moments algorithm is much faster
than variational EM because it only has to iterate
through the data once to form empirical estimates of
the triplet moments. The variational method requires
a pass through the data for every iteration.

In nearly all of the runs, variational EM converges to
a set of parameters that effectively assign the children
b and c in the network (Figure 1) to one of the two
parents A or B by setting the failure probabilities of
the other parent to very close to 1. Thus, even though
it was provided with the correct structure, the varia-
tional EM algorithm effectively pruned out some edges
from the network. This bias of the variational EM al-
gorithm towards sparse networks was already noted

2We thank the authors of Šingliar & Hauskrecht (2006)
for kindly providing their implementation.

in Šingliar & Hauskrecht (2006) and appears to be a
significant detriment to recovery of the true network
parameters.

In addition to the variational EM algorithm, we also
show results for EM using exact inference, which is fea-
sible for this simple structure. Exact EM was tested
on 16 networks with random parameters and used 4
random initializations, with the run having the best
likelihood being reported. These results serve two pur-
poses. First, we want to understand whether the fail-
ure of variational EM is due to the error introduced by
mean-field inference approximation or due to the fact
that EM only reaches a local maxima of the likelihood.
The fact that exact EM significantly outperforms vari-
ational EM suggests that the problem is with the vari-
ational inference. The second purpose is to compare
the sample complexity of our method-of-moments ap-
proach with a maximum-likelihood based approach.
On this small network, the sample complexity of the
two approaches appears to be comparable. We em-
phasize that the exact EM method would be infeasible
to run on any reasonably sized network due to the in-
tractability of exact inference in these models.

4.2 Synthetic Data from aQMR-DT

We use the Anonymized QMR Knowledge Base3 which
has the same structure as the true network, but the
names of the variables have been obscured and the pa-
rameters perturbed. To generate the synthetic data,
we transform the parameters of the anonymized knowl-
edge base to parameters of a noisy-or Bayesian network
using the procedure described in Morris (2001). The
disease priors (not given in aQMR-DT) were sampled
according to a Zipf law with exponentially more low
probability diseases than high probability diseases.

Using Algorithm 1 extended to take advantage of
singly-coupled pairs (as described in Section 3.3), we
find a schedule with depth 3 that learns all but a sin-
gle highly connected subnetwork of QMR-DT. This
troublesome subnetwork has two parents, each with 61
children, that overlap on all but one child each (similar
to Figure 2 but 60 overlapping children instead of 3).
It cannot be learned fully using the main algorithm,
though it can be learned with the clean up procedure
described in Section 3.3.

The pairs method is very useful for decreasing the
maximum depth of the network. Figure 4 (right) com-
pares the depths of parameters learned only with the
triplet method to those learned using triplets and pairs
combined. Using only triplets eventually learns all of

3The QMR Knowledge Base is provided by University
of Pittsburgh through the efforts of Frances Connell, Ran-
dolph A. Miller, and Gregory F. Cooper.

279



105 106 107 108 109

Sample Size
0.0

0.1

0.2

0.3

0.4

0.5
L1

E
rr

or
Parameter Error (aQMR-DT)

depth 0
depth 1
depth 2

�1 0 1 2 3 4 5 6 7
Depth

102

103

104

105

P
ar

am
et

er
s

To
Le

ar
n

Schedule (aQMR-DT)
Triplet and Pairs
Triplets Only

Figure 4: (Left) Mean parameter error as a function of

sample size for the failure parameters learned at different

depths on the QMR-DT network. Only a small number

of failure parameters are learned at depth 3 so it is not

included due to its high variance. (Right) Number of pa-

rameters (in log scale) left to learn after learning all of the

parameters at a given depth, using a schedule that uses

both triplets and pairs, compared to a schedule that only

uses triplets. At the outset of the algorithm (depth=-1),

all of the parameters remain to be learned. The remaining

parameters belong to a single subnetwork in the QMR-DT

graph that we can learn with the clean up step.

the same parameters as using both triplets and pairs,
but requires more adjustment steps.

Figure 4 (left) shows the average L1 error for param-
eters learned as a function of the depth they were
learned at. As expected the error compounds with
depth, but with sufficiently large samples, all of the
errors tend toward zero. Additionally, as shown in
Figure 4 (right), the vast majority of the parameters
are learned at depth 0 and 1.

Timings were reported using an AMD-based Dell R815
machine with 64 cores and 256GB RAM. First, a valid
schedule to learn all of the parameters of the aQMR-
DT network (except the subnetwork described above)
was found using Algorithm 1 extended to use pairs.
Finding a schedule took 4.5 hours using 32 processors
in parallel. Once the schedule is determined, the learn-
ing procedure only requires sufficient statistics in the
form of the joint distributions of the triplets and pairs
and single variables present in the schedule (36,506
triplets, 7,682 pairs and 4,013 singles). The network
was sampled and sufficient statistics were computed
from each sample. Updating the sufficient statistics
took approximately 2.5 · 10−4 seconds per sample and
can be trivially parallelized. Solving for the network
parameters using the sufficient statistics takes under 3
minutes with no parallelization at all.

5 Discussion

We presented a method-of-moments approach to learn-
ing the parameters of bipartite noisy-or Bayesian net-
works of known structure and sufficient sparsity, us-

ing unlabeled training data that only needs to observe
the bottom layer’s variables. The method is fast, has
theoretical guarantees, and compares favorably to ex-
isting variational methods of parameter learning. We
show that using this method we can learn almost all of
the parameters of the QMR-DT Bayesian network and
provide local identifiability results and a method that
suggests the remaining parameters can be estimated
efficiently as well.

The main algorithm presented in this paper uses third-
order moments, but only recovers parameters of a bi-
partite noisy-or network for a restricted family of net-
work structures. The clean up algorithm can recover
all locally identifiable network structures, including
fully connected networks, but requires grid searches
for parameters that can be exponential in the number
of parents. This leaves open the question of whether
there are efficient algorithms for recovering a more ex-
pansive family of network structures than those cov-
ered by the main algorithm.

Provably learning the structure of the noisy-or network
as well as its parameters from data is more difficult
because of identifiability problems. For example, one
can show that third-order moments are insufficient for
determining the number of hidden variables. We con-
sider this an open problem for further work. Also, in
most real-world applications involving expert systems
for diagnosis, the hidden variables are not marginally
independent (e.g., having diabetes increases the risk
of hypertension). It is possible that the techniques de-
scribed here can be extended to allow for dependencies
between the hidden variables.

Another important direction is to attempt to general-
ize the learning algorithms beyond noisy-or networks
of binary variables. The noisy-or distribution is special
because adding parents can only decrease the negative
moments (Eq. 3), and its factorization allows for the
effect of individual parents to be isolated. Moreover,
since the noisy-or parameterization has a single pa-
rameter per hidden variable and observed variable, it
is possible to learn part of the model and then hope to
adjust the remaining moments (a more general distri-
bution with the same property is the logistic function).
New techniques will likely need to be developed to
enable learning of arbitrary discrete-valued Bayesian
networks with hidden values.
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Abstract

We introduce stochastic variational inference
for Gaussian process models. This enables
the application of Gaussian process (GP)
models to data sets containing millions of
data points. We show how GPs can be vari-
ationally decomposed to depend on a set
of globally relevant inducing variables which
factorize the model in the necessary manner
to perform variational inference. Our ap-
proach is readily extended to models with
non-Gaussian likelihoods and latent variable
models based around Gaussian processes. We
demonstrate the approach on a simple toy
problem and two real world data sets.

1 Introduction

Gaussian processes [GPs, Rasmussen and Williams,
2006] are perhaps the dominant approach for inference
on functions. They underpin a range of algorithms
for regression, classification and unsupervised learn-
ing. Unfortunately, when applying a Gaussian process
to a data set of size n exact inference has complexity
O(n3) with storage demands of O(n2). This hinders
the application of these models for many domains. In
particular, large spatiotemporal data sets, video, large
social network data (e.g. from Facebook), population
scale medical data sets, models that correlate across
multiple outputs or tasks (for these models complex-
ity is O(n3p3) and storage is O(n2p2) where p is the
number of outputs or tasks). Collectively we can think
of these applications as belonging to the domain of ‘big
data’.

Traditionally in Gaussian process a large data set is
one that contains over a few thousand data points.

∗Also at Sheffield Institute for Translational Neuro-
science, SITraN

Even to accommodate these data sets, various approx-
imate techniques are required. One approach is to par-
tition the data set into separate groups [e.g. Snelson
and Ghahramani, 2007, Urtasun and Darrell, 2008].
An alternative is to build a low rank approximation
to the covariance matrix based around ‘inducing vari-
ables’ [see e.g. Csató and Opper, 2002, Seeger et al.,
2003, Quiñonero Candela and Rasmussen, 2005, Tit-
sias, 2009]. These approaches lead to a computational
complexity of O(nm2) and storage demands of O(nm)
where m is a user selected parameter governing the
number of inducing variables. However, even these
reduced storage are prohibitive for big data, where
n can be many millions or billions. For parametric
models, stochastic gradient descent is often applied to
resolve this storage issue, but in the GP domain, it
hasn’t been clear how this should be performed. In
this paper we show how recent advances in variational
inference [Hensman et al., 2012, Hoffman et al., 2012]
can be combined with the idea of inducing variables
to develop a practical algorithm for fitting GPs using
stochastic variational inference (SVI).

2 Sparse GPs Revisited

We start with a succinct rederivation of the variational
approach to inducing variables of Titsias [2009]. This
allows us to introduce notation and derive expressions
which allow for the formulation of a SVI algorithm.

Consider a data vector1 y, where each entry yi is a
noisy observation of the function f(xi), for all the
points X = {xi}ni=1. We consider the noise to be in-
dependent Gaussian with precision β. Introducing a
Gaussian process prior over f(·), let the vector f con-
tain values of the function at the points X. We shall
also introduce a set of inducing variables: let the vec-
tor u contain values of the function f at the points
Z = {zi}mi=1 which live in the same space as X. Us-

1Our derivation trivially extends to multiple indepen-
dent output dimensions, but we omit them here for clarity.
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ing standard Gaussian process methodologies, we can
write

p(y | f) =N
(
y|f , β−1I

)
,

p(f |u) =N
(
f |KnmK−1mmu, K̃

)
,

p(u) =N (u|0,Kmm) ,

where Kmm is the covariance function evaluated be-
tween all the inducing points and Knm is the covari-
ance function between all inducing points and train-
ing points and we have defined with K̃ = Knn −
KnmK−1mmKmn.

We first apply Jensen’s inequality on the conditional
probability p(y |u):

log p(y |u) = log 〈p(y | f)〉p(f |u)
≥〈log p(y | f)〉p(f |u) , L1. (1)

where 〈·〉p(x) denotes an expectation under p(x). For
Gaussian noise taking the expectation inside the log
is tractable, but it results in an expression containing
K−1nn , which has a computational complexity of O(n3).
Bringing the expectation outside the log gives a lower
bound, L1, which can be computed with has complex-
ity O(m3). Further, when p(y|f) factorises across the
data,

p(y|f) =
n∏

i=1

p(yi|fi),

then this lower bound can be shown to be separable
across y giving

exp(L1) =
n∏

i=1

N
(
yi|µi, β−1

)
exp

(
−1

2
βk̃i,i

)
(2)

where µ = KnmK−1mmu and k̃i,i is the ith diagonal

element of K̃. Note that the difference between our
bound and the original log likelihood is given by the
Kullback Leibler (KL) divergence between the poste-
rior over the mapping function given the data and the
inducing variables and the posterior of the mapping
function given the inducing variables only,

KL (p(f |u) ‖ p(f |u,y)) .

This KL divergence is minimized when there are
m = n inducing variables and they are placed at
the training data locations. This means that u = f ,
Kmm=Knm=Knn meaning that K̃=0. In this case
we recover exp(L1) = p(y|f) and the bound becomes
equality because p(f |u) is degenerate. However, since
m = n and that there would be no computational
or storage advantage from the representation. When
m < n the bound can be maximised with respect to
Z (which are variational parameters). This minimises

the KL divergence and ensures that Z are distributed
amongst the training data X such that all k̃i,i are
small. In practice this means that the expectations in
(1) are only taken across a narrow domain (k̃i,i is the
marginal variance of p(fi|u)), keeping Jensen’s bound
tight.

Before deriving the expressions for stochastic varia-
tional inference using L1, we recover the bound of Tit-
sias [2009] by marginalising the inducing variables,

log p(y |X) = log

∫
p(y |u)p(u) du

≥ log

∫
exp {L1} p(u) du , L2, (3)

which with some linear algebraic manipulation leads
to

L2 = logN
(
y|0,KnmK−1mmKmn + β−1I

)
−1

2
βtr
(
K̃
)
,

matching the result of Titsias, with the implicit ap-
proximating distribution q(u) having precision

Λ = βK−1mmKmnKnmK−1mm + K−1mm

and mean
û = βΛ−1K−1mmKmny.

3 SVI for GPs

One of the novelties of the Titsias bound was that,
rather than explicitly representing a variational distri-
bution for q(u), these variables are ‘collapsed’ [Hens-
man et al., 2012]. However, for stochastic variational
inference to work on Gaussian processes, it turns out
we need to maintain an explicit representation of these
inducing variables.

Stochastic variational inference (SVI) allows varia-
tional inference for very large data sets, but it can
only be applied to probabilistic models which have a
set of global variables, and which factorise in the ob-
servations and latent variables as Figure 1(a). Gaus-
sian Processes do not have global variables and exhibit
no such factorisation (Figure 1(b)). By introducing
inducing variables u, we have an appropriate model
for SVI (Figure 1(c)). Unfortunately, marginalising u
re-introduces dependencies between the observations,
and eliminates the global parameters. In the following,
we derive a lower bound on L2 which includes an ex-
plicit variational distribution q(u), enabling SVI. We
then derive the required natural gradients and discuss
how latent variables might be used.

Because there are a fixed number of inducing variables
(specified by the user at algorithm design time) we
can perform stochastic variational inference, greatly
increasing the size of data sets to which we can apply
Gaussian processes.
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(a) Requirements for SVI (b) Gaussian Process regression (c) Variational GP regression

Figure 1: Graphical models showing (a) the reqired form for a probabilistic model for SVI (reproduced from
[Hoffman et al., 2012]), with global variables g and latent variables z. (b) The graphical model corresponding to
Gaussian process regression, where connectivity between the values of the function fi is denoted by a loop around
the plate. (c) The graphical model corresponding to the sparse GP model, with inducing variables u working as
global variables, and the term L1 acting as log p(yi |u,xi). Marginalisation of u leads to the variational DTC
formulation, introducing dependencies between the observations.

3.1 Global Variables

To apply stochastic variational inference to a Gaussian
process model, we must have a set of global variables.
The variables u will perform this role, and we intro-
duce a variational distribution q(u), and use it to lower
bound the quantity p(y |X).

log p(y |X) ≥ 〈L1 + log p(u)− log q(u)〉q(u) , L3.

From the above we know that the optimal distribu-
tion is Gaussian, and we parametrise it as q(u) =
N (u |m,S). The bound L3 becomes

L3 =

n∑

i=1

{
logN

(
yi|k>i K−1mmm, β−1

)

− 1

2
βk̃i,i −

1

2
tr (SΛi)

}

−KL (q(u) ‖ p(u)) (4)

with ki being a vector of the ith column of Kmn and
Λi = βK−1mmkik

>
i K−1mm. The gradients of L3 with re-

spect to the parameters of q(u) are

∂L3

∂m
= βK−1mmKmny −Λm,

∂L3

∂S
=

1

2
S−1 − 1

2
Λ. (5)

Setting the derivatives to zero recovers the optimal
solution found in the previous section, namely S=Λ−1,
m=û. It follows that L2 ≥ L3, with equality at this
unique maximum.

The key propery of L3 is that is can be written as
a sum of n terms, each corresponding to one input-
output pair {xi, yi}: we have induced the necessary
factorisation to perform stochastic gradient methods
on the distribution q(u).

3.2 Natural Gradients

Stochastic variational inference works by taking steps
in the direction of the approximate natural gradient
g̃(θ), which is given by the usual gradient re-scaled
by the inverse Fisher information: g̃(θ)=G(θ)−1 ∂L∂θ .
To work with the natural gradients of the distribution
q(u), we first recall the canonical and expectation pa-
rameters

θ1=S−1m, θ2=−1

2
S−1

and

η1=m, η2=mm>+S.

In the exponential family, properties of the Fisher in-
formation reveal the following simplification of the nat-
ural gradient [Hensman et al., 2012],

g̃(θ) = G(θ)−1
∂L3

∂θ
=
∂L3

∂η
. (6)

A step of length ` in the natural gradient direction,
using θ(t+1) = θ(t) + `dL3

dη , yields

θ2(t+1) = −1

2
S−1(t+1)

= −1

2
S−1(t) + `

(
−1

2
Λ +

1

2
S−1(t)

)
,

θ1(t+1) = S−1(t+1)m(t+1)

= S−1(t)m(t) + `
(
βK−1mmKmny − S−1(t)m(t)

)
,

and taking a step of unit length then recovers the same
solution as above by either (3) or (5). This confirms
the result discussed in Hensman et al. [2012], Hoffman
et al. [2012], that taking this unit step is the same as
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performing a VB update. We can now obtain stochas-
tic approximations to the natural gradient by consid-
ering the data either individually or in mini-batches.

We note the convenient result that the natural gradi-
ent for θ2 is positive definite (note Λ = K−1mm+

∑
i Λi).

This means that taking a step in that direction always
leads to a positive definite matrix, and our implemen-
tation need not parameterise S in any way so as to
ensure positive-definiteness, cf. standard gradient ap-
proaches on covariance matrices.

To optimise the kernel hyper-parameters and noise
precision β, we take derivatives of the bound L3 and
perform standard stochastic gradient descent along-
side the variational parameters. An illustration is pre-
sented in Figure 2.

3.3 Latent Variables

The above derivations enable online learning for Gaus-
sian process regression using SVI. Several GP based
models involve inference of X, such as the GP latent
variable model [Lawrence, 2005, Titsias and Lawrence,
2010] and its extensions [e.g. Damianou et al., 2011,
2012].

To perform stochastic variational inference with latent
variables, we require a factorisation as illustrated by
Figure 1(a): this factorisation is provided by (4). To
get a model like the Bayesian GPLVM, we need a lower
bound on log p(y). In Titsias and Lawrence [2010] this
was achieved through approximate marginalisation of
L2, w.r.t. X, which leads to an expression depending
only on the parameters of q(X). However this formu-
lation scales poorly, and the variables of the optimisa-
tion are closely connected due to the marginalisation
of u. The above enables a lower bound to which SVI
is immediately applicable:

log p(y) = log

∫
p(y |X)p(X) dX

≥
∫
q(X)

{
L3 + log p(X)− log q(X)

}
dX.

It is straightforward to introduce p output dimensions
for the data Y, and following Titsias and Lawrence
[2010], we use a factorising normal distribution q(X) =∏n
i=1 q(xi). The relevant expectations of L3 are

tractable for various choices of covariance function.

To perform SVI in this model, we now alternate be-
tween selecting a minibatch of data, and optimisting
the relevant variables of q(X) with q(u) fixed, and up-
dating q(u) using the approximate natural gradient.
We note that the form of (4) means that each of the
latent variable distributions may be updated individ-
ually, enabling parallelisation across the minibatch.

3.4 Non-Gaussian likelihoods

Another advantage of the factorisation of (4) is that
it enables a simple routine for inference with non-
Gaussian likelihoods. The usual procedure for fitting
GPs with non-Gaussian likelihoods is to approximate
the likelihood using either a local variational lower
bound [Gibbs and MacKay, 2000], or by expectation
propagation [Kuss and Rasmussen, 2005]. These ap-
proximations to the likelihood are required because of
the connections between the variables f .

In L3, the bound factorises in such a way that some
non-Gaussian likelihoods may be marginalised exactly,
given the existing approximations. To see this, con-
sider that we are presented not with the vector y, but
by a binary vector t with ti ∈ {0, 1}, and the likelihood
p(t |y) =

∏n
i=1 σ(yi)

ti(1−σ(yi))
(1−ti), as in the case of

classification. We can bound the marginal likelihood
using p(t |X) ≥

∫
p(t |y) exp{L3}dy which involves n

independent one dimensional integrals due to the fac-
torising nature of L3. For the probit likelihood each
of these integrals is tractable.

This kind of approximation, where the likelihood is in-
tegrated exactly is amenable to SVI in the same man-
ner as the regression case above through computation
of the natural gradient.

4 Experiments

4.1 Toy Data

To demonstrate our algorithm we begin with two sim-
ple toy datasets based on sinusoidal functions. In the
first experiment we show how the approximation con-
verges towards the true solution as mini-batches are
included. Figure 2 shows the nature of our approxi-
mation: the variational approximation to the inducing
function variables is shown.

The second toy problem (Figure 3) illustrates the con-
vergence of the algorithm on a two dimensional prob-
lem, again based on sinusoids. Here, we start with
a random initialisation for q(u), and the model con-
verges after 2000 iterations. We found empirically that
holding the covariance parameters fixed for the first
epoch results in more reliable convergence, as can be
seen in Figure 4

4.2 UK Apartment Price Data

Our first large scale Gaussian process mod-
els the changing cost of apartments in the
UK. We downloaded the monthly price paid
data for the period February to October
2012 from http://data.gov.uk/dataset/
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Figure 2: Stochastic variational inference on a trivial GP regression problem. Each pane shows the posterior of
the GP after a batch of data, marked as solid points. Previoulsy seen (and discarded) data are marked as empty
points, the distribution q(u) is represented by vertical errorbars.

(a) Initial condition (b) Condition at 2000 iterations

Figure 3: A two dimensional toy demo, showing the initial condition and final condition of the model. Data are
marked as colored points, and the model’s prediction is shown as (similarly colored) contour lines. The positions
of the inducing variables are marked as empty circles.
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Figure 4: Convergence of the SVIGP algorithm on the
two dimensional toy data

land-registry-monthly-price-paid-data/, which
covers England and Wales, and filtered for apart-
ments. This resulted in a data set with 75,000 entries,
which we cross referenced against a postcode database
to get lattitude and longitude, on which we regressed
the normalised logarithm of the apartment prices.

Randomly selecting 10,000 data as a test set, we build
a GP as described with a covariance function k(·, ·)
consisting of four parts: two squared exponential co-
variances, initialised with different length scales were
used to account for national and regional variations in
property prices, a constant (or ’bias’) term allowed for
non-zero mean data, and a noise variance accounted
for variation that could not be modelled using simply
latitude and longitude.

We selected 800 inducing input sites using a k-means
algorithm, and optimised the parameters of the co-
variance function alongside the variational parameters.
We performed some manual tuning of the learning
rates: empirically we found that the step length should
be much higher for the variational parameters of q(u)
than for the values of the covariance function parame-
ters. We used 0.01 and 1× 10−5. Also, we included a
momentum term for the covariance function parame-
ters (set to 0.9). We tried including momentum terms
for the variational parameters, but we found this hin-
dered performance. A large mini-batch size (1000) re-
duced the stochasticity of the gradient computations.
We judged that the algorithm had converged after 750
iterations, as the stochastic estimate of the marginal
lower bound on the marginal likelihood failed to in-
crease further.

For comparison to our model, we constructed a se-
ries of GPs on subsets of the training data. Splitting
the data into sets of 500, 800, 1000 and 1200, we fit-

Figure 5: Variability of apartment price (logarithmi-
cally!) throughout England and Wales.

ted a GP with the same covariance function as our
stochastic GP. Parameters of the covariance function
were optimised using type-II maximum likelihood for
each batch. Table 1 reports the mean squared error in
our model’s prediction of the held out prices, as well
as the same for the random sub-set approach (along
with two standard deviations of the inter-sub-set vari-
ability).

Table 1: Mean squared errors in predicting the log-
apartment prices across England and Wales by latti-
tude and longitude

Mean square Error

SVIGP 0.426
Random sub-set (N=500) 0.522 +/- 0.018
Random sub-set (N=800) 0.510 +/- 0.015
Random sub-set (N=1000) 0.503 +/- 0.011
Random sub-set (N=1200) 0.502 +/- 1.012

4.3 Airline Delays

The second large scale dataset we considered consists
of flight arrival and departure times for every commer-
cial flight in the USA from January 2008 to April 2008.
This dataset contains extensive information about al-
most 2 million flights, including the delay (in minutes)
in reaching the destination. The average delay of a
flight in the first 4 months of 2008 was of 30 minutes.
Of course, much better estimates can be given by ex-
ploiting the enourmous wealth of data available, but
rich models are often overlooked in these cases due
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Figure 6: Posterior variance of apartment prices.

to the sheer size of the dataset. We randomly selected
800,000 datapoints 2, using a random subset of 700,000
samples to train the model and 100,000 to test it. We
chose to include into our model 8 of the many variables
available for this dataset: the age of the aircraft (num-
ber of years since deployment), distance that needs to
be covered, airtime, departure time, arrival time, day
of the week, day of the month and month.

We built a Gaussian process with a squared exponen-
tial covariance function with a bias and noise term.
In order to discard irrelevant input dimensions, we al-
lowed a separate lengthscale for each input. For our
experiments, we used m = 1000 inducing inputs and
a mini-batch size of 5000. The learning rate for the
variational parameters of q(u) was set to 0.01, while
the learning rate for the covariance function parame-
ters was set to 1 × 10−5. We also used a momentum
term of 0.9 for the covariance parameters.

For the purpose of comparison, we fitted several GPs
with an identical covariance function on subsets of the
data. We split the data into sets of 800, 1000 and 1200
samples and optimised the parameters using type-II
maximum likelihood. We repeated this procedure 10
times.

The left pane of Figure 7 shows the root mean squared
error (RMSE) obtained by fitting GPs on subsets of
the data. The right pane of figure 7 shows the RMSE
obtained by fitting 10 SVI GPs as a function of the
iteration. The individual runs are shown in light gray,
while the blue line shows the average RMSE across

2Subsampling wasn’t technically necessary, but we
didn’t want to overburden the memory of a shared compute
node just before a submission deadline.

Figure 8: Root mean square errors for models with
different numbers of inducing variables.

Figure 9: Automatic relevance determination param-
eters for the features used for predicting flight delays.

runs.

One of the main advantages of the approach presented
here is that the computational complexity is indepen-
dent from the number of samples n. This allowed us
to use a much larger number of inducing inputs than
has traditionally been possible. Conventional sparse
GPs have a computational complexity of O(nm2), so
for large n the typical upper bound for m is between 50
and 100. The impact on the prediction performance is
quite significant, as highlighted in Figure 8, where we
fit several SVI GPs using different numbers of inducing
inputs.

Looking at the inverse lengthscales in Figure 9, it’s
possible to get a better idea of the relevance of the
different features available in this dataset. The most
relevant variable turned out to be the time of departure
of the flight, closely followed by the distance that needs
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Figure 7: Root mean squared errors in predicting flight delays using information about the flight.

to be covered. Distance and airtime should in theory
be correlated, but they have very different relevances.
This can be intuitively explained by considering that
on longer flights it’s easier to make up for delays at
departure.

5 Discussion

We have presented a method for inference in Gaussian
process models using stochastic variational inference.
These expressions allow for the transfer of a multitude
of Gaussian process techniques to big data.

We note several interesting results. First, the our
derivation disusses the bound on p(y |u) in detail,
showing that it becomes tight when Z = X.

Also, we have that there is a unique solution for the pa-
rameters of q(u) such that the bound associated with
the standard variational sparse GP [Titsias, 2009] is
recovered.

Further, since the complexity of our model is now
O(m3) rather than O(nm2), we are free to increase
m to much greater values than the sparse GP repre-
sentation. The effect of this is that we can have much
richer models: for a squared exponential covariance
function, we have far more basis-functions with which
to model the data. In our UK apartment price exam-
ple, we had no difficulty setting m to 800, much higher
than experience tells us is feasible with the sparse GP.

The ability to increase the number of inducing vari-
ables and the applicability to unlimited data make our
method suitable for multiple output GPs [Álvarez and
Lawrence, 2011]. We have also briefly discussed how

this framework fits with other Gaussian process based
models such as the GPLVM and GP classification. We
leave the details of these implementations to future
work.

In all our experiments our algorithm was run on a
single CPU using the GPy Gaussian process toolkit
https://github.com/SheffieldML/GPy.
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Abstract

We propose maximum likelihood estimation
for learning Gaussian graphical models with a
Gaussian (`22) prior on the parameters. This
is in contrast to the commonly used Laplace
(`1) prior for encouraging sparseness. We
show that our optimization problem leads to
a Riccati matrix equation, which has a closed
form solution. We propose an e�cient al-
gorithm that performs a singular value de-
composition of the training data. Our algo-
rithm is O(NT 2)-time and O(NT )-space for
N variables and T samples. Our method is
tailored to high-dimensional problems (N �
T ), in which sparseness promoting methods
become intractable. Furthermore, instead of
obtaining a single solution for a specific reg-
ularization parameter, our algorithm finds
the whole solution path. We show that the
method has logarithmic sample complexity
under the spiked covariance model. We also
propose sparsification of the dense solution
with provable performance guarantees. We
provide techniques for using our learnt mod-
els, such as removing unimportant variables,
computing likelihoods and conditional distri-
butions. Finally, we show promising results
in several gene expressions datasets.

1 Introduction

Estimation of large inverse covariance matrices, par-
ticularly when the number of variables N is signifi-
cantly larger than the number of samples T , has at-
tracted increased attention recently. One of the main
reasons for this interest is the need for researchers
to discover interactions between variables in high di-
mensional datasets, in areas such as genetics, neuro-
science and meteorology. For instance in gene expres-

sion datasets, N is in the order of 20 thousands to 2
millions, while T is in the order of few tens to few hun-
dreds. Inverse covariance (precision) matrices are the
natural parameterization of Gaussian graphical mod-
els.

In this paper, we propose maximum likelihood esti-
mation for learning Gaussian graphical models with a
Gaussian (`22) prior on the parameters. This is in con-
trast to the commonly used Laplace (`1) prior for en-
couraging sparseness. We consider the computational
aspect of this problem, under the assumption that the
number of variables N is significantly larger than the
number of samples T , i.e. N � T .

Our technical contributions in this paper are the fol-
lowing. First, we show that our optimization prob-
lem leads to a Riccati matrix equation, which has a
closed form solution. Second, we propose an e�cient
algorithm that performs a singular value decomposi-
tion of the sample covariance matrix, which can be
performed very e�ciently through singular value de-
composition of the training data. Third, we show log-
arithmic sample complexity of the method under the
spiked covariance model. Fourth, we propose sparsifi-
cation of the dense solution with provable performance
guarantees. That is, there is a bounded degradation
of the Kullback-Leibler divergence and expected log-
likelihood. Finally, we provide techniques for using
our learnt models, such as removing unimportant vari-
ables, computing likelihoods and conditional distribu-
tions.

2 Background

In this paper, we use the notation in Table 1.

A Gaussian graphical model is a graph in which all
random variables are continuous and jointly Gaussian.
This model corresponds to the multivariate normal dis-
tribution for N variables with mean µ and covariance
matrix ⌃ 2 RN⇥N . Conditional independence in a
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Table 1: Notation used in this paper.

Notation Description

A ⌫ 0 A 2 RN⇥N is symmetric and positive
semidefinite

A � 0 A 2 RN⇥N is symmetric and positive defi-
nite

kAk1 `1-norm of A 2 RN⇥M , i.e.
P

nm |anm|
kAk1 `1-norm of A 2 RN⇥M , i.e. maxnm |anm|
kAk2 spectral norm of A 2 RN⇥N , i.e. the maxi-

mum eigenvalue of A � 0
kAkF Frobenius norm of A 2 RN⇥M , i.e.pP

nm a2
nm

tr(A) trace of A 2 RN⇥N , i.e. tr(A) =
P

n ann

hA,Bi scalar product of A,B 2 RN⇥M , i.e.P
nm anmbnm

A#B geometric mean of A,B 2 RN⇥N , i.e. the
matrix Z ⌫ 0 with maximum singular values

such that


A Z
Z B

�
⌫ 0

Gaussian graphical model is simply reflected in the
zero entries of the precision matrix ⌦ = ⌃�1 (Lau-
ritzen, 1996). Let ⌦ = {!n1n2

}, two variables n1

and n2 are conditionally independent if and only if
!n1n2

= 0.

The log-likelihood of a sample x 2 RN in a Gaussian
graphical model with mean µ and precision matrix ⌦
is given by:

L(⌦,x) ⌘ log det⌦� (x� µ)
>
⌦(x� µ) (1)

In this paper, we use a short hand notation for the
average log-likelihood of T samples x(1), . . . ,x(T ) 2
RN . Given that this average log-likelihood depends
only on the sample covariance matrix b⌃, we define:

L(⌦, b⌃) ⌘ 1

T

X

t

L(⌦,x(t))

= log det⌦� hb⌃,⌦i (2)

A very well known technique for the estimation of
precision matrices is Tikhonov regularization (Duchi

et al., 2008). Given a sample covariance matrix b⌃ ⌫ 0,
the Tikhonov-regularized problem is defined as:

max
⌦�0

L(⌦, b⌃)� ⇢ tr(⌦) (3)

for regularization parameter ⇢ > 0. The term L(⌦, b⌃)
is the Gaussian log-likelihood as defined in eq.(2). The
optimal solution of eq.(3) is given by:

b⌦ = (b⌃ + ⇢I)
�1

(4)

The estimation of sparse precision matrices was first
introduced in (Dempster, 1972). It is well known that

finding the most sparse precision matrix which fits a
dataset is a NP-hard problem (Banerjee et al., 2006;
Banerjee et al., 2008). Since the `1-norm is the tighest
convex upper bound of the cardinality of a matrix,
several `1-regularization methods have been proposed.
Given a dense sample covariance matrix b⌃ ⌫ 0, the
`1-regularized problem is defined as:

max
⌦�0

L(⌦, b⌃)� ⇢k⌦k1 (5)

for regularization parameter ⇢ > 0. The term L(⌦, b⌃)
is the Gaussian log-likelihood as defined in eq.(2). The
term k⌦k1 encourages sparseness of the precision ma-
trix.

From a Bayesian viewpoint, eq.(5) is equivalent to
maximum likelihood estimation with a prior that as-
sumes that each entry in ⌦ is independent and each
of them follow a Laplace distribution (`1-norm).

Several algorithms have been proposed for solving
eq.(5): sparse regression for each variable (Mein-
shausen & Bühlmann, 2006; Zhou et al., 2011), de-
terminant maximization with linear inequality con-
straints (Yuan & Lin, 2007), a block coordinate de-
scent method with quadratic programming (Banerjee
et al., 2006; Banerjee et al., 2008) or sparse regression
(Friedman et al., 2007), a Cholesky decomposition ap-
proach (Rothman et al., 2008), a projected gradient
method (Duchi et al., 2008), a projected quasi-Newton
method (Schmidt et al., 2009), Nesterov’s smooth op-
timization technique (Lu, 2009), an alternating lin-
earization method (Scheinberg et al., 2010), a greedy
coordinate descent method (Scheinberg & Rish, 2010),
a block coordinate gradient descent method (Yun
et al., 2011), quadratic approximation (Hsieh et al.,
2011), Newton-like methods (Olsen et al., 2012), itera-
tive thresholding (Guillot et al., 2012), greedy forward
and backward steps (Johnson et al., 2012) and divide
and conquer (Hsieh et al., 2012).

Additionally, a general rule that uses the sample co-
variance b⌃ and splits the graph into connected com-
ponents was proposed in (Mazumder & Hastie, 2012).
After applying this rule, one can use any of the above
methods for each component separately. This tech-
nique enables the use of `1-regularization methods
to very high dimensional datasets. To the best of
our knowledge, (Mazumder & Hastie, 2012) reported
results on the highest dimensional dataset (24,481
genes).

3 Problem Setup

In this paper, we assume that the number of variables
N is significantly larger than the number of samples
T , i.e. N � T . This is a reasonable assumption is sev-
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eral contexts, for instance in gene expression datasets
where N is in the order of 20 thousands to 2 millions,
while T is in the order of few tens to few hundreds.

Given a sample covariance matrix b⌃ ⌫ 0, we define
the Riccati-regularized problem as:

max
⌦�0

L(⌦, b⌃)� ⇢

2
k⌦k2F (6)

for regularization parameter ⇢ > 0. The term L(⌦, b⌃)
is the Gaussian log-likelihood as defined in eq.(2). The
term k⌦kF is the Frobenius norm. We chose the name
“Riccati regularizer” because the optimal solution of
eq.(6) leads to a Riccati matrix equation.

From a Bayesian viewpoint, eq.(6) is equivalent to
maximum likelihood estimation with a prior that as-
sumes that each entry in ⌦ is independent and each
of them follow a Gaussian distribution (`22-norm).

Surprisingly, the problem in eq.(6) has not received
much attention. The problem was briefly mentioned
in (Witten & Tibshirani, 2009) as a subproblem of a
regression technique. A tangentially related prior is
the `22-norm regularization of the Cholesky factors of
the precision matrix (Huang et al., 2006).

It is well known that `1-regularization allows obtain-
ing an inverse covariance matrix that is “simple” in the
sense that it is sparse, with a small number of non-zero
entries. Our proposed `22-regularizer allows obtaining
an inverse covariance that is also “simple” in the sense
that it is low-rank as we will show in Section 4. On
the other hand, the solution of the `1-regularized prob-
lem in eq.(5) is full-rank with N di↵erent eigenvalues,
even for simple cases such as datasets consisting of just
two samples. One seemingly unavoidable bottleneck
for `1-regularization is the computation of the covari-
ance matrix b⌃ 2 RN⇥N which is O(N2T )-time and
O(N2)-space. Moreover, the work of (Banerjee et al.,
2006) showed that in order to obtain an "-accurate so-
lution, we need O(N4.5/")-time. It is also easy to ar-
gue that without further assumptions, sparseness pro-
moting algorithms are ⌦(N3)-time and O(N2)-space.
This is prohibitive for very high dimensional datasets.
The method of connected components (Mazumder &
Hastie, 2012) can reduce the requirement of ⌦(N3)-
time. Unfortunately, in order to make the biggest
connected component of a reasonable size N 0 = 500
(as prescribed in (Mazumder & Hastie, 2012)), a very
large regularization parameter ⇢ is needed. As a re-
sult, the learnt models do not generalize well as we
will show experimentally in Section 5.

4 Linear-Time and Space Algorithms

In this section, we propose algorithms with time-
complexity O(NT 2) and space-complexity O(NT ) by

using a low-rank parameterization. Given our assump-
tion that N � T , we can say that our algorithms are
linear time and space, i.e. O(N).

4.1 Solution of the Riccati Problem

Here we show that the solution of our proposed
Riccati-regularized problem leads to the Riccati ma-
trix equation, which has a closed form solution.

Theorem 1. For ⇢ > 0, the optimal solution of the
Riccati-regularized problem in eq.(6) is given by:

b⌦ = lim
"!0+

✓✓
1

⇢
b⌃"

◆
#

✓
b⌃�1
" +

1

4⇢
b⌃"

◆
� 1

2⇢
b⌃"

◆

(7)

where b⌃" = b⌃ + "I.

Proof. First, we consider b⌃" = b⌃ + "I � 0 for some
small " > 0 instead of b⌃ ⌫ 0. The "-corrected
version of eq.(6), that is max⌦�0 L(⌦, b⌃")� ⇢

2k⌦k2F
has the minimizer b⌦" if and only if the derivative of
the objective function at ⌦ = b⌦" is equal to zero.
That is, b⌦�1

" � b⌃" � ⇢b⌦" = 0. The latter equa-
tion is known as the Riccati matrix equation, which by
virtue of Theorem 3.1 in (Lim, 2006) has the solution
b⌦" =

⇣
1
⇢
b⌃"

⌘
#
⇣
b⌃�1
" + 1

4⇢
b⌃"

⌘
� 1

2⇢
b⌃". By taking the

limit "! 0+, we prove our claim.

Although the optimal solution in eq.(7) seems to re-
quire ⌦(N2) and O(N3) operations, in the next section
we show e�cient algorithms when N � T .

4.2 Spectral Method for the Riccati and
Tikhonov Problems

In what follows, we provide a method for computing
the optimal solution of the Riccati-regularized problem
as well as the Tikhonov-regularized problem by us-
ing singular value decomposition of the training data.
First, we focus on the Riccati-regularized problem.

Theorem 2. Let b⌃ = UDU> be the singular value
decomposition of b⌃, where U 2 RN⇥T is an orthonor-
mal matrix (i.e. U>U = I) and D 2 RT⇥T is a di-
agonal matrix. For ⇢ > 0, the optimal solution of the
Riccati-regularized problem in eq.(6) is given by:

b⌦ = UeDU> +
1p
⇢
I (8)

where eD 2 RT⇥T is a diagonal matrix with entries

(8t) edtt =
q

1
⇢ +

d2
tt

4⇢2 � dtt

2⇢ � 1p
⇢ .

Proof Sketch. We consider an over-complete singular
value decomposition by adding columns to U, thus ob-
taining Ū 2 RN⇥N such that ŪŪ> = I, which allows
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obtaining a singular value decomposition for b⌃". Then
we apply Theorem 1 and properties of the geometric
mean for general as well as diagonal matrices.

(Please, see Appendix B for detailed proofs.)

Next, we focus on the Tikhonov-regularized problem.

Theorem 3. Let b⌃ = UDU> be the singular value
decomposition of b⌃, where U 2 RN⇥T is an orthonor-
mal matrix (i.e. U>U = I) and D 2 RT⇥T is a di-
agonal matrix. For ⇢ > 0, the optimal solution of the
Tikhonov-regularized problem in eq.(3) is given by:

b⌦ = UeDU> +
1

⇢
I (9)

where eD 2 RT⇥T is a diagonal matrix with entries
(8t) edtt = �dtt

⇢(dtt+⇢)
.

Proof Sketch. We consider an over-complete singular
value decomposition by adding columns to U, thus
obtaining Ū 2 RN⇥N such that ŪŪ> = I, which al-
lows obtaining a singular value decomposition for b⌦.
The final result follows from eq.(4).

Note that computing b⌃ 2 RN⇥N is O(N2T )-time. In
fact, in order to solve the Riccati-regularized problem
as well as the Tikhonov-regularized problem, we do not
need to compute b⌃ but its singular value decomposi-
tion. The following remark shows that we can obtain
the singular value decomposition of b⌃ by using the sin-
gular value decomposition of the training data, which
is O(NT 2)-time.

Remark 4. Let X 2 RN⇥T be a dataset composed
of T samples, i.e. X = (x(1), . . . ,x(T )). Without
loss of generality, let assume X has zero mean, i.e.
bµ = 1

T

P
t x

(t) = 0. The sample covariance matrix

is given by b⌃ = 1
T XX> ⌫ 0. We can obtain the

singular value decomposition of b⌃ by using the singu-
lar value decomposition of X. That is, X = UeDV>

where U,V 2 RN⇥T are orthonormal matrices (i.e.

U>U = V>V = I) and eD 2 RT⇥T is a diagonal ma-

trix. We can recover D from eD by using D = 1
T
eD2.

Finally, we have b⌃ = UDU>.

The following remark shows that instead of obtaining a
single solution for a specific value of the regularization
parameter ⇢, we can obtain the whole solution path.

Remark 5. Note that the optimal solutions of the
Riccati-regularized problem as well as the Tikhonov-
regularized problem have the form UeDU> + cI. In
these solutions, the diagonal matrix eD is a function
of D and the regularization parameter ⇢, while c is a
function of ⇢. Therefore, we need to apply the singular

value decomposition only once in order to produce a so-
lution for any value of ⇢. Furthermore, producing each
of those solutions is O(T )-time given that eD 2 RT⇥T

is a diagonal matrix.

4.3 Bounds for the Eigenvalues

Here we show that the optimal solution of the Riccati-
regularized problem is well defined (i.e. positive defi-
nite with finite eigenvalues).

Corollary 6. For ⇢ > 0, the optimal solution of the
Riccati-regularized problem in eq.(6) is bounded as fol-
lows:

↵I � b⌦ � �I (10)

where ↵ =
q

1
⇢ + 1

4⇢2 kb⌃k22 � 1
2⇢kb⌃k2 and � = 1p

⇢ .

That is, the eigenvalues of the optimal solution b⌦ are
in the range [↵;�] and therefore, b⌦ is a well defined
precision matrix.

Proof Sketch. Theorem 2 gives the eigendecomposi-
tion of the solution b⌦. That is, the diagonal eD + 1p

⇢I

contains the eigenvalues of b⌦. Then we bound the
values in the diagonal.

Remark 7. We can obtain bounds for the Tikhonov-
regularized problem in eq.(3) by arguments similar to
the ones in Corollary 6. That is, the eigenvalues of
the optimal solution b⌦ are in the range [↵;�] where
↵ = 1

kb⌃k2+⇢
and � = 1

⇢ .

4.4 Logarithmic Sample Complexity

The `1 regularization for Gaussian graphical models
has a sample complexity that scales logarithmically
with respect to the number of variables N (Ravikumar
et al., 2011). On the other hand, it is known that in
general, `22 regularization has a worst-case sample com-
plexity that scales linearly with respect to the number
of variables, for problems such as classification (Ng,
2004) and compressed sensing (Cohen et al., 2009).

In this section, we prove the logarithmic sample com-
plexity of the Riccati problem under the spiked covari-
ance model originally proposed by (Johnstone, 2001).
Without loss of generality, we assume zero mean as in
(Ravikumar et al., 2011). First we present the gener-
ative model.

Definition 8. The spiked covariance model for N
variables and K ⌧ N components is a generative
model P parameterized by (U,D, �), where U 2
RN⇥K is an orthonormal matrix (i.e. U>U = I),
D 2 RK⇥K is a positive diagonal matrix, and � > 0.
A sample x 2 RN is generated by first sampling the in-
dependent random vectors y 2 RK and ⇠ 2 RN , both

294



with uncorrelated sub-Gaussian entries with zero mean
and unit variance. Then we generate the sample x as
follows:

x = UD1/2y +

r
�

N
⇠ (11)

Furthermore, it is easy to verify that:

⌃ = EP [xx>] = UDU> +
�

N
I (12)

(Please, see Appendix B for a detailed proof.)

Note that the above model is not a Gaussian distri-
bution in general. It is Gaussian if and only if the
random variables y and ⇠ are Gaussians.

Next we present a concentration inequality for the ap-
proximation of the ground truth covariance.

Lemma 9. Let P be a ground truth spiked covari-
ance model for N variables and K ⌧ N components,
parameterized by (U⇤,D⇤, �⇤) with covariance ⌃⇤ as

in Definition 8. Given a sample covariance matrix b⌃
computed from T samples x(1), . . . ,x(T ) 2 RN drawn
independently from P. With probability at least 1� �,
the sample covariance fulfills the following concentra-
tion inequality:

kb⌃�⌃⇤kF 40(K
p
kD⇤kF +

p
�⇤)2⇥

s
4 log(N + K) + 2 log 4

�

T
(13)

Proof Sketch. By the definition of the sample covari-
ance, matrix norm inequalities and a concentration in-
equality for the `1-norm of a sample covariance matrix
from sub-Gaussian random variables given by Lemma
1 in (Ravikumar et al., 2011).

Armed with the previous result, we present our log-
arithmic sample complexity for the Riccati problem
under the spiked covariance model.

Theorem 10. Let P be a ground truth spiked covari-
ance model for N variables and K ⌧ N components,
parameterized by (U⇤,D⇤, �⇤) with covariance ⌃⇤ as
in Definition 8. Let Q⇤ be the distribution generated by
a Gaussian graphical model with zero mean and preci-
sion matrix ⌦⇤ = ⌃⇤�1. That is, Q⇤ is the projection
of P to the family of Gaussian distributions. Given a
sample covariance matrix b⌃ computed from T samples
x(1), . . . ,x(T ) 2 RN drawn independently from P. Let
bQ be the distribution generated by a Gaussian graphi-
cal model with zero mean and precision matrix b⌦, the
solution of the Riccati-regularized problem in eq.(6).

With probability at least 1� �, we have:

KL(P|| bQ)�KL(P||Q⇤) = EP [L(⌦⇤,x)� L(b⌦,x)]

 40(K
p
kD⇤kF +

p
�⇤)2

s
4 log(N + K) + 2 log 4

�

T
⇥

�
1
4 + k⌦⇤kF + k⌦⇤k2F

�
(14)

where L(⌦,x) is the Gaussian log-likelihood as defined
in eq.(1).

Proof. Let p(x), bq(x) and q⇤(x) be the probability

density functions of P, bQ and Q⇤ respectively. Note
that KL(P|| bQ) = EP [log p(x) � log bq(x)] = �H(P) �
EP [L(b⌦,x)]. Similarly, KL(P||Q⇤) = �H(P) �
EP [L(⌦⇤,x)]. Therefore, KL(P|| bQ) � KL(P||Q⇤) =

EP [L(⌦⇤,x)� L(b⌦,x)].

By using the definition of the Gaussian log-likelihood
in eq.(1), the expected log-likelihood is given by:

L⇤(⌦) ⌘ EP [L(⌦,x)] = log det⌦� h⌃⇤,⌦i
Similarly, define the shorthand notation for the finite-
sample log-likelihood in eq.(2) as follows:

bL(⌦) ⌘ L(⌦, b⌃) = log det⌦� hb⌃,⌦i
From the above definitions we have:

L⇤(⌦)� bL(⌦) = hb⌃�⌃⇤,⌦i
By the Cauchy-Schwarz inequality and Lemma 9:

|L⇤(⌦)� bL(⌦)|  kb⌃�⌃⇤kFk⌦kF
 �k⌦kF

for � = 40(K
p
kD⇤kF +

p
�⇤)2

q
4 log(N+K)+2 log 4

�

T .
Thus, we obtained a “uniform convergence” statement
for the loss.

Note that b⌦ (the minimizer of the regularized finite-
sample loss) and ⌦⇤ (the minimizer of the expected
loss) fulfill by definition:

b⌦ = arg max
⌦

bL(⌦)� ⇢

2
k⌦k2F

⌦⇤ = arg max
⌦

L⇤(⌦)

Therefore, by optimality of b⌦ we have:

bL(⌦⇤)� ⇢

2
k⌦⇤k2F  bL(b⌦)� ⇢

2
kb⌦k2F

) bL(⌦⇤)� bL(b⌦)  ⇢

2
k⌦⇤k2F �

⇢

2
kb⌦k2F

By using the “uniform convergence” statement, the
above results and setting ⇢ = 2�:

L⇤(⌦⇤)� L⇤(b⌦)  bL(⌦⇤)� bL(b⌦) + �k⌦⇤kF + �kb⌦kF
 ⇢

2
k⌦⇤k2F �

⇢

2
kb⌦k2F + �k⌦⇤kF + �kb⌦kF

= �(kb⌦kF � kb⌦k2F + k⌦⇤kF + k⌦⇤k2F)
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By noting that kb⌦kF�kb⌦k2F  1
4 , we prove our claim.

4.5 Spectral Method for the Sparse Problem

In this section, we propose sparsification of the dense
solution and show an upper bound of the degradation
of the Kullback-Leibler divergence and expected log-
likelihood.

First, we study the relationship between the sparse-
ness of the low-rank parameterization and the gener-
ated precision matrix. We analyze the expected value
of densities of random matrices. We assume that each
entry in the matrix is statistically independent, which
is not a novel assumption. From a Bayesian view-
point, the `1-regularized problem in eq.(5) assumes
that each entry in the precision matrix ⌦ is inde-
pendent. We also made a similar assumption for our
Riccati-regularized problem in eq.(6).

Lemma 11. Let A 2 RN⇥T be a random matrix with
statistically independent entries and expected density
p, i.e. (8n, t) P[ant 6= 0] = p. Furthermore, assume
that conditional distribution of ant | ant 6= 0 has a do-
main with non-zero Lebesgue measure. Let D 2 RT⇥T

be a diagonal matrix such that (8t) dtt 6= 0. Let c be
an arbitrary real value. Let B = ADA> + cI. The
expected non-diagonal density of B 2 RN⇥N is given
by:

(8n1 6= n2) P[bn1n2
6= 0] = 1� (1� p2)T (15)

Proof Sketch. Note that for n1 6= n2, we have bn1n2
=P

t dttan1tan2t. We argue that the probability that
bn1n2 6= 0 is equal to the probability that an1t 6= 0 and
an2t 6= 0 for at least one t. The final result follows
from independence of the entries of A.

It is easy to construct (non-random) specific instances
in which the density of A and B are unrelated. Con-
sider two examples in which D = I, c = 0 and there-
fore B = AA>. As a first example, let A have
zero entries except for (8n) an1 = 1. That is, A is
very sparse but B = AA> = 11> is dense. As a
second example, let B have zero entries except for
(8n) bn1 = b1n = 1, bnn = N . That is, B = AA> is
very sparse but its Chokesly decomposition A is dense.

Next, we show that sparsification of a dense precision
matrix produces a precision matrix that is close to the
original one. Furthermore, we show that such matrix
is positive definite.

Theorem 12. Let ⌦ = UDU> + �I be a precision
matrix, where U 2 RN⇥T is an orthonormal matrix
(i.e. U>U = I), � > ↵ > 0 and D 2 RT⇥T is a
negative diagonal matrix such that (8t) � (� � ↵) <

dtt  0 (or equivalently ↵I � ⌦ � �I). Let eU 2 RN⇥T

be a sparse matrix constructed by soft-thresholding:

(8n, t) eunt = sign(unt) max (0, |unt| � �p
NT

) (16)

or by hard-thresholding:

(8n, t) eunt = unt1[|unt| � �p
NT

] (17)

for some � > 0. The sparse precision matrix e⌦ =
eUDeU> + �I satisfies:

ke⌦�⌦k2  (2�+ �2)(� � ↵) (18)

Furthermore, e⌦ preserves positive definiteness of the
dense precision matrix ⌦. More formally:

↵I � e⌦ � �I (19)

That is, the eigenvalues of e⌦ are in the range [↵;�] and

therefore, e⌦ is a well defined sparse precision matrix.

Proof Sketch. The claims in eq.(18) and eq.(19) follow
from matrix norm inequalities. Additionally, eq.(19)

follows from showing that eUDeU> is negative semidef-
inite and that keUk2  kUk2 = 1.

Finally, we derive an upper bound of the degradation
of the Kullback-Leibler divergence and expected log-
likelihood. Thus, sparsification of a dense solution has
provable performance guarantees.

Theorem 13. Let P be the ground truth distribution
of the data sample x. Let Q be the distribution gener-
ated by a Gaussian graphical model with mean µ and
precision matrix ⌦. Let eQ be the distribution gener-
ated by a Gaussian graphical model with mean µ and
precision matrix e⌦. Assume ↵I � ⌦ and ↵I � e⌦ for
↵ > 0. The Kullback-Leibler divergence from P to eQ
is close to the Kullback-Leibler divergence from P to
Q. More formally:

KL(P|| eQ)�KL(P||Q) = EP [L(⌦,x)� L(e⌦,x)]


✓

1

↵
+ kEP [(x� µ)(x� µ)

>
]k2
◆
ke⌦�⌦k2 (20)

where L(⌦,x) is the Gaussian log-likelihood as defined
in eq.(1). Moreover, the above bound is finite provided
that kEP [x]k2 and kEP [xx>]k2 are finite.

Proof Sketch. By definition of the Kullback-Leibler di-
vergence, the Gaussian log-likelihood in eq.(1) and by
showing that the resulting expression is Lipschitz con-
tinuous with respect to the spectral norm.

4.6 Using the Learnt Models in Linear-Time

Next we provide techniques for using our learnt mod-
els, such as removing unimportant variables, comput-
ing likelihoods and conditional distributions.
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Removal of Unimportant Variables. Recall that
the final goal for a data analyst is not only to be able to
learn models from data but also to browse such learnt
models in order to discover “important” interactions.
We define the unimportant variable set as the set of
variables in which the absolute value of every partial
correlation is lower than a specified threshold.

Definition 14. An unimportant variable set of a
Gaussian graphical model defined by the precision ma-
trix ⌦ = {!n1n2

} for threshold " > 0 is a set S ✓
{1, . . . , N} such that:

(8n1, n2 2 S)
|!n1n2

|p
!n1n1

!n2n2

 " (21)

Note that our definition does not require that the size
of S is maximal. Here we provide a technique that
discovers the unimportant variable set in linear-time.

Lemma 15. Let ⌦ = ADA> + cI be a precision
matrix, where A 2 RN⇥T is an arbitrary matrix,
D 2 RT⇥T is an arbitrary diagonal matrix, and c is
an arbitrary real value, such that ⌦ is a well defined
precision matrix (i.e. ⌦ � 0). An unimportant vari-
able set of the Gaussian graphical model defined by
⌦ = {!n1n2} for threshold " > 0 can be detected by
applying the rule:

(8n1, n2 2 S)
|!n1n2

|p
!n1n1!n2n2

 min (q(n1), q(n2))  "
(22)

where q(n1) =
P

t |dttan1t| maxn2
|an2t|p

r(n1) minn2 r(n2)
and r(n) =

P
t dtta

2
nt + c. Furthermore, this operation has time-

complexity O(NT ) when applied to all variables in
{1, . . . , N}.

Proof Sketch. Straightforward, from algebra.

Computation of the Likelihood. In tasks such
as classification, we would assign a given sample to
the class whose model produced the highest likelihood
among all classes. Here we provide a method for com-
puting the likelihood of a given sample in the learnt
model.

Lemma 16. Let ⌦ = ADA> + cI be a precision
matrix, where A 2 RN⇥T is an arbitrary matrix,
D 2 RT⇥T is an arbitrary diagonal matrix, and c is
an arbitrary real value, such that ⌦ is a well defined
precision matrix (i.e. ⌦ � 0). The log-likelihood of a
sample x in a Gaussian graphical model with mean µ
and precision matrix ⌦ is given by:

L(⌦,x) = log det

✓
I +

1

c
A>AD

◆
+ N log c

� ((x� µ)
>
A)D(A>(x� µ))

� c(x� µ)
>

(x� µ) (23)

where L(⌦,x) is the Gaussian log-likelihood as de-
fined in eq.(1). Furthermore, this operation has time-
complexity O(NT 2).

Proof Sketch. By the matrix determinant lemma.

Conditional Distributions. In some contexts, it
is important to perform inference for some unobserved
variables when given some observed variables. Here
we provide a method for computing the conditional
distribution that takes advantage of our low-rank pa-
rameterization. First, we show how to transform from
a non-orthonormal parameterization to an orthonor-
mal one.

Remark 17. Let A 2 RN⇥T be an arbitrary matrix.
Let D 2 RT⇥T be a negative diagonal matrix (i.e.
(8t) dtt < 0). Let B = ADA>. Since B has rank at
most T , we can compute its singular value decomposi-
tion B = UeDU> where U 2 RN⇥T is an orthonormal
matrix (i.e. U>U = I) and eD 2 RT⇥T is a negative

diagonal matrix (i.e. (8t) edtt < 0). In order to do
this, we compute the singular value decomposition of

A(�D)
1/2

= UeDV>. We can recover D from eD by

using D = �eD2.

Given the previous observation, our computation of
conditional distributions will focus only on orthonor-
mal parameterizations.

Lemma 18. Let ⌦ = UDU> + cI be a precision ma-
trix, where U 2 RN⇥T is an orthonormal matrix (i.e.
U>U = I), D 2 RT⇥T is an arbitrary diagonal ma-
trix, and c is an arbitrary real value, such that ⌦ is
a well defined precision matrix (i.e. ⌦ � 0). Assume
that x follows a Gaussian graphical model with mean µ
and precision matrix ⌦, and assume that we partition
the variables into two sets as follows:

x =


x1

x2

�
, µ =


µ1

µ2

�
,U =


U1

U2

�
(24)

The conditional distribution of x1 | x2 is a Gaussian
graphical model with mean µ1|2 and precision matrix
⌦11, such that:

i. µ1|2 = µ1 �U1
eDU>

2 (x2 � µ2)

ii. ⌦11 = U1DU>
1 + cI (25)

where eD 2 RT⇥T is a diagonal matrix with entries
(8t) edtt = dtt

dtt+c .

Proof Sketch. By definition of conditional distribu-
tions of Gaussians (Lauritzen, 1996) and Theorem
3.
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Figure 1: Kullback-Leibler divergence between the ground
truth spiked covariance model and the learnt models for dif-
ferent (a) inverse covariance densities, (b) number of com-
ponents, (c) samples and (d) variables (error bars shown at
90% confidence interval). The Riccati (Ric) method per-
forms better for ground truth with moderate to high den-
sity, while the sparse method (Sp) performs better for low
densities. The sparse method performs better for ground
truth with large number of components, while the Riccati
method performs better for small number of components.
The behavior of both methods is similar with respect to
the number of samples. The sparse method degrades more
than the Riccati method with respect to the number of
variables.

Table 2: Gene expression datasets.

Dataset Disease Samples Variables
GSE1898 Liver cancer 182 21,794
GSE29638 Colon cancer 50 22,011
GSE30378 Colon cancer 95 22,011
GSE20194 Breast cancer 278 22,283
GSE22219 Breast cancer 216 24,332
GSE13294 Colon cancer 155 54,675
GSE17951 Prostate cancer 154 54,675
GSE18105 Colon cancer 111 54,675
GSE1476 Colon cancer 150 59,381
GSE14322 Liver cancer 76 104,702
GSE18638 Colon cancer 98 235,826
GSE33011 Ovarian cancer 80 367,657
GSE30217 Leukemia 54 964,431
GSE33848 Lung cancer 30 1,852,426

Table 3: Runtimes for gene expression datasets. Our
Riccati method is considerably faster than sparse method.

Dataset Sparse Riccati
GSE1898,29638,30378,20194,22219 3.8 min 1.2 sec
GSE13294,17951,18105,1476 14.9 min 1.6 sec
GSE14322 30.4 min 1.0 sec
GSE18638 3.1 hr 2.6 sec
GSE33011 6.0 hr 2.5 sec
GSE30217 1.3 days 3.8 sec
GSE33848 5.4 days 2.8 sec

5 Experimental Results

We begin with a synthetic example to test the ability
of the method to recover the ground truth distribution
from data. We used the spiked covariance model as in
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Figure 2: Negative test log-likelihood for gene expres-
sion datasets (error bars shown at 90% confidence inter-
val). Our Riccati (Ric) and sparse Riccati (RicSp) meth-
ods perform better than the sparse method (Sp), Tikhonov
method (Tik) and the fully independent model (Ind). Since
the method of (Mazumder & Hastie, 2012) requires high
regularization for producing reasonably sized components,
the performance of the sparse method (Sp) when using all
the variables degrade considerably when compared to 200
variables.

Definition 8 for N = 100 variables, K = 3 components
and � = 1. Additionally, we control for the density
of the related ground truth inverse covariance matrix.
We performed 20 repetitions. For each repetition, we
generate a di↵erent ground truth model at random.
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Figure 3: Genes with “important” interactions for
two gene expression datasets analyzed with our Riccati
method.

We then produce T = 3 log N samples for training
and the same number of samples for validation. In
our experiments, we test di↵erent scenarios, by varying
the density of the ground truth inverse covariance, the
number of components, samples and variables.

In Figure 1, we report the Kullback-Leibler divergence
between the ground truth and the learnt models. For
learning sparse models, we used the method of (Fried-
man et al., 2007). The Riccati method performs better
for ground truth with moderate to high density, while
the sparse method performs better for low densities.
The sparse method performs better for ground truth
with large number of components (as expected when
K 2 O(N)), while the Riccati method performs bet-
ter for small number of components (as expected when
K ⌧ N). The behavior of both methods is similar
with respect to the number of samples. The sparse
method degrades more than the Riccati method with
respect to the number of variables.

For experimental validation on real-world
datasets, we used 14 cancer datasets pub-
licly available at the Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/). Table 2 shows
the datasets as well as the number of samples and
variables on each of them. We preprocessed the data
so that each variable is zero mean and unit variance
across the dataset. We performed 50 repetitions.
For each repetition, we used one third of the sam-
ples for training, one third for validation and the
remaining third for testing. We report the negative
log-likelihood on the testing set (after subtracting the
entropy measured on the testing set in order to make
it comparable to the Kullback-Leibler divergence).

Since regular sparseness promoting methods do not
scale to our setting of more than 20 thousands vari-
ables, we validate our method in two regimes. In the
first regime, for each of the 50 repetitions, we select
N = 200 variables uniformly at random and use the
sparse method of (Friedman et al., 2007). In the sec-
ond regime, we use all the variables in the dataset,
and use the method of (Mazumder & Hastie, 2012)

so that the biggest connected component has at most
N 0 = 500 variables (as prescribed in (Mazumder &
Hastie, 2012)). The technique of (Mazumder & Hastie,
2012) computes a graph from edges with an absolute
value of the covariance higher than the regularization
parameter ⇢ and then splits the graph into its con-
nected components. Since the whole sample covari-
ance matrix could not fit in memory, we computed it
in batches of rows (Mazumder & Hastie, 2012). Unfor-
tunately, in order to make the biggest connected com-
ponent of a reasonable size N 0 = 500 (as prescribed
in (Mazumder & Hastie, 2012)), a high value of ⇢ is
needed. In order to circumvent this problem, we used a
high value of ⇢ for splitting the graph into its connected
components, and allowed for low values of ⇢ for com-
puting the precision matrix for each component. For
our sparse Riccati method, we used soft-thresholding
of the Riccati solution with � = ⇢.

In Figure 2, we observe that our Riccati and sparse
Riccati methods perform better than the comparison
methods. Since the method of (Mazumder & Hastie,
2012) requires high regularization for producing rea-
sonably sized components, the performance of the
sparse method when using all the variables degrade
considerably when compared to 200 variables.

In Figure 3, we show the interaction between a set
of genes that were selected after applying our rule for
removing unimportant variables.

Finally, we show average runtimes in Table 3. In order
to make a fair comparison, the runtime includes the
time needed to produce the optimal precision matrix
from a given input dataset. This includes not only the
time to solve each optimization problem but also the
time to compute the covariance matrix (if needed).
Our Riccati method is considerably faster than the
sparse method.

6 Concluding Remarks

We can generalize our penalizer to one of the form
kA⌦k2F and investigate under which conditions, this
problem has a low-rank solution. Another extension
includes finding inverse covariance matrices that are
both sparse and low-rank. While in this paper we
show loss consistency, we could also analyze conditions
for which the recovered parameters approximate the
ground truth, similar to the work of (Rothman et al.,
2008; Ravikumar et al., 2011). Proving consistency of
sparse patterns is a challenging line of research, since
our low-rank estimators would not have enough de-
grees of freedom in order to accomodate for all possible
sparseness patterns. We conjecture that such results
might be possible by borrowing from the literature on
principal component analysis (Nadler, 2008).
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Abstract

We present a very general approach to learn-
ing the structure of causal models based on
d-separation constraints, obtained from any
given set of overlapping passive observational
or experimental data sets. The procedure al-
lows for both directed cycles (feedback loops)
and the presence of latent variables. Our ap-
proach is based on a logical representation of
causal pathways, which permits the integra-
tion of quite general background knowledge,
and inference is performed using a Boolean
satisfiability (SAT) solver. The procedure is
complete in that it exhausts the available in-
formation on whether any given edge can be
determined to be present or absent, and re-
turns “unknown” otherwise. Many existing
constraint-based causal discovery algorithms
can be seen as special cases, tailored to cir-
cumstances in which one or more restricting
assumptions apply. Simulations illustrate the
effect of these assumptions on discovery and
how the present algorithm scales.

1 INTRODUCTION

One of the main goals in many fields of science is to
identify the causal relations existing among some set
of variables of interest. Such causal knowledge may
be inferred both from experimental data (randomized
controlled trials) and passive observational measure-
ments. In general the information available from mul-
tiple such studies may need to be combined to ob-
tain an accurate picture of the underlying system. In
recent years, many approaches to this causal discov-
ery problem have been suggested (Spirtes et al., 1999;
Richardson and Spirtes, 1999; Schmidt and Murphy,
2009; Claassen and Heskes, 2010; Peters et al., 2010;
Triantafillou et al., 2010), building on the framework

of causal Bayes networks (Spirtes et al., 1993; Pearl,
2000). In this framework, causal relations among a set
of variables V are represented by a directed graph G
in which each variable is represented by a node in the
graph, and an arrow from node x to node y indicates
that x is a direct cause of y (with respect to V).

Although causal models based on directed graphs are
often restricted to be acyclic, causal feedback can be
represented by permitting directed cycles in G, i.e. di-
rected paths from a node back to itself. In addition,
unmeasured common causes of two or more nodes in
V are commonly represented by allowing bi-directed
arrows (↔) between any pair of confounded nodes.1

(If there are no such confounders, the set V is said to
be causally sufficient.) Thus, in the most general case
of cyclic causal structures with latent variables, any
pair of nodes x, y ∈ V, with x 6= y, can be connected
by any combination of the edges x → y, y → x, and
x↔ y (see Figure 1 for examples).

One of the key theoretical concepts in causal models
based on directed graphs is the notion of d-separation,
due to Geiger et al. (1990). This is a graphical sep-
aration criterion that provides the structural counter-
part to (conditional) independencies in the probabil-
ity distribution generated by the model. D-separation
is based on paths in the graph. Since a single pair
of nodes can be connected by multiple edges, in our
model space a path is defined as a sequence of consec-
utive edges in the graph, without any restrictions on
the types or orientations of the edges involved.

Definition 1 (D-separation) A path p is said to be
d-separated (or blocked) by a set of nodes C if and
only if (i) p contains a chain i → m → j or a fork
i← m→ j such that the middle node m is in C, or (ii)
p contains an inverted fork (or collider) i → m ← j

1In this representation a latent variable affecting more
than two observed variables is represented by two-way con-
founders (bi-directed edges) between all pairs of nodes cor-
responding to the affected observed variables.
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such that the middle node m is not in C and such that
no descendant of m is in C. A set C is said to d-
separate x from y if and only if C blocks every path
from x to y. (Pearl, 2000)

When applying Definition 1 to graphs with bi-directed
edges such as in Figure 1(b), the bidirected edge z ↔ w
can be viewed as a latent structure z ← lzw → w.

In acyclic models, such as causal Bayes networks, if
two nodes x and y are d-separated given a set C then
the corresponding random variables are statistically
independent when conditioning on C in the probabil-
ity distribution generated by the model. If there are
no statistical independencies in the distribution other
than those implied by d-separation applied to the un-
derlying graph, the distribution is said to be faithful
to the graph. Thus, under an assumption of faith-
fulness causal discovery procedures can use the out-
comes of statistical independence tests, applied to the
observed data, to infer d-separation and hence struc-
tural properties of the underlying graph. For example,
if in a set of four variables V = {x, y, z, w} it is found
that (i) x is unconditionally independent of y, (ii) x
is independent of w given z, (iii) y is independent of
w given z, and (iv) no other unconditional indepen-
dencies are found, then the well-known PC-algorithm
(Spirtes et al., 1993) will infer that the underlying
causal structure is the one in Figure 1(a).

While the correspondence between probabilistic inde-
pendence and d-separation is known to hold generally
for acyclic models (even when there are latent vari-
ables), the case is not as clear for cyclic models. The
correspondence is known to hold for linear causal re-
lations with Gaussian error terms, i.e. non-recursive
linear Gaussian structural equation models (Spirtes,
1995), and can be extended to models with correlated
error terms, which is one way to account for causally
insufficient sets of variables. A general characteriza-
tion of the parameterizations of cyclic models (with la-
tent variables), for which the correspondence between
d-separation and probabilistic independence holds, is
not known (Pearl and Dechter, 1996; Neal, 2000).

Following the standard approach of non-parametric
causal discovery algorithms, we use d-separation rela-
tions as the basic input to our procedure, but acknowl-
edge that in the cyclic case only the linear Gaussian
models are known to provide the appropriate corre-
spondence with statistical independence. We allow for
a set-up similar to the overlapping data sets approach
of the ION-procedure (Tillman et al., 2009) in that
we do not restrict ourselves to a single data set mea-
sured over some set of observed nodes, but can handle
d-separation relations that were obtained from differ-
ent (overlapping) sets Vi of nodes. Analogously to

x
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Figure 1: Example graphs (see text for details).

Hyttinen et al. (2012) we generalize the overlapping
data sets case to allow that the Vi can contain nodes
that are known to have been subject to a randomized
experiment. Nevertheless, the target of our discovery
procedure is the underlying causal graph G over the
set of nodes V =

⋃
i Vi, implying that G may contain

edges between nodes that are never measured together
in the same data set.

2 PROBLEM SETTING

We consider the space of cyclic causal models G over
the (jointly) causally insufficient set of nodes V =⋃
i Vi, where each Vi specifies the nodes present in

experiment Ei = (Ji,Ui). Ji and Ui form a partition
of Vi such that the nodes in Ji are randomized si-
multaneously and independently and the nodes in Ui

are passively observed (Ji can be empty to allow for
passive observational settings). We use the following
simplification of the d-separation criterion:

Definition 2 (D-separation) A path is d-connect-
ing with respect to a conditioning set C if every col-
lider c on the path is in C and no other nodes on the
path are in C, otherwise the path is d-separated (or
“blocked”).

Definition 2 is equivalent to Definition 1 when an edge
can be used multiple times in a path (Studený, 1998;
Koster, 2002). For example, the sequence of edges
x → z → w ← z ← y in the graph in Figure 1(a)
is d-connecting with respect to conditioning set C =
{w}. The extension of d-separation to experimental
settings is straightforward: a d-connecting path may
only contain a node x ∈ J if x /∈ C and x is a fork
(common cause) on the path or the source of the path.
We write x ⊥ y |C ||J (resp. x 6⊥ y |C ||J) to denote
that x is d-separated from (resp. d-connected to) y
given C in the experiment with intervention set J. We
assume we have a d-separation oracle that returns the
truth values of statements of the form ‘x ⊥ y |C ||Ji’
in the true graph G, for any pair of distinct nodes x, y
and set of nodes C that occur together in some Vi.

It is well known that even in the presence of random-
ized experiments the set of all d-separation relations
over the set of nodes in general underdetermines the
true causal structure even for much more restricted
model spaces than we consider here. So the discov-
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ery task is to determine for each pair of nodes in V
and for each edge type (←,→,↔) whether the edge is
present, absent or if its existence is unknown. In addi-
tion we determine possible indirect (ancestral) causal
relations: for each ordered pair of nodes (x, y), whether
a directed path x → · · · → y exists, does not exist or
if its existence is unknown.

3 SAT AND BACKBONES

Our algorithm for causal structure discovery is based
on computing the so-called backbone of a given for-
mula in propositional logic. We employ a Boolean sat-
isfiability (SAT) solver (Biere et al., 2009) to determine
the backbone, which can be directly interpreted as the
solution to the structure discovery task. This section
provides an overview on SAT and backbones.

Propositional formulas are built from Boolean vari-
ables by repeated application of the connectives ¬
(negation), ∨ (disjunction, logical OR), ∧ (conjunc-
tion, logical AND), ⇒ (implication) and ⇔ (equiva-
lence). Any propositional formula can be represented
in conjunctive normal form (CNF) using a standard
linear-size encoding (Tseitin, 1983). For a Boolean
variable X, there are two literals, X and ¬X. A clause
is a disjunction of literals; a CNF formula is a conjunc-
tion of clauses. A truth assignment is a function τ from
Boolean variables to {0, 1}. A clause C is satisfied by
τ if τ(X) = 1 for some literal X in C, or τ(X) = 0
for some literal ¬X in C. A CNF formula F is satisfi-
able if there is an assignment that satisfies all clauses
in F , and unsatisfiable otherwise. The NP-complete
Boolean satisfiability (SAT) problem asks whether a
given CNF formula F is satisfiable.

Implementations of decision procedures for SAT, so-
called SAT solvers, can in practice not only determine
satisfiability of CNF formulas, but also produce a sat-
isfying truth assignment for satisfiable formulas. The
most efficient SAT solvers are based on the complete
conflict-driven clause learning (CDCL) search algo-
rithm (Marques-Silva and Sakallah, 1999; Moskewicz
et al., 2001; Eén and Sörensson, 2004). Central to
CDCL is the ability to derive lemmas (in terms of new
CNF clauses) based on non-solutions detected during
search, which makes the search performed by CDCL
SAT solvers differ from standard depth-first backtrack-
ing search. In many cases, the state-of-the-art CDCL
SAT solvers can solve SAT instances consisting of mil-
lions of clauses and variables (Järvisalo et al., 2012).

If a Boolean variable X takes the same value in all
satisfying truth assignments of a given CNF formula
F , X is called a backbone variable of F ; the value X
is assigned to in all satisfying assignments is called
the polarity of X. The set of backbone variables (or

simply, the backbone) of a formula F can be computed
by a linear number of calls (in the number of variables
in F ) to a SAT solver: if exactly one of F ∧ X and
F ∧¬X is satisfiable, then X is in the backbone of F .

4 ENCODING D-SEPARATION

Figure 2 shows our propositional encoding for the d-
connection property. The encoding allows to repre-
sent both d-separation and d-connection relations as
constraints directly on the edges present or absent in
the underlying causal graph. In essence, the encoding
spells out Definition 2 (extended to experiments) by
expressing the conditions for paths being blocked or
unblocked.

In the encoding, Boolean variables [x→ y] and [x↔ y]
represent the underlying causal graph. For each pair of
distinct nodes x, y ∈ V, the Boolean variable [x → y]
(variable [x ↔ y], respectively) takes the value 1 if
and only if the edge x → y (edge x ↔ y, respec-
tively) is present in the graph.2 The Boolean vari-
able [x 6⊥ y |C ||J] is 1 if and only if x and y are
d-connected in the underlying graph when condition-
ing on C and intervening on J. To encode the dif-
ferent types of d-connecting paths of length l between
pairs of nodes x, y when conditioning on C and inter-

vening on J (Eqs. 1–7), Boolean variables [x
l

− · · · >
C,J

y],

[x
l

< · · · · · >
C,J

y], and [x
l

− · · ·−
C,J

y] are introduced, with the re-

spective arrowheads and edge-tails as indicated. In
general, d-connecting paths in a cyclic graph can have
infinite length, length of a path being the number of its
edges. However, as shown in Appendix B, only paths
of a maximum length lmax = 2|V| − 4 need to be con-
sidered. These Boolean variables are hence defined for
all paths (of the four types) of length l = 1, . . . , lmax

and for all pairs of nodes in V.

The constraint requiring that a specific d-connection
x 6⊥ y |C ||J is present is constructed by taking the
conjunction of the variable [x 6⊥ y |C ||J] and Equa-
tions 1–7. Similarly, the constraint requiring that a
specific d-separation x ⊥ y |C ||J is present is the con-
junction of ¬[x 6⊥ y |C ||J] and Equations 1–7.

From a causal perspective, for a d-connection
x 6⊥ y |C ||J the encoding splits the d-connecting paths
into four groups (Eq. 1): (i) paths that start with
an edge-tail at x and end with an arrowhead at y,
(ii) paths that start with an arrowhead at x and end
with an edge-tail at y, (iii) paths that start with an ar-
rowhead at x and end with an arrowhead at y, and (iv)

2We omit self-loops, i.e. edges from a node to itself, as
they do not affect the d-connectedness of a graph.

303



Encoding of d-connection between nodes x, y given conditioning set C and intervention set J.

[x 6⊥ y |C ||J] ⇔
lmax∨

l=1

(
[x

l
− · · · >
C,J

y] ∨ [y
l

− · · · >
C,J

x] ∨ [x
l

< · · · · · >
C,J

y] ∨ [x
l

− · · ·−
C,J

y]

)
(1)

Paths of length 1:
[x

1
− · · · >
C,J

y] ⇔
{

[x→ y] if y /∈ J
0 otherwise

(2)

[x
1

< · · · · · >
C,J

y] ⇔
{

[x↔ y] if x /∈ J and y /∈ J
0 otherwise

(3)

[x
1

− · · ·−
C,J

y] ⇔ 0 (4)

Paths of length l = 2, . . . , lmax:

[x
l

− · · · >
C,J

y] ⇔
∨

z/∈C

(
[x

1
− · · · >
C,J

z] ∧ [z
l−1
− · · · >
C,J

y]

)
∨
∨

z∈C

(
[x

1
− · · · >
C,J

z] ∧ [z
l−1

< · · · · · >
C,J

y]

)
(5)

[x
l

< · · · · · >
C,J

y] ⇔
∨

z/∈C

(
[z

1
− · · · >
C,J

x] ∧ [z
l−1
− · · · >
C,J

y]

)
∨
∨

z/∈C

(
[z

1
− · · · >
C,J

x] ∧ [z
l−1

< · · · · · >
C,J

y]

)
∨

∨

z/∈C

(
[x

1
< · · · · · >
C,J

z] ∧ [z
l−1
− · · · · >
C,J

y]

)
∨
∨

z∈C

(
[x

1
< · · · · · >
C,J

z] ∧ [z
l−1

< · · · · · >
C,J

y]

)
(6)

[x
l

− · · ·−
C,J

y] ⇔
∨

z/∈C

(
[x

1
− · · · >
C,J

z] ∧ [z
l−1
− · · ·−
C,J

y]

)
∨
∨

z∈C

(
[x

1
− · · · >
C,J

z] ∧ [y
l−1
− · · · >
C,J

z]

)
(7)

Figure 2: Encoding d-connection via paths between pairs of nodes.

paths that start with an edge-tail at x and end with
an edge-tail at y. The paths are built up recursively in
terms of length l (Eqs. 5, 6, and 7). By keeping track
of the path lengths we ensure that each path bases
out through Eqs. 2 and 3 on the actual edges in the
graph, whose presence is represented by Boolean vari-
ables [x→ y] and [x↔ y]. There are no paths of type
(iv) with length 1, as such a path must involve at least
one collider (in C) to have tails at both ends (hence
Eq. 4). The shortest valid case is of length l = 2 and
results from the second half of Eq. 7. By explicitly
keeping track of the terminal edge-marks in each path
variable, the encoding ensures that all colliders on a
d-connecting path are in the conditioning set C, and
all non-colliders are not in C. The base cases (Eqs. 2
and 3) ensure that there is no path with an edge into
a variable that is intervened on (into y ∈ J).

For each given d-separation relation x ⊥ y |C ||J (or
similarly each d-connection relation x 6⊥ y |C ||J), the
whole encoding, including Eqs. 1–7, is cubic in the
number |V| of nodes. Furthermore, it is important to
notice that our algorithm, as described next, does not
generate the constraints in Eqs. 1–7 for all possible
d-separation and d-connection relations at once. The
constraints for individual relations are generated only
on demand during the execution of the algorithm, in
many cases avoiding generating an exponential num-

ber of constraints needed to represent all possible d-
separation and d-connection relations.

The SAT-based approach to causal structure discovery
by Triantafillou et al. (2010) uses an encoding based
on partial ancestral graphs (PAGs), a particular form
of equivalence class. Their encoding does not suffice
for our purposes, since it is restricted to acyclic causal
structures in non-experimental settings, and given ex-
periments it is often possible to distinguish between
different graphs that for passive observational data be-
long to the same PAG.

5 ALGORITHM

The encoding of d-separation relations presented in the
previous section can be used for a variety of discovery
applications. For the purpose of illustration we will
present here one algorithm for a common discovery
setting. The extension to other settings is then easily
explained. Algorithm 1 iterates over three steps un-
til all d-separation relations are known: (1) finding a
set of d-separation/connection tests Tc (in order of in-
creasing conditioning set size) with currently unknown
result, and determining those relations Dc, (2) gener-
ating the additional constraints encoding the relations
in Dc (recall the encoding in Figure 2), and (3) com-
puting the backbone over the propositional formula
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Algorithm 1 SAT-based causal structure discovery

Initialize solution S for the edge variables [x → y], [x ↔ y]
of each pair of distinct nodes x, y ∈ V to status unknown.

Initialize ϕ to be the empty propositional formula.

For conditioning set size c from 0 to |V| − 2:

1: Determine d-separation/connection relations.

Find a set Tc of d-separation/connection tests with con-
ditioning set size c that are undetermined given S.
Determine the d-separation/connection relation for each
test in Tc, and let set Dc consist of these relations.

2: Refine the working formula ϕ.

For each x ⊥ y |C ||J in Dc:

Encode x ⊥ y |C ||J using equations 1-7:
ϕ := ϕ∧ Encode(x ⊥ y |C ||J).

For each x 6⊥ y |C ||J in Dc:

Encode x 6⊥ y |C ||J using equations 1-7:
ϕ := ϕ∧ Encode(x 6⊥ y |C ||J).

3: Incremental backbone computation with SAT solver

Compute B: the set of edge-variables [x → y], [x ↔ y]
in the backbone of ϕ.
For each edge variable e in B:

If e ∈ B with polarity 1, set status of e to present in S.
If e ∈ B with polarity 0, set status of e to absent in S.

Output S: the status of each edge.

consisting of the constraints generated so far.

In Step 1 we apply a pruning heuristic (described in
Appendix A) that guarantees that all unknown d-
separation relations are found, but remains computa-
tionally tractable. We use a d-separation oracle (see
Section 2) to determine the result of each test.

In Step 2, given a d-connection relation x 6⊥ y |C ||J,
the subroutine Encode returns the conjunction of
[x 6⊥ y |C ||J] and the formulas in Eqs. 1–7. Similarly,
given a d-separation relation x ⊥ y |C ||J, Encode re-
turns the conjunction of ¬[x 6⊥ y|C||J] and the for-
mulas in Eqs. 1–7. Note that for each combination of
C and J, Eqs. 2–7 need to the added only once into ϕ
(also guaranteed by our current implementation). This
is important in practice, so that the SAT solver is not
suffocated with many copies of the same constraints.

In Step 3, a SAT solver is used incrementally for de-
termining which of the edge-variables in the current
working formula ϕ are in the backbone of ϕ. The po-
larity of these backbone variables determines whether
the corresponding edges are present or absent.

Like other constraint based causal discovery algo-
rithms, Algorithm 1 considers d-separation relations
in order of the size of the conditioning set C. For
sparse graphs, this enables a rapid pruning of the con-
straint generation on the basis of the simplest tests.

But unlike other constraint based algorithms, Algo-
rithm 1 can explicitly include known d-connections,
rather than assuming that there is a d-connection
whenever no d-separation is found (see also Section 7).

Algorithm 1 is easily adjusted to consider an arbitrary
set of d-separation/connection relations as input, as
long as the set of nodes V is specified from the out-
set. If the set is small, one can just run step 2 and 3
to compute the backbone using all available relations,
otherwise one can run the full procedure, simply omit-
ting relations from Dc that are not available in the
set. It will terminate when all relations are encoded
or when no more are needed, as determined by step 1.

In Algorithm 1 we use the status on each edge as the
output. If other aspects of the graphs are of interest,
one can easily define other variables and compute the
backbone over them. In Section 6 we use this feature
to determine which ancestral relationships are known.

5.1 BACKGROUND KNOWLEDGE AND
MODEL SPACE ASSUMPTIONS

Although we have considered a very general model
space, restricting the procedure to smaller spaces is
simple. Focusing on just one data set rather than a
set of overlapping data sets, or only considering pas-
sive observational data and no experiments, requires
no adjustments of Algorithm 1. If one has reason to
believe that there are no unmeasured nodes, i.e. that
V is (jointly) causally sufficient, then setting

[x↔ y]⇔ 0 (8)

for all pairs of nodes in the encoding will enforce this
restriction. If one is only interested in acyclic causal
structures, then adding the constraint

¬[x 6⊥ y |∅ ||{x}] ∨ ¬[x 6⊥ y |∅ ||{y}] (9)

for each pair of nodes, together with the respective
path definitions (Eqs. 2–7), is sufficient. Eq. 9 disal-
lows cycles by enforcing that there cannot be a di-
rected path from x to y and a directed path from
y to x. Since the conditioning set in each of the d-
connection claims in Eq. 9 is empty, there cannot exist
any colliders in the d-connecting paths. The interven-
tion on x and y, respectively, in each of the claims
in Eq. 9 ensures that d-connections due to common
causes are excluded. Only directed paths are involved
in x 6⊥ y |∅ ||{x} and x 6⊥ y |∅ ||{y}. In Section 5.2 we
use this flexibility to generate the same causal infer-
ences as other d-separation based algorithms.

More generally, the encoding allows for including var-
ious types of background knowledge. One can enforce
that a particular edge is present or absent, that partic-
ular ancestral relations are maintained or disallowed,
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that specific paths (with, if needed, particular way-
points and of a specific length) are present or absent.
The type of knowledge that can be encoded is more
general than any other constraint based procedure we
are aware of, including the additions to the cSAT+ al-
gorithm by Borboudakis et al. (2011). One is in prin-
ciple only limited by what can be encoded in terms of
a Boolean constraint over the edge and path variables.
We think this could be of enormous utility to applica-
tions with significant domain knowledge or when qual-
itative causal relations are discovered by other means
(e.g. using the additive noise or non-Gaussian tech-
niques of Peters et al. (2010) and Hoyer et al. (2008)).

5.2 COMPLETENESS

For more restricted model spaces, graphical represen-
tations of the classes of d-separation-equivalent graphs
have been developed (e.g. partial ancestral graphs).
We do not have a similar representation for our more
general model space and it is unclear whether an eas-
ily interpretable representation is possible, since there
can be graphs that share the same d-separation rela-
tions, but differ in adjacencies, orientations and ances-
tral relationships. By only providing the status of each
edge as output of Algorithm 1, we follow Triantafillou
et al. (2010) who used this solution format in light of
the often (even computationally) unmanageable out-
put of the ION-algorithm (which does not consider
cyclic graphs). The downside is that this output is
not fully informative about the solution space. For ex-
ample, if d-separation relations were obtained from a
passive observation of the graph x→ y → z, then the
current output does not represent that x → y ← z is
not a solution. Instead, it would (among other things)
mark all edges of adjacent nodes as unknown, since
x← y ← z is also a solution. Nevertheless, it is trivial
to query our procedure about graphical aspects that
are not represented in the output. Since the complete
solution space is implicitly represented by the working
formula ϕ, the SAT-solver can easily determine that
x → y ← z is not a valid solution in this example.
Similarly, one can query the status of any other struc-
tural proposition by constructing a Boolean variable X
for it using the edge or path variables in the encoding,
and determining whether X is in the backbone of ϕ or
not. If it is, then polarity 1 indicates that X is true
for all graphs that satisfy ϕ, while polarity 0 indicates
that X is false for all graphs that satisfy ϕ. If X is not
in the backbone, then there is a graph G1 that satisfies
ϕ, for which X is true, and a graph G2 that satisfies
ϕ, but for which X is false. This is one, given the en-
coding perhaps trivial, sense in which our procedure
is complete for any propositional query given the d-
separation/connection relations (and any model space
restrictions) as input. We call this query-completeness.

A different type of completeness is used in the context
of other constraint based algorithms. Given the d-
separation tests that an algorithm performs, we say
that an algorithm is d-separation complete if all d-
separation relations over the set of nodes are known.
The PC-algorithm (for acyclic graphs over a causally
sufficient set of nodes), the FCI-algorithm (for acyclic
graphs over a causally insufficient set of nodes) and
the CCD-algorithm (for cyclic graphs over a causally
sufficient set of nodes) are all d-separation complete
for their model spaces, respectively (Spirtes et al.,
1993; Richardson, 1996; Spirtes et al., 1999). Rely-
ing on the model space assumptions, the algorithms
conduct just enough d-separation tests to determine
all d-separation relations of the graphs in the solution
space, even relations that the algorithms did not ex-
plicitly test. None of these algorithms are d-separation
complete when their model space assumptions are vi-
olated: Figure 1(b) gives a cyclic graph for which FCI
is not d-separation complete, since it does not test
whether x ⊥ y |{w, z}. The graph with latent con-
founders in Figure 3 is an example for which CCD is
not d-separation complete, because it does not deter-
mine the d-separation x1 ⊥ x5 |{x2, x3, x4}. PC does
not handle either graph. These limitations illustrate
that achieving d-separation completeness without per-
forming all tests is a non-trivial problem in the gen-
eral model space we consider (containing both graphs).
Once we consider overlapping data sets, there are d-
separation relations involving nodes that do not occur
together in any Vi. Sometimes these can be deter-
mined from the other d-separation relations, but of-
ten they remain undetermined even when all the d-
separation relations within each Vi are established.
For this setting we adjust the definition of d-separation
completeness to require that exactly those relations
that cannot be determined (in the sense just described)
are left unknown and all others are determined.

For cyclic models with latent variables in overlapping
experimental or observational data sets, Algorithm 1
is d-separation complete, and in general it will not
test all available d-separation relations. But in the
present implementation (of step 1) we resort to sim-
ple safe heuristics to avoid some redundant tests, and
otherwise apply brute force (see Appendix A). It is
an open challenge to further reduce the number of
tests performed while preserving d-separation com-
pleteness. We cannot employ a simple variant of the
efficient test schedules of FCI and CCD, as they se-
lect subsequent tests on the basis of a graphical rep-
resentation of the knowledge acquired so far that is
specific to their restricted model spaces. But given
those restrictions, we can adopt the test schedules:
Using FCI as basis, the ION-algorithm (which also
assumes acyclicity) is d-separation complete for pas-
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Figure 3: An (acyclic) graph with latents for which
the CCD-algorithm is not d-separation complete.

sively observed overlapping data sets (Tillman et al.,
2009). Similarly, if we assume acyclicity, we can use
instead of our heuristic the test schedule of FCI in
Algorithm 1 when analyzing overlapping experimental
data sets: run FCI on each individual data set (ex-
perimental or not) and input to Algorithm 1 the re-
sults of the tests that FCI considered on each individ-
ual data set (together with the acyclicity constraints
in (9) for the FCI model space). Algorithm 1 will then
combine the information across data sets and output
all information available on the status of each edge
in the true graph. The set of d-separation relations
tested by FCI is sufficient for d-separation complete-
ness for the Vi in that data set. Interventions do not
affect the d-separation completeness, since the manip-
ulated graph in any experiment still satisfies all model
space assumptions of FCI. (One could avoid some tests
by further book-keeping of the information about the
interventions, but for d-separation completeness it is
unnecessary.) Given FCI’s d-separation completeness
on each data set, the constraints generated by feed-
ing the test results to Algorithm 1 imply that all d-
separations relations that could be tested, are already
determined. Any d-separation relation still unknown
cannot be determined. By assuming acyclicity we thus
obtain d-separation completeness using the efficient
FCI schedule of tests for overlapping data sets with
experiments. As Algorithm 1 is also query-complete,
we have a general procedure for the approaches of La-
gani et al. (2012).

An analogous argument for cyclic graphs without la-
tent nodes, using the test schedule of CCD, can only
be made if we assume that the nodes in V are all ob-
served in all (possibly experimental) data sets. In the
overlapping setting, causal sufficiency can be violated
in the individual data sets and, as shown above, CCD
is not d-separation complete for such a model space.

6 SIMULATIONS

To determine the effectiveness of the proposed ap-
proach, we implemented Algorithm 1 and investigated
the properties of the method empirically. Our im-
plementation is based on the MiniSAT solver (Eén
and Sörensson, 2004, 2003). The code is available at
http://www.cs.helsinki.fi/group/neuroinf/nonparam/.

First, we investigated the extent to which our ap-
proach, and in particular the SAT solver used, is able
to solve the large problem instances generated by non-

trivial graphs. We generated random directed graphs
of size n = 5 . . . 12 nodes, in which each of the edges
(both directed and bidirected) was independently in-
cluded with probability 0.2. We then generated a
random set of 10 overlapping experiments, in each of
which each node was independently and with equal
probability chosen to be either intervened, passively
observed, or unobserved. Finally, we computed all ob-
servable d-separation/connection relations; these con-
stituted the input to our procedure.

Figure 4(a) gives, for each value of n, the median run-
time based on 100 random problem instances, for the
complete procedure (solid curve), and when only con-
sidering conditioning sets C with two or fewer elements
(dotted curve). Note that most instances involving a
relatively small number of nodes (on the order of 10 or
less) can be solved by the complete procedure in min-
utes, if not seconds. We emphasize that these are not
trivial problems: No other existing causal discovery
procedure can handle our model space (allowing both
latents and cycles), nor our very general experimental
setup (overlapping data sets including interventions).
At the same time, it is quite clear that, at least in its
current implementation, the method does not scale to
much larger numbers of variables. Scalability could
be achieved with a more efficient search for unknown
d-separations in Step 1 of the algorithm.

An effective way to reduce the run-time of the algo-
rithm is to limit the size of the conditioning sets con-
sidered (dotted line in Figure 4(a)). While this means
that completeness is not guaranteed, Figure 4(b) shows
that in most cases very little is lost in terms of identi-
fiability. We randomly sampled 100 problem instances
as above, except that we now fixed the number of
nodes to n = 8. The red solid curve shows the pro-
portion of true directed edges (i.e. x → y in the true
graph) which were identified as a direct edge (as op-
posed to unknown, since no errors are made). Simi-
larly, the red dashed curve shows the identification of
absences of direct edges, and the remaining curves in-
dicate the amount of bidirected edges and existence of
directed paths (ancestral relationships) identified. A
key observation is that tests of higher order (roughly
|C| ≥ 3) provide very little additional information over
those involving smaller conditioning sets.

Finally, we investigated the extent to which our very
general model space (allowing both cycles and latents)
is detrimental to identification when the true model is
more restricted. We generated a total of 300 random
problem instances using the same procedure as above,
each with n = 8 nodes, where the first 100 models were
restricted to being acyclic, the second 100 were re-
stricted to contain no latents (i.e. no edges of the form
x ↔ y in the true graph over V), and the remaining
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Figure 4: (a) Median run-time of the procedure as a
function of the total number of nodes in the model.
The dotted line gives the median run-time when re-
stricting to max |C| = 2. (b) Proportion of edges
(solid lines) and absences of edges (dashed lines) iden-
tified, as a function of max |C|. Directed edges are
shown in red, bidirected edges (confounders) in green,
and directed paths (ancestral relationships) in blue.

100 were both acyclic and contained no latents. Fig-
ure 5 shows the proportion of direct edges identified,
and the proportion of absences of direct edges identi-
fied, as a function of the assumptions used (assuming
an acyclic model, assuming no latents, assuming both,
or assuming neither). The general message is that very
little identifiability seems to be lost when assuming the
more general model spaces in this experimental setup.

7 DISCUSSION

By focusing exclusively on d-separation and d-connec-
tion relations obtained without errors we have so far
taken the approach used by other constraint-based al-
gorithms in the literature (PC, FCI, CCD, ION, IOD,
cSAT+ etc.) to separate the causal from the statistical
inference. As an important direction for future work,
we now briefly discuss integrating statistical inference.

In most realistic situations d-separation/connection
relations are determined by independence tests from
statistical data. Such tests, especially when performed
in large numbers, produce errors due to the finite
number of samples available and problems of multi-
ple testing. All other constraint-based causal discov-
ery algorithms face similar problems. In our case, the
errors can result in d-separation/connection relations
that are contradictory. Since the logical encoding is
simply unsatisfiable in such cases, no output is given.
But there are more interesting features of the encod-
ing and the algorithm that hold promise to be useful
with actual statistical data. First, since no definite an-
swer is required of a d-separation test, we can enforce
different p-value thresholds to detect independencies
and dependencies (see Tsamardinos et al. (2012)). If
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Figure 5: Proportion of directed edge presences and
absences identified, under various model space as-
sumptions, for acyclic true models without latents
(left), acyclic models with latents (center), and cyclic
models without latents (right).

a p-value of a test falls between the thresholds, the d-
separation relation can be treated as unknown, by just
not adding any constraints into the working formula
ϕ. This approach does not completely avoid conflicts,
but reduces their number and allows for at least some
more control than many extant algorithms are able to
offer. A second approach to dealing with statistical is-
sues would be to exploit extensions of SAT, especially
Boolean optimization in terms of maximum satisfiabil-
ity (MaxSAT) of propositional formulas (Biere et al.,
2009), where the task is to find a truth assignment that
satisfies the maximum number of CNF clauses. Hence
a MaxSAT solver could be used for discovering causal
models that entail a minimal number of contradictory
d-separation/connection relations in the input.

8 CONCLUSION

We presented a causal discovery procedure for a very
general model space: to our knowledge, it is currently
the only nonparametric causal discovery algorithm
that allows for a model space that includes graphs with
cycles and latent confounders (recall the discussion on
cycles and d-separation in Section 1). The algorithm
can be applied to overlapping data sets, whether they
are experimental or passive observational, and can in-
corporate a large variety of different background in-
formation if available. It does not depend on para-
metric restrictions such as linearity (Hyttinen et al.,
2012), and requires only the ability to test for d-
separation/connection relations.

SAT-based procedures have been previously pro-
posed for the more restricted space of acyclic causal
models (Triantafillou et al., 2010; Borboudakis and
Tsamardinos, 2012). However, ours is the first proce-
dure that is complete with respect to overlapping sur-
gical experiments, and additionally handles a model
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space that allows for cycles. In order to capture the
more general model space, we employ a novel logical
encoding of d-separation and d-connection relations.
The Boolean constraints for individual relations are
generated iteratively and only on demand during the
execution of our procedure, and an incremental SAT
solver is used for iteratively computing the backbone
of the Boolean constraints. Our procedure can also
be easily used for the more restricted model spaces
by introducing additional Boolean constraints. By
constraining the model space to causally sufficient or
acyclic causal structures we can perform the inferences
of the standard algorithms in the literature, such as
PC, FCI, ION, IOD, cSAT+ and CCD for moderately
sized graphs. The inferences made are complete in the
most general and in the more restricted settings.

A PRUNING HEURISTICS

In the (intermediary) solution S describing our cur-
rent knowledge some edges are present, some are ab-
sent and the presence of some edges is unknown. We
consider two graphs G1 and G2, such that they agree on
all the edges that are determined, but G1 omits all un-
determined edges, while G2 includes all undetermined
edges as present. As removing edges can only result
in more d-separation relations, a d-connection relation
present in G1 must be present in all solutions. Sim-
ilarly, a d-separation relation present in G2 must be
present in all possible solutions. Only the remaining
tests are possibly informative. This is a safe heuristic
that turns out to be computationally feasible, as for-
ward calculation of d-separation/connection relations
for a fully defined graph is fast for the model sizes we
are considering. In addition, we also omit tests with
conditioning sets that contain nodes that cannot be on
a d-connecting path between the nodes in question.

B LIMIT ON THE PATH LENGTH

Written solely in terms of edge variables, the right-
hand side of Eq. 1 is a large disjunction of d-connecting
paths up to length lmax for the relation on the left-
hand side. As a path of arbitrary length can be d-
connecting, lmax should be infinite to guarantee sound-
ness of the formulation. Here we show that only paths
of lengths up to a certain upper bound need to be
considered. The following lemma, proven at the end
of this appendix, is essential in showing this.

Lemma 1 If there exists a path that is d-connecting
with respect to x \⊥⊥y |C ||J and longer than 2|V|− |C∪
J ∪ {x, y}| − 1 edges, then there exists a shorter path
that is d-connecting with respect to the same relation.

Consider a path plong that is d-connecting for
x 6⊥ y |C ||J and longer than 2|V|−|C∪J∪{x, y}|−1.
By Lemma 1 there is a path pshort with at most length
2|V| − |C ∪ J ∪ {x, y}| − 1 edges that is d-connecting
with respect to the same relation. Now the expanded
version of the right hand side of Equation 1 has the
form: . . . ∨ [pshort] ∨ [plong] ∨ . . .. The only situation
where such a constraint may have a different value
than . . . ∨ [pshort] ∨ . . . is when plong exists and pshort
does not. This is impossible by the construction of
pshort using Lemma 1. We can thus ignore [plong] and
all paths longer than 2|V| − |C ∪ J ∪ {x, y}| − 1. We
can set lmax = 2|V| − 4, since if C = ∅, then paths
have at most length |V| − 1.

Proof of Lemma 1 The following six rules always
give a shorter d-connecting path with respect to the
same relation. The deleted part is underlined on the
left. Circles indicate arrowhead or tail.

x◦ · · · ◦x◦ · · · ◦y ⇒ x◦ · · · ◦y (10)

x◦ · · · ◦y◦ · · · ◦y ⇒ x◦ · · · ◦y (11)

· · · >z< · · · >z< · · · ⇒ · · · >z< · · · (12)

· · · >z− · · · ◦z− · · · ⇒ · · · >z− · · · (13)

· · · −z◦ · · · −z< · · · ⇒ · · ·−z< · · · (14)

· · · −z◦ · · · ◦z− · · · ⇒ · · ·−z− · · · (15)

The rules imply that if a middle node z appears three
times on a d-connecting path, the path will necessarily
have at least one of the forms on the left in (12-15). (A
path can never be d-connecting if the same node ap-
pears both as a collider and a non-collider somewhere
on the path.) Thus a node can appear at most two
times in paths that cannot be shortened.

First, consider the case with no colliders on the path.
The only situation where a d-connecting path can-
not be shortened and a node appears twice, occurs
when the path has the form · · · >z− · · ·−z< · · · . This path
cannot be d-connecting without a collider between
the instances of z. Thus, without colliders a path
that cannot be shortened has at most |V| nodes and
thus length |V| − 1. Second, if the path cannot be
shortened, each node in C ∪ J ∪ {x, y} can appear
at most once due to (10-15). The remaining nodes
can appear at most twice. This makes a total of
2|V| − |C ∪ J ∪ {x, y}| nodes. Hence the length of
the path is at most 2|V| − |C ∪ J ∪ {x, y}| − 1. �
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Abstract

A mixture of Gaussians fit to a single curved
or heavy-tailed cluster will report that the
data contains many clusters. To produce
more appropriate clusterings, we introduce
a model which warps a latent mixture of
Gaussians to produce nonparametric cluster
shapes. The possibly low-dimensional latent
mixture model allows us to summarize the
properties of the high-dimensional clusters
(or density manifolds) describing the data.
The number of manifolds, as well as the shape
and dimension of each manifold is automat-
ically inferred. We derive a simple inference
scheme for this model which analytically inte-
grates out both the mixture parameters and
the warping function. We show that our
model is effective for density estimation, per-
forms better than infinite Gaussian mixture
models at recovering the true number of clus-
ters, and produces interpretable summaries
of high-dimensional datasets.

1 Introduction

Probabilistic mixture models are often used for cluster-
ing. However, if the mixture components are paramet-
ric (e.g. Gaussian), then the clustering obtained can
be heavily dependent on how well each actual clus-
ter can be modeled by a Gaussian. For example, a
heavy tailed or curved cluster may need many compo-
nents to model it. Thus, although mixture models are
widely used for probabilistic clustering, their assump-
tions are generally inappropriate if the primary goal
is to discover clusters in data. Dirichlet process mix-
ture models can alleviate the problem of an unknown
number of clusters, but this does not address the prob-
lem that real clusters may not be well matched by any
parametric density.

→

Latent space Observed space

Figure 1: A sample from the iWMM prior. Left:
In the latent space, a mixture distribution is sampled
from a Dirichlet process mixture of Gaussians. Right:
The latent mixture is smoothly warped to produce
non-Gaussian manifolds in the observed space.

In this paper, we propose a nonparametric Bayesian
model that can find nonlinearly separable clusters with
complex shapes. The proposed model assumes that
each observation has coordinates in a latent space, and
is generated by warping the latent coordinates via a
nonlinear function from the latent space to the ob-
served space. By this warping, complex shapes in the
observed space can be modeled by simpler shapes in
the latent space. In the latent space, we assume an
infinite Gaussian mixture model [1], which allows us
to automatically infer the number of clusters. For the
prior on the nonlinear mapping function, we use Gaus-
sian processes [2], which enable us to flexibly infer the
nonlinear warping function from the data. We call
the proposed model the infinite warped mixture model
(iWMM). Figure 1 shows a set of manifolds and data-
points sampled from the prior defined by this model.

To our knowledge this is the first probabilistic gener-
ative model for clustering with flexible nonparametric
component densities. Since the proposed model is gen-
erative, it can be used for density estimation as well as
clustering. It can also be extended to handle missing
data, integrate with other probabilistic models, and
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use other families of distributions for the latent com-
ponents.

We derive an inference procedure for the iWMM based
on Markov chain Monte Carlo (MCMC). In partic-
ular, we sample the cluster assignments using Gibbs
sampling, sample the latent coordinates using hybrid
Monte Carlo, and analytically integrate out both the
mixture parameters (weights, means and covariance
matrices), and the nonlinear warping function.

2 Gaussian Process Latent Variable
Model

In this section, we give a brief introduction to the
Gaussian process latent variable model (GPLVM) [3],
which can be viewed as a special case of the iWMM.
The GPLVM is a probabilistic model of nonlinear man-
ifolds. While not typically thought of as a density
model, the GPLVM does in fact define a posterior den-
sity over observations [4]. It does this by smoothly
warping a single, isotropic Gaussian density in the la-
tent space into a more complicated distribution in the
observed space.

Suppose that we have a set of observations Y =
(y1, · · · ,yN )>, where yn ∈ RD, and they are as-
sociated with a set of latent coordinates X =
(x1, · · · ,xN )>, where xn ∈ RQ. The GPLVM assumes
that observations are generated by mapping the latent
coordinates through a set of smooth functions, over
which Gaussian process priors are placed. Under the
GPLVM, the probability of observations given the la-
tent coordinates, integrating out the mapping func-
tions, is

p(Y|X, θ) = (2π)− DN
2 |K|− D

2 exp

(
−1

2
tr(Y>K−1Y)

)
,

(1)

where K is the N × N covariance matrix defined by
the kernel function k(xn,xm), and θ is the kernel hy-
perparameter vector. In this paper, we use an RBF
kernel with an additive noise term:

k(xn,xm) = α exp

(
− 1

2`2
(xn − xm)>(xn − xm)

)

+ δnmβ−1. (2)

This likelihood is simply the product of D indepen-
dent Gaussian process likelihoods, one for each output
dimension.

Typically, the GPLVM is used for dimensionality re-
duction or visualization, and the latent coordinates are
determined by maximizing the posterior probability of
the latent coordinates, while integrating out the warp-
ing function. In that setting, the Gaussian prior den-
sity on x is essentially a regularizer which keeps the

latent coordinates from spreading arbitrarily far apart.
In contrast, we instead integrate out the latent coor-
dinates as well as the warping function, and place a
more flexible parameterization on p(x) than a single
isotropic Gaussian.

Just as the GPLVM can be viewed as a manifold learn-
ing algorithm, the iWMM can be viewed as learning a
set of manifolds, one for each cluster.

3 Infinite Warped Mixture Model

In this section, we define in detail the infinite warped
mixture model (iWMM). In the same way as the
GPLVM, the iWMM assumes a set of latent coordi-
nates and a smooth, nonlinear mapping from the latent
space to the observed space. In addition, the iWMM
assumes that the latent coordinates are generated from
a Dirichlet process mixture model. In particular, we
use the following infinite Gaussian mixture model,

p(x|{λc, µc,Rc}) =
∞∑

c=1

λcN (x|µc,R
−1
c ), (3)

where λc, µc and Rc is the mixture weight, mean, and
precision matrix of the cth mixture component. We
place Gaussian-Wishart priors on the Gaussian param-
eters {µc,Rc},

p(µc,Rc) = N (µc|u, (rRc)
−1)W(Rc|S−1, ν), (4)

where u is the mean of µc, r is the relative precision
of µc, S−1 is the scale matrix for Rc, and ν is the
number of degrees of freedom for Rc. The Wishart
distribution is defined as follows:

W(R|S−1, ν) =
1

G
|R| ν−Q−1

2 exp

(
−1

2
tr(SR)

)
, (5)

where G is the normalizing constant. Because we use
conjugate Gaussian-Wishart priors for the parameters
of the Gaussian mixture components, we can analyti-
cally integrate out those parameters, given the assign-
ments of points to components. Let zn be the latent as-
signment of the nth point. The probability of latent co-
ordinates X given latent assignments Z = (z1, · · · , zN )
is obtained by integrating out the Gaussian parame-
ters {µc,Rc} as follows:

p(X|Z,S, ν, r) =
∞∏

c=1

π− NcQ
2

rQ/2|S|ν/2

r
Q/2
c |Sc|νc/2

×
Q∏

q=1

Γ(νc+1−q
2 )

Γ(ν+1−q
2 )

, (6)

where Nc is the number of data points assigned to the
cth component, Γ(·) is Gamma function, and

rc = r + Nc, νc = ν + Nc,
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uc =
ru +

∑
n:zn=c xn

r + Nc
,

Sc = S +
∑

n:zn=c

xnx>
n + ruu> − rcucu

>
c , (7)

are the posterior Gaussian-Wishart parameters of the
cth component. We use a Dirichlet process with con-
centration parameter η for infinite mixture model-
ing [5] in the latent space. Then, the probability of
Z is given as follows:

p(Z|η) =
ηC

∏C
c=1(Nc − 1)!

η(η + 1) · · · (η + N − 1)
, (8)

where C is the number of components for which Nc >
0. The joint distribution is given by

p(Y,X,Z|θ, S, ν,u, r, η)

= p(Y|X,θ)p(X|Z, S, ν,u, r)p(Z|η), (9)

where factors in the right hand side can be calculated
by (1), (6) and (8), respectively.

In summary, the infinite warped mixture model gen-
erates observations Y according to the following gen-
erative process:

1. Draw mixture weights λ ∼ GEM(η)

2. For each component c = 1, · · · ,∞
(a) Draw precision Rc ∼ W(S−1, ν)

(b) Draw mean µc ∼ N (u, (rRc)
−1)

3. For each observed dimension d = 1, · · · , D

(a) Draw function fd(x) ∼ GP(m(x), k(x,x′))

4. For each observation n = 1, · · · , N

(a) Draw latent assignment zn ∼ Mult(λ)

(b) Draw latent coordinates xn ∼ N (µzn ,R−1
zn

)

(c) For each observed dimension d = 1, · · · , D

i. Draw feature ynd ∼ N (fd(xn), β−1)

Here, GEM(η) is the stick-breaking process [6] that
generates mixture weights for a Dirichlet process with
parameter η, Mult(λ) represents a multinomial distri-
bution with parameter λ, m(x) is the mean function
of the Gaussian process, and x,x′ ∈ RQ. Figure 2
shows the graphical model representation of the pro-
posed model. Here, we assume a Gaussian for the
mixture component, although we could in principle use
other distributions such as Student’s t-distribution or
the Laplace distribution.

The iWMM can be seen as a generalization of either
the GPLVM or the infinite Gaussian mixture model

uS

λ

µ

η z x y

R f

kmrυ

∞ D

N

Figure 2: A graphical model representation of the infi-
nite warped mixture model, where the shaded and un-
shaded nodes indicate observed and latent variables,
respectively, and plates indicate repetition.

(iGMM). To be precise, the iWMM with a single fixed
spherical Gaussian density on the latent coordinates
corresponds to the GPLVM, while the iWMM with
fixed direct mapping function fd(x) = xd and Q = D
corresponds to the iGMM.

The iWMM offers attractive properties that do not ex-
ist in other probabilistic models; principally, the abil-
ity to model clusters with nonparametric densities, and
to infer a separate dimension for manifold.

4 Inference

We infer the posterior distribution of the latent co-
ordinates X and cluster assignments Z using Markov
chain Monte Carlo (MCMC). In particular, we alter-
nate collapsed Gibbs sampling of Z, and hybrid Monte
Carlo sampling of X. Given X, we can efficiently sam-
ple Z using collapsed Gibbs sampling, integrating out
the mixture parameters. Given Z, we can calculate the
gradient of the unnormalized posterior distribution of
X, integrating over warping functions. This gradient
allows us to sample X using hybrid Monte Carlo.

First, we explain collapsed Gibbs sampling for Z.
Given a sample of X, p(Z|X,S, ν,u, r, η) does not de-
pend on Y. This lets resample cluster assignments,
integrating out the iGMM likelihood in close form.
Given the current state of all but one latent component
zn, a new value for zn is sampled from the following
probability:

p(zn = c|X,Z\n, S, ν,u, r, η)

∝
{

Nc\n · p(xn|Xc\n, S, ν,u, r) existing components

η · p(xn|S, ν,u, r) a new component

(10)

where Xc = {xn|zn = c} is the set of latent coordi-
nates assigned to the cth component, and \n represents
the value or set when excluding the nth data point. We

313



can analytically calculate p(xn|Xc\n, S, ν,u, r) as fol-
lows:

p(xn|Xc\n,S, ν,u, r)

= π−
Nc\nQ

2

r
Q/2
c\n |Sc\n|νc\n/2

r
′Q/2
c\n |S′

c\n|ν′
c\n

/2

Q∏

d=1

Γ(
ν′

c\n+1−d

2 )

Γ(
νc\n+1−d

2 )
, (11)

where r′
c, ν′

c, u′
c and S′

c represent the posterior
Gaussian-Wishart parameters of the cth component
when the nth data point is assigned to the cth com-
ponent. We can efficiently calculate the determinant
by using the rank one Cholesky update. In the same
way, we can analytically calculate the likelihood for a
new component p(xn|S, ν,u, r).

Hybrid Monte Carlo (HMC) sampling of X from pos-
terior p(X|Z,Y, θ, S, ν,u, r) requires computing the
gradient of the log of the unnormalized posterior
log p(Y|X, θ) + log p(X|Z, S, ν,u, r). The first term
of the gradient can be calculated by

∂ log p(Y|X, θ)

∂K
= −1

2
DK−1 +

1

2
K−1YYT K−1,

(12)

and

∂k(xn,xm)

∂xn

= − α

`2
exp

(
− 1

2`2
(xn − xm)>(xn − xm)

)
(xn − xm),

(13)

using the chain rule. The second term can be calcu-
lated as follows:

∂ log p(X|Z, S, ν,u, r)

∂xn
= −νznS−1

zn
(xn − uzn). (14)

We also infer kernel hyperparameters θ = {α, β, `}
via HMC, using the gradient of the log unnormalized
posterior with respect to the kernel hyperparameters.
The complexity of each iteration of HMC is dominated
by the O(N3) computation of K−1 1.

In summary, we obtain samples from the posterior
p(X,Z|Y, θ,S, ν,u, r, η) by iterating the following pro-
cedures:

1. For each observation n = 1, · · · , N , sample the
component assignment zn by collapsed Gibbs
sampling (10).

2. Sample latent coordinates X and kernel parame-
ters θ using hybrid Monte Carlo.

1This complexity could be improved by making use of
an inducing point approximation such as [7, 8]

4.1 Posterior Predictive Density

In the GPLVM, the predictive density of at test point
y? is usually computed by finding the point x? which is
most likely to be mapped to y?, then using the density
of p(x?) and the Jacobian of the warping at that point
to approximately compute the density at y?. When
inference is done by simply optimizing the location
of the latent points, this estimation method simply
requires solving a single optimization for each y?.

For our model, we use approximate integration to esti-
mate p(y?). This is done for two reasons: First, multi-
ple latent points (possibly from different clusters) can
map to the same observed point, meaning the standard
method can underestimate p(y?). Second, because we
do not optimize the latent coordinates but rather sam-
ple them, we would need to perform optimizations for
each p(y?) separately for each sample. Our method
gives estimates for all p(y?) at once, but may not be
accurate in very high dimensions.

The posterior density in the observed space given the
training data is simply:

p(y?|Y)

=

∫∫
p(y?,x?,X|Y)dx?dX

=

∫∫
p(y?|x?,X,Y)p(x?|X,Y)p(X|Y)dx?dX.

(15)

We approximate p(X|Y) using the samples from the
Gibbs and hybrid Monte Carlo samplers. We approx-
imate p(x?|X,Y) by sampling points from the latent
mixture and warping them, using the following proce-
dure:

1. Draw latent assignment
z? ∼ Mult( N1

N+η , · · · , NC

N+η , η
N+η )

2. Draw precision matrix
R? ∼ W(S−1

z? , νz?)

3. Draw mean
µ? ∼ N (uz? , (rz?R?)−1)

4. Draw latent coordinates
x? ∼ N (µ?,R?−1)

When a new component C + 1 is assigned to z?, the
prior Gaussian-Wishart distribution is used for sam-
pling in steps 2 and 3. The first factor of (15) can be
calculated by

p(y?|x?,X,Y)

= N (k?>K−1Y, k(x?,x?) − k?>K−1k?), (16)
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where k? = (k(x?,x1), · · · , k(x?,xN ))>. Each step
of this procedure is exact. Since the observations y?

are conditionally normally distributed, each one adds
a smooth local contribution to the empirical Monte
Carlo estimate of the posterior density, as opposed to
a point mass. This procedure was used to generate the
plots of posterior density in Figures 1, 4, and 6.

5 Related work

Latent Variable Models The GPLVM is effective
as a nonlinear latent variable model in a wide variety
of applications [3, 9, 10]. The latent positions X in the
GPLVM are typically obtained by maximum a poste-
riori estimation or variational Bayesian inference [11],
placing a single fixed spherical Gaussian prior on x. A
prior which penalizes a high-dimensional latent space
is introduced by [12], in which the latent variables
and their intrinsic dimensionality are simultaneously
optimized. The iWMM can also infer the intrinsic di-
mensionality of each manifolds: inferring the Gaussian
covariance for each latent cluster allows the variance
along irrelevant dimensions to become small. Because
each latent cluster has a different set of parameters,
the effective dimension of each cluster can vary, allow-
ing manifolds of different dimension in the observed
space. This ability is demonstrated in Figure 4 (c).

The iWMM can also be viewed as a generalization of
the mixture of probabilistic principle component ana-
lyzers [13], or mixture of factor analyzers [14], where
the linear mapping of the mixtures is generalized to a
nonlinear mapping by Gaussian processes, and number
of components is infinite.

Clustering Methods There exist non-probabilistic
clustering methods which can find clusters with com-
plex shapes, such as spectral clustering [15] and non-
linear manifold clustering [16, 17]. Spectral clustering
finds clusters by first forming a similarity graph, then
finding a low-dimensional latent representation using
the graph, and finally, clustering the latent coordinates
via k-means. The performance of spectral clustering
depends on parameters which are usually set manu-
ally, such as the number of clusters, the number of
neighbors, and the variance parameter used for con-
structing the similarity graph. In contrast, the iWMM
infers such parameters automatically. One of the main
advantages of the iWMM over these methods is that
there is no need to construct a similarity graph.

The kernel Gaussian mixture model [18] can also find
non-Gaussian shaped clusters. This model estimates
a GMM in the implicit high-dimensional feature space
defined by the kernel mapping of the observed space.
However, the kernel GMM uses a fixed nonlinear map-

Figure 3: A sample from the 2-dimensional latent
space when modeling a series of 32x32 face images.
Our model correctly discovers that the data consists
of two separate manifolds, both approximately one-
dimensional, which share the same head-turning struc-
ture.

ping function, with no guarantee that the latent points
will be well-modeled by a GMM. In contrast, the
iWMM infers the mapping function such that the la-
tent co-ordinates will be well-modeled by a GMM.

For one-dimensional data, [19] introduce a nonpara-
metric model of unimodal clusters, where each clus-
ter’s density function decreases away from its mode.

6 Experimental results

Clustering Faces We first examined our model’s
ability to model images without pre-processing. We
constructed a dataset consisting of 50 greyscale 32x32
pixel images of two individuals from the UMIST faces
dataset [20]. Both series of images capture a per-
son turning his head to the right. Figure 3 shows a
sample from the posterior over the latent coordinates
and density model. The model has recovered three
relevant, interpretable features of the dataset. First,
that there are two distinct faces. Second, that each
set of images lies approximately along a smooth one-
dimensional manifold. Third, that the two manifolds
share roughly the same structure: the front-facing im-
ages of both individuals lie close to one another, as do
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Observed space

↑ ↑ ↑ ↑

Latent space
(a) 2-curve (b) 3-semi (c) 2-circle (d) Pinwheel

Figure 4: Top row: The observed, unlabeled data points, and the clusters inferred by the iWMM. Bottom row:
Latent coordinates and Gaussian components, shown for a single sample from the posterior. Each point in the
latent space corresponds to a point in the observed space. This figure is best viewed in color.

the side-facing images.

6.1 Synthetic Datasets

Next, we demonstrate the proposed model on the four
synthetic datasets shown in Figure 4. None of these
four datasets can be appropriately clustered by Gaus-
sian mixture models (GMM). For example, consider
the 2-curve data shown in Figure 4 (a), where 100
data points lie in one of two curved lines in a two-
dimensional observed space. A GMM with two com-
ponents cannot separate the two curved lines, while a
GMM with many components could separate the two
lines only by breaking each line into many clusters. In
contrast, in the iWMM, the two non-Gaussian-shaped
clusters in the observed space were represented by two
Gaussian-shaped clusters in the latent space, as shown
at the bottom row of Figure 4 (a). The iWMM sepa-
rated the two curved lines by nonlinearly warping two
Gaussians from the latent space to the observed space.

Figure 4 (c) shows an interesting manifold learning
challenge: a dataset consisting of two circles. The
outer circle is modeled in the latent space by a Gaus-
sian with effectively one degree of freedom. This linear
topology fits the outer circle in the observed space by
bending the two ends until they overlap. In contrast,

the sampler fails to discover the 1D topology of the
inner circle, modeling it with a 2D manifold instead.
This example demonstrates that each cluster manifold
in the iWMM can have a different effective dimension.

6.2 Mixing

An interesting side-effect of learning the number of la-
tent clusters is that this added flexibility can help the
sampler escape local minima, helping the sampler to
mix properly. Figure 5 shows the samples of the latent
coordinates and clusters of the iWMM over time, when
modeling the 2-curve data. 5(a) shows the latent coor-
dinates initialized at the observed coordinates, start-
ing with one latent component. At the 500th iteration
5(b), each curved line is modeled by two components.
At the 1800th iteration 5(c), the left curved line is
modeled by a single component. At the 3000th iter-
ation 5(d), the right curved line is also modeled by
a single component, and the dataset is appropriately
clustered. This configuration was relatively stable, and
a similar state was found at the 5000th iteration.

6.3 Density Estimation

Figure 6 (a) shows the posterior density in the ob-
served space inferred by the iWMM on the 2-curve
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(a) 1 (b) 500 (c) 1800 (d) 3000

Figure 5: The inferred infinite GMMs over iterations in the two-dimensional latent space with the iWMM using
the 2-curve data. Labels indicate the number of iterations of the sampler, and the color of each point represents
its ordering in the observed coordinates.

(a) iWMM (b) iWMM (C = 1)

Figure 6: The posterior density in the observed space
with the 2-curve data inferred by the iWMM (a), and
that inferred by the iWMM with one component (b).

data, computed using 1000 samples from the Markov
chain. The two separate manifolds of high density im-
plied by the two curved lines was recovered by the
iWMM. Note also that the density along the manifold
varies with the density of data shown in Figure 4 (a).
This result can be compared to a special case of our
model, which uses only a single Gaussian to model the
latent coordinates instead of an infinite GMM. Fig-
ure 6 (b) shows that the result of the iWMM with
C = 1, where posterior is forced to place significant
density connecting the two clusters. Figure 6 (b) shows
that the single-cluster variant of the iWMM posterior
is forced to place significant density connecting the two
clusters.

6.4 Visualization

Next, we briefly investigate the potential of the iWMM
for visualization. Figure 7 (a) shows the latent coor-
dinates obtained by averaging over 1000 samples from
the posterior of the iWMM. Because rotating the la-
tent coordinates does not change their probability, av-
eraging may not be an adequate way to summarize
the posterior. However, we show this result in order to

show the characteristics of latent coordinates obtained
by the iWMM. The estimated latent coordinates are
clearly separated, and they form two straight lines.
This result indicates that in some cases, the iWMM
can recover the topology of the data before it has been
warped into a manifold. For comparison, Figure 7 (b)
shows the latent coordinates estimated by the iWMM
when forced to use a single cluster: the latent coordi-
nates lie in two sections of a single straight line. Fig-
ures 7 (c) and (d) show the latent coordinates esti-
mated by the GPLVM when optimizing or integrating
out the latent coordinates, respectively. Recall that
the iWMM (C = 1) is a more flexible model than the
GPLVM, since the GPLVM enforces a spherical covari-
ance in the latent space. These methods did not unfold
the two curved lines, since the effective dimension of
their latent representation is fixed beforehand. In con-
trast, the iWMM effectively formed a low-dimensional
representation in the latent space.

Regardless of the dimension of the latent space, the
iWMM will tend to model each cluster with as low-
dimensional a Gaussian as possible. This is because,
if the data in a cluster can be made to lie in a low-
dimensional plane, a narrowly-shaped Gaussian will
assign the latent coordinates much higher likelihood
than a spherical Gaussian.

6.5 Clustering Performance

We more formally evaluated the density estimation
and clustering performance of the proposed model us-
ing four real datasets: iris, glass, wine and vowel, ob-
tained from LIBSVM multi-class datasets [21], in ad-
dition to the four synthetic datasets shown above: 2-
curve, 3-semi, 2-circle and Pinwheel [22]. The statis-
tics of these datasets are summarized in Table 1. In
each experiment, we show the results of 20-fold cross-
validation. Results in bold are not significantly differ-
ent from the best performing method in each column
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(a) iWMM (b) iWMM (C = 1) (c) GPLVM (d) BGPLVM

Figure 7: The estimated latent coordinates of the 2-curve data by (a) iWMM, (b) iWMM (C = 1), (c) GPLVM,
and (d) Bayesian GPLVM.

Table 1: The statistics of datasets used for evaluation.
2-curve 3-semi 2-circle Pinwheel Iris Glass Wine Vowel

number of samples: N 100 300 100 250 150 214 178 528
observed dimensionality: D 2 2 2 2 4 9 13 10

number of clusters: C 2 3 2 5 3 7 3 11

Table 2: Average Rand index for evaluating clustering performance.
2-curve 3-semi 2-circle Pinwheel Iris Glass Wine Vowel

iGMM 0.52 0.79 0.83 0.81 0.78 0.60 0.72 0.76
iWMM(Q=2) 0.86 0.99 0.89 0.94 0.81 0.65 0.65 0.50
iWMM(Q=D) 0.86 0.99 0.89 0.94 0.77 0.62 0.77 0.76

according to a paired t-test.

Table 2 compares the clustering performance of the
iWMM with the iGMM, quantified by the Rand in-
dex [23], which measures the correspondence between
inferred clusters and true clusters. The iGMM is an-
other probabilistic generative model commonly used
for clustering, which can be seen as a special case of the
iWMM in which the Gaussian clusters are not warped.
These experiments demonstrate the extent to which
nonparametric cluster shapes allow a mixture model
to recover more meaningful clusters.

Table 3 lists average test log likelihood, compar-
ing the proposed models with kernel density estima-
tion (KDE), and the infinite Gaussian mixture model
(iGMM). In KDE, the kernel width is estimated by
maximizing the leave-one-out log densities. Since the
manifold on which the observed data lies can be at
most D-dimensional, we set the latent dimension Q
equal to the observed dimension D in iWMMs. We
also include the Q = 2 case in an attempt to char-
acterize how much modeling power is lost by forcing
the latent representation to be visualizable. The pro-
posed models achieved high test log likelihoods com-
pared with the KDE and iGMM.

6.6 Source code

Code to reproduce all the above experiments is avail-
able at github.com/duvenaud/warped-mixtures.

7 Future work

The Dirichlet process mixture of Gaussians in the la-
tent space of our model could easily be replaced by
a more sophisticated density model, such as a hier-
archical Dirichlet process [24], or a Dirichlet diffusion
tree [25]. Another straightforward extension of our
model would be making inference more scalable by us-
ing sparse Gaussian processes [7, 8] or more advanced
hybrid Monte Carlo methods [26]. An interesting but
more complex extension of the iWMM would be a
semi-supervised version of the model. The iWMM
could allow label propagation along regions of high
density in the latent space, even if those regions were
stretched along low-dimensional manifolds in the ob-
served space. Another natural extension would be to
allow a separate warping for each cluster, which would
also improve inference speed.
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Table 3: Average test log likelihood for evaluating density estimation performance.
2-curve 3-semi 2-circle Pinwheel Iris Glass Wine Vowel

KDE −2.47 −0.38 −1.92 −1.47 −1.87 1.26 −2.73 6.06
iGMM −3.28 −2.26 −2.21 −2.12 −1.91 3.00 −1.87 −0.67
iWMM(Q=2) −0.90 −0.18 −1.02 −0.79 −1.88 5.76 −1.96 5.91
iWMM(Q=D) −0.90 −0.18 −1.02 −0.79 −1.71 5.70 −3.14 −0.35

8 Conclusion

In this paper, we introduced a simple generative model
of non-Gaussian density manifolds which can infer
nonlinearly separable clusters, low-dimensional repre-
sentations of varying dimension per cluster, and den-
sity estimates which smoothly follow data contours.
We then introduced an efficient sampler for this model
which integrates out both the cluster parameters and
the warping function exactly. We further demon-
strated that allowing non-parametric cluster shapes
improves clustering performance over the Dirichlet
process Mixture of Gaussians.

Many methods have been proposed which can per-
form some combination of clustering, manifold learn-
ing, density estimation and visualization. We demon-
strated that a simple but flexible probabilistic genera-
tive model can perform well at all these tasks.
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Abstract

We extend the recently introduced theory
of Lovász Bregman (LB) divergences [19] in
several ways. We show that they represent
a distortion between a “score” and an
“ordering”, thus providing a new view of rank
aggregation and order based clustering with
interesting connections to web ranking. We
show how the LB divergences have a number
of properties akin to many permutation based
metrics, and in fact have as special cases forms
very similar to the Kendall-τ metric. We
also show how the LB divergences subsume a
number of commonly used ranking measures
in information retrieval, like NDCG [22] and
AUC [35]. Unlike the traditional permutation
based metrics, however, the LB divergence
naturally captures a notion of “confidence” in
the orderings, thus providing a new represen-
tation to applications involving aggregating
scores as opposed to just orderings. We show
how a number of recently used web ranking
models are forms of Lovász Bregman rank
aggregation and also observe that a natural
form of Mallow’s model using the LB diver-
gence has been used as conditional ranking
models for the “Learning to Rank” problem.

1 Introduction

The Bregman divergence first appeared in the context
of relaxation techniques in convex programming [5],
and has found numerous applications as a general
framework in clustering [3], proximal minimization
([7]), and others. Many of these applications are due
to the nice properties of the Bregman divergence,
and the fact that they are parameterized by a single
convex function. They also generalize a large class of
divergences between vectors.

In this paper, we investigate a specific class of Bregman
divergences, parameterized via the Lovász extension

of a submodular function. Submodular functions are a
special class of discrete functions with interesting prop-
erties. Let V refer to a finite ground set {1, 2, . . . , |V |}.
A set function f : 2V → R is submodular if ∀S, T ⊆ V ,
f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). Submodular func-
tions have attractive properties that make their exact
or approximate optimization efficient and often practi-
cal [17, 21]. They also naturally arise in many problems
in machine learning, computer vision, economics, oper-
ations research, etc. A link between convexity and sub-
modularity is seen via the Lovász extension ([13, 29]) of
the submodular function. While submodular functions
are growing phenomenon in machine learning, recently
there has been an increasing set of applications for the
Lovász extension. In particular, recent work [1, 2] has
shown nice connections between the Lovász extension
and structured sparsity inducing norms.

This work is concerned with yet another application
of the Lovász extension, in the form of the Lovász-
Bregman divergence. This was first introduced in
Iyer & Bilmes [19], in the context of clustering ranked
vectors. We extend our work in several ways, mainly
theoretically, by both showing a number of connections
to the permutation based metrics, to rank aggregation,
to rank based clustering and to the “Learning to Rank”
problem in web ranking.

1.1 Motivation

The problems of rank aggregation and rank based clus-
tering are ubiquitous in machine learning, information
retrieval, and social choice theory. Below is a partial
list of some of these applications.

Meta Web Search: We are given a collection of
search engines, each providing a ranking or a score
vector, and the task is to aggregate these to generate
a combined result [27].

Learning to Rank: The “Learning to rank” prob-
lem, which is a fundamental problem in machine
learning, involves constructing a ranking model from
training data. This problem has gained significant
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interest in web ranking and information retrieval [28].

Voter or Rank Clustering: This is an important
problem in social choice theory, where each voter
provides a ranking or assigns a score to every item. A
natural problem here is to meaningfully combine these
rankings [26]. Sometimes however the population is
heterogeneous and a mixture of distinct populations,
each with its own aggregate representative, fits better.

Combining Classifiers and Boosting: There has
been an increased interest in combining the output of
different systems in an effort to improve performance
of pattern classifiers, something often used in Machine
Translation [34] and Speech Recognition[24]. One way
of doing this [27] is to treat the output of every classifier
as a ranking and combine the individual rankings of
weak classifiers to obtain the overall classification. This
is akin to standard boosting techniques [16], except that
we consider rankings rather than just the valuations.

1.2 Permutation Based Distance Metrics

First a bit on notation – a permutation σ is a bi-
jection from [n] = {1, 2, · · · , n} to itself. Given a
permutation σ, we denote σ−1 as the inverse per-
mutation such that σ(i) is the item assigned rank
i, while σ−1(j) is the rank1 assigned to item j and
hence σ(σ−1(i)) = i. We shall use σx to denote a
permutation induced through the ordering of a vec-
tor x such that x(σx(1)) ≥ x(σx(2)) · · · ≥ x(σx(n)).
Without loss of generality, we assume that the permu-
tation is defined via a decreasing order of elements.
We shall use v(i), v[i] and vi interchangeably to denote
the i-th element in v. Given two permutations σ, π
we can define σπ as the combined permutation, such
that σπ(i) = σ(π(i)). Also given a vector x and a
permutation σ, define xσ such that xσ(i) = x(σ(i)).
We also define σx as σx(i) = x(σ−1(i)).

Recently a number of papers [27, 26, 23, 31] have ad-
dressed the problem of combining rankings using per-
mutation based distance metrics. Denote Σ as the set
of permutations over [n]. Then d : Σ × Σ → R+ is
a permutation based distance metric if it satisfies the
usual notions of a metric, viz. ,∀σ, π, τ ∈ Σ, d(σ, π) ≥ 0
and d(σ, π) = 0 iff σ = π, d(σ, π) = d(π, σ) and
d(σ, π) ≤ d(σ, τ) + d(τ, π). In addition, to represent
a distance amongst permutations, another property
which is usually required is that of left invariance to
reorderings, i.e., d(σ, π) = d(τσ, τπ)2. The most stan-
dard notion of a permutation based distance metric is

1This is opposite from the convention used in [27, 26,
23, 31] but follows the convention of [17].

2While in the literature this is called right invariance,
we have left invariance due to our notation

the Kendall τ metric [23]:

dT (σ, π) =
∑

i,j,i<j

I(σ−1π(i) > σ−1π(j)) (1)

Where I(.) is the indicator function. This distance
metric represents the number of swap operations
required to convert a permutation σ to π. It’s not hard
to see that it is a metric and it satisfies the ordering in-
variance property. Other often used metrics include the
Spearman’s footrule dS and rank correlation dR [10]:

dS(σ, π)=
n∑

i=1

|σ−1(i)− π−1(i)| (2)

dR(σ, π)=
n∑

i=1

(σ−1(i)− π−1(i))2 (3)

A natural extension to a ranking model is the Mallows
model [30], which is an exponential model defined based
on these permutation based distance metrics. This is
defined as:

p(π|θ, σ) =
1

Z(θ)
exp(−θd(π, σ)), with θ ≥ 0. (4)

This model has been generalized by [14] and also
extended to multistage ranking by [15]. Lebanon
and Lafferty [27] were amongst the first to use these
models in machine learning by proposing an extended
mallows model [14] to combine rankings in a manner
like adaboost [16]. Similarly Meila et al [31] use
the generalized Mallows model to infer the optimal
combined ranking. Another related though different
problem is clustering ranked data, investigated by [32],
where they provide a k-means style algorithm. This
was also extended to a machine learning context by [6].

1.3 Score based Permutation divergences

In this paper, we motivate another class of divergences,
which capture the notion of distance between permuta-
tions. Unlike the permutation based distance metrics,
however, these are distortion functions between a
“score” and a permutation. This, as we shall see,
offers a new view of rank aggregation and order based
clustering problems. We shall also see a number of
interesting connections to web ranking.

Consider a scenario where we are given a collection
of scores x1, x2, · · · , xn as opposed to just a collection
of orderings – i.e., each xi is an ordered vector and not
just a permutation. This occurs in a number of real
world applications. For example, in the application of
combining classifiers [27], the classifiers often output
scores (in the form of say normalized confidence
or probability distributions). While the rankings
themselves are informative, it is often more beneficial
to use the additional information in the form of scores
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if available. This in some sense combines the approach
of Adaboost [16] and Cranking [27], since the former
is concerned only with the scores while the latter takes
only the orderings. The case of voting is similar, where
each voter might assign scores to every candidate
(which can sometimes be easier than assigning an
ordering). This also applies to web-search where often
the individual search engines (or possibly features)
provide a confidence score for each webpage. Since
these applications provide both the valuations and the
rankings, we call these score based ranking applications.

A score based permutation divergence is defined as
follows. Given a convex set S, denote d : S×Σ→ R+

as a score based permutation divergence if ∀x ∈ S, σ ∈
Σ, d(x||σ) ≥ 0 and d(x||σ) = 0 if and only if σx = σ.
Another desirable property is that of left invariance,
viz. d(x||σ) = d(τx||τσ),∀τ, σ ∈ Σ, x ∈ S.

It is then immediately clear how the score based permu-
tation divergence naturally models the above scenario.
The problem becomes one of finding a representative
ordering, i.e., find a permutation σ that minimizes the
average distortion to the set of points x1, · · · , xn. Sim-
ilarly, in a clustering application, to cluster a set of
ordered scores, a score based permutation divergence
fits more naturally. The representatives for each clus-
ter are permutations, while the objects themselves are
ordered vectors. Notice that in both cases, a purely
permutation based distance metric would completely
ignore the values, and just consider the induced order-
ings or permutations. To our knowledge, this work is
the first time that the notion of a score based permu-
tation divergence has been introduced formally, thus
providing a novel view to the rank aggregation and
rank based clustering problems.

1.4 Our Contributions

In this paper, we investigate several theoretical proper-
ties of one such score based permutation divergence –
the LB divergence. This work builds on our previous
work [19], where we introduce the Lovász-Bregman
divergence. Our focus therein is mainly on the con-
nections between the Lovász Bregman and a discrete
Bregman divergence connected with submodular func-
tions and we also provide a k-means framework for
clustering ordered vectors. In the present paper, how-
ever, we make the connection to rank aggregation and
clustering more precise, by motivating the class of score
based permutation divergences and showing relations
to permutation based metrics and web ranking.

The following are some of our main results. We
introduce a novel notion of the generalized Bregman
divergence based on a “subgradient map”. While
this is of independent theoretical interest, it helps us
characterize the Lovász-Bregman divergence. We then
show that the LB divergence is indeed a score based

permutation divergence with several similarities to
permutation based metrics. In fact, we show that a
form of weighted Kendall τ , and a form related to the
Spearman’s Footrule, occurs as instances of the Lovász-
Bregman divergences. We also show how a number
of loss functions used in IR and web ranking like the
Normalized Discounted Cumulative Gain (NDCG) [22]
and the Area Under the Curve (AUC) [35] occur
as instances of the LB. We then demonstrate some
unique properties of the Lovász Bregman divergence
not present in permutation-distance metrics. Notable
amongst these are the properties that the Lovász-
Bregman naturally captures a notion of “confidence” of
an ordering, and exhibits a priority for higher rankings,
both of which are desirable in score based ranking
applications. We then define a Lovász-Mallows model
as a conditional model over both the scores and the
ranking. We finally connect the Lovász Bregman to
rank aggregation and rank based clustering. We show
in fact that a number of ranking models for web rank-
ing used in the past are instances of Lovász Bregman
rank aggregation. We moreover show that a number
of conditional models used in the past for learning to
Rank are closely related to the Lovász-Mallows model.

2 The Lovász Bregman divergences

In this section, we shall briefly review the Lovász ex-
tension and define forms of the generalized Bregman
and the LB divergence. We only state the main results
here and for a more extensive discussion, refer to [20].

2.1 The Generalized Bregman divergences

The notion used in this section follows from [33, 37]. We
denote φ as a proper convex function (i.e., it’s domain is
non-empty and it does not take the value −∞), reint(.)
and dom(.) as the relative interior and domain respec-
tively. A subgradient g at y ∈ dom(φ) is such that for
any x, φ(x) ≥ φ(y)+〈g, x−y〉 and the set of all subgradi-
ents at y is the subdifferential and is denoted by ∂φ(y).

The Taylor series approximation of a twice differen-
tiable convex function provides a natural way of gen-
erating a Bregman divergence ([5]). Given a twice
differentiable and strictly convex function φ:

dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉. (5)

In order to extend this notion to non-differentiable con-
vex functions, generalized Bregman divergences have
been proposed [37, 25]. While gradients no longer exist
at points of non-differentiability, the directional deriva-
tives exist in the relative interior of the domain of φ,
as long as the function is finite. Hence a natural for-
mulation is to replace the gradient by the directional
derivative, a notion which has been pursued in [37, 25].

In this paper, we view the generalized Bregman
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divergences slightly differently, in a way related to the
approach in [18]. In order to ensure that the subgradi-
ents exist, we only consider the relative interior of the
domain. Then define Hφ(y) as a subgradient-map such
that ∀y ∈ reint(dom(φ)),Hφ(y) ∈ ∂φ(y). Then given
x ∈ dom(φ), y ∈ reint(dom(φ)) and a subgradient map
Hφ, we define the generalized Bregman divergence as:

d
Hφ
φ (x, y) = φ(x)− φ(y)− 〈Hφ(y), x− y〉 (6)

When φ is differentiable, notice that ∂φ(y) = {∇φ(y)}
and hence Hφ(y) = ∇(y).

2.2 Properties of the Lovász Extension

We review some important theoretical properties of
the Lovász extension. Given any vector y ∈ [0, 1]n

and it’s associated permutation σy, define S
σy
j =

{σy(1), · · · , σy(j)} for j ∈ [n]. Notice that in gen-
eral σy need not be unique (it will be unique only if y
is totally ordered), and hence let Σy represent the set
of all possible permutations with this ordering. Then
the Lovász extension of f is defined as:

f̂(y) =
n∑

j=1

y[σy(j)](f(S
σy
j )− f(S

σy
j−1)) (7)

This is also called the Choquet integral [9] of f . Though
σy might not be unique, the Lovász extension is actually

unique. Furthermore, f̂ is convex if and only if f
is submodular. In addition, the Lovász extension is
also tight on the vertices of the hypercube, in that

f(X) = f̂(1X),∀X ⊆ V (where 1X is the characteristic
vector of X, i.e., 1X(j) = I(j ∈ X)) and hence it is a
valid continuous extension. The Lovász extension is
in general a non-smooth convex function, and hence
there does not exist a unique subgradient at every
point. The following result due [17, 13] provides a
characterization of the extreme points of the Lovász

subdifferential polyhedron ∂f̂(y):

Lemma 2.1. [17, 13] For a submodular function f ,
a vector y and a permutation σy ∈ Σy, a vector hfσy
defined as:

hfσy (σy(j)) = f(S
σy
j )− f(S

σy
j−1),∀j ∈ {1, 2, · · · , n}

forms an extreme point of ∂f̂(y). Also, the number of

extreme points of ∂f̂(y) is |Σy|.

Notice that the extreme subgradients are parameterized
by the permutation σy and hence we refer to them as
hfσy . Seen in this way, the Lovász extension then takes

an extremely simple form: f̂(w) = 〈hfσw , w〉.
We now point out an interesting property related to

the extreme subgradients of f̂ . Define P(σ) as a
n−simplex corresponding to a permutation σ (or chain

Cσ : ∅ ⊂ Sσ1 ⊂ · · · ⊂ Sσn = V ). In other words,
P(σ) = conv(1Sσi , i = 1, 2, · · · , n). It’s easy to see that
P(σ) ⊆ [0, 1]n.

Lemma 2.2. (Lemma 6.19, [17]) Given a permuta-
tion σ ∈ Σ, for every vector y ∈ P(σ) the vector hfσ is

an extreme subgradient of f̂ at y. If y belongs to the
(strict) interior of P(σ), hfσ is a unique subgradient

corresponding to f̂ at y.

The above lemma points out a critical fact about the
subgradients of the Lovász extension, in that they
depend only on the total ordering of a vector and are
independent of the vector itself. This also implies that if
y is totally ordered (it belongs to the interior of P(σy))
then ∂f̂ (y) consists of a single (unique) subgradient.

Hence, two entirely different but identically ordered
vectors will have identical extreme subgradients. This
fact is important when defining and understanding the
properties of the LB divergence.

2.3 The Lovász Bregman divergences

We are now in position to define the Lovász-Bregman

divergence. Throughout this paper, we restrict dom(f̂)
to be [0, 1]n. For the applications we consider in this
paper, we lose no generality with this assumption, since
the scores can easily be scaled to lie within this volume.

Consider the case when y is totally ordered, and corre-
spondingly |Σy| = 1. It follows then from Lemma 2.2
that there exists a unique subgradient andHf̂ (y) = hfσy .

Hence for any x ∈ [0, 1]n, we have from Eqn. (6)
that [19]:

df̂ (x, y) = f̂(x)− 〈x, hfσy 〉 = 〈x, hfσx − hfσy 〉 (8)

Notice that this divergence depends only on x and σy,
and is independent of y itself. In particular, the LB
divergence between a vector x and any vector y ∈ P(σ)
is the same for all y ∈ P(σ) (Lemma 2.2). We also
invoke the following lemma from [19]:

Lemma 2.3. (Theorem 2.2, [19]) Given a submodular
function whose polyhedron contains all possible extreme
points and x which is totally ordered, df̂ (x, y) = 0 if

and only if σx = σy.

At first sight it seems that the class of submodular
functions satisfying Lemma 2.3 is very specific. We
point out however that this class is quite general and
many instances we consider in this paper belong to
this class of functions. For example, it is easy to see
that the class of submodular functions f(X) = g(|X|)
where g is a concave function satisfying g(i)−g(i−1) 6=
g(j)− g(j − 1) for i 6= j belong to this class.

Hence the Lovász-Bregman divergence is score based
permutation divergence, and we denote it as:

df̂ (x||σ) = 〈x, hfσx − hfσ〉 (9)
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f(X) f̂(x) df̂ (x, y)

1) |X||V \X| ∑
i<j |xi − xj |

∑
i<j |xσ(i) − xσ(j)|I(σ−1

x σ(i) > σ−1
x σ(j))

2) g(|X|) ∑k
i=1 x(σx(i))δg(i)

∑n
i=1 x(σx(i))δg(i)−

∑k
i=1 x(σy(i))δg(i)

3) min{|X|, k} ∑k
i=1 x(σx(i))

∑k
i=1 x(σx(i))−∑k

i=1 x(σ(i))
4) min{|X|, 1} maxi xi maxi xi − x(σ(1))
5)

∑n
i=1 |I(i ∈ X)− I(i+ 1 ∈ X)

∑n
i=1 |xi − xi+1|

∑n
i=1 |xi − xi+1|I(σ−1

x σ(i) > σ−1
x σ(i+ 1))

6) I(1 ≤ |A| ≤ n− 1) maxi x(i)−mini x(i) maxi x(i)− x(σ(1))−mini x(i) + x(σ(n))
7) I(A 6= ∅, A 6= V ) maxi,j |xi − xj | maxi,j |xi − xj | − |x(σ(1)− x(σ(n))|

Table 1: Examples of the LB divergences. I(.) is the Indicator fn.

As we shall see in the next section, this divergence has a
number of properties akin to the standard permutation
based distance metrics. Since a large class of submod-
ular functions satisfy the above property (of having
all possible extreme points), the Lovász-Bregman
divergence forms a large class of divergences.

The case when y is not totally ordered can be handled
similarly [20].

2.4 Lovász Bregman Divergence Examples

Below is a partial list of some instances of the Lovász-
Bregman divergence. We shall see that a number of
these are closely related to many standard permutation
based metrics. Table 1 considers several other examples
of LB divergences.

Cut function and symmetric submodular func-
tions: A fundamental submodular function, which
is also symmetric, is the graph cut function. This is
f(X) =

∑
i∈X

∑
j∈V \X dij . The Lovász extension of

f is f̂(x) =
∑
i,j dij(xi − xj)+ [2]. The LB divergence

corresponding to f̂ then has a nice form:

df̂ (x||σ) =
∑

i<j

dσ(i)σ(j)|xσ(i) − xσ(j)|I(σ−1
x σ(i) > σ−1

x σ(j))

(10)

We in addition assume that d is symmetric (i.e.,
dij = dji,∀i, j ∈ V ) and hence f is also symmetric.
Indeed a weighted version of Kendall τ can be writ-
ten as dwT (σ, π) =

∑
i,j:i<j wijI(σ−1π(i) > σ−1π(j))

and df̂ (x||σ) is exactly then a form of dwT (σx, σ), with

wij = dσ(i)σ(j)|xσ(i)−xσ(j)|. Moreover, if dij = 1
|xi−xj | ,

we have df̂ (x||σ) = dT (σx, σ). Hence, we recover the

Kendall τ for that particular x.

An interesting special case of this is when f(X) =
|X||V \X|, in which case we get:

df̂ (x||σ) =
∑

i<j

|xσ(i) − xσ(j)|I(σ−1
x σ(i) > σ−1

x σ(j)).

Cardinality based monotone submodular func-
tions: Another class of submodular functions is
f(X) = g(|X|) for some concave function g. This

form induces an interesting class of Lovász Bregman
divergences. In this case hfσx(σx(i)) = g(i)− g(i− 1).
Define δg(i) = g(i)− g(i− 1), then:

df̂ (x||σ) =

n∑

i=1

x[σx(i)]δg(i)−
n∑

i=1

x[σ(i)]δg(i). (11)

Notice that we can start with any δg such that
δg(1) ≥ δg(2) ≥ · · · ≥ δg(n), and through this
we can obtain the corresponding function g. Con-
sider a specific example, with δg(i) = n − i. Then,
df̂ (x||σ) =

∑n
i=1 x[σ(i)]i− x[σx(i)]i = 〈x, σ−1 − σ−1

x 〉.
This expression looks similar to the Spearman’s rule
(Eqn. (2)), except for being additionally weighted by
x.

We can also extend this in several ways. For example,
consider a restriction to the top m elements (m < n).
Define f(X) = min{g(|X|), g(m)}. Then it is not hard
to verify that:

df̂ (x||σ) =
m∑

i=1

x[σx(i)]δg(i)−
m∑

i=1

x[σ(i)]δg(i). (12)

A specific example is f(X) = min{|X|,m}, where

df̂ (x||σ) =

m∑

i=1

x(σx(i))− x(σ(i)). (13)

In this case, the divergence between x and σ is the
difference between the largest m values of x and the m
first values of x under the ordering σ. Here the ordering
is not really important, but it is just the sum of the top
m values and hence if σx and σ, under x, have the same
sum of first m values, the divergence is zero (irrespec-
tive of their ordering or individual element valuations).
We can also define δg, such that δg(1) = 1 and δg(i) =
0,∀i 6= 1. Then, df̂ (x||σ) = maxj x(j)−x(σ(1)) (this is

equivalent to Eqn. (13) when m = 1). In this case, the
divergence depends only on the top value, and if σx and
σ have the same leading element, the divergence is zero.

2.5 Lovász Bregman as ranking measures

In this section, we show how the Lovász Bregman
subsumes and is closely related to several commonly
used loss functions in Information Retrieval connected
to ranking.
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The Normalized Discounted Cumulative Gain
(NDCG): The NDCG metric [22] is one of the most
widely used ranking measures in web search. Given a
relevance vector r, where the entry ri typically provides
the relevance of a document i ∈ {1, 2, · · · , n} to a
query, and an ordering of documents σ, the NDCG
loss function with respect to a discount function D is
defined as:

L(σ) =

∑k
i=1 r(σr(i))D(i)−∑k

i=1 r(σ(i))D(i)
∑k
i=1 r(σr(i))D(i)

(14)

Here k ≤ n is often used as a cutoff. Intuitively
the NDCG loss compares an ordering σ to the best
possible ordering σr. The typical choice of D(i) =

1
log(1+i) , though in general any decreasing function

can be used. This function is closely related to a
form of the LB divergence. In particular, notice that

L(σ) ∝ ∑k
i=1 r(σr(i))D(i) −∑k

i=1 r(σ(i))D(i) (since
the denominator of Eqn. (14) is a constant) which is
form of Eqn. (12) with m = k and choosing the function

g(i) =
∑i
j=1D(i).

Area Under the Curve: Another commonly used
ranking measure is the Area under the curve [35]. Un-
like NDCG however, this just relies on a partial ordering
of the documents and not a complete ordering. In par-
ticular denote G as a set of “good” documents and B
as a set of “bad” documents. Then the loss function
L(σ) corresponding to an ordering of documents σ is

L(σ) =
1

|G||B|
∑

g∈G,b∈B
I(σ(g) > σ(b)). (15)

This can be seen as an instance of LB divergence
corresponding to the cut function by choosing dij =

1
|G||B| ,∀i, j, xg = 1,∀g ∈ G and xb = 0,∀b ∈ B.

3 Lovász Bregman Properties

In this section, we shall analyze some interesting prop-
erties of the LB divergences. While many of these
properties show strong similarities with permutation
based metrics, the Lovász Bregman divergence enjoys
some unique properties, thereby providing novel insight
into the problem of combining and clustering ordered
vectors.

Non-negativity and convexity: The LB diver-
gence is a divergence, in that ∀x, σ, df̂ (x||σ) ≥ 0. Ad-

ditionally if the submodular polyhedron of f has all
possible extreme points, df̂ (x||σ) = 0 iff σx = σ. Also

the Lovász-Bregman divergence df̂ (x||σ) is convex in

x for a given σ.

Equivalence Classes: The LB divergence of sub-
modular functions which differ only in a modular term
are equal. Hence for a submodular function f and a

modular function m, d
f̂+m

(x||σ) = df̂ (x||σ). Since any

submodular function can be expressed as a difference
between a polymatroid and a modular function [11],
it follows that it suffices to consider polymatroid
functions while defining the LB divergences.

Linearity and Linear Separation: The LB
divergence is a linear operator in the submodular
function f . Hence for two submodular functions
f1, f2, df̂1+f2

(x||σ) = df̂1(x||σ) + df̂2(x||σ). The LB

divergence has the property of linear separation — the
set of points x equidistant to two permutations σ1

and σ2 (i.e., {x : df̂ (x||σ1) = df̂ (x||σ2)}) comprise a

hyperplane. Similarly, for any x, the set of points y
such that df̂ (x, y) = constant, is P(σy).

Invariance over relabelings: The permutation
based distance metrics have the property of being left
invariant with respect to reorderings, i.e., given permu-
tations π, σ, τ , d(π, σ) = d(τπ, τσ).

While this property may not be true of the Lovász
Bregman divergences in general, the following theorem
shows that this is true for a large class of them.

Theorem 3.1. Given a submodular function f , such
that ∀σ, τ ∈ Σ, hfτσ = τhfσ, df̂ (x||σ) = df̂ (τx||τσ).

This property seems a little demanding for a submodu-
lar function. But a large class of submodular functions
can be seen to have this property. In fact, it can be
verified that any cardinality based submodular function
has this property.

Corollary 3.1.1. Given a submodular function f
such that f(X) = g(|X|) for some function g, then
df̂ (x||σ) = df̂ (τx, τσ).

This follows directly from Eqn. (11) and observing that
the extreme points of the corresponding polyhedron
are reorderings of each other. In other words, in
these cases the submodular polyhedron forms a
permutahedron. This property is true even for sums
of such functions and therefore for many of the special
cases which we have considered.

Dependence on the values and not just the or-
derings: We shall here analyze one key property of
the LB divergence that is not present in other per-
mutation based divergences. Consider the problem of
combining rankings where, given a collection of scores
x1, · · · , xn, we want to come up with a joint ranking.
An extreme case of this is where for some x all the
elements are the same. In this case x expresses no
preference in the joint ranking. Indeed it is easy to
verify that for such an x, df̂ (x||σ) = 0,∀σ. Now given

a x where all the elements are almost equal (but not ex-
actly equal), even though this vector is totally ordered,
it expresses a very low confidence in it’s ordering. We
would expect for such an x, df̂ (x||σ) to be small for

every σ. Indeed we have the following result:

326



 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) LB2D (b) LB3D1 (c) LB3D2

 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) KT2D (e) KT3D1 (f) KT3D2

Figure 1: A visualization of df̂ (x||σ) (left three) and dT (σx, σ) (right three). The figures shows a visualization in

2D, and two views in 3D for each, with σ as {1, 2} and {1, 2, 3} and x ∈ [0, 1]2 and [0, 1]3 respectively.

Theorem 3.2. Given a monotone submodular function
f and any permutation σ,

df̂ (x||σ) ≤ εn(max
j
f(j)−min

j
f(j|V \j)) ≤ εnmax

j
f(j)

where ε = maxi,j |xi−xj | and f(j|A) = f(A∪j)−f(A).

The above theorem implies that if the vector x is such
that all it’s elements are almost equal, then ε is small
and the LB divergence is also proportionately small.
This bound can be improved in certain cases. For
example for the cut function, with f(X) = |X||V \X|,
we have that df̂ (x||σ) ≤ εdT (σx, σ) ≤ εn(n − 1)/2,

where dT is the Kendall τ .

Priority for higher rankings: We show yet an-
other nice property of the LB divergence with respect
to a natural priority in rankings. This property has
to do intrinsically with the submodularity of the gen-
erator function. We have the following theorem, that
demonstrates this:

Lemma 3.1. Given permutations σ, π, such that P(σ)
and P(π) share a face (say Sσk 6= Sπk ) and x ∈
P(π)), then df̂ (x||σ) = (xk − xk+1)(f(σx(k)|Sσk−1) −
f(σx(k)|Sσk )).

This result directly follows from the definitions. Now
consider the class of submodular function f such that
∀j, k /∈ X, j 6= k, f(j|S) − f(j|S ∪ k) is monotone
decreasing as a function of S. An example of such a sub-
modular function is again f(X) = g(|X|), for a concave
function g. Then it is clear that from the above Lemma
that df̂ (x||σ) will be larger for smaller k. In other

words, if π and σ differ in the starting of the ranking,
the divergence is more than if π and σ differ somewhere
towards the end of the ranking. This kind of weighting
is more prominent for the class of functions which
depend on the cardinality, i.e., f(X) = g(|X|). Recall
that many of our special cases belong to this class. Then
we have that df̂ (x||σ) =

∑n
i=1{x(σx(i))−x(σ(i))}δg(i).

Now since δg(1) ≥ δg(2) ≥ · · · ≥ δg(n), it then follows
that if σx and σ differ in the start of the ranking, they
are penalized more.

Extensions to partial orderings and top m-Lists:
So far we considered notions of distances between a
score x and a complete permutation σ. Often we may

not be interested in a distance to a total ordering σ, but
just a distance to a say a top-m list [26] or a partial or-
dering between elements [38, 8]. The LB divergence also
has a nice interpretation for both of these. In particular,
in the context of top m lists, we can use Eqn. (12). This
exactly corresponds to the divergence between different
or possibly overlapping sets of m objects. Moreover, if
we are simply interested in the top m elements without
the orderings, we have Eqn. (13). A special case of this
is when we may just be interested in the top value. An-
other interesting instance is of partial orderings, where
we do not care about the total ordering. For example,
in web ranking we often just care about the relevant and
irrelevant documents and that the relevant ones should
be placed above the irrelevant ones. We can then define
a distance df̂ (x||P) where P refers to a partial ordering

by using the cut based Lovász Bregman (Eqn. (10))
and defining the graph to have edges corresponding to
the partial ordering. For example if we are interested in
a partial order 1 > 2, 3 > 2 in the elements {1, 2, 3, 4},
we can define d1,2 = d3,2 = 1 with the rest dij = 0 in
Eqn. (10). Defined in this way, the LB divergence then
measures the distortion between a vector x and the
partial ordering 1 > 2, 3 > 2. In all these cases, we see
that the extensions to partial rankings are natural in
our framework, without needing to significantly change
the expressions to admit these generalizations.

Lovász-Mallows model: In this section, we extend
the notion of Mallows model to the LB divergence. We
first define the Mallows model for the LB divergence:

p(x|θ, σ) =
exp(−θdf̂ (x||σ))

Z(θ, σ)
, θ ≥ 0. (16)

For this distribution to be a valid probability distri-
bution, we assume that the domain D of x to be a
bounded set (say for example [0, 1]n). We also assume
that the domain is symmetric over permutations (i.e.,
for all σ ∈ Σ, if x ∈ D, xσ ∈ D. Unlike the standard
Mallow’s model, however, this is defined over scores
(or valuations) as opposed to permutations.

Given the class of LB divergences defining a probability
distribution over such a symmetric set (i.e., the diver-
gences are invariant over relabelings) it follows that
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Z(θ, σ) = Z(θ). The reason for this is:

Z(θ, σ) =

∫

x

exp(−θdf̂ (x, σ))dx

=

∫

x

exp(−θdf̂ (xσ−1, σ0))dx

=

∫

x′
exp(−θdf̂ (x′, σ0))dx′ = Z(θ)

where σ0 = {1, 2, · · · , n}. We can also define an ex-
tended Mallows model for combining rankings, analo-
gous to [27]. Unlike the Mallows model however this is
a model over permutations given a collection of vectors
X = {x1, · · · , xn} and parameters Θ = {θ1, · · · , θn}.

p(σ|Θ,X ) =
exp(−∑n

i=1 θidf̂ (xi||σ))

Z(Θ,X )
(17)

This model can be used to combine rankings using
the LB divergences, in a manner akin to Cranking [27].
This extended Lovász-Mallows model also admits an
interesting Bayesian interpretation, thereby providing
a generative view to this model:

p(σ|Θ,X ) ∝ p(σ)
n∏

i=1

p(xi|σ, θi). (18)

Again this directly follows from the fact that in this
case, in the Lovász-Mallows model, the normalizing
constants (which are independent of σ) cancel out. We
shall actually see some very interesting connections
between this conditional model and web ranking.

4 Applications

Rank Aggregation: As argued above, the LB
divergence is a natural model for the problem of
combining scores, where both the ordering and the
valuations are provided. If we ignore the values, but
just consider the rankings, this then becomes rank
aggregation. A natural choice in such problems is the
Kendall τ distance [27, 26, 31]. On the other hand, if
we consider only the values without explicitly modeling
the orderings, then this becomes an incarnation of
boosting [16]. The Lovász-Bregman divergence tries to
combine both aspects of this problem – by combining
orderings using a permutation based divergence, while
simultaneously using the additional information of the
confidence in the orderings provided by the valuations.
We can then pose this problem as:

σ ∈ argmin
σ′∈Σ

n∑

i=1

df̂ (xi||σ′) (19)

The above notion of the representative ordering (also
known as the mean ordering) is very common in many
applications [3] and has also been used in the context

of combining rankings [31, 27, 26]. Unfortunately
this problem in the context of the permutation based
metrics were shown to be NP hard [4]. Surprisingly
for the LB divergence this problem is easy (and has
a closed form). In particular, the representative
permutation is exactly the ordering corresponding to
the arithmetic mean of the elements in X .

Lemma 4.1. [19] Given a submodular function f , the
Lovász Bregman representative (Eqn. (19)) is σ = σµ,
where µ = 1

n

∑n
i=1 x

i

This result builds on the known result for Bregman
divergences [3]. This seems somewhat surprising at
first. Notice, however, that the arithmetic mean
uses additional information about the scores and
its confidence, as opposed to just the orderings. In
this context, the result then seems reasonable since
we would expect that the representatives be closely
related to the ordering of the arithmetic mean of the
objects. We shall also see that this notion has in fact
been ubiquitously but unintentionally used in the web
ranking and information retrieval communities.

We illustrate the utility of the Lovász Bregman rank ag-
gregation through the following argument. Assume that
a particular vector x is uninformative about the true or-
dering (i.e, the values of x are almost equal). Then with
the LB divergence and any permutation π, d(x||π) ≈ 0,
and hence this vector will not contribute to the mean
ordering. Instead if we use a permutation based metric,
it will ignore the values but consider only the permuta-
tion. As a result, the mean ordering tends to consider
such vectors x which are uninformative about the true
ordering. As an example, consider a set of scores: X =
{1.9, 2}, {1.8, 2}, {1.95, 2}, {2, 1}, {2.5, 1.2}. The repre-
sentative of this collection as seen by a permutation
based metric would be the permutation {1, 2} though
the former three vectors have very low confidence. The
arithmetic mean of these vectors is however {2.03, 1.64}
and the Lovász Bregman representative would be {2, 1}.
The arithmetic mean also provides a notion of con-
fidence of the population. In particular, if the total
variation [2] of the arithmetic mean is small, it implies
that the population is not confident about its ordering,
while if the variation is high, it provides a certificate of
a homogeneous population. Figure 1 provides a visu-
alization the Lovász-Bregman divergence using the cut
function and the Kendall τ metric, visualized in 2 and 3
dimensions respectively. We see the similarity between
the two divergences and at the same time, the depen-
dence on the “scores” in the Lovász-Bregman case.

Learning to Rank: We investigate a specific in-
stance of the rank aggregation problem with reference
to the problem of “learning to rank.” A large class
of algorithms have been proposed for this problem –
see [28] for a survey on this. A specific class of al-
gorithms for this problem have focused on maximum
margin learning using ranking based loss functions
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(see [38, 8] and references therein). While we have seen
that the ranking based losses themselves are instances
of the LB divergence, the feature functions are also
closely related.

In particular, given a query q, we denote a feature
vector corresponding to document i ∈ {1, 2, · · · , n} as
xi ∈ Rd, where each element of xi denotes a quality of
document i based on a particular indicator or feature.
Denote X = {x1, · · · , xn}. We assume we have d fea-
ture functions (one might be for example a match with

the title, another might be pagerank, etc). Denote xji
as the score of the jth feature corresponding to docu-
ment i and xj ∈ Rn as the score vector corresponding
to feature j over all the documents. In other words,
xj = (xj1, x

j
2, · · · , xjn). One possible choice of feature

function is:

φ(X , σ) =
d∑

j=1

wjdf̂ (xj ||σ) (20)

for a weight vector w ∈ Rd. Given a particular weight
vector w, the inference problem then is to find the
permutation σ which minimizes φ(X , σ). Thanks to
Lemma 4.1, the permutation σ is exactly the ordering
of the vector

∑n
j=1 wjx

j . It is not hard to see that

this exactly corresponds to ordering the scores w>xi
for i ∈ {1, 2, · · · , n}. Interestingly many of the fea-
ture functions used in [38, 8] are forms closely related
Eqn. (20). In fact the motivation to define these feature
functions is exactly that the inference problem for a
given set of weights w be solved by simply ordering the
scores w>xi for every i ∈ {1, 2, · · · , n} [8]. We see that
through Eqn. (20), we have a large class of possible
feature functions for this problem.

We also point out a connection between the learning to
rank problem and the Lovász-Mallows model. In partic-
ular, recent work [12] defined a conditional probability
model over permutations as:

p(σ|w,X ) =
exp(w>φ(X , σ))

Z
. (21)

This conditional model is then exactly the extended
Lovász-Mallows model of Eqn. (17) when φ is defined
as in Eqn. (20). The conditional models used in [12]
are in fact closely related to this and correspondingly
Eqn. (21) offers a large class of conditional ranking
models for the learning to rank problem.

Clustering: A natural generalization of rank aggre-
gation is the problem of clustering. In this context,
we assume a heterogeneous model, where the data is
represented as mixtures of ranking models, with each
mixture representing a homogeneous population. It is
natural to define a clustering objective in such scenarios.
Assume a set of representatives Σ = {σ1, · · · , σk} and
a set of clusters C = {C1, C2, · · · , Ck}. The clustering

objective is then: minC,Σ
∑k
j=1

∑
i:xi∈Cj df̂ (xi||σi). As

shown in [19], a simple k-means style algorithm finds
a local minima of the above objective. Moreover due
to simplicity of obtaining the means in this case, this
algorithm is extremely scalable and practical.

5 Discussion

To our knowledge, this work is the first introduces
the notion of “score based divergences” in preference
and ranking based learning. Many of the results in
this paper are due to some interesting properties of
the Lovász extension and Bregman divergences. This
also provides interesting connections between web
ranking and the permutation based metrics. This idea
is mildly related to the work of [36] where they use
the Choquet integral (of which the Lovász extension
is a special case) for preference learning. Unlike our
paper, however, they do not focus on the divergences
formed by the integral. Finally, it will be interesting
to use these ideas in real world applications involving
rank aggregation, clustering, and learning to rank.
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[31] M. Meilă, K. Phadnis, A. Patterson, and J. Bilmes.
Consensus ranking under the exponential model.
In In UAI, 2007.

[32] T. Murphy and D. Martin. Mixtures of distance-
based models for ranking data. Computational
statistics & data analysis, 41(3):645–655, 2003.

[33] R. Rockafellar. Convex analysis, volume 28.
Princeton Univ Pr, 1970.

[34] A.-V. I. Rosti, N. F. Ayan, B. Xiang, S. Matsoukas,
R. Schwartz, and B. Dorr. Combining outputs
from multiple machine translation systems. In
NAACL - HLT, 2007.

[35] K. A. Spackman. Signal detection theory: Valu-
able tools for evaluating inductive learning. In
Proceedings of the sixth international workshop on
Machine learning, 1989.

[36] A. F. Tehrani, W. Cheng, and E. Hüllermeier. Pref-
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Abstract

A limited-memory influence diagram (LIMID)
generalizes a traditional influence diagram by
relaxing the assumptions of regularity and no-
forgetting, allowing a wider range of decision
problems to be modeled. Algorithms for solving
traditional influence diagrams are not easily gen-
eralized to solve LIMIDs, however, and only re-
cently have exact algorithms for solving LIMIDs
been developed. In this paper, we introduce an
exact algorithm for solving LIMIDs that is based
on branch-and-bound search. Our approach is re-
lated to the approach of solving an influence di-
agram by converting it to an equivalent decision
tree, with the difference that the LIMID is con-
verted to a much smaller decision graph that can
be searched more efficiently.

1 Introduction

An influence diagram (ID) is a compact graphical model of
a decision problem under uncertainty [5]. In its traditional
form, an ID satisfies the assumptions of regularity and no
forgetting, which means that decisions are temporally or-
dered and each decision is conditioned on all relevant previ-
ous observations and decisions. Lauritzen and Nilsson [8]
introduced a more general model, called a limited-memory
influence diagram (LIMID), that allows the regularity and
no-forgetting assumptions to be relaxed in order to model
a wider range of decision problems. In particular, relax-
ing the regularity assumption allows modeling of coopera-
tive multi-agent decision problems where one agent is not
aware of some or all decisions of another agent. (Note
that Howard and Matheson [5] call the regularity assump-
tion the single decision maker condition.) Relaxing the no-
forgetting assumption allows a decision to be conditioned
on a limited number of relevant previous observations and
decisions, allowing tradeoffs between the quality of a deci-
sion strategy and the complexity of finding it.

Algorithms for solving traditional IDs, such as the join tree
algorithm [6], make use of the regularity and no-forgetting
assumptions. Thus they cannot be easily generalized to
solve LIMIDs. The first algorithm developed to solve
LIMIDs, due to Nilsson and Lauritzen [14], is an iterative
solution procedure, called single policy updating, that only
finds an exact solution under very limited conditions on the
structure of the ID; in general, it converges to a locally-
optimal solution. The first exact and general algorithm for
solving LIMIDs, developed by de Campos and Ji [1], re-
formulates a LIMID as a credal network inference problem
that can be solved by mixed integer programming. Maua
and de Campos [11, 10] recently developed a more effi-
cient exact algorithm for solving LIMIDs based on variable
elimination, called multiple policy updating.

In this paper, we introduce another exact algorithm for
solving LIMIDs. Our approach builds on the work of
Yuan et al. [24], who describe a branch-and-bound search
algorithm for solving a traditional ID and show that it
can outperform other approaches to solving IDs for multi-
stage decision problems. We adopt the same branch-and-
bound approach, but with some important differences. The
branch-and-bound algorithm for solving a traditional ID is
a tree-search algorithm in which each path through the de-
cision tree represents perfect memory of a particular his-
tory of decisions and observations, in keeping with the no-
forgetting assumption of a traditional ID. By contrast, our
branch-and-bound algorithm for solving LIMIDs searches
in a much smaller search graph in which different paths
to the same node of the graph represent different histories
where the differences are not “remembered.” By collaps-
ing the search tree into a smaller search graph in which
fewer histories are distinguished, the branch-and-bound ap-
proach can solve the optimization problem for LIMIDs
much more efficiently. That is, the new graph-search tech-
niques we introduce leverage the opportunities for faster
strategy computation provided by the LIMID model. We
also develop new techniques for probabilistic inference and
bounds computation in the search graph that further en-
hance this approach to solving LIMIDs. Experimental re-
sults demonstrate the effectiveness of this approach.
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2 Background

We begin with a review of limited-memory influence di-
agrams and previous work on solving influence diagrams
using branch-and-bound search.

2.1 Influence diagrams

An influence diagram (ID) represents a decision prob-
lem by a directed acyclic graph with three types of
nodes: chance nodes, decision nodes, and utility nodes.
The chance nodes represent random variables, X =
{X1, . . . , Xn}, where each random variable Xi ∈ X
has an associated domain of possible values, dom(Xi).
The decision nodes represent decision variables, D =
{D1, . . . , Dm}, where each decision variable Di ∈ D
has an associated domain of possible values, dom(Di),
called actions. For both random variables and decision
variables, all domains are assumed to be non-empty and
finite. The utility nodes represent (local) utility functions,
U = {U1, . . . , Ul}, that express a decision maker’s prefer-
ences. By convention, an ID shows chance nodes as circles,
decision nodes as squares, and utility nodes as diamonds.

The edges of the graph characterize dependencies among
nodes and have a different meaning depending on their des-
tination. Incoming edges to a chance node indicate prob-
abilistic dependence. As in a Bayesian network, each ran-
dom variable Xi ∈ X has an associated conditional prob-
ability table P (Xi|π(Xi)), where π(Xi) denotes the set
of parent variables of Xi and dom(π(Xi)) denotes the
set of possible instantiations (or states) of the parent vari-
ables. Incoming edges into decision nodes are informa-
tional, and the parent variables π(Di) of a decision variable
Di ∈ D, called the information variables of the decision,
are the variables whose values are known to the decision
maker at the time the decision is made. An instantiation
of the information variables is called an information state,
and dom(π(Di)) denotes the set of all information states
for the decision variable Di. Incoming edges into utility
nodes indicate functional dependence, and a utility func-
tion Ui : Ωπ(Ui) → < maps each state of the parent vari-
ables π(Ui) to a utility value that represents the preference
of the decision maker. It is assumed that utility nodes do
not have children and the joint utility function U is addi-
tively decomposable such that U =

∑
Ui∈U Ui.

An ID is solved by finding a strategy that maximizes ex-
pected utility. A strategy s = {δDi |Di ∈ D} is a set
of policies, one for each decision variable, where a pol-
icy δDi

: dom(π(Di) → dom(Di) is a mapping from the
information states of a decision variable to the possible ac-
tions for that decision variable. A strategy s induces a joint
probability distribution Ps over X ∪D, as follows,

Ps(X∪D) = ΠXi∈XP (Xi|π(Xi))·ΠDj∈DPs(Di|π(Di)),
(1)

where

Ps(d|π(Di)) =

{
1 if δDi

(π(Di)) = d,

0 otherwise.
(2)

The expected utility of a strategy s is defined as

EU(s) =
∑

c∈(X∪D)

Ps(c)
∑

Ui∈U
Ui(π(Ui)) (3)

=
∑

Ui∈U

∑

π(Ui)

Ps(π(Ui)) · Ui(π(Ui)), (4)

where c ∈ (X ∪D) denotes a particular configuration (or
instantiation) of the variables of the ID. A strategy s∗ is
optimal if EU(s∗) ≥ EU(s) for all strategies s.

For an ID that satisfies the regularity assumption, the deci-
sion variables are temporally ordered. Suppose there are n
decision variables D1, D2, ..., Dn. The decision variables
partition the random variables in X into a collection of dis-
joint sets I0, I1, ..., In. For each k, where 0 < k < n, Ik is
the set of random variables that must be observed between
Dk andDk+1. I0 is the set of initial evidence variables that
must be observed before D1. In is the set of variables left
unobserved when decisionDn is made. Therefore, a partial
order ≺ is defined on the ID over X ∪D, as follows:

I0 ≺ D1 ≺ I1 ≺ ... ≺ Dn ≺ In. (5)

When the no-forgetting assumption is satisfied, all infor-
mation variables of earlier decisions are also information
variables of later decisions. We call these past informa-
tion variables the history, and, for convenience, we assume
that there are explicit edges (called information arcs) from
history information variables to decision variables. As the
number of variables in the history grows, however, the do-
main of the policy for each decision variable increases ex-
ponentially. Methods for structural analysis of relevance
have been developed that can distinguish requisite obser-
vations from those that are irrelevant, and remove infor-
mation arcs that are not necessary for computation of the
optimal strategy [21, 13, 8]. This preprocessing step can be
performed prior to any numerical evaluation of the LIMID.

Even if information arcs from irrelevant variables are re-
moved and only relevant information variables are con-
sidered for each decision, the domain of the policy for a
decision variable may grow exponentially in the number
of relevant information variables in the history. Limited-
memory influence diagrams [8] address this problem by al-
lowing information arcs from relevant variables to be re-
moved. When an information variable for an earlier deci-
sion is not an information variable for a later decision, it
means the no-forgetting assumption is violated. If there is
not an information arc from an earlier decision variable to
a later decision variable, it means the regularity assumption
is violated. We use the following example to illustrate the
properties of a LIMID.
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Figure 1: A maze with goal state marked by starred cell.

2.2 Example

Consider a maze navigation problem that can be modeled
as an ID [4, 14, 24]. In the maze shown in Figure 1, white
cells represent spaces where navigation is possible, and
shaded cells represent walls. A robot is initially placed in
one of the white cells and its objective is to reach the goal
state marked by a star. At each stage, the robot can choose
to move to any one of its neighboring cells, or it can stay
in its current location. The effect of the robot’s attempts
to move are stochastic. It moves to the intended neighbor-
ing cell with a probability of 0.89 and fails to move with
probability 0.089. The probability of sideways movement
is 0.01 in each of two possible directions, and the proba-
bility of backward movement is 0.001. A move towards a
wall has a probability of zero to succeed, and the remain-
ing non-zero probabilities are normalized. The robot’s sen-
sors provide incomplete information about the robot’s lo-
cation. They detect neighboring walls, but since more than
one location can share the same configuration of neighbor-
ing walls, observations do not unambiguously identify the
current location. The expected utility received by the robot
corresponds to the probability of successfully reaching the
goal state by the final stage of the problem. If the robot is
in the goal state at the final stage, it receives a utility value
of 1; otherwise, it receives a value of 0.

The ID shown in Figure 2(a) represents a two-stage version
of the maze navigation problem. The random variables xi
and yi represent the coordinates of the location of the robot
at stage i. The random variables {nsi, esi, ssi, wsi} are
the sensor readings in four directions at stage i. The deci-
sion variable di represents one of the possible actions taken
by the robot at that stage. The ID shown in Figure 2(a) is a
traditional ID that satisfies the regularity and no-forgetting
assumptions. Figure 2(b) shows a LIMID for which the
no-forgetting assumption is not satisfied. In this case, a de-
cision is conditioned on all past decisions as well as the
present states of the information variables when the deci-
sion is made, but not on the information variables for any
previous stages. In other words, the robot makes decisions
based on its current sensor readings only, without consider-
ing any previous sensor readings. Although the IDs shown
in Figure 2 represent two-stage decision problems, they are
easily extended for any finite number of stages.
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Figure 2: (a) An influence diagram with no-forgetting and
(b) a LIMID, both for the maze navigation problem.

2.3 Branch-and-bound solution method

Several exact methods have been developed to solve IDs
that satisfy the regularity and no-forgetting assumptions.
IDs were first solved by converting them to a decision
tree [5]. Subsequently, methods were developed that solve
an ID directly [19], or by converting it to some other graph-
ical form, such as a junction tree [20, 6]. For an ID that has
been converted to a decision tree, the traditional solution
method is the “average-out and fold-back” algorithm [17].
However, improved performance can be achieved using
a search algorithm that traverses the decision tree begin-
ning from the root and prunes branches with zero proba-
bility [16, 9]. The performance of this approach can be
improved further by using bounds to prune the tree, and
the results of this paper build on our earlier work on solv-
ing IDs using depth-first branch-and-bound search [24]. In
this approach, the decision tree corresponds to an AND/OR
search tree in which AND nodes correspond to informa-
tion variables (i.e., chance nodes that have informational
arcs into a decision node), OR nodes correspond to deci-
sion nodes, and leaf nodes correspond to utility nodes. A
path from the root of the search tree to a leaf node corre-
sponds to an instantiation of the information and decision
variables of the ID. When traversed by a depth-first search
algorithm, the tree is generated “on the fly” and only part of
the AND/OR tree needs to be in memory at any one time.

Two issues must be addressed to develop an effective
branch-and-bound algorithm. We need bounds to prune the
search tree and we need an efficient method for computing
posterior probabilities. As we discuss next, our approach
to both issues involves construction of a secondary ID we
call a relaxed influence diagram.
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Figure 3: Relaxed ID for two-stage maze problem.

Bounds computation We need bounds on the values of
OR nodes in order to prune the AND/OR search tree. As-
suming that we are maximizing expected utility, the best
value computed so far for any branch of an OR node (i..e,
for any action) serves as a lower bound on the optimal value
of the OR node. To compute upper bounds, we adopt an
approach proposed by Nilsson and Höhle [14]. In this ap-
proach, upper bounds are computed by solving a secondary
ID that is usually much easier to solve, which we call a re-
laxed ID. The relaxed ID is created by adding information
variables to the original ID that provide the decision maker
with additional information (ensuring that the solution of
the relaxed ID is an upper bound on the solution of the
original ID), while allowing the ID to be simplified by re-
moving non-requisite arcs (ensuring that it is much easier
to solve than the original ID). Recall that an information
arc is non-requisite [8, 13] for a decision node D if

Ii ⊥ (U ∩ d(D))|D ∪ (π(D) \ {Ii}), (6)

where d(D) and π(D) are the descendants and parents
of D, respectively, and ⊥ denotes conditional indepen-
dence. A reduction of an ID is obtained by deleting all
non-requisite information arcs [14]. Ideally, we want to
add information variables that make some or all of the in-
formation arcs for each decision node non-requisite, and
also make the ID easier to solve. The optimal policy for a
decision variable,Dj , depends on a set of information vari-
ables, Nj , or else it is history-independent. This set Nj can
be described as the current state of the decision problem,
such that if the decision maker is informed of this state, it
does not need to know of any past history to find an op-
timal policy; in this respect, it fulfills the Markov property
and can be said to provide perfect information. Nj is called
a sufficient information set (SIS) of Dj [24].

Thus the relaxed ID is created in two steps. First, the
SIS for each decision is computed in reverse time order,
Dn, ..., D1, making each SIS the information variables for
its corresponding decision variable. Second, non-requisite
arcs are removed from the ID. Consider the LIMID in Fig-
ure 2(b) as an example. The SIS for d1 is found as {x1, y1}.
The SIS for d0 is computed to be {x0, y0}. By making
{x1, y1} and {x0, y0} information variables for d1 and d0,
respectively, and after removing the non-requisite arcs, a
relaxed ID is obtained which is shown in Figure 3.

R 0 1 6 7 8 0 1 5

7 8 13 14 15

0 1 4 0 1 3 0 1 2

7 8 12 7 8 11 7 8 10 7 8 9

Figure 4: Strong join tree for the relaxed ID in Figure 3.

Incremental join tree evaluation The join tree algo-
rithm, an efficient method for probabilistic inference in a
Bayesian network, also provides an efficient method for
solving an ID [6]. For optimization problems that can be
solved by depth-first branch-and-bound search, Yuan and
Hansen [23] describe an incremental version of the join tree
algorithm. First developed for a branch-and-bound algo-
rithm for solving the MAP problem, it is used in the branch-
and-bound algorithm for solving traditional IDs [24], and
we will use it to extend the branch-and-bound approach to
LIMIDs. It assumes a static ordering of the variables to be
instantiated, and leverages the observation that when only
one new variable is instantiated at a time during forward
traversal of a branch of a search tree, it is only necessary
to perform message passing once along this path in the join
tree, broken into separate steps for each instantiating vari-
able. To allow efficient backtracking, the clique and sepa-
rator potentials of the join tree that are changed during for-
ward traversal are cached in the order that they are changed.
During backtracking, the cached potentials can be used to
efficiently restore the join tree to its previous state.

A strong join tree constructed from the relaxed ID is used to
compute both probabilities and upper bounds for the AND
and OR nodes in the search graph. Figure 4 shows a strong
join tree for the relaxed ID of Figure 3. We select an order
of variable elimination from the join tree that is an exten-
sion of the elimination ordering of the ID. Note that one of
the partial orders for the LIMID shown in Figure 2(b) is

{ns0, es0, ss0, ws0} ≺ {d0} ≺ {ns1, es1, ss1, ws1}
≺ {d1} ≺ {x0, y0, x1, y1, x2, y2, u}, (7)

Any order of variable expansion for the join tree that sat-
isfies the constraints in Equation 7 can be used for incre-
mental join tree evaluation. The order suggests which vari-
able to expand/instantiate next. For example, after ns0 is
expanded, the only message that needs to be sent to obtain
P (es0|ns0) is the message from clique (0, 1, 2) to (0, 1, 3).
If the following order for the maze problem is selected

ns0, es0, ss0, ws0, d0, ns1, es1, ss1, ws1, d1, x0, y0,

x1, y1, x2, y2 (8)

then an incremental message-passing scheme can be used
in the direction of the dashed arc in Figure 4 in one down-
ward pass of the depth-first search to compute probabilities
and upper bounds.
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3 AND/OR search graph

We next describe how to formulate the problem of solving
a LIMID as an AND/OR graph search problem. There are
two main differences between the depth-first-branch-and-
bound (DFBnB) algorithm for solving LIMIDs that we de-
velop in the rest of the paper, and the DFBnB algorithm
for solving traditional IDs. The first difference is that a
LIMID is solved by searching in an AND/OR graph instead
of an AND/OR tree. Since a decision maker with limited
memory is not able to distinguish all histories, the search
space for solving a LIMID is a graph in which different
paths that represent different histories can lead to the same
OR node because the differences between the histories are
not remembered. A second difference is that the message-
passing scheme used by the incremental join tree algo-
rithm to compute bounds and probabilities requires some
revisions for search in an AND/OR graph instead of an
AND/OR tree. We discuss the first difference in Section 3.1
and the second in Section 3.2.

First we review some basic concepts about the AND/OR
search space for the decision problem represented by an
ID. Recall that AND nodes represent random variables and
OR nodes represent decision variables. Any arc emitting
from an AND node has a probability attached to it; the sum
of all the probabilities associated with the arcs of an AND
node is 1.0. Each arc emitting from an OR node represents
a decision alternative. The leaf nodes of the search graph
have utility values attached to them that are derived from
the utility nodes of the ID. The valuation function for each
node is defined as follows: (a) for a leaf node, the value is
its utility value, (b) for an AND node, the value is computed
by multiplying the probability associated with each outgo-
ing arc by the utility value of the corresponding child node
and then summing these values, and (c) for an OR node,
the value is the maximum of the utility values of the child
nodes. We use this valuation function to determine the op-
timal strategy for an ID. We represent a strategy for an ID
as a strategy graph, which is a subgraph of an AND/OR
graph that is defined as follows: (a) it consists of the root of
the AND/OR graph; (b) if a non-terminal AND node is in
the strategy graph, all its children are in the strategy graph;
and (c) if a non-terminal OR node is in the strategy graph,
exactly one of its children is in the strategy graph. Given
an AND/OR graph that represents all possible histories and
strategies for an ID, the decision problem is solved by find-
ing a strategy graph with the maximum value at the root,
where the value of the strategy graph is computed based on
the valuation function.

The optimal strategy for an ID can always be found by
searching in an AND/OR tree. But the tree representation
of the problem is inefficient if it contains many repeated
subtrees that represent the same subproblem. For a LIMID,
the number of repeated subtrees will be much greater than

for a traditional ID because many different histories will
lead to the same subproblem in which a decision must be
made based on limited information that represents only part
of the history. In the following, we describe how to convert
an AND/OR tree representation of the decision problem for
a LIMID into an equivalent AND/OR graph by merging OR
nodes that are generated from different histories but repre-
sent the same subproblem.

In our approach, we (slightly) limit the class of LIMIDs we
consider by assuming the following: if a decision maker
is aware of the value of an information variable and then
“forgets” it, it cannot recall the forgotten information later
on. We call this assumption the no-recalling-forgotten-
information rule. It is difficult to imagine any realistic de-
cision problem that violates this assumption. But we make
the assumption explicit because the LIMID model does not
rule out such cases. The assumption simplifies our ap-
proach to recognizing and merging equivalent OR nodes.

We also modify the usual definition of an AND/OR graph
by introducing a special kind of AND node that allows mul-
tiple decisions to be considered in parallel if they repre-
sent scenarios that are conditionally independent given that
some variables have already been observed. We call this
new kind of node a special AND (SAND) node. We dis-
cuss SAND nodes further in Section 3.1.3.

3.1 Context-based merging of OR nodes

To construct an AND/OR graph instead of an AND/OR
tree for solving LIMIDs, the main idea is to merge multi-
ple OR nodes (i.e., decision nodes) that represent the same
decision scenario into a single OR node. Our approach
uses the concept of the context of an OR node. The con-
text of an OR node is defined as the joint state of the in-
formation variables remembered by the current decision
variable along with the states of previously observed de-
cisions that will influence the descendant utilities of this
decision. More formally, the context of an OR node is a
set CDi

= SIi−1
∪ SDi−1

∪ SDu(i−1)
, where SIi−1

, SDi−1
,

and SDu(i−1)
, respectively are the sets of states of the ran-

dom and decision variables remembered by Di, and the set
of states of the previously expanded decision variables that
will influence the descendent utilities of Di.

For example, Figure 5 shows a partial AND/OR graph for
the LIMID in Figure 2. Note that the AND/OR graph is
condensed for ease of illustration as the individual ran-
dom variables for the sensors are grouped together into one
AND layer. In our actual AND/OR graph, they correspond
to multiple AND layers. The context of the bottom-right
OR node in the Figure is {1, 1, 1, 1, 0}, where {1, 1, 1, 1}
is the set of present information states, and {0} is the last
action taken. The previous sensor readings are totally for-
gotten. That is why the two paths starting from the root
converge to this OR node.
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In our context-based approach to merging OR nodes, we
distinguish three cases; sequential decisions, cooperative
decisions, and conditionally-independent decisions. We
explain the differences below.

3.1.1 Sequential decisions

ns0,es0,ss0,ws0

d0

0000

d0

1111

ns1,es1,ss1,ws1

0

ns1,es1,ss1,ws1

0

d1

0000

d1

1111 0000 1111

Figure 5: Partial AND/OR graph with merged OR nodes.

A pair of decisions is sequential if there is an obvious tem-
poral ordering between them. If all decision pairs in a
LIMID are sequential then the elimination order of Equa-
tion 5 applies. Figure 2(b) shows an example of a LIMID
where all decision pairs are sequential. Duplicate OR nodes
are detected using the definition of context provided above
and illustrated by the example in Figure 5. Contexts are
rather straightforward for sequential decisions given the
no-recalling-forgotten-information assumption. Without
this assumption, much more complex book-keeping would
be needed to keep track of contexts during the search.

Note that in Figure 5, the AND nodes contain multiple
random variables to simplify the picture. In the AND/OR
search graph created by our implementation, each random
variable is represented by a separate AND node, and they
are expanded one at a time by the search algorithm.

3.1.2 Cooperative decisions

d_1

u
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u

1

u
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0

Figure 6: A LIMID with a cooperative-decision pair (left),
and its corresponding AND/OR graph (right).

We next consider the case where multiple, simultaneous de-
cisions need to be considered to evaluate a value function.
We call this case a cooperative decision because the deci-
sion makers need to cooperate to select the combination of

actions that results in an optimal utility for every possible
decision scenario. Unlike the sequential decision scenario,
there exists no obvious elimination ordering between de-
cision pairs in this case. Figure 6 shows an example of a
cooperative decision pair. In this example, if d2 is realized
after d1 in the elimination order during the generation of
the AND/OR graph, then d1 needs to be included in d2’s
context. The AND/OR graph for this LIMID is also shown
in Figure 6. Note that all the OR nodes in this graph are
unique.

3.1.3 Conditionally-independent decisions

It is possible that multiple decisions can be expanded in
parallel given that some variables have been realized. An
example is shown in Figure 7. In this example, the sets
of decisions {D1}, and {D2} can be expanded in parallel
given that the set of variables(s), {a}, has been observed.
We call this situation a conditionally-independent decision
scenario (CIDS). A CIDS can be determined from the
LIMID itself or the strong join tree of the LIMID [7, 21].

a

d_1 d_2

u_1 u_2

a

SAND_1 SAND_2

d_1 d_2 d_1 d_2

Figure 7: A LIMID with CIDS(left), and its corresponding
(partial) AND/OR graph (right).

To solve a LIMID that includes a CIDS, we introduce a
new type of node in the AND/OR graph, called a special
AND or SAND node. When it is realized that multiple deci-
sions can be made in parallel after some nodes in the search
graph have been expanded, a SAND node is introduced (in
the search graph). A SAND node is different from a regular
AND node in two ways: the total number of children for a
SAND node is the number of sets of decisions that can be
expanded in parallel, and the weight attached to each arc is
1.0. Unlike the regular AND/OR graph search where the
rest of the unexpanded nodes are considered for expansion
once a node (AND or OR) is expanded for each branch of
the AND node, each branch of the SAND node will expand
a subset of unexplored nodes for a LIMID with CIDS(s).
These subsets are determined by the elimination order of
decisions presented by the join tree: each subset will con-
tain the set of decisions and their respective information
variables that need to be expanded in sequence in the fu-
ture. For example, for the LIMID shown in Figure 7, once
variable a is expanded, a SAND node, denoted SAND1,
will be expanded. This node will have two branches – in
one branch the set of decision(s), {D1}, will be expanded;
the set {D2} will be expanded in the other branch, as illus-
trated in Figure 7.
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3.1.4 Implementation

So far, we have given rules for merging OR nodes but have
not discussed their implementation. For each OR node in
the graph, we store both its context and utility value (once it
is calculated). When an OR node is ready to be generated,
its context is calculated and then checked against the con-
texts of existing OR nodes (which we store in a hash table,
described below). If a previously-generated OR node has
the same context, the new OR node is not generated. In-
stead, the existing OR node receives an additional arc from
the parent of the new OR node.

For duplicate checking, all generated OR nodes are stored
in a hash table indexed by their context. (In cases in which
we can decompose the decision problem into well-defined
stages, there can be a separate hash table for each stage of
the problem.) In our implementation, the context is repre-
sented by a string that contains the states of the variables
of that decision’s context, concatenated by commas. As
the search progresses, the context string for each decision
node can grow and potentially slow the duplication detec-
tion process.

3.1.5 Discussion

The concept of solving an ID by searching in an AND/OR
graph, instead of an AND/OR tree, is not new. In the lit-
erature on IDs, the process of converting a decision tree to
an equivalent graph in which identical subtrees are merged
is referred to as coalescence [15, 22]. Automating coa-
lescence in the decision tree framework is considered diffi-
cult and computationally expensive, however, and solutions
are sometimes hand-crafted. A context-based approach to
merging OR nodes has been proposed before, for proba-
bilistic inference in Bayesian networks [2] and solving an
ID [9]. The primary difference between our approach and
previous work is that our approach applies to LIMIDs.

Note that our approach to context-based merging does not
necessarily produce the most concise AND/OR graph. A
more concise graph could be found by directly compar-
ing probability distributions to detect duplicate OR nodes.
We define RDi

as the set of variables that is considered
for expansion once the information variables, Ii−1, for a
decision variable, Di, are expanded. Formally, RDi

=
Di ∪ Ii ∪ Di+1 ∪ ... ∪ In−1 ∪ Dn. Once the information
variable set, Ii−1, is expanded, the probability distribution
of RDi

given Di’s context, P (RDi
|CDi

), could be used
to detect duplicate decision scenarios. If multiple decision
scenarios share the same distribution then these OR nodes
can be collapsed into a single OR node, since they share
a subgraph [22]. Although comparing probability distribu-
tions in order to merge nodes could generate a more com-
pact AND/OR search graph, it is computationally expen-
sive, and an approach that relies on context-based merging
appears to be more practical.

3.2 Incremental probabilities and bounds

We next consider how to modify the incremental join
tree algorithm to compute the probabilities and bounds
needed by the AND/OR graph search algorithm for solv-
ing LIMIDs. Consider the LIMID shown in Figure 2.2(b)
as an example, and the relaxed LIMID of Figure 4. We
can use the join tree of the relaxed LIMID to compute both
the probabilities and bounds needed for the AND/OR graph
search. (We can use it to compute probabilities for the
AND nodes of the search graph because the same set of
actions transforms both the original LIMID and the relaxed
LIMID into the same Bayesian network. Adding informa-
tion arcs to create a relaxed ID only changes the expected
utility of the network.) Note that the join tree does not have
a clique that contains all four variables; they are in different
cliques. Thus we consider the expansion of these variables
one by one, generating an AND/OR graph with four layers
of AND nodes followed by a layer of OR nodes, as shown
in Figure 5.

The AND/OR search graph is generated on-the-fly during
the branch-and-bound search. To make this process effi-
cient, we follow the elimination order given by Equation
8 to generate the nodes of the search graph and calculate
probabilities. The probabilities for the AND nodes cor-
responding to variables {ns0, es0, ss0, ws0} can be calcu-
lated by sending messages in the following order of cliques:
(0, 1, 2), (0, 1, 3), (0, 1, 4), and (0, 1, 5). Given limited
memory, however, calculation of probabilities for the infor-
mation variables of the next decision needs to be modified.

When a decision stage is considered for expansion, we con-
sider whether the decision variable, Di, recalls anything
from the past. If it does, then the cliques hosting these re-
called variables along with the clique, clq0, that hosts the
first information variable for Di are identified. Then we
devise a message-passing scheme that sets evidence for the
cliques of the recalled variables and passes messages to-
wards the clique, clq0. To perform these message propaga-
tions, we use a set of temporary potentials, one assigned for
each clique and separator, which are initialized to the clique
potentials obtained from the initial collection and distribu-
tion process of the join tree at the beginning of this process.
For our example, when the first information variable, ns1,
for d1 is about to be expanded, we set evidence to the clique
(0, 1, 6, 7, 8) with the current state of d0, and pass in the di-
rection of the clique (7, 8, 9). Once the clique (7, 8, 9) re-
ceives this message, it sets its current potential to this newly
obtained potential. The rest of the information variable ex-
pansion process follows the incremental join tree evalua-
tion method proposed in [24]. When backtracking from
a decision, we backtrack to the clique hosting the last in-
formation variable expanded for the previous expanded de-
cision. The space requirement for our join tree evaluation
approach is O(N) if N is the space required for the evalu-
ation approach proposed in [24].
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After the AND nodes of {ns0, es0, ss0, ws0} are generated
for this example, we need to generate the OR node d0 and
corresponding upper bounds. The subset of information
variables for a decision di is used to compute the upper
bound for di. In our example, we do not need to set the
states of {ns0, es0, ss0, ws0} as evidence during the com-
putation of expected utility values for d0 because the states
of the information variables for d0 are not remembered for
future decisions. In summary, the basic idea for handling
information forgetting in a LIMID is to only send a mes-
sage to a future decision for calculating probabilities and
utility values if the message contains information variables
that are remembered by the future decision.

3.3 Optimality of the algorithm

It is not difficult to prove that our AND/OR graph search
algorithm finds an optimal strategy. If we do not merge OR
nodes, we have an AND/OR tree, and so we first show that
the strategy found by an AND/OR tree search is optimal.

Lemma 1 A DFBnB AND/OR tree search algorithm finds
an optimal strategy for a LIMID.

Proof: Since all the possible policies for each decision node
are examined by the search, it must converge to an optimal
strategy once the search ends. 2

We then argue that merging OR nodes preserves optimality.

Theorem 1 A DFBnB AND/OR graph search algorithm
finds an optimal strategy for a LIMID.

Proof: Since the subgraphs below any OR nodes that rep-
resent the same decision scenario are identical and have the
same utility, merging the OR nodes preserves optimality. 2

4 Experimental evaluation

We tested the performance of our algorithm in solving
the maze problem described in Section 2.2, as well as a
classic finite-horizon DEC-POMDP, and several randomly-
generated LIMIDs. Experiments were performed on a Win-
dows PC with a Pentium i3 processor and 3GB of RAM.

Tables 1, 2 and 3 show all results in the same format.
The column labeled “(d, c, u)” gives the number of deci-
sion nodes, chance nodes, and utility nodes, respectively,
in the LIMID, and the column labeled “SG” gives the size
of the optimal strategy graph measured as the total number
of AND and OR nodes it contains. The remaining columns
measure the efficiency of the search algorithm. The column
labeled “Pruned” gives the number of times a branch of the
AND/OR graph was pruned in solving the LIMID, the col-
umn labeled “Merged” gives the number of times two OR
nodes were merged, and the column labeled “Time” gives
the time needed to solve the problem.

(d, c, u) SG Pruned Merged Time
(2, 14, 1) 495 124 528 109ms
(3, 20, 1) 951 364 2112 421ms
(4, 26, 1) 1407 688 4224 952ms
(5, 32, 1) 1, 863 2, 848 18, 480 4s
(6, 38, 1) 2, 319 9, 412 61, 776 17s
(7, 44, 1) 2, 775 25, 768 168, 960 53s
(8, 50, 1) 3, 231 90, 400 593, 472 3m30s
(9, 56, 1) 3, 687 309, 184 2, 027, 520 13m21s

(10, 62, 1) 4, 143 1, 058, 908 6, 939, 504 50m17s

Table 1: Results for maze navigation LIMID.

4.1 Maze navigation

Table 1 shows results for the maze navigation problem of
Section 2.2 when the number of stages is varied from two
through ten. The LIMIDs for this problem satisfy the reg-
ularity assumption (there is one decision node per stage),
but not the no-forgetting assumption (observations are not
remembered after the current stage). Of the total number of
branches pruned, approximately 40% are pruned based on
bounds; the remaining 60% are pruned because the proba-
bility of the branch is zero.

4.2 Multi-agent tiger behind door

Table 2 shows results for a finite-horizon DEC-POMDP
that represents cooperative multiagent decision making un-
der uncertainty [12]. In this problem, there are two doors,
one on the left and one on the right, and two agents. Behind
one door is a tiger and behind the other is treasure. Each
agent has a choice of three actions: it can open a door on the
left or right, or it can listen for the tiger. If an agent hears
the tiger behind one of the doors, the tiger is actually there
with probability 0.85. At each stage, the agents must each
choose an action without knowing what the other agent will
choose; thus the regularity assumption is not satisfied. Each
agent remembers its previous actions and observations, but
is unaware of the other agent’s observations. The agents
receive better rewards if they coordinate their actions: the
reward for opening the door with treasure is greater is both
agents open the door together, and the penalty for opening
the door with the tiger is less severe if they open that door
together. There is a small cost for the listen action.

(d,c,u) SG Pruned Merged Time
(4, 6, 2) 15 12 6 15ms
(6, 9, 3) 39 35 24 62ms

(8, 12, 4) 87 737 576 530ms
(10, 15, 5) 351 9, 529 6, 984 7s
(12, 18, 6) 1, 599 42, 559 31, 602 49s
(14, 21, 7) 4, 047 288, 516 214, 170 5m31s
(16, 24, 8) 10, 023 2, 328, 571 1, 763, 904 53m21s

Table 2: Results for multi-agent tiger LIMID.
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Table 2 shows results for this problem when the number
of stages is varied from two through eight. Our algorithm
solves the problem optimally for eight stages in less than an
hour. The provably optimal solution reported in [18] is for
up to four stages, found by dynamic programming [3]. For
this search problem, there are no zero-probability branches.
All branches are pruned based on bounds.

4.3 Randomly-generated LIMIDs

We also tested our algorithm on a set of randomly-
generated LIMIDs. The LIMIDs were created to have be-
tween 10 and 20 stages, with one decision node, one utility
node, and between 3 and 6 chance nodes per stage. For
each stage, half (and at least 2) of the nodes are selected
to be information variables of the decision variable. The
utility function for each stage is a function of the decision
variable and two randomly-selected random variables from
that stage, and potentially the decision variable from the
previous stage. Once nodes are generated for all stages, we
generate additional informational arcs as follows. For the
decision variable of each stage k beginning from the second
stage and continuing until the last stage, we add informa-
tional arcs from half (and at least 2) of the information vari-
ables of the previous stage, selected randomly. This method
of adding informational arcs ensures that the no-recalling-
forgotten-information rule is satisfied. When adding arcs,
we make sure that chance nodes with no children become
the information variables for the decision node first so that
there are no barren nodes. Each random and decision vari-
able has from 2 to 4 states, and the probabilities for the ran-
dom nodes are assigned from an uniform probability distri-
bution. The utility values range from −20 to 20.

Table 3 only shows results for a selection of LIMIDs for
which the treewidth of the relaxed LIMID does not exceed
12. The LIMIDs solved are larger than those for the maze
and tiger problems. For these randomly-generated LIM-
IDs, not all previous actions are remembered, which ap-
pears to make both duplicate detection and probabilistic in-
ference using the incremental join tree algorithm faster.

(d,c,u) SG Pruned Merged Time
(10, 46, 10) 33, 463 8, 538 167, 154 34s
(10, 44, 10) 14, 785 1, 475 17, 817 4s
(11, 47, 11) 16, 866 6, 501 153, 436 50s
(12, 60, 12) 27, 318 14, 333 111, 629 33s
(13, 64, 13) 32, 087 7, 220 103, 560 2m34s
(13, 60, 13) 39, 052 11, 958 1, 231, 516 16m26s
(13, 65, 13) 36, 040 11, 366 183, 664 49s
(15, 70, 15) 28, 080 14, 546 997, 728 3m26s
(16, 72, 16) 31, 525 25, 736 1, 023, 012 6m13s
(18, 84, 18) 50, 306 21, 582 524, 416 4m5s
(19, 88, 19) 130, 168 7, 286 140, 952 46s
(20, 84, 20) 25, 012 16, 147 232, 175 1m12s

Table 3: Results for randomly-generated LIMIDs.

4.4 Comparison to variable elimination

The state-of-the-art exact algorithm for solving LIMIDs is
a recently-developed variable elimination algorithm called
Multiple Policy Updating (MPU) [11, 10]. Although it
is not possible to draw definite conclusions about rela-
tive performance without direct comparison, we can make
some general comments. Like our branch-and-bound al-
gorithm, the MPU algorithm avoids solving redundant de-
cision scenarios by caching and reusing intermediate re-
sults. Our algorithm also uses bounds to prune decision
scenarios before they are evaluated, however, and can prune
zero-probability branches that represent impossible sce-
narios, and that may give it some advantage, similar to
the advantage that the depth-first branch-and-bound algo-
rithm for solving traditional IDs has over other ID algo-
rithms [24]. In reporting results for their variable elimi-
nation algorithm, Maua et al. [11, 10] report that it solves
randomly-generated LIMIDs with up to 1064 strategies and
a treewidth bounded by 10. Our branch-and-bound algo-
rithm solves randomly-generated LIMIDs with up to 10152

strategies and a treewidth of up to 27. (The multi-agent
tiger LIMID has 1088 possible strategies and a treewidth of
38. The 10-stage maze problem has 10156 possible strate-
gies. The 7-stage maze LIMID has a treewidth of 31; we
could not compute the treewidth for more stages than that.)
Whereas the scalability of the MPU algorithm is limited by
the treewidth of the LIMID, the scalability of the branch-
and-bound algorithm appears to be limited by the (usually
smaller) treewidth of the relaxed LIMID, which is used to
compute bounds and probabilities. In future work, we hope
to better characterize the relative performance of these two
approaches.

5 Conclusion

We have described a branch-and-bound AND/OR graph
search algorithm that finds optimal strategies for LIMIDs,
building on earlier work on solving traditional IDs using
branch-and-bound search. The approach is especially ef-
fective for IDs that represent multistage decision problems.

The branch-and-bound approach performs well even
though the bounds used in our implementation are quite
simple. (They are equivalent to assuming perfect infor-
mation.) The bounds can likely be significantly improved,
allowing more pruning and faster search. We plan to im-
plement improved bounds and evaluate the approach on a
wider range of test problems. Our approach to determining
the context of a decision node and merging duplicate OR
nodes is also simple, and could potentially be improved,
and it may also be possible to find more compact represen-
tations of an optimal strategy.
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Abstract

We present a novel approach for constrained
Bayesian inference. Unlike current methods, our
approach does not require convexity of the con-
straint set. We reduce the constrained variational
inference to a parametric optimization over the
feasible set of densities and propose a general
recipe for such problems. We apply the proposed
constrained Bayesian inference approach to mul-
titask learning subject to rank constraints on the
weight matrix. Further, constrained parameter
estimation is applied to recover the sparse con-
ditional independence structure encoded by prior
precision matrices. Our approach is motivated
by reverse inference for high dimensional func-
tional neuroimaging, a domain where the high
dimensionality and small number of examples re-
quires the use of constraints to ensure meaning-
ful and effective models. For this application, we
propose a model that jointly learns a weight ma-
trix and the prior inverse covariance structure be-
tween different tasks. We present experimental
validation showing that the proposed approach
outperforms strong baseline models in terms of
predictive performance and structure recovery.

1 INTRODUCTION

The Bayesian paradigm has become one of the most im-
portant approaches for modeling uncertainty. Bayes’ clas-
sic theorem provides a principle for updating prior beliefs
with new information, and has become and important com-
ponent of statistics and machine learning. Despite the el-
egance of Bayes theorem, some learning problems require
model constraints that are difficult or inappropriate to en-
force using standard prior distributions. Examples include
linear inequality constraints (Gelfand et al., 1992) and mar-
gin constraints (Zhu et al., 2012).

Williams (1980) showed that the Bayesian posterior distri-
bution can be derived as the solution of a constrained rela-
tive entropy minimization problem. Constrained Bayesian
inference is proposed as an extension that combines
Bayesian inference with other constraints determined by
domain knowledge. Constrained relative entropy mini-
mization can be solved via Fenchel duality theory (Altun
& Smola, 2006), which requires convexity of the constraint
set. In this paper, we propose an alternative approach that
does not require the constraint set to be convex. We find
that the optimization problem resulting from the proposed
approach may be easier to solve than the equivalent Fenchel
dual approach even when the constraint set is convex.

Rank constraints have proven to be effective for controlling
model complexity (Candés & Recht, 2009). In addition to
superior performance in many scenarios, the decomposi-
tions learned are often useful for explaining the structure of
complex multivariate data. Low rank latent variable mod-
els have been applied to various domains including princi-
pal component analysis (Bishop, 1998), multitask learning
(Stegle et al., 2011) and collaborative filtering (Salakhutdi-
nov & Mnih, 2008). We propose a novel approach for low
rank multitask learning via Bayesian inference subject to
a nuclear norm constraint on the predictive weight matrix.
The constrained inference is combined with parameter es-
timation for the prior precision of the matrix-variate Gaus-
sian distribution. We enforce l1 regularization constraints
on the precision matrix to reveal its sparsity structure.

Our work is motivated by reverse inference for functional
neuroimaging. Functional neuroimaging datasets typically
consist of a relatively small number of correlated high di-
mensional brain images. Hence, capturing the inherent
structural properties of the imaging data is critical for ro-
bust inference. Predictive modeling (also known as “brain
reading” or “reverse inference”) has become an increas-
ingly popular approach for studying fMRI data (Pereira
et al., 2009; Poldrack, 2011). Reverse inference involves
the interpretation of the parameters of a model trained to
decode the stimulus or task using the brain images as fea-
tures. We show that the proposed approach is effective in
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this domain.

The contributions of this paper are as follows:

• We propose an a novel representation approach for
constrained Bayesian inference. We prove that the op-
timizing density is a member of an exponential family.
The presented results relax the necessary conditions
on the constraint set such as convexity.

• We develop a novel constrained Bayesian model for
rank constrained multitask learning and apply l1 norm
constrained parameter estimation to estimate the inter-
task conditional independence structure.

• The proposed multitask learning approach is applied
to reverse inference for functional neuroimaging data.
We show that the proposed approach results in supe-
rior accuracy as compared to strong baseline models.

As a minor contribution, our work appears to be the first
application of constrained Bayesian inference to continu-
ous valued variables that are not margin constraints. Con-
strained Bayesian inference is discussed in Section 2 and
the proposed representation approach is introduced in Sec-
tion 2.1. We discuss the proposed rank constrained multi-
task learning approach in Section 3. Related work is dis-
cussed in Section 4 and experimental results are presented
in Section 5.

1.1 PRELIMINARIES

We denote vectors by lower case x and matrices by capital
X. Let ID represent theD×D identity matrix. Given a ma-
trix A ∈ RP×Q, vec(A) ∈ RPQ is the vector obtained by
concatenating columns of A. Given matrices A ∈ RP×Q
and B ∈ RP

′×Q′ , the Kronecker product of A and B is
denoted as A ⊗ B ∈ RPP

′×QQ′ . We use ‖·‖p to denote

the vector Lp norm with ‖x‖p = (
∑
i x

p
i )

1
p , and use |||·||| to

denote spectral (matrix) norms i.e. |||X|||p is the Lp norm
of the singular values of X.

Let X be a Banach space and let X ∗ be the dual space of
X . The Legendre-Fenchel transformation (or convex con-
jugate) of a function f : X 7→ [−∞,+∞] is given by
f∗ : X ∗ 7→ [−∞,+∞] as f∗(x∗) = sup

x∈X
{〈x, x∗〉−f(x)}.

where 〈x, x∗〉 denotes the dual pairing. See Borwein & Zhu
(2005) for further details on Fenchel duality, particularly as
applied to variational optimization.

Let E be the expectation operator with Ep [ f(z) ] =∫
z
p(z)f(z)dz. The Kullback-Leibler divergence be-

tween densities q and p is given by KL(q(z)‖p(z)) =
Eq(z) [ log q(z)− log p(z) ]. The delta function as a gener-
alized function that satisfies

∫
Z
f(z)δa{dz} = f(a), where

f is absolutely continuous with respect to dz, and a ∈ Z.
Following from the definition, the expectation with respect

to the delta function satisfies Eδa [ f ] = f(a), and given
the density p, we have that Ep [ δa ] = p(a). Further, it can
be shown (Williams, 1980) that KL(δa‖p) = − log p(a).

An exponential family is a class of probability distributions
whose density functions take the form:

p(x|θ) = h(x)e〈η(θ),t(x)〉−G(θ),

where η(θ) is known as the natural parameter vector, t(x)
is the vector of natural statistics, G(θ) is the log partition
function and h(x) is known as the base measure. The ex-
ponential family is in canonical form if η(θ) = θ. Further
details on exponential family distributions may be found in
(Brown, 1986).

Let x ∈ RD be drawn from a multivariate Gaussian distri-
bution. The density is given as:

N (m,Σ) =
exp

(
− 1

2 tr
(
(x−m)>Σ−1(x−m)

))

(2π)D/2|Σ|P/2 ,

where m ∈ RD is the mean vector and Σ ∈ RD×D is
the covariance matrix. | · | denotes the matrix determinant
and tr(·) denotes the matrix trace. Let X ∈ RD×K be
drawn from a matrix-variate Gaussian distribution repre-
sented as MN (M,ΣR,ΣC) where M ∈ RD×K is the
mean matrix, ΣR ∈ RD×D is the row covariance matrix
and ΣC ∈ RK×K is the column covariance matrix. The
density is given by:

exp
(
− 1

2 tr
(
Σ−1C (X−M)>Σ−1R (X−M)

))

(2π)DL/2|ΣR|D/2|ΣC |K/2
.

2 CONSTRAINED BAYESIAN
INFERENCE

Constrained relative entropy inference follows from the
principle of minimum discrimination information (Kull-
back, 1959); a conceptual framework for updating a dis-
tribution given constraints. It defines a procedure for up-
dating the distribution as one that satisfies the constraints
and is closest to a predefined prior distribution in terms
of relative entropy. Bayesian inference is recovered from
the constrained relative entropy framework when the data
constraints correspond to knowledge of the value of y with
certainty (Williams, 1980). Given the observation ỹ ∼ Py ,
this knowledge is encoded using the constraint Eq [ δỹ ] = 1
that must be satisfied by the updated distribution q. The re-
sulting constrained relative entropy minimization problem
is given by:

min
q∈P

[
KL(q(z, y)‖p(z, y)) s.t. Eq [ δỹ ] = 1

]
. (1)

It is clear that any distribution q that optimizes (1) must
satisfy the equivalent conditional distribution constraint
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q(y) =
∫
Z
q(z, y) = δỹ , so we will focus on estimating the

portion of the distribution that remains unknown, which,
from the basic rules of probability, is the conditional distri-
bution q(z|y). Thus, it will be useful to express the joint
relative entropy in a form that separates the latent variables
from the observations by expressing KL(q(z, y)‖p(z, y))
as:

Eq(y) [ KL(q(z|y)‖p(z|y)) ] + KL(q(y)‖p(y)).

Enforcing the constraint q(y) = δỹ , we recover that
KL(q(x|y)q(y)‖p(x|y)p(y)) is given by:

KL(q(x|y = ỹ)‖p(x|y = ỹ))− log(p(ỹ)).

The second term log(p(ỹ)) is the log evidence, and is fixed
independent of the first term. The first term is minimized
when q(x|y = ỹ) = p(x|y = ỹ), recovering the Bayesian
posterior distribution1. Thus, the solution of the relative en-
tropy minimization problem (1) takes the form of the gen-
eralized density q∗(x, y) = p(x|y = ỹ)δỹ .

For the rest of the discussion, we focus on q as a density
with respect to Z (ignoring the implicit conditioning). It
is instructive to expand the terms of the loss function. The
relative entropy expands as follows:

KL(q(z)‖p(z|y))− log p(y) (2a)
= Eq [ log q(z)− log p(z|y)− log p(y) ] (2b)
= Eq [ log q(z)− log p(z)− log p(y|z) ] (2c)
= KL(q(z)‖p(z))− Eq [ log p(y|z) ] . (2d)

where (2b) and (2d) follow directly by expansion of the KL
divergence, and (2c) follows from the rules of conditional
probability as p(z|y)p(y) = p(z, y) = p(y|z)p(z). The re-
sult of (2c) also recovers the identity discovered by Zellner
(1988), who showed that the Bayesian posterior density is
given by:

p(z|y) = arg min
q∈P

KL(q(z)‖p(z))−Eq [ log p(y|z) ] . (3)

Constrained Bayesian inference defines a procedure for en-
forcing constraints on latent variables in addition to the
constraints on the observation variables. Let β represent
feature functions that map Z to a feature space with com-
ponents β(z) = {βj(z)} and let C denote a constraint set
of interest. We consider information encoded as expecta-
tion constraints in this paper. The constrained Bayesian
inference procedure is defined by the following equivalent
optimization problems:

min
q∈P, Eq [β(z) ]∈C

[
KL(q(z)‖p(z|y))

]
(4a)

min
q∈P,Eq [β(z) ]∈C

[
KL(q(z)‖p(z))− Eq [log p(y|z)]

]
(4b)

1Recall Bayes rule: p(z|y) = p(y|z)p(z)/p(y)

It is clear from (4a) that constrained Bayesian inference
corresponds to an information projection of the Bayesian
posterior distribution to the set to distributions q that sat-
isfy the constraints Eq [β(z) ] ∈ C. Following Zellner, we
call q∗ the postdata distribution to distinguish it from the
unconstrained Bayesian posterior distribution.

We now consider probabilistic inference via constrained
relative entropy minimization. Altun & Smola (2006) stud-
ied norm ball constraints given by ‖Eq [β(z)) ]− b‖B ≤ ε
where ‖ · ‖B is the norm ball on a the Banach space B cen-
tered at b ∈ B, and ε ≥ 0 is the width. The solution
was found by an elegant application of Fenchel duality for
variational optimization (Borwein & Zhu, 2005). The fol-
lowing Lemma characterizes relative entropy minimization
subject to norm ball constraints.

Lemma 1 (Altun & Smola (2006)).

min
q∈P

KL(q(z)‖p(z)) s.t. ‖Eq [β(z) ]− b‖B ≤ ε (5)

= max
λ
〈λ,b〉 − log

∫

Z

p(z)e〈λ,β(z)〉dz − ε‖λ‖B∗ + e−1

(6)

and the unique solution is given by q∗(z) =
p(z)e〈λ∗,β(z)〉−G(λ∗) where λ∗ is the solution of the
dual optimization (6) and G(λ∗) ensures normalization.

There may be several equivalent representations for a given
density q ∈ P . However, Lemma 1 shows that the density
that minimizes relative entropy subject to norm ball con-
straints, if it exists, has a canonical representation a mem-
ber of the exponential family with base measure p, natu-
ral statistics β(z) and parameters λ∗. The conditions for
Lemma 1 include constraint qualification, which requires
the existence of densities that satisfy the set of constraints,
and a finite cost (6) at the solution λ∗. More details are
given in Altun & Smola (2006) and Chapter 4 of Borwein
& Zhu (2005).

2.1 A REPRESENTATION APPROACH

The dual solution presented in Lemma 1 requires convexity
of the constraint set C. Further, solving the resulting dual
optimization (6) requires the evaluation of the log partition
function which is often challenging. We present an alter-
native representation approach that separates the problem
into two parts. First we find the parametric family of the
optimizing postdata density, then we directly optimize over
that parametric family. Unlike the dual approach, the pro-
posed representation approach does not require convexity
of the constraint set.

For the rest of this paper, we will assume that the set of
solutions q∗ of the constrained Bayesian optimization (4)
is not empty so the optimization problem is well defined.
This implies the existence of at least one density q ∈ P that
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satisfies the constraints Eq [β(z) ] ∈ C. This also implies
that the solution of the variational optimization problem is
achieved at a density q∗. Further, we assume that for each
solution q∗, the expectation Eq∗ [β(z)) ] = a∗ is bounded
to avoid the degenerate problem of unbounded constraints.
Finally, we assume that C ⊂ B is a closed subset of the Ba-
nach space B. This assumption is mostly for convenience
and clarity and can easily be relaxed.

Let Ec = {q ∈ P |Eq [β(z) ] = c} denote the constraint
set subject to equality constraints. The constrained Bayes
optimization problem (4b) can be written as:

min
c∈C

[
min
q∈Ec

KL(q(z)‖p(z|y))

]
, (7)

which requires the solution of an inner optimization:

qc = arg min
q∈Ec

KL(q(z)‖p(z|y)). (8)

Let A ⊂ C represent the set of points c ∈ C where c is
bounded, and the optimization problem of (4b) is finite and
attained. Assuming the existence of at least one solution
q∗, it follows that the set A is not empty. We associate a
density function qc to every element c ∈ A. We define a
feasible set of solutions characterized by the set of densities
F = {qc(z) | c ∈ A}. The following proposition is a direct
consequence of Lemma 1 and is stated without proof.

Proposition 2. For any c ∈ A, the unique minimizer of (8)
is given by: qc(z) = p(z|y)e〈λc,β(z)〉−G(λc) where λc is
the solution of the dual optimization (6) with ε = 0 and
G(λc) ensures normalization.

We may now state the main result.

Theorem 3. Let F = {qc | c ∈ A} denote the feasible set
of (8). The postdata density given by the minimizer of (4a)
is the solution of:

q∗ = arg min
q∈F

KL(q(z)‖p(z|y))

and the solution is given by q∗ = qa∗ for the optimal
a∗ ∈ A with q∗(z) = p(z|y)e〈λa∗ ,β(z)〉−G(λa∗ ) where λa∗
is the solution of the dual optimization (6) with the con-
straint set C′ = {Eq [β(z) ] = a∗} and G(λa∗) ensures
normalization. The solution is unique if A is convex.

Sketch of proof: First we prove that q∗ ∈ F by contradic-
tion. Suppose q∗ /∈ F , then q∗ = qv for v /∈ A. This is
a contradiction by definition of A. The first claim follows
directly. The parametric form of the solution follows from
Proposition 2 and the uniqueness of the solution for convex
A follows from the strict convexity of the relative entropy.

Applied directly, Theorem 3 requires the solution of the
equality constrained variational inference (8) in the inner
loop. The key insight from Proposition 2 is that the solution

of (8) fully specifies the parametric form of the density. In
other words, all the members of the set F = {qc | c ∈ A}
have the same parametric form f where qc = fθc(z) is
determined by the choice of c. By definition of the expo-
nential family, all θ ∈ Θ where Θ is the constraint set of
the parametric distribution family containing fθ.
Corollary 4. The postdata density is the minimizer of (4a)
and is given by q∗ = fθ∗ where θ∗ is the solution of:

θ∗ = arg min
θ∈Θ

[
KL(fθ(z)‖p(z|y))
s.t. Efθ [β(z) ] ∈ C

]
.

Sketch of proof: Let the exponential family G = {fθ | ∀θ ∈
Θ}. Clearly F ⊆ G by definition. Suppose fθ∗ /∈ F ,
feasibility implies that fθ∗ satisfies the constraints. Thus
∃ v such that Efθ∗ [β(z) ] = v and v /∈ A. This is a
contradiction by definition of A. Thus fθ∗ = q∗ ∈ F ⊂ G
and the proof follows from Theorem 3.

Our approach suggests the following recipe for constrained
Bayesian inference. First, Proposition 2 is applied to spec-
ify the parametric form of q∗, then Corollary 4 is applied to
convert the variational problem into a parametric optimiza-
tion problem.

3 RANK CONSTRAINED MULTITASK
LEARNING

Let n = 1 . . . N denote the number of training examples
and k = 1 . . .K denote each task so that the output is
given by yn,k ∈ R. Given a D dimensional feature vec-
tor xn ∈ RD and a weight vector wk ∈ RD, each output
is generated as:

yn,k = w>k xn + ε

where ε ∼ N
(
0, σ2

)
. The outputs may be collected into

a output matrix Y ∈ RN×K and the features may be col-
lected into a feature matrix X ∈ RD×K with X(n) = x>n .
The latent matrix W is drawn from a zero mean matrix-
variate Gaussian distribution W ∼ MN (0,R,C) with
row covariance R ∈ RD×D and column covariance ma-
trix C ∈ RK×K . Fig. 1 illustrates the combined generative
model. Without loss of generality, we assume that the out-
put matrix is normalized to zero mean over the columns so
we do not include a bias term. The model parameters are
given by Θ = {R,C, σ2}.
The unconstrained posterior distribution can be computed
in closed form (Bishop, 2006). Let w = vec(W) and y =
vec(Y), then p(w|y) = N (µ,Σ) where:

µ =
1

σ2
Σ(IK ⊗X>)y (9)

Σ−1 = (C−1 ⊗R−1) +
1

σ2
(IK ⊗X>X) (10)

with µ ∈ RDK and Σ ∈ RDK×DK .
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Figure 1: Generative Model for Multitask Learning

3.1 CONSTRAINED INFERENCE

We seek to enforce a rank constraint via the constraint
set B = {B | rank(B) ≤ R}. We apply the recipe dis-
cussed in Section 2.1. First we must define the paramet-
ric form of the postdata distribution by solving (8) for a
fixed b ∈ B. We find that qb(w) is Gaussian distributed
with density N (m,S) and m = b. Following the argu-
ments of Corollary 4, the postdata distribution is found by
minimizing the KL divergence between the Gaussian dis-
tribution N (m,S) and the Bayesian posterior distribution
N (µ,Σ). This is given by:

min
m∈B,S

tr
(
Σ−1S

)
+ (µ−m)>Σ−1(µ−m)

− log |S|+ log |Σ| (11)

where m = vec(M). The optimization decouples between
the mean term m and the covariance term S. The minimum
in terms of the covariance is achieved for S = Σ and the
mean optimization is given by the solution of a rank con-
strained quadratic optimization. We note that the Gaussian
form of the constrained postdata density was not assumed
a-priori, but was found as the solution to the constrained
inference.

The solution of (11) requires computation and storage of
the posterior covariance Σ. This may become computa-
tionally infeasible for high dimensional data. In such situa-
tions, it may be more computationally efficient to estimate
the postdata mean matrix using the form of (4b). Ignoring
terms independent of the mean, this results in the optimiza-
tion problem:

min
M∈B

1

σ2
|||Y −XM|||22 + tr

(
M>R−1MC−1

)
(12)

Nuclear norm constraint: The rank constraint is non-
convex and is challenging to optimize directly. To simplify
the optimization, we replace the rank constraint with a nu-
clear norm constraint D = {D | |||D|||1 ≤ C}. The nuclear
norm is computed as sum of the singular values of the ma-
trix i.e. |||D|||1 =

∑
σi(D) where σi(D) is the ith singular

value of the matrix D. The nuclear norm is known to en-
courage low rank solutions Candés & Recht (2009). The re-
sulting postdata mean inference retains the same form with
the new constraint set. Replacing the constraint set with

a regularization function, we find that the postdata mean
optimization can be rewritten as:

min
M

1

σ2
|||Y −XM|||22 + tr

(
M>R−1MC−1

)
+ |||M|||1

(13)
We note that there is no need for a regularization parameter
if we learn the hyperparameters Θ = {R,C, σ2}, as the
optimization only depends on the relative scale of the three
terms.

Kronecker Covariance constraint: Unlike the prior co-
variance, the posterior covariance matrix does not decom-
pose into Kronecker form. Hence, the size of the posterior
covariance may be of computational concern. We propose
a Kronecker factorization constraint structure for the pos-
terior covariance matrix. Following Theorem 3, we find
that the postdata distribution retains its Gaussian form. Let
S = H ⊗ G where G ∈ RD×D is constrained row co-
variance matrix and H ∈ RK×K is the constrained column
covariance matrix. Employing the cost function (4b) and
ignoring terms independent of the postdata covariance, we
compute:

min
G,H

1

σ2
tr
(
X>XG

)
tr(H) + tr

(
R−1G

)
tr
(
C−1H

)

−K log |G| −D log |H|

This can be solved using an alternating optimization ap-
proach:

G−1 =
1

K

(
tr(H)

σ2
X>X + tr

(
C−1H

)
R−1

)
(14)

H−1 =
1

D

(
tr
(
X>XG

)

σ2
IK + tr

(
R−1G

)
C−1

)
(15)

The result of constrained inference is the postdata distribu-
tion q∗(W|Y) =MN (M,G,H).

3.2 PARAMETER ESTIMATION

In addition to low rank constraints on the weight matrix,
we are interested in learning the prior conditional inde-
pendence structure between the features and between the
tasks. This is achieved by placing Laplacian priors (Fried-
man et al., 2008; Stegle et al., 2011) on the row and column
prior precision matrices:

p(R−1) ∝ exp(−λr
∥∥R−1

∥∥
1
)[R−1 � 0],

p(C−1) ∝ exp(−λc
∥∥C−1

∥∥
1
)[C−1 � 0],

where the l1 norm is given by ‖R‖1 =
∑
i,j |rij |. Ignor-

ing terms independent of the precision matrices, the loss
function is given by:

min
R−1,C−1

tr
(
R−1G

)
tr
(
C−1H

)
+ tr

(
W>R−1WC−1

)

−K log |R| −D log |C|+ λr
∥∥R−1

∥∥
1

+ λc
∥∥C−1

∥∥
1

(16)
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Algorithm 1 Constrained Inference and Parameter Estima-
tion for Multitask Learning

Initialize G, H, Θ = {R,C, σ2}
repeat

Update M|Θ by solving (13) (equiv. (11) or (12))
repeat

Update G|H,Θ using (14)
Update H|G,Θ using (15)

until converged
repeat

Update R|C,G,H, λr by optimizing (16)
Update C|R,G,H, λc by optimizing (16)

until converged
Update σ2|M,G,H using (17)

until converged
Return M, G, H, Θ

We apply an alternating optimization approach, alternating
between solving for R−1 and C−1. Each of these sub-
optimization problems can be solved using glasso (Fried-
man et al., 2008)

Noise variance update: We also may also update the out-
put noise variance. Ignoring terms independent of the noise
variance, the optimization is given by minimizing (with re-
spect to σ2):

ND log σ2 +
1

σ2

[
|||Y −XW|||22 + tr

(
X>XG

)
tr(H)

]

This can be solved in closed form. The solution is given
by:

σ2 =
1

ND

[
|||Y −XW|||22 + tr

(
X>XG

)
tr(H)

]
(17)

3.3 ALGORITHM

Our goal is to minimize the cost function (4). We solve
this by alternating between constrained inference and pa-
rameter estimation. Constrained inference involves estima-
tion of the postdata distribution q(W|Y) subject to rank
(nuclear norm) and Kronecker covariance constraints, and
constrained parameter estimation involves the estimation of
updated parameters Θ. The proposed algorithm is summa-
rized in Algorithm 1.

4 RELATED WORK

Examples of constrained Bayesian inference in the liter-
ature include maximum entropy discrimination (Jaakkola
et al., 1999) and posterior regularization Ganchev et al.
(2010). Ganchev et al. (2010) applied constrained Bayesian
inference techniques to statistical word alignment, mul-
tiview learning, dependency parsing and part of speech
induction. More recently, researchers have applied con-
strained Bayesian inference for combining complicated

nonparametric topic models with support vector machine
inspired large margin constraints for document classifica-
tion (Zhu et al., 2009), multitask classification (Zhu et al.,
2011) and link prediction (Zhu, 2012).

Constrained Bayesian inference is closely related to tech-
niques for approximate variational Bayesian inference
(Bishop, 2006), used to approximate intractable Bayesian
posterior densities. The approximation typically takes the
form of factorization assumptions between subsets of the
latent variables. The result is often much easier to solve.
Although approximate variational inference also requires
solving a constrained version of (3), the motivations and
results are quite different than in constrained Bayesian in-
ference methods. In particular, the estimated constrained
Bayes distributions may not factorize over subsets of the
latent variables.

Partial Least squares (PLS) (Abdi, 2010) is a popular ap-
proach for low rank multiple regression. PLS estimates
low rank factors that best matches the cross correlation be-
tween the features and the response and is known to be
especially effective when the feature matrix has co-linear
rows and when the features are very high dimensional. Ar-
gyriou et al. (2007) and Yuan et al. (2007) proposed models
for multitask learning using a regularizer that penalizes the
nuclear norm of the weight matrix. This constraint often
results in a weight matrix of low rank. Rai & Daumé III
(2010) proposed a nonparametric Bayesian model for mul-
titask learning using the direct low rank factor representa-
tion. The proposed approach is able to estimate the number
of factors using the Indian buffet process prior.

(Zhang & Schneider, 2010; Allen & Tibshirani, 2012) stud-
ied covariance estimation for the matrix-variate Gaussian
distribution subject to l1 constraints on the precision when
the observed data was generated directly from a matrix-
variate Gaussian distribution. Stegle et al. (2011) extended
the work to the case where the matrix-variate Gaussian dis-
tribution is used a the prior, coupled with additive noise.
They showed that capturing the additive noise structure can
make a significant impact on the quality of the recovered
precision matrix. They noted the in difficulty of inference
in the model and proposed a heuristic using only the pos-
terior mean and ignoring the posterior covariance. Follow-
ing our development, the heuristic inference approach of
Stegle et al. (2011) can now be explained as a constrained
Bayesian inference subject to the constraint the the pos-
terior covariance vanishes. We compare the performance
of this heuristic with the Kronecker constrained inference
approach on simulated and real data experiments, showing
the utility of the richer posterior covariance structure.

5 EXPERIMENTS

We present experimental results comparing the proposed
rank constrained variational approach to other matrix-
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variate learning models in the literature. We compared
the models in terms of regression accuracy and in terms
of structure recovery for the underlying precision matrices.
The compared models are as follows:

• Graphical Lasso (GLasso) (Friedman et al., 2008) es-
timates a sparse precision matrix to match the sample
covariance of the response matrix. GLasso was used a
the baseline for inter-task structure recovery.

• Multiple regularized ridge regression (Ridge ) was
used a the baseline for the regression accuracy.
Ridge does not estimate the precision matrix.

• Partial least squares (PLS) (Abdi, 2010) estimates low
rank factors that best matches the cross correlation be-
tween the features and the response. The resulting
weight vector can be used for prediction. PLS does
not estimate the precision matrix.

• Nuclear norm regularized linear regression (Nuc.
Norm) (Yuan et al., 2007) estimates the regression ma-
trix that best predicts the target response subject to a
nuclear norm constraint. The resulting weight matrix
is often of low rank. Nuc. Norm does not estimate the
precision matrix.

• We implemented the matrix variate regression and
sparse precision matrix estimation procedure of (Ste-
gle et al., 2011) (MVG ). Our approach fixed the fea-
ture matrix instead of estimating it from data. As
noted in Section 4, Stegle et al. (2011) used a heuristic
procedure with a degenerate posterior covariance for
the model inference. There is no low rank constraint
applied to the model.

• We implemented a corrected matrix variate regression
and sparse precision matrix estimation procedure us-
ing the Kronecker product posterior covariance con-
straint proposed in Section 3.1 (MVGcorr.). There is
no low rank constraint applied to the model.

• We implemented the proposed nuclear norm con-
strained matrix variate regression and sparse precision
matrix estimation using the constrained Bayesian in-
ference approach regression (MVGrank). This com-
bines the nuclear norm constrained inference for the
low rank weight matrix with l1 constrained precision
matrix learning.

We optimized the proposed MVGrank model by using the
approach outlined in Algorithm 1. A similar procedure
without the nuclear norm constraint was used to optimize
the MVGcorr. and MVG models. Nuc. Norm was optimized
using a special case of MVGrank without any of the covari-
ance matrices. GLasso, Ridge and PLS were optimized us-
ing implementations from the scikit-learn python package
(Pedregosa et al., 2011).

5.1 SIMULATED DATA

Constrained inference is most useful when data is scarce.
We are most interested in high dimensional multiple re-
gression where there are more dimensions than samples. In
such scenarios, the model constraints can be critical for ef-
fective regression and parameter estimation. We performed
experiments using simulated data that matches the charac-
teristics of functional neuroimaging data. We fixed the row
precision matrix and tested the models ability of estimate
the structure of the column precision matrix and the predic-
tive accuracy of the model.

We generated a random row precision matrix by generat-
ing using the approach outlined in Example 1 of Li & Toh
(2010). We first generated a sparse matrix U with non zero
entries equal to +1 or −1, then set C−1 = UU>. Fi-
nally, we added a diagonal term to ensure C−1 is positive
definite. The resulting column precision matrix had a spar-
sity of 20%. The column precision was generated as the
normalized Laplacian matrix (Smola & Kondor, 2003) of
a chain graph with a adjacency matrix set as Ai,j = 1 if
j = {i, i+ 1, i− 1} and zero otherwise.

We generated a low rank weight matrix using the factor
model as W = AB>. The columns of A were gener-
ated from the zero mean multivariate Gaussian distribu-
tion N (0,R) and the columns of B were generated from
the zero mean multivariate Gaussian distributionN (0,C).
We also generated random high dimensional feature ma-
trices X ∈ RN×D with xi,j ∼ N (0, 1). Finally the re-
sponse matrix was generated as Y = XW + N where
N represents independent additive noise with each entry
ni,j ∼ N

(
0, σ2

)
. We selected σ2 to maintain a signal to

noise ratio of 10.

Our domain of interest is characterized by high dimen-
sional feature variables and few samples. Hence we set
the dimensions as N = 50, D = 200 and K = 10. we
performed experiments in the low rank regime (rank = 2)
and the full rank regime (rank = 10). Experiments were
performed using training, validation and test sets with the
same number of samples. All experiments were repeated
10 times. The validation set was used for parameter selec-
tion. The regularization parameter for all the models except
for PLS were selected from the set {10−3, 10−2, . . . 103}.
PLS is not regularized but requires selection of the number
of factors. These were chosen from the set {2, 4, . . . 10}.
The regression accuracy was measured using the coeffi-
cient of determination on the test set. The R2 metric given
by 1 −∑(ŷ − y)2/

∑
(y − µ)2 where y is the target re-

sponse with sample mean µ and ŷ is the predicted response.
R2 measures the gain in predictive accuracy compared to a
mean model and has a maximum value of 1. The structure
recovery was measured using the area under the roc curve
(AUC ) (Cortes & Mohri, 2004) using the structure of the
true precision matrix as the binary target, and the values in
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(d) MVGrank

Figure 2: Ground Truth and Recovered Precision Structure with Rank 2 Simulated Data.

Table 1: Average (std.) Accuracy (R2) and Structure Re-
covery (AUC) for Rank 2 Simulated Data.

MODEL R2 AUC

GLasso – 0.610 (0.071)
Ridge 0.219 (0.029) –
PLS 0.214 (0.033) –
Nuc. Norm 0.220 (0.035) –
MVG∗ 0.215 (0.033) –
MVGcorr.

∗ 0.271 (0.038) –
MVGrank

∗ 0.296 (0.038) –
MVG 0.220 (0.035) 0.646 (0.048)
MVGcorr. 0.221 (0.035) 0.648 (0.069)
MVGrank 0.299 (0.038) 0.665 (0.064)

the recovered precision matrix as scores. AUC measures
the quality of the ranking recovered by by the estimated
precision matrix. We also present inference only results
with the proposed models using the known precision ma-
trix. The results from the simulated data experiments are
shown in Table 1 and Table 2. In both tables, we note that
(*) represents inference only results using the true precision
matrix.

Regression: We found that that accounting for the prior
correlation structure had a significant effect on the qual-
ity of the recovered regression. Hence, although the
Nuc. Norm model performed better than Ridge , mod-
els that combined regression with structure recovery out-
performed models using regression only. The corrected
MVGcorr. outperformed the MVG in regression suggesting
the importance of capturing the posterior covariance for re-
gression and parameter estimation performance. We note
that even when the rank is full, the underlying weight ma-
trix is given by the product of the factors is not Gaussian
distributed. This may account for the observation that the
Gaussian based models perform worse for the full rank
data. Another reason may be the significant increase in the
effective dimensionality of the weight matrix parameter to
be estimated using the same amount of data. MVGrank is
able to compensate for this mismatch.

Table 2: Average (std.) Accuracy (R2) and Structure Re-
covery (AUC) for Rank 10 Simulated Data.

MODEL R2 AUC

GLasso – 0.708 (0.071)
Ridge 0.180 (0.036) –
PLS 0.169 (0.037) –
Nuc. Norm 0.168 (0.037) –
MVG∗ 0.179 (0.042) –
MVGcorr.

∗ 0.246 (0.035) –
MVGrank

∗ 0.246 (0.035) –
MVG 0.172 (0.037) 0.702 (0.068)
MVGcorr. 0.172 (0.038) 0.721 (0.071)
MVGrank 0.245 (0.033) 0.700 (0.052)

Structure recovery: Overall, all models improved accu-
racy of recovery for the precision structure as the rank
was increased. At the low rank, the MVGrank model
was the most effective for structure recovery, but the
MVGcorr. model was the most effective at high rank. We
also found that correcting the inference procedure im-
proved the structure recovery performance by comparing
MVGcorr. to MVG . We counted the number of times each
edge was selected over the random repetitions. We present
the recovered graphs for rank 2 simulated data showing
links selected in at least 70% of the repetitions with weight
greater than 10−6 in Fig. 2. MVG selects many more edges
than the MVGcorr. method in this experiment.

5.2 FUNCTIONAL NEUROIMAGING DATA

Functional magnetic resonance imaging (fMRI) is an im-
portant tool for non-invasive study of brain activity. Most
fMRI studies involve measurements of blood oxygenation
(which are sensitive to the amount of local neuronal activ-
ity) while the participant is presented with a stimulus or
cognitive task. Neuroimaging signals are then analyzed
to identify which brain regions exhibit a systematic re-
sponse to the stimulation, and thus to infer the functional
properties of those brain regions. Functional neuroimaging
datasets typically consist of a relatively small number of
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correlated high dimensional brain images. Hence, captur-
ing the inherent structural properties of the imaging data is
critical for robust inference.

We completed experiments using brain image data from
an extended set of the openfMRI database2. The data
was preprocessed using a general linear model with FM-
RIB Software Library (FSL) to compute contrast images
for each subject resulting in N = 479 contrast images for
K = 26 contrasts. The target contrasts were encoded into
a response matrix using the 1-of-k representation, where
yn,k = 1 if image n corresponds to task k and is zero oth-
erwise. after masking, we are left with D = 174264 di-
mensions. Each dimension in the brain image corresponds
to a spatial location in the brain. We used the normalized
Laplacian of the 3-dimensional spatial graph of the brain
image voxels to define the row precision matrix. This cor-
responds to the observation that nearby voxels tend to have
similar functional activation. Our approach is motivated
by the observation that functional neuroimages are highly
correlated for different tasks (Poldrack, 2011). We seek to
extract this correlation structure as encoded in the prior pre-
cision matrix. In addition, the high dimensionality and the
similarity between different tasks suggests that the optimal
weight matrix may be of low rank.

We divided the training data into five sets using a stratified
cross validation to ensure that each training set contains a
similar relative number of images corresponding to each
task. In addition to the proposed models, we present ex-
perimental results using the support vector machine clas-
sifier (SVM) using implementations from the scikit-learn
python package (Pedregosa et al., 2011). We also note
that the ridge regression is exactly equivalent to the least
square support vector machine (LS-SVM) (Ye & Xiong,
2007) with a linear kernel. For all models (except for
PLS ), we selected the regularization parameter from the set
{10−3, 10−2, . . . 103}. The number of factors in PLS was
selected from the set {2, 4, 6 . . . 26}. The results are pro-
vided in Table 3.

Table 3: Average (std.) Classification Accuracy for fMRI
Data

MODEL ACCURACY

SVM 0.463 (0.052)
PLS 0.422 (0.030)
LS-SVM 0.472 (0.040)
Nuc. Norm 0.234 (0.022)
MVG 0.463 (0.052)
MVGcorr. 0.476 (0.050)
MVGrank 0.512 (0.034)

2https://openfmri.org/, extended data provided
courtesy of openfMRI.
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Figure 3: Recovered Precision Structure for fMRI Data

We note the difficulty of this classification task due to
the large number of classes and the high dimensional-
ity of the features. Fig. 3 compares the most significant
edges recovered by the precision matrices of MVG and
MVGcorr. methods. The figure shows edges with ab-
solute value of the weight greater than the 90th per-
centile. We found that MVG selected more edges than the
MVGcorr. method. We are in the process of collaborating
with domain experts for further analysis of the task simi-
larities encoded by the the task precision matrices. These
results will be included in an extended version of the paper.

6 CONCLUSION

We proposed a novel primal approach for Bayesian infer-
ence subject to possibly non-convex constraints. We ap-
plied the proposed inference approach to rank constrained
multitask learning. Our approach was motivated by an ap-
plication to reverse inference for high dimensional func-
tional neuroimaging data. We developed an algorithm for
constrained inference that accounts for the latent structure
of the predictive weight matrix and constrained parame-
ter estimation to learn the sparse conditional independence
structure between the tasks as encoded by the prior pre-
cision matrices. We presented experimental performance
results compared to strong baseline models on simulated
data and real functional neuroimaging data.

We are interested in extending the proposed approach to
constrained inference for nonparametric Bayesian models.
In particular, we are interested in rank constrained mod-
els for the matrix-variate Gaussian process applied to ma-
trix completion. We are also interested in further theoreti-
cal development to understand the trade-offs of constrained
Bayesian inference compared to other approaches.
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Abstract

Diffusion processes in networks are increas-
ingly used to model the spread of informa-
tion and social influence. In several applica-
tions in computational sustainability such as
the spread of wildlife, infectious diseases and
traffic mobility pattern, the observed data of-
ten consists of only aggregate information. In
this work, we present new models that gener-
alize standard diffusion processes to such col-
lective settings. We also present optimization
based techniques that can accurately learn
the underlying dynamics of the given conta-
gion process, including the hidden network
structure, by only observing the time a node
becomes active and the associated aggregate
information. Empirically, our technique is
highly robust and accurately learns network
structure with more than 90% recall and pre-
cision. Results on real-world flu spread data
in the US confirm that our technique can also
accurately model infectious disease spread.

1 Introduction

Dynamic phenomena such as the spread of informa-
tion, ideas, and opinions (Domingos and Richardson,
2001; Kempe et al., 2003; Leskovec et al., 2007) can be
described as a diffusion process or cascade over an un-
derlying network. Similar diffusion processes have also
been used for metapopulation modeling in the ecology
literature to describe how wildlife spreads over a frag-
mented landscape (Hanski, 1999) and to describe in-
fectious disease propagation among humans (Anderson
and May, 2002; Halloran et al., 2010). Such models are
crucial for several decision making problems in compu-
tational sustainability such as in spatial conservation
planning that addresses the question of how to allo-
cate resources to maximize the population spread of

an endangered species over a period of time (Sheldon
et al., 2010; Ahmadizadeh et al., 2010; Golovin et al.,
2011; Kumar et al., 2012).

A fundamental problem in using such diffusion-based
models is the estimation of parameters, including the
hidden network structure, that govern the contagion
process. Recent progress had been made in learning
the diffusion parameters of social networks (Myers and
Leskovec, 2010; Gomez-Rodriguez et al., 2012; Netra-
palli and Sanghavi, 2012; Wang et al., 2012). My-
ers and Leskovec (2010) formulate the problem of net-
work structure learning as a separable convex program.
Gomez-Rodriguez et al. (2012) address the problem
using submodular optimization. Netrapalli and Sang-
havi (2012) address the complementary question of
how many observed cascades are necessary to correctly
learn the structure of a network. Wang et al. (2012)
enrich the structure learning problem using additional
features from Twitter data.

An implicit assumption commonly made in previous
approaches in the social network setting is that one
can track each individual in the network and exploit
this information during inference. However, in several
computational sustainability domains such as ecology,
social sciences and transportation, data identifying a
single individual is rarely available. For example, for
population modeling of migratory birds, one may only
know the total number of birds present in a geograph-
ical area. While modeling the spread of infectious dis-
eases, one may only know the total number of infected
individuals in a community. Similarly, traffic data usu-
ally takes the form of vehicle counts leaving or enter-
ing an intersection. In theory, one can model such
aggregate behavior by explicitly reasoning about each
individual in the population. However, such a model
cannot be scaled to large population sizes.

We therefore present new collective diffusion models
that can reason with the aggregate data without the
need to model individual-level behavior. These models
generalize the well known diffusion models such as the
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independent cascade model (Kempe et al., 2003). We
show how such models can be used to analyze the pop-
ulation dynamics of wildlife and spread of contagious
diseases. We also present a model that can address
collective diffusion in domains such as transportation
that do not fall under the independent cascade model.
We highlight how this model is closely related to the
recently developed class of collective graphical models
(CGMs) (Sheldon and Dietterich, 2011). Such con-
nections are attractive as they open the door to the
application of efficient inference techniques developed
for CGMs to transportation domain.

The primary algorithmic contribution of our work is
to develop algorithms for learning in collective diffu-
sion models using observed data about the infection
times of nodes and the associated aggregate informa-
tion. Using scalable techniques based on convex opti-
mization, we show that our approach can accurately
learn network structure with more than 90% precision
and recall on large synthetic benchmarks even with
a limited number of observed cascades. Furthermore,
our approach can also learn edge strength parameters
accurately, with less than 2% error. Results on real-
world flu spread data available from Centers for Dis-
ease Control and Prevention (CDC) in the US confirm
that our technique can also accurately model infectious
disease spread.

2 Diffusion Over Networks

We first introduce the well known independent cascade
model, also called the Susceptible-Infected (SI) model,
for diffusion over a network (Kempe et al., 2003) and
later present its collective variants. The main steps in
this model are the following:

• We start with an initial set S0 of active nodes called
seeds in the network. The process then unfolds in
discrete time steps.

• When a node v first becomes active, it is given a
single chance to activate each of its currently inac-
tive neighbors w. It succeeds with probability pvw
independently of the history of activations so far.
Whether the node v succeeds or fails in activating
the node w, it cannot make further attempts to
activate w in the future.

• If a currently inactive node w has multiple newly
active neighbors, their activation attempts of w are
sequenced arbitrarily.

• A node w, once active, remains active for the entire
diffusion process.

There are several extensions of the basic diffusion
model above such as those allowing the nodes to re-

Figure 1: The US map showing 10 federal regions

cover and become infected again. It is easy to fold
such extensions into the basic SI model using a time-
indexed layered graph (Kempe et al., 2003). A crucial
inference problem in such a setting is estimating the
edge activation probabilities pvw. The edge activation
probabilities also identify the connectivity structure of
the network—if pvw=0, then there is no directed edge
from node v to w. Next, we describe the observation
model commonly used to address this parameter learn-
ing problem.

Observation model: A cascade c over such a net-
work starts with a set of initially active nodes at time
t=0. As the cascade progresses in discrete time steps,
we observe the infection time τ c of nodes as they subse-
quently become infected; for nodes u that are never in-
fected, we set the infection time τ cu=∞. Furthermore,
for the activated nodes, we do not observe which node
activated them. Therefore, the connectivity structure
of the network is hidden. There exist a number of
techniques that can estimate the parameters pvw for
each edge using this observation model (Myers and
Leskovec, 2010; Gomez-Rodriguez et al., 2012; Netra-
palli and Sanghavi, 2012; Wang et al., 2012).

3 Collective Diffusion—CSI Model

The typical observation model used in the social net-
working setting assumes that one can track the status
of each individual in the network and exploit this in-
formation during inference. However, this assumption
rarely holds in several computational sustainability do-
mains such as ecology, social sciences and transporta-
tion, where data identifying a single individual is not
often available. We motivate this observation through
the following examples.

In wildlife population modeling, the goal is to describe
the occupancy pattern of habitat patches for a cer-
tain species in a fragmented landscape over a period of
time (Hanski, 1999; Sheldon et al., 2010). Each habi-
tat patch i can be thought of as a node in a geospatial
network. A habitat patch i can provide support for
at most Ni members of a species. This model works
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n1 = 0

N2 = 5, n2 = 3

N3 = 4, n3 = 2 N4 = 4, n4 = 3

N5 = 4, n5 = 1

N1 = 5

Figure 2: An example of collective diffusion in a 5-node
network. Each small circle represents an individual within
the larger node. The total population of a node is given as
Ni; number of active individuals within a node shown in
grey circles is denoted as ni

well for many animals, but is particularly appropri-
ate for territorial species, in which an individual or
a family group defends a distinct territory within the
patch for breeding and foraging. A concrete example
is a species of cavity-nesting bird such as the East-
ern Bluebird, who do not excavate their own cavities,
but rely on those made by other species. In this case,
the number Ni corresponds to the number of available
nest cavities. As it is difficult to track individual birds,
the observed data often consists of only the number of
species present in a habitat patch i, say ni. Based
on this aggregate observed data, we need to infer the
colonization probability pvw that represents the prob-
ability that an individual from patch v will colonize an
unoccupied cavity in patch w.

Similar collective diffusion settings arise while mod-
eling the spread of infectious diseases (Abbey, 1952;
Halloran et al., 2010). The region under observation
is divided into multiple sub-communities. For exam-
ple, the CDC in the United States reports flu data
for 10 federal health regions as shown in Fig. 1. The
observed data consists of the total number of infected
individuals in a sub-community and the time data is
collected (the particular week of the year). There-
fore, the need to model and reason with aggregate data
motivates the development of the following Collective-
Susceptible-Infected (CSI) model.

3.1 The CSI Model

In the CSI model, we are given a graph G = (V,E).
Each node i in the graph represents a sub-community
of individuals. A node i can support a maximum of Ni
individuals. Each individual can be either active or in-
active. A complete observed cascade c is the collection
of nodes and the infection time τi and the number of
individuals ni that are activated for each node i. For
simplicity, we refer to ni as node i’s activation level.
We call a node i active if ni ≥ 1. That is, it has at

least one active individual. A CSI cascade proceeds in
a similar manner as described in Sec. 2:

• We start with an initial set S0 of active nodes called
seeds in the network. Each active node has an acti-
vation level 1 ≤ ni ≤ Ni. The process then unfolds
in discrete time steps.

• When a node j first becomes active, it is given
a single chance to activate each currently inactive
neighbor i. Each active individual in node j can
activate an inactive individual in node i with prob-
ability pji. Whether node j succeeds or fails in ac-
tivating any individual in node i, it cannot make
further attempts to activate i in the future.

• If a currently inactive node i has multiple newly
active neighbors, their activation attempts of i are
sequenced arbitrarily.

• Node i, once active with activation level ni, re-
mains active with the same activation level for the
entire diffusion process.

As also highlighted in Sec. 2, we can model non-
progressive cascades in which the activation level of
nodes change, such as the changing population of
species in a habitat patch with time, by using the
above diffusion process in a time-indexed layered
graph (Kempe et al., 2003).

A critical issue to address in such a collective diffusion
process is to address how many individuals become ac-
tive in a currently inactive node i. Let us assume that
the current time step is t. Consider a single individual
im within the node i. Let X(t) denote the set of all
newly activated nodes at time t: X(t)={i ∈ V : τi = t}.
The probability that im is not active given the status
of its neighbors is given as:

P
(
im=0 at time t |X(t− 1)

)
=

∏

j∈X(t−1)

(
1− pji

)nj

Therefore, the probability that individual im is active
is given as:

P
(
im=1 at time t |X(t− 1)

)
= 1−

∏

j∈X(t−1)

(
1− pji

)nj

As the individuals within the node i are identical, one
can think of the process of determining the number
of active individuals ni within the node i as sampling
from the following Binomial distribution:

P
(
ni=active at time t |X(t− 1)

)
=

Ni!

ni!(Ni − ni)!(
1−

∏

j∈X(t−1)

(
1− pji

)nj

)ni ∏

j∈X(t−1)

(
1− pji

)nj(Ni−ni)

(1)
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Based on this understanding of the CSI model, we are
now ready to describe the maximum likelihood formu-
lation of the parameter learning problem.

3.2 Parameter Learning for CSI Model

Let C denote the set of all observed cascades. For each
cascade c ∈ C, we only observe which nodes are ac-
tive at each time step and their activation level. We
do not observe how a node got infected, which par-
ticular individuals within a node are active/inactive
or the underlying connectivity structure of the net-
work. The goal is to learn the parameters pij for each
pair of nodes i, j ∈ V . Our approach is based on
maximizing the likelihood of the observed data. Sim-
ilar maximum likelihood (ML) based approaches have
been used in (Myers and Leskovec, 2010; Netrapalli
and Sanghavi, 2012). However, previous approaches
are not applicable to the collective variant which we
address.

Let A denote the matrix of activation probabilities.
Let c denote a particular cascade c ∈ C. Let Ic de-
note the set of nodes that become activated at some
point in cascade c; Uc denote the nodes that remain
unactivated. The probability of the observed cascades
is:

P (C;A)=
∏

c∈C

[(∏

i∈Ic
P
(
nci active at time τ ci |Xc(τ ci −1)

)

P
(
Node i inactive before time τ ci |Xc(t<τ ci −1)

))

( ∏

i∈Uc

P (Node i always inactive )

)]
(2)

where Xc(t < τi−1) denotes the set of all nodes that
were activated before time τ ci −1 in a cascade c. The
first term in the above expression is given in Eq. (1).
We write the expressions for the remaining two terms
for a particular cascade c as follows:

P
(
Node i inactive before time τ ci |Xc(t < τ ci − 1)

)
=

∏

j∈V :τc
j<τ

c
i −1

(1− pji)n
c
jNi (3)

The probability that node i never became activated is
similarly given as:

P
(
Node i always inactive

)
=
∏

j∈V :τc
j<∞

(1− pji)n
c
jNi (4)

The maximum likelihood problem entails finding the
activation probability matrix A that maximizes the
following:

max
A

logP (C;A) (5)

We can easily see that maximizing the above log-
likelihood can be performed independently for each
node i in the network, which makes the approach
highly scalable. Therefore, the optimization problem
for a particular node i is given as:

max
{pji}

∑

c∈C:τc
i <∞

nci log

(
1−

∏

j∈Xc(τc
i −1)

(
1− pji

)nc
j

)
+

∑

c∈C:τc
i <∞

∑

j∈Xc(τc
i −1)

ncj(Ni − nci ) log
(
1− pji

)
+

∑

c∈C:τc
i <∞

∑

j∈V :τc
j<τ

c
i −1

ncjNi log
(
1− pji

)
+

∑

c∈C:τc
i =∞

∑

j∈V :τc
j<∞

ncjNi log
(
1− pji

)
(6)

The above optimization is not convex and thus, di-
rect optimization may not produce optimal solutions.
We next show how to make the above problem con-
vex by using a change of variables similar in spirit to
the approach in (Myers and Leskovec, 2010). Let us
introduce the following substitutions:

qji = 1− pji (7)

γci = 1−
∏

j∈Xc(τc
i −1)

q
nc
j

ji (8)

q̂ji = log qji (9)

γ̂ci = log γci (10)

The new equivalent optimization problem is given as:

max
{q̂ji,γ̂c

i }

∑

c∈C:τc
i <∞

{
nci γ̂

c
i +

∑

j∈Xc(τc
i −1)

ncj(Ni − nci )q̂ji

+
∑

j∈V :τc
j<τ

c
i −1
ncjNiq̂ji

}
+

∑

c∈C:τc
i =∞

∑

j∈V :τc
j<∞
ncjNiq̂ji (11)

s.t. exp
(
γ̂ci
)

+ exp
( ∑

j∈Xc(τc
i −1)
ncj q̂

c
ji

)
≤ 1 ∀c : τ ci <∞

(12)

q̂ji ≤ 0 ∀j ∈ V (13)

γ̂ci ≤ 0 ∀c : τ ci <∞ (14)

In the above problem, the objective function is lin-
ear in all the variables. We have represented the
equality constraint in Eq. (8) using the inequality con-
straint (12). This is justified as the objective function
is an increasing function of both γ̂ci and q̂ji. There-
fore, at the optimal solution, there will be no slack for
this constraint and Eq. (8) will hold. To make con-
straint (12) convex, we take log of both the sides and
get an equivalent convex constraint as:

log

(
exp

(
γ̂ci
)

+ exp
( ∑

j∈Xc(τc
i −1)

ncj q̂
c
ji

))
≤ 0 (15)
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Figure 3: A road network showing data collection
methodology using loop detectors that can count in-
coming and outgoing vehicles for a road segment

Now the optimization problem (11) is a convex prob-
lem subject to constraints (13,14,15) and therefore,
can be solved optimally using off-the-shelf nonlinear
solvers such as SNOPT.

As also noted in previous work (Myers and Leskovec,
2010), networks are generally sparse. To encour-
age sparsity, we add the following sparsity inducing
penalty term to the objective function for a node i,
with parameter ρ > 0:

−ρ
∑

j∈V
e−q̂ji (16)

The above penalty term accurately predicts edges
which are not part of the underlying network. That
is, pji=0 for such edges. However, a side effect of the
penalty term is that it skews the true parameters pji
for other edges. Therefore, once the underlying struc-
ture of the network is discovered using this penalty
term, we solve the optimization problem again to ac-
curately recover the true parameters pji.

4 Collective Flow Diffusion Model

In the collective diffusion model of the previous sec-
tion, the total number of activated individuals and
nodes increases as the underlying contagion spreads
through the network. In applications such as traf-
fic flow modeling, given certain input traffic through
network entry points, one is interested in modeling
how the traffic flow diffuses through the road network.
Thus, flow conservation is observed for each node of
the network. To address such scenarios, we present
the collective flow diffusions (CFD) model. The CFD
model can also be interpreted as a Markov chain, and
as highlighted in later sections, is a special case of
collective graphical models (CGMs) (Sheldon and Di-
etterich, 2011). This connection allows for adapting
inference strategies for CGMs to the CFD model.

m

i

j j1 p

n q

k

Figure 4: Equivalent network representation for the
road network shown in Figure 3, includes only marked
locations.

Consider a road network as shown in Fig. 3. A key
learning problem in such traffic networks is estimating
the turn probabilities for each road segment of this net-
work. That is, given a road segment (i, j) as shown in
Fig. 3, we want to estimate what fraction of outgoing
traffic from location j goes straight, turns right and
turns left over a period of time T . Turn probabilities
are essential to model the traffic flow in several traf-
fic simulators (Nguyen et al., 1997; Thiebaux et al.,
1999) and are a crucial measure that determine the
macroscopic properties of the traffic flow such as the
congestion level, origin-destination matrix, among oth-
ers. Several popular analytical models of traffic flow
such as the cell transmission model (Daganzo, 1994)
are based on the assumption that turn probabilities
are known a priori for each location.

In several urban traffic networks, aggregate data in the
form of vehicle count is already collected for each road
segment using inductive-loop traffic detectors. The
main data requirement in our work is the availability
of aggregate incoming and outgoing traffic for a road
segment for the total time duration T . For example,
black rectangles in Figure 3 show the places where we
require aggregate vehicle count. This assumption can
be relaxed in principle by treating unavailable vehi-
cle counts as missing data. For now, we handle the
simpler case where such traffic counts are available for
each road segment. Note that determining turn proba-
bilities from this data is not trivial as we do not observe
how much traffic is forwarded to each adjacent link.

4.1 Network and Data Representation

We present the CFD model in the context of traffic
networks, but this model applies to any setting where
flow is conserved. Each location in the road network is
a node in our graph representation. For example, we
create one node for each location j, k and m, among
others, for the road network in Figure 3. Directed
edges model road links along with traffic direction.
For example, there are directed edges (j, j1), (j, k) and
(j,m). The node j1 has a single outgoing link to node
p for the example in Figure 3. We call location nodes
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which receive incoming traffic, such as nodes i, j1 and
m as inflow nodes. The nodes where outgoing traf-
fic count is recorded, such as node j and p, are called
outflow nodes. Figure 4 shows a part of the network
representation for the road network in Figure 3.

Observed Data: We observe, for each inflow node i
in the network, the total incoming traffic count nT (i)
after T time steps. For each outflow node o, we observe
the total outgoing traffic count nT−1(o) after T−1 time
steps.

4.2 Complete Data Likelihood

We have the following flow conservation relations for
different nodes in the network:

nT (i) =
∑

o∈Nb(i)

nT−1(o, i) (17)

where Nb(i) denotes adjacent outflow neighbors o of
the inflow node i that send a total of nT−1(o, i) vehi-
cles to node i after T −1 time steps. In this section,
we are assuming that nT−1(o, i) is also observed; the
results for this simpler case will pave the way an out-
line of the Expectation-Maximization algorithm in the
next section for the case when only total incoming and
outgoing counts are observed. Let O denote the set of
all outflow nodes in the network and I denote the set
of inflow nodes. For each outflow node o, the flow
conservation is given as:

nT−1(o) =
∑

i∈Nb′(o)

nT−1(o, i) (18)

where Nb′(o) denotes adjacent inflow neighbors i of
the outflow node o that can receive traffic from o. The
turn probabilities poi are defined for each pair (o, i) of
adjacent outflow and inflow nodes. They intuitively
represent the probability that a vehicle at the node o
will turn to node i. The complete data joint probabil-
ity is given as:

P (n; {poi})=
∏

o∈O

[
nT−1(o)!∏

i∈Nb′(o) nT−1(o, i)!

∏

i∈Nb′(o)

p
nT−1(o,i)
oi

]

(19)

Subject to the following constraints:

∑

i∈Nb′(o)

poi = 1 ∀o ∈ O (20)

∑

i∈Nb′(o)

nT−1(o, i) = nT−1(o) ∀o ∈ O (21)

∑

o∈Nb(i)

nT−1(o, i) = nT (i) ∀i ∈ I (22)

The meaning of the constraints is that the probabil-
ity is zero when the observed data do not satisfy flow
conservation. Intuitively, the expression in Eq. (19) is
a product of multinomial distributions, one for each
outflow node o, where one can imagine performing
nT−1(o) trials which lead to success in exactly one of
the categories in the set Nb′(o). This joint-probability
describes a single cascade of flow diffusion and can
be easily generalized to multiple independent cascades
by using the i.i.d. assumption. Given the complete
observed data n, estimating the turn probabilities in-
volves solving the following optimization problem sub-
ject to constraint (20), which is equivalent to estimat-
ing the parameters of a multinomial distribution.

max
{poi}

∑

c

logP (n; {poi}) (23)

where c denotes a single complete cascade.

4.3 Inference With Missing Data

According to the observation model in Section 4.1, the
variables nT−1(o, i) are not observed for any location
pairs. Therefore, the approach of Section 4.2 cannot
be applied directly. However, recently inference ap-
proaches to address missing data in collective graphical
model settings have been proposed (Sheldon and Di-
etterich, 2011). Sheldon and Dietterich (2011) address
the problem of generating samples from the posterior
distribution of a collective graphical model by deriving
an efficient Gibbs sampling algorithms that can work
with hard constraints as in (21) and (22). Therefore,
such a sampling strategy can be used in conjunction
with the EM algorithm (Dempster et al., 1977) to gen-
erate complete data samples conditioned on aggregate
data for the traffic network. The M-step of the EM al-
gorithm involves a similar optimization as in Eq. (23).

5 Experiments

In this section, we present the results of our infer-
ence approach for a number of synthetic and real-
world data sets. We focus on the collective diffusion
model of Section 3. Our diffusion simulator was imple-
mented in JAVA and used the nonlinear programming
solver SNOPT (Gill et al., 2002) with AMPL inter-
face (Fourer et al., 2002) to solve the optimization
problem (11). The experiments were run on a Mac
Pro with a single 2.4GHz processor and 4GB RAM
allocated to the solver.

For synthetic benchmarks, we generated 100, 250
and 500 node scale-free networks with the preferen-
tial attachment model similar to (Myers and Leskovec,
2010). The largest 500 node network had about 900
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Figure 5: Error, recall, precision and timing results for the 500 node network
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Figure 6: Error, precision and recall results for 100 and 250 node networks

edges. The edges were considered bi-directed, imply-
ing 1800 edges for the 500 node network. The edge
log-activation probabilities, ln pij , were sampled uni-
formly randomly in the range [−8,−4.6] for each run.
A main objective of the experiments is to test the effi-
cacy of the optimization approach of Section 3.2 w.r.t.
a varying number of cascades. Ideally, one would like
to learn the network structure and the edge parameters
accurately with as few cascades as possible. Encour-
agingly, our approach is quite successful in achieving
this objective as highlighted next.

Figure 5 shows the results for the largest 500 node
network. Each point in the plots is the average of 5
runs. We fixed the maximum population Ni of each
node to 1000. To make the inference challenging, 5%
of total nodes were initialized as seeds, resulting in 25
seeds for the 500 node network. The activation level
of seeds was sampled uniformly from the range [5, 25].
The x-axis of each plot represents the number of cas-
cades and the y-axis shows the measured property.

Figure 5(a) shows the percentage error in estimating
the edge activation parameter for the set of correctly
predicted edges, say S, calculated as:

error = 100 ∗
∑

ij∈S |pestimate
ij − ptrueij |∑
ij∈S p

true
ij

(24)

In this 500 node network, even with 100 cascades, the
error is quite small, around 5%. We contrast this
with the setting in (Myers and Leskovec, 2010), where
roughly the same number of cascades were generated
as the number of nodes. Our results show that under
the collective diffusion model, one can obtain good re-
sults with significantly fewer cascades. As expected,
the error decreases as the number of observed cascades
increases. For 500 cascades, it is around 2%, resulting
in very high accuracy.

Figure 5(b) shows the precision, recall and the F1 score
with varying number of cascades. For 100 cascades,
the precision and recall are 75% and 82% respectively.
It is encouraging that we can get reasonable results
even with very few cascades. Furthermore, both the
precision and recall increase sharply w.r.t. the num-
ber of cascades. The F1 score is around 90% for 250
cascades. This shows that our approach is particularly
effective in utilizing additional data. For 500 cascades,
the F1 score is already 95% resulting in very high accu-
racy and precision in estimating the original network.

Figure 5(c) shows the total runtime of our approach
which includes the time to generate cascades and solve
the optimization problem. The runtime as expected
increases w.r.t. the number of cascades. It takes about
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Figure 7: Comparison of true infection count, pre-
dicted counts using our approach (‘Learned’) and pre-
dicted counts using the Reed-Frost model (‘Learned–
RF’) for the US Federal region 1

an hour to solve the largest 500 cascade instance. A
main contributing factor to the runtime is the sharp
increase in the size of the convex program for each
node with the number of cascades. The SNOPT solver
takes about 6 minutes to solve the optimization prob-
lem for each node, the size of which is about 3MB in
the AMPL format. However, the good news is that
once the cascades are generated, one can drastically
reduce the runtime by solving the optimization prob-
lem for each node independently. Therefore, there is
a dramatic potential for speedup by using cloud com-
puting or multicore machines.

Figure 6 shows the error, precision and recall results
for smaller 100 and 250 node networks. The results are
similar to those obtained on the 500-node networks.
Our approach is able to achieve more than 90% recall
and precision for both these cases, further providing a
proof its efficacy.

CDC Data: We also tested the CSI model of Sec-
tion 3 to model the spread of flu in the US for the sea-
son 2010-11. The data is made publicly available by
the Centers for Disease Control and Prevention (CDC,
http://www.cdc.gov). The data is available for each
of the 10 Federal regions of the US as shown in Fig-
ure 1. For each region, the relevant data consists of
tuples 〈Week number, # of flu patients〉. We consider
the peak of the flu season from week 40 (October) till
week 20 (May) of the next year. In this setting, we
consider the graph to be fully connected with each
of the 10 regions potentially able to influence every
other region. As the number of flu patients varies with
time, we model it using non-progressive cascades using
a time indexed graph, with each layer corresponding
to the particular week number. The parameter Ni is
the total population of all the states in region i.

The strength of influence of a region i on region j is
denoted as pij . Intuitively, it denotes how region i’s

flu population influences the flu spread in region j. As
no true model describing flu spread is available, we
make certain assumptions that attempt to avoid over-
fitting of the data and represent some intuitions about
the disease spread. They are as follows. First, all the
variables pij are independent of the particular time of
the year. That is, inter-region spread has same pa-
rameters for every week. This represents the intuition
that travel trends that affect the inter-region spread
roughly remain the same throughout the year.

Second, the flu spread probability within a region i
(or the intra-region spread) for a particular week t is
modeled as ptii to describe how the flu spread strength
varies with the time of the year. This is justified as the
flu spread depends on the intensity of the cold weather,
which varies with time. Finally, instead of the intra-
region spread being independent for each Federal re-
gion, we constrain them to be within a certain percent-
age of a base probability, that itself is an optimization
variable. That is:

0.8 ≤ ptii
ptref
≤ 1.2 ∀i, ∀t (25)

where ptref is the base flu spread probability for a par-
ticular time t and is itself an optimization variable.
The main effect of this constraint is that it couples
the intra-region spread probability of all the regions.
This constraint further attempts to avoid the overfit-
ting of data. Finally, the main variables to estimate
are the inter-region spread probabilities pij for each
pair of 10 regions, the intra-region spread probabil-
ities ptii for each week t and region i, and the base
spread probability ptref for each week t.

We also note that a similar model to ours is used to
model disease spread (Halloran et al., 2010; Abbey,
1952). In particular, the Reed-Frost (RF) model (Hal-
loran et al., 2010; Abbey, 1952) is very similar to the
CSI model. The key advantage of the CSI model is
that it can model and learn the influence of nodes
on each other. The RF model does not allow such
inter-region effects and thus, its parameters are much
simpler to estimate.

We first compare the accuracy of our model and the
RF model. For the RF model, we include the con-
straint (25), otherwise it is trivial to fit the data with
almost 100% accuracy by adjusting the intra-region
to track observed flu intensity, which represents over-
fitting of data. The results for our model are quite
encouraging. The average error in predictions using
our model is only 3.8% for all the regions and weeks.
The minimum error is 1.15% for region 5. The max-
imum error is 10% for region 7. For the RF model,
the average error is 31%. This confirms our modeling
assumption that inter-region spread is crucial to take
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Figure 8: Inter-region influence visualization (best
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into account. The accuracy of the RF model, which
does not model the inter-region spread, suffers signifi-
cantly. Figure 7 shows the weekly predictions for our
model, the RF model and the true observed data for
region 1. We can easily see the difference in the accu-
racy of our model and the RF model.

Figure 8 shows a visualization of the inter-region in-
fluence pij for all the 10 regions. We note that as
the true model for flu spread is not known, we must
be careful in interpreting this result. Regardless, this
plot depicts several trends that are intuitively correct
and provide a justification to some of our modeling
assumptions. Regions 2, 3 and 4 are the ones most
responsible for spreading the flu to other regions, indi-
cated by the number of stacks for each of them. This
is intuitively justified as these regions represent the
North-East and the South-East of the US (see Fig-
ure 1) and are known to have strong flu season due to
intense cold weather. Region 9, which includes Cali-
fornia, is generally known to have a weak flu season
and this is reflected in Figure 8, where region 9 has
zero influence on other regions.

We also note that our post-hoc analysis can be useful
for health providers to better prepare for the flu sea-
son next year. The model we presented can precisely
estimate the strength of flu spread for different regions
and at different time of the year. This knowledge can
help health care providers to prepare for contingencies
for the future flu season. Currently, we only modeled
the observed data for a single flu season. Predicting fu-
ture flu seasons on a weekly or bi-weekly basis based on

past season’s data remains an important future work
and will require additional analysis and inputs.

6 Conclusion

In several computational sustainability applications
including the spread of wildlife, infectious diseases and
traffic flow, the observed data often consists of only
collective information, without any identifiable details
about individuals in the population. In our work, we
presented models that generalized the standard diffu-
sion models such as the independent cascade model to
collective settings. We motivated such collective mod-
els based on applications in ecology, infectious disease
spread and transportation. We also developed scal-
able convex optimization based techniques that can
accurately learn the parameters, including the hidden
structure of the underlying network, by observing only
timestamped aggregate data. Experiments on a num-
ber of synthetic and real-world benchmarks show that
our approach is highly accurate and can recover the
hidden structure for large networks with high preci-
sion and recall even with limited observed data.

Our future work includes further exploration of infer-
ence based techniques for modeling the traffic flow and
disease spread. Addressing both these applications can
create a significant practical impact. Further investi-
gation of the connections we established between these
domains and graphical models and optimization would
certainty lead to deeper insights in modeling and de-
cision making for these domains.
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Abstract

We introduce z-transportability, the problem
of estimating the causal effect of a set of vari-
ables X on another set of variables Y in a
target domain from experiments on any sub-
set of controllable variables Z where Z is an
arbitrary subset of observable variables V in
a source domain. z-Transportability general-
izes z-identifiability, the problem of estimat-
ing in a given domain the causal effect of X
on Y from surrogate experiments on a set of
variables Z such that Z is disjoint from X. z-
Transportability also generalizes transporta-
bility which requires that the causal effect of
X on Y in the target domain be estimable
from experiments on any subset of all ob-
servable variables in the source domain. We
first generalize z-identifiability to allow cases
where Z is not necessarily disjoint from X.
Then, we establish a necessary and sufficient
condition for z-transportability in terms of
generalized z-identifiability and transporta-
bility. We provide a sound and complete al-
gorithm that determines whether a causal ef-
fect is z-transportable; and if it is, produces
a transport formula, that is, a recipe for es-
timating the causal effect of X on Y in the
target domain using information elicited from
the results of experimental manipulations of
Z in the source domain and observational
data from the target domain. Our results
also show that do-calculus is complete for z-
transportability.

1 INTRODUCTION

Elicitation of a causal effect from observations and ex-
periments is central to scientific discovery, or more
generally, rational approaches to understanding and

interacting with the world around us. Causal dia-
grams (Pearl, 1995, 2000) provide a formal representa-
tion for combining data with causal information. Do-
calculus (Pearl, 1995, 2000, 2012) provides a sound
(Pearl, 1995) and complete (Shpitser and Pearl, 2006b;
Huang and Valtorta, 2006) inferential machinery for
causal inference. The resulting framework has been
used to estimate causal effects of a set of variables X
on another set of variables Y from observations and
interventions (Pearl, 2000; Tian and Pearl, 2002; Tian,
2004; Shpitser and Pearl, 2006a).

In real world scenarios in which the treatment vari-
ables X may not be amenable to interventions due
to technical or ethical considerations, it is interest-
ing to consider experiments on a possibly different set
of variables Z that are more amenable to manipulate
than the treatment variables X. Bareinboim and Pearl
(2012a) introduced z-identifiability, the problem of es-
timating in a given domain (setting, environment, pop-
ulation) the causal effect of X on Y from surrogate
experiments on Z. In scenarios in which causal infor-
mation acquired from one domain might be useful an-
other different but related domain. Pearl and Barein-
boim (2011) introduced selection diagrams for express-
ing knowledge about differences and commonalities be-
tween a source and a target domain. They used the
selection diagrams to provide a formal definition of
transportability, a license to transport causal informa-
tion elicited from experimental studies in a source to
a target domain in which only an observational study
is possible. They also provided an algorithm for deter-
mining whether a causal effect is transportable given a
selection diagram that represents a set of assumptions
about the differences between the source and the tar-
get domains; and if so, computing a transport formula,
which provides a recipe for estimating a causal effect
in the target domain. In transporting the causal effect
of a set of variables X on another set of variables Y
from a source to a target domain we are free to use
information acquired from all possible experiments on
any subset of V in the source domain, available knowl-
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edge about differences and commonalities between the
source and target domains (encoded by the selection
diagram), and observations in both domains. How-
ever, many scenarios of practical interest present the
problem of estimating in a target domain the causal
effect of a set of variables X on another set of variables
Y using experiments in the source domain on a subset
Z of V.

Against this background, we introduce z-
transportability, the problem of estimating in a
target domain the causal effect of a set of variables
X on another set of variables Y from experiments
on an arbitrary set of controllable variables Z in
a source domain. z-Transportability generalizes
z-identifiability (Bareinboim and Pearl, 2012a), the
problem of estimating in a given domain, the causal
effect of X on Y from surrogate experiments on Z.
z-Transportability also generalizes transportability
(Pearl and Bareinboim, 2011) which requires only
that the causal effect of X on Y in the target domain
be estimable from experiments on V (where V is
the set of all variables, including those included in
X and those included in Z) in the source domain.
We first generalize z-identifiability to allow cases
where Z is not necessarily disjoint from X. Then,
we establish a necessary and sufficient condition for
z-transportability and relate it to the corresponding
conditions for generalized z-identifiability (Barein-
boim and Pearl, 2012a) and for transportability
(Bareinboim and Pearl, 2012b). We provide a correct
and complete algorithm that determines whether a
causal effect is z-transportable; and if it is, produces
a transport formula, that is, a recipe for estimating
the causal effect of X on Y in the target domain
using information elicited from the results of experi-
mental manipulations of Z in the source domain and
observational data from the target domain.

This work was carried out independently of Barein-
boim and Pearl (2013a).1 The key differences be-
tween (Bareinboim and Pearl, 2013a) and this paper
are that (i) we establish a necessary and sufficient con-
dition for z-transportability directly from existing re-
sults for generalized z-identifiability and transportabil-
ity whereas Bareinboim and Pearl (2013a) introduces
a graphical criterion called zs-hedge. In addition, our
algorithm differs from that described in (Bareinboim
and Pearl, 2013a) in how it goes about determining
whether a causal effect is z-transportable (and if it is,
computing a transport formula).

1Our work was completed in January 2013 and submit-
ted to UAI 2013 on March 1, 2013. We learned of the
results in (Bareinboim and Pearl, 2013a) when it appeared
as a Technical Report in April, 2013 after its acceptance for
publication in AAAI 2013 while our UAI 2013 submission
was still under review.

The rest of the paper is organized as follows: Sec-
tion 2 reviews some of the basic notions, essential def-
initions, and basic results that set the stage for the
rest of the paper; Section 3 generalizes z-identifiability
to remove disjoint assumptions on Z; Section 4 intro-
duces z-transportability and establishes a set of nec-
essary and sufficient conditions for z-transportability.
Section 5 describes an algorithm for z-transportability
and proves its soundness and completeness. Section 6
concludes with a summary and an outline of some
promising directions for further research.

2 PRELIMINARIES

Here we introduce some basic notations, review some
basic notions, essential definitions, and basic results
that set the stage for the rest of the paper.

We adopt notational convention established in the
literature on identifiability (Tian and Pearl, 2002;
Shpitser and Pearl, 2006b; Bareinboim and Pearl,
2012b,a). Variables are denoted by capital letters, e.g.,
X, Y and their valuations or realizations by their low-
ercase counterparts, e.g., x, y. Bold letters e.g., X
are used to denote sets of variables and their values
e.g., x. A directed acyclic graph (DAG) is denoted
by G and its vertices are denoted by V. The set of
ancestors of a variable W in a graph G (including W )
is denoted by An (W )G. We use An (W)G to denote⋃
W∈W An (W )G. We denote by G [Y], a subgraph of

G containing nodes in Y and all edges between the
corresponding nodes in G. Following (Pearl, 2000), we
denote by GX, the edge subgraph of G where all in-
coming arrows into nodes in X are deleted; by GY,
the edge subgraph of G where all outgoing arrows from
nodes in Y are deleted; and by GXY, the edge sub-
graph of G where all incoming arrows into nodes in X
and all outgoing arrows from nodes in Y are deleted.

We now proceed to review some key definitions and
results.

A causal diagram (Pearl, 2000) G is a semi-Markovian
graph (i.e., a graph with directed as well as bidirected
edges that does not have directed cycles) which en-
codes a set of causal assumptions. A causal model
(Pearl, 2000) is a tuple 〈U,V, F 〉 where U is a set
of background or hidden variables that cannot be ob-
served or experimented on but which can influence the
rest of the model; V is a set of observed variables
{V1, . . . Vn} that are determined by variables in the
model, i.e., variables in U∪V; F is a set of deter-
ministic functions {f1, . . . , fn} where each fi specifies
the value of the observed variable Vi given the values
of observable parents of Vi and the values of hidden
causes of Vi. A probabilistic causal model (Pearl, 2000)
(PCM) is a tuple M = 〈U,V, F, P (U)〉 where P (U)
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is a joint distribution over U.

Intervention (Pearl, 2000) on a set of variables X ⊆ V
of PCM M = 〈U,V, F, P (U)〉 involves setting to
X = x and is denoted by do-operation do (X = x)
or simply do (x). A causal effect of X on a disjoint
set of variables Y ⊆ V \X is written as P (y|do (x))
or simply Px (y). Intervention on a set of variables
X ⊆ V creates a submodel (Pearl, 2000) Mx of M de-
fined as follows: Mx = 〈U,V, Fx, P (U)〉 where Fx

is obtained by taking a set of distinct copies of func-
tions in F and replacing the functions that determine
the value of variables in X by constant functions set-
ting the variables to values x. It is easy to see that a
causal diagram G that encodes the causal assumptions
of model M is modified to GX by intervention on X.

Definition 1 (Causal Effects Identifiability (Pearl,
2000)). Let X, Y be two sets of disjoint variables,
and let G be the causal diagram. The causal effect of
an action do (X = x) on a set of variables Y is said
to be identifiable from P in G if Px (y) is (uniquely)
computable from P (V) in any model that induces G.

Do-calculus (Pearl, 1995) offers a sound and complete
(Shpitser and Pearl, 2006b; Huang and Valtorta, 2006)
inferential machinery for deciding identifiability (Tian
and Pearl, 2002; Tian, 2004; Shpitser and Pearl, 2006a)
in the sense that, if a causal effect is identifiable, there
exists a sequence of applications of the rules of do-
calculus that transforms the causal effect into a for-
mula that includes only observational quantities. Let
G be a causal diagram and P be a distribution on G.
Let W, X, Y, and T be disjoint sets of variables in G.
Then, the three rules of do-calculus are (Pearl, 1995):

(Rule 1) Insertion/deletion of observations:
Px (y | t,w) = Px (y | w) if (Y ⊥⊥ T | X,W)GX

(Rule 2) Intervention/observation exchange:
Px,t (y | w) = Px (y | t,w) if (Y ⊥⊥ T | X,W)GXT

(Rule 3) Insertion/deletion of interventions:
Px,t (y | w) = Px (y | w) if (Y ⊥⊥ T | X,W)G

X,T(W)

where T (W) represents T \An (W)GX
.

Shpitser and Pearl (2006b) devised an efficient and
complete algorithm, ID, for identifying causal effects.
ID employs c-component decomposition of a graph and
the resulting factorization of a causal effect (Tian and
Pearl, 2002) which can be expressed in terms of stan-
dard probability manipulations and do-calculus.

Definition 2 (C -component). Let G be a semi-
Markovian graph such that a subset of its bidirected
arcs forms a spanning tree over all vertices in G. Then
G is a c-component (confounded component).

We denote the set of c-components in G by C (G).

Pearl and Bareinboim (2011) defined transportability
which offers a license to transport causal information
learned from experimental studies in a source domain
to a target domain in which only an observational
study is possible. They also introduced a selection
diagram, a graphical representation for combining a
causal diagram in a source with a causal diagram in a
target domain.

Definition 3 (Selection Diagram (Pearl and Barein-
boim, 2011)). Let 〈M,M∗〉 be a pair of structural
causal models relative to domains 〈Π,Π∗〉, sharing a
causal diagram G. 〈M,M∗〉 is said to induce a se-
lection diagram D if D is constructed as follows: (i)
every edge in G is also an edge in D; (ii) D contains
an extra edge Si → Vi whenever there might exist a
discrepancy fi 6= f∗i or P

(
U i
)
6= P ∗

(
U i
)

between M
and M∗.

We call the set of such Si selection variables and denote
them by S.

Definition 4 (Causal Effects Transportability (Pearl
and Bareinboim, 2011)). Let D be a selection diagram
relative to domains 〈Π,Π∗〉. Let 〈P, I〉 be the pair
of observational and interventional distributions of Π,
and P ∗ be the observational distribution of Π∗. The
causal effect R = Px (y) is said to be transportable
from Π to Π∗ in D if P ∗x (y) is uniquely computable
from P , P ∗, I in any model that induces D.

Bareinboim and Pearl (2012b) provided sID, an algo-
rithm for transporting causal effects from one domain
to another. sID is an extension of ID (Shpitser and
Pearl, 2006b), an algorithm for identifying causal ef-
fects from experiments and observations.

Bareinboim and Pearl (2012a) introduced z-
identifiability, the problem of estimating in a
given domain the effect on a set of variables Y of
interventions on a set of variables X from surrogate
experiments on a different set, Z, that is more
accessible to manipulation than X.

Definition 5 (Causal Effects z-Identifiability (Barein-
boim and Pearl, 2012a)). Let X, Y, and Z be
disjoint subsets of observable variables V, and
let G be the causal diagram. The causal ef-
fect of an action do (X = x) on a set of variables
Y is said to be z-identifiable from P in G if
Px (y) is (uniquely) computable from P (V) together
with the set of interventional distributions IZ =
{P (V \ Z′ | do (Z′))}Z′∈P(Z)\{∅}, in any model that
induces G.

Bareinboim and Pearl (2012a) established a graphical
necessary and sufficient condition for z-identifiability
for arbitrary disjoint sets of variables X, Y, and Z:

Theorem 1. The causal effect R = P (y | do (x)) is
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zID in G if and only if one of the following conditions
hold:

1. R is identifiable in G; or

2. There exists Z′ ⊆ Z such that the following condi-
tions hold, (a) X intercepts all directed paths from
Z′ to Y, and (b) R is identifiable in GZ′ .

Bareinboim and Pearl (2012a) also established
the completeness of do-calculus relative to z-
identifiability. They also provided IDz, a complete
algorithm for computing the causal effect of X on Y
using information provided by experiments on Z under
the assumption that Z∩X = ∅.

3 GENERALIZED
z-IDENTIFIABILITY

We proceed to generalize z-identifiability to allow cases
where Z is not necessarily disjoint from X.2

Definition 6 (Generalized Causal Effects
z-Identifiability). Let X, Y, and Z be arbitrary
subsets of observable variables V with X ∩ Y = ∅,
and let G be the causal diagram. The causal ef-
fect of an action do (X = x) on a set of variables
Y is said to be gz-identifiable from P in G if
Px (y) is (uniquely) computable from P (V) to-
gether with the set of interventional distributions
IZ = {P (V \ Z′ | do (Z′))}Z′∈P(Z)\{∅,V}, in any
model that induces G.

We note that the assumption of Y and Z being disjoint
can be trivially ignored since experiments on Y ∩ Z
have no bearing on identification of a causal effect on
Y. In addition, the assumption in the definition of z-
identifiability that Z and X are disjoint can be easily
dropped since identifying Px (y) in G is identical to
identifying Px\z (y) in GZ∩X.

The necessary and sufficient conditions for gzID can
follow immediately from Theorem 1 with minor mod-
ifications to allow for the possibility that Z may not
necessarily be disjoint from X:

Theorem 2. The causal effect R = P (y | do (x)) is
gzID in G if and only if one of the following conditions
hold:

1. R is identifiable in G; or

2We will use the abbreviations ID, zID, gzID, TR,
and zTR respectively to denote identifiability, z-
identifiability, gz-identifiability, transportability, and z-
transportability, respectively, when used as nouns; and
identifiable, z-identifiable, gz-identifiable, transportable,
z-transportable, respectively, when used as adjectives.

function GIDz (y, x, Z, I, J P, G)
INPUT: x,y: value assignments; Z: variables with inter-
ventions available; I, J : active experiments; P : current
probability distribution do (I,J ,x) (observational when
I = J = ∅); G: a causal graph;
OUTPUT: Expression for Px (y) in terms of P , Pz or
FAIL(F ,F ′).
1 if X = ∅, return ∑v\y P (v)

2 if V \An (Y)G 6= ∅,
return GIDz(y, x ∩An (Y)G , Z,

I, J , ∑v\An(Y)G
P, An (Y)G)

3 Set W = V \ (X ∪ I ∪ J )) \An (Y)G
X∪I∪J

Set Zw = Z ∩ (X ∪W)
if (Zw ∪W) 6= ∅,
return GIDz(y, x ∪w \ Zw, Z \ Zw,

I ∪ zw, J , P, G)
4 if C (G \ (X ∪ I ∪ J )) = {C0, . . . , Ck},

return
∑

v\{y,x,I}
∏

i GIDz(ci, (v \ ci) \ Z,
Z \ (V \ Ci) , I, J ∪ (Z ∩ (v \ ci)) , P,G)

if C (G \ (X ∪ I ∪ J )) = {C},
5 if C (G) = {G}, throw FAIL(G,C)
6 if C ∈ C (G),

return
∑

c\y
∏

i|Vi∈C P (vi | v(i−1)
G \ (I ∪ J ))

7 if (∃C′)C ⊂ C′ ∈ C (G),
return GIDz(y, x ∩ C′, Z, I, J ,∏

i|Vi∈C′ P (Vi | V (i−1)
G ∩C′, v(i−1)

G \ (C′ ∪ I ∪ J )), C′)

Figure 1: GIDz for gzID.

2. There exists Z′ ⊆ Z such that the following condi-
tions hold, (a) X intercepts all directed path from
Z′ \X to Y, and (b) P (y | do (x \ z′)) is identifi-
able in GZ′

One may simply call IDz by passing Px\z (y) in GZ∩X
with surrogate variables Z \ X (i.e., wrapping IDz)
to yield a sound and complete algorithm for gzID. In-
stead, we obtain GIDz (Figure 1) by making a minor
modification to the IDz algorithm (Bareinboim and
Pearl, 2012a) (on line 3) which reflects Theorem 2.
This only delays the use of experiments on X ∩ Z to
line 3 to allow for the possibility that Z ∩X 6= ∅.

4 z-TRANSPORTABILITY

We introduce z-transportability, the problem of esti-
mating the effect on a set of variables Y of interven-
tions on a set of variables X in a target domain from
experiments on an arbitrary set of controllable vari-
ables Z in a source domain.

Definition 7 (Causal Effects z-Transportability). Let
X, Y, Z be sets of variables where X is disjoint from
Y. Let D be a selection diagram relative to domains
〈Π,Π∗〉. Let P be the observational distribution and
IZ = {P (V \ Z′ | do (Z′))}Z′∈P(Z)\{∅,V} the set of in-
terventional distributions of Π, and P ∗ the observa-
tional distribution of Π∗. The causal effect Px (y) is
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said to be z-transportable from Π to Π∗ in D if P ∗x (y)
is uniquely computable from P , P ∗, IZ in any model
that induces D.

Thus, z-transportability requires that the causal ef-
fect of X on Y in a target domain be estimable
from experiments on Z in a source domain when only
the variables Z are controllable and any subset of Z
can be controlled together. It is easy to see that z-
transportability generalizes gzID, the problem of esti-
mating in a given domain, the causal effect of X on Y
from experiments on Z. z-Transportability also gen-
eralizes TR which requires only that the causal effect
of X on Y in the target domain be estimable from
experiments on V in the source domain.

Lemma 1. Let X, Y, Z be sets of variables with
X disjoint from Y, in population Π and Π∗, and let
D be the selection diagram characterizing Π and Π∗.
P (y | do (x)) is not z-transportable from Π to Π∗ if
there exist two causal models M1 and M2 compati-
ble with D such that P ∗1 (V) = P ∗2 (V), P1 (V) =
P2 (V), P1 (V \ Z′ | do (Z′)) = P2 (V \ Z′ | do (Z′)),
for all Z′ ⊆ Z and Z′ 6= V, and P ∗1 (y | do (x)) 6=
P ∗2 (y | do (x)).

Proof. The non-uniqueness of P ∗ (y | do (x)) implies
that there is no function that maps from P , P ∗, IZ to
P ∗ (y | do (x)).

Lemma 2. Let X, Y, Z be sets of variables with X
disjoint from Y. Let D be a selection diagram char-
acterizing Π and Π∗, and S be a set of selection vari-
ables in D. The causal effect R = P (y | do (x)) is z-
transportable from Π to Π∗ in D if P (y | do (x) , s) is
reducible, using the rules of do-calculus, to an expres-
sion in which: S appears only as a conditioning vari-
able in do-free terms; and interventions in do-terms
are a subset of Z.

Proof. An expression that is a transport formula for
P (y | do (x) , s) can contain only P ∗, P (terms with-
out the do-operator) and IZ (terms that contain the
do-operator on a subset of Z and but not the selec-
tion variables). By the correctness of do-calculus, the
existence of the formula implies z-transportability of
P ∗ (y | do (x)).

Figure 2 shows selection diagrams where Px (y) is not
ID but zTR given an experiment on Z. The causal
effect P ∗x (y) in each graph is uniquely estimable using
the rules of do-calculus. By adding experiments on
Z by rule 3, we get: Px (y | s) = Pz,x (y | s). We can
eliminate the effect of selection variable (�) on the two
domains using rule 1 to obtain: Pz,x (y | s) = Pz,x (y).
Except in Figure 2(b), Pz,x (y) can be expressed using

•
Z

•
X

•
Y

�

(a)

•W
•
Z

•X

•
Y

�

(b)

•Z
•X

•
W

•
Y

�

(c)

•W
•
Z

•
X

•
Y

�

(d)

Figure 2: Selection diagrams where Px (y) is zTR, but
not ID, with an experiment on Z. A selection variable
S is represented by a black square �.

rule 2 as: Pz,x (y) = Pz (y | x). In Figure 2(b) we have:
Pz,x (y) =

∑
wPz (w)Pz (y | w, x).

If Px (y) is non-gzID or non-TR, then the causal effect
is non-zTR (see Lemma 3). For example, in the case
of the four-node selection diagrams in Figure 2, if a
controllable variable is W instead of Z, then Px (y) is
non-gzID and hence non-zTR. Similarly, if a selection
variable is pointing to W instead of Z, then Px (y) is
non-TR and hence non-zTR.

We now proceed to establish the necessary and suf-
ficient conditions for zTR. We start with a lemma
that asserts a necessary condition for zTR in terms of
TR and gzID.

Lemma 3 (Necessity). A causal effect R = Px (y)
is z-transportable from Π to Π∗ in D only if R is gz-
identifiable from P and IZ in G and R is transportable
from Π to Π∗ in D.

Proof. This follows from the definitions of gzID,
TR and zTR. First, gzID is a special case of
zTR where Π = Π∗ (S = ∅). In addition, TR is
a special case of zTR where Z = V. Since no differ-
ence between two domains, S = ∅, or availability of all
experiments, Z = V, make the problem easier, zTR of
R implies gzID of R and TR of R. It then follows
that general z-identifiability of R and transportability
of R are necessary for z-transportability of R.

Since every zTR relation satisfies gzID and TR, we
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proceed to examine TR and gzID in depth. Barein-
boim and Pearl (2012b) observed that a TR causal
relation can be decomposed into trivially transportable
and directly transportable (DTR for short) relations.

Definition 8 (Trivial Transportability). A causal re-
lation R is said to be trivially transportable from Π to
Π∗, if R (Π∗) is identifiable from (G∗, P ∗).

Definition 9 (Direct Transportability). A causal re-
lation R is said to be directly transportable from Π to
Π∗, if R (Π∗) = R (Π).

The equality of relations P ∗x (y) and Px (y) holds if
(S ⊥⊥ Y | X)DX

by rule 1 of do-calculus.

Recall that a causal effect R can be factorized into mul-
tiple causal effects (c-factors) based on c-components
(Tian and Pearl, 2002) and gzID of R can be deter-
mined using a divide-and-conquer strategy. Hence, a
causal effect is gzID if and only if each c-factor re-
sulting from the factorization of R is identifiable by
the condition 1 or 2 in Theorem 2. It therefore follows
that given a causal relation R that is both TR and
gzID , if one of the c-factors of R is not ID in the tar-
get domain, then that c-factor must be DTR from the
source domain and ID from PZ′ in an edge subgraph
GZ′ of a causal diagram G (condition 2 in Theorem 2).
We provide a basic lemma for the factorization of a
causal effect based on (Tian and Pearl, 2002; Shpitser
and Pearl, 2006b).

Lemma 4. Let X and Y be disjoint sets of variables
of G. Let G′ = G [An (Y)G], X′ = X ∩ An (Y)G,
and V′ be variables in G′ and v′ their valuations. Let
W = V′ \X′ \An (Y)G′

X′
, X′′ = X′ ∪W; C (G′ \X′′)

a c-component decomposition of graph G′ \ X′′; and
Q =

{
Pv′\ci (ci)

}
Ci∈C(G′\X′′)

the set of corresponding

c-factors. Then Px (y) =
∑

v′\{x′′∪y}
∏
Qi∈QQi.

Proof. The proof follows from Lemma 3 (Shpitser and
Pearl, 2006b).

Lemma 5. Let G be a common causal diagram of do-
mains Π and Π∗. Let X, Y, Z be sets of variables
of G with X disjoint from Y and v a valuation of
V. Let G′ = G [An (Y)G], X′ = X ∩ An (Y)G, and
V′ be variables in G′ and v′ their valuations. Let
W = V′ \X′ \An (Y)G′

X′
, X′′ = X′ ∪W; C (G′ \X′′)

a c-component decomposition of graph G′ \ X′′; and
Q =

{
Pv′\ci (ci)

}
Ci∈C(G′\X′′)

the set of corresponding

c-factors. If R = Px (y) is gzID from Π and TR from
Π to Π∗, then for every Qi ∈ Q the following condi-
tions hold:

(i) Qi is identifiable from P ∗ (V′) in G′; or

gzID TR
ID

zTR

Figure 3: A Venn diagram depicting Theorem 3.
Given a selection diagram D and controllable variables
Z, the intersection of gzID and TR relations exactly
matches to zTR relations in any model that induces
D.

(ii) Qi is (a) identifiable from Pz′ in G′
Z′ where Z′ =

(V′ \ Ci) ∩ Z and (b) directly transportable from
Π to Π∗.

Proof. Let Q1 be a set of all ID causal effects in Q and
let Q2 be Q \Q1. If each causal effect in Q2 does not
satisfy the second condition, it contradicts the premise
that R is gzID and TR.

Lemma 6 (Sufficiency). Let X, Y, and Z be sets of
variables of G with X disjoint from Y. If R = Px (y)
is gzID in Π and TR from Π to Π∗, then R is
zTR from Π to Π∗.

Proof. By Lemma 5, for every c-factor Q ∈ Q that
is not ID in Π∗, there exists a subset Z of V such
that Q is identifiable in Π using experiments on Z and
DTR of Q. Hence, the causal effect R is reducible
to an expression where every term from c-factors in
Q is either (i) a do-free term (i.e., identified from P ∗)
or (ii) a term that contains the do-operator but no
selection variables (i.e., identified from IZ) in which
the intervention is on a subset of Z. Therefore, R is
zTR from Π to Π∗.

The necessary and sufficient conditions for zTR follow
from (Lemma 3) and sufficiency (Lemma 6).

Theorem 3 (Necessity and Sufficiency). A causal ef-
fect R = Px (y) is zTR from Π to Π∗ in D if and
only if (i) R is gzID from P and IZ in G and (ii) R
is TR from Π to Π∗ in D.

Though Theorem 3 is the main theorem of the paper,
it does not directly provide an effective procedure for
estimating a causal effect given P ∗, P , and IZ. Rather,
Lemma 5 will be more instrumental in the design of a
complete algorithm for zTR.
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function sIDz (y, x, G, Z)

Input: y, x value assignments for a causal effect P ∗x (y); G a causal diagram; Z a set of (inactive) controllable variables;
Output: an expression for P ∗x (y) regarding P ∗ and IZ or a (s-)hedge.

1 if X = ∅, return P ∗ (y)
2 if V 6= An (Y)G, return sIDz(y, x ∩An (Y)G , G

[
An (Y)G

]
, Z)

3 W← V \X \An (Y)G
X

4 if W 6= ∅, return sIDz (y, x ∪w, G, Z)
5 {C1, . . . , Ck} ← C (G \X)
6 Ti ← {Vj}Sj∈S ∩ Ci = ∅ for each i ∈ {1, . . . , k}
7 return

∑
v\{y,x}

∏k
i=1 Ti?BI(ci, v \ ci \ Z, Pz∩(v\ci) (V) , GZ∩(V\Ci)

, Z ∩ (V \ Ci)) : BI (ci, v \ ci, P ∗ (V) , G)

function BI (y, x, P, G, I = ∅)
Input: P : current distribution; G: current causal diagram; I: active experiments with default value ∅.
Output: Expression for Px (y) in terms of P or throw a (s-)hedge depending on the existence of selection variables.

1 if X = ∅, return P (y)
2 if V 6= An (Y)G, return BI

(
y, x ∩An (Y)G , P

(
An (Y)G

)
, G
[
An (Y)G

]
, I ∩An (Y)G

)

3 {C} ← C (G \ (X ∪ I))
4 if C (G) = {G}, throw FAIL〈D [G] , D [C]〉
5 if C ∈ C (G), return

∑
c\y
∏

i|Vi∈C P (vi | v(i−1)
G \ I)

6 if (∃C′)C ⊂ C′ ∈ C (G), return BI(y, x ∩ C′, ∏i|Vi∈C′ P (Vi | V (i−1)
G ∩ C′, v(i−1)

G \ (C′ ∪ I)), C′, I ∩ C′)

Figure 4: An algorithm for zTR with a subroutine BI for the identification of a c-factor given a (interventional)
probability distribution and a (mutilated) graph. To estimate a causal effect P ∗x (y), call sIDz (y,x, G,Z). We
assume that P ∗, IZ, and D are globally defined for convenience. By construction, G = GI in BI. Distribution
Pz∩(v\ci) is obtained from IZ.

5 AN ALGORITHM FOR
z-TRANSPORTABILITY

We proceed to describe sIDz, an algorithm that deter-
mines whether a causal relation Px (y) is zTR from
Π to Π∗, and if so, produces a correct transport for-
mula; if not, provides an evidence of non-zTR (i.e., an
s-hedge (Bareinboim and Pearl, 2012b) or a hedge (Sh-
pitser and Pearl, 2006b; Bareinboim and Pearl, 2012a)
if the relation is not TR or not gzID, respectively).

The design of sIDz (see Figure 43,4) follows directly
from Lemma 5. Specifically, sIDz factorizes a causal
effect based on the decomposition of the given graph
into a set of c-components. Unlike GIDz (line 3, Fig-
ure 1), sIDz (Figure 4) postpones covering interven-
tions on X by experiments on Z until after the fac-
torization of causal effect until it determines (line 7)
whether each c-factor can in fact be identified from
either the source domain or the target domain. From
Lemma 5, each c-factor of a z-transportable causal ef-
fect should be a) identifiable (trivially transportable)
in the target domain or b) gz-identifiable in the source
domain and directly transportable from the source do-

3For simplicity, we combine I and J (see GIDz, Fig-
ure 1) into I (see sIDz, Figure 4)

4A manipulated graph GI and experimental distribu-
tion PI are passed as arguments when active experiments
are set to I. For the use of GI (GI∪J in GIDz) we must
remove the incoming edges on the active experiments so
that a relation can be identified from PZ′ in GZ′ .

main to the target domain. Fortunately, direct trans-
portability of a c-factor Qi can be easily computed at
the stage of decomposition:

{Vj}Sj∈S ∩ Ci = ∅ (1)

which is identical to testing S-admissibility (Pearl and
Bareinboim, 2011)

(S ⊥⊥ Ci | V \ Ci)G
V\Ci

.

From Theorem 3 above, to establish that a c-factor
is not zTR, it suffices to show the existence of either
1) a hedge (which shows that the causal effect is non
gzID); or 2) an s-hedge (which shows that the causal
effect is non-TR). Algorithm sIDz calls the subroutine
BI to determine if a directly transportable c-factor is
gz-identifiable. Because ordinarily identifiable c-factor
is gz-identifiable, line 7 of sIDz employs an inline con-
ditional operator5. The subroutine BI estimates a c-
factor given a distribution, a causal graph, and ac-
tive experiments I. Thus, the algorithm differs from
TRz (Bareinboim and Pearl, 2013a) which tries to es-
timate a c-factor given an interventional distribution
of a source domain after the test for trivial transporta-
bility of a c-factor fails.

The ability to check for direct transportability of a
c-factor (Equation 1) allows BI, upon failure to iden-

5An inline conditional operator is of the form
cond?exp1 : exp2. The first expression exp1 is executed
if cond is true. Otherwise exp2 is executed.
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Figure 5: Selection diagrams where Px (y) is not
ID but zTR but given controllable variables Z (V1
and X2 are controllable variables for Figure 5(c) and
5(d)).

tify a c-factor in the source domain, to throw a hedge
which implies non-gzID. Similarly, if a c-factor is nei-
ther directly-transportable from the source domain to
the target domain nor ordinarily identifiable in the tar-
get domain, BI throws an s-hedge since {Vj}Sj∈S in-

tersects Ci.

5.1 EXAMPLES

Some examples are given in Figure 5 to illustrate how
sIDz estimates a causal effect P ∗x (y) from experiments
on Z from a source domain. We will use P(I),x\I (y)
to denote a causal effect Px (y) in G from an interven-
tional distribution PI in GI (such that I ⊆ X).

In Figure 5(a), W and Z1 are added as interven-
tions (line 4), P ∗x (y) = P ∗z1,w,x (y). Z1, which
is included in controllable variables Z, will not be
treated as an active experiment until after the de-
composition. The causal effect is factorized as∑
z2
P ∗z,w,x (y)P ∗z1,w,x,y (z2). Since no selection vari-

able is pointing to Y or Z2 (line 6 and 7), the two
c-factors are then identified from Pz in GZ and Pz1 in
GZ1

, respectively, as

∑

z2

P(z1,z2),w,x (y)P(z1),w,x,y (z2) .

The parameters for the subrou-
tine is BI (y, w ∪ x, Pz, Gz, z) and
BI
(
z2, w ∪ x ∪ y, Pz1 , GZ1

, z1
)
, respectively.

In Figure 5(b), P ∗x (y) = P ∗w,x (y) by line 4. In lines

5–7, two c-factors P ∗z2,w,x (z1, y) and P ∗z1,w,x,y (z2) will
be identified in the source domain as

∑

z

P(z2),w,x (z1, y)P(z1),w,x,y (z2) .

In Figure 5(c), P ∗x (y) = P ∗x1,x2
(y1, y2) is factorized as∑

v1
P ∗x,y (v1)P ∗v1,x,y2 (y1)P ∗v1,x,y1 (y2). Since a selec-

tion variable is pointing to Y1,

P ∗v1,x,y2 (y1) 6= Pv1,x,y2 (y1) = P(v1,x2),x1,y2 (y1) .

Then, the first and third c-factors will be identified in
the source domain as
∑

v1

P(x2),x1,y (v1)P ∗v1,x,y2 (y1)P(v1,x2),x1,y1 (y2) .

In Figure 5(d), V1 is added to the causal effect as
an intervention, P ∗x (y) = P ∗v1,x (y) by line 4. By
Lemma 4, P ∗v1,x (y) = P ∗v1,x,y2 (y1)P ∗v1,x,y1 (y2) =
P ∗v1,x,y2 (y1)P(v1,x2),x1,y1 (y2).

5.2 SOUNDNESS AND COMPLETENESS

We first illustrate a certain behavior of GIDz which
will help understanding correctness of sIDz.

Remark 1. Addition of interventions (line 3) and de-
composition (line 4) of GIDz are executed at most
once.

Proof. Given a causal relation, GIDz checks whether
interventions can be added to the relation (line 3).
If so, it adds interventions and the subsequent call
checks whether there are multiple c-components in
G\(X ∪ I ∪ J ) (line 4). If so, the relation is factorized
to c-factors; or the relation is already a c-factor. Dur-
ing the estimation of the c-factor, no interventions are
added as (X ∪ (I ∪ J ))∪Y = V. In addition, decom-
position is not required as G [Y] is a c-component.

Lemma 7. Decomposition of Px (y) produced by sIDz

is equivalent to that produced by sID and by GIDz.

Proof. Trivially, the decomposition by sID and by
sIDz are identical as sID and sIDz share the same
code. As in Remark 1, lines 3 and 4 of GIDz are
executed only once. Hence, when GIDz adds inter-
ventions, I and J are empty (line 3) and when it de-
composes the relation, J is empty (line 4). Therefore,
X∪W computed by GIDz (line 3) and by sIDz (line
4) are identical. Since I is set to Zw ⊆ X ∪W by
GIDz, X∪I (line 4 of GIDz) is identical to X in sIDz

(line 5). As a result, C (G \ (X ∪ I ∪ J )) in line 4 of
GIDz is equivalent to C (G \X) in line 5 of sIDz.

Lemma 8. The c-factor estimate produced by BI are
equivalent to those produced by GIDz.
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Proof. The code used by BI to estimate a c-factor
is identical to that used by GIDz except for lines 3
and 4 of GIDz (see Footnote 3 and 4). By Remark 1
and Lemma 7, the c-factor estimate produced by BI
is identical to that produced by GIDz.

Theorem 4 (Soundness). Whenever sIDz returns an
expression for a causal effect P ∗x (y), it is correct.

Proof. The proof follows from Lemma 4 and 5, sIDz

decomposes a causal effect P ∗x (y) and estimates its c-
factors either from a source domain or from a target
domain. If a c-factor is directly transportable, sIDz

uses experimental distributions from the source do-
main to estimate it and the call to BI yields a c-factor
estimate that is identical to that of GIDz (Lemma 8).
If a c-factor is not directly transportable (Equation 1),
the c-factor must be trivially identifiable in the target
domain and since there are no active experiments, the
c-factor estimate produced by BI is identical to that
produced by ID (Lemma 8 with I = ∅).

Theorem 5. Assume sIDz fails to z-transport Px (y)
from Π to Π∗. Then Px (y) is neither gz-identifiable
from P in G nor transportable from Π to Π∗ in D.

Proof. If sIDz fails to z-transport a relation Px (y) (in
line 4 of the subroutine BI), it throws a hedge or an
s-hedge. The failure is due to the existence of a hedge
or an s-hedge associated with a c-factor, say Q. From
Lemma 8 it follows that the failure of sIDz in the case
of empty active experiments (I = ∅) or nonempty ac-
tive experiments (I 6= ∅) respectively implies and non-
ID or non-gzID of Q. From the test of direct trans-
portability in line 6 of sIDz (Equation 1), non-ID of Q
implies non-direct-transportability of Q. This also im-
plies that Px (y) is not transportable since there exists
a c-factor Q that is neither trivially transportable (ID)
nor direct-transportable. Therefore, whenever the al-
gorithm fails, Px (y) is neither gzID nor TR.

Corollary 1 (Completeness). sIDz is complete.

Proof. This follows from necessity and sufficiency the-
orem (Theorem 3) and Theorem 5.

The completeness of sIDz proves that do-calculus and
standard probability manipulations are sufficient for
determining whether a causal effect is z-transportable.

6 SUMMARY AND DISCUSSION

We have introduced z-transportability, the problem
of estimating in a target domain the causal effect of
a set of variables X on another set of variables Y

(such that Y ∩X = ∅) from experiments on any sub-
set of an arbitrary controllable variables Z (such that
Z ⊆ V) in a source domain. z-Transportability gener-
alizes z-identifiability (Bareinboim and Pearl, 2012a),
the problem of estimating in a given domain the
causal effect of X on Y from surrogate experiments on
Z. z-Transportability also generalizes transportabil-
ity (Pearl and Bareinboim, 2011) which requires only
that the causal effect of X on Y in the target domain
be estimable from experiments on all variables in the
source domain. We have generalized z-identifiability
to allow cases where Z is not necessarily disjoint from
X. We have established a necessary and sufficient con-
dition for z-transportability in terms of generalized z-
identifiability and transportability. We have provided
sIDz, an algorithm that determines whether a causal
effect is z-transportable; and if it is, produces a trans-
port formula, that is, a recipe for estimating the causal
effect of X on Y in the target domain using informa-
tion elicited from the results of experimental manip-
ulations of Z in the source domain and observational
data from the target domain. Our results also show
that do-calculus is complete for z-transportability.

Causal effects identifiability (Galles and Pearl, 1995;
Tian, 2004; Tian and Pearl, 2002; Shpitser and Pearl,
2006a,b), transportability (Pearl and Bareinboim,
2011; Bareinboim and Pearl, 2012b), z-identifiability
(Bareinboim and Pearl, 2012a), meta-transportability
(Bareinboim and Pearl, 2013b; Lee and Honavar, 2013)
and z-transportability (introduced in this paper and in
Bareinboim and Pearl, 2013a) are all special cases of
meta-identifiability (Pearl, 2012) which has to do with
nonparametric identification of causal effects given
multiple domains and arbitrary information from each
domain. Our results suggest several additional special
cases of meta-identifiability to consider, including in
particular: a generalization of z-transportability that
allows causal information from possibly different ex-
periments in multiple source domains to be combined
to facilitate the estimation of a causal effect in a target
domain; variants of z-identifiability that incorporate
constraints on simultaneous controllability of combi-
nations of variables; and combinations thereof.
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Abstract

The PC algorithm learns maximally oriented
causal Bayesian networks. However, there is
no equivalent complete algorithm for learning
the structure of relational models, a more ex-
pressive generalization of Bayesian networks.
Recent developments in the theory and repre-
sentation of relational models support lifted
reasoning about conditional independence.
This enables a powerful constraint for ori-
enting bivariate dependencies and forms the
basis of a new algorithm for learning struc-
ture. We present the relational causal discov-
ery (RCD) algorithm that learns causal rela-
tional models. We prove that RCD is sound
and complete, and we present empirical re-
sults that demonstrate effectiveness.

1 INTRODUCTION

Research in causal discovery has led to the identi-
fication of fundamental principles and methods for
causal inference, including a complete algorithm—the
PC algorithm—that identifies all possible orientations
of causal dependencies from observed conditional in-
dependencies (Pearl, 2000; Spirtes et al., 2000; Meek,
1995). Completeness guarantees that no other method
can infer more causal dependencies from observational
data. However, much of this work, including the com-
pleteness result, applies only to Bayesian networks.

Over the past 15 years, researchers have developed
more expressive classes of models, including proba-
bilistic relational models (Getoor et al., 2007), that
remove the assumption of independent and identically
distributed instances required by Bayesian networks.
These relational models represent systems involving
multiple types of interacting entities with probabilistic
dependencies among them. Most algorithms for learn-
ing the structure of relational models focus on statisti-

cal association. The single algorithm that does address
causality—Relational PC (Maier et al., 2010)—is not
complete and is prone to orientation errors, as we show
in this paper. Consequently, there is no relational ana-
log to the completeness result for Bayesian networks.

Recent advances in the theory and representation of
relational models provide a foundation for reasoning
about causal dependencies (Maier et al., 2013). That
work develops a novel, lifted representation—the ab-
stract ground graph—that abstracts over all instanti-
ations of a relational model, and it uses this abstrac-
tion to develop the theory of relational d -separation.
This theory connects the causal structure of a rela-
tional model and probability distributions, similar to
how d -separation connects the structure of Bayesian
networks and probability distributions.

We present the implications of abstract ground graphs
and relational d -separation for learning causal models
from relational data. We introduce a powerful con-
straint that can orient bivariate dependencies (yielding
models with up to 72% additional oriented dependen-
cies) without assumptions on the underlying distribu-
tion. We prove that this new rule, called relational
bivariate orientation, combined with relational exten-
sions to the rules utilized by the PC algorithm, yields a
sound and complete approach to identifying the causal
structure of relational models. We develop a new algo-
rithm, called relational causal discovery (RCD), that
leverages these constraints, and we prove that RCD
is sound and complete under the causal sufficiency as-
sumption. We show RCD’s effectiveness with a prac-
tical implementation and compare it to several alter-
native algorithms. Finally, we demonstrate RCD on a
real-world dataset drawn from the movie industry.

2 EXAMPLE

Consider a data set containing actors with a measure-
ment of their popularity (e.g., price on the Hollywood
Stock Exchange) and the movies they star in with
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a measurement of success (e.g., box office revenue).
A simple analysis might detect a statistical associa-
tion between popularity and success, but the models
in which popularity causes success and success causes
popularity may be statistically indistinguishable.

However, with knowledge of the relational structure,
a considerable amount of information remains to be
leveraged. From the perspective of actors, we can ask
whether one actor’s popularity is conditionally inde-
pendent of the popularity of other actors appearing in
the same movie, given that movie’s success. Similarly,
from the perspective of movies, we can ask whether
the success of a movie is conditionally independent
of the success of other movies with a common actor,
given that actor’s popularity. With conditional inde-
pendence, we now can determine the orientation for a
single relational dependency.

These additional tests of conditional independence
manifest when inspecting relational data with abstract
ground graphs—a lifted representation developed by
Maier et al. (2013) (see Section 3.2 for more details).
If actor popularity indeed causes movie success, then
the popularity of actors appearing in the same movie
would be marginally independent. This produces a col-
lider from the actor perspective and a common cause
from the movie perspective, as shown in Figure 1.
With this representation, it is straightforward to iden-
tify the orientation of such a bivariate dependency.

This example illustrates two central ideas of this paper.
First, abstract ground graphs enable a new constraint
on the space of causal models—relational bivariate ori-
entation. The rules used by the PC algorithm can
also be adapted to orient the edges of abstract ground
graphs (Section 4). Second, this constraint-based
approach—testing for conditional independencies and
reasoning about them to orient causal dependencies—
is the primary strategy of the relational causal discov-
ery algorithm (Section 5).

3 BACKGROUND

The details of RCD and its correctness rely on fun-
damental concepts of relational data, models, and d -
separation as provided by Maier et al. (2013). This
section provides a review of this theory in the context
of the movie domain example. Note that the relational
representation is a strictly more general framework for
causal discovery, reducing to Bayesian networks in the
presence of a single entity with no relationships.

3.1 RELATIONAL DATA AND MODELS

A relational schema, S = (E ,R,A), describes the en-
tity, relationship, and attribute classes in a domain, as

[ACTOR, STARS-IN, MOVIE].Success

[ACTOR].Popularity
   [ACTOR, STARS-IN, MOVIE, 
        STARS-IN, ACTOR]. Popularity

[MOVIE, STARS-IN, ACTOR].Popularity

[MOVIE].Success
   [MOVIE, STARS-IN, ACTOR, 
         STARS-IN, MOVIE]. Success

(a) (b)

Figure 1: Abstract ground graphs from (a) the Actor
perspective and (b) the Movie perspective.

well as cardinality constraints for the number of en-
tity instances involved in a relationship. A schema is
typically depicted with an entity-relationship diagram,
such as the one underlying the model shown in Fig-
ure 2(a). This example has two entity classes—Actor
with attribute Popularity and Movie with attribute
Success—and one relationship class—Stars-In with
no attributes. The cardinality constraints (expressed
as crow’s feet in the diagram) indicate that many ac-
tors may appear in a movie and a single actor may
appear in many movies. A schema is a template for a
relational skeleton σ—a data set of entity and relation-
ship instances. The example in Figure 2(b) contains
four Actor instances, five Movie instances, and the
relationships among them.

Given a relational schema, one can specify relational
paths, which are critical for specifying the variables
and dependencies of a relational model. A relational
path is an alternating sequence of entity and relation-
ship classes that follow connected paths in the schema
(subject to cardinality constraints). In Figure 2(a),
possible relational paths include [Actor] (a singleton
path specifying an actor), [Movie, Stars-In, Actor]
(specifying the actors in a movie), or even [Actor,
Stars-In, Movie, Stars-In, Actor] (describing co-
stars). The cardinality of a relational path is many if
the cardinalities along the path indicate that it could
reach more than one instance; otherwise, the cardi-
nality is one. For example, card([Movie, Stars-In,
Actor]) = many since a movie can reach many ac-
tors, whereas card([Actor]) = one since this path
can only reach the base actor instance.

Relational variables consist of a relational path and
an attribute, and they describe attributes of classes
reached via a relational path (e.g., the popularity of ac-
tors starring in a movie). Relational dependencies con-
sist of a pair of relational variables with a common first
item, called the perspective. The dependency in Fig-
ure 2(a) states that the popularity of actors influences
the success of movies they star in. A canonical depen-
dency has a single item class in the relational path of
the effect variable. A relational model, M = (S,D), is
a collection of relational dependencies D, in canonical
form, defined over schema S. Relational models are
parameterized by a set of conditional probability dis-
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(a) Relational model (b) Relational skeleton (c) Ground graph

STARS-IN

MOVIEACTOR

[MOVIE, STARS-IN, ACTOR].Popularity  [MOVIE].Success

Popularity Success

Figure 2: An example relational model involving actors and movies with a single relational dependency stating
that actor popularity causes movie success. The variables in the ground graph are drawn from the instances in
the skeleton, and the dependencies in the ground graph are drawn from the dependency in the model.

tributions, one for each attribute class A(I) for each
I ∈ E ∪R, that factorizes a joint probability distribu-
tion for a given skeleton. This class of models can be
expressed as DAPER models (Heckerman et al., 2007),
and they are more general than plate models (Buntine,
1994; Gilks et al., 1994) and than PRMs with depen-
dencies among only attributes (Getoor et al., 2007).

A relational model M paired with a relational skele-
ton σ produces a model instantiation GGMσ, called
the ground graph. A ground graph is a directed
graph with a node for each attribute of every en-
tity and relationship instance in σ, and an edge be-
tween instances of relational variables for all depen-
dencies in M. A single relational model is a template
for all possible ground graphs, one for every possi-
ble skeleton. Figure 2(c) shows an example ground
graph. A ground graph has the same semantics as a
Bayesian network with joint probability P (GGMσ) =�

I∈E∪R
�

X∈A(I)

�
i∈σ(I) P (i.X | parents(i.X)).

3.2 ABSTRACT GROUND GRAPHS

The RCD algorithm reasons about conditional inde-
pendence using abstract ground graphs, introduced by
Maier et al. (2013). Unlike the reasoning it supports
in Bayesian networks, d -separation does not accurately
infer conditional independence when applied directly
to relational models. Abstract ground graphs enable
sound and complete derivation of conditional indepen-
dence facts using d -separation.

An abstract ground graph AGGMBh for relational
model M, perspective B ∈ E ∪ R, and hop threshold
h ∈ N0 is a directed graph that captures the dependen-
cies among relational variables holding for any possible
ground graph. AGGMBh has a node for each rela-
tional variable from perspective B with path length
limited by h. AGGMBh contains edges between rela-
tional variables if the instantiations of those relational
variables contain a dependent pair in some ground
graph. Note that a single dependency in M may sup-
port many edges in AGGMBh . Additionally, a single
model M may produce many abstract ground graphs,

one for each perspective.

Figure 1 shows abstract ground graphs for the model
in Figure 2(a) from the Actor and Movie perspec-
tives with h = 4. There is a single relational depen-
dency in the example model, yet it supports two edges
in each abstract ground graph. Also, one perspective
exhibits a collider while the other contains a common
cause. The abstract ground graph is the underlying
representation used by RCD, and the conditional in-
dependence facts derived from it form the crux of the
relational bivariate orientation rule.

4 EDGE ORIENTATION

Edge orientation rules, such as those used by the PC
algorithm, use patterns of dependence and conditional
independence to determine the direction of causality
(Spirtes et al., 2000). In this section, we present the
relational bivariate orientation rule and describe how
the PC orientation rules can orient the edges of ab-
stract ground graphs. We also prove that these ori-
entation rules are individually sound and collectively
complete for causally sufficient relational data.

4.1 BIVARIATE EDGE ORIENTATION

The example from Section 2 briefly describes the appli-
cation of relational bivariate orientation (RBO). The
abstract ground graph representation presents an op-
portunity to orient dependencies that cross relation-
ships with a many cardinality. RBO requires no as-
sumptions about functional form or conditional densi-
ties, unlike the recent work by Shimizu et al. (2006),
Hoyer et al. (2008), and Peters et al. (2011) to orient
bivariate dependencies. The only required assumption
is the standard model acyclicity assumption, which re-
stricts the space of dependencies to those without di-
rect or indirect feedback cycles.

In the remainder of the paper, let IW denote the item
class on which attribute W is defined, and let X − Y
denote an undirected edge.
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[IX ... IY ].Y ∈ sepset([IX ].X, [IX ... IY ... IX ].X)?

[IX ... IY ].Y

[IX ].X [IX ... IY ... IX ].X

NO

YES [IX ... IY ].Y

[IX ].X [IX ... IY ... IX ].X

[IX ... IY ].Y

[IX ].X [IX ... IY ... IX ].X

Figure 3: The relational bivariate orientation rule is
conditional on whether [IX ... IY ].Y is in the separating
set of [IX ].X and [IX ... IY ... IX ].X.

Definition 1 (Relational Bivariate Orientation)
Let M be a relational model and G a par-
tially directed abstract ground graph for M,
perspective IX , and hop threshold h. If
[IX ].X − [IX ... IY ].Y is in G, card([IY ... IX ]) =
many, and [IX ].X ⊥⊥ [IX ... IY ... IX ].X | Z, then (1)
if [IX ... IY ].Y ∈ Z, orient as [IX ].X← [IX ... IY ].Y ; (2)
if [IX ... IY ].Y �∈ Z, orient as [IX ].X→ [IX ... IY ].Y .

RBO is illustrated in Figure 3. Given Definition 1,
if [IX ... IY ].Y is a collider for perspective IX , then
[IY ... IX ].X is a common cause for perspective IY , as-
suming card([IY ... IX ]) = many = card([IX ... IY ]). If
card([IX ... IY ]) = one and card([IY ... IX ]) = many,
then RBO applies only to the abstract ground graph
with perspective IX . For the example in Figure 1(a),
[Actor, Stars-In, Movie].Success is a collider for
the Actor perspective.

RBO is akin to detecting relational autocorrelation
(Jensen and Neville, 2002) and checking whether a dis-
tinct variable is a member of the set that eliminates the
autocorrelation. It is also different than the collider
detection rule (see Section 4.2) because it can explic-
itly orient dependencies as a common cause when the
unshielded triple does not present itself as a collider.
In Section 6.1, we quantify the extent to which RBO
provides additional information beyond the standard
PC edge orientation rules.

4.2 ORIENTING THE EDGES OF
ABSTRACT GROUND GRAPHS

We adapt the rules for orienting edges in a Bayesian
network, as used by PC (Spirtes et al., 2000) and char-
acterized theoretically by Meek (1995), to orient re-
lational dependencies at the level of abstract ground
graphs. Figure 4 displays the four rules1—Collider
Detection (CD), Known Non-Colliders (KNC), Cycle
Avoidance (CA), and Meek Rule 3 (MR3)—as they
would appear in an abstract ground graph.

1An additional rule is described by Meek (1995), but it
only activates given prior knowledge.

A relational model has a corresponding set of abstract
ground graphs, one for each perspective, but all are
derived from the same relational dependencies. Re-
call from Section 3.2 that a single dependency sup-
ports many edges within and across the set of abstract
ground graphs. Consequently, when a rule is activated
for a specific abstract ground graph, the orientation of
the underlying relational dependency must be propa-
gated within and across all abstract ground graphs.

4.3 PROOF OF SOUNDNESS

An orientation rule is sound if any orientation not in-
dicated by the rule introduces either (1) an unshielded
collider in some abstract ground graph, (2) a directed
cycle in some abstract ground graph, or (3) a cycle in
the relational model (adapted from the definition of
soundness given by Meek (1995)).

Theorem 1 Let G be a partially oriented abstract
ground graph from perspective B with correct adja-
cencies and correctly oriented unshielded colliders by
either CD or RBO. Then, KNC, CA, MR3, and the
purely common cause case of RBO, as well as the em-
bedded orientation propagation, are sound.

Proof. The proof for KNC, CA, and MR3 is nearly
identical to the proof given by Meek (1995).

Orientation propagation: Let [B... IX ].X→ [B... IY ].Y
be an oriented edge in G. By the definition of ab-
stract ground graphs, this edge stems from a relational
dependency [IY ... IX ].X → [IY ].Y . Let [B... IX ]�.X−
[B... IY ].Y be an unoriented edge in G where [B... IX ]�

is different than [B... IX ], but the edge is supported
by the same underlying relational dependency. As-
sume for contradiction that the edge is oriented as
[B... IX ]�.X ← [B... IY ].Y . Then, there must exist a
dependency [IX ... IY ].Y → [IX ].X in the model, which
yields a cycle. The argument is the same for abstract
ground graphs from different perspectives.

RBO common cause case: Given Definition 1, no al-
ternate perspective would have oriented the triple as
a collider, and B = IX . Let [IX ].X− [IX ... IY ].Y −
[IX ... IY ... IX ].X be an unoriented triple in G. As-
sume for contradiction that the triple is oriented as
[IX ].X → [IX ... IY ].Y ← [IX ... IY ... IX ].X. This cre-
ates a new unshielded collider. Assume for con-
tradiction that the triple is oriented as [IX ].X →
[IX ... IY ].Y → [IX ... IY ... IX ].X or equivalently, the re-
verse direction. This implies a cycle in the model. �

4.4 PROOF OF COMPLETENESS

A set of orientation rules is complete if it produces a
maximally oriented graph. Any orientation of an un-
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[B... IX ].X

[B... IY ].Y

[B... IZ ].Z

[B... IW ].W

[B... IX ].X

[B... IY ].Y

[B... IZ ].Z

[B... IW ].W

[B... IY ].Y

[B... IX ].X [B... IZ ].Z

[B... IY ].Y

[B... IX ].X [B... IZ ].Z

[B... IY ].Y �∈ sepset([B... IX ].X, [B... IZ ].Z)

[B... IY ].Y

[B... IX ].X [B... IZ ].Z

[B... IY ].Y

[B... IX ].X [B... IZ ].Z

(a) Collider Detection (CD) (b) Known Non-Colliders (KNC)

(c) Cycle Avoidance (CA) (d) Meek Rule 3 (MR3)

[B... IY ].Y

[B... IX ].X [B... IZ ].Z

[B... IY ].Y

[B... IX ].X [B... IZ ].Z

Figure 4: Schematics of the PC orientation rules on an abstract ground graph from perspective B.

oriented edge must be consistent with a member of the
Markov equivalence class. Lemma 1 describes a use-
ful property that enables the proof of completeness to
reason directly about the remaining unoriented edges.

Lemma 1 Let G be a partially oriented abstract
ground graph, with correct adjacencies and oriented
unshielded colliders. Let Go be the result of exhaus-
tively applying KNC, CA, MR3, and the purely com-
mon cause case of RBO all with orientation propaga-
tion. In Go, if P.X→P �.Y−P ��.Z, then P.X→P ��.Z.

Proof. Much of this proof follows from Meek (1995).

The following properties hold: (1) X �= Z; otherwise,
RBO would have oriented P �.Y ←P ��.Z. (2) P.X must
be adjacent to P ��Z; otherwise, KNC would have ori-
ented P �.Y → P ��.Z. (3) P.X← P ��.Z does not hold;
otherwise, CA would have oriented P �.Y ← P ��.Z.
Therefore, we have a structure of the form P.X →
P �.Y −P ��.Z and P.X−P ��.Z.

We show that P.X → P ��.Z through exhaustive enu-
meration of the cases under which P.X → P �.Y was
oriented. The cases for KNC, CD (and RBO collider
cases), CA, and MR3 follow directly from Meek (1995).

(1) RBO oriented P.X → P �.Y from the IY per-
spective as a common cause. Then, P � = [IY ],
P = [IY ... IX ], and P �� = [IY ... IZ ]. Also,
[IY ... IX ... IY ].Y must be in Go with [IY ... IX ].X →
[IY ... IX ... IY ].Y . By Definition 1, card([IY ... IX ]) =
one and card([IY ... IX ])=many.

The relational path [IY ... IZ ] and its reverse have car-
dinality one; otherwise, RBO would have oriented
[IY ].Y − [IY ... IZ ].Z. We show that [IY ... IX ].X −
[IY ... IZ ].Z cannot remain unoriented.

Since this edge exists, by the construction of abstract
ground graphs, (a) [IY ... IX ] must be produced by
combining [IY ... IZ ] and [IZ ... IX ]) (using the extend
method (Maier et al., 2013)) and (b) [IY ... IZ ] must
be produced by combining [IY ... IX ] and [IX ... IZ ]).
The paths [IX ... IZ ] and [IZ ... IX ] underlie the depen-

dency between X and Z. Facts (a) and (b) impose
constraints on the schema and abstract ground graphs.
There are four cases for (a) depending on the relation-
ship between [IY ... IZ ] and [IZ ... IX ], with equivalent
cases for (b).

(i) [IY ... IZ ] and [IZ ... IX ] overlap exactly at IZ .
Then, the path from IX to IZ must have car-
dinality many. This implies that from the IZ

perspective, RBO would have oriented X to Z.
(ii) [IY ... IM ... IZ ] and [IZ ... IM ... IX ] overlap up to

IM . This is equivalent to case (i), except IM

appears on the path from IX to IZ .
(iii) [IZ ... IX ] is a subpath of the reverse of [IY ... IZ ].

Then, the path from IZ to IY must have cardi-
nality many, which is a contradiction.

(iv) The reverse of [IY ... IZ ] is a subpath of [IZ ... IX ].
This is equivalent to case (i), except IY appears
on the path from IX to IZ .

(2) Orientation propagation oriented P.X → P �.Y .
Then, there exists an edge for some perspective that
was oriented by one of the orientation rules. From that
perspective, the local structure matches the given pat-
tern, and from the previous cases, X→Z was oriented.
By definition, P.X→P ��.Z. �

Meek (1995) also provides the following results, used
for proving completeness. A chordal graph is an undi-
rected graph where every undirected cycle of length
four or more has an edge between two nonconsecutive
vertices on the cycle. Let G be an undirected graph, α
a total order on the vertices of G, and Gα the induced
directed graph (A→B is in Gα if and only if A < B
with respect to α). A total order α is consistent with
respect to G if and only if Gα has no unshielded col-
liders. It can be shown that only chordal graphs have
consistent orderings. Finally, if G is an undirected
chordal graph, then for all pairs of adjacent vertices
A and B in G, there exist consistent total orderings α
and γ such that A→B in Gα and A←B in Gγ .

Theorem 2 Given a partially oriented abstract
ground graph, with correct adjacencies and oriented
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unshielded colliders, exhaustively applying KNC, CA,
MR3, and RBO all with orientation propagation re-
sults in a maximally oriented graph G.

Proof. Much of this proof follows from Meek (1995).
Let Eu and Eo be the set of unoriented edges and
oriented edges of G, respectively.

Claim 1: No orientation of edges in Eu creates a cycle
or unshielded collider in G that includes edges from Eo.

Proof. Assume there exists an orientation of edges in
Eu that creates a cycle using edges from Eo. Without
loss of generality, assume that the cycle is of length
three. (1) If A→B→C are in Eo and A−C in Eu,
then CA would have oriented A→C. (2) If A→B←C
or A←B→C are in Eo and A−C is in Eu, then no
orientation A−C would create a cycle. (3) If A→B is
in Eo and B−C−A in Eu, then by Lemma 1 we have
A→C and no orientation of B−C would create a cycle.
A similar argument holds for unshielded colliders. �
Claim 2: Let Gu be the subgraph of G containing
only unoriented edges. Gu is the union of disjoint
chordal graphs.

Proof. Assume that Gu is not the union of disjoint
chordal graphs. Then, there exists at least one disjoint
component of Gu that is not a chordal graph. Recall
that no total ordering of Gu is consistent. Let A→B←
C be an unshielded collider induced by some ordering
on Gu. There are two cases: (1) A and C are adjacent
in G. The edge must be oriented; otherwise, it would
appear in Gu. Both orientations of A−C imply an
orientation of A and B, or C and B, by Lemma 1.
(2) A and C are not adjacent in G. Then, A−B−C is
an unshielded triple in G. Either CD or RBO would
have oriented the triple as a collider, or the triple is
inconsistent with the total ordering on Gu. �
Since G is chordal, it follows that no orientation of
the unoriented edges in G creates a new unshielded
collider or cycle. �

5 The RCD Algorithm

The relational causal discovery (RCD) algorithm is
a sound and complete constraint-based algorithm for
learning causal models from relational data.2 RCD
employs a similar strategy to the PC algorithm, op-
erating in two distinct phases (Spirtes et al., 2000).
RCD is similar to the Relational PC (RPC) algorithm,
which also learns causal relational models (Maier et al.,
2010). The differences between RPC and RCD are
threefold: (1) The underlying representation for RCD
is a set of abstract ground graphs; (2) RCD employs a
new causal constraint—the relational bivariate orien-
tation rule; and (3) RCD is sound and complete. RPC
also reasons about the uncertainty of relationship ex-
istence, but RCD assumes a prior relational skeleton.

ALGORITHM 1: RCD(schema, depth, hopThreshold , P )

1 PDs ← getPotentialDeps(schema, hopThreshold)
2 N ← initializeNeighbors(schema, hopThreshold)
3 S ← {}

// Phase I
4 for d← 0 to depth do
5 for X → Y ∈ PDs do
6 foreach condSet ∈ powerset(N [Y ] \ {X})

do
7 if |condSet | = d then
8 if X ⊥⊥ Y | condSet in P then
9 PDs ← PDs \ {X → Y, Y → X}

10 S[X, Y ]← condSet
11 break

// Phase II
12 AGGs ← buildAbstractGroundGraph(PDs)
13 AGGs, S ← ColliderDetection(AGGs, S)
14 AGGs, S ← BivariateOrientation(AGGs, S)
15 while changed do
16 AGGs ← KnownNonColliders(AGGs, S)
17 AGGs ← CycleAvoidance(AGGs, S)
18 AGGs ← MeekRule3(AGGs, S)
19 return getCanonicalDependencies(AGGs)

The remainder of this section describes the algorithmic
details of RCD and proves its correctness.

Algorithm 1 provides pseudocode for RCD. Initially,
RCD enumerates the set of potential dependencies, in
canonical form, with relational paths limited by the
hop threshold (line 1). Phase I continues similarly to
PC, removing potential dependencies via conditional
independence tests with conditioning sets of increasing
size drawn from the power set of neighbors of the effect
variable (lines 4–11). Every identified separating set is
recorded, and the corresponding potential dependency
and its reverse are removed (lines 9–10).

The second phase of RCD determines the orientation
of dependencies consistent with the conditional inde-
pendencies discovered in Phase I. First, Phase II con-
structs a set of undirected abstract ground graphs, one
for each perspective, given the remaining dependen-
cies. RCD then iteratively checks all edge orientation
rules, as described in Section 4. Phase II of RCD is
also different from PC and RPC because it searches for
additional separating sets while finding colliders and
common causes with CD and RBO. Frequently, un-
shielded triples X−Y −Z may have no separating set
recorded for X and Z. For these pairs, RCD attempts
to discover a new separating set, as in Phase I. These
triples occur for one of three reasons: (1) Since X and
Z are relational variables, the separating set may have
been discovered from an alternative perspective; (2)
The total number of hops in the relational paths for
X, Y , and Z may exceed the hop threshold—each de-
pendency is subject to the hop threshold, but a pair of

2Code available at kdl.cs.umass.edu/rcd.
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dependencies is limited by twice the hop threshold; or
(3) The attributes of relational variables X and Z are
the same, which is necessarily excluded as a potential
dependency by the assumption of an acyclic model.

Given the algorithm description and the soundness and
completeness of the edge orientation rules, we prove
that RCD is sound and complete. The proof assumes
causal sufficiency and a prior relational skeleton (i.e.,
no causes of the relational structure).

Theorem 3 Given a schema and probability distri-
bution P , RCD learns a correct maximally oriented
model M assuming perfect conditional independence
tests, sufficient hop threshold h, and sufficient depth.

Proof sketch. Given sufficient h, the set of poten-
tial dependencies PDs includes all true dependencies
in M, and the set of neighbors N includes the true
causes for every effect relational variable. Assuming
perfect conditional independence tests, PDs includes
exactly the undirected true dependencies after Phase I,
and S[X,Y ] records a correct separating set for the re-
lational variable pair �X, Y �. However, there may exist
non-adjacent pairs of variables that have no recorded
separating set (for the three reasons mentioned above).
Given the remaining dependencies in PDs, we con-
struct the correct set of edges in AGGs using the meth-
ods from Maier et al. (2013). Next, all unshielded
colliders are oriented by either CD or RBO, with cor-
rectness following from Spirtes et al. (2000) and rela-
tional d -separation (Maier et al., 2013). Whenever a
pair �X,Y � is missing a separating set in S, it is either
found as in Phase I or from a different perspective.
RCD then produces a maximally oriented model by
the soundness (Theorem 1) and completeness (Theo-
rem 2) results of the remaining orientation rules. �

6 EXPERIMENTS

6.1 SYNTHETIC EXPERIMENTS

The proofs of soundness and completeness offer a
qualitative measure of RCD’s effectiveness—no other
method can learn a more accurate causal model from
observational data. To complement the theoretical re-
sults, we provide a quantitative measure of RCD’s per-
formance and compare against the performance of al-
ternative constraint-based algorithms.

We evaluate RCD against two alternative algorithms.
The first algorithm is RPC (Maier et al., 2010). This
provides a comparison against current state-of-the-art
relational learning. The second algorithm is the PC
algorithm executed on relational data that has been
propositionalized from a specific perspective—termed
Propositionalized PC (PPC). Propositionalization re-

duces relational data to a single, propositional table
(Kramer et al., 2001). We take the best and worst
perspectives for each trial by computing the average
F-score of its skeleton and compelled models.

We generated 1,000 random causal models over ran-
domly generated schemas for each of the following
combinations: entities (1–4); relationships (one less
than the number of entities) with cardinalities selected
uniformly at random; attributes per item drawn from
Pois(λ = 1)+1; and relational dependencies (1–15)
limited by a hop threshold of 4 and at most 3 par-
ents per variable. This procedure yielded a total of
60,000 synthetic models. Note that this generates sim-
ple Bayesian networks when there is a single entity
class. We ran RCD, RPC, and PPC for each perspec-
tive, using a relational d -separation oracle with hop
threshold 8 for the abstract ground graphs.

We compare the learned causal models with the true
causal model. For each trial, we record the precision
(the proportion of learned edges in the true model)
and recall (the proportion of true edges in the learned
model) for both the undirected skeleton after Phase I
and the partially orientated model after Phase II. Fig-
ure 5 displays the average across 1,000 trials for each
algorithm and measure. We omit error bars as the
maximum standard error was less than 0.015.

All algorithms learn identical models for the single-
entity case because they reduce to PC when analyz-
ing propositional data. For truly relational data, algo-
rithms that reason over relational representations are
necessary for accurate learning. RCD and RPC re-
cover the exact skeleton, whereas the best and worst
PPC cases learn flawed skeletons (and also flawed ori-
ented models), with high false positive and high false
negative rates. This is evidence that propositionaliz-
ing relational data may lead to inaccurately learned
causal models.

For oriented models, the RCD algorithm vastly ex-
ceeds the performance of all other algorithms. As
the soundness result suggests, RCD achieves a com-
pelled precision of 1.0, whereas RPC introduces ori-
entation errors due to reasoning over the class depen-
dency graph and missing additional separating sets.
For recall, which is closely tied to the completeness re-
sult, RCD ranges from roughly 0.56 (for 1 dependency
and 2 entities) to 0.94 (for 15 dependencies and 4 enti-
ties). While RPC and PPC cannot orient models with
a single dependency, the relational bivariate orienta-
tion rule enables RCD to orient models using little in-
formation. RCD also discovers more of the underlying
causal structure as the complexity of the domain in-
creases, with respect to both relational structure (more
entity and relationship classes) and model density.
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Figure 5: Skeleton and oriented precision and recall for the RCD and RPC algorithms, as well as the best and
worst perspective for PPC for a baseline. Results are averaged over 1,000 models for each setting.

To quantify the unique contribution that RBO pro-
vides, we applied RBO as the final orientation rule in
Phase II and recorded the frequency with which each
edge orientation rule is activated (see Figure 6). As ex-
pected, RBO never activates for the single-entity case
because all paths have cardinality one. For truly rela-
tional domains, RBO orients between 11% and 100%
of the oriented edges. However, this does not fully
capture the broad applicability of RBO. Therefore, we
also recorded the frequency of each edge orientation
rule when RBO is applied first in Phase II of RCD. In
this case, for at least two entity classes, RBO orients
between 58% and 100% of the oriented edges.

Finally, we recorded the number of conditional inde-
pendence tests used by the RCD and RPC algorithms.
RCD learns a more accurate model than RPC, but at
the cost of running additional tests of independence
during Phase II. Fortunately, these extra tests do not
alter the asymptotic complexity of the algorithm, re-
quiring on average 31% more tests.

6.2 DEMONSTRATION ON REAL DATA

We applied RCD to the MovieLens+ database,
a combination of the UMN MovieLens database
(www.grouplens.org); box office, director, and actor
information collected from IMDb (www.imdb.com);
and average critic ratings from Rotten Tomatoes
(www.rottentomatoes.com). Of the 1,733 movies with
this additional information, we sampled 10% of the
user ratings yielding roughly 75,000 ratings. For test-
ing conditional independence, RCD checks the signif-
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Figure 6: Frequency of edge orientation rules in RCD,
with RBO last (above) and first (below).

icance of coefficients in linear regression and uses the
average aggregation function for relational variables.
The RCD-generated model is displayed in Figure 7.

We ran RCD with a hop threshold of 4, maximum
depth of 3, and an effect size threshold of 0.01. Be-
cause constraint-based methods are known to be order-
dependent (Colombo and Maathuis, 2012), we ran
RCD 100 times and used a two-thirds majority vote
to determine edge presence and orientation. RCD dis-
covered 27 dependencies. One interesting dependency
is that the average number of films that actors have
starred in affects the number of films the director has
directed—perhaps well-established actors tend to work
with experienced directors. Also, note that genre is a
composition of binary genre attributes.
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Figure 7: RCD-learned model of MovieLens+.

7 RELATED WORK

The ideas presented in this paper are related to three
primary areas of research. First, the RCD algorithm
is a constraint-based method for learning causal struc-
ture from observed conditional independencies. The
vast majority of other causal discovery algorithms have
focused on Bayesian networks and propositional data.
The IC (Pearl, 2000) and PC (Spirtes et al., 2000) algo-
rithms provided a foundation for all future constraint-
based methods, and Meek (1995) proved these equiv-
alent methods to be sound and complete for causally
sufficient data. Additional constraint-based methods
include the Grow-Shrink (Margaritis and Thrun, 1999)
and TC (Pellet and Elisseeff, 2008) algorithms.

Second, RCD emphasizes learning causal relational
models, a more expressive class of models for real-
world systems. Our experimental results also indicate
that propositional approaches may be inadequate to
handle the additional complexity of relational data.
Algorithms for learning the structure of directed rela-
tional models have been limited to methods based on
search-and-score that do not identify Markov equiva-
lence classes (Friedman et al., 1999). The RPC algo-
rithm was the first to employ constraint-based meth-
ods to learn causal models from relational data (Maier
et al., 2010), but RPC is not complete and may intro-
duce errors due to its underlying representation. Both
RPC and PRMs include capabilities to reason about
relationship existence (Getoor et al., 2002); however,
we currently focus on attributional dependencies and
leave causes of existence as future work.

Finally, orienting bivariate dependencies, the most ef-
fective constraint used by RCD, is similar to the efforts
of Shimizu et al. (2006), Hoyer et al. (2008), and Peters
et al. (2011) in the propositional setting. Contrary to
RBO, these techniques leverage strong assumptions on
functional form and asymmetries in conditional densi-
ties to determine the direction of causality. Nonethe-
less, these methods could orient some of the edges that

remain unoriented by RCD, given these additional dis-
tributional assumptions.

8 CONCLUSIONS

Relational d -separation and the abstract ground graph
representation provide a new opportunity to develop
theoretically correct algorithms for learning causal
structure from relational data. We presented the re-
lational causal discovery (RCD) algorithm and proved
it sound and complete for discovering causal models
from causally sufficient relational data. We introduced
relational bivariate orientation (RBO), which can de-
tect the orientation of bivariate dependencies. This
leads to recall of oriented relational models over a pre-
vious state-of-the-art algorithm that is 18% to 72%
greater on average. We also demonstrated RCD’s ef-
fectiveness on synthetic causal relational models and
demonstrated its applicability to real-world data.

There are several clear avenues for future research.
RCD could be extended to reason about entity and re-
lationship existence, and the assumptions of causal suf-
ficiency and acyclic models could be relaxed to support
reasoning about latent common causes and temporal
dynamics. There are also new operators that exploit
relational structure, such as relational blocking (Ratti-
gan et al., 2011), which could be integrated with sim-
ple tests of conditional independence. Finally, RCD
could be enhanced with Bayesian information, similar
to the recent work by Claassen and Heskes (2012) for
improving the reliability of algorithms that learn the
structure of Bayesian networks.
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S. Džeroski and N. Lavrač, editors, Relational Data
Mining, pages 262–286. Springer-Verlag, New York,
NY, 2001.

M. Maier, B. Taylor, H. Oktay, and D. Jensen. Learn-
ing causal models of relational domains. In Pro-
ceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, pages 531–538, 2010.

M. Maier, K. Marazopoulou, and D. Jensen. Reason-
ing about Independence in Probabilistic Models of
Relational Data. arXiv preprint arXiv:1302.4381,

2013.

D. Margaritis and S. Thrun. Bayesian network induc-
tion via local neighborhoods. In Advances in Neural
Information Processing Systems 12, pages 505–511,
1999.

C. Meek. Causal inference and causal explanation
with background knowledge. In Proceedings of the
Eleventh Conference on Uncertainty in Artificial In-
telligence, pages 403–410, 1995.

J. Pearl. Causality: Models, Reasoning, and Inference.
Cambridge University Press, New York, NY, 2000.

J.-P. Pellet and A. Elisseeff. Using Markov blankets
for causal structure learning. Journal of Machine
Learning Research, 9:1295–1342, 2008.

J. Peters, D. Janzing, and B. Schölkopf. Causal in-
ference on discrete data using additive noise mod-
els. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(12):2436–2450, 2011.

M. J. Rattigan, M. Maier, and D. Jensen. Relational
blocking for causal discovery. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intel-
ligence, pages 145–151, 2011.

S. Shimizu, P. O. Hoyer, A. Hyvarinen, and A. Kermi-
nen. A linear non-gaussian acyclic model for causal
discovery. Journal of Machine Learning Research,
7:2003–2030, 2006.

P. Spirtes, C. Glymour, and R. Scheines. Causation,
Prediction and Search. MIT Press, Cambridge, MA,
2nd edition, 2000.

380



Evaluating Anytime Algorithms for Learning Optimal Bayesian Networks

Brandon Malone
Department of Computer Science

Helsinki Institute for Information Technology
Fin-00014 University of Helsinki, Finland
brandon.malone@cs.helsinki.fi

Changhe Yuan
Department of Computer Science

Queens College/City University of New York
Queens, NY 11367 USA

changhe.yuan@qc.cuny.edu

Abstract

Exact algorithms for learning Bayesian networks
guarantee to find provably optimal networks.
However, they may fail in difficult learning tasks
due to limited time or memory. In this research
we adapt several anytime heuristic search-based
algorithms to learn Bayesian networks. These
algorithms find high-quality solutions quickly,
and continually improve the incumbent solution
or prove its optimality before resources are ex-
hausted. Empirical results show that the any-
time window A* algorithm usually finds higher-
quality, often optimal, networks more quickly
than other approaches. The results also show that,
surprisingly, while generating networks with few
parents per variable are structurally simpler, they
are harder to learn than complex generating net-
works with more parents per variable.

1 INTRODUCTION

Score-based learning of Bayesian networks is a popular
strategy which assigns a score to a network structure based
on given data, and the goal is to find the highest-scoring
structure. The problem is NP-complete (Chickering 1996),
so much early research focused on local search strategies,
such as greedy hill climbing in the space of Bayesian net-
work structures (Heckerman 1996), hill climbing in the
space of equivalence classes of networks (Chickering 2002)
or hill climbing in the space of variable orderings (Teyssier
and Koller 2005). Other more sophisticated local search
techniques have also been investigated (Moore and Wong
2003). Unfortunately, these algorithms offer no bounds on
the quality of learned networks. On the other hand, they
do have goodanytimebehavior. That is, they quickly find
a solution and improve its quality throughout the search.
The search can be stopped at “anytime” and return the best
solution found so far.

Several dynamic programming (DP) algorithms (Koivisto

and Sood 2004; Ott, Imoto, and Miyano 2004; Singh and
Moore 2005; Silander and Myllymaki 2006; Malone, Yuan,
and Hansen 2011) have been developed which guarantee to
find the highest scoring network for a dataset. However,
these algorithms do not exhibit anytime behavior; they do
not produce any solution until giving the optimal network
at the end of the search.

Recently, though, several algorithms have been developed
which include both optimality guarantees and anytime be-
havior. de Campos and Ji (2011) proposed a branch and
bound algorithm (BB). It begins with a (cyclic) structure in
which all variables have their optimal parents. Then, cycles
are broken in a best-first manner until the optimal structure
is found. These cyclic structures give a lower bound on the
optimal network which improves throughout the search. To
add anytime behavior, a local search algorithm is used to
learn a suboptimal network at the beginning of the search.
The score of that network serves as an upper bound. Fur-
thermore, the search sometimes deviates from a pure best-
first strategy to find acyclic structures and improve the up-
per bound. At anytime, the search can be stopped, and the
ratio between the upper and lower bounds give a quality
guarantee of the current best acyclic network. When the
two bounds agree, the current best structure is optimal.

Mathematical programming (MP) algorithms (Jaakkola et
al. 2010; Cussens 2011) have also been developed which
have both anytime behavior and optimality guarantees.
These algorithms search in a space which includes an em-
bedded polytope whose surface corresponds to Bayesian
networks. The polytope has exponentially many facets, so
it is not represented explicitly. Rather, a series of MPs are
solved to define the polytope and find the optimal point on
its surface, which corresponds to the optimal Bayesian net-
work. The points on the surface correspond to integer co-
ordinates, so the MPs are actually integer linear programs
(ILPs) which are solved by relaxing the problem to a nor-
mal linear program (LP). After solving each LP, the solu-
tion is checked for integrality. If it is integral, then the so-
lution corresponds to the optimal Bayesian network. If not,
the value of the solution gives a lower bound on the opti-
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mal score. Also, the solution can be used to decode a valid
acyclic network and find an upper bound on the score. As
with BB, at any time, the search can be stopped, and the
ratio between the bounds gives a quality guarantee.

Yuanet al.(2011) described a shortest path formulation for
the structure learning problem. Since then, several heuris-
tic search algorithms, including A* (Yuan, Malone, and Wu
2011) and BFBnB (Malone et al. 2011), have been applied
to this problem. This paper explores the empirical behav-
ior of a variety of anytime heuristic search algorithms,
including anytime weighted A* (AWeiA*) (Hansen and
Zhou 2007), anytime repairing A* (ARA*) (Likhachev,
Gordon, and Thrun 2003) and anytime window A* (AW-
inA*) (Aine, Chakrabarti, and Kumar 2007), within this
shortest path formulation. Like BB and MP, these algo-
rithms all incorporate optimality guarantees and anytime
behavior. We empirically compare these algorithms and
MP on a variety of synthetic datasets. We use synthetic
datasets because these allow us to better control experimen-
tal conditions which affect the learning, including the num-
ber of variables, number of records and complexity of the
generating process of the datasets.

Experimentally, we show that AWinA* outperforms the
other anytime heuristic search algorithms. It also often
finds higher-quality networks more quickly than MP, but is
slower to prove optimality for simpler synthetic networks.
More thorough investigation into the search space and run-
time characteristics of the algorithms provide additional
insight to the learning problem. In particular, our results
show that complex generating networks may seem struc-
turally challenging to learn, but they actually lie within or
close to the promising solution space that is first explored
by heuristic search and are thus easier to find. In contrast,
simple generating networks typically receive bad estimated
scores. Because many other search nodes have better score
estimates, heuristic search cannot easily prove optimality
for these datasets.

2 LEARNING BAYESIAN NETWORKS

A Bayesian network consists of a directed acyclic graph
(DAG) in which vertices correspond to a set of random
variablesV = {X1, ..., Xn} and a set of conditional prob-
ability distributions. The arcs in the DAG encode condi-
tional independence relations among the variables. We use
PAi to represent the parent set ofXi. The dependence
between each variableXi and its parents is quantified us-
ing a conditional probability distribution,P (Xi|PAi). The
product of the conditional probability distributions givethe
joint distribution over all of the variables.

We consider the score-based Bayesian network structure
learning problem (BNSL) in this paper. Given a dataset
D = {D1, ..., DN}, whereDi is a complete instantia-
tion of all of the variablesV, and a scoring functions,

the goal is to find a Bayesian network structureS∗ such
thatS∗ = arg minS s(S,D). We omitD for brevity in the
remainder of the paper.

The scoring function is often a penalized log-likelihood or
Bayesian criterion which trades off the goodness of fit of
S to D against the complexity ofS. We allow for anyde-
composablescore, i.e., the score forS is the sum of the
scores of each variable,s(S) =

∑
X∈V s(X, PAX). Most

commonly used scoring functions, including MDL (Lam
and Bacchus 1994), fNML (Silander et al. 2008) and
BDe (Buntine 1991; Heckerman 1996), are decomposable.

In our work, we adopt a shortest path perspective to the
problem, so we assume the optimal structure minimizess.
Some scoring functions, such as BDe, assign high values
to better networks. We can multiply all scores by−1 to
convert the maximization into a minimization.

3 THE SHORTEST PATH PERSPECTIVE

Yuan et al. (2011) formulated BNSL as a shortest-path
finding problem. Figure 1 shows an implicit search graph
for four variables in which the shortest path search is per-
formed. Each node in the graph corresponds to an opti-
mal subnetwork over a unique subset of variables in the
dataset. Thestart search node, at the top of the graph, cor-
responds to the empty variable set, while the bottom-most
node with all variables is thegoal node. Each edge in the
search graph represents adding a new variableX as a leaf
to the optimal subnetwork over the existing variables,U.
The new variable selects its optimal parents (according to
the scoring functions) from U. The cost of the edge is
equal to the score of the optimal parent set, which we de-
noteBestScore(X,U), i.e.,

cost(U → U ∪ {X}) = BestScore(X,U)

= min
PAX⊆U

s(X, PAX).

Based on this specification, a path fromstart to goal in-
duces an ordering on the variables, based on the order in
which they are added. Thus, we also call this graph theor-
der graph. Each variable selects its optimal parents from
variables which precede it in the ordering. Consequently,
combining the parent set selections made on a path from
start to goal gives the optimal network for that ordering,
and the cost of that path corresponds to the score for that
network. Therefore, the shortest path fromstart to goal
corresponds to a globally optimal Bayesian network.

The computation ofBestScore(·) is required for each
edge visited during the search. Naively, this computa-
tion requires considering an exponential number of parent
sets; however, several authors (Teyssier and Koller 2005;
de Campos and Ji 2011) have noted that many parent sets
are not optimal for any ordering of variables. Therefore,
many local scores can be pruned before the search. Yuan
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Figure 1: An order graph of four variables

and Malone (2012) developed a sparse data structure which
takes advantage of this pruning to store only thepossibly
optimal parent sets(POPS) and to computeBestScore(·)
with a linear number of bitwise operations.

This shortest path problem has been solved using several
heuristic search algorithms, including A* (Yuan, Malone,
and Wu 2011) and breadth-first branch and bound (BF-
BnB) (Malone et al. 2011). In A* (Hart, Nilsson, and
Raphael 1968), an admissible heuristic function is used
to calculate a lower bound on the cost from a nodeU in
the order graph togoal. An f-cost is calculated forU by
summing the cost fromstart to U (calledg(U)) and the
lower bound fromU to goal (calledh(U)). So f(U) =
g(U) + h(U). The f-cost provides an optimistic estima-
tion on how good a path can be if it has to go throughU.
The search maintains a list of nodes to be expanded sorted
by f-costs calledopen. It also keeps a list of nodes which
have already been expanded calledclosed. Initially, open
contains juststart, andclosed is empty. Nodes are then
expanded in best-first order according to f-costs. Expanded
nodes are added toclosed. As better paths to nodes are dis-
covered, they are added toopen. In general, if a better path
to a node inclosed is found, then the node must be added
to open again and re-expanded. Upon expandinggoal, the
shortest path fromstart to goal has been found.

In BFBnB, nodes are instead expanded one layer at a time,
where a layer consists of all nodes corresponding to sub-
networks of the same size. Before beginning the search, a
local search strategy, such as greedy hill climbing, is used
to find a “good” network and its score. During the BFBnB
search, any node with an f-cost greater than the score found
during the local search can safely be pruned.

Yuan et al. (Yuan, Malone, and Wu 2011) gave a simple
heuristic function. Later, tighter heuristics based on pat-
tern databases were developed (Yuan and Malone 2012).

All of the heuristics were shown to beadmissible, i.e., to
always give a lower bound on the cost fromU to goal.
Furthermore, the heuristics have been shown to beconsis-
tent, which is a property similar to non-negativity required
by Dijkstra’s algorithm. Primarily, in standard A*, consis-
tency ensures that the first time a node is expanded, the
shortest path to that node has been found, so no node ever
needs to be re-expanded.

4 ANYTIME LEARNING ALGORITHMS

The shortest path perspective makes it straightforward to
apply anytime heuristic search algorithms to solve the
Bayesian network learning problem. The basic A* algo-
rithm does not have anytime behavior. It expands nodes in
best-first order until expandinggoal at which point it has
the optimal solution. The heuristic search community has
developed a variety of algorithms which allow A* to find
solutions more quickly. We begin by discussing weighted
A* (WA*), which does not add anytime behavior to A* but
can greatly improve solving time while offering provable
quality guarantees. We then discuss two techniques which
add anytime behavior to WA*. We also describe a third
strategy, not directly related to WA*, which adds anytime
behavior and quality guarantees to A*.

4.1 WEIGHTED A*

Weighted A* (WA*) (Pohl 1970) is a variant of A* which
adds a weightǫ (≥ 1.0) to the heuristic function in the f-
cost calculations. That is,f(U) = g(U)+ǫ×h(U). Other-
wise, WA* behaves exactly as unweighted A*. The inflated
h-cost could now overestimate the cost of a path fromU to
the goal, so the calculation is no longer admissible or con-
sistent. Despite the loss of admissibility, though, WA* still
has a quality guarantee: ifh was originally consistent, the
search algorithm can disregard any better paths it finds to
nodes inclosed, and the cost of the path found fromstart
togoal is guaranteed to be no more than a factor ofǫ greater
than the optimal solution.

Intuitively, much of the f-cost of nodes close tostart
comes fromh, but the f-cost of deeper nodes is dominated
by g. Because WA* weights theh costs, but not theg costs,
this has the effect of making the search favor deeper nodes
because they have smallerh values. Thus, the overall ef-
fect is that WA* expands deeper nodes more greedily than
A* and often expandsgoal much more quickly than the
unweighted A*.

4.2 ANYTIME WEIGHTED A*

Like WA*, anytime weighted A* (AWeiA*) (Hansen and
Zhou 2007) adds a weight to the heuristic calculations so it
also favors expanding deeper nodes. Rather than stopping
as soon asgoal is expanded, though, AWeiA* continues the
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search. During the search, a stream of better paths togoal
are discovered, and theincumbentsolution, which gives
the current shortest path, is updated. If the search is run
until completion, it terminates with the optimal solution.
To guarantee the optimality of the final solution, though,
AWeiA* must re-expand nodes when it finds a better path
to them. Any node which has a worse unweighted f-cost
than the incumbent can be pruned, though. At any time,
the search can be stopped, and the incumbent solution re-
turned. AWeiA* also offers the same guarantee of WA*:
the globally optimal solution is guaranteed to be within a
factor ofǫ of the incumbent. However, an even tighter error
bound is available by calculating the ratio of the smallest
unweighted f-cost of any open node and the incumbent.

4.3 ANYTIME REPAIRING A*

Anytime repairing A* (ARA*) (Likhachev, Gordon, and
Thrun 2003) also starts as normal WA*. Upon finding a
solution, ARA* decreasesǫ and searches again. At each it-
eration, the solution improves (or stays the same), so this
algorithm also produces a stream of improved solutions.
Additionally, becauseǫ is decreased at each iteration, the
quality guarantee tightens, as well. ARA* can also check
the ratio between the smallest unweighted f-cost and the
incumbent to look for an even better bound. The algorithm
terminates with the optimal solution after completing an it-
eration in whichǫ = 1.

Like AWeiA*, ARA* can also find a better path to a node
during the search. Rather than immediately adding the node
back toopen, though, ARA* keeps these nodes in a sepa-
rate list,repair. At the beginning of each iteration, rather
than beginning the search atstart, ARA* instead adds all
of repair to open. In this manner, ARA* reuses g-cost in-
formation from one iteration to the next. ARA* can also
prune nodes with a worse f-cost than the incumbent.

4.4 ANYTIME WINDOW A*

Unlike AWeiA* and ARA*, anytime window A* (AW-
inA*) (Aine, Chakrabarti, and Kumar 2007) is not based
on WA*. Rather, it uses a type of sliding window to en-
courage deeper exploration of the order graph. It consists
of a series of iterations in which a parameterw, which in-
creases from one iteration to the next, controls the size of
the window. The algorithm keeps track of the depth of all
nodes expanded during an iteration of the algorithm. Af-
ter expanding a node in layerl, all nodes in layerl − w
are frozen for that iteration. Frozen nodes are stored, but
are not expanded. Whenh is consistent (like the heuristic
functions used here in BNSL), AWinA* will only expand a
node at most once during each iteration. Therefore, node re-
expansions are not explicitly considered in this algorithm.
As with the other anytime algorithms, AWinA* can prune
any node with a worse f-cost than the incumbent. Similar to

ARA*, rather than starting each iteration atstart, AWinA*
begins by adding all frozen nodes from the previous itera-
tion toopen, so it also reuses information across iterations.

AWinA* uses the sliding window to encourage more
greedy behavior in the search, but there is no quality guar-
antee for window size similar to that of the weighted algo-
rithms. This algorithm can calculate the ratio between the
smallest unweighted f-cost of a frozen node and the incum-
bent to find a quality guarantee, though.

5 EMPIRICAL EVALUATIONS

We empirically evaluated the anytime weighted
A* (AWeiA*), anytime window A* (AWinA*),
and anytime repairing A* (ARA*) against the in-
teger linear programming algorithm (GOBNILP,
v1.1) (Cussens 2011) on Bayesian network learning
tasks. The A* implementations are available online
(http://url.cs.qc.cuny.edu/software/URLearning.html). For
AWeiA*, we used a weight of 1.25. For ARA*, we also
set the initial weight to be 1.25 and decreased it by 0.05
at each iteration. The initial window size of AWinA* was
0 and increased by 1 after each iteration. We used static
pattern databases as the heuristic function. We empirically
determined these parameters give good performance on a
variety of datasets. We used the default parameter setting
for the GOBNILP algorithm (ILP for short). We did
not compare to local search strategies, such as greedy
hill climbing or optimal reinsertion, because a previous
study (Malone and Yuan 2012) has shown that WA*
outperforms those algorithms. That study also showed that
WA* outperformed BB (de Campos and Ji 2011). The first
iteration of ARA* is equivalent to WA*, so we assume the
results of that study extend here.

One objective in this study is to compare the anytime be-
havior of these algorithms, including the quality (i.e, score)
of the anytime solution and the error bounds. The other
objective is better understand the shortest-path formula-
tion. To rigorously study both objectives, we generated test
datasets by sampling synthetic Bayesian networks. For all
experiments, we first selected a number of variables and
maximum number of parents allowed for each variable. We
then created the networks using a slight variation on the
Ide-Cozman MCMC algorithm (Ide and Cozman 2002).
During the MCMC process, if a successor network resulted
in a variable exceeding the maximum number of parents,
that network was discarded, and the MCMC continued
from the previous network. All variables were binary, and
conditional probability distributions were sampled from a
symmetric Dirichlet distribution with a concentration pa-
rameter of 1. We call these networks thegenerating net-
works. Then, we generated datasets with 1,000 to 20,000
data points with logic sampling.
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All of the algorithms we consider require a decomposable
scoring function. In this evaluation, we use the MDL scor-
ing function (Lam and Bacchus 1994). Letri be the number
of states ofXi, Npai be the number of data points consis-
tent withPAi = pai, andNxi,pai be the data points further
constraint withXi = xi. Then MDL is given as follows.

MDL(G) =
∑

i

MDL(Xi, PAi), (1)

where

MDL(Xi, PAi) = H(Xi, PAi) +
log N

2
K(Xi, PAi),

H(Xi, PAi) = −
∑

xi,pai

Nxi,pai log
Nxi,pai

Npai

,

K(Xi, PAi) = (ri − 1)
∏

Xl∈PAi

rl.

5.1 ANYTIME RESULTS

We first tested the anytime behavior of the algorithms on
random networks with{29, 31, 33, 35} variables and{3, 6}
maximum parents per variable. Then, from each network,
we generated datasets with{1k, 5k, 10k, 20k} data points.
Thus, in total, we considered 32 datasets. We put a 2-hour
(7200 seconds) time limit on all the algorithms. The algo-
rithms may terminate earlier than the time limit when either
a provably optimal solution is found or RAM is exhausted.
All of the algorithms (shortest-path-based and ILP) require
the local scores (MDL(Xi, PAi)) as input; therefore, we
do not include these calculation times in the results. Ta-
ble 1 shows all the results. We focus on synthetic networks
in this study because we can control the parameters of the
generating network; however, results from real-world data
show similar trends.

The results show that AWinA* performs much better than
the other shortest-path-based algorithms. Its 60-second and
final scores and error bounds are better than those of
AWeiA* and ARA* on almost all cases. We note, how-
ever, that AWinA* often runs longer than the other algo-
rithms before exhausting all the RAM. This is because AW-
inA* finds better solutions more quickly than AWeiA* and
ARA*. Therefore, it prunes more nodes during the search
and explores more of the search space. Consequently, it fills
RAM more slowly and is able to run longer. For these rea-
sons, we only consider AWinA* among the shortest-path-
based algorithms for the remaining discussion.

ILP performed quite well on all the datasets with only 1k
data points; it found all the optimal solutions within 60
seconds. AWinA* also often found the optimal solutions
quickly, although it took much longer in proving the opti-
mality, and sometimes failed to do so before running out
of memory. The reason for ILP’s excellent performance is
that the numbers of possibly optimal parent sets (POPS)

for these datasets are quite small. Therefore, the linear pro-
grams constructed by ILP are small and easy to solve.

However, AWinA*’s 60-second and final solutions are all
better than those found by ILP on the datasets with 5k, 10k
and 20k data points, even though the error bound is some-
times worse than that of ILP. Those datasets had many more
POPS, so each iteration of ILP required solving a large
linear program. As a result, ILP was sometimes not able
to find any solution within 60 seconds. The difference be-
tween scores at 60-seconds and the end of the search also
show that ILP does not typically find its best solution early
in the search. In contrast, AWinA* was always able to find
a solution within several seconds. In fact, AWinA* found
its best solution within the first 60 seconds on 14 of the
datasets; the rest of the time is spent on proving the opti-
mality of the solutions. This behavior is highly desirable.
For a given large dataset, we do not know whether an op-
timal Bayesian network can be learned given limited re-
sources. We should therefore strive to obtain as good a so-
lution as we can as quickly as possible. The results show
that AWinA* finds better solutions much sooner than ILP
on many of the test datasets.

We note, however, ILP sometimes provides better error
bounds than AWinA*. This is surprising given that its so-
lutions are of lower quality, in terms of score, than those of
AWinA*. The reason is that ILP often finds tighter lower
bounds than AWinA*. The solutions of the LPs for ILP op-
timize the relaxed ILPs, so they give a lower bound on the
solution. A simple local search is used to extract a valid
BN from the LP solution and attempt to improve the up-
per bound. So most of the work in ILP focuses on improv-
ing the lower bound. On the other hand, the primary goal
of AWinA* is to find a shortest path (subject to the sliding
window constraint) fromstart togoal, which improves the
upper bound. Shortest-path-based algorithms must expand
nodes with the lowest f-costs to improve the lower bounds,
but the window semantics (and also weighted heuristic) dis-
courages expanding nodes in early layers of the search, re-
gardless of their f-cost. Therefore, AWinA* focuses more
heavily on improving the upper bound.

The better error bounds are certainly nice to have. AWinA*
proved the optimality of its solutions for 13 of the datasets,
while ILP proved optimality for 14. However, based on
the error bounds of ILP, we can verify that AWinA* actu-
ally found optimal solutions for several other datasets. For
example, for the “29.3.1k” dataset, both algorithms found
a network with a score of15, 298.15, but the final error
bound for ILP is1.00, while the bound for AWinA* is1.07.
Given ILP’s error bound, then, we can conclude that AW-
inA* actually found the optimal network. Using this line of
reasoning, we can see that AWinA* found the optimal net-
work on 16 datasets, but ILP on only 14. The results sug-
gest that ILP always either found-and-proved or did-not-
find the optimal network on these datasets.
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Figure 2: A comparison of the convergence of upper bounds (UB) and lower bounds (LB) for AWinA* and ILP.

Another difference between the two algorithms is that AW-
inA* often terminates before the time limit because it ex-
hausts all of the available RAM storingopen andclosed
lists. On the other hand, ILP typically runs out of time,
but does not fully utilize RAM. These results suggest that
ILP may be able to find solutions of the same quality as
AWinA* if given enough time, but it is unclear how much
more time would be needed. Similarly, more RAM or an
external-memory strategy could improve the quality and er-
ror bounds of the solutions of AWinA*.

5.2 CONVERGENCE OF BOUNDS

To gain a better perspective on how AWinA* and ILP im-
prove the upper and lower bounds, we plot the convergence
curves of the bounds against the running time for several
datasets in Figure 2. The results clearly agree with our anal-
ysis in Section 5.1. AWinA* was able to find good solutions
very quickly, while ILP was slower to find its first solu-
tion. Also, even though ILP finds quite bad lower bounds
initially, it quickly improves them. Finally, the pace with
which AWinA* improves its solutions and error bounds is
quite regular (increasing roughly exponentially from one
iteration to the next). In comparison, ILP was able to im-
prove its solution quickly and often in the early stage of the
search, but its pace slowed down significantly in the later
stages. This suggests that ILP may need much longer to
find the next solution. For the “29.3.1k” dataset, ILP found
and proved the optimal network in 45 seconds. Even though
AWinA* initially found better solutions than ILP, and the
optimal solution in 58 seconds, it failed to prove its op-

timality before running out of memory. For the “29.3.5k”
dataset, both algorithms failed to prove the optimality of
their solutions. AWinA* found its best solution in 18 sec-
onds. Based on its behavior on other datasets, we sus-
pect that AWinA* found the optimal solution but ran out
of RAM before proving its optimality. ILP’s solution was
worse than that of AWinA*, so it definitely did not find the
optimal solution; however, it obtained a much better lower
bound and, hence, a better error bound. For the “29.6.5k”
dataset, both algorithms were able to prove optimality of
the solutions. AWinA* was able to find the optimal solu-
tion in 42 seconds and prove it in 283 seconds, while ILP
only finds the optimal solution near the end of the search
(6,394s). Finally for the “29.6.20k” dataset, AWinA* found
the optimal solution in 14 seconds and proved its optimal-
ity close to the time limit. ILP took much longer (497s)
before finding its first solution, and was not able to find the
optimal solution within the time limit.

5.3 EFFECT OF GENERATING PARAMETERS

We created the generating networks by varying the num-
bers of variables and maximum parents allowed for each
variable, and generated the testing datasets with different
numbers of data points. In general, more variables or more
data points makes a dataset more difficult to solve opti-
mally, and, hence, increased the error bounds of both AW-
inA* and ILP. Relatively, the number of data points has a
larger effect on ILP; it solved almost all 1k datasets and
several 5k datasets optimally, but none of the 10k or 20k
datasets. The reason is that more data points increase the
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Dataset Percentage Generating Learned Distance
29.2.1k 41.92 1.72 1.62 7
29.2.5k 80.16 1.72 1.69 3
29.2.10k 89.40 1.72 1.72 0
29.2.20k 94.37 1.72 1.72 0
29.4.1k 1.79 3.03 3 1
29.4.5k 8.81 3.03 3.03 0
29.4.10k 18.54 3.03 3.03 0
29.4.20k 34.35 3.03 3.03 0
29.6.1k 0.22 4.24 3.45 23
29.6.5k 0.03 4.24 4.24 3
29.6.10k 0.11 4.24 4.21 1
29.6.20k 0.44 4.24 4.21 1
29.8.1k 18.59 5.03 2.52 95
29.8.5k 0.48 5.03 4.66 11
29.8.10k 0.23 5.03 4.97 9
29.8.20k 0.20 5.03 5.03 0

Table 2: The percentage of search nodes with better f-cost
than the optimal solution (“Percent”); the average number
of parents in the original (“Original”) and learned networks
(“Learned”), and the structural Hamming distance between
the original and learned networks (“Distance”).

number of POPS and make the linear programs larger and
harder to solve.

A somewhat surprising observation comes from the effect
of the maximum allowed parents in the generating net-
works on the the algorithms. AWinA* was able to solve
almost all the datasets that allow up to 6 parents (6-parent
datasets for short hereafter) optimally, but none of the 3-
parent datasets. Similarly, ILP was able to find optimal so-
lutions for more 6-parent datasets than 3-parent datasets.
This is surprising because, intuitively, more parents make
the Bayesian networks more complex and seemingly harder
to learn. To better understand the effect of the generating
parameters on the algorithms, especially AWinA*, we per-
formed a more detailed sensitivity analysis.

5.4 SENSITIVITY ANALYSIS OF PARAMETERS

To study the sensitivity of shortest-path-based algorithms
to the parameters for network and dataset generation, we
generated networks with: 29 variables and{2, 4, 6, 8}
maximum parents per variable. Then, from each network,
we again generated datasets with:{1k, 5k, 10k, 20k} data
points. We take the number of parameters necessary to
specify the conditional probability distributions in the gen-
erating network as a measure of complexity (i.e., more pa-
rameters mean a more complex process).

For each dataset, we first collected the f-costs of all the
nodes in the order graph for each dataset using a BFS
search. Because we were interested only in the characteris-
tics of the search space, we did not impose any time limit
on the algorithm; it can effectively use external memory, so
that resource did not pose a problem, either. Table 2 shows
the percentages of search nodes that have better f-costs than
the optimal solution, as well as several other statistics. We
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Figure 3: Distributions of the f-costs of all the search nodes
normalized by the number of data points. The enlarged
marks indicate where the optimal solutions are located.

also show distributions of the f-costs of all nodes relativeto
the optimal solutions in Figure 3.

As shown in Equation 1, the MDL score consists of two
terms: the log-likelihood of the data given the structure
and a structure complexity penalty. The likelihood term
increases linearly in the number of data points, while the
term that penalizes structural complexity increases logrith-
mically in the number of data points. Figure 4 shows that
when the number of data points is small, possibly opti-
mal parent sets (POPS) are typically smaller; consequently,
learned optimal networks tend to be simpler than gener-
ating networks. As the number of data points increases,
POPS become larger and learned networks more complex.

Indeed, as Table 2 shows, the average number of parents
in the learned, optimal network increases as the number of
data points increases (except for a slight decrease from 5k
to 10k data points for the 6-parent networks). As the num-
ber of data points increases, the structural Hamming dis-
tance between the learned, optimal network and the gener-
ating network decreases and drops to 0 for several datasets.
This shows that, given enough data, MDL can recover the
generating network and is appropriate for study. In addi-
tion, Figure 3 shows that the normalized f-costs of the op-
timal solutions shift left with increasing data points; this is
because more variables used larger parent sets and obtained
better scores. We also observe that the f-cost distributions
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of all search nodes shifted leftward. Because of the heuris-
tic functions used in A*, the internal order graph nodes re-
lax the acyclic constraints between some of the variables,
and have even more freedom to use the larger POPS. As a
result, more internal nodes obtained better f-costs.

Therefore, the percentages of f-costs better than the optimal
solutions depend on the relative speed in which the opti-
mal solutions and f-cost distributions shift. For the 8-parent
datasets, when we have few data points, even though the
generating network is complex, the relatively large com-
plexity penalty forces the search to consider simple net-
works which do not explain the data as well but incur a
small complexity penalty. As Table 2 shows, based on the
average number of parents in the generating network com-
pared to the optimal network for 1k records, the optimal
network is quite a bit simpler than the generating network.
As we add more data points, though, the likelihood term
dominates the score calculations. Therefore, the complex
structures which better explain the data have, relatively,
much better scores than simpler structures. Figure 3(b)
shows that the optimal solutions shift to the left relative to
the other nodes for the 8-parent datasets as the number of
data points increases. That explains why the percentage of
nodes with better f-costs than the optimal network is high,
but decreases as the number of data points increases.

It is a different story for the 2- and 4-parent datasets. As
Table 2 shows, for the 2-parent datasets, the percentages
of nodes with f-costs better than the optimal network are
rather high. The percentages increase with the number of
data points and approach95% for the 20k dataset. For the
4-parent datasets, the percentage is initially low but in-
creases significantly as the number of data points increases.
To understand why, we again consult Table 2, which shows
that the generating networks for those datasets do not have
many parents for each node. Therefore, simpler structures
both explain the data well and have a low complexity
penalty. Unlike in the 8-parent case, more complex struc-
tures can not improve upon the likelihood very much but in-
cur a much larger complexity penalty. Consequently, fewer
data points are needed to predict the structures well. The
results show that even with only 1k data points, the learned
networks have similar numbers of parents and structures as
the generating networks. So the learned, optimal networks
have converged to the generating networks and do not ben-
efit much from more data points. Figure 3(a) indeed shows
that the optimal solutions did not shift left much with more
than 5k data points; they actually shift towards the right
tails of the distributions with more data points.

These results help explain the performance, particularly the
error bounds, of AWinA* in the first set of experiments. To
completely prove optimality, AWinA* would have to ex-
pand all nodes with better f-costs than the goal. In prac-
tice, though, it can only expand about 10 million nodes in a
search space in the allocated resources. These results sug-
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Figure 4: Average parent set size of all the nodes in each
layer of the order graph for the “29.*.5k” datasets.

gest that AWinA* would not be able to prove optimality for
datasets generated from simple networks and a large num-
ber of data points. Table 1 shows this is exactly the case.

As further evidence, Figure 4 shows the average parent set
size of the (cyclic) networks corresponding to all search
nodes in each layer of the order graph for the “29.*.5k”
datasets. For the 2- and 4-parent datasets, the average car-
dinality decreases monotonically. The heuristic estimates
of most search nodes seem to select larger parent sets and
have lower costs than the goal, so they would have to be ex-
panded by A*. For the 6- and 8-parent datasets, the average
cardinality dips initially and then increases. Many nodes
in the middle layers seem to select smaller parent sets and
have higher costs than the goal, so many of them are never
expanded. The rate of the change of average cardinality is
often larger in the beginning and last layers. The explana-
tion is that the beginning and last layers have much fewer
search nodes than the middle layers, so the changes in par-
ent sets have a larger effect on the average cardinality.

6 CONCLUSIONS

In this research, we adapted several anytime heuristic
search algorithms to learn optimal Bayesian networks from
data, and empirically evaluated these algorithms against an
integer linear programming algorithm. Our empirical re-
sults show that AWinA* is the best-performing anytime al-
gorithm among the ones we evaluated in this study. It finds
better, often optimal, solutions more quickly than existing
methods; in many cases, the majority of its running time is
spent on proving the optimality of a solution found early
in the search. In comparison, the ILP algorithm focuses on
finding lower bounds for the optimal solution in its search.
As a result, its lower bounds are often better than those of
AWinA*, even though its solutions are often not as good.

Our results show that, surprisingly, complex generating
networks may seem structurally challenging to learn, but
they actually lie within the promising solution space that is
first explored by heuristic search and are easy to find.
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Abstract

Credal networks are graph-based statistical
models whose parameters take values in a
set, instead of being sharply specified as in
traditional statistical models (e.g., Bayesian
networks). The computational complexity of
inferences on such models depends on the ir-
relevance/independence concept adopted. In
this paper, we study inferential complexity
under the concepts of epistemic irrelevance
and strong independence. We show that in-
ferences under strong independence are NP-
hard even in trees with ternary variables.
We prove that under epistemic irrelevance
the polynomial time complexity of inferences
in credal trees is not likely to extend to
more general models (e.g. singly connected
networks). These results clearly distinguish
networks that admit efficient inferences and
those where inferences are most likely hard,
and settle several open questions regarding
computational complexity.

1 INTRODUCTION

Bayesian networks are multivariate statistical models
where irrelevance assessments between sets of variables
are concisely described by means of an acyclic directed
graph whose nodes are identified with variables (Pearl,
1988). The graph encodes a set of Markov conditions:
non-descendant non-parent variables are irrelevant to
a variable given its parents. The complete specification
of a Bayesian network requires the specification of a
conditional probability distribution for every variable
and every configuration of its parents. This is no easy
task. Whether these parameters (i.e., the conditional
distributions) are estimated from data or elicited from
experts, they inevitably contain imprecisions and ar-
bitrariness (Kwisthout and van der Gaag, 2008). De-

spite this fact, Bayesian networks have been success-
fully applied to a wide range of applications (Koller
and Friedman, 2009).

An arguably more principled approach to coping with
imprecision in parameters is by means of closed and
convex sets of probability mass functions called credal
sets (Levi, 1980). Unlike the representation of knowl-
edge by “precise” probability mass functions, credal
sets allow for the distinction between randomness and
ignorance (Walley, 1991). Bayesian networks whose
parameters are specified by conditional credal sets are
known as credal networks (Cozman, 2000). Credal
networks have been successfully applied to knowledge-
based expert systems, where it has been argued that
allowing parameters to be imprecisely specified facili-
tates elicitation from experts (Antonucci et al., 2007,
2009; Piatti et al., 2010).

A Bayesian network provides a concise representation
of the (single) multivariate probability mass function
that is consistent with the network parameters and
factorizes over the graph. Analogously, a credal net-
work provides a concise representation of the credal
set of multivariate mass functions that are consistent
with the local credal sets and satisfy (at least) the
irrelevances encoded in the graph. The precise charac-
terization of this joint credal set depends however on
the concept of irrelevance adopted.

The two most commonly used irrelevance concepts in
the literature are strong independence and epistemic
irrelevance. Two variables X and Y are strongly in-
dependent if the joint credal set of X,Y can be re-
garded as originating from a number of precise proba-
bility mass functions in each of which the two variables
are stochastically independent. Strong independence
is thus closely related to the sensitivity analysis inter-
pretation of credal sets, which regards an imprecisely
specified model as arising out of partial ignorance of
an ideal precisely specified one (Kwisthout and van der
Gaag, 2008; Antonucci and Piatti, 2009; Zaffalon and
Miranda, 2009). A variable X is epistemically irrel-
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evant to a variable Y if the marginal credal set of Y
according to our model is the same whether we observe
the value of X or not (Walley, 1991).

Typically, credal networks are used to derive tight
bounds on the expectation of some variable conditional
on the value of some other variables. The complexity
of such an inferential task varies greatly according to
the topology of the underlying graph, the cardinality
of the variable domains, and the irrelevance concept
adopted. For instance, the 2U algorithm of Fagiuoli
and Zaffalon (1998) can solve the problem in polyno-
mial time if the underlying graph is singly connected,
variables are binary and strong independence is as-
sumed. When instead epistemic irrelevance is adopted,
no analogous polynomial-time algorithm for the task
is known. On the other hand, de Cooman et al. (2010)
developed a polynomial-time algorithm for inferences
in credal trees under epistemic irrelevance that work
for arbitrarily large variable domains. No such algo-
rithm is known under strong independence. Recently,
Mauá et al. (2012) showed the existence of a fully
polynomial-time approximation scheme for credal net-
works of bounded treewidth and bounded variable car-
dinality under strong independence. It is still unknown
whether an analogous result can be obtained under
epistemic irrelevance.

In this paper, we show that epistemic irrelevance and
strong independence induce the same upper and lower
predictive probability in HMM-like (hidden Markov
model-like) credal networks (i.e., when we query the
value of the “last” state node given some evidence),
and that they induce the same marginal expectation
bounds in any network where non-root nodes are pre-
cise and root nodes are vacuous. The former im-
plies that we can use the algorithm of de Cooman
et al. (2010) for epistemic credal trees to compute
tight bounds on the predictive probability in HMM-
like credal networks also under strong independence.
The latter implies that computing tight posterior prob-
ability bounds in singly connected credal networks over
ternary variables under epistemic irrelevance is NP-
hard, as we show this to be the case under strong in-
dependence (de Campos and Cozman (2005) have pre-
viously shown the NP-hardness of inference in singly
connected strong networks when variable cardinalities

Table 1: Inferential Complexity of Credal Networks

MODEL STRONG EPISTEMIC

(Predictive) HMM P P
Tree NP-hard P
Singly connected NP-hard NP-hard
Multiply connected NPPP-hard NPPP-hard

are unbounded). Table 1 summarizes both the previ-
ously known complexity results and the contributions
of this work, which appear in boldface.

2 CREDAL NETWORKS

Let X1, . . . , Xn be variables taking values x1, . . . , xn
in finite sets X1, . . . ,Xn, respectively. We write X :=
(X1, . . . , Xn) to denote the n-dimensional variable tak-
ing values x in X := X1 × · · · × Xn. Given X and
I ⊆ {1, . . . , n} := N , the notation XI denotes the vec-
tor obtained from X by discarding the coordinates not
in I. We also write XI to denote the Cartesian prod-
uct (in the proper order) of the sets Xi with i ∈ I, and
xI to denote an element of XI . Note that XN = X
and XN = X .

Let Z be some finite set (multidimensional or not),
and Z a variable taking values in Z. A probability
mass function (pmf) p(Z) is a non-negative real-valued
function on Z such that

∑
z∈Z p(z) = 1. Given a

pmf p on Z, we define the expectation operator as the
functional Ep[f ] :=

∑
z∈Z f(z)p(z) that maps every

real-valued function f on Z to a real number. Given
a pmf p(X) on X , and disjoint subsets I, J and K,
we say that variables XK are stochastically irrelevant
to XI given XJ if p(xI |xJ∪K) = p(xI |xJ) for all x,
where the conditional pmfs are obtained by application
of Bayes’ rule on p(X). Variables XI and XK are
independent conditional on XJ if, given XJ , XI and
XK are irrelevant to each other.

A credal set C(Z) is a closed and convex set of pmfs
p(Z) on Z (Levi, 1980). The extrema of a credal set
are the points that cannot be written as convex com-
binations of other points in the set. The extrema of
C(Z) are denoted by extC(Z). We assume that every
credal set has finitely many extrema, which are used
to represent it. Thus, the credal sets we consider are
geometrically polytopes. The vacuous credal set is the
largest credal set on a given domain Z, and is denoted
by V (Z). Given a set M(Z) of pmfs p(Z) on Z we
write coM(Z) to denote its convex closure, that is,
the credal set obtained by all convex combinations of
elements of M(Z). Given a credal set C(X), disjoint
subsets I and J of N , and an assignment xJ to XJ ,
we define the conditional credal set C(XI |xJ) (induced
by C(X)) as the set co{ p(XI |xJ) : p ∈ C(X), p(xJ) >
0 }. It can be shown that the C(XI |xJ) remains the
same if we replace C(X) with its extrema extC(X).

For disjoint subsets I, J and K of N , we say that a
variable XK is strongly irrelevant to XI given XJ (and
w.r.t. C(X)) if XK is stochastically irrelevant to XI

given XJ in every extreme p ∈ extC(X). This implies
that C(XI |xJ∪K) = C(XI |xJ) for all x. Variables XI

and XK are strongly independent given XJ if condi-
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Figure 1: A Simple Polytree

tional on XJ both XI is strongly irrelevant to XK

and XK is strongly irrelevant to XI . Since stochas-
tic irrelevance implies stochastic independence, strong
independence is implied by strong irrelevance.

We say that variables XK are epistemically irrelevant
to XI given XJ if C(XI |xJ∪K) = C(XI |xJ) for all
values of x. One can show that strong irrelevance
implies epistemic irrelevance (and the converse is not
necessarily true) (Cozman, 2000; de Cooman and Trof-
faes, 2004). Variables XI and XK are epistemically
independent conditional on XJ if, given XJ , XI and
XK are epistemically irrelevant to each other (Walley,
1991, Ch. 9).

Let G = (N,A) be an acyclic directed graph. We
denote the parents of a node i by pa(i). The set of non-
descendants of i, written nd(i), contains the nodes not
reachable from i by a directed path. Note that pa(i) ⊆
nd(i). We say that G is singly connected if there is at
most one undirected path connecting any two nodes in
the graph; it is a tree is if additionally each node has at
most one parent. If a graph is not singly connected, we
say it is multiply connected. Singly connected directed
graphs are also called polytrees.

A (separately specified) credal network N associates
to each node i in G a variable Xi and a collection
Q(Xi|Xpa(i)) of local credal sets Q(Xi|xpa(i)) indexed
by the values of Xpa(i). When every local credal set is
a singleton the model specifies a Bayesian network.

Example 1. Consider the credal network N over
Boolean variables X1, X2, X3 whose graph is shown in
Figure 1. Let [p(0), p(1)] represent a pmf of a Boolean
variable. The local credal sets are Q(X1) = Q(X2) =
co{[0.4, 0.6], [0.5, 0.5]} and Q(X3|x1,2) = {[I(x1 =
x2), I(x1 6= x2)]}, where I(·) is the indicator function.

The strong extension is the credal set C(X) whose
extrema p(X) satisfy for all x the condition

p(x) =
∏

i∈N
q(xi|xpa(i)), (1)

where q(Xi|xpa(i)) ∈ extQ(Xi|xpa(i)). The strong ex-
tension satisfies the Markov condition w.r.t. strong in-
dependence: every variable is strongly independent of
its non-descendant non-parents given its parents. The
epistemic extension is the joint credal set C(X) such
that

C(Xi|xnd(i)) = Q(Xi|xpa(i)) (2)

for every variable Xi and value xnd(i) of Xnd(i). The
epistemic extension satisfies the Markov condition
w.r.t. epistemic irrelevance: the non-descendant non-
parents are irrelevant to a variable given its par-
ents. Equation 2 implies that (and is equivalent to
for Boolean variables Xi)

min q(xi|xpa(i)) ≤ p(xi|xnd(i)) ≤ max q(xi|xpa(i)) (3)

for all x and p ∈ C(X) with p(xnd(i)) > 0, where the
optimizations are over q ∈ Q(Xi|xpa(i)). Note that
these inequalities can be turned into linear inequalities
by multiplying both sides by p(xnd(i)).

Given a function f of a query variable Xq, and an
assignment x̃O to evidence variables XO, the primary
inference with credal networks is the application of the
generalized Bayes rule (GBR), which asks for a value
of µ that solves the equation

min
p∈C(X)

∑

x∼x̃O

[f(xq)− µ]p(x) = 0 , (4)

where the sum is performed over the values x of X
whose coordinates indexed by O equal x̃O. Assuming
that minp∈C(XO) p(x̃O) > 0, it follows that

µ = min
p∈C(Xq|x̃O)

Ep[f ] , (5)

that is, µ is the lower expectation of f on the pos-
terior credal set C(Xq|x̃O) induced by the (strong or
epistemic) extension of the network.

Example 2. Consider the network in Example 1,
and let q = 3, f = I(x3 = 0) and O is the empty
set. Then applying the GBR is equivalent to finding
the lower marginal probability µ = minp∈C(X3) p(0)
induced by the network extension. Assuming strong
independence (hence strong extension), the inference
is solved by µ = min

∑
x1,2

q1(x1)q2(x2)q3(0|x1,2) =

1 + min{2q1(0)q2(0)− q1(0)− q2(0)} = 1− 1/2 = 1/2 ,
where the minimizations are performed over q1(X1) ∈
extQ(X1), q2(X2) ∈ extQ(X2), and q3(X3|x1,2) =
[I(x1 = x2), I(x1 6= x2)]. The epistemic extension is
the credal set of joint pmfs p(X) on X such that

min
q∈Q(X1)

q(x1) ≤ p(x1|x2) ≤ max
q∈Q(X1)

q(x1) ,

min
q∈Q(X1)

q(x2) ≤ p(x2|x1) ≤ max
q∈Q(X1)

q(x2) ,

q(x3|x1,2) ≤ p(x3|x{1,2}) ≤ q(x3|x1,3) .

The inference under epistemic irrelevance is the
value of the solution of the linear program µ =
min{p(0, 0, 0) + p(1, 1, 0) : p(X) ∈ C(X)} = 5/11 <
1/2, where C(X) is the epistemic extension.
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3 COMPLEXITY RESULTS

In this section we present new results about the com-
putational complexity of GBR inferences in credal net-
works. We make use of previously unknown equiv-
alences between strong and epistemic extensions to
derive both positive and negative complexity results.
The section is divided in subsections addressing net-
works in increasing order of topological complexity.

3.1 HIDDEN MARKOV MODELS

An imprecise hidden Markov model (HMM) is a credal
network whose nodes can be partitioned into state and
manifest nodes such that the state nodes form a chain
(i.e., a sequence of nodes with one node linking to the
next and to no other in the sequence), and each man-
ifest node is a leaf with a single state node as par-
ent. As the following example shows, there are GBR
inferences in HMMs which depend on the irrelevance
concept adopted, even in the case of binary variables.

Example 3. Consider an HMM over four Boolean
variables X1, X2, X3, X4, where X1 and X2 are state
variables and X3 and X4 are manifest variables.
The topology of the corresponding credal network
is depicted in Figure 2. The local credal sets
are given by Q(X1) = Q(X2|0) = Q(X4|0) =
{[3/4, 1/4]}, Q(X2|1) = Q(X4|1) = {[1/4, 3/4]}, and
Q(X3|0) = co{[1/4, 3/4], [1/2, 1/2]} and Q(X3|1) =
co{[3/4, 1/4], [1/2, 1/2]}. Consider the query f(X4) =
I(x4 =0), and evidence x̃3 =0. Under strong indepen-
dence, the GBR is to solve for µ the equation

min
∑

x2

q(0|x2)gµ(x2) =
∑

x2

min q(0|x2)gµ(x2) = 0 ,

where the minimizations are performed over
q(X3|x2) ∈ Q(X3|x2), x2 = 0, 1, and

gµ(x2) =
∑

x1,4

q(x1)q(x2|x1)q(x4|x1)[I(x4 =0)− µ] ,

with q(X1) = q(X2|0) = q(X4|0) = [3/4, 1/4] and
q(X2|1) = q(X4|1) = [1/4, 3/4]. The values of q(0|x2)
depend only on the signs of gµ(x2), x2 = 0, 1. Solving
for µ for each of the four possibilities, and taking the
minimum value of µ, we find that µ = min{p(0|0) :
p(X4|X3) ∈ C(X4|X3)} = 4/7.

Under epistemic irrelevance, the GBR is equal to

min
∑

x1,2,4

q(x1)q(x2|x1)q(x4|x1)q(0|x1,2,4)hµ(x4) =

(1− µ)
∑

x1,2

q(x1)q(x2|x1)q(0|x1) min q(0|x1,2, x4 =0)

−µ
∑

x1,2

q(x1)q(x2|x1)q(1|x1) max q(0|x1,2, x4 =1) = 0 ,

1 2

4 3

Figure 2: HMM Over Four Variables
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Figure 3: HMM Over 2n+ 1 Variables

where hµ(x4) = I(x4 = 0) − µ, q(X1), q(X2|X1) and
q(X4|X1) are defined as before, and q(X3|x1,2,4) ∈
Q(X3|x2) for every x1,2,4. Solving the equation above
for µ we get that µ = 13/28.

GBR inferences in HMMs are polynomial-time
computable under epistemic irrelevance, but no
polynomial-time algorithm is known under strong in-
dependence except for the case of binary variables (in
which case the aforementioned 2U algorithm can be
used). The following result shows that there exists a
class of GBR inferences in HMMs which are insensitive
to the irrelevance concept adopted. This implies that
the GBR is polynomial-time computable in such cases
also under strong independence.

Theorem 1. Consider an HMM over n+ 1 variables
whose state nodes are identified with odd numbers and
manifest nodes are identified with even numbers (see
Figure 3). Assume that the query node is q = n + 1,
and that evidence x̃O is set on a subset O of the man-
ifest nodes. Then the posterior lower expectation of
any function f on Xq conditional on x̃O is the same
whether we assume epistemic irrelevance or strong in-
dependence.

Proof. Let gµ(xn+1) be equal to f(xn+1)−µ. To com-
pute the GBR under strong independence, we need to
find a number µ such that

min
∑

x∼x̃O

q(x1)
n+1∏

i=2

q(xi|xpa(i))gµ(xn+1) = 0 ,

where the minimization is performed over q(x1) ∈
Q(X1) and q(Xi|xpa(i)) ∈ Q(Xi|xpa(i)) for i =
2, . . . , n+ 1. The minimization above is equivalent to
the constrained program

minimize
∑

x∼x̃O

q(x1)
n+1∏

i=2

q(xi|x1:i−1)gµ(xn+1) (6)

subject to q(xi|x1:i−1) = q(xi|xpa(i)), i > 2 , (7)
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with variables q(x1) ∈ Q(X1), q(Xi|xpa(i)) ∈
Q(Xi|xpa(i)), i = 2, . . . , n + 1 and q(Xi|x1:i−1) ∈
Q(Xi|xpa(i)), i = 3, . . . , n + 1. The objective function
in (6) can be rewritten as

∑

x1:n∼x̃O

q(x1)
n∏

i=2

q(xi|x1:i−1)
∑

xn+1

q(xn+1|x1:n)gµ(xn+1).

We show the result by induction. Consider a state
node i + 1 and assume that the constrained program
(6)–(7) is equivalent to

min
s.t.(7)

∑

x1:i+1∼x̃O

q(x1)

i+1∏

j=2

q(xj |x1:j−1)hi+1(xi+1) ,

for some function hi+1 on Xi+1, and let
q∗(Xi+1|X1:i) := {q∗(Xi+1|x1:i) : x1:i} be the
solutions to the linear optimizations

hi(xi−1) := min
q∈Q(Xi+1|xi−1)

∑

xi+1

q(xi+1|x1:i)hi+1(xi+1)

for different values of X1:i. Then q∗(Xi+1|X1:i) satis-
fies (7) and minimizes (6) w.r.t. q(Xi+1|X1:i), thus

min
s.t.(7)

∑

x1:i+1∼x̃O

q(x1)
i+1∏

j=2

q(xj |x1:j−1)hi+1(xi+1) =

min
s.t.(7)

∑

x1:i∼x̃O

q(x1)

i∏

j=2

q(xj |x1:j−1)hi(xi−1) .

Similarly, consider a manifest node i and assume that
(6)–(7) is equivalent to

min
s.t.(7)

∑

x1:i∼x̃O

q(x1)
i∏

j=2

q(xj |x1:j−1)hi(xi−1) . (8)

Let q∗(Xi|X1:i−1) be the solutions to the linear opti-
mizations

hi−1(xi−1) := min
q∈Q(Xi|xi−1)

∑

xi∼x̃O

q(xi|x1:i−1)hi(xi−1)

for different values of X1:i−1. Then, q∗(Xi|X1:i−1) sat-
isfies (7) and minimizes (6), therefore (8) equals

min
s.t.(7)

∑

x1:i−1∼x̃O

q(x1)
i−1∏

j=2

q(xj |x1:j−1)hi−1(xi−1) .

The basis for i = n follows trivially by setting
hn+1(xn+1) = gµ(xn+1). Thus, the unconstrained
minimization in (6) (without the constraints (7))
achieves the same value of the constrained program.
Moreover, it can be shown that the unconstrained pro-
gram is the epistemic extension of the network (Be-
navoli et al., 2011), so that the result follows.

Corollary 1. Consider again the HMM of Theorem 1
and the same query setting, and assume that the local
credal sets associated to manifest nodes i are singletons
Q(Xi|xi−1) = {q(xi|xi−1)} such that q(xi|xi−1) = 1
whenever xi = xi−1. Then the posterior lower expec-
tations of any function f given x̃O is the same whether
we assume epistemic irrelevance or strong indepen-
dence.

The proof of Corollary 1 follows directly from Theorem
1. Observe that since q(xi|xi−1) for a manifest node i
are 0-1 probabilities, the HMM reduces to a(n impre-
cise) Markov Chain. Thus, strong and epistemic ex-
tensions coincide also in Markov Chains when evidence
is before (w.r.t. the topological order) the query node.
In the case of evidence after the query, de Cooman
et al. (2010) have shown by a counterexample that
inferences in Markov Chains are sensitive to the irrel-
evance concept adopted.

3.2 CREDAL TREES

Imprecise HMMs are particular cases of credal trees.
De Cooman et al. (2010) showed that GBR inferences
can be computed in polynomial time in credal trees un-
der epistemic irrelevance. In this section we show that
the same type of inference under strong independence
is an NP-hard task.

In the intermediate steps of reductions used to show
hardness results we make use of networks whose nu-
merical parameters are specified by (polynomial-time)
computable numbers, which might not be encodable
trivially as rationals. A number r is computable if
there exists a machine Mr that, for input b, runs in
at most time poly(b) (the notation poly(b) denotes an
arbitrary polynomial function of b) and outputs a ra-
tional number t such that |r − t| < 2−b. Of special
relevance are numbers of the form 2t1/(1 + 2t2), with
|t1|, |t2| being rationals no greater than two, for which
we can build a machine that outputs a rational t with
the necessary precision in time poly(b) as follows: com-
pute the Taylor expansions of 2t1 and 2t2 around zero
with sufficiently many terms (depending on the value
of b), and then compute the fractional expression. The
following lemma ensures that any network specified
with computable numbers can be approximated arbi-
trarily well by a network specified with rational num-
bers.

Lemma 1. Consider a credal network N over n vari-
ables whose numerical parameters q(xi|xpa(i)) are spec-
ified with computable numbers encoded by their respec-
tive machines, and let b be the size of the encoding of
the network. Given any rational number ε ≥ 2−poly(b),
we can construct in time poly(b) a credal network
N ′ over the same variables whose numerical param-
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eters are all rational numbers, and such that there is
a polynomial-time computable bijection (p, p′) that as-
sociates any extreme p of the strong extension N with
an extreme p′ of the strong extension of N ′ satisfy-
ing maxxI∈XI

|p′(xI) − p(xI)| ≤ ε for every subset of
variables XI .

Proof. TakeN ′ to be equal toN except that each com-
putable number r, given by its machine Mr, used in
the specification of N is replaced by a rational t such
that |t − r| < 2−(n+1)(v+1)ε, where v := maxi∈N |Xi|
is the maximum number of values any variable can as-
sume. Because ε ≥ 2−poly(b), we can use Mr with
input poly(b) + (n + 1)(v + 1) to obtain t in time
O(poly(poly(b) + (n+ 1)(v + 1))) = O(poly(b)). Ex-
actly one of the probability values in each pmf in N ′ is
computed as one minus the sum of the other numbers
to ensure that the total mass of the pmf is exactly one;
its error is at most (v− 1) · 2−(n+1)(v+1)ε < 2−n(v+1)ε.

Let q(xi|xpa(i)) and q′(xi|xpa(i)) denote the parame-
ters of N and N ′, respectively, and consider an as-
signment x to all variables X in N (or in N ′). By
design |q′(xi|xpa(i))− q(xi|xpa(i))| ≤ 2−n(v+1)ε. It fol-
lows from the binomial expansion of the factorization
of p′(x) that (there is a term for p(x) in the expansion
and 2n − 1 terms that an be written as a product of
2−n(v+1)ε by numbers less than or equal to one)

p′(x) =
∏

i∈N
q′(xi|xpa(i))

≤
∏

i∈N
[2−n(v+1)ε+ q(xi|xpa(i))]

=
∑

S⊆N

∏

i∈S
q(xi|xpa(i))[2−n−vnε]n−|S|

≤ 2n2−n−vnε+
∏

i∈N
q(xi|xpa(i))

= p(x) + 2−nvε .

Similarly, we can show that

p′(x) ≥
n∏

i=1

[q(xi|xpa(i))− 2−n(v+1)ε] ≥ p(x)− 2−nvε .

Thus, maxx |p′(x) − p(x)| ≤ 2−nvε. Now consider a
subset of the variables XI and a value x̃I ∈ XI . Since
p′(x̃I) =

∑
x∼x̃I

p′(x), each term p′(x) in the sum sat-
isfies p′(x) ≤ p(x) + 2−nvε, and there are less than
vn ≤ 2vn terms being summed, we have that

p′(x̃I) ≤
∑

x∼x̃I

[p(x) + 2−vnε] ≤ p(x̃I) + ε .

An analogous argument can be used to show that
p′(x̃I) ≥ p(x̃I) − ε. Thus, maxxI

|p′(xI) − p(xI)| ≤
ε.

0

1 2 3 . . . n

n+1 n+2 n+3 . . . 2n

Figure 4: Credal Tree Used To Prove Theorem 2

Before proving our hardness results, we state and dis-
cuss some facts about the partition problem, which
will be used later. The partition problem is stated
as follows: given positive integers z1, . . . , zn, decide
whether there is S ⊆ N := {1, . . . , n} such that∑
i∈S zi =

∑
i/∈S zi, where the notation i /∈ S de-

notes that i ∈ N \ S. This is a well-known NP-
hard problem (Garey and Johnson, 1979). We define
vi := zi/z, i = 1, . . . , n, where z :=

∑
i zi/2, and work

w.l.o.g. with the partition problem using vi instead of
zi. Let vS :=

∑
i∈S vi. Then, it follows for any S that

vS = 2 −∑i/∈S vi. Also, if an instance of the par-
tition problem is a yes-instance, there is S for which
vS = 1, whereas if it is a no-instance, then for any S,
|vS − 1| ≥ 1/(2z). Consider the function

h(vS) =
2−(vS−1) + 2vS−1

2
. (9)

Seen as a function of a continuous variable vS ∈
[0, 2], the function above is strictly convex, symmet-
ric around one, and achieves the minimum value of
one at vS = 1. Thus, if the partition problem is a
yes-instance, then minS h(vS) = 1, while if it is a no-
instance, then minS h(vS) ≥ 2−1/(2z)−1 + 21/(2z)−1 ≥
2(2z)

−4

> 1 + (2z)−4/2 = 1 + 1/(32z4), where the sec-
ond inequality is due to Lemma 24 in (Mauá et al.,
2012), and the strict inequality follows from the first-

order Taylor expansion of 2(2z)
−4

.

The following result shows that inferences under strong
independence are hard even in credal trees.

Theorem 2. Computing the GBR in credal trees un-
der strong extension is NP-hard, even if all numerical
parameters are rational numbers, and all variables are
at most ternary.

Proof. We use a reduction from the partition prob-
lem as previously described. We build a credal tree
over variables X0, . . . , X2n with graph as in Figure 4.
The root node is associated to the ternary variable
X0, with X0 := {1, 2, 3} and uniform pmf q(x0) =
1/3. The remaining variables are all Boolean. For
i = 1, . . . , n, specify the local sets Q(Xi|x0) as single-
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tons {q(Xi|x0)} such that

q(xi=1|x0) =





2−vi/(1 + 2−vi), if x0 = 1,

1/(1 + 2−vi), if x0 = 2,

1/2, if x0 = 3.

Finally, for i = 1 + n, . . . , 2n specify the local credal
sets such that q(Xi|xi−n) ∈ Q(Xi|xi−n) satisfies
q(xi = 1|xi−n) ∈ [ε, 1] for all xi−n, where ε =
2−n−3/(64z4). Consider the computation of the GBR
with observed nodes O = {1 + n, . . . , 2n}, observation
x̃O = (1, . . . , 1) ∈ XO, query node q = 0, and query
f(x0) = −I(x0 =3). Using the results from (Antonucci
and Zaffalon, 2006) about the conservative inference
rule, one can show that f is minimized at an extrema
p(X) such that p(xi=1|xi−n=1) 6= p(xi=1|xi−n=0),
that is, if p(xi=1|xi−n=1) is chosen to be equal to ε,
then p(xi=1|xi−n=0) = 1, and vice-versa. Hence,

µ = min
p

Ep[f ] = −max
p

p(x0 =3|x̃O)

= −max
p

(
1 + ε

2

)n
1/3

p(x̃O)

= −max
S

1

g(aS)
,

where g(a) = 1 + (1 + a)
(

2
1+ε

)n∏n
i=1 1/(1 + 2−vi) is

defined for any real number a, and aS := bS+bN\S−1
and bS :=

∏
i∈S(2−vi + ε)

∏
i/∈S(1 + 2−viε) are defined

for all S ⊆ N . Note that g(aS) > 1 + (1 + aS)2−n. It
follows from the Binomial Theorem that

2−vS ≤ bS ≤ (2−vS + 2nε)(1 + ε)n

≤ (2−vS + 2nε)(1 + 2nε)

≤ 2−vS + 2n+2ε

where we use the inequality (1 + r/k)k ≤ 1 + 2r valid
for r ∈ [0, 1] and positive integer k (Mauá et al., 2011,
Lemma 37). Thus,

h(vS)− 1 ≤ aS ≤ h(vS) + 2n+3ε− 1 .

Now if the partition problem is a yes-instance, then
aS ≤ 1/(64z4), while if it is a no-instance, we have
that aS > 1/(32z4). Hence, there is a gap of at
least 1/(64z4) in the value of aS between yes- and no-
instances, and we can decide the partition problem by
verifying whether µ ≤ −1/g(α), where α := 3/(128z4).
This proof shall be completed with the guarantee that
we can approximate in polynomial time the irrational
numbers used to specify the credal tree and g(a) well
enough so that −1/g(α) falls in the gap between the
values of µ for yes- and no-instances. First, note that

g

(
1

32z4

)
−g
(

1

64z4

)
=

1

64z4

(
2

1 + ε

)n n∏

i=1

1

1 + 2−vi
,

which is greater than 2−n/(64z4). The gap in the value
of µ is at least

1

g(1/(64z4))
− 1

g(1/(32z4))
=
g( 1

32z4 )− g( 1
64z4 )

g( 1
64z4 )g( 1

32z4 )

>
g( 1

32z4 )− g( 1
64z4 )

g( 1
32z4 )2

>
2−n/(64z4)

(1 + (1 + 1
32z4 )2−n)2

>
2−n

4 · 64z4
.

So we apply Lemma 1 with ε = 1
2

2−n

4·64z4 and use the
same rational numbers q(xi=1|xo=2) as in the spec-
ification of the new network instead of the irrational
values 1/(1 + 2−vi) to approximate g(α), which guar-
antees that the gap will continue to exist. Alterna-
tively, we can use the same argument as in Theorem 3
of (de Campos, 2011) to constructively find a suitable
encoding for the numerical parameters and g(α).

3.3 POLYTREES AND BEYOND

In general networks, it is still unclear which type of
inferences depend on the irrelevance concept used.
There is however one situation where we can show
they coincide, and this is particularly important for
the hardness results that we prove later on.

Lemma 2. Consider a credal network of arbitrary
topology, where all nodes are associated to precise pmfs
apart from the root nodes, which are associated to vac-
uous credal sets. Then the result of the GBR for an ar-
bitrary function f of a variable Xq associated to a non-
root node q and no evidence is the same whether we
assume epistemic irrelevance or strong independence.

Proof. Let XR be the variables associated root nodes
(hence to vacuous local credal sets), and XI denote
the remaining variables (which are associated to sin-
gleton local credal sets). The result of the GBR under
epistemic irrelevance is given by

µ = min
p(X)

Ep[f ] = min
p(X)

∑

x

p(xI |xR)p(xR)f(xq)

= min
p(X)

∑

xR

p(xR)
∑

xI

p(xI |xR)f(xq)

= min
p(XR)

∑

xR

p(xR)g(xR) ,

where g(xR) :=
∑
xI

∏
i∈I q(xi|xpa(i))f(xq), and

q(xi|xpa(i)) are the single pmfs in the local credal sets
of the non-root variables XI . According to the last
equality, µ is a convex combination of g(xR). Hence,

µ ≥ min
xR

g(xR) = min
xR

∑

xI

∏

i∈I
q(xi|xpa(i))f(xq) .
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The rightmost minimization is exactly the value of the
GBR under strong independence, and since the strong
extension is contained in the epistemic extension, the
inequality above is tight.

The above result will be used in combination with
hardness results for strong credal networks to demon-
strate that computing the GBR under epistemic irrele-
vance is also hard. First, we focus on singly connected
networks.

For polytrees, the next theorem shows that inferences
in credal networks, either under epistemic irrelevance
or strong independence, are NP-hard, even if variables
are at most ternary. If we allowed variables to have
any arbitrary finite number of states, then this result
would follow from the proof of NP-hardness of infer-
ences in polytrees given by de Campos and Cozman
(2005), because the polytree presented there is similar
to the one in Figure 5 with no evidence and query in
the last (topological) node. By Lemma 2, we could use
an inference in the epistemic polytree to solve the same
inference, demonstrating that such inference is NP-
hard too. In this paper we devise a stronger result, as
the hardness is shown even when variables are at most
ternary. For this purpose, we perform a polynomial-
time reduction from the partition problem. A much
similar reduction has been used to show that select-
ing optimal strategies in limited memory influence di-
agrams is NP-hard (Mauá et al., 2012). While the re-
duction used here closely resembles the reduction used
in that work, due to a technicality we cannot directly
use that result (mainly because the influence diagram
could have multiple utility nodes, which would much
complicate the reduction). Instead, we directly reduce
an instance of the partition problem to a computa-
tion of the GBR without evidence in a credal polytree
whose non-root nodes are all associated to precise pmfs
and root nodes are associated to vacuous credal sets.
By using this reduction in conjunction with Lemma
2, we prove the hardness of GBR computations also
under epistemic irrelevance.

Theorem 3. Given a credal polytree, computing the
GBR with a function f of the query variable Xq and no
evidence is NP-hard, whether we assume epistemic ir-
relevance or strong independence, even if all variables
are (at most) ternary and all numbers are rational.

Proof. We build a credal polytree with underlying
graph as in Figure 5. The variables (associated
to nodes) on the upper row are Boolean and vac-
uous, namely X1, . . . , Xn, while the remaining
variables Xn+1, . . . , X2n+1 are ternary and as-
sociated to singleton local credal sets such that
Q(Xn+1) contains a uniform pmf q(xn+1) = 1/3,
and, for i = n + 2, . . . , 2n + 1, Q(Xi|xi−1, xi−n−1)

n+1

1 2 3 n

n+2 n+3 n+4 · · · 2n+1

Figure 5: Polytree Used To Prove Theorem 3

Table 2: Local Pmfs Used To Prove Theorem 3

q(xi|xi−1, xi−n−1) xi=1 xi=2 xi=3

xi−1 =1, xi−n−1 =1 2−vi 0 1− 2−vi

xi−1 =2, xi−n−1 =1 0 1 0
xi−1 =3, xi−n−1 =1 0 0 1
xi−1 =1, xi−n−1 =0 1 0 0
xi−1 =2, xi−n−1 =0 0 2−vi 1− 2−vi

xi−1 =3, xi−n−1 =0 0 0 1

contains the pmf q(Xi|xi−1, xi−n−1) as speci-
fied in Table 2. Consider a joint pmf p(X)
which is an extreme of the strong extension
of the network. One can show that p(x) =

q(xn+1)
∏2n+1
i=n+2 q(xi|xi−1, xi−n−1)

∏
i∈S I(xi =

1)
∏
i/∈S I(xi = 0) for all x, where S ⊆ N . Thus,

p(x) is equal to 1
3

∏2n+1
i=n+2 q(xi|xi−1, xi−n−1) if

xS = 1 and xN\S = 0, and otherwise van-
ishes. It follows that p(x2n+1 = 1) =

∑
x p(x) =

(2−vS )/3 and p(x2n+1 = 2) = (2vS−2)/3. Let
α := (1 + z−4/64)/3. By computing the GBR with
query f(x2n+1) = I(x2n+1 = 1) + I(x2n+1 = 2) and
no evidence, we can decide the partition problem,
as minp E[f ] = minS h(vS)/3 ≤ α, if and only if the
partition problem is a yes-instance. According to
Lemma 2, this result does not change if we assume
epistemic irrelevance. It remains to show that we
can polynomially encode the numbers 2−vi . This
is done by applying Lemma 1 with a small enough
ε computable in time polynomial in the size of the
partition problem: ε = 1/(3 · 64z4) suffices.

The hardness of inference in multiply connected credal
networks under epistemic irrelevance comes from the
fact that general credal networks under strong inde-
pendence can always be efficiently mapped to credal
networks under strong independence with all non-root
nodes precise and vacuous root nodes. Because such
inferences in general credal networks under strong in-
dependence are NPPP-hard (Cozman et al., 2004), and
because Lemma 2 demonstrates that marginal infer-
ences without evidence in these networks are equiv-
alent to the same inference in credal networks under
epistemic extension, the hardness result is obtained
also for epistemic networks. For completeness, we
write the complete proof of such result using a re-
duction from the E-MAJSAT problem, since previous
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work has only provided a sketch of such proof (Cozman
et al., 2004). The proof differs only slightly from the
proof of NPPP-hardness of MAP inference in Bayesian
networks given by Park and Darwiche (2004).

Theorem 4. Computing the GBR in credal networks
under either epistemic irrelevance or strong indepen-
dence is NPPP-hard even if all variables are binary.

Proof. The hardness result follows from a reduction
from E-MAJSAT. Given a propositional formula φ
over Boolean variables Z1, . . . , Zn and an integer 1 ≤
k < n, the E-MAJSAT is the problem of deciding
whether there exists an assignment to Z1, . . . , Zk such
that the majority of the assignments to the remaining
variables Zk+1, . . . , Zn satisfy φ. The reduction pro-
ceed as follows. Create a credal network over Boolean
variables X = (X1, . . . , Xk, Xk+1, . . . , Xn) such that
X1, . . . , Xk are associated to root nodes and vacuous
credal sets, and Xk+1, . . . , Xn are associated to non-
root nodes and have uniform pmfs. The root variables
act as selectors for the Boolean variables in the propo-
sitional formula. Each variable Xi is associated to the
Boolean variable Zi of the original formula φ. Build
one new binary variable Xi (using a suitable sequence
of numbers i = n + 1, n + 2, . . . ) for each operator in
the Boolean formula φ of the E-MAJSAT problem such
that Xi has as parents its operands, that is, for logical
operations (Xa ∧ Xb) and (Xa ∨ Xb), with a, b < i,
Xi has as parents the two operands Xa and Xb and
is associated to a singleton credal set containing the
pmf q(xi|xa, xb) = I(xi=xa ◦xb), where ◦ denotes the
respective binary operation; for the operation (¬xa),
with a < i, Xi has a single parent Xa and is associ-
ated to a singleton local credal set containing the pmf
q(xi|xa) = I(xi 6= xa). There is more than one way to
build such a network, depending on the order one eval-
uates the operations in the Boolean formula, and any
valid evaluation order can be used. The final network
encodes a circuit for evaluating the formula φ.

Let t be the last node in the network in topologi-
cal order; variable Xt represents the satisfiability of
the whole formula. Consider a joint pmf p(x) =∏
i∈N q(xi|xpa(i)), for some choice of pmfs from the

extrema of local credal sets. By design, there is a sin-
gle x1:k ∈ X1:k such that

∏k
i=1 q(xi) evaluates to one.

Let x̃1:k be such (joint) value. We have that

p(Xt=1) =
∑

x∼xt

p(xt=1|xI)p(xI |xR)
n∏

i=1

q(xi)

=
1

2n−k
∑

x∼x̃1:k

p(xt=1|xI)p(xI |xR) ,

where XI are the non-root variables that represent
the logical operations in the formula φ apart from

Xt, XR = (X1, . . . , Xn) are the root variables as-
sociated to Boolean variables in φ. The value of
p(xt = 1|xI)p(xI |xR) is equal to one if and only if
the assignment xR satisfies φ (by construction) and is
zero otherwise. Thus, p(Xt=1) = #SAT/2n−k, where
#SAT is the number of assignments to the variables
Zk+1, . . . , Zn that satisfy φ with the first k Boolean
variables set to x̃1:k. By maximizing over the possible
choices of degenerate pmfs q(Xi), i = 1, . . . , k, we have
that minp p(xt=0) < 1/2 if and only if there is an as-
signment to the first k variables Z1, . . . , Zk such that
more than half of the assignments to the remaining
n−k variables Zk+1, . . . , Zn satisfy the formula φ.

4 CONCLUSION

In this paper, we have showed new computational com-
plexity results for inference in credal networks under
both epistemic irrelevance and strong independence.
There are three main contributions. First, by exploit-
ing the relations between these two irrelevance con-
cepts in HMM-like credal networks, we have shown
that predictive inferences under strong independence
can be computed in polynomial time using the same al-
gorithm developed for epistemic credal trees. To com-
plement such result, we have proved that inferences
with strong independence in general trees are NP-hard
even if all variables are (at most) ternary, which shows
that it is unlikely that more general polynomial-time
algorithms for inferences under strong independence
will ever exist. Moreover, using the relation between
strong and epistemic irrelevance concepts in networks
where the imprecision appears only in root nodes (de-
fined by vacuous credal sets), we were able to prove
that inferences in polytrees under epistemic irrelevance
are NP-hard, even if all variables are (at most) ternary.
This result closes the gap between known polynomial-
time algorithms (which were known for trees and some
polytrees) and potentially any more complicated net-
work. To the best of our knowledge, these complexity
results were all open, specially for the case of epistemic
irrelevance.
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Abstract

In many developing countries, half the popula-
tion lives in rural locations, where access to es-
sentials such as school materials, mosquito nets,
and medical supplies is restricted. We propose
an alternative method of distribution (to stan-
dard road delivery) in which the existing mo-
bility habits of a local population are leveraged
to deliver aid, which raises two technical chal-
lenges in the areas optimisation and learning. For
optimisation, a standard Markov decision pro-
cess applied to this problem is intractable, so we
provide an exact formulation that takes advan-
tage of the periodicities in human location be-
haviour. To learn such behaviour models from
sparse data (i.e., cell tower observations), we de-
velop a Bayesian model of human mobility. Us-
ing real cell tower data of the mobility behaviour
of 50,000 individuals in Ivory Coast, we find that
our model outperforms the state of the art ap-
proaches in mobility prediction by at least 25%
(in held-out data likelihood). Furthermore, when
incorporating mobility prediction with our MDP
approach, we find a 81.3% reduction in total
delivery time versus routine planning that min-
imises just the number of participants in the so-
lution path.

1 INTRODUCTION

In many developing countries (e.g., Ivory Coast, Ghana,
Liberia, Nigeria), half the population lives in rural locations
[5], where accessibility to school materials, medical sup-
plies, mosquito nets, and clothing is restricted. Distribution
to these locations typically requires direct road transport,
which is time consuming and requires bulk volume to be
cost effective. In response to these limitations, distributed
methods of aid distribution have emerged in recent years.
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Figure 1: Minimum spanning tree between cell towers in
Ivory Coast, where connections are defined by common
visitors, and the size of node represents its betweenness
centrality (i.e., the number of times the location appears
in the shortest path for all possible delivery paths).

For example, Pack For a Purpose1 is a non-profit organisa-
tion that asks tourists who already have a trip planned for
one of 47 developing countries to bring small items (e.g.,
pencils, deflated soccer balls, stethoscopes) in their spare
luggage capacity. Another scheme is Pelican Post2, which
asks donors to send books by post to developing countries.
These are promising schemes. However, they fail during
periods of conflict, (e.g., post-electoral violence in Ivory
Coast in 2011) and are reliant on direct outsider support,
when it is arguably preferable to empower local popula-
tions wherever possible.

In this work, we propose a new distribution method that
uses the natural mobility of a local population to distribute
physical packages from one location to another. In more
detail, we wish to take advantage of the pre-existing mo-
bility routines of a set of local participants by asking them
to pick up a package from one exchange point (at a loca-
tion that they normally visit, at a time that they normally

1http://www.packforapurpose.org
2http://www.pelican-post.org
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visit it) and then drop it off at another exchange point (e.g.,
a lockbox or affiliate store) that is also part of their regu-
lar mobility. By chaining together the mobility of several
participants, we may cover a large area, possibly a whole
country, without having to deploy more expensive and time
consuming infrastructure.

While potentially appealing, this vision of crowdsourcing
physical package delivery faces two signiÞcant technical
barriers in optimisation and learning3.

In optimisation, the possible delay between stages in the
package’s journey is unbounded, since the delay introduced
by each participant is unknown and has no upper limit. This
makes it infeasible to optimise the selection of participants
and the package route (given a specific delivery problem
specifying the start time, source location, and destination
location), as delays propagate through the system [11]. In
general, routing under delay uncertainty is a #P-hard prob-
lem to solve optimally [17]. Therefore, we formulate the
decision problem in a way that takes advantage of the pe-
riodicities in human location behaviour to derive an exact
solution.

In learning, the historical movements of individuals may be
obtained from cell tower connections registered by mobile
devices, which have widespread adoption across the devel-
oping world. However, such mobility data is sparse: it is
limited in duration (i.e., we may only have a few week’s
worth of data from each participant) and, crucially, cell
tower readings are taken only when a call or text message is
exchanged from the phone, so there are large periods when
no location of an individual is registered at all. Yet, exist-
ing methods for mobility prediction rely on large quanti-
ties (covering several weeks) of fairly continuous stream of
location readings (either from GPS or constant cell tower
monitoring) [23, 6, 14]. To overcome this, we develop a
robust Bayesian model of individual mobility that can be
learnt from cell tower records spanning only short periods
of time with sporadic observability.

In more detail, we make the following three contributions:

• We advance the state of the art in route planning in
delay networks by developing an approach that works
well with the uncertainties caused by routine human
behaviour. Specifically, we show that an exact and
tractable solution is possible when using a mobility
model belonging to the broad class of temporal peri-
odic prediction models. Under this assumption, we
show that we can formulate the problem as a Markov
decision process (MDP) in which the number of states
grows linearly in the number of locations, making the
overall algorithm polynomial when using a standard
MDP solving method (e.g., linear programming, pol-

3In addition to social issues such as trust (e.g., theft or loss)
that we only consider briefly, in Section 4.4.

icy iteration) [20]. Using our approach, simulations
indicate that source-to-destination delivery time is re-
duced by an average of 81.3% compared to choosing
the shortest path (which naïvely minimises the num-
ber of intermediate stages in the package’s journey).

• To provide accurate transition probabilities to the
MDP4, we present a Bayesian nonparametric mixture
model approach to learning the mobility behaviour
of individuals from very sparse observations. We
show how this model can be formulated as a series
of Bernoulli trials and directly incorporated into the
MDP. Using real cell tower data from 50,000 people
in Ivory Coast (provided by Orange), we find at least
a 25% improvement in held-out data likelihood when
compared to two state-of-the-art approaches for hu-
man location behaviour prediction (a variable-order
Markov model with prediction by partial matching
[25] and a daily periodic finite mixture model [4])

• We use the Orange dataset to show that peer-to-peer
package delivery is feasible under three key criteria.
In particular, we show that the size of participant pool
only needs to be of the order of several thousand to get
at least an 80% coverage of the country (out of a total
area 320,000 km2). Furthermore, each solution path
(i.e., chain of participants to deliver a package) is be-
tween 2-4 people. Finally, these requirements are only
mildly worsened when considering only rural destina-
tions for delivery.

The rest of the paper is structured as follows. First, in Sec-
tion 2, we consider previous work related to the problem
of learning human mobility patterns and optimising under
uncertainty of human behaviour. In Section 3, we present
our approach, starting with how we make optimal decisions
with respect to the choice of participants and locations for
any given delivery problem in Section 3.1. Then, in Sec-
tion 3.2, we present a learning model that deals with sparse
observations. In Section 4, we evaluate the feasibility of the
scenario before evaluating our approach to learning and op-
timisation against several state of the art benchmarks. We
draw conclusions and outline future work in Section 5.

2 RELATED WORK

The idea of distribution using the natural mobility of a
group of people is a reoccurring theme in content distribu-
tion using mobile ad-hoc networks. For example, Keller et
al. (2012) used physical bluetooth proximity data from the
mobile phones of a group of people, to initiate exchanges

4N.B., the transition probabilities in the MDP are not the same
as the transition probabilities of the mobility of any individual
participant.
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of songs between individuals, but without considering pre-
diction or multi-hop routes (i.e., going via one or more in-
termediaries) [10]. Cherubini et al. (2010) explored phys-
ical package peer-to-peer delivery, but only tested simple
heuristics such as “transfer the package to someone who
is, on average, closer to the target location than you” [3].
Vukadinovic et al. (2009) proposed a queuing model of the
flow of pedestrian crowds to distribute content among mo-
bile phones [27]. Now, all these works attempt to capture
short term movements of individuals in crowds, which is
a distinct and different problem to extracting routine mo-
bility patterns. Specifically, in our work, there is a direct
line of assumptions going from the raw historical data to
decision-making about distribution (via learning and the
formulation of transition probabilities in the MDP) that is
not present in such work. A notable exception is by Liu
and Wu (2011), who used class attendance data to model
pairwise encounters between individuals for data transfer
across an ad hoc network [13]. Like our work, they also
take advantage of cyclic behaviour to find tractable rout-
ing solutions, however, their pairwise approach means that
their algorithm scales O(p2) in the number (p) of partici-
pants in the network, while our approach scales polynomi-
ally only in the number of locations. In general, content
distribution approaches often rely on the fact that content
may be copied and can exist concurrently on multiple de-
vices, making them less applicable for our routing problem.

Another type of diffusion that attracts intense research in-
terest is the study of the spread of infectious diseases. Epi-
demiologists look at the mobility dynamics of a population
to identify source regions (from which disease is spread),
and likely importation regions (to which disease is spread).
For example, Wesolowski et al. (2012) used one year of
cell phone data of millions of people to model the human
movement between different regions in Nairobi [28]. They
considered a graph in which the weight of the edges rep-
resents the quantity of people travelling between different
locations. Hufnagel et al. (2004) considered a global model
of human movement using passenger numbers for flights
between the 500 largest airports in the world [9]. Such
work is concerned with aggregate mobility, in contrast, we
are interested in individual mobility, because, eventually,
we need to ask specific people to contribute. Furthermore,
we consider a full decision-making model, in addition to a
purely descriptive model of human location behaviour.

The problem of robust route planning under uncertainty re-
sembles the Canadian traveller problem (also known as the
bridge problem) [18], in which the costs of the edges in a
graph are random variables that are observed only as the
nodes are visited. The name originates from the concept
of a traveller who has to plan a journey between two loca-
tions, where the costs of outgoing edges are random vari-
ables that are only observed as a graph is traversed. This
differs from our problem because the Canadian traveller as-

sumes that path costs are independent of one another, while
we have dependencies between costs as well, i.e., the delay
outcome of an earlier stage in the chain affects the delay of
later stages. An additional difference is that we observe the
random variables, indicating delay between locations, only
after the package has completed each intermediate step.

Learning routine mobility models has typically been a sep-
arate problem from optimisation. Approaches range from
purely temporal ([15, 23, 24]), spatial ([7, 25]), to a com-
bination of both ([6]). Existing datasets that are widely
available have tended to contain approximately continu-
ously recorded cell towers or GPS (e.g., the Reality Mining
dataset recorded the cell tower every few minutes [6]; the
Nokia dataset recorded GPS every few minutes also [12]).
This has inspired many methods that work well on contin-
uous location updates, but which do not perform as well
as their headline accuracy (when predicting future loca-
tion behaviour) on sparse data. We address this issue in
our work. Given their ability to refine the model as more
data arrives, nonparametric Bayesian methods are surpris-
ingly rare in the literature on predicting human location
behaviour. Chen et al. (2012) used a Gaussian process to
model congestion on road networks, while Gao et al. (2012)
used a hierarchical Pitman Yor process to model check-in
behaviour on location-based social networks [2, 7].

Finally, crowdsourcing teams of participants who function
as a chain to achieve a single goal resembles the idea be-
hind the winning entries to the DARPA Red Balloon Chal-
lenge [19] and the Tag Challenge [21]. This work is primar-
ily concerned with the problem of recruiting individuals
and verifying their reports, which requires designing eco-
nomic mechanisms. In this work, we assume recruitment
can be done beforehand by an appropriate method (i.e., we
do not address it here) but we do investigate how many par-
ticipants are required for satisfactory delivery results.

3 DECISION-MAKING WITH
UNCERTAIN HUMAN LOCATIONS

In this section, we present our approaches towards optimi-
sation and learning with uncertain human behaviour in the
package delivery scenario. Specifically, in Section 3.1, we
show how it is possible to tractably find an exact optimal
solution to routing under delay uncertainty, given a wide
class of mobility model (which we define as temporal pe-
riodic models). In Section 3.2, we give more detail on our
probabilistic mobility model that is designed to function
well with sparse mobile phone datasets, and provides the
predictions used in the optimisation.

3.1 THE OPTIMISATION PROBLEM

We formulate the optimisation problem sketched in Sec-
tion 1 as an MDP, as this provides a principled way of
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making decisions under uncertainty. Decisions in this sce-
nario must specify which participants to ask to pick up the
package, from where they should pick it up, as well as the
drop-off location. We assume the delay between pick-up
and drop-off is outside the planner’s control (so we treat it
as a random variable here), and completely up to the par-
ticipant who, when asked, does this according to his/her
routine schedule.

In general, an MDP is defined as a tuple (S,A,R, T ) where
S is a set of states, A is a set of available actions for each
state,R(s, a, s′) is the function that specifies the cost of do-
ing action a ∈ A to get from state s to s′, and T (a, s, s′) is
the probability of getting from state s to s′ when perform-
ing action a5. The solution to an MDP consists of an op-
timal policy, q(s), that specifies the best action to perform
for any given state s. Ancillary to this function is the value
function, G, which gives the expected value for any state
(given that the optimal action is performed). We consider
each of A, S, R, and T in turn.

3.1.1 Set of Actions A

We assume that the planner has no direct control over the
delay (it is up to the participant’s schedule) but we assume
that we are guaranteed to eventually reach locationw, when
performing action a (going to location w), and that the ar-
rival time is revealed only after performing each action, re-
sulting in a transition to state (v, tv), with unknown arrival
time tv . Given the one-to-one mapping of actions and lo-
cations (specifying the destination location) we treat loca-
tions as synonymous with actions.

3.1.2 Set of States S

We define the set of states S in the MDP as the set of
tuples describing the possible locations and times (v, tv)
(respectively) of the package. This results in the set S =
{(v, tv)|v ∈ V, tv = 1, 2, 3, ...}. We assume discrete time
t to capture the required detail in the scenario without the
need for more complex continuous time reasoning. How-
ever, even in the discrete time case, we see that there is
an unbounded number of states in S because the delay in
moving between locations is unbounded. This makes the
standard MDP formulation intractable.

To overcome large state spaces, there are a few general ap-
proaches such as sampling methods or value approximation
(in which values are computed from features of the states)
[29]. One time-specific approach is to truncate the range of
values for t to find an approximation for the optimal pol-
icy [26]. However, the number of states grows as a factor
of this truncation limit, so more exact approximations must

5It is typical to include a time discount factor for future re-
wards in an MDP, however, this assumption makes less sense
when utility is a function of delay. Therefore, we omit it in our
model.

be traded off with computation time.

Instead, we find an exact solution under an additional as-
sumption about the mobility model used to produce the
probabilistic delays. Specifically, we show that for a large
class of mobility models, namely periodic temporal mod-
els, the probability of delay, pr(tw − tv|v, tv, w) in going
from state (v, tv) to (w, tw) is periodic in tv . This results
in an MDP with a linear number of states in the number
of locations. This assumption is suitable for optimisation
in delay networks, since it is precisely the periodic tempo-
ral class of mobility model that is most useful in predicting
and planning several days in advance, since short term spa-
tial correlations (e.g., a participant tends to go home after
visiting the market, or always goes to the city centre after
travelling along a particular road) do not have much effect
beyond several hours. However, this assumption of tempo-
ral periodicity means that we cannot incorporate the most
recent observations into the model, which may provide a
benefit in optimising decisions to be made in the very near
future. Under this assumption, we now establish linearity
in the number of locations.

Theorem 1. Let S be the set of states {(v, tv)|v ∈
V, tv = 1, 2, 3, ...} in an MDP. If pr(v|tv) is a periodic
function (defining H as the number of possible val-
ues it can take) in discrete tv (∀v), then the number of
states is linear in the number of locations, i.e., |S| = H |V |.

Proof : Let pr(v|tv) be the probability that a given par-
ticipant is at location v at time tv , obtained from a mo-
bility model (which, we emphasise, describes individual
behaviour and is distinct from the transition function T
of the MDP defined in Section 3.1.3). Since tv is dis-
crete, we can repeat Bernoulli trials from the distribution
rdv ∼ Bern(pr(v|tv + dv)) for increasing dv = 1, 2, 3, ...
until we get r = 1. This is a standard formulation (equiv-
alent to repeated tosses of biased coins), with pr(dv|tv) =

pr(v|tv + dv)
∏dv−1
d′v=1 (1− pr(v|tv + d′v)). Since pr(v|tv)

is periodic in tv , with a maximum of H distinct values, the
probability of delay, pr(w|tv + dv), from any next location
w (reachable from v) is also periodic for arbitrary delay
dv . Therefore, pr((tv+dv) mod H) is a sufficient statistic
for pr(dw|tv + dv) (the probability of delay dw from w),
clearly taking at most H values. Using the Markov prop-
erty of MDPs, only H states are required for each location
v (for arbitrary v), resulting in H |V | states overall. �
Unlike a truncation parameter, we can easily set H for
the specific application of the delay network that needs
to be modelled, without bias (i.e., without underestimat-
ing the delay). For package delivery, we found it sufficient
to set H = 14 per week, by considering the probability
of a participant dropping off or picking up the package
in slots of half a day. Therefore, the state space is now
S = {(v, t)|v ∈ V, t ∈ [1, 14]}.
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3.1.3 Cost Function R and Transition Function T

The delay in going from location v to location w is the
cost function R(s, a, s′), where s = (v, tv), s′ = (w, tw),
and a is the action of routing the package to w. The
MDP requires a single cost for each state s and action
a pair (marginalising over the destination action), yet we
have many participants who can potentially perform that
action (i.e., who routinely visit both v and w locations).
We define the best person as the one who minimises p∗ =
arg mini{E(dv,w|tv, i) +

∑
w cwpr(tw|tv, i)|pi ∈ P}, the

cost of going from location v to w plus the expected cost
of cw (the total cost at state (w, tw)). The cost function R
is then the sum of delays for the best person to pick the
package up at location v, and drop the package off at w:

R((v, tv), w, (w, tw))

= E(dv|tv mod H) + E(dw|tv + dv mod H)

=

∞∑

i=0

W i(Hi+ dv)pr(dv)

dv−1∏

d′v=1

(1− pr(d′v))

+

∞∑

i=0

W i
w(Hi+ dw)pr(dw)

dw−1∏

d′w=1

(1− pr(d′w))

(1)

where Wv =
∏H
d′v=1 (1− pr(d′v)) and Ww =

∏H
d′w=1 (1− pr(d′w)), with the respective interpretations

being the probability of the participant not visiting the start
and end locations (respectively) for an entire period. We
now find the geometric sum:

R((v, tv),w, (w, tw)) =

(
dv

1−Wv
+

WvH

(1−Wv)
2

)
pr(dv|tv)

dv−1∏

d′v=1

(1− pr(d′v|tv))

+

(
dw

1−Ww
+

WwH

(1−Ww)
2

)
pr(dw|tv + dv)·

·
dw−1∏

d′w=1

(1− pr(d′w|tv + dv)) (2)

The transition function T (a, s, s′) may be found in a sim-
ilar way, but by considering only whole multiples of the
given delay:

T (w, (v, tv), (w, tw)) =
H∑

dv=1

pr(dv|tv)pr(dw|tv, dv) (3)

where d = (tw−tv) mod H , and we have marginalised out
the uncertainty about dv (the uncertainty in pick-up delay).

We next address the problem of learning mobility models
for individuals, which provides the probability of presence
that defined the Bernoulli trial used in Equations 2 and 3.
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Figure 1: CAPTION.

Figure 2: Graphical structure of the Dirichlet process loca-
tion model, showing conditional independence between the
random variables. Shaded nodes are observable and square
nodes are fixed values.

3.2 MODEL FOR LEARNING HUMAN
MOBILITY FROM CELL PHONE DATA

We now focus on the problem of getting an accurate predic-
tive probability density of presence for any location given
the participant and the time pr(v|i, tv), from which the
probability of delay can be derived and used in optimisa-
tion (as described in Section 3.1). The Orange dataset con-
sists of a set of tuples for each participant pi ∈ P of the
form (i, xi, ti) indicating that participant i was observed
near cell tower xi (discrete) at date and time ti (continu-
ous). There are three main factors that influence the design
of the model:

1. Cell allocation noise
The cell tower observations provide discrete measure-
ments on the individual’s likely location. However,
there may be a choice of several towers that the phone
can connect to (especially in urban environments) at any
single location. This allocation is decided by outside
factors that we treat as noise (i.e., the network opera-
tor’s optimal allocation of phones to towers). Our ap-
proach needs to isolate the human presence information
in the cell tower allocation to phones and ignore other
factors. This implies the need to infer the locations, each
of which may be statistically associated with several cell
towers.

2. Sporadic observations
Since the cell tower is only recorded in this dataset when
a phone call or text is made (about 7 times a day, on
average) approaches that were designed to be used on
continuously collected location data (e.g. eigenvectors
[22, 6], variable-order Markov models [25], linear em-
bedding [23]) are not likely to be effective (which we
confirm in Section 4.2). We therefore need a method
that can fill in (extrapolate from other observations)
large periods of no observability.

3. Short duration
The data on each individual covers a period of only 2
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weeks. This, combined with the fact that each day may
have only a few (or zero) observations, makes learning
challenging. Overfitting is a danger when the training
data (i.e., the 2 weeks of observations) contains charac-
teristics that do not generalise to the rest of the individ-
ual’s behaviour (i.e., beyond 2 weeks).

These considerations suggest the use of the Bayesian
framework, which allows us to assume the existence of
latent variables that abstract away from the variability of
cell allocation (Factor 1), and make custom assumptions
about the smoothness of location (Factor 2). Further-
more, Bayesian non-parametric methods can provide us
with powerful guards against overfitting (Factor 3).

In more detail, we assume the existence of latent discrete
locations, ln, that are associated with each observation
(xn, tn), and correspond to places in the individual’s rou-
tine life (e.g., home, work). Mixture modelling is a well es-
tablished method for inferring latent discrete variables, but
the standard approach requires the specification of the num-
ber of locations [1]. Therefore, we use a Dirichlet process
mixture model (a non-parametric approach) that allows us
to also infer the number of locations, K [16]. This is im-
portant because setting K too high (manually) will cause
the model to overfit the data.

To address the problem of filling in large periods of missing
data, we assume that behaviour is periodic, as is common
in other routine mobility models [22, 23]. Specifically, we
assume both weekly and daily periodicities in behaviour. In
the model, we achieve this by decomposing the date/time
observation tn to the discrete day of the week, dn, and con-
tinuous hour of the day hn. The practical implications of
this choice are explored briefly in Section 4.4.

A full generative model for location observations of each
individual is therefore the following:

π ∼ DP (α) (4)
for each latent location k :

φk ∼ Dir(a), γk ∼ N (b) (5)
ωk ∼ IG(c), θk ∼ Dir(d) (6)

for each observation n :

ln ∼M(π), xn ∼M(φln) (7)
hn ∼ N (γln , ωln), dn ∼M(θln) (8)

where, first, distribution π over latent locations is drawn
from a Dirichlet process (Equation 4) that defines the prior
probability of each location in the dataset. Second, the
four parameters to the model φ, γ, ω, θ are drawn from their
prior distributions (Dirichlet, normal, inverse-gamma, and
Dirichlet, respectively) in Equations 5-6 [1]. These priors
were chosen for their conjugacy to the parameter distribu-
tions, making the model simpler to infer. Thirdly, for each
observation, latent location ln is drawn (Equation 7), and

this location defines all the observable information in the
dataset (xn, the cell tower, hn the continuous hour obser-
vation, and dn, the day of the week). Since xn and dn
are discrete observations, they can be drawn from multino-
mials, while hn (the continuous hour of the day) is drawn
from a normal distribution with mean θln and variance ωln
(Equations 7-8). Defining hn in this way makes the tempo-
ral distribution smooth, allowing us to fill in periods with
only a few observations. However, we sacrifice some flex-
ibility with this assumption, i.e., it does not capture multi-
modalities in presence for a single location ln.

The conditional independence assumptions between the
random variables are visually represented in Figure 2. Di-
rect inference of all the parameters from the data is not pos-
sible in this model, requiring us to either optimise them
(i.e., variational approximation) or to perform Markov
chain Monte Carlo sampling [1]. Several effective and con-
ceptually simple Gibbs sampling schemes are available for
inference with a Dirichlet process, so we used the latter
approach adapted from [16]. After obtaining samples (fol-
lowing convergence of the Markov chain), we can find the
predictive distribution for location v given the entire train-
ing setX for each individual [1]:

pr(v|tv,X) =
1

R

R∑

r=1

pr(v|tv,M (r))pr(M (r)|X) (9)

where r is the index of each sample (taken after conver-
gence), tv is the query time,M (r) is the entire set of model
parameters found in sample r, and R is the total number of
samples.

To test our approaches to optimisation and learning, we
next apply them to the real cell tower observations.

4 EXPERIMENTAL RESULTS

In this section we use the real world cell tower mobility
data of 50,000 people living in Ivory Coast, measured over
2 weeks, to assess the feasibility of crowdsourcing pack-
age delivery in Section 4.1. Then, using the same data, we
evaluate our approach to prediction in Section 4.2, and op-
timisation under uncertainty in Section 4.3.

4.1 FEASIBILITY STUDY

To assess the feasibility of the idea of crowdsourcing pack-
age delivery, we consider three key criteria: (1) the number
of participants required for acceptable geographical cover-
age; (2) the number of participants required in any specific
delivery (since longer chains imply greater risk of loss and
theft); and (3) the feasibility of delivering to rural locations,
which is expected to be much harder than urban delivery.
To assess these criteria, it was sufficient to consider a sim-
pler instantiation (in this section only) of the problem we
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Figure 3: A plot of the percentage of randomly sampled
(source,destination) delivery problems that had a solution
path of any size, against the log10 size of the number of
potential contributors.

defined in Section 3.1 that takes into account the locations
that each person in the participant set, P , visited, but does
not include the temporal structure in the mobility. We con-
sider the temporal aspect of feasibility in Section 4.3.

4.1.1 Criterion 1: Number of Participants Required

To assess the number of participants required for wide ge-
ographical coverage (Criterion 1), we uniformly randomly
subsampled participant sets, P ′, from the global participant
set P (containing 50,000 people), for a wide range of dif-
ferent sizes |P ′| = {100.5i|i = 1, 2, ..., 9}. For each par-
ticipant set, we then uniformly sampled 1,000 pairs of lo-
cations (source and destination) from V representing 1,000
possible delivery problems. We consider a different (urban
to rural) distribution of test locations in Section 4.1.3.

For each test location pair, we used Dijkstra’s algorithm to
find the shortest path (the standard algorithm can be applied
to graph G because these is no uncertainty about the edge
costs). Figure 3 shows the percentage of location pairs that
were feasible (i.e., that had any path between the source
and destination locations). The line with circular points
shows the feasibility for uniform random source and des-
tination locations. We see that the geographical coverage
is very poor when there are fewer than 102.5 participants.
The critical range is around 103, when feasibility surges
with each new participant. The heavy tail in human loca-
tion behaviour is one explanation for this effect, where in-
dividuals visit many locations a few times (and a few loca-
tions many times) in their daily life mobility [8]. Therefore,
an acceptable geographic coverage, trading off against re-
cruitment/administration costs, appears to be around 103.5

participants.
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Figure 4: A plot of the average number of contributors
required to each specific delivery problem (drawn from
the much larger pool of potential contributors) against the
log10 size of the potential contributors pool. N.B., a major-
ity of rural destinations are infeasible for pool sizes of less
than 102.5, therefore we are unable to plot the line below
this range.

4.1.2 Criterion 2: Number of Participants Required
for Any Given Delivery Problem

To assess the number of participants required in any given
solution path (Criterion 2), we used the same subsampled
participant sets as in Section 4.1.1 and plotted the length of
the shortest path against the size of each subsampled par-
ticipant set in Figure 4. The length of the shortest path
indicates how many people are required for any specific
delivery problem. The circular points are the focus for Cri-
terion 2, where we see that the number of participants re-
quired for any solution path stays within the small range of
2 to 4. Since infeasible paths cannot be included when plot-
ting Figure 4 (because they have unspecified numbers of
contributors), the number of contributors required for spe-
cific paths initially increases with the size of the participant
subset, as more paths are made feasible. However, once
path feasibility (indicated in Figure 3) goes beyond 20%,
the trend is as expected; having a wider pool of participants
allows more efficient (i.e., shorter length) paths to be dis-
covered. Note that, since we are not considering duration
in Figure 4, the lowest cost paths in the full model may re-
quire more people. In any case, since the cost for losing the
package can be fully specified by the planner, the optimal
tradeoff between path length and duration can be found.

4.1.3 Criterion 3: Rural Distribution

So far, we have only considered uniformly sampled source
and destination test points, which favours urban locations
(since there are greater numbers of cell towers in urban
areas). We now consider Criterion 3 for rural feasibility,
by sampling a set of delivery problems where the desti-
nations are only rural (keeping source locations uniformly
sampled, as before).
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Table 1: Average loge data likelihood (higher is better) of
held out test data of 50,000 individuals. 95% confidence
intervals are given.

MODEL LOG LIKELIHOOD

Our approach −5.890± 0.057
First-order MM −6.110± 0.043
VMM order 2 (Song et al. 2006) −6.276± 0.030
VMM order 3 −6.347± 0.033
Random −6.696± 0.056
Finite mixture, (Cho et al. 2011) −9.452± 0.066

We ran the same analyses for Criteria 1 and 2 with rural
destinations, yielding the lines with crosses in Figures 3
and 4. We conclude that restricting the destinations to
be rural certainly makes the delivery problem more chal-
lenging, but it is still feasible. Now that we know that all
three feasibility criteria are met, we consider the problem
of learning the temporal structure in mobility to enable the
minimisation of delay in delivery from source to destina-
tion nodes.

4.2 EVALUATION OF HUMAN MOBILITY
PREDICTIONS

In this section, we evaluate our approach to predicting hu-
man mobility under considerable data sparsity, as would be
typical from cell tower datasets. We split the cell tower data
of 50,000 people into training and testing sets. The test set
contains a single cell tower location reading from each per-
son’s data, therefore giving a test set of 50,000 data points.
The rest of the data for the same individuals was used in
training. To test for model quality, we looked at the log-
arithm of the data likelihood of each test point. We used
non-informative hyperparameters a = 1, d = 1, α = 1 for
the discrete priors (see Figure 2). We used b = (0.01, 12)
and c = (0.01, 3) for the continuous temporal priors, re-
ferring to the relative mean of precision w.r.t. the data, the
mean of the prior, the degree of freedom in the precision,
and the inverse mean of precision, respectively.

For comparison on the same data, we also tested two ex-
isting approaches that are considered state-of-the-art for
human routine location prediction. The first is a spatio-
temporal approach by Cho et al. (2011) [4], and the second
method is a sequential approach by Song et al. (2006) [25]
based on variable-order Markov models (VMM). In addi-
tion, we also tested a purely random model, with data like-
lihood pr(x, d, h) = 1

L
1
V N (h|µ = 12, σ = 6), where L is

the total number of locations and V = 7 is the number of
days of the week (and (x, d, h) is the location, day of week,
and hour of day observation as before).

The held-out data likelihood of all the approaches on the
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Figure 5: The number of individual latent locations iden-
tified by the Dirichlet process for 1,000 randomly selected
individuals in the dataset.

50,000 data points can be seen in Table 1. We first note
that VMM is worse than even a first-order Markov model,
which is contrary to the findings of Song et al. (2006).
This difference is due to the fact that the training data is
very sparse, so learning higher-order dependencies causes
a degradation in likelihood, even though the motivation
behind fall-back (in the VMM) is to dynamically use or-
ders appropriate to the context. Consequently, we see a
further degradation as we increase the maximum order of
the VMM to 3. We can also see that the model of Cho et
al. (2011) performs the worst out of all the approaches. In
contrast, our model outperforms all the others by at least
25% (since we are using a loge likelihood). We believe
most of this benefit comes from selecting the right num-
ber of components using the Dirichlet process (to let the
data “speak for itself”). In Figure 5, we show the number
of components (i.e., latent locations) found for a random
subsample of 1,000 individuals, plotted against the dataset
size for each individual. The number of latent locations has
mean 4.1, mode 2, and standard deviation 2.4, with a heavy
tail. Therefore, the bimodal assumption of Cho et al. (2011)
is true for a large number of individuals in our dataset, yet,
there are still many other individuals for whom their model
is too complex, or not complex enough. Performance for
these individuals that makes their model worse overall.

4.3 EVALUATION OF OPTIMISATION
APPROACH

We now evaluate the optimisation element of our work (i.e.,
which participants to ask and which intermediate locations
to use). To do this, we make a few additional assumptions
in light of the results we have presented so far. Firstly,
since a participant pool of approximately 3,500 people is
enough to get satisfactory coverage of Ivory Coast (see Sec-
tion 4.1), we used participant sets of this size in our optimi-
sation evaluation. Secondly, in order to get statistically sig-
nificant results, we ran 10,000 simulations using our mobil-
ity model (given in Section 3.2) as the ground truth, since it
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Figure 6: Probability distribution of delay cost in 10,000
simulated journeys to rural destinations using our MDP for-
mulation (and heuristic) versus just taking the shortest path.

performs best under extreme data sparsity. To evaluate the
robustness of the optimisation to uncertainties in human be-
haviour, we considered the total delay cost of 10,000 simu-
lations, using the approach presented in Section 3.1 (using
modified policy iteration to find the optimal policy [20]).
To put this result in context, we also evaluated two alter-
native approaches to package routing as benchmarks. The
first benchmark is the naïve approach that finds the short-
est path (i.e., the minimum number of contributors), but
does not consider the temporal mobility habits of the partic-
ipants. The second benchmark uses the findings presented
in Section 3.1, but finds the path of lowest expected cost
during the planning stage instead of during runtime (and is
therefore a heuristic based on our MDP formulation). This
results in a policy for participant selection (i.e., who to ask
to deliver the package given the time slot) but a fixed route.
We therefore expect this approach to perform worse com-
pared to the full optimal policy, since it is not able to react
to optimally to incoming delay information.

The results are presented in Figure 6, showing the end-to-
end duration performance of our optimal policy and heuris-
tic approaches against the shortest path benchmark. For
this, we used the rural test set, defined in Section 4.1.3, with
an average of 373 km between the source and destination
locations. The average total duration for the optimal pol-
icy is 30.0 days, versus 161 days for the benchmark. The
heuristic we based our MDP formulation on performed al-
most identically to the optimal policy, with an average of
30.7 days duration. Interestingly, all three distributions are
heavy-tailed, which conforms to expectations from other
findings about delays from human behaviour [8]. There is,
therefore, an 81.3% time advantage to learning and opti-
mising over human behaviour, and it seems that without
a consideration of the mobility habits of the participants,
there would be an infeasible delay. Furthermore, since our
heuristic performs almost as well as the optimal policy,

there appears to be little benefit to being able to dynami-
cally (at runtime) change the next location in response to
the delays observed so far.

4.4 DISCUSSION

To perform routing under uncertainty, we assumed that
the participants would follow their normal mobility pat-
terns when delivering packages (see Section 3.1). Clearly,
additional factors could introduce further delay, including
disruptions to transport and short term disruptions arising
from participants’ circumstances (e.g., being too busy, tak-
ing sick leave). In practical terms, most of the impact of
these disruptions could be absorbed by an appropriate task
assignment procedure. Specifically, after obtaining a policy
from our learning and optimisation approach, the system
could ask the selected participants, via automated phone
text, whether they are actually willing and able to do the
task. In this way, participants facing disruptions can be fil-
tered out, limiting the introduction of unexpected delay into
the route. On the other hand, some disruptions may not be
known at the time of task acceptance, or some participants
may simply not be honest about them. We leave this as a
problem for future work (see Section 5).

Finally, in the worst case (from a routing perspective), par-
ticipants may lose or steal packages. A certain amount of
loss and theft is assumed even with standard delivery, and
is borne as the risk of doing business, or addressed with in-
surance. In the crowdsourced setting, this can be taken into
account by assigning a cost to each participant (either with
a fixed value, or derived from a participant-specific trust
evaluation framework). In whatever way the cost of trust
is calculated, once obtained, it can be incorporated into the
MDP as an added cost in the standard way.

5 CONCLUSIONS AND FUTURE WORK

In this work we studied a novel method for distribution that
uses the existing mobility of local people to send packages
large distances. Using data describing the real world move-
ment patterns of 50,000 people, we addressed the technical
problems associated with this method, formulating an MDP
for optimisation and presenting a Bayesian non-parametric
model that performs well under data sparsity. Future work
could incorporate the most recent observations of partici-
pants’ locations in order to respond to unexpected delays
(in addition to the random variability in delay attributable
to daily life mobility that we already did consider). Intro-
ducing this sequential dependence breaks the periodic fea-
ture of the predictions, making the MDP intractable again.
To address this, a hybrid approach could be developed that
assumes periodicity during initial planning, but which al-
lows local refinements to the policy as up-to-the-hour in-
formation about participant mobility arrives.
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Abstract

Structured prediction is a powerful frame-
work for coping with joint prediction of
interacting outputs. A central difficulty in
using this framework is that often the correct
label dependence structure is unknown. At
the same time, we would like to avoid an
overly complex structure that will lead to
intractable prediction. In this work we ad-
dress the challenge of learning tree structured
predictive models that achieve high accuracy
while at the same time facilitate efficient
(linear time) inference. We start by proving
that this task is in general NP-hard, and then
suggest an approximate alternative. Our
CRANK approach relies on a novel Circuit-
RANK regularizer that penalizes non-tree
structures and can be optimized using a
convex-concave procedure. We demonstrate
the effectiveness of our approach on several
domains and show that its accuracy matches
that of fully connected models, while per-
forming prediction substantially faster.

1 Introduction

Numerous applications involve joint prediction of com-
plex outputs. For example, in document classification
the goal is to assign the most relevant (possibly
multiple) topics to each document; in gene annotation,
we would like to assign each gene a set of relevant func-
tional tags out of a large set of possible cellular func-
tions; in medical diagnosis, we would like to identify all
the diseases a given patient suffers from. Although the
output space in such problems is typically very large,
it often has intrinsic structure which can be exploited
to construct efficient predictors. Indeed, in recent

∗Authors contributed equally.

years using structured output prediction has resulted in
state-of-the-art results in many real-worlds problems
from computer vision, natural language processing,
computational biology, and other fields [Bakir et al.,
2007]. Such predictors can be learned from data using
formulations such as Max-Margin Markov Networks
(M3N) [Taskar et al., 2003, Tsochantaridis et al., 2006],
or conditional random fields (CRF) [Lafferty et al.,
2001].

While the prediction and the learning tasks are
generally computationally intractable [Shimony, 1994,
Sontag et al., 2010], for some models they can be
carried out efficiently. For example, when the model
consists of pairwise dependencies between output vari-
ables, and these form a tree structure, prediction can
be computed efficiently using dynamic programming
at a linear cost in the number of output variables
[Pearl, 1988]. Moreover, despite their simplicity, tree
structured models are often sufficiently expressive to
yield highly accurate predictors. Accordingly, much of
the research on structured prediction focused on this
setting [e.g., Lafferty et al., 2001, Collins, 2002, Taskar
et al., 2003, Tsochantaridis et al., 2006].

Given the above success of tree structured models,
it is unfortunate that in many scenarios, such as a
document classification task, there is no obvious way
in which to choose the most beneficial tree. Thus,
a natural question is how to find the tree model that
best fits a given structured prediction problem. This is
precisely the problem we address in the current paper.
Specifically, we ask what is the tree structure that is
optimal in terms of a max-margin objective [Taskar
et al., 2003]. Somewhat surprisingly, this optimal
tree problem has received very little attention in the
context of discriminative structured prediction (the
most relevant work is Bradley and Guestrin [2010]
which we address in Section 6).

Our contributions are as follows. We begin by proving
that it is NP-hard in general to find the optimal
max-margin predictive tree, in marked contrast to
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the generative case where the optimal tree can be
learned efficiently [Chow and Liu, 1968]. To cope with
this theoretical barrier, we propose an approximation
scheme that uses regularization to penalize non-tree
models. Concretely, we propose a regularizer that is
based on the circuit rank of a graph [Berge, 1962],
namely the minimal number of edges that need to
be removed from the graph in order to obtain a tree.
Minimization of the resulting objective is still difficult,
and we further approximate it using a difference of
continuous convex envelopes. The resulting objective
can then be readily optimized using the convex concave
procedure [Yuille and Rangarajan, 2003].

We apply our method to synthetic and varied real-
world structured output prediction tasks. First, we
show that the learned tree model is competitive with
a fully connected max-margin model that is substan-
tially more computationally demanding at prediction
time. Second, we show that our approach is superior
to several baseline alternatives (e.g., greedy structure
learning) in terms of generalization performance and
running time.

2 The Max-margin Tree

Let x be an input vector (e.g., a document) and y
a discrete output vector (e.g., topics assigned to the
document, where yi = 1 when topic i is addressed
in x). As in most structured prediction approaches,
we assume that inputs are mapped to outputs ac-
cording to a linear discrimination rule: y(x;w) =
argmaxy′ w

>φ(x, y′), where φ(x, y) is a function that
maps input-output pairs to a feature vector, and w
is the corresponding weight vector. We will call
w>φ(x, y′) the score that is assigned to the prediction
y′ given an input x.

Assume we have a set of M labeled pairs
{(xm, ym)}Mm=1, and would like to learn w. In the
M3N formulation proposed by Taskar et al. [2003],
w is learned by minimizing the following (regularized)
structured hinge loss:

`(w) =
λ

2
‖w‖2 +

1

M

∑

m

hm(w),

where

hm(w) = max
y

[
w>φ(xm, y) + ∆(y, ym)

]
− w>φ(xm, ym),

(1)

and ∆(y, ym) is a label-loss function measuring the
cost of predicting y when the true label is ym (e.g., 0/1
or Hamming distance). Thus, the learning problem
involves a loss-augmented prediction problem for each
training example.

Since the space of possible outputs may be quite large,
maximization of y can be computationally intractable.
It is therefore useful to consider score functions that
decompose into simpler ones. One such decomposition
that is commonly used consists of scores over single
variables and pairs of variables that correspond to
nodes and edges of a graph G, respectively:

w>φ(x, y) =
∑

ij∈E(G)

w>ijφij(x, yi, yj) +
∑

i∈V (G)

w>i φi(x, yi).

(2)
Importantly, when the graph G has a tree structure
then the maximization over y can be solved exactly
and efficiently using dynamic programming algorithms
(e.g., Belief Propagation [Pearl, 1988]).

As mentioned above, we consider problems where there
is no natural way to choose a particular tree structure,
and our goal is to learn the optimal tree from training
data. We next formalize this objective.

In a tree structured model, the set of edges ij in Eq. (2)
forms a tree. This is equivalent to requiring that the
vectors wij in Eq. (2) be non-zero only on edges of
some tree. To make this precise, we first define, for a
given spanning tree T , the set WT of weight vectors
that “agree” with T :1

WT = {w : ij /∈ T =⇒ wij = 0} . (3)

Next we consider the set W∪ of weight vectors that
agree with some spanning tree. Denote the set of
all spanning trees by T , then: W∪ =

⋃
T∈T
WT .

The problem of finding the optimal max-margin tree
predictor is therefore:

min
w∈W∪

`(w). (4)

We denote this as the MTreeN problem. In what
follows, we first show that this problem is NP-hard,
and then present an approximation scheme.

3 Learning M3N Trees is NP-hard

We start by showing that learning the optimal tree
in the discriminative max-margin setting is NP-hard.
As noted, this is somewhat of a surprise given that
the best tree is easily learned in the generative setting
[Chow and Liu, 1968], and that tree structured models
are often used due to their computational advantages.

In particular, we consider the problem of deciding
whether there exists a tree structured model that cor-
rectly labels a given dataset (i.e., deciding whether the

1Note that weights corresponding to single node fea-
tures are not restricted.
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dataset is separable with a tree model). Formally, we

define the MTreeN decision problem as determining
whether the following set is empty:

{
w ∈ W∪

∣∣∣w>φ(xm, ym) ≥ w>φ(xm, y)+∆(y, ym) ∀m, y
}
.

(5)

To facilitate the identifiability of the model parameters
that is later needed, we adopt the formalism of Sontag
et al. [2010] and define the score:

S(y;x, T, w)

=
∑

ij∈T
w>ijφij(x, yi, yj) +

∑

i

(w>i φi(x, yi) + xi(yi))

≡
∑

ij∈T
θij(yi, yj) +

∑

i

θi(yi) +
∑

i

xi(yi), (6)

where xi(yi) is a bias term which does not depend on
w,2 and for notational convenience we have dropped
the dependence of θ on x and w. We can now
reformulate the set in Eq. (5) as:

{
T,w

∣∣∣S(ym;xm, T, w) ≥ max
y

S(y;xm, T, w) ∀m
}
, (7)

where, for simplicity, we omit the label loss ∆(y, ym).
This is valid since the bias terms already ensure that
the trivial solution w = 0 is avoided. With this
reformulation, we can now state the hardness result.

Theorem 3.1. Given a set of training examples
{(xm, ym)}Mm=1, it is NP-hard to decide whether there
exists a tree T and weights w such that ∀m, ym =
argmaxy S(y;xm, T, w).

Proof. We show a reduction from the NP-hard
bounded-degree spanning tree (BDST) problem to the

MTreeN decision problem defined in Eq. (7).3 In the
BDST problem, given an undirected graph G and an
integer D, the goal is to decide whether there exists
a spanning tree with maximum degree D (for D = 2
this is the Hamiltonian path problem, hence the NP-
hardness).

Given an instance of BDST we construct an instance
of problem Eq. (7) on the same graph G as follows.
First, we define variables y1, . . . , yn that take values
in {0, 1, . . . , n}, where n = |V (G)|. Second, we will
define the parameters θi(yi) and θij(yi, yj) and bias

terms xi(yi) in such a way that solving the MTreeN
decision problem will also solve the BDST problem.
To complement this, we will define a set of training
examples which are separable only by the desired

2As usual, the bias term can be removed by fixing some
elements of w to 1.

3A related reduction is given in Aissi et al. [2005],
Theorem 8.

parameters. For clarity of exposition, we defer the
proof that these parameters are identifiable using a
polynomial number of training examples to App. A.

The singleton parameters are

θi(yi) =

{
D i = 1, y1 = 0

0 otherwise,
(8)

and the pairwise parameters for ij ∈ E(G) are:

θij(yi, yj) =





−n2 yi 6= yj

0 yi = yj = 0

1 yi = yj = i

1 yi = yj = j

0 otherwise.

(9)

Now consider the case where the bias term xi(yi)
is identically zero. In this case the score for (non-
zero) uniform assignments equals the degree of the
vertex in T . That is, S(i, . . . , i; 0, T, θ) = degT (i) since
θij(i, i) = 1 for all j ∈ N(i) and the other parameter
values are zero. The score for the assignment y =
0 is S(0, . . . , 0; 0, T, θ) = D, and for non-uniform
assignments we get a negative score S(y; 0, T, θ) <
0. Therefore, the maximization over y in Eq. (7)
reduces to a maximization over n uniform states
(each corresponding to a vertex in the graph). The
maximum value is thus the maximum between D
and the maximum degree in T : maxy S(y; 0, T, θ) =
max {D,maxi degT (i)}.
It follows that, if we augment the training set that
realizes the above parameters (see App. A) with a
single training example where xm = ym = (0, . . . , 0),
the set of Eq. (7) can now be written as:

{
T |D ≥ max

i
degT (i)

}
.

Thus, we have that the learning problem is separable
if and only if there exists a bounded degree spanning
tree in G. This concludes the reduction, and we have
shown that the decision problem in Theorem 3.1 is
indeed NP-hard.

The above hardness proof illustrates a striking differ-
ence between generative learning of tree models (i.e.,
Chow Liu) and discriminative learning (our NP-hard
setting). Clearly, we do not want to abandon the
discriminative setting and trees remain computation-
ally appealing at test time. Thus, in the rest of the
paper, we propose practical approaches for learning
a tree structured predictive model and demonstrate
empirically that our method is competitive.
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4 Tree-Inducing Regularization

Due to the hardness of the tree learning problem, we
next develop an approximation scheme for it. We
begin with the exact formulation of the problem, and
then introduce an approximate formulation along with
an optimization procedure. Our construction relies on
several properties of submodular functions and their
convex envelopes.

4.1 Exact Tree Regularization

As described in Section 2, we would like to find a
tree structured weight vector w ∈ W∪ that minimizes
the empirical hinge loss. The main difficulty in
doing so is that the sparsity pattern of w needs to
obey a fairly complex constraint, namely being tree
structured. This is in marked contrast to popular
sparsity constraints such as an upper bound on the
number of non-zero values, a constraint that does not
take into account the resulting global structure.

To overcome this difficulty, we will formulate the exact
learning problem via an appropriate regularization.
We begin by defining a function that maps w to the
space of edges: π : Rd 7→ R|E|, where E corresponds to
all edges of the full graph. Specifically, the component
in π corresponding to the edge ij is:

πij(w) = ‖wij‖1.

Now, denote by Supp(π(w)) the set of coordinates in
π(w) that are non-zero. We would like the edges cor-
responding to these coordinates to form a tree graph.
Thus, we wish to define a set function F (Supp(π(w)))
which will be equal to zero if Supp(π(w)) conforms to
some tree structure, and a positive value otherwise.
If we then add βF (Supp(π(w))) to the objective in
Eq. (4) with β large enough, the resulting w will be
tree structured. The optimization problem is then:

min
w
`(w) + βF (Supp(π(w))). (10)

In what follows, we define a set function F (A) with
the desired properties. That is, we seek a function
that takes a set of edges A and outputs zero if they
correspond to a tree, and a positive number otherwise.
Intuitively, it is also desirable to define the function
such that its value increases as the graph becomes less
“tree-like”. To make this concrete we define a measure
for “treeness” as the minimum number of edges that
need to be removed from A in order to reduce it to
a tree structure. This measure is also known as the
circuit-rank of the graph [Berge, 1962]. Formally:

r = |A|+ c(A)− n,

where c(A) is the number of connected components in
the graph, and n is the number of vertices. We note
that the circuit rank is also the co-rank of the graphic
matroid, and is hence supermodular.

Putting it all together, we have that our desired tree-
inducing function is given by:

F (Supp(π(w))) = |Supp(π(w))|+ c(Supp(π(w)))− n.

Of course, given our hardness result, optimizing
Eq. (10) with the above F (A) is still computationally
hard. From an optimization perspective, the difficulty
comes from the non-convexity of the the above func-
tion in w. Optimization is further complicated by
the fact that it is highly non-smooth, similarly to the
`0 norm. In the next section we suggest a smoothed
approximation that is more amenable to optimization.

We also note that in Eq. (10) w is generally not tree
structured, so the maximization over y in Eq. (1)
is not necessarily tractable. Therefore, we replace
the hinge loss in Eq. (1) with its overgenerating
approximation [Finley and Joachims, 2008], known as
linear programming (LP) relaxation [e.g., see Meshi
et al., 2010]. This is achieved by formulating the
optimization in Eq. (1) as an integer LP and then re-
laxing the integrality requirement, allowing fractional
solutions. Importantly, for tree structured graphs
this approximation is in fact exact [Wainwright and
Jordan, 2008]. This implies that if there exists a
tree model that separates the data, it will be found
even when using this relaxation in Eq. (10). With
slight abuse of notation, we keep referring to the
approximate objective as `(w).

4.2 Approximate Tree Regularization

The function F (A) is a set function applied to the
support of π(w). Bach [2010] (Proposition 1) shows
that when F is submodular and non-decreasing, the
convex envelope of F (Supp(π(w))) can be calculated
efficiently. This is desirable since the convex envelope
then serves as a convex regularizer. Furthermore, this
convex envelope can be elegantly understood as the
Lovász extension f of F , applied to |π(w)| (in our case,
|π(w)| = π(w)). Unfortunately, the circuit-rank r does
not satisfy these conditions, since it is supermodular
and non-decreasing (in fact, its convex envelope is a
constant).

To overcome this difficulty, we observe that F (A)
can be decomposed in a way that allows us to use
the result of Bach [2010]. Specifically, we can write
F (A) = F1(A)− F2(A), where

F1(A) = |A| , F2(A) = n− c(A). (11)
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F1(A) is simply the cardinality function which is
modular and increasing. Furthermore, F2(A) is the
rank of the graphic matroid [Oxley, 2006], and is
hence submodular. It is also easy to see that F2(A)
is non-decreasing. Thus, both functions satisfy the
conditions of Proposition 1 in Bach [2010] and their
convex envelopes can be found in closed form, as
characterized in the following corollaries.

Corollary 4.1. The convex envelope of
F1(Supp(π(w)) is f1(π(w)) =

∑
ij πij(w) = ‖w‖1.

Proof. Follows directly from Prop. 1 in Bach [2010]
and the fact that the Lovász extension of the cardinal-
ity function is the `1 norm.

Corollary 4.2. The convex envelope of
F2(Supp(π(w)) is f2(π(w)), defined as follows.
Sort the elements of π(w) in decreasing order, and
construct a maximum-spanning-tree with this ordering
as in Kruskal’s algorithm [Kruskal, 1956]. Denoting
the resulting tree by T (π(w)), we obtain

f2(π(w)) =
∑

ij∈T (π(w))

πij(w) =
∑

ij∈T (π(w))

‖wij‖1

Proof. Let (ij)k denote the kth edge when sorting
π(w), then the Lovász extension f2 of F2 at π(w) is:

|E|∑

k=1

π(ij)k (w)[F2({(ij)1, . . . , (ij)k)− F2({(ij)1, . . . , (ij)k−1)]

=
∑

ij∈T (π(w))

πij(w),

where we have used Eq. (11) and the fact that the
number of connected components decreases by one
only when introducing edges in Kruskal’s tree. The
desired result follows from Prop. 1 in [Bach, 2010].

We now approximate F (Supp(π(w))) as a difference
of the two corresponding convex envelopes, denoted
by f(π(w)):

f(π(w)) ≡ f1(π(w))− f2(π(w)) =
∑

ij /∈T (π(w))

‖wij‖1

(12)
This function has two properties that make it compu-
tationally and conceptually appealing:

• f(π(w)) is a difference of two convex functions so
that a local minimum can be easily found using
the convex concave procedure (see Section 4.3).

• The set {ij /∈ T (π(w))} are precisely these edges
that form a cycle when added according to the
order implied by π(w). Thus, the penalty we use
corresponds to the magnitude of ‖wij‖1 on the
edges that form cycles, namely the non-tree edges.

4.3 Optimizing with Approximate Tree
Regularization

Using the tree inducing regularizer from the previous
section, our overall optimization problem becomes:

min
w
`(w) + βf1(π(w))− βf2(π(w)).

Since the function f2(π(w)) is rather elaborate, opti-
mizing the above objective still requires care. In what
follows, we introduce a simple procedure for doing so
that utilizes the convex concave procedure (CCCP)
[Yuille and Rangarajan, 2003].4 Recall that CCCP is
applicable for an objective function (to be minimized)
that is a sum of a convex and concave functions, and
proceeds via linearization of the concave part.

To use CCCP for our problem we observe that from
the discussion of the previous section it follows that our
objective can indeed be decomposed into the following
convex and concave components:

h∪(w) = `(w) + βf1(π(w)), h∩(w) = −βf2(π(w)),

where ∩ and ∪ correspond to the convex and concave
parts, respectively. To linearize h∩(w) around a point
wt, we need to find its subgradient at that point. The
next proposition, which follows easily from Hazan and
Kale [2009], gives the subgradient of f2(π(w)):

Proposition 4.3. The subgradient of f2(π(w)) is
given by the vector v defined as follows.5 The coor-
dinates in v corresponding to wij are given by:

vij =

{
sign(wij) ij ∈ T (π(w))

0 otherwise

where sign is taken element wise. The other coordi-
nates of v (corresponding to wi) are zero.

We can now specify the resulting algorithm, which we
call CRANK for circuit-rank regularizer.

Algorithm 1 The CRANK algorithm

Input: w1, β
for t = 1, . . . do

ht(w) = `(w) + β‖w‖1 − βv(wt)>w
wt+1 = argminw h

t(w)
end for

The objective ht(w) to be minimized at each iteration
is a convex function, which can be optimized using any
convex optimization method. In this work we use the

4To be precise, we are using the more general DC
programming framework [Tao and An, 1997], which can
be applied to non differentiable functions.

5In cases where several wij are equal, there are multiple
subgradients.
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Figure 1: Average test performance as a function of the number of training samples for the synthetic datasets.

stochastic Frank-Wolfe procedure recently proposed
by Lacoste-Julien et al. [2013].6 The advantage of
this approach is that the updates are simple, and it
generates primal and dual bounds which help monitor
convergence. In practice, we do not solve the inner
optimization problems exactly, but rather up to some
primal-dual gap.

5 Experiments

In this section we evaluate the proposed algorithm
on multi-label classification tasks and compare its
performance to several baselines. In this task the goal
is to predict the subset of labels which best fits a given
input. We use the model presented in Finley and
Joachims [2008], where each possible label yi ∈ {0, 1}
is associated with a weight vector wi, the singleton
scores are given by w>i xyi, and the pairwise scores are
simply wijyiyj (i.e., wij is scalar).

We compare our CRANK algorithm to the follow-
ing baselines: The Empty model learns each label
prediction independently of the other labels; The
Full model learns a model that can use all pairwise
dependencies; The Greedy trainer starts with the
empty model and at each iteration adds the edge
which achieves the largest gain in objective while not
forming a cycle, until no more edges can be added;
The Project algorithm, runs CRANK starting from
the weights learned by the Full algorithm, and using
a large penalty β; 7 The final baseline is an MST
algorithm, which calculates the gain in objective for
each edge separately, takes a maximum-spanning-tree

6We modified the algorithm to handle the `1 + `2 case.
7The Project scheme thus trains a model consisting of

the maximum-spanning-tree over the weights learned by
Full, and can be viewed as a “tree-projection” of the full
model.

over these weights, and then re-trains the resulting
tree. Since CCCP may be sensitive to its starting
point, we restart CRANK from 10 random points and
choose the one with lowest objective (we run those
in parallel). We apply the stochastic Frank-Wolfe
algorithm [Lacoste-Julien et al., 2013] to optimize the
weights in all algorithms. The Full and CRANK
algorithms operate on non-tree graphs, and thus use
an LP relaxation within the training loss (see Section
4.1). Since the model trained with Full is not tree
structured, we also needs to use LP relaxation at test
time (see implications on runtime below). We used the
GLPK solver for solving the LPs.

To measure the performance of the algorithms, we
consider three accuracy measures: Hamming, zero-
one, and F1 (averaged over samples). See [Zhang and
Schneider, 2012, Dembczynski et al., 2010] for similar
evaluation schemes. Regularization coefficients were
chosen using cross-validation. The parameter β in
CRANK was gradually increased until a tree structure
was obtained.

Synthetic Data: We first show results for synthetic
data where x ∈ R4. The data was created as follows:
a random tree T over n = 10 variables was picked and
corresponding weights w ∈ WT were sampled. Train
and test sets were generated randomly and labeled
using w. Test set size was 1000 and train set size
varied. Results (averaged over 10 repetitions) are
shown in Figure 1.

We observe that the structured models do significantly
better than the Empty model. Additionally, we see
that the Full, Greedy, and CRANK algorithms are
comparable in terms of prediction quality, with a slight
advantage for CRANK over the others. We also notice
that Project and MST do much worse than the other
structured models.
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Hamming 0/1 F1 Hamming 0/1 F1

Scene Emotions
CRANK 90.5 (2) 58.9 (2) 64.8 (2) 79.2 (1) 29.2 (2) 60.5 (2)
Full 90.7 (1) 62.2 (1) 67.8 (1) 79.0 (3) 33.7 (1) 62.5 (1)
Greedy 90.2 (3) 56.9 (3) 62.6 (3) 78.5 (4) 24.3 (4) 54.5 (4)
Project 89.5 (5) 52.1 (5) 59.2 (5) 77.6 (5) 20.8 (5) 49.8 (5)
MST 89.9 (4) 53.0 (4) 59.6 (4) 79.1 (2) 28.2 (3) 57.5 (3)
Empty 89.3 (6) 49.5 (6) 56.5 (6) 76.7 (6) 20.3 (6) 48.5 (6)

Medical Yeast
CRANK 96.9 (1) 74.0 (2) 78.2 (3) 80.1 (2) 17.6 (2) 60.4 (3)
Full 96.9 (1) 75.0 (1) 78.3 (1) 80.2 (1) 19.0 (1) 60.9 (1)
Greedy 96.9 (1) 74.0 (2) 78.3 (1) NA NA NA
Project 96.7 (4) 72.7 (4) 77.0 (5) 80.1 (2) 16.4 (3) 60.7 (2)
MST 96.7 (4) 71.9 (5) 77.5 (4) 80.1 (2) 16.1 (4) 60.3 (4)
Empty 96.4 (6) 71.0 (6) 76.1 (6) 79.8 (5) 12.1 (5) 58.0 (5)

Table 1: Performance on test data for real-world multi-label datasets. The rank of each algorithm for each
dataset and evaluation measure is shown in brackets. Greedy was too slow to run on Yeast.

Real Data: We next performed experiments on four
real-world datasets.8 In the Scene dataset the task is
to classify a given image into several outdoor scene
types (6 labels, 294 features). In the Emotions
dataset we wish to assign emotional categories to
musical tracks (6 labels, 72 features). In the Medical
dataset the task is document classification (reduced
to 10 labels, 1449 features). This is the experimental
setting used by Zhang and Schneider [2012]. Finally,
to test how training time scales with the number of
labels, we also experiment with the Yeast dataset,
where the goal is to predict which functional classes
each gene belongs to (14 labels, 103 features). The
results are summarized in Table 1.

We first observe that in this setting the Full model
generally has the best performance and Empty the
worst. As before, CRANK is typically close to Full
and outperforms Greedy and the other baselines in
the majority of the cases.

Runtime analysis: In Table 2 we report train and
test run times, relative to the Full model, for the Yeast
dataset.

Table 2: Running times for the Yeast dataset.

Time CRANK Full Project MST Empty
Train 1.82 1.0 0.17 1.32 0.01
Test 0.02 1.0 0.06 0.02 0.02

It is important to note that the greedy algorithm is
very slow to train, since it requires solving O(n3)
training problems. It is thus impractical for large
problems, and this is true even for the Yeast dataset

8Taken from Mulan (http://mulan.sourceforge.net)

which has only n = 14 labels (and hence does not
appear in Table 2). The Full model on the other
hand has much longer test times (compared to the
tree-based models), since it must use an LP solver
for prediction. CRANK has a training time that is
reasonable (comparable to Full) and a much better test
time. On the Yeast dataset prediction with CRANK
is 50 times faster than with Full.

In conclusion, CRANK seems to strike the best
balance in terms of accuracy, training time, and test
time: it achieves an accuracy that is close to the best
among the baselines, with a scalable training time, and
very fast test time. This is particularly appealing for
applications where we can afford to spend some more
time on training while test time is critical (e.g., real-
time systems).

6 Related Work

The problem of structure learning in graphical models
has a long history, dating back to the celebrated
algorithm by Chow and Liu [1968] for finding a
maximum likelihood tree in a generative model. More
recently, several elegant works have shown the utility
of `1 regularization for structure learning in generative
models [Friedman et al., 2008, Lee et al., 2007, Raviku-
mar et al., 2008, 2010]. These works involve various
forms of `1 regularization on the model parameters,
coupled with approximation of the likelihood function
(e.g., pseudo-likelihood) when the underlying model is
non-Gaussian. Some of these works also provide finite
sample bounds on the number of of samples required to
correctly reconstruct the model structure. Unlike ours,
these works focus on generative models, a difference
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that can be quite fundamental. For example, as we
proved in Section 3, learning trees is a problem that
is NP-hard in the M3N setting while it is polynomial
in the number of variables in the generative one. We
note that we are not aware of finite sample results in
the discriminative setting, where a different MRF is
considered for each input x.

In the discriminative setting, Zhu et al. [2009] define an
`1 regularized M3N objective and present algorithms
for its optimization. However, this approach does
not consider the structure of the underlying graphical
model over outputs y. Torralba et al. [2004] propose
a greedy procedure based on boosting to learn the
structure of a CRF, while Schmidt et al. [2008] present
a block-`1 regularized pseudo-likelihood approach for
the same task. While these methods do consider the
structure of the graphical model, they do not attempt
to produce tractable predictors. Further, they do not
aim to learn models using a max-margin objective.

Bradley and Guestrin [2010] address the problem of
learning trees in the context of conditional random
fields. They show that using a particular type
of tractable edge scores together with a maximum-
spanning-tree (MST) algorithm may fail to find the
optimal tree structure. Our work differs from theirs
in several aspects. First, we consider the max-margin
setting for structured prediction rather than the CRF
setting. Second, they assume that the feature function
φ(x, y) has a particular form where y and x are of the
same order and where the outputs depend only on local
inputs. Finally, we do not restrict our attention to
MST algorithms. Consequently, our hardness result
is more general and the approximations we propose
are quite different from theirs. Finally, Chechetka and
Guestrin [2010] also consider the problem of learning
tree CRFs. However, in contrast to our work, they
allow the structure of the tree to depend on the input
x, which is somewhat more involved as it requires
learning an additional mapping from inputs to trees.

7 Conclusion

We tackled the challenge of learning tree structured
prediction models. To the best of our knowledge,
ours is the first work that addresses the problem
of structure learning in a discriminative M3N set-
ting. Moreover, unlike common structured sparsity
approaches that are used in the setting of generative
and conditional random field models, we explicitly
target tree structures due to their appealing properties
at test time. Following a proof that the task is NP-
hard in general, we proposed a novel approximation
scheme that relies on a circuit rank regularization
objective that penalizes non-tree models, and that can
be optimized using the CCCP algorithm. We demon-

strated the effectiveness of our CRANK algorithm
in several real-life domains. Specifically, we showed
that CRANK obtained accuracies very close to those
achieved by a full-dependence model, but with a much
faster test time.

Many intriguing questions arise from our work: Under
which conditions can we learn the optimal model, or
guarantee approximation quality? Can we extend our
framework to the case where the tree depends on the
input? Can we use a similar approach to learn other
graphs, such as low treewidth or high girth graphs?
Such settings introduce novel forms of graph-structured
sparsity which would be interesting to explore.

Acknowledgments

This research is funded by the ISF Centers of Excel-
lence grant 1789/11, and by the Intel Collaborative Re-
search Institute for Computational Intelligence (ICRI-
CI). Ofer Meshi is a recipient of the Google Europe
Fellowship in Machine Learning, and this research is
supported in part by this Google Fellowship.

A Realizing the parameters

Here we complete the hardness proof in Section 3 by
describing the training set that realizes the parameters
of Eq. (8) and Eq. (9). The approach below makes use
of two training samples to constrain each parameter,
one to upper bound it and one to lower bound it.
Appealingly, the training samples are constructed in
such a way that other samples do not constrain the
parameter value, allowing us to realize the needed
value for each and every parameter in the model.

The construction is similar to Sontag et al. [2010]. For
all parameters it consists of the following steps: (i)
define an assignment x(y); (ii) identify two y values
that potentially maximize the score; and (iii) show
that these two complete assignments to x and y force
the desired parameter value.

Preliminaries: Recall that the parameter vector θ
is defined in Eq. (6) via a product of the features
φi(yi, x) and φij(yi, yj , x) and the weights wi and wij
which do not depend on x or y and are shared across
the parameters. For the hardness reduction, it will be
convenient to set the features to indicator functions
and show that the implied weight values are realizable.
Specifically, we set the features to:

φoff-diag
ij (yi, yj) =1{yi 6= yj} ∀i, j
φdiag
ij (yi, yj) =1{yi = yj = i or yi = yj = j} ∀i, j
φbound

1 (y1) =1{y1 = 0}
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Recall that to realize the desired parameters θ, we need
to introduce training samples such that for all i, j:

woff-diag
ij = −n2, wdiag

ij = 1, wbound
1 = D,

with the dimension of w equalling 2|E(G)|+ 1.

Finally, using Ni to denote the set of neighbors of node
i in the graph G, we will use the following (large) value
to force variables not to take some chosen states:

γi =

{
1 + |Ni|(n2 + 1) i 6= 1

1 + |Ni|(n2 + 1) +D i = 1

Realizing the weight wbound
1 : We define x(y) as:

x1(y1) =





0 y1 = 0

−D y1 = 1

−γ1 y1 ≥ 2

xi(yi) =

{
0 yi = 2

−γi yi 6= 2
for all i 6= 1

Recalling the definition of γ above, this implies that
the only assignments to y that can maximize the
score of Eq. (6) are (0, 2, 2, ..., 2) and (1, 2, 2, ..., 2). In
particular, we have:

S(0, 2, 2, ..., 2;x,w) =
∑

k∈N1

woff-diag
1k + x1(0) + S̄

S(1, 2, 2, ..., 2;x,w) =wbound
1 +

∑

k∈N1

woff-diag
1k + x1(1) + S̄

where S̄ is the sum of all components that do not
involve the first variable.

For the final step we recall that the weights w have to
satisfy the constraints: S(ym;xm, w) ≥ S(y;xm, w)
for all m, y. Thus, we will define two instances
(xm, ym) for which some y assignment will constrain
the weight as needed (in both cases, xm is defined
as above). When y(m) = (0, 2, 2, . . . , 2), the assign-
ment y = (1, 2, 2, . . . , 2) yields wbound

1 ≤ D and all
other assignments do no further constrain the weight.
Similarly, for y(m′) = (1, 2, 2, . . . , 2), the assignment
y = (0, 2, 2, . . . , 2) yields wbound

1 ≥ D. Together, the
two assignments constrain the weight parameter to
wbound

1 = D, as desired.

Realizing the weights woff-diag
ij : We define x(y)

as:

xi(yi) =

{
0 yi = 0

−γi yi 6= 0
, xj(yj) =





0 yj = 0

n2 yj = 1

−γj yj ≥ 2

xk(yk) =

{
0 yk = k

−γk yk 6= k
for all k 6= i, j

This implies that except for i and j, all yk’s must take
their corresponding assignment so that yk = k. W.l.g.,
suppose that i = 1 and j = 2. The only assignments
that can maximize the score are (0, 0, 3, 4, 5, ..., n) and
(0, 1, 3, 4, 5, ..., n) with values:

S(0, 0, 3, 4, 5, ..., n;x,w) =
∑

k∈Ni

woff-diag
ik +

∑

k′∈Nj

woff-diag
jk′ + xi(0) + xj(0) + S̄

S(0, 1, 3, 4, 5, ..., n;x,w) =

woff-diag
ij +

∑

k∈Ni

woff-diag
ik +

∑

k′∈Nj

woff-diag
jk′ + xi(0) + xj(1) + S̄

As before, setting y(m) = (0, 0, 3, 4, 5, ..., n) and
then y(m′) = (0, 1, 3, 4, 5, ..., n) yields the constraint

woff-diag
ij = −n2.

Realizing the weights wdiag
ij : We define x(y) as:

xi(yi) =

{
0 yi = i

−γi yi 6= i
, xj(yj) =





n2 yj = 0

−1 yj = i

−γj yj /∈ {0, i}

xk(yk) =

{
0 yk = k

−γk yk 6= k
for all k 6= i, j

As before, for all k 6= i, j the assignment is forced
to yk = k. The maximizing assignments are
now (1, 0, 3, 4, 5, ..., n) and (1, 1, 3, 4, 5, ..., n) (assuming
w.l.g., i = 1, j = 2) with score values:

S(1, 0, 3, 4, 5, ..., n;x,w) =

woff-diag
ij +

∑

k∈Ni

woff-diag
ik +

∑

l∈Nj

woff-diag
jl + xi(i) + xj(0) + S̄

S(1, 1, 3, 4, 5, ..., n;x,w) =

wdiag
ij +

∑

k∈Ni

woff-diag
ik +

∑

l∈Nj

woff-diag
jl + xi(i) + xj(i) + S̄

Now, setting y(m) = (1, 0, 3, 4, 5, ..., n), the assignment

y = (1, 1, 3, 4, 5, ..., n) implies woff-diag
ij +n2 ≥ wdiag

ij −1.

Since we already have that woff-diag
ij = −n2, we obtain

wdiag
ij ≤ 1. Similarly, adding y(m′) = (1, 1, 3, 4, 5, ..., n)

implies wdiag
ij ≥ 1, so together we have wdiag

ij = 1, as
required.

Importantly, our trainset realizes the same edge pa-
rameters for any possible tree, since edge weights are
constrained independently of other edges.
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Abstract

Graphical models with High Order Potentials
(HOPs) have received considerable interest in
recent years. While there are a variety of ap-
proaches to inference in these models, nearly
all of them amount to solving a linear pro-
gram (LP) relaxation with unary consistency
constraints between the HOP and the indi-
vidual variables. In many cases, the resulting
relaxations are loose, and in these cases the
results of inference can be poor. It is thus de-
sirable to look for more accurate ways of per-
forming inference. In this work, we study the
LP relaxations that result from enforcing ad-
ditional consistency constraints between the
HOP and the rest of the model. We address
theoretical questions about the strength of
the resulting relaxations compared to the re-
laxations that arise in standard approaches,
and we develop practical and efficient mes-
sage passing algorithms for optimizing the
LPs. Empirically, we show that the LPs
with additional consistency constraints lead
to more accurate inference on some challeng-
ing problems that include a combination of
low order and high order terms.

1 Introduction

Graphical models are an excellent tool for expressing
models that arise in a wide variety of domains in-
cluding computational biology, natural language pro-
cessing, and computer vision. A long-standing re-
search challenge is to expand the range of problems
that can be expressed with graphical models such that
learning and inference can be performed efficiently.
Recently, there has been a resurgence of interest in

∗Equal contribution

1 2 3 4 5

(a)

〈1, 2〉 〈2, 3〉 〈3, 4〉 〈4, 5〉

(b)

Figure 1.1: We show that LP-based message passing
in graphical models with high order potentials (HOPs)
is likely to be poor when the HOP communicates via
a single-variable interface as in (a). Communicating
with a subset of edges of the same model leads to much
better results. For example, in (b), it is provably exact.

high order potentials (HOPs), which generally refer
to modeling components that have tractable struc-
ture that is not revealed by looking at the graphical
structure of the model. These approaches are rooted
in earlier work on graphical models like Pearl’s poly-
tree algorithm (Pearl, 1988), noisy-OR interactions
(Heckerman, 1989), and context specific independen-
cies (Boutilier et al., 1996). Their recent popularity
has been fueled by the availability of efficient routines
for using HOPs within modern linear program (LP)-
based message passing algorithms such as dual de-
composition (Komodakis et al., 2007), MPLP (Glober-
son and Jaakkola, 2007), and convex belief propaga-
tion (Weiss et al., 2007). Recent works such as (Tar-
low et al., 2010) attempt to categorize general classes
of HOP and give efficient algorithms for using them
within message passing algorithms. There are many
specific applications, such as using HOPs in an image
segmentation task to jointly optimize over the appear-
ance model and segmentation (Vicente et al., 2009).

Despite the success that has been achieved with mes-
sage passing algorithms and HOPs, nearly all of the
approaches are equivalent to a particular LP relax-
ation (Koller and Friedman, 2009). In addition, sev-
eral other approaches to dealing with HOPs, such as
reducing them to low order models, equate to the same
relaxation. We expand on these equivalences in Sec. 4.
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The main goal of this paper is to show that the LP re-
laxation resulting from the standard approach is weak,
and to propose an alternative that maintains many
of the same desirable computational efficiencies while
leading to more accurate inference.

The paper proceeds as follows. We begin by estab-
lishing the ubiquity of the relaxation that we term the
unary consistency LP, showing that many approaches
to dealing with HOPs are equivalent to this relaxation.
Having established this, we go on to show that the
unary consistency relaxation is quite weak. We pro-
vide several examples and some analysis to help under-
stand when this is the case and why it fails. Next, we
introduce a family of LPs that provide tighter relax-
ations than the standard relaxation, but (as we show)
still admit efficient algorithms for optimizing them.
We provide theoretical analysis of these LPs, showing
when they are provably tight.

We then turn to practical concerns and show that our
tighter LPs can often be efficiently solved using stan-
dard message-passing algorithms: the main difference
is that the nodes corresponding to the higher order po-
tential now receive and send messages that are func-
tions of pairs of variables, not just singletons. This
makes the message-passing more involved but we iden-
tify special cases of HOPs for which the message com-
putation is still tractable. We also show how to use the
messages to compute tighter bounds on the MAP and
how to choose which pairs of variables should be added
in a way that is guaranteed to tighten the bound. We
illustrate the performance of our method on both syn-
thetic models and real image segmentation problems.

2 Motivating Examples

To begin, we will establish notation, then consider two
concrete examples that illustrate the looseness of the
standard LP relaxation for dealing with HOPs.

Notation and Preliminaries We let an energy
function over n discrete variables x = {x1, ..., xn} be
defined as follows. Given a graph G = (V, E) with n
vertices, there are potentials θi(xi), θij(xi, xj) for each
vertex and each edge in the graph, respectively, and
one HOP over all the variables, θα(x). We wish to
find the minimum energy configuration (alternatively
the maximum a posteriori (MAP) assignment):

x∗ = arg min
x

∑

i∈V
θi(xi)+

∑

ij∈E
θij(xi, xj)+θα(x). (2.1)

This is an integer program that is NP hard to solve
in general. The LP relaxation approach works in two
stages. First, the integer program is converted into
a linear program with the same solution, but which

requires exponentially many constraints to express the
domain. Then the linear program is relaxed by outer
bounding the domain to yield the LP∅ below. For
more background on LP relaxations, we recommend
Wainwright and Jordan (2008), Koller and Friedman
(2009) and Sontag et al. (2010).

We now review the standard LP relaxation approach
to approximating Eq. 2.1. The relaxation maintains
three types of distributions: over single variables, over
pairs of variables, and over all of x. All three are con-
strained to agree on their singleton marginals. The
singleton, pairwise and HOP terms are then replaced
by their expectation according to the corresponding
distributions. We call this approach the Unary Con-
sistency LP and denote it by LP∅. The resulting op-
timization problem is

LP∅ (Unary Consistency LP)

min
q

∑

i∈V
Eqi [θ(xi)] +

∑

ij∈E
Eqij [θij(xi, xj)] + Eqα [θα(x)]

s.t.
∑

xi

qij(xi, xj) = qj(xj) ,
∑

xj

qij(xi, xj) = qi(xi)

∑

x:x(i)=xi

qα(x) = qi(xi) ∀i ∈ V, (2.2)

where we omit for space (as we will throughout)
the additional constraints that q variables are non-
negative and sum to 1, and some of the quantifications
(e.g., ij ∈ E and the values of xi in the last constraint).
As we show in Sec. 4, this relaxation is commonly used
because it can be solved efficiently for several families
of HOPs.

Introductory Examples We start with two sim-
ple instances of MAP problems with tractable HOP
for which the standard approach fails. In both cases
the factor graph (Fig. 1.1a) consists of a simple chain
and a cardinality-based potential which is amenable
to the techniques described in (Tarlow et al., 2010) for
solving LP∅. Unfortunately, the relaxation is loose,
which is manifested in a fractional solution that has
better objective than the original integer program so-
lution. This means the relaxation is inaccurate, and,
more importantly, it prevents us from finding a good
solution to the original problem.

In both examples xi ∈ {0, 1} and the model is a chain
with an even number of nodes and attractive pairwise

potentials of the form θi,i+1 =

(
0 c
c 0

)
(where c > 0).

1. Finding the 2nd best assignment (Fromer and
Globerson, 2009) using an exclusion factor. If we
add a local potential that favors the binary vari-

ables being off: θi =
(

0 ε
)>

with ε > 0, then

422



clearly the best assignment is x =
−→
0 . We add

an exclusion potential to exclude this assignment:

θα(x) = ∞ when x =
−→
0 and 0 otherwise. and

now the MAP of the problem with the high-order
potential is the second best assignment in the orig-
inal problem. Assuming c � ε, the 2nd best is

x =
−→
1 with an energy of nε. However, the LP∅

solution has a value of ε and corresponds to the

following fractional optimum: qi =
(

n−1
n

1
n

)>
,

qi,i+1 =

(
n−1
n 0
0 1

n

)
, and qα(x) = 1

n for all the as-

signments in which exactly one variable is on.

2. Partitioning graphs using average-cut (Mezuman
and Weiss, 2012). Here the HOP prefers assign-
ments with similar number of off and on variables:
θα(x) = −λ · |x| · (n − |x|). The optimal inte-
gral solution is to break the chain in the middle
with value of c − λ(n2 )2, but the LP∅ solution
has a value of −λ(n2 )2 and is again fractional:

qi =

(
0.5
0.5

)
, qi,i+1 =

(
0.5 0
0 0.5

)
, and qα(x) = 1

M

for all M =
(
n
n/2

)
assignments that have n/2 ones.

Notice that the LP solution is not only fractional, but
is in fact also completely ”tied”: its solution gives us
no hint as to the true MAP.

3 Related work

Applications of High Order Potentials HOPs
can be used to incorporate nonlocal structure into a
model. In recent years, there have been many works
that incorporate these types of interactions. They
are particularly useful for modelling highly structured
global interactions like those that arise in models
for parsing sentences (Smith and Eisner, 2008; Koo
et al., 2010; Martins et al., 2010), in models for im-
age segmentation to enforce connectivity constraints
(Nowozin and Lampert, 2009) or higher order smooth-
ness (Kohli et al., 2007; Gould, 2011), and in models of
textures to encourage soft pattern matching (Rother
et al., 2009). They arise when “collapsing” certain
models, like in (Vicente et al., 2009), where optimiz-
ing out an image segmentation appearance model leads
to an energy function over segmentations that has
high order terms. They have also been used to solve
balanced graph partitioning problems (Mezuman and
Weiss, 2012) and to enforce constraints over latent
variable activations in e.g., Restricted Boltzmann Ma-
chines (Swersky et al., 2012).

Tighter Linear Program Relaxations The
canonical works on tightening LP relaxations us-
ing message-passing come from Sontag et al. (2008);

Werner (2008) and Komodakis and Paragios (2008),
and were followed up in several works, such as Batra
et al. (2011); Sontag et al. (2012). As discussed in
Sontag (2010), at their core, these approaches can be
viewed as searching in similar ways for additional con-
sistency constraints to enforce such that adding them
to the LP leads to a tighter relaxation. While the gen-
eral approach is applicable in the LP relaxations with
HOPs that we consider here, there are computational
challenges that must be addressed in order to do this
search efficiently. We develop the needed methods in
this work. We note that while Werner (2008) dis-
cusses HOPs in the context of the max-sum diffusion
algorithm and the class of LPs that we study here can
be expressed within the framework presented there,
the final suggestion for working with HOPs is to use
the unary consistency LP, and a proof is provided that
if the model is submodular and the HOP is submodu-
lar, then the LP is tight.

Fromer and Globerson (2009) deal with the case of
excluding a single joint assignment. We will show
that the baseline they consider, Santos, is equivalent
to unary consistency, and that their method (which
leads to tight relaxations on trees) is a special case of
our method. Thus, we can get an equally tight relax-
ation by using the approach proposed in this paper.
Another special case of note where tighter HOP relax-
ations have been discussed is Komodakis and Paragios
(2009). There, they employ a merging strategy for
dealing with several pattern-based HOPs, in that they
show that patterns along rows and columns of a grid
can be combined into a single HOP where messages
can still be computed efficiently. However, after this
merging, only unary consistency is enforced. For the
purposes of this paper, we assume throughout that if
any tractability-preserving merging of HOPs is possi-
ble, it has already been done.

4 Unary Consistency Linear Programs

Many existing methods for inference with HOPs are
equivalent to LP∅. We highlight some of these below.

Message Passing with the standard Factor
Graph Perhaps the most common method for solv-
ing MAP inference in graphical models with HOPs is
to build the factor graph and pass messages between
variables and factors. For certain higher-order poten-
tials, the messages between the variable nodes and the
HOP node can be calculated efficiently (Tarlow et al.,
2010).

Different works use somewhat different update
schemes. One option is to use loopy belief propaga-
tion (Yedidia et al., 2005). However, there are typi-
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cally no performance guarantees in this case (e.g., no
convergence results or optimality certificates). A dif-
ferent class of structurally similar algorithms retain
the message-passing flavor of BP while also giving an
optimality certificate (Globerson and Jaakkola, 2007;
Werner, 2007; Kolmogorov, 2006; Komodakis et al.,
2010; Sontag et al., 2010; Weiss et al., 2007). These
can all be shown to be solving LP∅.

Simplification with Auxiliary Variables An al-
ternative strategy for dealing with certain HOPs is to
create auxiliary variables in such a way as to reduce
the problem to a pairwise problem, and then solve the
pairwise problem using the standard pairwise LP re-
laxation. Here, we study the strength of the LP re-
laxations that result from this strategy. For example,
Kohli et al. (2009), Gould (2011), and Rother et al.
(2009) all follow this or a closely related approach.

The approach proceeds as follows. Start with a HOP
and some unary and pairwise potentials:

E(x) =
∑

i

θi(xi) +
∑

ij

θij(xi, xj) + θα(x). (4.1)

Next, introduce an auxiliary variable z such that min-
imizing it out leaves the energy over x unchanged.
Namely, minz θz,α(z,x) = θα(x). We then have:

E(x) = min
z

∑

i

θi(xi) +
∑

ij

θij(xi, xj) + θz,α(z,x).

Finally, it often holds that given z, the HOP
becomes fully factorized, i.e., minz θz,α(z,x) =
minz

∑
i θzi(z, xi), so that E(x) is given by:

min
z

∑

i

θi(xi)+
∑

ij

θij(xi, xj)+
∑

i

θzi(z, xi). (4.2)

At this point, the minimization over x can be done
jointly with the minimization over z using the follow-
ing LP relaxation, which we call LPred:

LPred

min
q

∑

i∈V
(Eqi [θ(xi)]+Eqzi [θzi(z, xi)])+

∑

ij∈E
Eqij [θij(xi, xj)]

∑

xj

qij(xi, xj) = qi(xi)
∑

xi

qij(xi, xj) = qj(xj) (4.3)

∑

z

qzi(z, xi) = qi(xi)
∑

xi

qzi(z, xi) = qz(z) (4.4)

This relaxation seems quite different from LP∅. How-
ever, we have the surprising result that they are in fact
equivalent (the proof is in the appendix).

Proposition 1. The relaxations LP∅ and LPred are
equivalent. Namely, they have the same objective
value, and there is a mapping between their optima.

In the case that more than one auxiliary variable is
created by the pairwise transformation, the unary con-
sistency LP will be at least as tight as the reduced LP,
but they are no longer equal in general. A corollary
of this analysis is that if the pairwise transformation
introduces only submodular pairwise terms (and the
pairwise part of the model is submodular), then the
unary consistency LP is tight. This is closely related
to (but less general than) the result proved in (Werner,
2008).

Exclusion Potentials and the Santos Inequal-
ity A special case of HOP model that has received
significant attention is where a model is modified so
as to exclude a single joint assignment x∗ (e.g., the
first introductory example). In this context, several
LP relaxations have been proposed (e.g., Fromer and
Globerson, 2009). It is thus interesting to ask which of
these is equivalent to LP∅. It turns out that LP∅ cor-
responds to an LP with no qα(x) variables, but rather
a single constraint (in addition to the pairwise consis-
tency constraints):

∑
i qi(x

∗
i ) ≤ n− 1, which was first

suggested in Santos Jr (1991). Intuitively, it states
that at most n − 1 of the variables can agree with
the assignment x∗. The proof of the equivalence to
LP∅ is straightforward and follows from the charac-
terization of the assignment excluding polytope for an
empty graph, and its relation to the Santos inequality
(see Fromer and Globerson, 2009).

5 Tighter Linear Programs

In this section, we introduce the family of tighter LP
relaxations that are the focus of this work, and we
study their theoretical properties. We begin by defin-
ing a family of LPs that are tighter relaxations than
LP∅, and then we will prove a tightness result.

Let S ⊆ E be a subset of the edges in G, and define
V(S) to be the set of variables that appear in at least
one edge in S. We can then define an LP that enforces
consistency between the HOP and the edges in S, while
maintaining unary consistency with variables in V −
V(S):

LPS (Partial Edge Consistency LP)

min
q

∑

i∈V
Eqi [θ(xi)] +

∑

ij∈E
Eqij [θij(xi, xj)] + Eqα [θα(x)]

s.t.
∑

xi

qij(xi, xj) = qj(xj) ,
∑

xj

qij(xi, xj) = qi(xi)

∑

x:x(i)=xi

qα(x) = qi(xi) ∀i ∈ V − V(S)

∑

x:x(i)=xi,x(j)=xj

qα(x) = qij(xi, xj) ∀ij ∈ S
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At one extreme, when S = ∅, LPS is equal to LP∅. At
the other extreme, consistency is enforced between the
HOP and all edges, yielding the following simplified
LP, which will be of special interest:

LPE (Full Edge Consistency LP)

min
q

∑

i∈V
Eqi [θ(xi)] +

∑

ij∈E
Eqij [θij(xi, xj)] + Eqα [θα(x)]

s.t.
∑

xi

qij(xi, xj) = qj(xj) ,
∑

xj

qij(xi, xj) = qi(xi)

∑

x:x(i)=xi,x(j)=xj

qα(x) = qij(xi, xj) ∀ij ∈ E

5.1 Strength of LPE

We begin with the simple observation that LPE is al-
ways tight.

Proposition 2. LPE is tight.

Proof. Since with all the pairwise constraints the ex-
pectation of θi and θij under qα is the same as under
qi and qij , respectively, LPE is equivalent to

min
q

Eqα [θα(x) + θ(xi) + θij(xi, xj)]. (5.1)

This LP has an integer solution (i.e., it is tight) be-
cause it is always better to put all the qα mass on the
best assignment than to divide it.

Thus, the space of LP relaxations that can be con-
structed as LPS for some choice of edge set S range
from the standard but weak LP∅ to the tight LPE .
This justifies our focus on this family of LPS .

6 Optimization with Message Passing

As we reviewed earlier, LP∅ can be solved by a variety
of message-passing algorithms operating on the stan-
dard factor graph, where factor nodes communicate
with individual variable nodes. Similarly, it is easy to
show that the same algorithms can solve LPS when
they are applied on a modified factor graph where the
node corresponding to the HOP communicates with
pairs of nodes which correspond to edges in S (see
Fig. 1.1b). The key question is the complexity of cal-
culating the messages to and from the HOP. We now
identify cases where these messages can be computed
efficiently.

We begin by recalling the dual of LPS . The dual vari-
ables are δij(xi, xj) for ij ∈ S (which we interpret as
messages between the factor α and the edges in S) and
δi(xi) for i ∈ V (messages between the factor α and

singletons). The dual problem is to maximize B(δ), a
lower bound on the MAP:

B(δ) =
∑

i

min
xi

θ̃δi (xi)+
∑

ij

min
xi,xj

θ̃δij(xi, xj)+min
x
θ̃δα(x),

(6.1)
where θ̃δ is a reparameterization of the original energy
function:

θ̃δα(x) = θα(x)−
∑

ij∈S
δij(xi, xj)−

∑

i∈V−V(S)
δi(xi).

Expressions for θ̃δi (xi), θ̃
δ
ij(xi, xj) are similar (Sontag

et al., 2010). Most message passing approaches for
solving this problem iteratively update δ to increase
the bound. All these message update schemes require
solving minx θ̃

δ
α(x) for arbitrary values of δ, or calcu-

lating its min-marginals (see Sontag et al., 2010, for
a thorough review of such approaches). For general
θα(x) this is of course difficult. Below we highlight
some cases where it is tractable, and therefore LPS

can be solved efficiently with message passing.

• Low tree-width S graphs with cardinality-based
potentials. When θα(x) is a cardinality potential
(i.e., θα(x) = f(

∑
i xi), where f(·) is some ar-

bitrary function) and S is a tree-structured sub-
set of edges, then this is closely related to one of
the problems considered by (Tarlow et al., 2012).
There, it was shown that messages to and from
the HOP can be calculated by performing exact
inference on an augmented tree graph with com-
plexity that is at most O(n2). This result is easily
extended to the case where S forms a low tree-
width graph and the messages can be computed
exactly in a time that is exponential in the tree-
width of S.

• Low tree-width S graphs with Pattern HOPs.
Another HOP that has received interest are
the pattern potentials of (Rother et al., 2009).
Here, the potentials are of the form θα(x) =

mink∈{1,...,K}
∑
i w

(k)
i xi where each real-valued

vector w(k) can be thought of as encoding a pat-
tern that is desirable to match. This potential is
actually quite simple to work with, by noting that
minx θ̃

δ
α(x) is equivalent to:

min
k,x


∑

i

w
(k)
i xi −

∑

ij∈S
δij(xi, xj)−

∑

i∈V−V(S)
δi(xi)


 .

From here, it is clear that the argmin or the
min-marginals can be computed by constructing
a junction tree over S, then solving K different
problems where for problem k, the unary poten-
tials have been modified by w(k), then taking the
elementwise minima.

425



A simple corollary of the above discussion is that
whenever the graphical model has low tree-width and
the HOP is either cardinality-based or a pattern HOP
then LPE can be efficiently computed. In particular,
for the two motivating examples discussed in the intro-
duction, running message-passing on the factor graph
shown in Fig. 1.1b can be performed efficiently and is
guaranteed to provide the MAP.

7 Choosing a Tractable Edge Set

When the graph has high tree-width, we cannot effi-
ciently solve LPE , and a natural question is how to
choose a subset of edges S such that LPS is as tight
as possible, but can still be solved in practice. For the
HOPs we consider, this will be the case as long as S
has low tree-width (see Sec. 6).

As mentioned earlier, this problem has been stud-
ied generally in several works, including Sontag et al.
(2008), Werner (2008) and Komodakis and Paragios
(2009). When trying to adapt these approaches to
models with HOPs that are based on LPS , the general
methodology stays the same, but as with the message
updates, computational challenges arise. Specifically,
the above methods are all based around finding addi-
tional consistency constraints to add that are guaran-
teed to improve B(δ). In our context, the motivation
is the following Lemma:

Lemma 1. Suppose we have solved the dual of LPS

with some set of edges S. If there exists an edge (i, j) /∈
S for which there is no overlap between the minimizing
assignments of θ̃ij and the minimizing assignments of

θ̃α, then defining T = {S∪(i, j)} we have LPS < LPT

(i.e. adding that edge to S will lead to a strictly tighter
LP relaxation).

The proof follows from using the reparameterization
given by the dual variables of LPS to construct a valid
reparameterization for the dual of LPT and the dual
value will be strictly higher. Existing methods are
often based on similar reasoning (e.g., this is essentially
the same result that appears in Werner (2008) in the
discussion of cutting planes).

Sequentially Adding Edges using Weak Cycle
Agreement (WCA) Recall that our goal is to find
a low tree-width S such that LPS is as tight as pos-
sible. Motivated by Lem. 1 we use the following pro-
cedure for approximating such a set. Start with an
edge set, S, with tree-width one. Then, keep adding
edges as long as the tree-width stays small. The edges
added are those that satisfy the condition in Lem. 1
and hence result in strict increase of the LP objective.
In what follows we provide additional details.

To obtain the initial tree we follow a simple heuristic.
Calculate weights wij = max(θij) −min(θij) for each
edge, and find the spanning tree S with the maximum
overall weight. The rationale is that edges with close
to uniform potentials (i.e., low wij) are more likely to
be consistent with the HOP.

Next, we add K edges in each iteration using the
following procedure. Run LPS to convergence, and
find the set of M assignments that minimize the
HOP term of the reparameterization: {xm}Mm=1 =
arg minx θ̃α(x). As long as M is small—as we found
it is in practice—this can be done efficiently by fol-
lowing all back-pointers when decoding from the junc-
tion tree structures used for computing message up-
dates. Next, for each edge ij ∈ E \ S whose addition
to S does not violate the maximum tree-width, we
compute its weak cycle agreement (WCA) measure:
minxm θ̃ij(x

m
i , x

m
j ) − minxi,xj θ̃ij(xi, xj). By Lem. 1,

addition of any edge with WCA > 0 will give a tighter
relaxation. If many edges have WCA > 0, we add the
one with the greatest WCA value. Before adding the
next K − 1 edges, we move the reparameterized edge
potential into the HOP, recompute the argmins over
θ̃α, then update the WCAs. Notice that the WCA
measure relates to the weak tree agreement (WTA)
measure from Tarlow et al. (2011). We do not use the
WCA to select the starting set of edges because we
have found that in many times after LP∅ converges,
the WCA of all the edges is equal to zero, i.e., there
is no single edge whose addition to S will tighten the
bound. This rarely happens when S is non-empty.

8 Experimental Results

We conducted three sets of experiments over graphical
models with different kinds of cardinality HOPs. The
first extends the first example in Sec. 2 and shows ex-
perimentally that LP∅ does not find the MAP solution
in many simple cases. The second compares our edge
selection criterion from Sec. 7 with other possible cri-
teria and shows it is superior to them. The last set of
experiments was done over images from the Berkeley
segmentation dataset (Martin et al., 2001) and shows
we can often find the optimal average-cut (NP-hard
problem in the general case) by solving LPS with a low
tree-width set of edges. The first set of experiments
was done on a relatively small problem which allowed
us to use a commercial LP solver (Mosek). Since the
goal of this experiment was to understand LP∅ we
preferred using it and avoid possible difficulties when
solving the dual problem. The other two experiments
were solved using message passing with convex belief
propagation, as described in (Weiss et al., 2007, 2011),
applied to LPS . We built our junction-tree code on
top of the UGM package (Schmidt, 2012).
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Figure 8.1: LP∅ Hamming ball exclusion. The 2nd best mode of a tree model with attractive pairwise potentials
(λ) is rarely found when using only unary consistency constraints (LP∅). We conducted the experiments for
several radiuses of hamming balls (k). Using our suggested method it can always be found exactly and efficiently.

Hamming Ball Exclusion When finding M-best
modes (Batra et al., 2012), it is desirable to have dis-
similarity measures that do not factorize into a sum
of pixel dissimilarities, e.g., to represent the notion
of dissimilar enough, where as long as an assignment
is at least Hamming distance k away, we are equally
happy. In this case, the constraint of Fromer and
Globerson (2009) is no longer applicable, so the strat-
egy suggested by Batra et al. (2012), is to add a
HOP enforcing this constraint, then solving LP∅. We
know from our theoretical analysis that LP∅ cannot
solve all instances of this problem. Here, we empir-
ically study how bad the relaxation becomes (mea-
sured by the integrality gap) as the strength of pair-
wise potentials is varied. We generated random trees
over 10 variables with attractive pairwise potentials

θij(xi, xj) =

(
0 λ
λ 0

)
, and unary potentials with ran-

dom preference to be off (θi(1) ∼ U [0, 1]); thus the
MAP assignment is all zeros. We add an exclusion fac-
tor which allows only assignments which are at least
k Hamming distance away: θα(x) = ∞ if |x| < k and
0 otherwise. Fig. 8.1 shows the percent of integral
solutions and the average integrality gap (out of 100
experiments) for different k’s and λ′s . Notice that
while LP∅ fails in finding the MAP for this problem,
the tree-width of LPS here is one and thus we can
solve it efficiently and exactly.

Sequentially Adding Edges We compare the im-
provements in the dual bound that result from using
different criteria for choosing edges to add to S and
then solving LPS . The first criterion is our suggested
WCA method, and the second is the potential weight
heuristic, both of which are described in Sec. 7. The
third criterion is simply adding random edges (RND1
and RND2). We conducted experiments over several
4-connected 7x7 grid, with random pairwise potentials.
The HOP is average-cut, θα(x) = −λ · |x| · (n − |x|),

where λ is chosen such that the optimal energy will
be zero, and θ1(0) = ∞ to break the symmetry. We
did not limit the tree-width in this experiment. Fig-
ure 8.2 shows the improvement in the bound after each
edge addition to the starting tree. Clearly the WCA
criterion is better than the other two baselines.

Image Segmentation using super-pixels Fi-
nally, we construct average-cut problems for 40 images
from the Berkeley segmentation dataset (Martin et al.,
2001) and attempt to solve them using LPS and the
WCA measure for choosing S. We used the proce-
dure described in (Mezuman and Weiss, 2012) to find
a setting of λ such that solving LPE would verify the
optimality of the average-cut. We used SLIC super-
pixels (Achanta et al., 2012) using the implementa-
tion of (Mueller, 2012). We chose SLIC parameters
to get approximately 100 equally sized superpixels.
The pairwise potentials (affinities between pixels) were
computed using intervening contours (Leung and Ma-
lik, 1998) (implementation provided by (Cour et al.,
2010)).

When choosing S, we limited the tree-width to be at
most six (the average tree-width of the full graph is
13). We add edges in batches of eight after the previ-
ous LPS was solved (i.e., the BP converged). Via this
procedure we provably found the optimal solution in
34 out of the 40 images. For 2 images the optimum
was found when S was of tree-width of 2, for 13 when
S was of tree-width 3, and for 10, 5 and 4 images when
S was of tree-width of 4, 5 and 6, respectively. Our
solution improved the standard spectral solution in 38
out of 40 problems, with an average improvement in
the objective of 70%. Fig. 8.4 shows the maximal dual
bound achieved during message passing across sets of
edges with different tree-widths. To keep the plot clean
we show it only for the 25 images for which the LPS

was tight with tree-width at most four.
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Figure 8.2: Sequentially adding edges. Comparison of the improvement in the dual bound after sequential edge
addition using different criteria.

9 Discussion

Recent years have shown a resurgence of interest
in higher-order potentials for graphical models with
a growing number of specific potentials for which
message-passing algorithms can be applied efficiently.
In this paper we have shown that many of these meth-
ods are based on a particular linear programming re-
laxation and highlighted the weakness of that relax-
ation. We suggested a family of tighter relaxations
which result in a practical new strategy that can yield
significantly improved accuracy. The computational
cost incurred for this increased accuracy is exponen-
tial in the tree-width of the consistency sets S, but
empirically we see that substantial gains in accuracy
can be achieved with relatively small tree-width.

One challenge for the cardinality HOP is scaling up
to bigger problems. Regardless of the tree-width,
there is a computational cost to the message com-
putations that is quadratic in the number of vari-
ables in the model. When we apply our approach
to large problems (e.g., images where individual pix-
els are variables), this cost becomes a bottleneck. A
strategy that we would like to investigate is to use
Fast Fourier Transforms near the zero-temperature
limit to compute approximate max-marginals, or to
investigate other algorithms for fast approximate max-
convolution. Throughout, we assumed that the vari-
ables are binary and that the energy decomposes to
unary and pairwise potentials with a single HOP. Ex-
tensions to the 3rd or 4th order cliques that are com-
monly used in computer vision would be straightfor-
ward by enforcing consistency between the HOP and
all these cliques, and the assumption of binary vari-
ables can be removed so long as the HOP computa-
tions can be done tractably. For the case of multi-
ple HOPs in the model, while there are open ques-
tions about some of the specifics (e.g., should different
HOPs be constrained to choose the same sets of edges
or not?), the same basic approach that we presented

here is also applicable, and we believe it to be a good
choice. Finally, we have shown how to efficiently com-
pute message updates for two classes of HOPs. An
open question and a new computational challenge is
to discover other cases where messages can similarly
be computed efficiently.
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A Proof that LP∅ = LPred

PRIMAL LP∅ ≤ PRIMAL LPred Copy the so-
lution from LPred into LP∅ for the variables that cor-

respond, and set qα(x) =
∑
z

∏
i′ qzi′ (z,xi′ )
qz(z)n−1 , which is a

distribution over x and z that has qzi(z, xi) as its pair-
wise marginals, because this corresponds to the Bethe
approximation on a tree-structured graph (in this case,
a star around z), which is exact. Unary consistency
in LP∅ is satisfied because

∑

x:x(i)=xi

qα(x) =
∑

x:x(i)=xi

∑

z

∏
i′ qzi′(z, xi′)

qz(z)n−1
(A.1)

=
∑

z

qzi(z, xi) = qi(xi). (A.2)

The objective of LP∅ is less than or equal to the ob-
jective at LPred, because θα(x) = minz

∑
i θzi(z, xi):∑

x

qα(x)θα(x) (A.3)

=
∑

x

(
∑

z

∏
i′ qzi′(z, xi′)

qz(z)n−1
)(min

z

∑

i

θzi(z, xi)) (A.4)

≤
∑

x

∑

z

∏
i′ qzi′(z, xi′)

qz(z)n−1
∑

i

θzi(z, xi) (A.5)

=
∑

i

∑

z,xi

qzi(z, xi)θzi(z, xi). (A.6)
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Figure 8.3: Image Segmentation example run. (a) In-
put image. (b) Suboptimal solution found by the com-
monly used spectral method. (c) The global optimum,
which is found and verified by our algorithm. (d) The
dual bound of convex BP versus iteration of message
passing. Jumps occur when edges are added to S.

DUAL LP∅ ≥ DUAL LPred Here we take a dual
solution from LPred and construct a dual objective
for LP∅ that is greater than or equal to the DUALred
objective. For a given setting of dual variables δ and
γ, the duals for LP∅ (DUAL∅) and LPred (DUALred),
respectively, are as follows:

DUALred
∑

i

min
xi

[θi(xi) +
∑

j∈N(i)

δji(xi) + γzi(xi)] (A.7)

+
∑

ij

min
xi,xj

[θij(xi, xj)− δji(xi)− δij(xj)]

+
∑

i

min
z,xi

[θzi(z, xi)− γzi(xi)− γiz(z)] + min
z

[
∑

i

γiz(z)]

DUAL∅
∑

i

min
xi

[θi(xi) +
∑

j∈N(i)

δji(xi) + γi(xi)] (A.8)

+
∑

ij

min
xi,xj

[θij(xi, xj)− δji(xi)− δij(xj)]

+ min
x

[θα(x)−
∑

i

γi(xi)]
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Figure 8.4: Lower bounds achieved by our algorithm
versus the standard LP∅ bound (“unary”) on average-
cut image segmentation problems at various tree-
widths of S, ranging from 1 to 4 (“TW-1” to “TW-4”).
In all cases the optimal integral energy is 0, so when
the lower bound reaches 0 we have provably reached
the optimum.

Now copy the δ messages from DUALred to DUAL∅.
In DUAL∅, set γi(xi) = γzi(xi). Then the difference
in the dual objectives between Eq. A.8 and Eq. A.7 is
only in the terms involving z or α. Focusing on the z
terms from Eq. A.7:

∑

i

min
z,xi

[θzi(z, xi)− γzi(xi)− γiz(z)] + min
z

[
∑

i

γiz(z)]

(A.9)

≤min
z,x

∑

i

[θzi(z, xi)− γzi(xi)− γiz(z)] + min
z

[
∑

i

γiz(z)]

(A.10)

≤min
z,x

∑

i

[θzi(z, xi)− γzi(xi)] (A.11)

= min
x

[θα(x)−
∑

i

γi(xi)], (A.12)

which shows that the dual objective for LP∅ is greater
than or equal to the dual objective for LPred with this
choice.

So we have DUAL∅ ≥ DUALred and PRIMAL
LPred ≥ PRIMAL LP∅. Since strong duality for LPs
gives DUAL∅ = PRIMAL LP∅ and DUALred = PRI-
MAL LPred, this implies that the two LPs have the
same solution value and are thus equally tight.
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Abstract

We propose a method for learning cyclic
causal models from a combination of obser-
vational and interventional equilibrium data.
Novel aspects of the proposed method are its
ability to work with continuous data (without
assuming linearity) and to deal with feedback
loops. Within the context of biochemical re-
actions, we also propose a novel way of mod-
eling interventions that modify the activity of
compounds instead of their abundance. For
computational reasons, we approximate the
nonlinear causal mechanisms by (coupled) lo-
cal linearizations, one for each experimental
condition. We apply the method to recon-
struct a cellular signaling network from the
flow cytometry data measured by Sachs et al.
(2005). We show that our method finds evi-
dence in the data for feedback loops and that
it gives a more accurate quantitative descrip-
tion of the data at comparable model com-
plexity.

1 Introduction

A central question that arises in many empirical sci-
ences is how to discover cause-effect relationships be-
tween variables from measured data. Knowledge of
causal relationships is essential in order to predict how
a system will react to interventions that perturb the
system from its natural state (Pearl, 2000), which is
very useful for many practical applications. An exam-
ple from biology is the problem of predicting in silico
how a signaling pathway in a cell will react in vitro
when it is treated with a certain chemical compound.
The ability to reliably make such causal predictions

∗Also affiliated to Institute for Computing and Informa-
tion Sciences, Radboud University Nijmegen, The Nether-
lands

can be a powerful tool for practical applications like
drug design.

A concrete example is the multivariate proteomics
data set measured and analyzed by Sachs et al. (2005).
Using flow cytometry, abundances of 11 biochemi-
cal compounds (phosphorylated proteins and phospho-
lipid components) were measured in single human im-
mune system cells under various experimental pertur-
bations. Sachs et al. (2005) reconstructed the underly-
ing “signaling network” by learning Bayesian networks
from the data. Their reconstruction turned out to be
very close to the “well-established consensus network”
that had been obtained by manually combining results
from many different experiments, an effort that had
taken about two decades.

The consensus network contains 18 expected causal
relationships. Sachs et al. (2005) found two new un-
expected causal relations (and experimentally verified
one of them) and obtained one reversed relationship.
However, they did not recover three of the 18 expected
causal relationships. Sachs et al. (2005) hypothesized
that these three missing causal relationships are all in-
volved in feedback loops. As Bayesian networks are
acyclic by definition, this could explain why they were
not found by their method. Additional support for
this hypothesis can be found by simple inspection of
the data, which already shows strong evidence for the
presence of feedback loops. In later work (Itani et al.,
2010), the authors proposed a heuristic method for
causal discovery that takes into account the possibility
of feedback. An alternative approach to dealing with
cycles was proposed by Schmidt and Murphy (2009).

A common feature of the causal discovery methods
that have been applied so far on this protein data set
is that they all work with discretized data: although
the raw measurements are continuous-valued, the data
is preprocessed by discretization into three coarse cat-
egories (low, medium and high abundance). We argue
that discretization of the data as a preprocessing step
should be avoided if possible, as this throws away much
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of the information in the data that could be useful for
causal discovery. Recently, several methods have been
proposed for causal discovery from continuous-valued
observational data by exploiting independence of the
estimated noise with the input (Shimizu et al., 2006;
Hoyer et al., 2009; Zhang and Hyvärinen, 2009; Pe-
ters et al., 2011). Similar ideas have also been studied
in the cyclic case (Lacerda et al., 2008; Mooij et al.,
2011). More recently, cyclic methods that can deal
with hidden common causes and with a combination
of observational and experimental data have been pro-
posed (Eberhardt et al., 2010; Hyttinen et al., 2012).

However, none of these methods are directly applica-
ble to the (Sachs et al., 2005) data set, among others
because they model interventions in a different way.
Most interventions performed by Sachs et al. (2005)
change the activity of a compound, not its abundance,
and therefore the standard formalism for interventions
(Pearl, 2000) is not applicable. Sachs et al. (2005)
and Itani et al. (2010) propose two different ways of
modeling these interventions that both exploit the fact
that the data has been discretized. Eaton and Murphy
(2007) consider different possible intervention types
and learn the interventions from the data, instead of
using the biological background knowledge in (Sachs
et al., 2005). Eaton and Murphy (2007) conclude that
the data can be best explained by assuming that most
interventions are not as specific as originally assumed
by Sachs et al. (2005), but act on multiple compounds
simultaneously (also known as “fat-hand” interven-
tions). In this work, we offer an alternative explana-
tion, where we assume that interventions are specific
(i.e., act only on a single compound), but where most
interventions change the activity of that compound
(i.e., the way in which it influences the equilibrium dis-
tributions of its direct effects). In addition, feedback
loops may increase the impact of an intervention.

The goal of this work is to develop a practical method
for analyzing data sets such as the protein data col-
lected by Sachs et al. (2005). The method we pro-
pose here does not start by throwing away informa-
tion (by discretizing the data as a preprocessing step),
but works directly with the original continuous-valued
measurements. As we expect feedback loops to play
a prominent role in biological networks, we also drop
the assumption of acyclicity. Another feature of our
method that distinguishes it from many existing ap-
proaches is that we will not assume linearity of the
causal mechanisms but allow for nonlinearities. Fi-
nally, we propose a natural and in our opinion more
realistic way of modeling activity interventions.

2 Modeling assumptions

In this section we describe our modeling assumptions
in detail. First of all, the data form a “snapshot” of
a dynamical process: for each individual cell we have
one multivariate measurement done at a single point
in time. Therefore, we will assume that the cells have
reached equilibrium when the measurements are per-
formed (an assumption called “homeostasis” in biol-
ogy). This is an approximation, but a necessary one
in the light of the absence of time-series data.

2.1 Structural Causal Models

We will assume that the equilibrium data can be de-
scribed by a Structural Causal Model (SCM) (Pearl,
2000), also known as Structural Equation Model
(SEM) (Bollen, 1989). In particular, for D observed
variables x1, . . . , xD (corresponding in our case to the
abundances of the biochemical compounds), the model
consists of D structural equations

xi = fi(xpa(i), εi) i = 1, . . . , D (1)

where pa(i) ⊆ {1, . . . , D} \ {i} is the set of parents
(direct causes) of xi, fi is the causal mechanism de-
termining the value of the effect xi in terms of its direct
causes xpa(i) and a disturbance variable εi represent-
ing all unobserved other causes of xi. In addition, an
SCM specifies a joint probability density p(ε) on the
disturbance variables ε1, . . . , εD. Following Sachs et al.
(2005), we will make the assumption of causal suffi-
ciency, which means that we exclude the possibility
of confounders (i.e., hidden common causes of two or
more observed variables). In other words, we assume
that the disturbance variables are jointly independent:
p(ε) =

∏n
i=1 p(εi). Without loss of generality, we will

additionally assume that E(ε) = 0 and Var(ε) = I.

The structure of a causally sufficient SCM M can
be visualized with a directed graph GM with vertices
{x1, . . . , xD} and edges xj → xi if and only if fi de-
pends on xj , i.e., if j ∈ pa(i). As we do not exclude
the possibility of feedback loops, the graph GM is not
necessarily acyclic, but may contain directed cycles.
We will assume that for each joint value ε of the dis-
turbance variables, there exists a unique solution x(ε)
of the D structural equations (1). Note that this as-
sumption is automatically satisfied in the acyclic case,
but that it induces additional constraints in the cyclic
case. This assumption implies that the distribution
p(ε) induces a distribution p(x) on the observed vari-
ables. This induced distribution is called the obser-
vational distribution of the SCM. In addition, we will
assume that the mapping ε 7→ x is invertable. In that
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case, the observational density is given explicitly by:

p(x) = p
(
ε(x)

) ∣∣∣∣det
dε

dx

∣∣∣∣ =

(
D∏

i=1

p(εi)

)∣∣∣∣det
dε

dx

∣∣∣∣ . (2)

2.2 Interventions

The SCM literature typically considers “perfect inter-
ventions”, which are modeled as follows (Pearl, 2000).
Under an intervention “do(xi = ξi)” that forces the
variable xi to attain the value ξi, the SCM is adapted
by replacing the structural equation for xi with the
equation xi = ξi, while leaving the other aspects of
the SCM invariant. In particular, the distribution on
the disturbance variables p(ε) stays the same; how-
ever, because one of the structural equations changed,
the induced distribution on the observed variables x
changes into the interventional distribution, with den-
sity p

(
x |do(xi = ξi)

)
. In the cyclic case, we also need

to assume that under the relevant interventions, there
exists a unique solution x(ε) of the (modified) struc-
tural equations for each value of ε; otherwise, the in-
duced (interventional) distribution will be ill-defined.

These “perfect interventions” correspond in the case
of the signaling network data with interventions that
change the abundance of a compound. However, many
of the interventions actually performed by (Sachs
et al., 2005) do not directly change the abundance, but
rather its activity, i.e., the extent to which it influences
abundances of other compounds. In their original pa-
per, (Sachs et al., 2005) model these “activity interven-
tions” in the following way: if the activity of compound
i is inhibited, the actual measurements of xi are re-
placed with the value “low”, whereas if compound i is
activated, the actual measurements of xi are replaced
with the value “high”. Not only does this approach
throw away data, it also depends on the discretization
of the data. In later work, (Itani et al., 2010) model
these interventions in a different way: they split the
variable xi into two parts, xi and xinti , where xinti is
assigned the value corresponding to the intervention
(either “low” in case of an inhibitor or “high” in case of
an activator), and xi represents the abundance of com-
pound i measured in the interventional experiment. In
the modified graph corresponding to the intervention,
the outgoing arrows from xi now become outgoing ar-
rows of xinti instead, and all incoming arrows go into
xi. This approach no longer throws away data, but it
still requires a coarse discretization of the data.

Instead, we propose to model these activity interven-
tions as follows: if an intervention changes the ac-
tivity of compound i, we adapt the SCM by allow-
ing the children1 j of compound i to change their

1The children of i are all j such that i ∈ pa(j).

causal mechanism fj(xpa(j), εj) into a different func-

tion f̃j(xpa(j), εj), whereas the other aspects of the
SCM (including its structure) remain invariant. In our
context, this new causal mechanism f̃j is unknown and
we learn it from the data. In particular, we do not use
the background knowledge provided by Sachs et al.
(2005) that specifies whether an activity intervention
is an inhibitor or an activator.

2.3 Approximating causal mechanisms

So far, we have not assumed linearity, and in theory we
could proceed by modeling the causal mechanisms as
nonparametric nonlinear functions, e.g., as Gaussian
Processes (Rasmussen and Williams, 2006). For com-
putational reasons, however, we linearize the causal
mechanisms in the SCM locally around their average
input (〈Xpa(i)〉, 0):2

fj(xpa(j), εj) ≈
D∑

i=1

Bijxi + µj + αjεj

where we introduced the matrix B ∈ RD×D and vec-
tors µ,α ∈ RD×1, defined by:

Bij :=
∂fj
∂xi

∣∣∣∣∣
(〈Xpa(j)〉,0)

, αj :=
∂fj
∂εj

∣∣∣∣∣
(〈Xpa(j)〉,0)

,

µj := fj
(
〈Xpa(j)〉, 0

)
−

∑

i∈pa(j)

∂fj
∂xi

∣∣∣∣∣
(〈Xpa(j)〉,0)

〈Xi〉.

Note that the structure of the matrix B reflects the
graph structure GM of the model: it has zeroes on the
diagonal, and Bij is the (linearized) direct effect of xi
on xj , which can only be nonzero if i ∈ pa(j).

This means that for a single experimental condition,
we assume the following linearized structural equa-
tions:

xj = xTB·j + µj + αjεj .

For an i.i.d. sample of N data points arranged in the
matrix X ∈ RN×D and latent disturbance variables
E ∈ RN×D, these can be written in matrix notation:

X(I −B) = 1Nµ
T +EαT . (3)

Under some upstream intervention, the average input
(〈Xpa(i)〉, 0) of the causal mechanism fi for compound
i may change. If the change is large with respect to the
curvature of fi, we may need to relinearize fi around
the new average input under the intervention (even
though the nonlinear function fi itself may have re-
mained unchanged, see also Figure 2(a)). This will be
discussed in detail in section 2.5.

2We denote the empirical mean of a variable x by 〈X〉.

433



G

x1

x2 x3

x4

c Intervention type
1 none (observational)
2 activity of x1
3 activity of x2
4 abundance of x3
5 abundance of x1

mic(G) =




1 1 1 1 2
1 2 1 1 1
1 2 1 3 1
1 1 2 1 1


 Mi(G) =




1
2
3
2




Figure 1: Example of a graph G, experimental meta-
data, and the corresponding mechanism labels mic(G).
As an example, m32(G) = 2 because the second ex-
perimental condition, an activity intervention on x1,
changes the causal mechanism of x3. In the third con-
dition, the causal mechanism of x3 is identical to that
in the first condition, so m33(G) = m31(G) = 1.

2.4 Likelihood

Assuming that all disturbance variables εi have the
same probability density p(εi) = p0, the likelihood of
i.i.d. dataX for a single experimental condition follows
directly from expressions (2) and (3):

p(X |B,µ,α) =

N∏

n=1

[
|det(I −B)| ·

D∏

i=1

1

αi
p0

(
(X(I −B))ni − µi

αi

)]
.

(4)

We will consider two choices for the noise density,
Gaussian noise p0(e) = 1√

2π
exp(− 1

2e
2) and super-

Gaussian noise that is often used in the Indepen-
dent Component Analysis (ICA) literature, p0(e) =
1/
(
π cosh(e)

)
. Note that in the acyclic case, det(I −

B) = 1, and therefore the likelihood factorizes over
variables. This simplification does not occur in the
cyclic case, as the likelihoods of different variables may
become coupled through the determinant.

Combining data from different experimental condi-
tions c = 1, . . . ,K is straightforward:

p
(
(X)Kc=1 | (B(c),µ(c),α(c))Kc=1

)

=

K∏

c=1

p(X(c) |B(c),µ(c),α(c)),

where the superscript “(c)” labels data and parameters
corresponding to the c’th experimental condition.

2.5 Parameter priors

We denote all parameters of the linearized SCM cor-
responding to experimental condition c by Θ(c) :=

X
pa(i)

X
i

f
i

condition A

condition B

(a)

X
pa(i)

X
i

f
i

condition A

condition B

(b)

Figure 2: (a) Even though some causal mechanism
fi(xpa(i), εi) stays invariant, its linearization around
the new equilibrium may have changed. (b) In this
case, even a nonlinear causal mechanism cannot fit
the data well. Another structure, assigning different
causal mechanisms to conditions A and B, may better
fit the data.

(B(c),µ(c), logα(c)), and the subset of parameters cor-

responding only to the causal mechanism f
(c)
i of the

i’th compound as Θ
(c)
i := (B

(c)
·i , µ

(c)
i , logα

(c)
i ). Us-

ing the Bayesian approach to multi-task learning, we
couple these K learning problems by imposing a prior
p
(
Θ(1), . . . ,Θ(K) | G

)
on the parameters that embod-

ies our assumption that these parameters should be re-
lated in specific ways, conditional on the hypothetical
causal structure G of the SCM. The hypothetical struc-
ture G always constrains the structure ofB in the sense

that if i 6∈ paG(j), B
(c)
ij = 0 for all c = 1, . . . ,K. We

consider various choices to couple the nonzero parame-
ters of the B(c), and the location and scale parameters
µ(c) and α(c), across experimental conditions.

For each compound i, the prior introduces couplings

between Θ
(c)
i for all conditions c which have the same

causal mechanism (i.e., if f
(c′)
i = f

(c)
i ). An interven-

tion may change fi into another function f̃i; whether
or not such a mechanism change happens, depends
on the experimental condition c and on the hypo-
thetical causal structure G (remember that an abun-
dance intervention on compound i changes its causal
mechanism fi and an activity intervention on com-
pound i changes the causal mechanisms of its children
{fj}j∈chG(i)). Let the causal mechanism for compound

i in condition c be given by f
(c)
i = φi,mic(G), where

the label mic(G) ∈ {1, 2, . . . ,Mi(G)} depends on the
causal structure G (see also Figure 1). Here, Mi(G)
is the total number of different causal mechanisms for
compound i needed to account for all experimental
conditions. We take a prior that couples parameters
corresponding to the same causal mechanisms:

p(Θ | G) =
D∏

i=1

Mi(G)∏

m=1

p
(
(Θ

(c)
i )mic(G)=m | G

)
.
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Note that this prior couples parameters Θ
(c)
i with

Θ
(c′)
i only if mic(G) = mic′(G).

We will consider two different choices for the factors
p
(
(Θ

(c)
i )mic(G)=m | G

)
, corresponding to different de-

grees of approximation of the fact that the parameters

{Θ(c)
i }Kc=1 correspond with linearizations of the latent

nonlinear causal mechanisms {φi,m}Mi(G)
m=1 .

2.5.1 Linear mechanisms prior

This prior assumes that no relinearizations of the de-
scendants of an intervention node are required. In
other words, if one or more causal mechanisms change
as a result of some intervention, the input distributions
of the descendant variables are assumed to change not
too much, such that their linearization remains ap-
proximately the same. We can then use hard equality
constraints:

p
(
(Θ

(c)
i )mic(G)=m | G

)

=

∫
p(Θm

i )
K∏

c=1
mic(G)=m

δ(Θ
(c)
i −Θm

i ) dΘm
i

with

p
(
Θm
i = (b, µ, a)

)

= N (b |0D, λ2diag(Gi,·))N (µ | 0, τ)N (a | 0, τ)

where a = logα and where we let τ →∞, which yields
a flat prior over the location µi and Jeffrey’s prior over
the scale αi. We have a single hyperparameter λ for

penalizing the nonzero components of b = B
(c)
·i .

2.5.2 Nonlinear mechanisms prior

The previous prior does not deal well with the sit-
uation in Figure 2(a). Here, condition A could be
the baseline (observational condition), and condition
B could be an intervention that changes something up-
stream of xi, but keeps the mechanism fi unchanged.
Because the upstream intervention may lead to a
change in input distribution of the parents xpa(i), relin-
earization of fi around a new average input is desirable
in general. Therefore, we introduce a prior that allows
for downstream relinearizations. We have tried a prior
that allows all descendants of an intervention target in

condition c 6= 1 to pick parameters Θ
(c)
i independent

of the baseline parameters Θ
(1)
i in the observational

setting c = 1. That prior does yield better results in
the acyclic case than the prior in Section 2.5.1, but
in the cyclic case it leads to “cheating” in the sense
that the prior strongly encourages to introduce one big
directed cycle that connects all the variables. Then,
each variable is a descendant of each other variable,

and can pick new (independent) parameters in each
experimental condition, effectively completely decou-
pling all experimental conditions.

The solution we propose here is a compromise that
replaces the hard equality constraints of the prior
in section 2.5.1 by soft constraints. The idea is to

model each causal mechanism f
mic(G)
i (xpa(i), εi) as

a Gaussian Process (GP) and interpret the parame-

ters (B
(c)
·i , µ

(c)
i , α

(c)
i ) as pseudo-data for the GP (Solak

et al., 2003). They note that for Gaussian Process
regression, one is not necessarily restricted to using
pairs of input and output, but one can combine this
data with data regarding the derivative of the output
with respect to some input dimension, at a given in-
put location. In our case, the “data” are actually the

linearized parameters (B
(c)
·i , µ

(c)
i , α

(c)
i ), which are cou-

pled to the real data via the likelihood (4). We use an
isotropic squared exponential covariance function:

k
(
(xpa(i), εi), (x̃pa(i), ε̃i)

)

= σ2
out exp

(
− (xpa(i) − x̃pa(i))

2

2σ2
in

)
exp

(
− (εi − ε̃i)2

2σ2
in

)

and add a small “jitter” term for numerical stability
purposes (i.e., we add σ2

jitterI to the kernel matrix K).
Similar to the prior in 2.5.1, this GP prior couples
different c for the same i. As the determinant factor
in the likelihood couples different i for the same c,
we cannot simply use the trick of Solak et al. (2003)
(who use the posterior distribution of the biases and
slopes of Bayesian linear regressions as pseudo-data),
but have to apply a more global approximation scheme
(see Section 2.6).

This prior deals well with the situation in Figure 2(a),
as the pseudo-data corresponding to the two local lin-
ear models would have a high probability under this
GP prior. On the other hand, the GP prior strongly
penalizes situations such as in Figure 2(b), in line with
our intuition that the same causal mechanism fi can-
not be a good model for the data of both condition A
and B in that case.

2.6 Structure priors and scoring structures

We use an approximate Bayesian approach to calculate
the posterior probability of a putative causal graph G,
given the data and prior assumptions. In principle,
exact Bayesian scoring would yield automatic regular-
ization (if our assumption that there is no confounding
holds true). However, as the posterior distribution is
intractable, we have to approximate it. Given a hypo-
thetical causal structure G, we numerically optimize
the posterior with respect to the parameter and em-
ploy the Laplace approximation (Laplace, 1774) to get
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an approximation of the evidence (marginal likelihood)
for that structure.

The number of possible causal graphs G grows very
quickly as a function of the number of variables: for
the Sachs et al. (2005) data, which has D = 11 vari-
ables, there are about 3.1 × 1022 different directed
acyclic graphs (DAGs) and 2D

2−D ≈ 1.2 × 1033 di-
rected graphs. Even though calculating the evidence
for a single structure is doable, exhaustive enumeration
or scoring is clearly hopeless. Therefore, we use greedy
optimization methods (local search) in the hope to find
the important modes of the posterior over causal struc-
tures. We use simple priors over structures: a flat prior
over directed graphs, a flat prior over acyclic graphs,
and flat priors over all graphs (either acyclic or all di-
rected graphs) that have at most n edges.

If exact Bayesian inference were feasible, we could ei-
ther select the best scoring structure, or average over
structures according to their evidence, in order to ob-
tain predictions. However, as we are using approx-
imate inference, we will also use stability selection
(Meinshausen and Bühlmann, 2010) to assess the sta-
bility of posterior edge probabilities.

3 Application on real-world data

In this section, we describe the results of our proposed
method on the flow cytometry data set.

3.1 Properties of the data

The data published by Sachs et al. (2005) is a good
test case for causal discovery methods for several rea-
sons. First, the high quality of the data:3 each sample
is a multivariate measurement in a single cell (usually,
only population averages are measured), the number of
data points is large (about 104 in total), and the mea-
surement noise seems to be relatively low. Further-
more, knowledge about the “ground truth” is avail-
able, which helps verification of results. Finally, good
results have already been demonstrated with acyclic
causal discovery methods, but the data is interesting
for our purposes as it shows evidence of feedback rela-
tionships.

Figure 3(a) shows a subset of the data as a heat map.
Table 1 describes the biological background knowledge
about the different experimental conditions: which
reagent has been added, and what is the known effect
of this reagent? We used a subset of 8 of the avail-

3However, we did discover an error in the published
data: the first 848 measurements of RAF and MEK in the
third experimental condition (AKT-inhibitor) are identical
to those in the seventh condition (LY294002). We informed
the authors about this and decided to ignore this issue here.

able 14 experimental conditions. Figure 3(b) shows
whether the interventional distributions are signifi-
cantly different from the observational distribution, for
each variable and each experimental condition. Fig-
ure 4 shows two scatter plots of the data in two differ-
ent experimental conditions. Note the almost perfect
linear relationship between log-abundance of Raf and
Mek in condition 5, which implies that the measure-
ment noise (i.e., the noise added by the measurement
device) must be relatively small. This also shows a
strong dependence between Raf and Mek, which is ex-
pected from the consensus network (where Raf is a
direct cause of Mek). On the other hand, note the
absence of dependence between Mek and Erk. Assum-
ing the consensus (Mek causes Erk) to be true, this is
an example of a faithfulness violation. The data ac-
tually shows more such faithfulness violations, which
makes causal discovery challenging (but not necessar-
ily impossible, since we do have interventional data).
Furthermore, note that the intervention on Mek (con-
dition 5) changes the Raf concentration. So, assuming
that the consensus that Raf causes Mek is true, this
is an example of feedback. Another example of feed-
back is that changing the activity of Mek results in a
change of abundance of Mek itself.4 Finally, the fig-
ure shows one more aspect of the data: it is censored
by the detection limit of the measurement device (i.e.,
all abundances lower than some threshold θ = 1 are
assigned the value θ).

Table 1: Experimental metadata: conditions we used
for inferring the causal structure. The information
about the type of intervention is used as background
knowledge for causal discovery.

c Reagent Intervention
1 - none (observational)
2 Akt-inhibitor inhibits AKT activity
3 G0076 inhibits PKC activity
4 Psitectorigenin inhibits PIP2 abundance
5 U0126 inhibits MEK activity
6 LY294002 changes PIP2/PIP3 mechanisms
7 PMA activates PKC activity
8 β2CAMP activates PKA activity

3.2 Results

The consensus network and the reconstruction by
Sachs et al. (2005) are illustrated in Figure 5.

We experimented with several different combinations
of structure and parameter priors. We used hyperpa-
rameter λ = 10 for the linear mechanisms prior (Sec-
tion 2.5.1), and σin = σout = 10 for the nonlinear

4An alternative explanation of these observations could
be non-specificity of the intervention reagents (Eaton and
Murphy, 2007).
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Figure 3: (a) Subset of the data from Sachs et al.
(2005). Color corresponds with log-abundance (red
is high, blue is low); columns correspond with com-
pounds (phosphorylated proteins and phospholipids);
numbered subsets correspond with different experi-
mental conditions (see also Table 1); lines within a row
correspond with data samples (i.e., individual cells).
(b) Negative log p-value of the Kolmogorov-Smirnov
two-sample test, comparing the data of condition c (on
the vertical axis) with the observational data (condi-
tion c = 1). Color indicates how significantly different
the two distributions are (red meaning that the differ-
ence is extremely significant).
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Figure 4: Scatter plot of log abundances of Mek vs.
Raf (left) and Erk vs. Mek (right). Blue: condition 1
(no intervention); Red: condition 5 (MEK inhibitor).

mechanisms prior (Section 2.5.2), with σjitter = 0.01.
Using smaller values of the jitter did not yield sig-
nificantly different results, but increased computa-
tion time considerably. Figure 6 shows how the log-
evidence depends on n, the maximum number of edges.
Each point in the plot is the result of a new greedy
optimization from a different random starting point.
Especially for higher numbers of edges, local maxima
over structures are present, but we often seem to find
the global maximum with only a few restarts of the
local search procedure. Our stability selection results
with a constraint on the maximum number of edges
are shown in Figure 5(c) (with acyclicity constraint)
and Figure 7 (cycles allowed).

In the strongly regularized acyclic case (Figure 5(c))
the precise form of the multitask prior is not very
relevant: almost identical results are obtained with
the (non)linear prior and/or (non-)Gaussian noise (not
shown). The selected edges are very robust. Notice
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(c) This work

Figure 5: (a) Consensus network, according to Sachs
et al. (2005); (b) Reconstruction of the signaling net-
work by Sachs et al. (2005), in comparison with the
consensus network; (c) Our best acyclic reconstruc-
tion with at most 17 edges. Black edges: expected.
Blue edges: unexpected, novel findings. Red dashed
edges: missing.
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Figure 6: Negative log-evidence as a function of the
maximum number of edges. Each point is a local op-
timum with respect to structures.

that our reconstruction shows less similarity with the
consensus network than the reconstruction of Sachs
et al. (2005) (cf. Figure 5(b)). However, when looking
more closely at the unexpected edges in our acyclic
reconstruction, one sees that they actually explain
the data quite well. For example, our finding that
Mek causes Raf (instead of vice versa) is consistent
with the strong change in Raf abundance due to the
Mek inhibitor (condition 5, see also Figure 4 and Fig-
ure 3(b)).5 Similarly, the other unexpected edges in
our reconstruction can all be understood qualitatively
by combining the information in Figure 3(b) with that
in Table 1.

When allowing for cycles, the dependence on the prior
is more noticeable (see Figure 7). Nevertheless, there is
reasonable agreement between the results for different
priors. We see evidence for three two-cycles: Mek�
PKC, Akt�Erk and Mek�PKA. When regularizing
less strongly by increasing n (the number of edges), re-

5Given this strong effect, it is surprising that Sachs et al.
(2005) do find the opposite arrow. Presumably this is due
to the fact that they are using information about the sign
of the activity intervention (i.e., whether it is an activator
or an inhibitor).
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Figure 7: Stability selection results with a constraint on the number of edges, for various priors. Edge thickness
and intensity reflect the probability of selecting that edge in the stability selection procedure.

Table 2: Negative log-evidences of our estimated struc-
tures (with max. 17 edges) for various structure and
parameter priors in comparison with the negative log-
evidences of the consensus structure and optimal struc-
ture found by Sachs et al. (2005) with the same param-
eter prior. All values are in units of 103.

Structure & Parameter Prior Consensus Sachs This work
Acyclic, linear, Gaussian 96.5 92.0 83.7
Cyclic, linear, Gaussian 96.6 92.1 80.4
Acyclic, nonlinear, Gaussian 87.8 81.8 77.7
Cyclic, nonlinear, Gaussian 87.8 81.8 76.6
Cyclic, nonlinear, non-Gaussian 85.4 79.2 72.9

sults become more prior dependent. There also seems
to be some evidence for a two-cycle PIP2�PLCg.

In the acyclic case, parameter estimates conditional
on graph structure are very robust. In the cyclic case,
this no longer holds, and parameters can often not be
estimated reliably from the data (as can be concluded
from their posterior variance according to the Laplace
approximation, but also from the lack of robustness of
their estimates and the occurence of local maxima of
the posterior parameter distribution). Empirically, we
observed that the structure of the estimated graph is
much more robust, though.

In Table 2 we compare the scores of some of our struc-
tures with the score of the consensus structure and
that of the reconstruction by Sachs et al. (2005). Un-
surprisingly, our scores are always at least as good (be-
cause they result from an optimization of scores over
structures, whereas the other structures are fixed), but
in all cases, the improvement is considerable.

4 Discussion

Performing a proper causal analysis of the (Sachs
et al., 2005) data is a challenging task for various rea-
sons. First of all, time-series data are absent, so we can
only work under the equilibrium assumption. Both

confounders and feedback loops are expected to be
present. Most of the interventions cannot be appropri-
ately modeled with the standard formalism, the “do-
operator” (Pearl, 2000), but need to be modeled in an-
other way. Furthermore, assumptions about the speci-
ficity of interventions may be unrealistic. Finally, sev-
eral strong faithfulness violations seem to be present.
This work addresses several of these issues.

Our analysis confirms the hypothesis that several feed-
back loops are present in the underlying system. We
showed that our method gives a more accurate quan-
titative description of the data at comparable model
complexity compared to existing methods. An in-
teresting question from the causal point of view is
whether or not our method also gives more accurate
predictions for the effects of unseen interventions. We
hope to address this question in the future. However,
it is likely that it can only be answered definately by
carrying out additional validation experiments.

We observed empirically that in the cyclic case, the
parameters are often not identifiable, even though the
structure is. This observation has important impli-
cations for the ability to make predictions for unseen
interventions: even though reliable qualitative predic-
tions seem possible (e.g., “an intervention on xi has
(no) effect on xj”), quantitative predictions depend
strongly on the parameter estimates. As the parame-
ters cannot be estimated reliably from this data, the
quantitative predictions will be unreliable as well. This
does not mean that making such quantitative predic-
tions is hopeless in principle, though. Indeed, the al-
ternative conclusion could simply be that more exper-
imental data is needed in order to do so reliably.

In future work, we plan to compare our local lineariza-
tion approach with other approximations, e.g., FITC
(Snelson and Ghahramani, 2006). Also, a way to take
into account the information about the sign of the ac-
tivity intervention may further improve the results. Fi-
nally, we hope to find collaborators for experimental
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validation of our findings.
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Abstract

We show how, and under which conditions,
the equilibrium states of a first-order Ordi-
nary Differential Equation (ODE) system can
be described with a deterministic Structural
Causal Model (SCM). Our exposition sheds
more light on the concept of causality as ex-
pressed within the framework of Structural
Causal Models, especially for cyclic models.

1 Introduction

Over the last few decades, a comprehensive theory for
acyclic causal models was developed (e.g., see (Pearl,
2000; Spirtes et al., 1993)). In particular, different,
but related, approaches to causal inference and mod-
eling have been proposed for the causally sufficient
case. These approaches are based on different start-
ing points. One approach starts from the (local or
global) causal Markov condition and links observed in-
dependences to the causal graph. Another approach
uses causal Bayesian networks to link a particular fac-
torization of the joint distribution of the variables to
causal semantics. The third approach uses a structural
causal model (sometimes also called structural equa-
tion model or functional causal model) where each ef-
fect is expressed as a function of its direct causes and
an unobserved noise variable. The relationships be-
tween these aproaches are well understood (Lauritzen,
1996; Pearl, 2000).

Over the years, several attempts have been made
to extend the theory to the cyclic case, thereby en-
abling causal modeling of systems that involve feed-
back (Spirtes, 1995; Koster, 1996; Pearl and Dechter,
1996; Neal, 2000; Hyttinen et al., 2012). However, the
relationships between the different approaches men-
tioned before do not immediately generalize to the

∗Also affiliated to the Informatics Institute, University
of Amsterdam, The Netherlands

cyclic case in general (although partial results are
known for the linear case and the discrete case). Nev-
ertheless, several algorithms (starting from different
assumptions) have been proposed for inferring cyclic
causal models from observational data (Richardson,
1996; Lacerda et al., 2008; Schmidt and Murphy, 2009;
Itani et al., 2010; Mooij et al., 2011).

The most straightforward extension to the cyclic case
seems to be offered by the structural causal model
framework. Indeed, the formalism stays intact when
one simply drops the acyclicity constraint. However,
the question then arises how to interpret cyclic struc-
tural equations. One option is to assume an under-
lying discrete-time dynamical system, in which the
structural equations are used as fixed point equations
(Spirtes, 1995; Dash, 2005; Lacerda et al., 2008; Mooij
et al., 2011; Hyttinen et al., 2012), i.e., they are used as
update rules to calculate the values at time t+ 1 from
the values at time t, and then one lets t→∞. Here we
show how an alternative interpretation of structural
causal models arises naturally when considering sys-
tems of ordinary differential equations. By considering
how these differential equations behave in an equilib-
rium state, we arrive at a structural causal model that
is time independent, yet where the causal semantics
pertaining to interventions is still valid. As opposed
to the usual interpretation as discrete-time fixed point
equations, the continuous-time dynamics is not defined
by the structural equations. Instead, we describe how
the structural equations arise from the given dynamics.
Thus it becomes evident that different dynamics can
yield identical structural causal models. This interpre-
tation sheds more light on the meaning of structural
equations, and does not make any substantial distinc-
tion between the cyclic and acyclic cases.

It is sometimes argued that inferring causality
amounts to simply inferring the time structure con-
necting the observed variables, since the cause always
preceeds the effect. This, however, ignores two im-
portant facts: First, time order between two variables
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does not tell us whether the earlier one caused the later
one, or whether both are due to a common cause. This
paper addresses a second counter argument: a variable
need not necessarily refer to a measurement performed
at a certain time instance. Instead, a causal graph may
formalize how intervening on some variables influences
the equilibrium state of others. This describes a phe-
nomenological level on which the original time struc-
ture between variables disappears, but causal graphs
und structural equations may still be well-defined. On
this level, also cyclic structural equations get a natural
and well-defined meaning.

For simplicity, we consider only deterministic systems,
and leave the extension to stochastic systems with pos-
sible confounding as future work.

2 Ordinary Differential Equations

Let I := {1, . . . , D} be an index set of variable labels.
Consider variables Xi ∈ Ri for i ∈ I, where Ri ⊆ Rdi .
We use normal font for a single variable and boldface
for a tuple of variables XI ∈

∏
i∈I Ri with I ⊆ I.

2.1 Observational system

Consider a dynamical system D described by D cou-
pled first-order ordinary differential equations and an
initial condition X0 ∈ RI :1

Ẋi(t) = fi(XpaD(i)), Xi(0) = (X0)i ∀i ∈ I (1)

Here, paD(i) ⊆ I is the set of (indices of) parents2

of variable Xi, and each fi : RpaD(i) → Ri is a (suf-
ficiently smooth) function. This dynamical system is
assumed to describe the “natural” or “observational”
state of the system, without any intervention from
outside. We will assume that if j ∈ paD(i), then fi
depends on Xj (in other words, fi should not be con-
stant when varying Xj). Slightly abusing terminology,
we will henceforth call such a dynamical system D an
Ordinary Differential Equation (ODE).

The structure of these differential equations can be
represented as a directed graph GD, with one node for
each variable and a directed edge from Xi to Xj if and

only if Ẋj depends on Xi.

2.1.1 Example: the Lotka-Volterra model

The Lotka-Volterra model (Murray, 2002) is a well-
known model from population biology, modeling the
mutual influence of the abundance of prey X1 ∈ [0,∞)
(e.g., rabbits) and the abundance of predators X2 ∈

1We write Ẋ := dX
dt

.
2Note that Xi can be a parent of itself.

X1

X2

(a) GD

X1

X2

(b) GDdo(X2=ξ2)

Figure 1: (a) Graph of the Lotka-Volterra model (2);
(b) Graph of the same ODE after the intervention
do(X2 = ξ2), corresponding with (5).

[0,∞) (e.g., wolves):

{
Ẋ1 = X1(θ11 − θ12X2)

Ẋ2 = −X2(θ22 − θ21X1)

{
X1(0) = a

X2(0) = b
(2)

with all parameters θij > 0 and initial condition satis-
fying a ≥ 0, b ≥ 0. The graph of this system is depicted
in Figure 1(a).

2.2 Intervened system

Interventions on the system D described in (1) can be
modeled in different ways. Here we will focus on “per-
fect” interventions: for a subset I ⊆ I of components,
we force the value of XI to attain some value ξI ∈ RI .
In particular, we will assume that the intervention is
active from t = 0 to t =∞, and that its value ξI does
not change over time. Inspired by the do-operator in-
troduced by Pearl (2000), we will denote this type of
intervention as do(XI = ξI).

On the level of the ODE, there are many ways of re-
alizing a given perfect intervention. One possible way
is to add terms of the form κ(ξi −Xi) (with κ > 0) to
the expression for Ẋi, for all i ∈ I:

Ẋi(t) =

{
fi(XpaD(i)) + κ(ξi −Xi) i ∈ I
fi(XpaD(i)) i ∈ I \ I,

Xi(0) = (X0)i

(3)

This would correspond to extending the system by
components that monitor the values of {Xi}i∈I and
exert negative feedback if they deviate from their tar-
get values {ξi}i∈I . Subsequently, we let κ → ∞ to
consider the idealized situation in which the interven-
tion completely overrides the other mechanisms that
normally determine the value of XI . Under suitable
regularity conditions, we can let κ → ∞ and obtain
the intervened system Ddo(XI=ξI):

Ẋi(t) =

{
0 i ∈ I
fi(XpaD(i)) i ∈ I \ I,

Xi(0) =

{
ξi i ∈ I
(X0)i i ∈ I \ I

(4)
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A perfect intervention changes the graph GD associ-
ated to the ODE D by removing the incoming arrows
on the nodes corresponding to the intervened vari-
ables {Xi}i∈I . It also changes the parent sets of inter-
vened variables: for each i ∈ I, paD(i) is replaced by
paDdo(XI=ξI

)(i) = ∅.

2.2.1 Example: Lotka-Volterra model

Let us return to the example in section 2.1.1. In this
context, consider the perfect intervention do(X2 = ξ2).
This intervention could be realized by monitoring the
abundance of wolves very precisely and making sure
that the number equals the target value ξ2 at all time
(for example, by killing an excess of wolves and in-
troducing new wolves from some reservoir of wolves).
This leads to the following intervened ODE:

{
Ẋ1 = X1(θ11 − θ12X2)

Ẋ2 = 0

{
X1(0) = a

X2(0) = ξ2
(5)

The corresponding intervened graph is illustrated in
Figure 1(b).

2.3 Stability

An important concept in our context is stability, de-
fined as follows:

Definition 1 The ODE D specified in (1) is called
stable if there exists a unique equilibrium state X∗ ∈
RI such that for any initial state X0 ∈ RI , the system
converges to this equilibrium state as t→∞:

∃!X∗∈RI ∀X0∈RI : lim
t→∞

X(t) = X∗.

One can weaken the stability condition by demanding
convergence to and uniqueness of the equilibrium only
for a certain subset of all initial states. For clarity of
exposition, we will use this strong stability condition.

We can extend this concept of stability by considering
a certain set of perfect interventions:

Definition 2 Let J ⊆ P(I).3 The ODE D specified
in (1) is called stable with respect to J if for all I ∈ J
and for all ξI ∈ RI , the intervened ODE Ddo(XI=ξI)

has a unique equilibrium state X∗do(XI=ξI)
∈ RI such

that for any initial state X0 ∈ RI with (X0)I = ξI ,
the system converges to this equilibrium as t→∞:

∃!X∗
do(XI=ξI )

∈RI ∀X0∈RIs.t.
(X0)I=ξI

: lim
t→∞

X(t) = X∗do(XI=ξI)
.

3For a set A, we denote with P(A) the power set of A
(the set of all subsets of A).

This definition can also be weakened by not demand-
ing stability for all ξI ∈ RI , but for smaller subsets
instead. Again, we will use this strong condition for
clarity of exposition, although in a concrete example to
be discussed later (see Section 2.3.2), we will actually
weaken the stability assumption along these lines.

2.3.1 Example: the Lotka-Volterra model

The ODE (2) of the Lotka-Volterra model is not sta-
ble, as discussed in detail by Murray (2002). Indeed,
it has two equilibrium states, (X∗1 , X

∗
2 ) = (0, 0) and

(X∗1 , X
∗
2 ) = (θ22/θ21, θ11/θ12). The Jacobian of the

dynamics is given by:

∇f(X) =

(
θ11 − θ12X2 −θ12X1

θ21X2 −θ22 + θ21X1

)

In the first equilibrium state, it has a positive and
a negative eigenvalue (θ11 and −θ22, respectively),
and hence this equilibrium is unstable. In the sec-
ond equilibrium state it has two imaginary eigenval-
ues, ±i

√
θ11θ22. One can show (Murray, 2002) that

the steady state of the system is an undamped oscilla-
tion around this equilibrium.

The intervened system (5) is only generically stable,
i.e., for most values of ξ2: the unique stable equilib-
rium state is (X∗1 , X

∗
2 ) = (0, ξ2) as long as θ11−θ12ξ2 6=

0. If θ11− θ12ξ2 = 0, there exists a family of equilibria
(X∗1 , X

∗
2 ) = (c, ξ2) with c ≥ 0.

2.3.2 Example: damped harmonic oscillators

The favorite toy example of physicists is a system
of coupled harmonic oscillators. Consider a one-
dimensional system of D point masses mi (i =
1, . . . , D) with positions Qi ∈ R and momenta Pi ∈ R,
coupled by springs with spring constants ki and equi-
librium lengths li, under influence of friction with fric-
tion coefficients bi, with fixed end positions Q = 0 and
Q = L (see also Figure 2).

We first sketch the qualitative behavior: there is a
unique equilibrium position where the sum of forces
vanishes for every single mass. Moving one or several
masses out of their equilibrium position stimulates vi-
brations of the entire system. Damped by friction,
every mass converges to its unique and stable equilib-
rium position in the limit of t → ∞. If one or several

m1 m2 m3 m4

k0 k1 k2 k3 k4

Q = 0 Q = L

Figure 2: Mass-spring system for D = 4.
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Q1 Q2 Q3 Q4

P1 P2 P3 P4

X1 X2 X3 X4

(a) GD

Q1 Q2 Q3 Q4

P1 P2 P3 P4

X1 X2 X3 X4

(b) GDdo(Q2=ξ2,P2=0)

Figure 3: Graphs of the dynamics of the mass-spring
system for D = 4. (a) Observational situation (b)
Intervention do(Q2 = ξ2, P2 = 0).

masses are fixed to positions different from their equi-
librium points, the positions of the remaining masses
still converge to unique (but different) equilibrium po-
sitions. The structural equations that we derive later
will describe the change of the unconstrained equilib-
rium positions caused by fixing the others.

The equations of motion for this system are given by:

Ṗi = ki(Qi+1 −Qi − li)

− ki−1(Qi −Qi−1 − li−1)− bi
mi

Pi

Q̇i = Pi/mi

where we define Q0 := 0 and QD+1 := L. The graph
of this ODE is depicted in Figure 3(a). At equilibrium
(for t → ∞), all momenta vanish, and the following
equilibrium equations hold:

0 = ki(Qi+1 −Qi − li)− ki−1(Qi −Qi−1 − li−1)

0 = Pi

which is a linear system of equations in terms of theQi.
There are D equations for D unknowns Q1, . . . , QD,
and one can easily check that it has a unique solution.

A perfect intervention on Qi corresponds to fixat-
ing the position of the i’th mass. Physically, this is
achieved by adding a force that drives Qi to some
fixed location, i.e., the intervention on Qi is achieved
through modifying the equation of motion for Ṗi. To
deal with this example in our framework, we consider
the pairs Xi := (Qi, Pi) ∈ R2 to be the elementary
variables. Consider for example the perfect interven-
tion do(X2 = (ξ2, 0)), which effectively replaces the
dynamical equations Q̇2 and Ṗ2 by Q̇2 = 0, Ṗ2 = 0

and their initial conditions by (Q0)2 = ξ2, (P0)2 = 0.
The graph of the corresponding ODE is depicted in
Figure 3(b). Because of the friction, also this inter-
vened system converges to a unique equilibrium that
does not depend on the initial value.

This holds more generally: for any perfect interven-
tion on (any number) of pairs Xi of the type do(Xi =
(ξi, 0)), the intervened system will converge towards a
unique equilibrium because of the damping term. In-
terventions that result in a nonzero value for any mo-
mentum Pi while the corresponding position is fixed
are physically impossible, and hence will not be consid-
ered. Concluding, we have seen that the mass-spring
system is stable with respect to perfect interventions
on any number of position variables, which we model
mathematically as a joint intervention on the corre-
sponding pairs of position and momentum variables.

3 Equilibrium equations

In this section, we will study how the dynamical equa-
tions give rise to equilibrium equations that describe
equilibrium states, and how these change under perfect
interventions. This is an intermediate representation
on our way to structural causal models.

3.1 Observational system

At equilibrium, the rate of change of any variable is
zero, by definition. Therefore, an equilibrium state of
the observational system D defined in (1) satisfies the
following equilibrium equations:

0 = fi(XpaD(i)) ∀i ∈ I. (6)

This is a set of D coupled equations with unknowns
X1, . . . , XD. The stability assumption (cf. Defini-
tion 1) implies that there exists a unique solution X∗

of the equilibrium equations (6).

3.2 Intervened system

Similarly, for the intervened system Ddo(Xi=ξi) defined
in (4), we obtain the following equilibrium equations:

{
0 = Xi − ξi ∀i ∈ I
0 = fj(XpaD(j)) ∀j ∈ I \ I (7)

If the system is stable with respect to this interven-
tion (cf. Definition 2), then there exists a unique so-
lution X∗do(XI=ξI)

of the intervened equilibrium equa-

tions (7).

Note that we can also go directly from the equilib-
rium equations (6) of the observational system D to
the equilibrium equations (7) of the intervened system
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Ddo(XI=ξI), simply by replacing the equilibrium equa-
tions “0 = fi(XpaD(i))” for i ∈ I by equations of the
form “0 = Xi − ξi”. Indeed, note that the modified
dynamical equation

Ẋi = fi(XpaD(i)) + κ(ξi −Xi)

yields an equilibrium equation of the form

0 = fi(XpaD(i)) + κ(ξi −Xi)

which, in the limit κ → ∞, reduces to 0 = Xi − ξi.
This seemingly trivial observation will turn out to be
quite important.

3.3 Labeling equilibrium equations

If we would consider the equilibrium equations as a
set of unlabeled equations {Ei : i ∈ I}, where Ei de-
notes the equilibrium equation “0 = fi(XpaD(i))” (or
“0 = Xi− ξi” after an intervention) for i ∈ I, then we
will not be able to correctly predict the result of inter-
ventions, as we do not know which of the equilibrium
equations should be changed in order to model the
particular intervention. This information is present in
the dynamical system D (indeed, the terms “Ẋi” in
the l.h.s. of the dynamical equations in (1) indicate
the targets of the intervention), but is lost when con-
sidering the corresponding equilibrium equations (6)
as an unlabeled set (because the terms “Ẋi” have all
been replaced by zeroes).

This important information can be preserved by la-
beling the equilibrium equations. Indeed, the labeled
set of equilibrium equations E := {(i, Ei) : i ∈ I}
contains all information needed to predict how equi-
librium states change on arbitrary (perfect) interven-
tions. Under an intervention do(XI = ξI), the equi-
librium equations are changed as follows: for each in-
tervened component i ∈ I, the equilibrium equation Ei
is replaced by the equation Ẽi defined as “0 = Xi−ξi”,
whereas the other equilibrium equations Ej for j ∈ I\I
do not change. If the dynamical system is stable with
respect to this intervention, this modified system of
equilibrium equations describes the new equilibrium
obtained under the intervention. We conclude that
the information about the values of equilibrium states
and how these change under perfect interventions is
encoded in the labeled equilibrium equations.

3.4 Labeled equilibrium equations

The previous considerations motivate the following
formal definition of a system of Labeled Equilibrium
Equations (LEE) and its semantics under interven-
tions.

Definition 3 A system of Labeled Equilibrium
Equations (LEE) E for D variables {Xi}i∈I with I :=
{1, . . . , D} consists of D labeled equations of the form

Ei : 0 = gi(XpaE(i)), i ∈ I, (8)

where paE(i) ⊆ I is the set of (indices of) parents of
variable Xi, and each gi : RpaE(i) → Ri is a function.

The structure of an LEE E can be represented as a
directed graph GE , with one node for each variable
and a directed edge from Xi to Xj (with j 6= i) if and
only if Ei depends on Xj .

A perfect intervention transforms an LEE into another
(intervened) LEE:

Definition 4 Let I ⊆ I and ξI ∈ RI . For the perfect
intervention do(XI = ξI) that forces the variables XI

to take the value ξI , the intervened LEE Edo(XI=ξI) is
obtained by replacing the labeled equations of the origi-
nal LEE E by the following modified labeled equations:

0 =

{
Xi − ξi i ∈ I
gi(XpaE(i)) i ∈ I \ I. (9)

We define the concept of solvability for LEEs that mir-
rors the definition of stability for ODEs:

Definition 5 An LEE E is called solvable if there ex-
ists a unique solution X∗ to the system of (labeled)
equations {Ei}. An LEE E is called solvable with re-
spect to J ⊆ P(I) if for all I ∈ J and for all ξI ∈ RI ,
the intervened LEE Edo(XI=ξI) is solvable.

As we saw in the previous section, an ODE induces an
LEE in a straightforward way. The graph GED of the
induced LEE ED is equal to the graph GD of the ODE
D. It is immediate that if the ODE D is stable, then
the induced LEE ED is solvable. As we saw at the end
of Section 3.2, our ways of modeling interventions on
ODEs and on LEEs are compatible. We will spell out
this important result in detail.

Theorem 1 Let D be an ODE, I ⊆ I and ξI ∈ RI .
(i) Applying the perfect intervention do(XI = ξI) to
the induced LEE ED gives the same result as construct-
ing the LEE corresponding to the intervened ODE
Ddo(XI=ξI):

(ED)do(XI=ξI) = EDdo(XI=ξI )
.

(ii) Stability of the intervened ODE Ddo(XI=ξI)

implies solvability of the induced intervened LEE
EDdo(XI=ξI )

, and the corresponding equilibrium and so-
lution X∗do(XI=ξI)

are identical. �

444



3.4.1 Example: damped harmonic oscillators

Consider again the example of the damped, coupled
harmonic oscillators of section 2.3.2. The labeled equi-
librium equations are given explicitly by:

Ei :





0 = ki(Qi+1 −Qi − li)
− ki−1(Qi −Qi−1 − li−1)

0 = Pi

(10)

4 Structural Causal Models

In this section we will show how an LEE representation
can be mapped to the more popular representation of
Structural Causal Models, also known as Structural
Equation Models (Bollen, 1989). We follow the ter-
minology of Pearl (2000), but consider here only the
subclass of deterministic SCMs.

4.1 Observational system

The following definition is a special case of the more
general definition in (Pearl, 2000, Section 1.4.1):

Definition 6 A deterministic Structural Causal
Model (SCM) M on D variables {Xi}i∈I with
I := {1, . . . , D} consists of D structural equations of
the form

Xi = hi(XpaM(i)), i ∈ I, (11)

where paM(i) ⊆ I \ {i} is the set of (indices of) par-
ents of variable Xi, and each hi : RpaM(i) → Ri is a
function.

Each structural equation contains a function hi that
depends on the components of X in paM(i). We think
of the parents paM(i) as the direct causes of Xi (rel-
ative to XI) and the function hi as the causal mech-
anism that maps the direct causes to the effect Xi.
Note that the l.h.s. of a structural equation by defini-
tion contains only Xi, and that the r.h.s. is a function
of variables excluding Xi itself. In other words, Xi is
not considered to be a direct cause of itself. The struc-
ture of an SCM M is often represented as a directed
graph GM, with one node for each variable and a di-
rected edge from Xi to Xj (with j 6= i) if and only if hi
depends on Xj . Note that this graph does not contain
“self-loops” (edges pointing from a node to itself), by
definition.

4.2 Intervened system

A Structural Causal Model M comes with a specific
semantics for modeling perfect interventions (Pearl,
2000):

Definition 7 Let I ⊆ I and ξI ∈ RI . For the perfect
intervention do(XI = ξI) that forces the variables XI

to take the value ξI , the intervened SCM Mdo(XI=ξI)

is obtained by replacing the structural equations of the
original SCM M by the following modified structural
equations:

Xi =

{
ξi i ∈ I
hi(XpaM(i)) i ∈ I \ I. (12)

The reason that the equations in a SCM are called
“structural equations” (instead of simply “equations”)
is that they also contain information for modeling in-
terventions, in a similar way as the labeled equilibrium
equations contain this information. In particular, the
l.h.s. of the structural equations indicate the targets
of an intervention.4

4.3 Solvability

Similarly to our definition for LEEs, we define:

Definition 8 An SCM M is called solvable if there
exists a unique solution X∗ to the system of structural
equations. An SCM M is called solvable with respect
to J ⊆ P(I) if for all I ∈ J and for all ξI ∈ RI , the
intervened SCM Mdo(XI=ξI) is solvable.

Note that each (deterministic) SCM M with acyclic
graph GM is solvable, even with respect to the set of
all possible intervention targets, P(I). This is not
necessarily true if directed cycles are present.

4.4 From labeled equilibrium equations to
deterministic SCMs

Finally, we will now show that under certain stability
assumptions on an ODE D, we can represent the in-
formation about (intervened) equilibrium states that
is contained in the corresponding set of labeled equi-
librium equations ED as an SCM MED .

First, given an LEE E , we will construct an induced
SCMME , provided certain solvability conditions hold:

Definition 9 If the LEE E is solvable with respect to
{I \ {i}}i∈I , it is called structurally solvable.

If the LEE E is structurally solvable, we can pro-
ceed as follows. Let i ∈ I and write Ii := I \

4In Pearl (2000)’s words: “Mathematically, the distinc-
tion between structural and algebraic equations is that the
latter are characterized by the set of solutions to the entire
system of equations, whereas the former are characterized
by the solutions of each individual equation. The implica-
tion is that any subset of structural equations is, in itself,
a valid model of reality—one that prevails under some set
of interventions.”
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{i}. We define the induced parent set paME (i) :=
paE(i) \ {i}. Assuming structural solvability of E , un-
der the perfect intervention do(XIi = ξIi), there is a
unique solution X∗do(XIi

=ξIi )
to the intervened LEE,

for any value of ξIi ∈ RIi . This defines a function
hi : RpaME (i)

→ Ri given by the i’th component

hi(ξpaME (i)
) :=

(
X∗do(XIi

=ξIi )

)
i
. The i’th structural

equation of the induced SCM ME is defined as:

Xi = hi(XpaME (i)
).

Note that this equation is equivalent to the labeled
equation Ei in the sense that they have identical solu-
tion sets {(X∗i ,X∗paME (i))}. Repeating this procedure

for all i ∈ I, we obtain the induced SCM ME .
This construction is designed to preserve the impor-
tant mathematical structure. In particular:

Lemma 1 Let E be an LEE, I ⊆ I and ξI ∈ RI
and consider the perfect intervention do(XI = ξI).
Suppose that both the LEE E and the intervened LEE
Edo(XI=ξI) are structurally solvable. (i) Applying the
intervention do(XI = ξI) to the induced SCM ME
gives the same result as constructing the SCM corre-
sponding to the intervened LEE Edo(XI=ξI):

(ME)do(XI=ξI) =MEdo(XI=ξI )
.

(ii) Solvability of the intervened LEE Edo(XI=ξI)

implies solvability of the induced intervened SCM
MEdo(XI=ξI )

and their respective solutions X∗do(XI=ξI)

are identical.

Proof. The first statement directly follows from the
construction of the induced SCM. The key observa-
tion regarding solvability is the following. From the
construction above it directly follows that ∀i ∈ I:

∀XpaE (i)∈RpaE (i)
:

0 = gi(XpaE(i)) ⇐⇒ Xi = hi(XpaE(i)\{i}).

This trivially implies:

∀X∈RI∀i∈I : 0 = gi(XpaE(i)) ⇐⇒ Xi = hi(XpaME (i)
).

This means that each simultaneous solution of all la-
beled equations is a simultaneous solution of all struc-
tural equations, and vice versa:

∀X∈RI :
([
∀i∈I : 0 = gi(XpaE(i))

]

⇐⇒
[
∀i∈I : Xi = hi(XpaME (i)

)
])
.

The crucial point is that this still holds if an interven-
tion replaces some of the equations (by 0 = Xi − ξi
and Xi = ξi, respectively, for all i ∈ I). �

4.5 From ODEs to deterministic SCMs

We can now combine all the results and definitions so
far to construct a deterministic SCM from an ODE
under certain stability conditions. We define:

Definition 10 An ODE D is called structurally sta-
ble if for each i ∈ I, the ODE D is stable with respect
to {I \ {i}}i∈I .

Consider the diagram in Figure 4. Here, the labels of
the arrows correspond with the numbers of the sec-
tions that discuss the corresponding mapping. The
downward mappings correspond with a particular in-
tervention do(XI = ξI), applied at the different levels
(ODE, induced LEE, induced SCM). Our main result:

Theorem 2 If both the ODE D and the intervened
ODE Ddo(XI=ξI) are structurally stable, then: (i) The
diagram in Figure 4 commutes.5 (ii) If furthermore,
the intervened ODE Ddo(XI=ξI) is stable, the induced
intervened SCM MEDdo(XI=ξI )

has a unique solution

that coincides with the stable equilibrium of the inter-
vened ODE Ddo(XI=ξI).

Proof. Immediate from Theorem 1 and Lemma 1. �

Note that even though the ODE may contain self-
loops (i.e., the time derivative Ẋi could depend on
Xi itself, and hence i ∈ paD(i)), the induced SCM
MED does not contain self-loops by construction (i.e.,
i 6∈ paMED (i)). Somewhat surprisingly, the structural

stability conditions actually imply the existence of self-
loops (because if Xi would not occur in the equilibrium
equation (ED)i, its value would be undetermined and
hence the equilibrium would not be unique).

Whether one prefers the SCM representation over the
LEE representation is mainly a matter of practical con-
siderations: both representations contain all the neces-
sary information to predict the results of arbitrary per-
fect interventions, and one can easily go from the LEE
representation to the SCM representation. One can
also easily go in the opposite direction, but this can-
not be done in a unique way. For example, one could
rewrite each structural equation Xi = hi(XpaM(i)) as
the equilibrium equation 0 = hi(XpaM(i)) − Xi, but
also as the equilibrium equation 0 = h3i (XpaM(i))−X3

i

(in both cases, it would be given the label i).

In case the dynamics contains no directed cycles (not
considering self-loops), the advantage of the SCM rep-
resentation is that it is more explicit. Starting at
the variables without parents, and following the topo-
logical ordering of the corresponding directed acyclic

5This means that it does not matter in which direction
one follows the arrows, the end result will be the same.
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ODE
D

LEE
ED

SCM
MED

3.3 4.4

intervened ODE
Ddo(XI=ξI)

intervened LEE
EDdo(XI=ξI )

intervened SCM
MEDdo(XI=ξI )

3.3 4.4

2.2 3.2 4.2

Figure 4: Each of the arrows in the diagram corresponds with a mapping that is described in the section that
the label refers to. The dashed arrows are only defined under structural solvability assumptions on the LEE
(or structural stability assumptions on the inducing ODE). If the ODE D and intervened ODE Ddo(XI=ξI) are
structurally stable, this diagram commutes (cf. Theorem 2).

graph, we directly obtain the solution of an SCM by
simple substitution in a finite number of steps. When
using the LEE representation, one needs to solve a set
of equations instead. In the cyclic case, one needs to
solve a set of equations in both representations, and
the difference is merely cosmetical. However, one could
argue that the LEE representation is slightly more nat-
ural in the cyclic case, as it does not force us to make
additional (structural) stability assumptions.

4.5.1 Example: damped harmonic oscillators

Figure 5 shows the graph of the structural causal
model induced by our construction. It reflects the
intuition that at equilibrium, (the position of) each
mass has a direct causal influence on (the positions
of) its neighbors. Observing that the momentum vari-
ables always vanish at equilibrium (even for any per-
fect intervention that we consider), we can decide that
the only relevant variables for the SCM are the posi-
tion variables Qi. Then, we end up with the following
structural equations:

Qi =
ki(Qi+1 − li) + ki−1(Qi−1 + li−1)

ki + ki+1
. (13)

5 Discussion

In many empirical sciences (physics, chemistry, biol-
ogy, etc.) and in engineering, differential equations
are a common modeling tool. When estimating sys-
tem characteristics from data, they are especially use-
ful if measurements can be done on the relevant time
scale. If equilibration time scales become too small

X1 X2 X3 X4

Figure 5: Graph of the structural causal model in-
duced by the mass-spring system for D = 4.

with respect to the temporal resolution of measure-
ments, however, the more natural representation may
be in terms of structural causal models. The main
contribution of this work is to build an explicit bridge
from the world of differential equations to the world of
causal models Our hope is that this may aid in broad-
ening the impact of causal modeling.

Note that information is lost when going from a dy-
namical system representation to an equilibrium repre-
sentation (either LEE or SCM), in particular the rate
of convergence toward equilibrium. If time-series data
is available, the most natural representation may be
the dynamical system representation. If only snapshot
data or equilibrium data is available, the dynamical
system representation can be considered to be overly
complicated, and one may use the LEE or SCM rep-
resentation instead.

We have shown one particular way in which structural
causal models can be “derived”. We do not claim
that this is the only way: on the contrary, SCMs can
probably be obtained in several other ways and from
other representations as well. A recent example is the
derivation of SCMs from stochastic differential equa-
tions (Sokol and Hansen, 2013). Other related work
on differential equations and causality is (Voortman
et al., 2010; Iwasaki and Simon, 1994).

We intend to extend the basic framework described
here towards the more general stochastic case. Un-
certainty or “noise” can enter in different ways: via
uncertainty about (constant) parameters of the dif-
ferential equations, via uncertainty about the initial
condition (in the case of constants of motion) and via
latent variables (in the case of confounding).
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Abstract

We propose one-class support measure ma-
chines (OCSMMs) for group anomaly detec-
tion. Unlike traditional anomaly detection,
OCSMMs aim at recognizing anomalous ag-
gregate behaviors of data points. The OC-
SMMs generalize well-known one-class sup-
port vector machines (OCSVMs) to a space
of probability measures. By formulating the
problem as quantile estimation on distribu-
tions, we can establish interesting connec-
tions to the OCSVMs and variable kernel
density estimators (VKDEs) over the input
space on which the distributions are defined,
bridging the gap between large-margin meth-
ods and kernel density estimators. In partic-
ular, we show that various types of VKDEs
can be considered as solutions to a class of
regularization problems studied in this pa-
per. Experiments on Sloan Digital Sky Sur-
vey dataset and High Energy Particle Physics
dataset demonstrate the benefits of the pro-
posed framework in real-world applications.

1 Introduction

Anomaly detection is one of the most important tools
in all data-driven scientific disciplines. Data that do
not conform to the expected behaviors often bear some
interesting characteristics and can help domain experts
better understand the problem at hand. However, in
the era of data explosion, the anomaly may appear
not only in the data themselves, but also as a result
of their interactions. The main objective of this paper
is to investigate the latter type of anomalies. To be
consistent with the previous works (Póczos et al. 2011,
Xiong et al. 2011a;b), we will refer to this problem as a
group anomaly detection, as opposed to a traditional
point anomaly detection.
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Figure 1: An illustration of two types of group anoma-
lies. An anomalous group may be a group of anoma-
lous samples which is easy to detect (unfilled points).
In this paper, we are interested in detecting anomalous
groups of normal samples (filled points) which is more
difficult to detect because of the higher-order statis-
tics. Note that group anomaly we are interested in
can only be observed in the space of distributions.

Like traditional point anomaly detection, the group
anomaly detection refers to a problem of finding pat-
terns in groups of data that do not conform to expected
behaviors (Póczos et al. 2011, Xiong et al. 2011a;b).
That is, an ultimate goal is to detect interesting ag-
gregate behaviors of data points among several groups.
In principle, anomalous groups may consist of individ-
ually anomalous points, which are relatively easy to
detect. On the other hand, anomalous groups of rela-
tively normal points, whose behavior as a group is un-
usual, is much more difficult to detect. In this work,
we are interested in the latter type of group anomalies.
Figure 1 illustrates this scenario.

Group anomaly detection may shed light in a wide
range of applications. For example, a Sloan Digi-
tal Sky Survey (SDSS) has produced a tremendous
amount of astronomical data. It is therefore very cru-
cial to detect rare objects such as stars, galaxies, or
quasars that might lead to a scientific discovery. In
addition to individual celestial objects, investigating
groups of them may help astronomers understand the
universe on larger scales. For instance, the anomalous
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group of galaxies, which is the smallest aggregates of
galaxies, may reveal interesting phenomena, e.g., the
gravitational interactions of galaxies.

Likewise, a new physical phenomena in high energy
particle physics such as Higgs boson appear as a tiny
excesses of certain types of collision events among a
vast background of known physics in particle detectors
(Bhat 2011, Vatanen et al. 2012). Investigating each
collision event individually is no longer sufficient as the
individual events may not be anomalies by themselves,
but their occurrence together as a group is anomalous.
Hence, we need a powerful algorithm to detect such a
rare and highly structured anomaly.

Lastly, the algorithm proposed in this paper can be
applied to point anomaly detection with substantial
and heterogeneous uncertainties. For example, it is of-
ten costly and time-consuming to obtain the full spec-
tra of astronomical objects. Instead, relatively noisier
measurements are usually made. In addition, the es-
timated uncertainty which represents the uncertainty
one would obtain from multiple observations is also
available. Incorporating these uncertainties has been
shown to improve the performance of the learning sys-
tems (Bovy et al. 2011, Kirkpatrick et al. 2011, Ross
et al. 2012).

The anomaly detection has been intensively studied
(Chandola et al. (2009) and references therein). How-
ever, few attempts have been made on developing suc-
cessful group anomaly detection algorithms. For ex-
ample, a straightforward approach is to define a set
of features for each group and apply standard point
anomaly detection (Chan and Mahoney 2005). De-
spite its simplicity, this approach requires a specific
domain knowledge to construct appropriate sets of fea-
tures. Another possibility is to first identify the indi-
vidually anomalous points and then find their aggrega-
tions (Das et al. 2008). Again, this approach relies only
on the detection of anomalous points and thus cannot
find the anomalous groups in which their members are
perfectly normal. Successful group anomaly detectors
should be able to incorporate the higher-order statis-
tics of the groups.

Recently, a family of hierarchical probabilistic models
based on a Latent Dirichlet Allocation (LDA) (Blei
et al. 2003) has been proposed to cope with both
types of group anomalies (Xiong et al. 2011a;b). In
these models, the data points in each group are as-
sumed to be one of the K different types and gener-
ated by a mixture of K Gaussian distributions. Al-
though the distributions over these K types can vary
across M groups, they share common generator. The
groups that have small probabilities under the model
are marked as anomalies using scoring criteria defined

as a combination of a point-based anomaly score and a
group-based anomaly score. The Flexible Genre Model
(FGM) recently extends this idea to model more com-
plex group structures (Xiong et al. 2011a).

Instead of employing a generative approach, we pro-
pose a simple and efficient discriminative way of de-
tecting group anomaly. In this work, M groups of data
points are represented by a set of M probability dis-
tributions assumed to be i.i.d. realization of some un-
known distribution P. In practice, only i.i.d samples
from these distributions are observed. Hence, we can
treat group anomaly detection as detecting the anoma-
lous distributions based on their empirical samples.
To allow for a practical algorithm, the distributions
are mapped into the reproducing kernel Hilbert space
(RKHS) using the kernel mean embedding. By work-
ing directly with the distributions, the higher-order in-
formation arising from the aggregate behaviors of the
data points can be incorporated efficiently.

2 Quantile Estimation on Probability
Distributions

Let X denote a non-empty input space with associated
σ-algebra A, P denote the probability distribution on
(X ,A), and PX denote the set of all probability dis-
tributions on (X ,A). The space PX is endowed with
the topology of weak convergence and the associated
Borel σ-algebra.

We assume that there exists a distribution P on PX ,
where P1, . . . ,P` are i.i.d. realizations from P, and
the sample Si is made of ni i.i.d. samples distributed
according to the distribution Pi. In this work, we ob-

serve ` samples Si = {x(i)k }1≤k≤ni for i = 1, . . . , `. For

each sample Si, P̂i = 1
ni

∑ni
j=1 δx(i)

j
is the associated

empirical distribution of Pi.

In this work, we formulate a group anomaly detection
problem as learning quantile function q : PX → R to
estimate the support of P. Let C be a class of mea-
surable subsets of PX and λ be a real-valued function
defined on C, the quantile function w.r.t. (P, C, λ) is

q(β) = inf{λ(C) : P(C) ≥ β,C ∈ C} ,

where 0 < β ≤ 1. In this paper, we consider when λ is
Lebesgue measure, in which case C(β) is the minimum
volume C ∈ C that contains at least a fraction β of the
probability mass of P. Thus, the function q can be
used to test if any test distribution Pt is anomalous
w.r.t. the training distributions.

Rather than estimating C(β) in the space of distri-
butions directly, we first map the distributions into
a feature space via a positive semi-definite kernel k.
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Our class C is then implicitly defined as the set of
half-spaces in the feature space. Specifically, Cw =
{P | fw(P) ≥ ρ} where (w, ρ) are respectively a weight
vector and an offset parametrizing a hyperplane in the
feature space associated with the kernel k. The op-
timal (w, ρ) is obtained by minimizing a regularizer
which controls the smoothness of the estimated func-
tion describing C.

3 One-Class Support Measure
Machines

In order to work with the probability distributions ef-
ficiently, we represent the distributions as mean func-
tions in a reproducing kernel Hilbert space (RKHS)
(Berlinet and Agnan 2004, Smola et al. 2007). For-
mally, let H denote an RKHS of functions f : X → R
with reproducing kernel k : X × X → R. The kernel
mean map from PX into H is defined as

µ : PX → H, P 7−→
∫

X
k(x, ·) dP(x) . (1)

We assume that k(x, ·) is bounded for any x ∈ X . For
any P, letting µP = µ(P), one can show that EP[f ] =
〈µP, f〉H, for all f ∈ H.

The following theorem due to Fukumizu et al. (2004)
and Sriperumbudur et al. (2010) gives a promising
property of representing distributions as mean ele-
ments in the RKHS.

Theorem 1. The kernel k is characteristic if and only
if the map (1) is injective.

Examples of characteristic kernels include Gaussian
RBF kernel and Laplace kernel. Using the character-
istic kernel k, Theorem 1 implies that the map (1) pre-
serves all information about the distributions. Hence,
one can apply many existing kernel-based learning al-
gorithms to the distributions as if they are individual
samples with no information loss.

Intuitively, one may view the mean embeddings of the
distributions as their feature representations. Thus,
our approach is in line with previous attempts in group
anomaly detection that find a set of appropriate fea-
tures for each group. On the one hand, however, the
mean embedding approach captures all necessary in-
formation about the groups without relying heavily
on a specific domain knowledge. On the other hand, it
is flexible to choose the feature representation that is
suitable to the problem at hand via the choice of the
kernel k.

3.1 OCSMM Formulation

Using the mean embedding representation (1), the pri-
mal optimization problem for one-class SMM can be

subsequently formulated in an analogous way to the
one-class SVM (Schölkopf et al. 2001) as follow:

minimize
w,b,ξ,ρ

1

2
〈w,w〉H − ρ+

1

ν`

∑̀

i=1

ξi (2a)

subject to 〈w, µPi〉H ≥ ρ− ξi, ξi ≥ 0 (2b)

where ξi denote slack variables and ν ∈ (0, 1] is a trade-
off parameter corresponding to an expected fraction of
outliers within the feature space. The trade-off ν is
an upper bound on the fraction of outliers and lower
bound on the fraction of support measures (Schölkopf
et al. 2001).

The trade-off parameter ν plays an important role in
group anomaly detection. Small ν implies that anoma-
lous groups are rare compared to the normal groups.
Too small ν leads to some anomalous groups being re-
jected. On the other hand, large ν implies that anoma-
lous groups are common. Too large ν leads to some
normal groups being accepted as anomaly. As group
anomaly is subtle, one need to choose ν very carefully
to reduce the effort in the interpretation of the results.

By introducing Lagrange multipliers α, we have w =∑`
i=1 αiµPi =

∑`
i=1 αiEPi [k(x, ·)] and the dual form of

(2) can be written as

minimize
α

1

2

∑̀

i=1

∑̀

j=1

αiαj〈µPi , µPj 〉H (3a)

subject to 0 ≤ αi ≤
1

ν`
,
∑̀

i=1

αi = 1 . (3b)

Note that the dual form is a quadratic programming
and depends on the inner product 〈µPi , µPj 〉H. Given
that we can compute 〈µPi , µPj 〉H, we can employ the
standard QP solvers to solve (3).

3.2 Kernels on Probability Distributions

From (3), we can see that µP is a feature map asso-
ciated with the kernel K : PX × PX → R, defined
as K(Pi,Pj) = 〈µPi , µPj 〉H. It follows from Fubini’s
theorem and reproducing property of H that

〈µPi , µPj 〉H =

∫∫
〈k(x, ·), k(y, ·)〉H dPi(x) dPj(y)

=

∫∫
k(x, y) dPi(x) dPj(y) . (4)

Hence, K is a positive definite kernel on PX . Given
the sample sets S1, . . . , S`, one can estimate (4) by

K(P̂i, P̂j) =
1

ni · nj

ni∑

k=1

nj∑

l=1

k(x
(i)
k , x

(j)
l ) (5)
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where x
(i)
k ∈ Si, x

(j)
l ∈ Sj , and ni is the number of

samples in Si for i = 1, . . . , `.

Previous works in kernel-based anomaly detection
have shown that the Gaussian RBF kernel is more
suitable than some other kernels such as polynomial
kernels (Hoffmann 2007). Thus we will focus primar-
ily on the Gaussian RBF kernel given by

kσ(x, x′) = exp

(
−‖x− x

′‖2
2σ2

)
, x, x′ ∈ X (6)

where σ > 0 is a bandwidth parameter. In the sequel,
we denote the reproducing kernel Hilbert space asso-
ciated with kernel kσ by Hσ. Also, let Φ : X → Hσ be
a feature map such that kσ(x, x′) = 〈Φ(x),Φ(x′)〉Hσ .

In group anomaly detection, we always observe the
i.i.d. samples from the distribution underlying the
group. Thus, it is natural to use the empirical ker-
nel (5). However, one may relax this assumption and
apply the kernel (4) directly. For instance, if we have a
Gaussian distribution Pi = N (mi,Σi) and a Gaussian
RBF kernel kσ, we can compute the kernel analytically
by

K(Pi,Pj) =
exp

(
− 1

2 (mi −mj)
TB−1(mi −mj)

)

| 1σ2 Σi + 1
σ2 Σj + I| 12

(7)

where B = Σi + Σj + σ2I. This kernel is particularly
useful when one want to incorporate the point-wise un-
certainty of the observation into the learning algorithm
(Muandet et al. 2012). More details will be given in
Section 4.2 and 5).

4 Theoretical Analysis

This section presents some theoretical analyses. The
geometrical interpretation of OCSMMs is given in Sec-
tion 4.1. Then, we discuss the connection of OCSMM
to the kernel density estimator in Section 4.2. In the
sequel, we will focus on the translation-invariant kernel
function to simplify the analysis.

4.1 Geometric Interpretation

For translation-invariant kernel, k(x, x) is constant for
all x ∈ X . That is, ‖Φ(x)‖H = τ for some constant
ρ. This implies that all of the images Φ(x) lie on the
sphere in the feature space (cf. Figure 2a). Conse-
quently, the following inequality holds

‖µP‖H =

∥∥∥∥
∫
k(x, ·) dP(x)

∥∥∥∥
H
≤
∫
‖k(x, ·)‖H dP(x) = τ ,

which shows that all mean embeddings lie inside the
sphere (cf. Figure 2a). As a result, we can establish
the existence and uniqueness of the separating hyper-
plane w in (2) through the following theorem.

Theorem 2. There exists a unique separating hy-
perplane w as a solution to (2) that separates
µP1

, µP2
, . . . , µP` from the origin.

Proof. Due to the separability of the feature maps
Φ(x), the convex hull of the mean embeddings
µP1

, µP2
, . . . , µP` does not contain the origin. The ex-

istence and uniqueness of the hyperplane then follows
from the supporting hyperplane theorem (Schölkopf
and Smola 2001). �

By Theorem 2, the OCSMM is a simple generalization
of OCSVM to the space of probability distributions.
Furthermore, the straightforward generalization will
allow for a direct application of an efficient learning
algorithm as well as existing theoretical results.

There is a well-known connection between the solution
of OCSVM with translation invariant kernels and the
center of the minimum enclosing sphere (MES) (Tax
and Duin 1999; 2004). Intuitively, this is not the case
for OCSMM, even when the kernel k is translation-
invariant, as illustrated in Figure 2b. Fortunately, the
connection between OCSMM and MES can be made
precise by applying the spherical normalization

〈µP, µQ〉H 7−→
〈µP, µQ〉H√

〈µP, µP〉H〈µQ, µQ〉H
(8)

After the normalization, ‖µP‖H = 1 for all P ∈ PX .
That is, all mean embeddings lie on the unit sphere
in the feature space. Consequently, the OCSMM and
MES are equivalent after the normalization.

Given the equivalence between OCSMM and MES, it
is natural to ask if the spherical normalization (8) pre-
serves the injectivity of the Hilbert space embedding.
In other words, is there an information loss after the
normalization? The following theorem answers this
question for kernel k that satisfies some reasonable as-
sumptions.

Theorem 3. Assume that k is characteristic and the
samples are linearly independent in the feature space
H. Then, the spherical normalization preserves the
injectivity of the mapping µ : PX → H.

Proof. Let us assume the normalization does not pre-
serve the injectivity of the mapping. Thus, there ex-
ist two distinct probability distributions P and Q for
which

µP = µQ∫
k(x, ·) dP(x) =

∫
k(x, ·) dQ(x)

∫
k(x, ·) d(P−Q)(x) = 0 .
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Figure 2: (a) The two dimensional representation of the RKHS of Gaussian RBF kernels. Since the kernels
depend only on x − x′, k(x, x) is constant. Therefore, all feature maps Φ(x) (black dots) lie on a sphere in
feature space. Hence, for any probability distribution P, its mean embedding µP always lies in the convex hull
of the feature maps, which in this case, forms a segment of the sphere. (b) In general, the solution of OCSMM
is different from the minimum enclosing sphere. (c) Three dimensional sphere in the feature space. For the
Gaussian RBF kernel, the kernel mean embeddings of all distributions always lie inside the segment of the
sphere. In addition, the angle between any pair of mean embeddings is always greater than zero. Consequently,
the mean embeddings can be scaled, e.g., to lie on the sphere, and the map is still injective.

As P 6= Q, the last equality holds if and only if there
exists x ∈ X for which k(x, ·) are linearly dependent,
which contradicts the assumption. Consequently, the
spherical normalization must preserve the injectivity
of the mapping. �

The Gaussian RBF kernel satisfies the assumption
given in Theorem 3 as the kernel matrix will be full-
rank and thereby the samples are linearly independent
in the feature space. Figure 2c depicts an effect of the
spherical normalization.

It is important to note that the spherical normalization
does not necessarily improve the performance of the
OCSMM. It ensures that all the information about the
distributions are preserved.

4.2 OCSMM and Density Estimation

In this section we make a connection between the OC-
SMM and kernel density estimation (KDE). First, we
give a definition of the KDE. Let x1, x2, . . . , xn be an
i.i.d. samples from some distribution F with unknown
density f , the KDE of f is defined as

f̂(y) =
1

nh

n∑

i=1

k

(
y − xi
h

)
(9)

For f̂ to be a density, we require that the kernel satis-
fies k(·, ·) ≥ 0 and

∫
k(x, ·) dx = 1, which includes, for

example, the Gaussian kernel, the multivariate Stu-
dent kernel, and the Laplacian kernel.

When ν = 1, it is well-known that, under some techni-
cal assumptions, the OCSVM corresponds exactly to
the KDE (Schölkopf et al. 2001). That is, the solution

w of (2) can be written as a uniform sum over training
samples similar to (9). Moreover, setting ν < 1 yields
a sparse representation where the summand consists
of only support vectors of the OCSVM.

Interestingly, we can make a similar correspondence
between the KDE and the OCSMM. It follows from
Lemma 4 of Muandet et al. (2012) that for cer-
tain classes of training probability distributions, the
OCSMM on these distributions corresponds to the
OCSVM on some training samples equipped with
an appropriate kernel function. To understand this
connection, consider the OCSMM with the Gaussian
RBF kernel kσ and isotropic Gaussian distributions
N (m1;σ2

1),N (m2;σ2
2), . . . ,N (mn;σ2

n)1. We analyze
this scenario under two conditions:

(C1) Identical bandwidth. If σi = σj for all 1 ≤
i, j ≤ n, the OCSMM is equivalent to the OCSVM
on the training samples m1,m2, . . . ,mn with Gaussian
RBF kernel kσ2+σ2

i
(cf. the kernel (7)). Hence, the

OCSMM corresponds to the OCSVM on the means of
the distributions with kernel of larger bandwidth.

(C2) Variable bandwidth. Similarly, if σi 6= σj
for some 1 ≤ i, j ≤ n, the OCSMM is equivalent to
the OCSVM on the training samples m1,m2, . . . ,mn

with Gaussian RBF kernel kσ2+σ2
i
. Note that the ker-

nel bandwidth may be different at each training sam-
ples. Thus, OCSMM in this case corresponds to the
OCSVM with variable bandwidth parameters.

1We adopt the Gaussian distributions here for the sake
of simplicity. More general statement for non-Gaussian
distributions follows straightforwardly.
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On the one hand, the above scenario allows the
OCSVM to cope with noisy/uncertain inputs, lead-
ing to more robust point anomaly detection algorithm.
That is, we can treat the means as the measurements
and the covariances as the measurement uncertainties
(cf. Section 5.2). On the other hand, one can also
interpret the OCSMM when ν = 1 as a generalization
of traditional KDE, where we have a data-dependent
bandwidth at each data point. This type of KDE is
known in the statistics as variable kernel density es-
timators (VKDEs) (Abramson 1982, Breiman et al.
1977, Terrell and Scott 1992). For ν < 1, the OC-
SMM gives a sparse representation of the VKDE.

Formally, the VKDE is characterized by (9) with an
adaptive bandwidth h(xi). For example, the band-
width is adapted to be larger where the data are less
dense, with the aim to reduce the bias. There are basi-
cally two different views of VKDE. The first is known
as a balloon estimator (Terrell and Scott 1992). Essen-
tially, its bandwidth may depend only on the point at
which the estimate is taken, i.e., the bandwidth in (9)
may be written as h(y). The second type of VKDE is a
sample smoothing estimator (Terrell and Scott 1992).
As opposed to the balloon estimator, it is a mixture
of individually scaled kernels centered at each obser-
vation, i.e., the bandwidth is h(xi). The advantage
of balloon estimator is that it has a straightforward
asymptotic analysis, but the final estimator may not
be a density. The sample smoothing estimator is a
density if k is a density, but exhibits non-locality.

Both types of the VKDEs may be seen from the OC-
SMM point of view. Firstly, under the condition (C1),
the balloon estimator can be recovered by consider-
ing different test distribution Pt = N (mt;σt). As
σt → 0, one obtain the standard KDE on mt. Sim-
ilarly, the OCSMM under the condition (C2) with
Pt = δmt gives the sample smoothing estimator. Inter-
estingly, the OCSMM under the condition (C2) with
Pt = N (mt;σt) results in a combination of these two
types of the VKDEs.

In summary, we show that many variants of KDE can
be seen as solutions to the regularization functional
(2), and thereby provides an insight into a connection
between large-margin approach and kernel density es-
timation.

5 Experiments

We firstly illustrate a fundamental difference be-
tween point and group anomaly detection problems.
Then, we demonstrate an advantage of OCSMM on
uncertain data when the noise is observed explic-
itly. Lastly, we compare the OCSMM with ex-
isting group anomaly detection techniques, namely,

K-nearest neighbor (KNN) based anomaly detection
(Zhao and Saligrama 2009) with NP-L2 divergence and
NP-Renyi divergence (Póczos et al. 2011), and Multi-
nomial Genre Model (MGM) (Xiong et al. 2011b) on
Sloan Digital Sky Survey (SDSS) dataset and High
Energy Particle Physics dataset.

Model Selection and Setup. One of the long-
standing problems of one-class algorithms is model
selection. Since no labeled data is available during
training, we cannot perform cross validation. To en-
courage a fair comparison of different algorithms in
our experiments, we will try out different parame-
ter settings and report the best performance of each
algorithm. We believe this simple approach should
serve its purpose at reflecting the relative performance
of different algorithms. We will employ the Gaus-
sian RBF kernel (6) throughout the experiments. For
the OCSVM and the OCSMM, the bandwidth pa-

rameter σ2 is fixed at median{‖x(i)k − x
(j)
l ‖2} for all

i, j, k, l where x
(i)
k denotes the k-th data point in the

i-th group, and we consider ν = (0.1, 0.2, . . . , 0.9).
The OCSVM treats group means as training sam-
ples. For synthetic experiments with OCSMM, we use
the empirical kernel (5), whereas the non-linear kernel
K(Pi,Pj) = exp(‖µPi − µPj‖2H/2γ2) will be used for
real data where we set γ = σ. Our experiments sug-
gest that these choices of parameters usually work well
in practice. For KNN-L2 and KNN-Renyi (α=0.99),
we consider when there are 3,5,7,9, and 11 nearest
neighbors. For MGM, we follow the same experimen-
tal setup as in Xiong et al. (2011b).

5.1 Synthetic Data

To illustrate the difference between point anomaly
and group anomaly, we represent the group of data
points by the 2-dimensional Gaussian distribution. We
generate 20 normal groups with the covariance Σ =
[0.01, 0.008; 0.008, 0.01]. The means of these groups
are drawn uniformly from [0, 1]. Then, we generate 2
anomalous groups of Gaussian distributions whose co-
variances are rotated by 60 degree from the covariance
Σ. Furthermore, we perturb one of the normal groups
to make it relatively far from the rest of the dataset
to introduce an additional degree of anomaly (cf. Fig-
ure 3a). Lastly, we generate 100 samples from each of
these distributions to form the training set.

For the OCSVM, we represent each group by its empir-
ical average. Since the expected proportion of outliers
in the dataset is approximately 10%, we use ν = 0.1
accordingly for both OCSVM and OCSMM. Figure 3a
depicts the result which demonstrates that the OC-
SMM can detect anomalous aggregate patterns unde-
tected by the OCSVM.
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One-Class Support Vector Machine

One-Class Support Measure Machine

(a) OCSVM vs OCSMM (b) The results of the OCSMM on the mixture of Gaussian dataset

Figure 3: (a) The results of group anomaly detection on synthetic data obtained from the OCSVM and the
OCSMM. Blue dashed ovals represent the normal groups, whereas red ovals represent the detected anomalous
groups. The OCSVM is only able to detect the anomalous groups that are spatially far from the rest in the
dataset, whereas the OCSMM also takes into account other higher-order statistics and therefore can also detect
anomalous groups which possess distinctive properties. (b) The results of the OCSMM on the synthetic data of
the mixture of Gaussian. The shaded boxes represent the anomalous groups that have different mixing proportion
to the rest of the dataset. The OCSMM is able to detects the anomalous groups although they look reasonably
normal and cannot be easily distinguished from other groups in the data set based only on an inspection.

Then, we conduct similar experiment as that in Xiong
et al. (2011b). That is, the groups are represented
as a mixture of four 2-dimensional Gaussian distri-
butions. The means of the mixture components are
[−1,−1], [1,−1], [0, 1], [1, 1] and the covariances are
all Σ = 0.15 × I2, where I2 denotes the 2D iden-
tity matrix. Then, we design two types of normal
groups, which are specified by two mixing propor-
tions [0.22, 0.64, 0.03, 0.11] and [0.22, 0.03, 0.64, 0.11],
respectively. To generate a normal group, we first de-
cide with probability [0.48, 0.52] which mixing propor-
tion will be used. Then, the data points are generated
from mixture of Gaussian using the specified mixing
proportion. The mixing proportion of the anomalous
group is [0.61, 0.1, 0.06, 0.23].

We generated 47 normal groups with ni ∼
Poisson(300) instances in each group. Note that the
individual samples in each group are perfectly normal
compared to other samples. To test the performance
of our technique, we inject the group anomalies, where
the individual points are normal, but they together as
a group look anomalous. In this anomalous group the
individual points are samples from one of the K = 4
normal topics, but the mixing proportion was different
from both of the normal mixing proportions. We inject
3 anomalous groups into the data set. The OCSMM
is trained using the same setting as in the previous
experiment. The results are depicted in Figure 3b.

5.2 Noisy Data

As discussed at the end of Section 3.2, the OCSMM
may be adopted to learn from data points whose un-
certainties are observed explicitly. To illustrate this
claim, we generate samples from the unit circle using
x = cos θ + ε and y = sin θ + ε where θ ∼ (−π, π] and
ε is a zero-mean isotropic Gaussian noise N (0, 0.05).
A different point-wise Gaussian noise N (0, ωi) where
ωi ∈ (0.2, 0.3) is further added to each point to simu-
late the random measurement corruption. In this ex-
periment, we assume that ωi is available during train-
ing. This situation is often encountered in many ap-
plications such as astronomy and computational biol-
ogy. Both OCSVM and OCSMM are trained on the
corrupted data. As opposed to the OCSVM that con-
siders only the observed data points, the OCSMM also
uses ωi for every point via the kernel (7). Then, we
consider a slightly more complicate data generated by
x = r · cos(θ) and y = r · sin(θ) where r = sin(4θ) + 2
and θ ∈ (0, 2π]. The data used in both examples are
illustrated in Figure 4.

As illustrated by Figure 4, the density function es-
timated by the OCSMM is relatively less susceptible
to the additional corruption than that estimated by
the OCSVM, and tends to estimate the true density
more accurately. This is not surprising because we also
take into account an additional information about the
uncertainty. However, this experiment suggests that
when dealing with uncertain data, it might be ben-
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uncorrupted data corrupted data one−class SVM one−class SMM

Figure 4: The density functions estimated by the
OCSVM and the OCSMM using the corrupted data.

eficial to also estimate the uncertainty, as commonly
performed in astronomy, and incorporate it into the
model. This scenario has not been fully investigated
in AI and machine learning communities. Our frame-
work provides one possible way to deal with such a
scenario.

5.3 Sloan Digital Sky Survey

Sloan Digital Sky Survey (SDSS)2 consists of a series of
massive spectroscopic surveys of the distant universe,
the milky way galaxies, and extrasolar planetary sys-
tems. The SDSS datasets contain images and spectra
of more than 930,000 galaxies and more than 120,000
quasars.

In this experiment, we are interested in identifying
anomalous groups of galaxies, as previously studied
in Póczos et al. (2011) and Xiong et al. (2011a;b). To
replicate the experiments conducted in Xiong et al.
(2011b), we use the same dataset which consists of
505 spatial clusters of galaxies. Each of which con-
tains about 10-15 galaxies. The data were prepro-
cessed by PCA to reduce the 1000-dimensional features
to 4-dimensional vectors.

To evaluate the performance of different algorithms to
detect group anomaly, we consider artificially random
injections. Each anomalous group is constructed by
randomly selecting galaxies. There are 50 anomalous
groups of galaxies in total. Note that although these
groups of galaxies contain usual galaxies, their aggre-
gations are anomalous due to the way the groups are
constructed.

The average precision (AP) and area under the ROC
curve (AUC) from 10 random repetitions are shown in
Figure 5. Based on the average precision, KNN-L2,
MGM, and OCSMM achieve similar results on this
dataset and KNN-Renyi outperforms all other algo-
rithms. On the other hand, the OCSMM and KNN-

2See http://www.sdss.org for the detail of the surveys.
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Figure 5: The average precision (AP) and area un-
der the ROC curve (AUC) of different group anomaly
detection algorithms on the SDSS dataset.

Renyi achieve highest AUC scores on this dataset.
Moreover, it is clear that point anomaly detection us-
ing the OCSVM fails to detect group anomalies.

5.4 High Energy Particle Physics

In this section, we demonstrate our group anomaly
detection algorithm in high energy particle physics,
which is largely the study of fundamental parti-
cles, e.g., neutrinos, and their interactions. Essen-
tially, all particles and their dynamics can be de-
scribed by a quantum field theory called the Stan-
dard Model. Hence, given massive datasets from high-
energy physics experiments, one is interested in discov-
ering deviations from known Standard Model physics.

Searching for the Higgs boson, for example, has re-
cently received much attention in particle physics and
machine learning communities (see e.g., Bhat (2011),
Vatanen et al. (2012) and references therein). A new
physical phenomena usually manifest themselves as
tiny excesses of certain types of collision events among
a vast background of known physics in particle detec-
tors.

Anomalies occur as a cluster among the background
data. The background data distribution contaminated
by these anomalies will therefore be different from the
true background distribution. It is very difficult to de-
tect this difference in general because the contamina-
tion can be considerably small. In this experiment, we
consider similar condition as in Vatanen et al. (2012)
and generate data using the standard HEP Monte
Carlo generators such as PYTHIA3. In particular, we
consider a Monte Carlo simulated events where the
Higgs is produced in association with the W boson
and decays into two bottom quarks.

The data vector consists of 5 variables (px, py, pz, e,m)
corresponding to different characteristics of the topol-
ogy of a collision event. The variables px, py, pz, e rep-

3http://home.thep.lu.se/∼torbjorn/Pythia.html
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Figure 6: The ROC of different group anomaly detection algorithms on the Higgs boson datasets with
various Higgs masses mH . The associated AUC scores for different settings, sorted in the same or-
der appeared in the figure, are (0.6835,0.6655,0.6350,0.5125,0.7085), (0.5645,0.6783,0.5860,0.5263,0.7305),
(0.8190,0.7925,0.7630,0.4958,0.7950), and (0.6713,0.6027,0.6165,0.5862,0.7200).

resents the momentum four-vector in units of GeV
with c = 1. The variable m is the particle mass in the
same unit. The signal looks slightly different for dif-
ferent Higgs masses mH , which is an unknown free pa-
rameter in the Standard Model. In this experiment, we
consider mH = 100, 115, 135, and 150 GeV. We gener-
ate 120 groups of collision events, 100 of which contain
only background signals, whereas the rest also contain
the Higgs boson collision events. For each group, the
number of observable particles ranges from 200 to 500
particles. The goal is to detect the anomalous groups
of signals which might contain the Higgs boson with-
out prior knowledge of mH .

Figure 6 depicts the ROC of different group anomaly
detection algorithms. The OCSMM and KNN-based
group anomaly detection algorithms tend to achieve
competitive performance and outperform the MGM
algorithm. Moreover, it is clear that traditional point
anomaly detection algorithm fails to detect high-level
anomalous structures.

6 Conclusions and Discussions

To conclude, we propose a simple and efficient algo-
rithm for detecting group anomalies called one-class
support measure machine (OCSMM). To handle ag-
gregate behaviors of data points, groups are repre-
sented as probability distributions which account for
higher-order information arising from those behaviors.
The set of distributions are represented as mean func-
tions in the RKHS via the kernel mean embedding. We
also extend the relationship between the OCSVM and
the KDE to the OCSMM in the context of variable
kernel density estimation, bridging the gap between
large-margin approach and kernel density estimation.
We demonstrate the proposed algorithm on both syn-
thetic and real-world datasets, which achieve compet-
itive results compared to existing group anomaly de-

tection techniques.

It is vital to note the differences between the OCSMM
and hierarchical probabilistic models such as MGM
and FGM. Firstly, the probabilistic models assume
that data are generated according to some paramet-
ric distributions, i.e., mixture of Gaussian, whereas
the OCSMM is nonparametric in the sense that no
assumption is made about the distributions. It is
therefore applicable to a wider range of applications.
Secondly, the probabilistic models follow a bottom-
up approach. That is, detecting group-based anoma-
lies requires point-based anomaly detection. Thus,
the performance also depends on how well anomalous
points can be detected. Furthermore, it is computa-
tional expensive and may not be suitable for large-
scale datasets. On the other hand, the OCSMM
adopts the top-down approach by detecting the group-
based anomalies directly. If one is interested in find-
ing anomalous points, this can be done subsequently
in a group-wise manner. As a result, the top-down
approach is generally less computational expensive
and can be used efficiently for online applications and
large-scale datasets.
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Abstract

A number of discrete and continuous opti-
mization problems in machine learning are
related to convex minimization problems un-
der submodular constraints. In this paper,
we deal with a submodular function with a
directed graph structure, and we show that a
wide range of convex optimization problems
under submodular constraints can be solved
much more efficiently than general submod-
ular optimization methods by a reduction to
a maximum flow problem. Furthermore, we
give some applications, including sparse op-
timization methods, in which the proposed
methods are effective. Additionally, we eval-
uate the performance of the proposed method
through computational experiments.

1 Introduction

A submodular function is a fundamental tool in dis-
crete optimization, machine learning and other re-
lated fields and has been recognized as an interest-
ing subject of research. A submodular function is
known to be a discrete counterpart of a convex func-
tion (Lovász [17]). Especially, the submodular func-
tion minimization problem is an elemental problem,
and many combinatorial problems arising in machine
learning, such as clustering [25, 24], image segmenta-
tion [31] and feature selection [2], can be reduced to
this problem.

For example, Narasimhan, Joic and Bilmes [25] showed
that clustering problems with some specific natural cri-
teria, such as the minimum description length, can be
solved as the problem of minimizing a symmetric sub-
modular function. Also, Bach [2] recently showed that
many of the known structured-sparsity inducing norms
can be interpreted as continuous relaxations, called the
Lovász extensions, of submodular functions. Based on

this correspondence relationship, proximal operators,
which are required for learning with structured regu-
larization, can be computed as minimum-norm-point
problems on submodular polyhedra.

Similarly to convex functions, submodular functions
can be exactly minimized in polynomial time. The
fastest known algorithm of Orlin [27] runs in O(n5EO+
n6) time, where n is the size of the ground set and EO
is the time for function evaluation. On the other hand,
the minimum norm point algorithm (Fujishige [9]) is
usually much faster in practice [10], although it has
worse time complexity. However, the existing algo-
rithms for the general submodular minimization prob-
lem, even including the minimum norm point algo-
rithm, do not scale sufficiently to large problems from
a practical point of view.

Meanwhile, it is known that submodular function min-
imization problems can be solved more efficiently when
the submodular functions have particular structure.
For symmetric submodular functions, Queyranne [29]
gave a minimization algorithm that runs in O(n3EO).
Also recently, Stobbe and Krause [31] introduced a
decomposable submodular function and developed the
Smoothed Lovász Gradient (SLG) algorithm, which
is based on the smoothing technique of Nesterov [26]
and the discrete convexity of a submodular function.
In addition, Jegelka et al. [14] introduced a generalized
graph cut function, which generalizes a large subfam-
ily of submodular functions, and proposed an efficient
network flow based minimization algorithm.

In this paper, we consider a separable convex opti-
mization problem over a base polyhedron, which is a
discrete structure determined by a submodular func-
tion. Separable convex optimization under submodu-
lar constraints is related to various discrete and contin-
uous optimization problems, including network anal-
ysis methods [23], sparse learning methods [2], and
approximation algorithms for NP-hard combinatorial
optimization problems [13]. For a general submodular
function, separable convex optimization problems can
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be solved within the same running time as submodular
function minimization [6, 21], that is, O(n5EO + n6)
time. Thus, such algorithms are impractical when the
size of the ground set is large. Even though the mini-
mum norm point algorithm [9] and its weighted version
[22] would solve such quadratic minimization problem
much faster, it does not have good time complexity
bounds and still does not scale to large problems.

We show that if a submodular function has a spe-
cific graph structure, the convex optimization prob-
lem can be solved efficiently with the aid of a gen-
eral framework of the decomposition algorithm [9, 22]
and network flow algorithms [11, 12, 28]. We develop
a parametrized directed graph structure that deter-
mines a parametric submodular function minimization
problem, and show that the decomposition algorithm
can be performed successfully by computing the max-
imal minimum cuts iteratively. Furthermore, we men-
tion that several machine learning applications can be
solved in this convex optimization problem. We re-
mark that the proposed method can deal with a rela-
tively general submodular function and various sepa-
rable convex objective functions.

The remainder of the paper is organized as follows.
In Section 2, we provide the definitions of basic con-
cepts and give a definition of a convex optimization
problem under submodular constraints. In Section 3,
we give examples of submodular functions that have
good graph structures. In Section 4, we show some
optimization problems related to separable convex op-
timization problems under submodular constraints. In
Section 5, we describe a general decomposition algo-
rithm for solving separable convex optimization prob-
lems, and in Section 6, we further show that structured
convex optimization problems under submodular con-
straints can be solved efficiently with the aid of net-
work flow algorithms. Finally, we show some empirical
results of computational experiments in Section 7, and
give concluding remarks in Section 8.

2 Submodular functions and convex
optimization problems

We give basic definitions of a submodular function and
related concepts (for details on the theory of submodu-
lar functions, see [9, 30]). Then, we give the definition
of a convex optimization problem under submodular
constraints.

2.1 Submodular functions and related
polyhedra

Let V = {1, . . . , n} be a given set of n elements, and
let g : 2V → R be a real-valued function defined on

all the subset of V . Such a function g is called a set
function with a ground set V . The set function g :
2V → R is called submodular if

g(S) + g(T ) ≥ g(S ∪ T ) + g(S ∩ T ), ∀S, T ⊆ V. (1)

A set function g is called supermodular if −g is sub-
modular. A set function is called modular if it al-
ways satisfies (1) with equality. A set function is called
nondecreasing if g(S) ≤ g(T ) for any S, T ⊆ V with
S ⊆ T . For an n-dimensional vector a ∈ Rn with
components ai, i ∈ V , and a subset S ⊆ V , we denote
a(S) =

∑
i∈S ai. For convenience, we let a(∅) = 0. A

set function a : 2V → R corresponding to the vector a
is a modular function.

Submodular function minimization

A submodular function minimization problem is a fun-
damental unifying discrete optimization problem. For
a submodular function g : 2V → R, the submod-
ular function minimization problem asks for finding
a subset S ⊆ V that minimizes f(S). This prob-
lem is known to be solvable in polynomial time, and
the fastest known polynomial time algorithm [27] that
runs in O(n5EO + n6) time, where EO is the time of
one function evaluation of g. The algorithms for gen-
eral submodular function minimization are impractical
when n = |V | is large. In addition, the minimum norm
point algorithm [9] is known to be usually much faster
in practice, although it has worse time complexity.

Let Arg min g ⊆ 2V denote the family of all minimiz-
ers of g. That is, Arg min g = {S∗ ⊆ V : f(S∗) =
minS f(S)}. For S∗, T ∗ ∈ Arg min g, the submodu-
larity of g implies that S∗ ∪ T ∗, S∗ ∩ T ∗ ∈ Arg min g.
Thus, there exist the (unique) minimal minimizer and
the (unique) maximal minimizer of g. Many submod-
ular function minimization algorithms can be modi-
fied to find the maximal minimizer and/or the minimal
minimizer (see, e.g., [21]).

Base polyhedron

For a submodular function g : 2V → R with g(∅) = 0,
the submodular polyhedron P(g) ⊆ Rn and the base
polyhedron B(g) ⊆ Rn are given by

P(g) = {x ∈ Rn : x(S) ≤ g(S) (∀S ⊆ V )},

B(g) = {x ∈ P(g) : x(V ) = g(V )}.

Figure 1 illustrates examples of the base polyhedra.
B(g) is determined by 2n−2 inequalities and one equal-
ity. We see that B(g) is nonempty and bounded. The
base polyhedron B(g) is included in the nonnegative
orthant Rn

≥0 if and only if g is nondecreasing.
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Figure 1: Examples of base polyhedra

2.2 Convex optimization under submodular
constraints

Throughout this paper, we suppose that set function
f : 2V → R is submodular and satisfies f(∅) = 0. Let
wi : R → R be a convex function for each i ∈ V . We
consider the separable convex function minimization
problem over the base polyhedron :

min
x∈B(f)

∑
i∈V

wi(xi). (2)

It is known that a number of optimization problems of
this form are equivalent.

Theorem 1 (Nagano and Aihara [22]). Suppose that
f : 2V → R is a nondecreasing submodular function
with f(∅) = 0. Let b ∈ Rn be a positive vector, and
let w0 : R → R be a differentiable and strictly convex
function. The following problems (1.a) – (1.f) have the
same (optimal) solution:

problem (1.a) min
x∈B(f)

n∑
i=1

x2
i

bi
;

problem (1.b) min
x∈B(f)

n∑
i=1

xp+1
i

bp
i

for p>0;

problem (1.c) max
x∈B(f)

n∑
i=1

xp+1
i

bp
i

for p<0 with p 
=−1;

problem (1.d) max
x∈B(f)

n∑
i=1

bi ln xi;

problem (1.e) min
x∈B(f)

n∑
i=1

(xi ln xi

bi
+ bi − xi);

problem (1.f) min
x∈B(f)

n∑
i=1

xig0(
bi

xi
).

In view of Theorem 1, we focus on the case where the
objective function is quadratic. For a positive vector
b ∈ Rn, we mainly deal with problem (1.a). By using
the following two observations, w.l.o.g., we can assume
that the submodular function f is nondecreasing.

Lemma 2. For any β ∈ R, x∗ is optimal for

min{∑i
x2

i

bi
: x ∈ B(f)} if and only if x∗ + βb is opti-

mal for min{∑
i

x2
i

bi
: x ∈ B(f + βb)}.

Lemma 3. Set β := max{0, max
i=1,..., n

f(V \{i})−f(V )
bi

}.
Then f + βb is a nondecreasing submodular function.

Problem (1.a) is known as the lexicographically opti-
mal base problem [8]. If b is the all-one vector, problem
(1.a) becomes the minimum norm base problem. For
a general submodular function, problem (1.a) can be
solved within the same running time as the submodu-
lar function minimization [6, 21], that is, O(n5EO+n6)
time, where EO is the time of one function evaluation.
Thus, such algorithms are impractical when n = |V | is
large. Although the minimum norm point algorithm
[9] and its weighted version [22] can solve problem (1.a)
much faster, it has worse time complexity and still does
not scale to large problems.

In this paper, we point out that if the function f has a
good graph structure, problem (1.a) can be solved ef-
ficiently with the aid of network flow algorithms. Fur-
thermore, we show a number of applications of the
convex optimization problem (1.a).

3 Structured submodular functions
and minimization problems

Many basic submodular functions can be represented
by using graphs. In such cases, a minimum cut algo-
rithm, which runs much faster in practice, is useful to
solve submodular optimization problems.

In this section, we will see some examples of submod-
ular functions with directed graph structures, which
are important from the viewpoint of applications.

3.1 Minimizing graph cut functions

In this subsection, we will see that an s-t cut function
κs-t and a generalized graph cut function γ of [14],
both of which are submodular, can be minimized ef-
ficiently with the aid of network flow algorithms. In
particular, we will see that the maximal minimizer can
be computed efficiently in both cases. In the general
algorithm described in Section 5, the maximal mini-
mizer of a submodular function has to be computed.

Minimum cut problem

We start with the minimum s-t cut problem. Let G =
({s} ∪ {t} ∪ V, E) be a directed graph, where s is a
special source node, t is a special sink node, V is a set of
other nodes, and E is a set of directed edges. For each
e ∈ E , a nonnegative capacity value c(e) is assigned.
An s-t cut is an ordered bipartition (V1, V2) of the
node set of G such that s ∈ V1 and t ∈ V2. Clearly,
any s-t cut can be expressed as ({s}∪S, {t}∪ (V \S))
for some S ⊆ V. For an s-t cut ({s}∪S, {t}∪ (V \S)),
its capacity κs-t is defined by

κs-t(S) =
∑{c(e) : e ∈ δout

G ({s}∪S)} (3)
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for each S ⊆ V, where δout
G (V ′) is a set of edges leav-

ing V ′ ⊆ V in G. The minimum cut problem asks for
finding an s-t cut of G that minimizes the capacity.
The set function κs-t : 2V → R, which is called an
s-t cut function, is known to be submodular. There-
fore, the minimum cut problem is a special case of a
submodular function minimization problem.

The minimum cut problem is closely related to the
maximum flow problem, which is a fundamental prob-
lem in combinatorial optimization [1]. It can be solved
quite efficiently. For example, it can be solved in
O(|V||E| log(|V|2/|E|)) time [12] or O(|V||E|) time [28].

As κs-t is submodular, there exists the maximal min-
imizer S∗

max of κs-t. The s-t cut ({s} ∪ S∗
max, {t} ∪

(V \ S∗
max)) is called the maximal minimum s-t cut.

Once a maximal flow is computed, we can obtain the
maximal minimum s-t cut in additional O(|V| + |E|)
time (we just need to consider the set of nodes reach-
able to the sink t and its complement in the residual
network [1]). The minimal minimum s-t cut can be
defined and computed in a similar way.

Lemma 4. The maximal minimizer of the s-t cut
function κs-t : 2V → R defined in (3) can be computed
in O(|V||E| log(|V|2/|E|)) time, or, O(|V||E|) time.

Generalized graph cut functions

Next we give a definition of the generalized graph cut
function γ : 2V → R of Jegelka et al. [14], which gen-
eralizes a large subfamily of submodular functions.

Let G = ({s} ∪ {t} ∪ V, E) be a directed graph with
nonnegative edge capacities c(e) ≥ 0 (e ∈ E). Suppose
that the set V is partitioned as V = V ∪ U , where
V = {1, . . . , n} is a set of nodes, each of which may
become a source, and U is a set of auxiliary nodes (U
can be empty). Figure 2 illustrates an example of the
graph G = ({s} ∪ {t} ∪ V ∪ U, E). A generalized graph
cut function [14] γ : 2V → R is defined by

γ(S) = min
W⊆U

∑{c(e) : e ∈ δout
G ({s}∪S∪W )} (4)

for each S ⊆ V . If U is empty, the function γ coincides
with the function κs-t defined in (3). The submodu-
larity of γ can be derived from the classical result of
Megiddo [20] on network flow problems with multiple
terminals (for details, see the appendix of this paper).

Let us consider the minimization of γ : 2V → R. By
the definition of γ, the value γ∗ := minS⊆V γ(S) is
equal to the capacity of a minimum s-t cut in G. For
any minimum s-t cut ({s}∪P, {t}∪ (V ∪U \P)) in G,
we have γ(P ∩ V ) = γ∗ and thus P ∩ V is a minimizer
of γ : 2V → R. Therefore, a minimizer of γ can be
computed by solving the minimum s-t cut problem on
G = ({s} ∪ {t} ∪ V ∪ U, E).

1

source t

u1

u2

sinks 2

3

V U

Figure 2: A directed graph G = ({s} ∪ {t} ∪ V ∪ U, E)
that generates a generalized graph cut function γ :
2V → R

Conversely, let S∗ ⊆ V be a minimizer of γ, and let
W ∗ be a subset W ⊆ U that attains the minimum
in the right hand side of (4) with respect to S = S∗.
Then S∗ ∪W ∗ ⊆ V minimizes the s-t cut function (see
[14]).

Therefore, given the maximal minimum s-t cut ({s} ∪
P∗

max, {t} ∪ (V ∪ U \ P∗
max)), the subset P∗

max ∩ V is
the maximal minimizer of γ.

Lemma 5. The maximal minimizer of the generalized
graph cut function γ : 2V → R defined in (4) can be
computed in O(|V||E| log(|V|2/|E|)) time, or, O(|V||E|)
time, where V = V ∪ U .

3.2 Transformed graph cut functions

We define a transformed graph cut function, and we
show that the function can be regarded as an s-t cut
function defined in Subsection 3.1. In Subsection 4.1,
we will see that the convex minimization problem (1.a)
under the constraints of this function is related to the
densest subgraph problem.

Let G = (V, E) be a directed graph with node set
V = {1, . . . , n} and edge set E. Given nonnegative
edge capacities c(e) (e ∈ E), a cut function κ : 2V → R
defined by κ(S) =

∑{c(e) : e ∈ δout
G (S)} for each S ⊆

V is submodular. Let a ∈ Rn. Then, a transformed
graph cut function κa : 2V → R defined by

κa = κ + a

is also submodular.

Let us see that the function κa : 2V → R can be
regarded as an s-t cut function on a new graph Ga.

Define A+ = {i ∈ V : ai > 0} and A− = {i ∈ V : ai <
0}. By adding new nodes s, t and new edges E+ ∪ E−
to G, we construct a new directed graph Ga = ({s} ∪
{t}∪V, E∪E+∪E−), where E+ = {(i, t) : i ∈ A+} and
E− = {(s, i) : i ∈ A−}. The capacities of new edges
are determined as follows: we set c(i, t) = ai (≥ 0) for
each (i, t) ∈ E+, and set c(s, i) = −ai (≥ 0) for each
(s, i) ∈ E−. Figure 3 shows the construction of Ga.

For an s-t cut ({s}∪S, {t}∪(V \S)) of Ga, its capacity
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Figure 3: Construction of the directed graph Ga

is equal to

κ(S) + a(S ∩ A+) + (−a(A− \ S))

= κ(S) + a(S) − a(A−)

= κa(S) + const.

Thus, κa can be regarded as an s-t cut function on Ga.

3.3 Decomposable submodular functions

Decomposable submodular function (see [31]) are one
of the most important special case of generalized graph
cut functions [14]. For more examples of generalized
graph cut functions, refer to Jegelka et al. [14].

A decomposable submodular function τ : 2V → R is a
set function that can be represented as a sum of a mod-
ular set function and submodular set functions arising
from concave functions. As to Stobbe and Krause [31],
we will focus on the case where each concave function
is a threshold potential. That is, we consider the fol-
lowing decomposable submodular function τ : 2V → R
defined by

τ(S) = −d(S) +
k∑

j=1

min{yj , wj(S)} (5)

for each S ⊆ V , where d ∈ Rn is a positive vec-
tor, w1, . . . , wk ∈ Rn are nonnegative vectors, and
y1, . . . , yk > 0.

Now we observe that the function τ defined in (5) can
be represented as a generalized graph cut function de-
fined in Subsection 3.1. Consider a directed graph
Gτ = ({s} ∪ {t} ∪ V ∪ U, E), where V = {1, . . . , n},
U = {u1, . . . , uk}, and E = {(s, i) : i ∈ V } ∪ {(i, uj) :
i ∈ V, uj ∈ U} ∪ {(uj , t) : uj ∈ U}. The edge capaci-
ties are determined as

c(s, i) = di, ∀i ∈ V,

c(i, uj) = wj
i , ∀i ∈ V, ∀uj ∈ U,

c(uj , t) = yj , ∀uj ∈ U.

Figure 4 illustrates the directed graph Gτ . We can ob-
serve that Gτ generates the decomposable submodular
function τ .

1
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3

4
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d1

d2

d3

d4

t sink

u1

u2

u3

y1

y2

y3

w
3
4

w
1
1

V U

Figure 4: Directed graph Gτ associated with a decom-
posable submodular function τ with n = 4 and k = 3

The function τ corresponds to the sum of truncated
functions described in [14], and the construction of Gτ

is widely used in computer vision [15].

4 Applications

It is known that the convex optimization problem (2)
under submodular constraints is related to some dis-
crete and continuous optimization problems. In this
section, we show some examples in which the submod-
ular functions have graph structures considered in Sec-
tion 3.

4.1 Finding dense subgraphs

Let G = (V, E) be an undirected graph with node set
V = {1, . . . , n} and undirected edge set E. Given non-
negative edge capacities c(e) (e ∈ E) and an integer
k, the densest k-subgraph problem asks for finding a
k-subset S ⊆ V that maximizes θ(S), where θ(S) is
the sum of weights of edges in the subgraph induced
by S. The function θ : 2V → R is a supermodular
function with θ(∅) = 0, and the minimum norm base
problem

min
x∈B(−θ)

n∑
i=1

x2
i (6)

plays an important role to find dense subgraphs of G
[23].

We show that −θ is a transformed graph cut function
(Subsection 3.2). Let m ∈ Rn be a vector defined by
mi =

∑
i′{c({i, i′}) : {i, i′} ∈ E} for each i ∈ V ,

and let κ be a cut function of G, that is, κ(S) =∑{c({i, i′}) : {i, i′} ∈ E, i in S and i′ in V \ S}
(S ⊆ V ). Then we have

−θ(S) = 1
2κ(S) − 1

2m(S)

for each S ⊆ V . It is easy to see that the function
κ : 2V → R can be regarded as a cut function of a
directed graph. Thus, −θ is a transformed graph cut
function.
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4.2 Proximal methods

Regularized learning is a fundamental formulation for
many supervised problems. Let {(zi, yi)}N

i=1 be a set
of samples, β ∈ Rn a model parameter vector and
l(z, y; β) a (differentiable) convex loss. Then, the op-
timization for regularized learning is represented as

min
β∈Rn

N∑

i=1

l(zi, yi; β) + λ · Ω(β),

where Ω(β) is a regularization term and λ is the regu-
larization parameter. If Ω(β) is non-differentiable on
β, which is usually true for structured regularization,
the proximal method is a popular approach to solve
this optimization problem [3]. As is well known, its
update procedure at each iteration can be reduced to
the calculation of the following problem:

min
β∈Rn

1

2
‖β − s‖2

2 + λ · Ω(β), (7)

where s ∈ Rn. Recently, Bach [2] showed that many
of the popular structured norms can be represented
as continuous relaxations, called Lovász extensions, of
submodular functions. And in this case, Problem (7)
can be transformed to

min
t

{∑n
i=1 t2i : t ∈ B(g − λ−1s)},

where g is a submodular function whose Lovász exten-
sion is Ω (β is solved as λt). Note that many of popular
structured norms can be expressed as the Lovász ex-
tensions of generalized graph cut functions, such as cut
functions (that correspond to fused-regularization)[4]
and coverage functions (that correspond to overlap-
ping group-regularization).

4.3 Minimum ratio problems

For a nonnegative submodular function g : 2V → R
with g(∅) = 0 and a positive vector b ∈ Rn, consider
the minimum ratio problem which asks for a subset
S ∈ 2V \ {∅} minimizing g(S)/b(S). This kind of
optimization problems have to be solved iteratively,
e. g., in the primal-dual approximation algorithm for a
submodular cost covering problem [13].

Suppose that we have the optimal solution x∗ to

min{∑n
i=1

x2
i

bi
: x ∈ B(f)}. Let ξ1 = mini∈V

x∗
i

bi
and

let S1 = {i ∈ V :
x∗

i

bi
= ξ1}. Then the subset S1

is an optimal solution to the minimum ratio problem
(see [9]). Therefore, by solving the separable quadratic
minimization problem over B(g), an optimal solution
to the minimum ratio problem can be obtained. If
the function g has a graph structure, the running time
of the approximation algorithm of [13] could be im-
proved.

5 A general framework for separable
convex minimization under
submodular constraints

In this section, we describe the decomposition algo-
rithm, which is a general framework to solve the sepa-
rable convex minimization problem under submodular
constraints. Before describing the decomposition al-
gorithm, we give a parametric formulation of problem
(1.a).

For the validity of the decomposition algorithm de-
scribed here, e. g., refer to Fujishige [9], and Nagano
and Aihara [22].

5.1 A parametric formulation

Let f : 2V → R be a general nondecreasing submodu-
lar function and b ∈ Rn a positive vector. Recall that
the set function b associated to b is modular.

For a parameter α ≥ 0, define fα : 2V → R by fα =
f − αb, which is submodular. Let us see how problem
(1.a) can be reduced to the parametric submodular
minimization problem: minimize fα for all α ≥ 0. It
is known that there exist � + 1 subsets,

(∅ =) S0 ⊂ S1 ⊂ · · · ⊂ S� (= V ),

and � + 1 subintervals of R≥0 = {α ∈ R : α ≥ 0},

R0 = [0, α1), R1 = [α1, α2), . . . ,

Rj = [αj , αj+1), . . . , R� = [α�, +∞),

such that, for each j ∈ {0, . . . , �}, the subset Sj is
the unique maximal minimizer of fα = f − αb for all
α ∈ Rj . The vector x∗ ∈ Rn determined by, for each
i ∈ V with i ∈ Sj+1 \ Sj (j ∈ {1, . . . , �}),

x∗
i =

f(Sj+1)−f(Sj)
b(Sj+1\Sj)

bi (8)

is the unique optimal solution to the quadratic mini-
mization problem (1.a). The equation (8) implies that
problem (1.a) can be immediately solved if the collec-
tion S∗ = {S0, S1, . . . , S�} is computed.

5.2 The decomposition algorithm

By successively minimizing fα = f − αb for some
appropriately chosen α ≥ 0, the decomposition al-
gorithm finds Sj one by one, and finally the chain
S0 ⊂ S1 ⊂ · · · ⊂ S� and the optimal solution x∗ to
problem (1.a) are obtained.

The decomposition algorithm DA is recursive. Sup-
pose that we are given two subsets Sj , Sj′ ∈ S∗ with
0 ≤ j < j′ ≤ n. The algorithm DA(Sj , Sj′) finds the
collection

S∗(Sj , Sj′) := {S ∈ S∗ : Sj ⊆ S ⊆ Sj′}.
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It can be verified that αj+1 ≤ f(Sj′ )−f(Sj)

b(Sj′\Sj)
≤ αj′ .

Therefore, we can decide if (j + 1 = j′) or (j + 1 < j′)

by minimizing fα with α =
f(Sj′ )−f(Sj)

b(Sj′\Sj)
.

The decomposition algorithm DA can be described as
follows (see, e.g., [22] for the detailed analysis of the
algorithm).

Algorithm DA(T, T ′)
Input : Subsets T, T ′ ∈ S∗ with T ⊂ T ′.
Output : The collection S∗(T, T ′).

1: Set α = f(T ′)−f(T )
b(T ′\T ) . Compute the unique max-

imal minimizer T ′′ of fα := f − αb.

2: If T ′′ = T ′, return {T, T ′}.

3: If T ⊂ T ′′ ⊂ T ′, let S1 and S2 be the collec-
tions returned by DA(T, T ′′) and DA(T ′′, T ′),
respectively. Return S1 ∪ S2.

First of all, we know that S0 = ∅ and S� = V , al-
though we do not know how large � is. Clearly, we have
S∗(∅, V ) = S∗. Therefore, by performing DA(∅, V ),
the collection S∗ can be obtained. Using (8), we can
immediately obtain the optimal solution of problem
(1.a).

In the decomposition algorithm DA(∅, V ), we mini-
mize the functions fα : 2V → R at most 2n − 1 times.

6 Efficient algorithms for structured
convex minimization problems

Let γ : 2V → R be a generalized graph cut function
defined as in (4), which is generated from a directed
graph G = ({s} ∪ {t} ∪ V ∪ U, E). Consider the convex
optimization problem (1.a) with f = γ,

min
x∈B(γ)

n∑
i=1

x2
i

bi
. (9)

Recall that b ∈ Rn is a positive vector. We show that
problem (9) can be solved efficiently using the frame-
work of the decomposition algorithm DA of Section 5.

For nonnegative parameters α and β, let us see that
the set functions γ − αb and γ + βb are both general-
ized graph cut functions. By adding new edges e−

i =
(s, i) (i ∈ V ) with edge capacities c(e−

i ) = αbi (i ∈ V )
to G, we construct a new directed graph G−

αb (see Fig-
ure 5 (a)). By adding new edges e+

i = (i, t) (i ∈ V )
with edge capacities c(e+

i ) = βbi (i ∈ V ) to G, we
construct a new directed graph G+

βb (see Figure 5 (b)).
Since γ is defined as in (4), the functions γ − αb and
γ + βb are generated by G−

αb and G+
βb, respectively.

Using Lemmas 2 and 3, and the fact that γ + βb is a
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Figure 5: Directed graphs G−
αb and G+

βb

generalized graph cut function, we can assume that γ
is nondecreasing in problem (9).

Now we can apply the decomposition algorithm
DA(∅, V ) to problem (9). In step 1 of the algorithm
DA, we just have to compute the maximal minimum
s-t cut in G−

αb for some appropriately chosen α ≥ 0
to find the maximal minimizer of γ − αb. Since we
minimize the functions γ − αb at most 2n − 1 times,
we obtain the following theorem with the aid of the
minimum s-t cut algorithm [28].

Theorem 6. For a generalized graph cut function γ :
2V → R generated from G = ({s} ∪ {t} ∪ V ∪ U, E),
problem (9) can be solved in O(n(n + |U |)|E|) time,
where n = |V |.

We can obtain a different time complexity by using the
parametric minimum cut algorithm (Gallo et al. [11]).
The parametric minimization problem

minimize γ − αb for all α ≥ 0

corresponds to the parametric minimum cut problem

find minimum s-t cuts in G−
α for all α ≥ 0.

To solve this parametric cut problem, we can utilize
the parametric minimum cut algorithm [11] (see also
[16]). We remark that the directed graph G−

α satisfies
the monotonicity in α ≥ 0 in the meaning of [11]. As
a result, we have the following time complexity.

Theorem 7. For a generalized graph cut function γ :
2V → R generated from G = ({s} ∪ {t} ∪ V ∪ U, E),

problem (9) can be solved in O((n+|U |)|E| log (n+|U |)2
|E| )

time, where n = |V |.

The algorithm of Theorem 7, which is much faster than
that of Theorem 6 from a theoretical point of view, is
rather complicated to implement.

In view of Theorem 1, we can solve the convex min-
imization problem under constraints with respect to
the structured submodular function γ,

min
x∈B(γ)

∑
i∈V

wi(xi)

465



in O(n(n+ |U |)|E|) or O((n+ |U |)|E| log (n+|U |)2
|E| ) time

for a number of separable convex objective functions.

7 Experimental results

We investigated the empirical performance of the pro-
posed scheme using synthetic and real-world datasets.
In Section 7.1, we compare the proposed method in the
application to proximal methods for structured regu-
larized least-squares regression, with the state-of-the-
art algorithms. In Section 7.2, we apply the proposed
algorithm to the densest subgraph problem for large
real web-network data. The experiments below were
run on a 2.3 GHz 64-bit workstation using Matlab with
Mex implementations. And we used SPAMS (SPArse
Modeling Software) [18] for the implementations of the
proximal methods for the first experiment.

7.1 Comparison in proximal methods

In the first experiment, we compared the proposed al-
gorithm in the application to proximal methods with
the state-of-the-art algorithms. As for the regulariza-
tion term, we used fused-regularization Ωfused(β) and
group regularization (with l∞-norm) Ωgroup(β) (for a
given set of groups G), respectively represented as

Ωfused(β) =
∑n−1

i=1 |βi − βi+1| and

Ωgroup(β) =
∑

g∈Gdg‖βg‖∞,

where dg is the weight of the group g. As the com-
parison partners, we used the proximal methods for
the above regularization; the one based on the ho-
motopy algorithm for Ωfused(β) [7] (Homo.) and the
one by Mairal et al. [19] for Ωgroup(β) (NFA), as well
as the minimum-norm-point algorithm (MNP) for the
calculation of the proximal operator. Since both reg-
ularizations can be represented as the decomposable
submodular function, we applied the parametric flow
algorithm for computing the proximal operators (DA).

We generated data as follows. First for the evaluation
with fused regularization, one feature is first selected
randomly and the next one is selected with probability
0.4 from each neighboring feature or with probability
0.2/(N − 2) from the remaining ones and repeat this
procedure until k features are selected. For group reg-
ularization, the features are covered by 20–200 overlap-
ping groups of size 15. The causal features are chosen
to be the union of 2 of these groups. Here, we assign
weights dg = 2 to those causal groups and dg = 1
to all other groups. We then simulate N data points

(x(i), y(i)), with y(i) = β̄
�
x(i) + ε, ε ∼ N (0, σ2),

where β̄ is 0 for non-causal features and normally dis-
tributed otherwise.

Table 1: Comparison of running time (seconds) for the
proposed and existing methods.

n N k DA MNP Homo.

500 500 20 0.024 5.083 0.084
500 1,000 20 0.062 146.969 0.531
500 5,000 20 1.085 — 32.676

1,000 500 20 0.019 3.891 0.058
1,000 1,000 20 0.059 98.310 0.266
1,000 5,000 20 1.064 — 12.372

n N k DA MNP NFA

500 500 ∼20 0.021 8.910 0.015
500 1,000 ∼20 0.056 280.117 0.052
500 5,000 ∼20 1.091 — 1.112

1,000 500 ∼20 0.020 6.108 0.015
1,000 1,000 ∼20 0.054 198.010 0.051
1,000 5,000 ∼20 1.003 — 0.896

Since all methods calculate the same objectives in prin-
ciple, here we report only the comparison of the em-
pirical running time. Tables 1 show the running time
by the algorithms for reaching the duality-gap within
10−4, averaged over 20 datasets each. We can see
that the algorithms based on the parametric-flow algo-
rithm, including ours, run much faster than the others.
Note that our scheme can be applied to more general
form of structured regularization (Eq. (5) for the graph
cut implementation) than Ωfused(β) and Ωgroup(β).

7.2 Densest subgraphs in web graphs

In the second experiment, we applied the proposed al-
gorithm to the densest subgraph problem using public
web-graph and social-network datasets [5]. The char-
acteristics of each data set are shown in Table 2. Al-
though the minimum-norm-point algorithm was ap-
plied to the same problem on one of the datasets (cnr-
2000) in [23], the data was sub-sampled to 5,000 nodes
due to its computational cost. However, in this experi-
ment, we used the full datasets for the analyses, which
was possible because our framework runs much more
efficiently than the algorithm in [23].

The running time for applying our method to each
dataset is shown in Table 2 as well as the number of
optimal solutions found by the algorithm. Our method
could find exactly optimal-solutions for several k for
these large datasets in practical time. Note again that,
if k is fixed beforehand, the densest subgraph problem
with the size constraint is NP-hard and thus there is
no efficient algorithm. Also, the graphs in Figure 6
show plot examples of intensity I(S) versus the sizes
of subsets k found by the algorithm. The tendency
seems to be that our methods can find more optimal
solutions if graphs are denser.
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Table 2: Resulting running-time and the number of
optimal subsets found by the algorithm as well as the
characteristics of datasets.

Data # Node # Arc Time [s] # Set

cnr-2000 325,557 3,216,152 20.55 22
uk-2007 100,000 3,050,615 19.70 49
in-2004 1,382,908 16,917,053 225.90 5,971
eu-2500 862,664 19,235,140 278.50 4,933
wordassoc. 10,617 72,172 0.15 2
amazon-2008 735,323 5,158,388 127.51 1,882
dblp-2010 326,186 1,615,400 19.68 985
dblp-2011 986,324 6,707,236 96.60 979
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Figure 6: Example plots of I(S) versus k for cnr-2000,
uk-2007, amazon-2008 and dblp-2010.

8 Concluding remarks

We have shown that when a submodular function f has
a directed graph representation the separable convex
minimization problem under submodular constraints
can be solved pretty efficiently compared to general
submodular optimization methods. It is known that
quite a lot of submodular functions have graph struc-
tures (refer to Jegelka, Lin, and Bilmes [14]). The
proposed methods are based on the general theory of
submodular functions and (parametric) maximum flow
algorithms. In addition, we remark that the proposed
methods can deal with various essentially equivalent
objective functions for the problem.

Appendix: Submodularity of generalized
graph cut functions

In order to make this paper self-contained, we give a
proof of the submodularity of a generalized graph cut
function [14], γ : 2V → R defined in (4).

We set β ≥ 0 as the sum of all edge capacities of G.
Let 1 ∈ Rn be the all-one vector and let 1 : 2V → R be
a set function defined by 1(S) = |S| for each S ⊆ V .
The directed graph G+

β1 (see Section 6) generates the
set function γ + β1. For each S ⊆ V , let γ′(S) be the
minimum capacity of a cut separating {s}∪S from the
sink t in G+

β1. By the result of Megiddo [20] on network
flow problems with multiple terminals, the set function
γ′ : 2V → R is submodular. For each S ⊆ V , we have

γ′(S) = min
W⊆(U∪V \S)

∑{c(e) : e ∈ δout
G+

β1

({s}∪S∪W )}

= min
W⊆(U∪V \S)

( ∑{c(e) : e ∈ δout
G ({s}∪S∪W )}

+ β|S| + β|W ∩ (V \ S)|
)

= β|S| + min
W⊆U

∑{c(e) : e ∈ δout
G ({s}∪S∪W )}

= β|S| + γ(S),

where the third equality holds because β is sufficiently
large. Since γ′ = γ + β1 is submodular, the function
γ is also submodular.
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Abstract

Consider a collection of weighted subsets of a
ground set N . Given a query subset Q of N ,
how fast can one (1) find the weighted sum
over all subsets of Q, and (2) sample a sub-
set of Q proportionally to the weights? We
present a tree-based greedy heuristic, Treedy,
that for a given positive tolerance d answers
such counting and sampling queries to within
a guaranteed relative error d and total vari-
ation distance d, respectively. Experimen-
tal results on artificial instances and in ap-
plication to Bayesian structure discovery in
Bayesian networks show that approximations
yield dramatic savings in running time com-
pared to exact computation, and that Treedy
typically outperforms a previously proposed
sorting-based heuristic.

1 INTRODUCTION

Reasoning with probabilistic models typically deals
with queries on sets of weighted points. For instance,
one may ask a maximum-weight point subject to the
constraint that the point satisfies some given prop-
erty. Likewise, one may ask the total weight (e.g.,
the probability mass) of the points or a random point
sampled proportionally to the weights, subject to the
given constraint. The large number of points and the
complexity of the constraint often render these tasks
computationally very challenging.

The present works addresses a particular class of
queries, we call subset queries, formalized as follows.
Let N be a ground set of n elements and C a collection
of m subsets of N , each subset S ∈ C associated with
a non-negative weight w(S). For convenience, we ex-
tend the weight function to all subsets of the ground
set by letting w(S) = 0 for S 6∈ C. A subset counting

query asks the total weight of all subsets of a given
query subset Q ⊆ N , given by

W (Q) =
∑

S⊆Q
w(S) . (1)

Analogously, a subset sampling query asks a random
subset of the query subset Q, such that any par-
ticular subset S ⊆ Q gets selected with probability
w(S)/W (Q). While queries about maxima, minima,
median, etc. can be defined in a similar fashion, we will
restrict ourselves to counting and sampling queries in
the sequel.

Our focus will be on scenarios where m, the size of
the collection, is much smaller than 2n, the number of
all subsets of the ground set. The opposite case when
m is close to 2n is also fundamental but, to a large
extent, well understood. Namely, using the fast zeta
transform algorithm (Yates, 1937; Kennes and Smets,
1990; Kennes, 1991; Koivisto and Sood, 2004; Koivisto,
2006) the values W (Q) can be computed for all Q ⊆ N
in a total of roughly n2n additions, after which answer-
ing any counting or sampling query is very fast.

1.1 APPLICATION: ORDER-MCMC FOR
BAYESIAN NETWORK LEARNING

A motivating example of subset queries is provided
by the order-MCMC method of Friedman and Koller
(2003) for learning the directed acyclic graph (DAG) of
a Bayesian network model (Pearl, 1988, 2000; Buntine,
1991; Heckerman et al., 1995). For closely related re-
cent developments that likewise involve subset queries,
see the works of Ellis and Wong (2008), Niinimäki et al.
(2011), and Niinimäki and Koivisto (2013).

Order-MCMC samples node orderings by simulating a
Markov chain whose stationary distribution is the pos-
terior distribution. The time consumption of order-
MCMC is determined by the complexity of evalu-
ating the posterior probability (up to a normalizing
constant) of a given node ordering v1v2 · · · vn. Ef-
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ficient evaluation is facilitated by the factorization
of the posterior into a product W1W2 · · ·Wn, where
each factor Wj is given by (1) as the total weight
W ({v1, v2, . . . , vj−1}) for a weight function w that de-
pends on the node vj . The interpretation is that any
subset of the nodes preceding vj can form the set of
parents of vj in the network, the weight indicating how
well a particular selection of parents fits the data and
the prior beliefs.

To quantify the time requirements in this example,
suppose that each node is allowed to have at most
k parents—having a relatively small k is a common
practice unless n is very small. Then each Wj can
be evaluated using about

(
j−1
k

)
∗ =

(
j−1

0

)
+
(
j−1

1

)
+

· · · +
(
j−1
k

)
additions, and the posterior using about(

0
k

)
∗+
(

1
k

)
∗+ · · ·+

(
n−1
k

)
∗ =

(
n
k+1

)
∗−1 >

(
n
k+1

)
additions

(followed by n−1 multiplications). This is tolerable for
small values of n and k, but for larger values, say n =
60 and k = 5, the time requirement becomes infeasible
in practice, for the computations are performed for
thousands of node orderings.

The same concern holds for the possible second phase
of the order-MCMC method, in which each sampled
node ordering is used for sampling some number of
DAGs compatible with the ordering. This amounts to
n subset sampling queries per DAG.

1.2 AN APPROXIMATION APPROACH

One might hope for a data structure that enables rapid
answering of subset queries. Trivially, counting queries
can be answered in O(n) time by precomputing and
storing the answers to all possible 2n queries in ad-
vance. But this approach becomes soon unfeasible for
larger n, especially due to the large memory require-
ment. It is to be contrasted with the other extreme
approach: visit all members S ∈ C and add w(S) to
the sum if S ⊆ Q, taking O(mn) time and essentially
no extra memory. Whether there are efficient ways
to trade memory for time, is an open question. How-
ever, there is strong negative evidence associated with
closely related existence queries (“Does the query set
contain some set in C?”). Namely, the best known
tradeoffs are rather inefficient and of theoretical in-
terest only (Charikar et al., 2002), and lower bounds
that suggest the impossibility of finding much better
tradeoffs are known (Pǎtraşcu, 2011).

Given the state of affairs concerning exact solutions,
we in this work settle for approximations to reduce the
time requirement of subset queries. In counting queries
we allow an additive relative error d. Likewise, in sam-
pling queries we require the sampling distribution be
at a total variation distance at most d from the exact
distribution. Here d is a parameter that can be set to

close to zero, say d = 0.01, to guarantee very accurate
approximations. In the order-MCMC application, for
instance, it is easy to verify that accurate approxima-
tions to subset queries translate, in a straightforward
manner, to accurate approximations at the end results
of posterior inference.

The idea of approximation is not new. Indeed, the
starting point of the present study is the following
heuristic by Friedman and Koller (2003) to speed up
order-MCMC: Given a query set Q, visit a fixed num-
ber m′ of heaviest members S ∈ C in decreasing order
by weight, and if S ⊆ Q, then increase the sum by the
weight of S. Finally, return the accumulated sum, un-
less the largest counted weight fails to be some factor
γ larger than the smallest (last) weight in the list, in
which case compute the sum by brute-force enumer-
ation of all subsets of Q in C. The rationale is that
for large Q it is likely that there is at least one heavy
S ⊆ Q among the m′ heaviest sets in C, and thus the
brute-force phase is avoided. Choosing a large enough
γ guarantees that the lost mass is negligible. Whether
this heuristic is close to the best possible, has remained
an open question.

Here, we address the question in several ways. Our fo-
cus is exclusively on collector algorithms that, like the
aforementioned heuristic by Friedman and Koller, are
based on visiting some of the subsets of the ground set
in some order, adding up the weights of those that are
subsets of the query set, and stopping using some ap-
propriate rule. We begin in Section 2 by showing how
any algorithm of this type for approximative counting
also yields a sampling algorithm with a correspond-
ing accuracy. The section continues by describing two
extreme approaches to counting queries: a brute-force
algorithm Exact that produces the exact value, and
an idealized algorithm Ideal that only visits the min-
imum number of heaviest subsets that suffice for the
desired approximation error, so providing us a lower
bound for the amount of work needed by any collector
algorithm. We also streamline the heuristic of Fried-
man and Koller by formulating a stronger stopping
rule that achieves the same accuracy guarantees with
less work. We call the resulting algorithm Sorted.

Our main contribution is a novel heuristic, presented
in Section 3. The motivation of the heuristic stems
from the observation that Sorted becomes slow when
the heaviest subsets are not contained by the query set.
Our idea is to restrict the search to subsets of the query
set, however, turning the brute-force enumeration into
a controlled approximation algorithm that, in a greedy
fashion, aims to visit first subsets that are “likely” to
be heavier. As the enumeration proceeds from smaller
subsets to larger ones in a tree-structured manner, we
call the algorithm Treedy.
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We compare the heuristics to the exact and the ideal-
ized algorithm in Section 4. We report on experiments
with synthetic instances and in application to Bayesian
network learning using order-MCMC.

To keep the presentation simple and succinct, we will
assume that the collection C is downward closed. That
is, we assume that C equals the downward closure C∗ =
{T : T ⊆ S for some S ∈ C}. In the experiments
we further restrict our attention to the case where C
consists of all S ⊆ N with |S| ≤ k for some relatively
small k. These restrictions are, however, not crucial
for the validity of the studied methods. We discuss
this issue, among other things, in Section 5.

2 PRELIMINARIES

Throughout this section and the remainder of the pa-
per, we consider a weighted downward closed collection
C of m subsets of some n-element ground set N . For
a query set Q ⊆ N , we call a set S relevant if S ∈ C
and S ⊆ Q. We denote the collection of relevant sets
by CQ. If Q is clear from the context, we may denote
the total weight W (Q) simply by W . We will denote
by d the approximation tolerance, 0 ≤ d ≤ 1, whether
referring to an upper bound for the additive relative
error or for the total variation distance.

2.1 FROM COUNTING TO SAMPLING

Below is a generic algorithm that uses a collector al-
gorithm for counting queries (the first step) to answer
sampling queries (the second step).

Algorithm Draw
Given a query set Q and tolerance d, do the following:

D1 Visit some relevant sets S1, S2, . . . , Sr whose total
weight W ′ is at least (1 − d)W . Store the cumu-

lative sums Wi =
∑i
j=1 w(Sj).

D2 Draw a random variable U from the uniform dis-
tribution on the interval [0,W ′]. Find an i such
that Wi−1 < U ≤Wi and return Si.

It is easy to see that Draw returns a set S with prob-
ability π′(S) that satisfies π′(S) = w(S)/W ′ if S is
a visited relevant set and π′(S) = 0 otherwise. The
next result shows that this guarantees a small devia-
tion from the exact distribution π(S) = w(S)/W , as
measured by the commonly used total variation dis-
tance. The total variation distance between two prob-
ability measures µ and µ′ on a finite set Ω is defined as
δ(µ, µ′) = maxA⊆Ω |µ(A) − µ′(A)| and can be simpli-
fied to δ(µ, µ′) =

∑
a∈Ω |µ(a)−µ′(a)|/2. We attribute

the following theorem to folklore; the proof is elemen-
tary and included here for convenience.

Theorem 1. The total variation distance between the
above defined π and π′ is at most d.

Proof. As π′(S) ≥ π(S) for each visited relevant set S
and π′(S) = 0 otherwise, we have

2δ(π, π′) =
r∑

i=1

[
π′(Si)− π(Si)

]
+ 1−

r∑

i=1

π(Si)

= 2− 2W ′/W .

Using W ′ ≥ (1− d)W completes the proof.

If the cumulative weights Wi are stored in a simple ar-
ray indexed by i, step D2 can be implemented to run
in O(log r) time by using binary search. However, if
the distribution π′ has small entropy H (i.e., the mass
is concentrated on some subsets), then much faster im-
plementation running in roughly O(H) time is possible
by using, e.g., a Huffman coding based data structure.

The running time of Draw is clearly dominated by step
D1. This, in part, motivates the investigations of effi-
cient collector algorithms for counting queries.

2.2 EXACT AND IDEAL COUNTING

There are two obvious brute-force approaches to com-
pute the exact total weight of the query set Q. One is
to visit every set S in the given collection C and add
the weight of S to a cumulative sum if S ⊆ Q. The
other approach is to only visit sets S ⊆ Q and add
the weight of S to a cumulative sum if S ∈ C. The
following algorithm assumes the latter approach:

Algorithm Exact
Given a query set Q, do the following:

E1 Visit the relevant sets in lexicographic order and
return the sum of their weights.

For downward closed collections C it is, in fact, more
efficient to implement the algorithm so that the mem-
bership test S ∈ C is avoided, at the cost of visiting
also a few sets that are not subsets of Q. The idea is
to use a data structure where each member S of C is
linked to its one-element larger successors S∪{x} ∈ C,
with the link labeled by the element x. Namely, then
the algorithm can proceed in the lexicographic order
at the cost of testing whether x ∈ Q also for some
some irrelevant sets S ∪ {x} 6⊆ Q. Technically, this
makes the number of visited sets generally exceed the
number of relevant sets |CQ|; however, the extra visits
are very quick due to the simplicity of the test.

We note that when C consists of all subsets of size at
most some k, then it is easy to visit only the relevant
sets and avoid the aforementioned technicalities.
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When an approximation of the total weight suffices,
the performance of Exact is no longer close to the
best possible. An ideal collector algorithm would visit
as few as possible sets necessary for gathering the re-
quired proportion of the mass:

Algorithm Ideal
Given a query set Q and tolerance d, do the following:

I1 Visit, in some order, the minimum number of the
heaviest relevant sets whose total weight W ′ is at
least (1− d)W . Return W ′.

We should note that Ideal is an “idealized” algorithm
in the sense that we do not know how to efficiently
find the minimum number of the heaviest relevant sets.
Nevertheless, we can estimate the running time of the
algorithm under the supposition that a list of sufficient
relevant sets is available to the algorithm for free.

2.3 COUNTING BY PRE-SORTING

If the query set Q is large, then one can achieve al-
most ideal performance by visiting sufficiently many
members of C in decreasing order by weight. Sorting
needs to be done only in the initialization phase, be-
fore any query. For smaller Q the heaviest sets of C
are, however, likely to include also irrelevant sets that
are not subsets of Q. Then the number of visited sets
may grow much larger than |CQ|. Therefore it is advis-
able to switch over to the exact algorithm after about
|CQ| visited sets. To keep the number of visited sets
as small as possible, it is also crucial to devise an ef-
ficient stopping rule. The following algorithm adapts
these ideas and implements a stopping condition that
is stronger than in the original formulation by Fried-
man and Koller (2003):

Algorithm Sorted

S0 Before any query, sort the sets in C into decreasing
order by weight, w(S1) ≥ w(S2) ≥ · · · ≥ w(Sm).
Store the cumulative sums Wi =

∑m
j=i+1 w(Sj).

S1 Given a query set Q and tolerance d, initialize a
counter for yet nonvisited relevant sets t = |CQ|,
a step counter j = 0, and W ′ = 0, and do the
following: increase j by 1; if j ≥ |CQ|, then switch
to Exact; if Sj ⊆ Q, then add w(Sj) to W ′ and
decrease t by 1; if W ′ ≥ (1−d)(W ′+Wj−Wj+t),
then stop and return W ′.

Theorem 2. Algorithm Sorted is correct.

Proof. If the algorithm switches to Exact at some
point, then the correctness of the algorithm is clear.
Suppose therefore that the algorithm stops when the

Table 1: Processing a Subset Counting Query. For
each algorithm the visiting order of subsets is shown,
for ground set {A, B, C, D}, query set {B, C, D}, and
approximation tolerance 20 %.

S ∈ C w(S) Exact Ideal Sorted Treedy

AB 99 1
AD 90 2
A 85 2 3 2
∅ 80 1 X 4 1
B 70 3 X 5 3

AC 60 6
D 50 8 X 7 4

BD 14 5 5
C 13 6 6

CD 12 7
BC 11 4

condition W ′ ≥ (1− d)(W ′ +Wj −Wj+t) is satisfied.
It suffices to show that W ′+Wj −Wj+t ≥W . To this
end, observe that W ′ is a sum of the weights of the
|CQ| − t heaviest relevant sets, and that Wj −Wj+t is
at least as large as the sum of the t remaining (lightest)
relevant sets.

See Table 1 for an illustration and comparison to Exact
and Ideal. Note that in the example, Sorted achieves
the desired approximation guarantee after visiting 7
sets; it does not switch to Exact.

3 THE TREEDY HEURISTIC

We next present a novel heuristic, Treedy, for approx-
imate counting queries. Like Exact, the heuristic op-
erates on a lexicographically structured tree. The lex-
icographical tree of C is a rooted tree on the collection
C, defined as follows. The empty set is the root of
the tree. Any other set S is a son of another set S′

if S = S′ ∪ {x} where x is the last element in S in
alphabetical order; the notions of a brother, ancestor,
and descendant are defined in the obvious way. For
each set S ∈ C define the weight potential φ(S) as the
sum of the weights of all descendants of S (including
S itself). In the initialization phase, Treedy modifies
this structure appropriately, and in the query phase it
proceeds in a greedy fashion.

Algorithm Treedy

T0 Before any query, modify the lexicographical tree
of C into a greedy tree as follows: For each set,
sort its sons in decreasing order by their weight
potentials. Then remove the links to all but the
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𝛹: 170

(b)

Figure 1: Treedy in action on the example instance described in Table 1. (a) The greedy tree built in step T0 is
shown. (b) The situation at the end of step T1 is shown. Dashed lines connect the visited sets. The sets marked
by thicker rectangles constitute the collection R at the end of step T1. The last set removed from R is {D}. A
subtree that is discarded once found to contain only irrelevant sets is shown in gray. Note that φ and ψ remain
unchanged after step T0; only the values of W ′ and Ψ(R) change during the execution of step T1 (for each set
shown are the values just after removing the set from R and updating W ′).

first son and create a linked list to connect the
brothers in this order. As a result, each set has
(at most) two links: one to its brother with next
largest weight potential and the other to its son
with the largest weight potential. Finally com-
pute the aggregate potential ψ(S) for each set S
by summing the weight potentials of S and its
subsequent smaller brothers.

T1 Given a query set Q and tolerance d, initialize
W ′ = 0 and R = {∅} and repeat the following:
remove from R a set S with the largest aggregate
potential; add w(S) to W ′; add the next relevant
brother (if any) of S intoR and ignore the preced-
ing irrelevant brothers (and their descendants);
add the first relevant son (if any) of S into R and
ignore the preceding irrelevant sons (and their de-
scendants); if W ′ ≥ (1 − d)

(
W ′ + Ψ(R)

)
, where

Ψ(R) =
∑
S∈R ψ(S) is the aggregate potential of

R, then stop and return W ′.

See Table 1 and Figure 1 for an illustration of an ex-
ecution of Treedy. In that small example, the savings
of Treedy compared to Exact are rather modest. We
leave it to the reader to imagine how larger savings are
possible on larger problem instances.

Theorem 3. Algorithm Treedy is correct.

Proof. First note that, during the execution of the al-
gorithm, R contains only relevant sets and thus only
weights of relevant sets are added to W ′. Therefore, it
is sufficient to show that the invariant W ′ + Ψ(R) ≥

W (Q) holds during the execution of the algorithm;
correctness then follows from the stopping condition.

To see that the invariant holds, observe that in the
beginning Ψ(R) is the sum of the weights of all rel-
evant sets plus the weights of all irrelevant sets. In
each step the algorithm removes a set S from R but
adds back the next relevant brother of S and the first
relevant son of S. The aggregate potential of R is thus
decreased by w(S) and by the weight potentials of any
possibly ignored irrelevant brothers and sons. Since
the descendants of irrelevant sets are also irrelevant,
the only relevant set whose weight is subtracted from
Ψ(R) is S. As w(S) is added to W ′, no weight of a
relevant set is removed from W ′ + Ψ(R). Thus, by
the induction principle the invariant holds during the
execution of the algorithm.

The potential efficiency of Treedy stems from the fact
that, contrary to Sorted, none of the descendants of
an irrelevant set will be visited. On the other hand,
the algorithm is allowed to visit some irrelevant sets
to enable efficient implementation of the greedy best-
first order. But visiting irrelevant nodes is fast since
those are just ignored; no update of R, Ψ(R) or W ′ is
needed.

The greedy tree can be constructed in a straightfor-
ward manner in O(m log n) time, for sorting the mS

sons of each set S ∈ C takes O(mS logmS) time,
mS ≤ n, and

∑
S∈CmS = m− 1. Thus the initializa-

tion cost is essentially linear in the input size and neg-
ligible when the number of counting queries is large.
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To implement the query algorithm efficiently, we have
to overcome two challenges: (1) how to store R and
(2) how to avoid computing Ψ(R) from scratch in ev-
ery step. We address the first challenge by keeping the
members of R in a binary heap, which enables updat-
ing R in O(log |R|) time per step of the algorithm.

To address the second challenge, we maintain the sum
Ψ(R) during the execution of the algorithm by, in each
step, subtracting from Ψ(R) the aggregate potential of
the set removed fromR and adding to Ψ(R) the aggre-
gate potentials of the sets added to R. However, if the
relative differences of the weights w(S) are large, then
this approach can lead to problems with numerical ac-
curacy. If this is the case, a solution is to not maintain
Ψ(R) at all until we know that the stopping condition
is relatively close to hold. More specifically, suppose
Ψ(R) is computed from scratch and maintained only
after the aggregate potential of the set removed from
R gets smaller than dW ′. Then we know that Ψ(R)
has to decrease at most by the factor |R| before the
stopping condition is met, and thus the accuracy prob-
lems should be gone.

4 EXPERIMENTAL STUDIES

We have implemented the presented algorithms in the
C++ language.1 We next report on experimental stud-
ies on artificially generated instances of subset query
problems as well as several instances of the Bayesian
network learning application using our implementation
of the order-MCMC method of Friedman and Koller
(2003). The focus of the experimental studies is in
investigating the relationship of running time and ap-
proximation guarantee of the four algorithms.

4.1 ARTIFICIAL INSTANCES

We generated various weight functions w(S) on subsets
S ⊆ N of size at most k. We varied n = |N | in {20, 60}
and k in {3, 5}. We considered four types of weight
functions, each based on the following building block:

w(S) = exp

(
λ
∑

i∈S
Ui

)
, Ui

iid∼ Uniform(κ− 1, κ) .

Here λ is a parameter that specifies the variance of
the weights; the larger the λ, the larger the variance.
The parameter κ specifies the (expected) number of
elements of the ground set that contribute positively
to the weight. Note that the weight of the empty set
is always 1. The four types are the following:

Flat: λ = 10, κ = k/n.

1The implementation will be made publicly available
via the authors’ home pages.

Steep: λ = 200, κ = k/n.

Mixture: Take the sum of 5 flat and 5 steep ones,
for both types letting the product κn take the 5
values k−1, k, k+1, k+2, and k+3. This creates
10 distinct “local maxima”.

Shuffled: Like in the mixture type but permuting
the weights w(S) randomly among the subsets of
same size. This destroys the dependence of the
weights of subsets that have large intersection.

For each of the four types and the values of n and k,
we generated 5 random weight functions, executed the
algorithms Exact, Ideal, Sorted, and Treedy, for 1000
query sets sampled uniformly at random for each query
set size from 1 to n. Figure 2 shows average running
times.

We see that for flat weight functions, the approxima-
tion algorithms yield significant speedups over the ex-
act algorithm only when the approximation tolerance
is relatively large. For steep weight functions, as well
as for mixtures and shuffled mixtures, the speedups
are however by two orders or magnitude already with
small approximation tolerance. The speedups become
the more dramatic, the larger the n and k are. Exam-
ining the effect of the query set size reveals that Sorted
performs better than Treedy for larger query sets, but
for smaller query sets Treedy is faster. For larger values
of n and k, Treedy outperforms Sorted by a factor of
about 5. To our surprise, shuffling the weight function
has essentially no effect to the performance of Treedy.

4.2 APPLICATION TO BAYESIAN
NETWORK LEARNING

We ran our implementation of order-MCMC on four
datasets available from the UCI repository (Blake and
Merz, 1998). Votes2 was obtained by concatenat-
ing two random permutations of the 17-variable Votes

Table 2: Datasets, Generative Bayesian Network Mod-
els, and Parameter Settings Used in the Experiments
for Bayesian Network Learning by Order-MCMC.

Name n #Samples k #Steps

Votes2 34 435 5 10000
Chess 37 3196 5 5000
10xPromoters 58 1060 4 2000
Splice 61 3190 4 2000

Alarm 37 50–5000 5 1000
Hailfinder 56 50–5000 4 1000

474



0 20 40 60

10
−6

10
−5

10
−4

10
−3

flat

 

 

0 20 40 60

steep

0 20 40 60

mixture

0 20 40 60

shuffled

Exact
Ideal
Sorted
Treedy

(a) n = 60, k = 3

10
−6

10
−3

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

flat

 

 

10
−6

10
−3

10
0

steep

10
−6

10
−3

10
0

mixture

10
−6

10
−3

10
0

shuffled

Exact
Ideal
Sorted
Treedy

(b) n = 60, k = 3

10
−6

10
−3

10
0

10
−6

10
−5

10
−4

10
−3

flat

 

 

10
−6

10
−3

10
0

steep

10
−6

10
−3

10
0

mixture

10
−6

10
−3

10
0

shuffled

Exact
Ideal
Sorted
Treedy

(c) n = 20, k = 5

10
−6

10
−3

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

flat

 

 

10
−6

10
−3

10
0

steep

10
−6

10
−3

10
0

mixture

10
−6

10
−3

10
0

shuffled

Exact
Ideal
Sorted
Treedy

(d) n = 60, k = 5

Figure 2: Runtime in artificial problem instances. The number of seconds per subset counting query for Exact,
Ideal, Sorted, and Treedy are shown (a) as a function of the query set size, for a fixed approximation tolerance
of 0.1, and (b, c, d) as a function of approximation tolerance.

dataset, so doubling the number variables. 10xPro-
moters was obtained by taking each sample of the
Promoters dataset 10 times. The datasets Chess and
Splice we used as such. In addition, we used datasets
of varying sample sizes generated from the benchmark
Bayesian network models Alarm (Beinlich et al., 1989)
and Hailfinder (Abramson et al., 1996).2 Table 2
shows the key parameters associated with the datasets
and the order-MCMC method, including the maxi-
mum number of parents k and the number of MCMC
steps. The posterior (the structure and parameter pri-
ors) was specified as in the experiments of Niinimäki
et al. (2011).

We observe that approximation expedites the com-
putations by one to several orders of magnitude; see
Figure 3. As expected, the gain of approximation in-
creases with larger datasets and larger error, being,
however, significant already with 200 samples and eas-
ily tolerable error (say 1%). On the larger datasets

2The datasets are available at http://www.dsl-lab.
org/supplements/mmhc_paper/mmhc_index.html.

Treedy performs consistently better than Sorted, the
difference being sometimes nearly one order of magni-
tude (Chess and Alarm with an approximation toler-
ance of at least 1%).

Examining the effect of the query set size for the four
datasets (Figure 3(a)) reveals that Treedy is consis-
tently faster than Sorted on queries that are the hard-
est ones for Sorted. However, Sorted is typically faster
than Treedy on the easier query sets. Thus it depends
on the distribution of queries, whether Treedy or Sorted
should be the algorithm of choice, or whether it would
pay off to use the obvious hybrid: Treedy for smaller
and Sorted for larger query sets.

The results for Ideal suggest that considerable further
speedups, by one to two orders of magnitude, might be
possible using still better algorithms and data struc-
tures.
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Figure 3: Runtime in the Bayesian network application. The number of seconds per MCMC step for Exact,
Ideal, Sorted, and Treedy are shown (a) as a function of the query set size, for a fixed approximation tolerance
of 0.1, and (b, c, d) as a function of approximation tolerance d. Since the approximated posterior probability is
obtained as a product of n approximated total weights, the tolerance per total weight was set to d/n to guarantee
the required accuracy.

5 DISCUSSION

We have studied approximation algorithms for sub-
set counting and sampling queries. After observing
how any collector algorithm for approximate counting
queries can be turned into a sampling algorithm, we
considered four collector algorithms. These include a
slow exact algorithm that serves as a reference and
an “ideal” one that we cannot implement efficiently
but that provides us with a lower bound of the needed
work. Our experimental results suggest that the two
heuristic methods, Sorted and Treedy, can yield dra-
matic speed-ups (by several orders of magnitude) over
the exact algorithm, while not quite achieving the ideal
performance. Typically, Treedy performs as well as
Sorted or significantly better.

We made the assumption that the given collection of
subsets is downward closed. This assumption simpli-
fied the presentation and experimental settings. The
assumption is, however, not well justified in general.

Namely, the input collection can potentially be much
smaller than its downward closure, in which case one
could realistically hope for faster methods whose time
requirement is determined by the size of the input
rather than the size of the closure. We note that Sorted
readily has this desirable property. For example, in the
Bayesian network application it is quite plausible to
expect that some potential parent sets have so small a
weight that they can be discarded in the precomputa-
tion phase. Fortunately, the assumption of downward
closedness seems not crucial for the validity of the pre-
sented methods. Indeed, the data structures and vis-
iting orders underlying the methods Exact and Treedy
can be pruned by introducing shortcuts. Using short-
cuts, only subsets that belong to the collection need be
visited, and so the other subsets can be discarded. We
leave a more detailed description of this generalization
and examination of its impact to the Bayesian network
application to an extended version of this paper.

There are also other avenues for future research. We
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restricted our attention to methods whose memory re-
quirement is roughly linear in the size of the input col-
lection. It remains an open question, whether signifi-
cant speedups can be achieved by investing somewhat
more space. Likewise, we have only considered col-
lector algorithms, and it is an open question, whether
there exist faster algorithms of some different type.
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Abstract

This paper addresses the problem of rank
aggregation, which aims to find a consensus
ranking among multiple ranking inputs. Tra-
ditional rank aggregation methods are deter-
ministic, and can be categorized into explicit
and implicit methods depending on whether
rank information is explicitly or implicitly
utilized. Surprisingly, experimental results
on real data sets show that explicit rank ag-
gregation methods would not work as well as
implicit methods, although rank information
is critical for the task. Our analysis indicates
that the major reason might be the unreli-
able rank information from incomplete rank-
ing inputs. To solve this problem, we propose
to incorporate uncertainty into rank aggrega-
tion and tackle the problem in both unsuper-
vised and supervised scenario. We call this
novel framework stochastic rank aggregation
(St.Agg for short). Specifically, we introduce
a prior distribution on ranks, and transform
the ranking functions or objectives in tradi-
tional explicit methods to their expectations
over this distribution. Our experiments on
benchmark data sets show that the proposed
St.Agg outperforms the baselines in both un-
supervised and supervised scenarios.

1 INTRODUCTION

Rank aggregation is a central problem in many ap-
plications, such as metasearch, collaborative filtering
and crowdsourcing tasks, where it attempts to find a
consensus ranking among multiple ranking inputs.

In literature, deterministic rank information has been
utilized to solve the rank aggregation problem, and we
refer these methods as deterministic rank aggregation.
The conventional methods can be further divided into

two categories: explicit and implicit methods. For ex-
plicit methods (Aslam & Montague, 2001; Cormack
et al., 2009), rank information is explicitly utilized for
rank aggregation, e.g., (Aslam & Montague, 2001) uses
the mean rank as the score and sorts items in ascend-
ing order. While for implicit methods (Gleich & Lim,
2011; Thurstone, 1927), rank information is used im-
plicitly, e.g., (Thurstone, 1927) defines the generative
probability of pairwise preferences based on rank infor-
mation and adopts the maximum likelihood procedure
for aggregation.

Although rank information is crucial for the rank
aggregation task, surprisingly, the explicit methods
would not work well as implicit methods in practice.
Our experiments on real data sets show that the im-
plicit methods outperform explicit methods, in both
unsupervised and supervised scenarios.

The root of the problem may lie in the unreliable rank
information from multiple incomplete ranking inputs.
Typically, the ranking inputs in rank aggregation are
partial rankings. For example, in metasearch, only top
search results are returned from each meta search en-
gine with respect to its repository; in a recommender
system, users only rate the items they have ever seen.
The incompleteness of the partial ranking makes the
ranks of items no longer reliable. Taking the recom-
mender system as an example, we do not know whether
an unseen item will be ranked higher or lower than
the already rated ones for the user. As indicated by
(Voorhees, 2002; Farah & Vanderpooten, 2007), the in-
correct rank information will reduce the performance
of any explicit method. Therefore, it is not surpris-
ing to see the failure of explicit methods based on the
current unreliable rank information.

To amend this problem, we propose to incorporate un-
certainty into rank aggregation and tackle the problem
in both unsupervised and supervised scenario. We re-
fer this novel rank aggregation framework as stochas-
tic rank aggregation (St.Agg for short). Specifically,
a prior distribution derived from pairwise contests is
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introduced on ranks to accommodate the unreliable
rank information, since it has been proven that rank
information encoded in a pairwise way will be robust
(Farah & Vanderpooten, 2007). We then define the
new ranking functions or objectives (in unsupervised
or supervised respectively) as the expectation of those
in traditional methods with respect to the rank dis-
tribution. In unsupervised scenario, the new rank-
ing functions are used to find the final ranking list.
In supervised scenario, the learning to rank technique
is employed to complete the rank aggregation task.
Specifically, a feature representation for each item is
first designed, based on explicit features in (Aslam &
Montague, 2001) and latent features in (Volkovs et al.,
2012; Kolda & Bader, 2009). A gradient method is
then employed to optimize the new objectives.

Our experiments on benchmark data sets show that
the proposed St.Agg significantly outperforms tradi-
tional rank aggregation methods, in both unsupervised
and supervised scenarios. Furthermore, we conduct
experiments to demonstrate that St.Agg is more ro-
bust than traditional methods, showing the benefit of
uncertainty.

In summary, we propose a novel rank aggregation
framework which incorporates uncertainty of rank in-
formation. Our major contributions include: (1) the
finding that partial ranking inputs in rank aggregation
will make the explicit methods fail, due to unreliable
rank information; (2) the definition of rank distribu-
tion based on pairwise contests, which is the basis of
stochastic rank aggregation; and (3) the proposal of a
unified rank aggregation framework in both unsuper-
vised and supervised scenarios.

The rest of the paper is organized as follows. We first
introduce some backgrounds on rank aggregation in
Section 2, and then conduct some empirical study and
analysis on why explicit methods will not work well in
rank aggregation. Section 4 describes the framework
of stochastic rank aggregation, including the definition
of rank distribution and St.Agg in both unsupervised
and supervised scenarios. Section 5 presents our ex-
perimental results and Section 6 concludes the paper.

2 BACKGROUNDS

In this section, we introduce some backgrounds on
rank aggregation, including problem definition, pre-
vious methods and evaluation measures.

2.1 PROBLEM DEFINITION

In unsupervised scenario, we are given a set of n items
{x1, · · · , xn} and multiple ranking inputs τ1, · · · , τm

over these items. τi(xj) stands for the position of xj

in the ranking τi. If the length of τi is n, τi is called
a full ranking; otherwise, it is called a partial ranking.
The goal of unsupervised rank aggregation is to find
a final ranking π ∈ Π over all the n items which best
reflects the ranking order in the ranking inputs, where
Π is the space of all the full ranking with length n. To
achieve this goal, many aggregation algorithms try to
optimize a similarity function F between the ranking
inputs τ1, · · · , τm and the final ranking result π, while
some other aggregation algorithms directly give the
form of their final ranking function f without explicit
optimization objectives.

In supervised scenario, we are given N sets of items,

denoted as Di = {x
(i)
1 , · · ·, x(i)

ni }, i = 1, · · ·, N . For each

item set Di, a collection of ranking inputs τ
(i)
1 , · · · , τ

(i)
mi

are over this set. The ground-truth labels for all items
are provided in the form of multi-level ratings, such as
three level ratings (2:highly relevant, 1:relevant, 0:ir-

relevant), denoted as Y (i) = (y
(i)
1 , · · · , y

(i)
ni ). In the

training process, an aggregation function f of ranking
inputs is learned by optimizing a sum of a similar-
ity function F on N sets, and F measures the sim-
ilarity between these ranking inputs and the corre-
sponding ground-truth ranking. For prediction, given
any item set D = {x1, · · · , xn} and m ranking inputs
τ1, · · · , τm over this set, the final ranking π is com-
puted by π = f(τ1, · · · , τm).

2.2 METHODS

Previous rank aggregation methods can be divided into
two categories according to the way that rank infor-
mation is used: explicit and implicit rank aggregation
methods. Explicit methods directly utilize rank infor-
mation to define the ranking function or the objective
function. While for implicit methods, other informa-
tion such as pairwise preference or listwise ranking are
first constructed based on the rank information, and
then leveraged for rank aggregation.

2.2.1 Unsupervised Aggregation Methods

Firstly, let we introduce the two kinds of methods in
unsupervised scenario, respectively.

Explicit Methods. In unsupervised scenario, ex-
plicit methods define the ranking function as the sum
of utility functions of each items’s rank information,
and then sort the items in descending order. The for-
mulation is described as follows.

f(xj) =

m∑

i=1

u(xj , τi), (1)

where u(·, ·) stands for the utility function. For exam-
ple, (Aslam & Montague, 2001) used the mean position
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as the ranking function as shown in Eq.(2), and (Cor-
mack et al., 2009) defined the reciprocal rank as the
ranking function to further emphasize the top ranked
items as shown in Eq.(3).

f(xj) =

m∑

i=1

u(xj , τi) =

m∑

i=1

(n − τi(xj)), (2)

f(xj) =

m∑

i=1

u(xj , τi) =

m∑

i=1

1

C + τi(xj)
, (3)

where C is a constant, ni is the length of τi and τi(xj)
in both Eq.(2) and Eq.(3) means the position of xj in
ranking τi.

Implicit Methods. (Dwork et al., 2001) used a Local
Kemenization procedure to approximate an optimal
solution to minimize Kendall’s tau distance. (Gleich &
Lim, 2011) defined the difference between the pairwise
preference matrix from ranking input and the aggre-
gated preference matrix, and adopted matrix factoriza-
tion for optimization. (Thurstone, 1927) and (Volkovs
& Zemel, 2012) defined the similarity measure to be
the generative probability of pairwise preferences and
then adopted the maximum likelihood procedure for
aggregation. (Guiver & Snelson, 2009) and (Lebanon
& Lafferty, 2002) defined the similarity measure to be
the generative probability of each ranking list and op-
timized this similarity function by a maximum likeli-
hood procedure.

2.2.2 Supervised Aggregation Methods

Secondly, we continue to introduce the two kinds of
methods in supervised scenario, respectively.

Explicit Methods. For explicit methods in super-
vised scenario, features are first extracted from the
ranking inputs, and then the rank information gen-
erated by the ranking function of these features are
directly used in the objective function. After that,
learning-to-rank technique are utilized for optimiza-
tion. For example, (Volkovs et al., 2012) proposed to
use evaluation measures as the objective function, such
as NDCG (Normalized Discounted Cumulative Gain)
(Järvelin & Kekäläinen, 2002), ERR (Expected Recip-
rocal Rank) (Chapelle et al., 2009) and RBP (Rank
Biased Precision) (Moffat & Zobel, 2008). This ap-
proach is called RankAgg, and we will review their
mathematical formulations in Section 2.3.

Implicit Methods. (Liu et al., 2007) proposed to
minimize the number of disagreeing pairs between
the aggregated ranking result and the ground-truth.
(Volkovs & Zemel, 2012) heuristically computed the
similarity between the ranking input and the ground-
truth to obtain the expertise degree of the correspond-
ing annotator. The learned weights are then used

to aggregate the ranking lists for future data. (Qin
et al., 2010) introduced coset-permutation distance
into Plackett-Luce model for rank aggregation.

2.3 EVALUATION MEASURES

Rank information is explicitly used in evaluation mea-
sures for rank aggregation, such as NDCG (Järvelin &
Kekäläinen, 2002), RBP (Moffat & Zobel, 2008) and
ERR (Chapelle et al., 2009). We would like to ex-
press these measures as the sum of differences on each
item’s generated rank and ground-truth, as shown in
the following equation.

Ev(π, Y ) =

n∑

j=1

v(yj , rj), (4)

where Ev stands for any evaluation measure, v(·, ·)
stands for the difference function. We give the exact
forms of NDCG, RBP and ERR as follows.

NDCG(π, Y ) =

n∑

j=1

g(yj)D(rj)

DCGmax(n)
, (5)

where rj stands for the rank of xj in the final rank-
ing π. g(yj) is the gain function with g(yj) =
2yj − 1, D(rj) is the discount function with D(rj) =

1
log(1+rj)

, and DCGmax(n) stands for the maximum of∑n
j=1 g(yj)D(rj) over Π.

ERR(π, Y ) =
n∑

j=1

1

rj
P{users stop at rj}, (6)

where the probability P{users stop at rj} is defined as

∏

i∈{i|ri<rj}
(1 − 2yi −1

2ymax −1
)
2yj −1

2ymax
,

where ymax is the maximum of the ground-truth label.

RBP (π, Y ) =

n∑

j=1

(1 − p)yjp
rj−1, (7)

where p ∈ [0, 1] is a constant value, for example 0.95
used in this paper.

3 MOTIVATION

Rank information is crucial for rank aggregation, and
evaluation measures in rank aggregation are often rank
dependent. However, experimental results on real data
sets show that performances of explicit rank aggre-
gation methods cannot be comparable with implicit
methods in most cases. Through analysis we find that
the major reason lies in the unreliable rank informa-
tion used in the explicit methods directly. This moti-
vates us to design new aggregation methods to utilize
rank information in a more robust way.
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3.1 EMPIRICAL FINDINGS

Here we conduct experiments to compare perfor-
mances between the explicit methods and the im-
plicit methods on benchmark data sets MQ2007-agg
and MQ2008-agg in LETOR4.0 in both unsupervised
and supervised scenario. MQ2007-agg contains 1692
queries with 21 ranking inputs per query on average
and MQ2008-agg contains 784 queries with 25 ranking
inputs per query on average. In both data sets, three
level relevance judgment per document is provided as
the ground-truth.

In unsupervised scenario, we choose BordaCount
(Aslam & Montague, 2001), RRF (Cormack et al.,
2009) as the baselines of explicit method, and SVP
(Gleich & Lim, 2011), MPM (Volkovs & Zemel, 2012)
and PlackettLuce (Guiver & Snelson, 2009) as the
baselines of implicit methods. In supervised scenario,
we choose RankAgg (RankAggNDCG, RankAggERR,
RankAggRBP ) (Volkovs et al., 2012) as the base-
lines of explicit methods, and CPS (Qin et al., 2010)
and θ-MPM (Volkovs & Zemel, 2012) as the base-
lines of implicit methods, where the feature mapping
method used in RankAgg in supervised scenario is
Borda Count (Aslam & Montague, 2001).

The experimental results are shown in Figure 1, where
Bestinput in Figure 1(a) stands for the method that
directly utilizes the best ranking input in terms of eval-
uation measures as the output. It is obvious that im-
plicit aggregation methods outperform explicit meth-
ods in most cases in both unsupervised scenario (Fig-
ure 1(a)) and supervised scenarios (Figure 1(b)), espe-
cially on MQ2007-agg.
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Figure 1: Performance Comparison between Existing
Explicit and Implicit Methods

3.2 ANALYSIS

The contradiction between the experimental results
and the intuition inspires us to revisit these explicit
methods. The ranking inputs for aggregation, i.e. in-
puts in the data sets of MQ2007-agg and MQ2008-
agg, are typically partial rankings. The incomplete-
ness of the partial ranking makes the ranks of items
no longer reliable, which causes the failure of these ex-
plicit methods according to (Voorhees, 2002; Farah &
Vanderpooten, 2007).

Taking Borda Count and an example as follows to show
the reason. τ1D = a ≻ b, τ2D = b ≻ c, τ3D = c ≻ d are
three incomplete rankings over D = {a, b, c, d}, and
the ground-truth ranking is a ≻ b ≻ c ≻ d. Borda
Count ranks the items by the mean positions of all the
three lists. With assumption that τ1D(a)=1, τ1D(b)=
2, τ2D(b)=1, τ2D(c)=2, τ3D(c)=1, τ3D(d)=2, the final
ranking obtained from Borda Count in unsupervised
scenario is b ≻ c ≻ a ≻ d or c ≻ b ≻ a ≻ d, which is far
from the ground-truth ranking. In supervised scenario,
these unreliable rank positions used to calculate the
Borda Count score are employed as features directly.
These unreliable features lead to the failure of learning
to rank algorithms.

Through further analysis, we find that the above fail-
ure is caused by unreliable rank information generated
from partial ranking inputs. Specifically, the ranks of
missing items are taken as NULL, which would not
appear in the computation, and make the positions of
remaining items no longer reliable. For example, c and
d are missing in τ1D, and thus the ranks of a and b are
taken as 1 and 2, respectively. However, these ranks
do not reflect the true absolute ranks of a and b if c and
d are taken into consideration. In a word, the incom-
plete ranking inputs result in unreliable rank informa-
tion, which leads to the failure of explicit aggregation
methods. This motivates us to take the uncertainty
of rank information into consideration and design new
rank aggregation methods.

4 STOCHASTIC RANK
AGGREGATION

Through analysis in section 3.2, it is important for
aggregation methods to be able to accommodate the
uncertainty of the rank information. To achieve this
goal, we treat rank as a random variable and design
a novel rank aggregation framework which transforms
the ranking functions or objectives into the expecta-
tions over its distribution in both unsupervised and
supervised scenario, namely St.Agg.
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4.1 INCORPORATING UNCERTAINTY
INTO RANKS

In section 3.1 we observe that these implicit methods
with pairwise preferences as inputs outperform explicit
methods in most cases. Inspired by this observation,
we define the random variable of rank with respect to
a ranking input τ as the result of pairwise contests,
described as follows:

R(xj , τ) =
n∑

i=1,i̸=j

I(xi ≻τ xj), (8)

where R(xj , τ) is the rank of item xj in τ , and I(xi ≻τ

xj) stands for the event that item xj is beaten by
item xi. We assume that the pairwise contest between
xi and xj follows a Bernoulli trail with probability
p(xi ≻τ xj) that xj is beaten by xi. Therefore, the
rank R(xj , τ) is a Binomial-like random variable, equal
to the number of successes of n − 1 Bernoulli trials.

Furthermore, the rank distribution for each item xj

can be computed from τ in the following process.

(1) If we only have item xj , its rank will be 0 (the
best rank). Thus the initialization distribution of
item xj is defined as:

P (1)(R(xj , τ) = r) = δ(r) =

{
1, r = 0
0, r > 0

(9)

(2) Each time we add a new item xi, the rank will
get one larger if xj is beaten by xi and it will stay
unchanged otherwise. Therefore the rank distri-
bution for item xj will be updated by the following
recursive relation:

P (t)(R(xj , τ)= r)
= P (t−1)(R(xj , τ)= r−1)p(xi ≻τ xj)

+ P (t−1)(R(xj , τ) = r)(1 − p(xi ≻τ xj)).

(10)

(3) After n − 1 iterations, P (n)(R(xj , τ) = r) will be
the final distributions P (R(xj , τ) = r).

Based on the definition of rank distribution above, the
ranking function or objective function used in an ex-
plicit method can be turned into a new function by tak-
ing the expectation over this rank distribution, which
will be used in the new rank aggregation method, de-
scribed in the following section.

4.2 UNSUPERVISED ST.AGG

First we introduce the specific form of pairwise prob-
ability p(xi ≻τ xj) for the computation of rank dis-
tribution P (R(xj , τ) = r) in unsupervised scenario.

The expectations of ranking functions in explicit meth-
ods are then computed over the rank distribution, and
used to obtain the final aggregated ranking. We de-
note our unsupervised St.Agg as St.Aggf for different
ranking functions.

4.2.1 Definition of Pairwise Probability

Inspired by the robust rank difference information
(Farah & Vanderpooten, 2007) underlying in the rank-
ing list, we define p(xi, xj) as the function of rank dif-
ference between xi and xj in the full ranking τDτ over

the subset Dτ ⊆D such as
|τDτ (xi)−τDτ (xj)|

n . We would
like to give an example of the definition of the pairwise
probability p(xi ≻τ xj) satisfying p(xi ≻τ xj)+p(xj ≻τ

xi) = 1 as below :





min{p(xi,xj),1−p(xi, xj)}, if τDτ(xi)>τDτ(xj)
max{p(xi,xj),1−p(xi, xj)}, if τDτ(xi)<τDτ(xj)
0.5, otherwise

(11)

Incorporating Eq.(11) to the recursive process Eq.(10),
we can obtain the probability distribution over ranks
P (R(xj , τ) = r).

4.2.2 Expectations

As mentioned in section 2, the ranking function f(xj)
in explicit methods is a sum of the utility function
of rank information of a certain item from multiple
ranking inputs. Thus we can simply calculate the ex-
pectation of the ranking function fs(xj) over the rank
distribution proposed above.

For example, the new ranking function fs(xj) in
St.AggBC and St.AggRRF can be obtained by incor-
porating rank distribution P (R(xj , τi) = r) into the
mean position function in Eq.(2) and the reciprocal
rank function in Eq.(3) respectively, as shown below.

fs(xj) =
1

m

m∑

i=1

n−1∑

r=0

(n − r)P (R(xj , τi) = r), (12)

fs(xj) =
m∑

i=1

n−1∑

r=0

P (R(xj , τi) = r)

r + C
. (13)

where BC is short for Borda Count. For such new
aggregation methods, the final ranking is obtained by
sorting in descending order of fs(xj).

4.3 SUPERVISED ST.AGG

In supervised scenario, we utilize the state-of-the-art
learning framework for the optimization problem in
rank aggregation like RankAggF (Volkovs et al., 2012)
mentioned in the section 2.2. Similarly we denote our
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supervised St.Agg as St.AggF for different definitions
of optimization functions.

Firstly, the specific form of pairwise probability
p(xi≻πxj) for the computation of rank distribution
P (R(xj , π) = r) is defined based on the aggregated
ranking π. Then the optimization objectives in our
supervised St.Agg can be defined as the expectation of
these objectives over rank distributions P (R(xj , π)=
r). To solve this aggregation problem by a learn-
ing procedure, a proper feature mapping is first de-
signed for representation, and then a gradient-based
optimization method is adopted to learn the ranking
function f .

4.3.1 Definition of the Pairwise Probability

Pairwise probability is defined on the basis of the
ranking function f . Therefore, we define the score
of each item xi as a normal random variable de-
noted as si with expectation f(xi) and variance σ2,
i.e. si ∼ N (f(xi), σ

2).

Similar to the definition in unsupervised scenario, the
pairwise probability can be defined as the function of
score difference to reflect that the larger the score dif-
ference between xi and xj , the more probable that xj

is defeated by xi. Thus p(xi ≻π xj) can be defined as
P (si − sj > 0), where si − sj ∼ N (f(xi)− f(xj), 2σ2).
The computation of p(xi ≻π xj) can be taken as the
following Eq.(14).

p(xi≻πxj)=

∫ +∞

0

1

2σ
√

π
e− (x−(f(xi)−f(xj)))2

4σ2 dx (14)

Applying the specific form of p(xi ≻π xj) in Eq.(14)
into the recursive computation of P (R(xj , π) = r) in
Eq.(10), the Binomial-like distribution P (R(xj , π) =
r) are computed. For the convenience of computing
the derivation, the Binomial-like distribution can be
approximated by the normal distribution with means∑n

i=1,i ̸=j p(xi ≻π xj) and variance
∑n

i=1,i ̸=j p(xi ≻π

xj)(1 − p(xi≻πxj)).

4.3.2 Expectations

Objective functions in explicit methods mentioned in
section 2.2 can be expressed as the sum of difference
functions, such as ERR in Eq.(6), RBP in Eq.(7) and
NDCG in Eq.(5). Incorporating P (R(xj , π) = r) into
these objectives, the expectation of them can be eas-
ily obtained by taking the expectation of the differ-
ence functions v(·, ·) over the rank distribution, de-
noted as ERRs, RBPs and NDCGs. The general form
Evs(π, Y ) and these three measures are listed below.

Evs(π, Y ) =
n∑

j=1

n−1∑

r=0

v(yi, r)P (R(xj , π) = r),

ERRs(π, Y )=
n∑

j=1

n−1∑

r=0

P (users stop at r)P (R(xj , π) = r)

r + 1
,

RBPs(π, Y )=(1 − p)

n∑

j=1

n−1∑

r=0

yjp
rP (R(xj , π)=r),

NDCGs(π,Y )=

∑n
j=1

∑n−1
r=0 g(yj)D(1+r)P (R(xj ,π)=r))

DCGmax(n)
.

4.3.3 Feature-based Learning Framework

The remaining question is how to optimize these ex-
pected objectives in a feature-based learning frame-
work. Stage I is to design a better feature mapping
for item representation; Stage II is the learning pro-
cess of the supervised St.Agg, i.e. St.AggF .

Stage I: Feature mapping. In literature, feature map-
ping techniques for rank aggregation can be classified
into three groups in terms of information used in the
feature extraction process.

(1)Features in terms of user-item relation. Borda
Count is such a natural feature, which aims to as-
sign an item a relevance score per ranking input ac-
cording to its position in this ranking input only.

For example nBC(xi, τi) = n−τi(xi)
n , so ΨBF (i) =

[nBC(xi, τ1), · · · , nBC(xi, τm)].

(2)Features in terms of both user-item and item-item
relations. Maksims et al. (Volkovs et al., 2012) pro-
posed a transformation from all the ranking inputs
into latent feature representations for each item based
on SVD factorization. Each ranking input τi can
be transformed into a pairwise preference based ma-
trix denoted as Pi. Each matrix Pi can be approxi-
mated by rank-p singular vector decomposition Pi ≈
UiΣiV

′
i . Therefore, each item xi can be represented

as a SVD-based feature vector from m ranking in-
puts, ΨMF (i) = [U1(i, :), diag(Σ1), V1(i, :), · · · , Um(i, :
), diag(Σm), Vm(i, :)].

(3)Features in terms of all of the three relations.
Tensor factorization method can take the item-item,
item-user, user-user relations into consideration (Hong
et al., 2012). In this paper, we use CanDe-
comp/Parafac (CP) decomposition (Kolda & Bader,
2009) for tensor factorization due to the nice property
that it has a unique solution of decomposition, which
provides a theoretical guarantee to get a stable solu-
tion. Specifically, the item-item-user tensor T with
T (:, :, i) = Pi is factorized as T =

∑p
j=1 λjU:,jV:,jW:,j .

Therefore CP-based feature vector for item xi is rep-
resented as ΨTF (i) = [U(i, :), V (i, :)].

Stage II: Gradient-based learning algorithm. Suppose
f is a linear model with parameter w. Here we use
gradient method for the optimization of these expected
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objectives such as ERRs, RBPs and NDCGs. The
gradients of these expected objectives are computed
as below.

n∑

j=1

n−1∑

r=0

∂Evs(π, Y )

∂P (R(xj , π) = r)

∂P (R(xj , π) = r)

∂w
(15)

For ERRs, RBPs and NDCGs, the only difference of
their partial derivatives lies in the first part of deriva-
tives in the Eq.(15), which can be easily derived as
follows.

∂ERRs(π, Y )

∂P (R(xj , π) = r)
=

P (users stop at r)

r + 1
,

∂RBPs(π, Y )

∂P (R(xj , π) = r)
= (1 − p)yjp

r,

∂NDCGs(π, Y )

∂P (R(xj , π) = r)
=

g(yj)D(r)

DCGmax(n)
.

5 EXPERIMENTS

In this section we compare the performance of our ag-
gregation methods St.Agg with traditional methods in
terms of ERR, RBP and NDCG on two benchmark ag-
gregation data sets, i.e. MQ2007-agg and MQ2008-agg
in LETOR4.0. In unsupervised scenario, the ground-
truth is only used for evaluation; In supervised sce-
nario, the ground-truth is employed for both training
and evaluation. Finally we make a detailed analysis
on the robustness of St.Agg.

5.1 EFFECTIVENESS OF
UNSUPERVISED ST.AGG

As summarised in Section 2, the baseline methods fall
into two groups in unsupervised scenario, i.e. the im-
plicit group including Markov Chain based methods
denoted as MCLK (Dwork et al., 2001), SVP (Gle-
ich & Lim, 2011), MPM (Volkovs & Zemel, 2012) and
Plackett-Luce (Guiver & Snelson, 2009), and the ex-
plicit group including Borda Count (Aslam & Mon-
tague, 2001) and RRF (Cormack et al., 2009). We
implement two unsupervised St.Agg methods includ-
ing St.AggBC and St.AggRRF .

We use the standard partition in LETOR4.0. For
parameter setting, we choose the parameters when a
method reaches its best performance on validation set.
For example, parameter C of RRF is set to 40 on
MQ2007-agg and 10 on MQ2008-agg. The learning
rate is 0.1 and precision is 0.01 for SVP on both data
sets.

The experimental results are shown in Table 1. Firstly,
we make a comparison between the explicit methods

and St.Agg in terms of NDCG@5, NDCG@10, ERR
and RBP. We can see that St.AggBC and St.AggRRF

have obvious advantage over the explicit methods
Borda Count and RRF in terms of all the measures.
For example, the highest performance improvement of
St.AggBC is 79.7% in terms of NDCG@5 on MQ2007-
agg compared with Borda Count. The highest perfor-
mance improvement of St.AggRRF is 32.3% in terms
of NDCG@5 compared with RRF. Similar results can
be found on MQ2008-agg. It demonstrates that ex-
plicit rank aggregation methods can be significantly
improved by incorporating uncertainty into rank ag-
gregation.

Secondly, we make a comparison between the im-
plicit methods and St.Agg in terms of NDCG@5,
NDCG@10, ERR and RBP. We can see that St.Agg is
consistently better even than the best implicit method
(MPM). Compared with MPM, St.AggRRF achieves
5.2% higher in terms of NDCG@5 on MQ2007-agg. In
terms of NDCG@10, our St.AggBC performs 4.8% bet-
ter than the best implicit method (MPM) on MQ2007-
agg. Similar results can be found on the MQ2008-agg.
Therefore, we conclude that explicit rank aggregation
methods can outperform the implicit methods after
incorporating uncertainty into rank aggregation.

In summary, St.Aggf with expected ranking func-
tion can improve the performance compared with the
explicit methods which utilize rank information di-
rectly for aggregation. It also turned out to be bet-
ter than the state-of-art implicit aggregation methods
on both data sets in terms of all the evaluation mea-
sures. Therefore, our proposal to incorporate uncer-
tainty into rank aggregation, i.e. stochastic rank ag-
gregation, is significant for this task.

5.2 EFFECTIVENESS OF SUPERVISED
ST.AGG

Similarly in supervised scenario, our baseline meth-
ods fall into two categories: (1) implicit rank aggre-
gation methods including CPS (Qin et al., 2010) and
θ-MPM (Volkovs & Zemel, 2012); and (2) explicit rank
aggregation methods including methods mentioned in
(Volkovs et al., 2012), denoted as RankAgg.

Both RankAgg and St.Agg are in a feature-based
learning framework. Therefore, it is also a key prob-
lem to design a feature mapping for each item. In this
paper, three mappings are adopted: (1) Borda Feature
ΨBF ; (2) SVD-based Features ΨMF ; and (3) CP-based
Features ΨTF . RankAgg and St.Agg under these
different mappings are denoted as RankAgg(ΨBF ),
RankAgg(ΨMF ), RankAgg(ΨTF ) and St.Agg(ΨBF ),
St.Agg(ΨMF ) St.Agg(ΨTF ), respectively.

We use the standard partition in LETOR4.0, and em-
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Table 1: Performance Comparison under Unsupervised Methods on MQ2007-agg and MQ2008-agg. All the
results with bold type are significantly better than the baseline methods (p-value< 0.05).

(a) MQ2007-agg

Methods N@5 N@10 ERR RBP
BestInput 0.3158 0.3474 0.2476 0.3117
MCLK 0.2098 0.2450 0.1905 0.2798
SVP 0.2582 0.2859 0.2169 0.2941
Plackett-Luce 0.3462 0.3574 0.2957 0.2999
MPM 0.3986 0.4210 0.3078 0.3229
BordaCount 0.2325 0.2637 0.2000 0.2868
RRF 0.3172 0.3474 0.2563 0.3108
St.AggBC 0.4179 0.4384 0.3197 0.3347
St.AggRRF 0.4195 0.4404 0.3199 0.3346

(b) MQ2008-agg

Methods N@5 N@10 ERR RBP
BestInput 0.3813 0.1756 0.2391 0.1574
MCLK 0.3402 0.1431 0.2055 0.1449
SVP 0.4004 0.1890 0.2523 0.1606
Plackett-Luce 0.3737 0.1586 0.2696 0.1485
MPM 0.4283 0.2050 0.3023 0.1628
BordaCount 0.4052 0.1895 0.2547 0.1607
RRF 0.4239 0.1931 0.2756 0.1615
St.AggBC 0.4515 0.2151 0.3021 0.1671
St.AggRRF 0.4512 0.2157 0.3028 0.1673
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Figure 2: Performance Comparison of Supervised Aggregation Methods on MQ2007-agg
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Figure 3: Performance Comparison of Supervised Aggregation Methods on MQ2008-agg

ploy five-fold cross validation to evaluate the perfor-
mance of each methods. For gradient descent proce-
dure in CPS (Qin et al., 2010), RankAgg (Volkovs
et al., 2012) and our St.Agg, learning rate is cho-
sen from 10−1 to 10−6 when the best performance is
achieved on the validation set with the maximal num-
ber of iterations is 500. An additional parameter σ
needs to be tuned from 10−1 to 10−4 for St.Agg.

5.2.1 Comparison of Aggregation Methods

We first compare the performances of different meth-
ods, and the experimental results are listed in Figure
2 and Figure 3. We can see that St.Agg outperforms
RankAgg consistently in terms of NDCG@10, ERR
and RBP under each feature mapping (p-value< 0.05).
For example in Figure 2 on MQ2007-agg under ΨMF ,
the improvement of St.AggNDCG over RankAggNDCG
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is 4.6% in terms of NDCG@10, the improvement
of St.AggERR over RankAggERR is 7.5% in terms
of ERR, and the improvement of St.AggRBP over
RankAggRBP is 7.2% in terms of RBP.

Compared with the best of implicit aggregation meth-
ods (θ-MPM) in Figure 2 on MQ2007-agg, St.Agg
performs consistently better under any feature map-
ping (p-value< 0.01). Specifically, the improvement
of St.AggNDCG(ΨMF ) over θ-MPM is 6.73% in terms
of NDCG@10, the improvement of St.AggERR(ΨMF )
over θ-MPM is 24.3% in terms of ERR and the im-
provement of St.AggRBP (ΨMF ) over θ-MPM is 15.5%
in terms of RBP. Similar results can be found on
MQ2008-agg as shown in Figure 3.

To sum up, we can see that our proposed St.Agg can
significantly outperform all these baselines in terms of
NDCG, ERR and RBP.

5.2.2 Feature Mapping Comparison

We further compare the effectiveness of different fea-
ture mappings. From the results in Figure 2, we can
see that ΨMF is the best among all the three mappings
on MQ2007-agg (p-value< 0.01). For example, perfor-
mances on ΨMF are consistently better than the other
two mappings ΨBF and ΨTF for both St.AggNDCG

and RankAggERR. In Figure 3, obviously ΨTF is the
best among all the three mappings on MQ2008-agg (p-
value< 0.01). For example, performances on ΨTF are
consistently better than that on ΨMF and ΨBF for
both St.AggNDCG and RankAggNDCG.

Through above analysis, ΨMF is best on MQ2007-agg
and ΨTF is the best on MQ2008-agg. Since MQ2008-
agg is much smaller and noisier than MQ2007-agg, our
experimental results agreed with the previous findings
that feature mappings based on tensor factorization
will be more robust for sparsity and noise (Kolda &
Bader, 2009).

5.3 ROBUSTNESS ANALYSIS OF ST.AGG

It is important to consider the robustness of rank ag-
gregation methods. Here robustness means that the
comparative performance will change little along with
different ranking inputs, as defined in (Carterette &
Petkova, 2006). Considering the computational effi-
ciency, here we only take unsupervised St.Agg for ex-
ample. With the number of ranking inputs from 5 to
20 with a step 5, we randomly choose the ranking in-
puts from the whole data sets 20 times. Each point
in Figure 4 depicts the average NDCG@5 obtained on
these 20 results.

It is obvious that NDCG@5 of St.Agg keeps high above
all these explicit and implicit methods as the number
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Figure 4: Robustness Analysis of St.Agg

of ranking inputs increases in the data set. Therefore,
St.Agg is very robust to the change of ranking inputs
by incorporating uncertainty into ranks. In addition,
the performance of each method tends to be stable
with the increase of the number of ranking inputs since
its variance is smaller and smaller.

6 CONCLUSION

In this paper, we propose a novel rank aggregation
framework to incorporate uncertainty to this task,
namely stochastic rank aggregation (i.e. St.Agg).

We give some empirical results and analysis to show
that unreliable rank information from incomplete
ranking inputs will make the approaches directly using
rank information fail in practice. To tackle this prob-
lem, we propose to treat rank as a random variable
and define the distribution by pairwise contests. After
that, a novel rank aggregation framework in both un-
supervised and supervised scenario is proposed, which
takes the expectations of traditional ranking functions
or objective functions for optimization. Finally, our
extensive experiments on benchmark data sets show
that the proposed St.Agg is better in terms of both
effectiveness and robustness.

For future work, it is interesting to investigate how
to incorporate uncertainty to implicit methods, and
whether there are better ways to define the rank dis-
tribution.
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Abstract

We introduce the class of pay or play games,
which captures scenarios in which each deci-
sion maker is faced with a choice between two
actions: one with a fixed payoff and another
with a payoff dependent on others’ selected
actions. This is, arguably, the simplest set-
ting that models selection among certain and
uncertain outcomes in a multi-agent system.
We study the properties of equilibria in such
games from both a game-theoretic perspec-
tive and a computational perspective. Our
main positive result establishes the existence
of a semi-strong equilibrium in every such
game. We show that although simple, pay
or play games contain well-studied environ-
ments, e.g., vaccination games. We discuss
the interesting implications of our results for
these environments.

1 Introduction

The situation in which a decision-maker has to choose
between an action with fixed, certain, outcome to a
course of action with uncertain consequences is a fun-
damental topic in decision making under uncertainty.
We introduce a new framework, called pay or play.
In pay or play each of multiple decision makers must
choose among an action with a known, fixed, payoff,
and an action interpreted as participation in a game
with other decision makers. The outcome of this game
is dependent on who of the other decision makers also
choose to take part in this game. The pay or play set-
ting captures what is arguably the simplest scenario
in which decision makers select between certain and
uncertain outcomes, and the realization of the uncer-
tain outcome is solely dependent on the decision mak-

∗ This work was done while S. Oren was a research
intern at Microsoft Research .

ers and not on “nature”. Importantly, in addition to
its theoretical and conceptual appeal, pay or play en-
compasses, unifies, and abstracts classical models of
immunization and of differential pricing.

A Game-Theoretic Formulation. We now give
an informal, high-level, exposition of our (game-
theoretic) pay or play model. In a pay or play game
there are n self-interested players, each with two possi-
ble strategies (actions). Each player i has a cost func-
tion ci which specifies, for every n-tuple of players’
strategies, the cost of player i. ci is such that when-
ever player i’s strategy is pay his cost is some fixed
value hi, regardless of what the other players’ strate-
gies are. When player i’s strategy is play, however, his
cost is a function of the other players whose strategy
is also play. We require each cost function ci to be
monotone nondecreasing, i.e., as more players choose
play the cost of player i cannot decrease.

We are interested in the properties of (Nash) equilib-
ria in this game-theoretic setting. An equilibrium is
an n-tuple of strategies from which no player wishes
to unilaterally deviate. We explore both pure (deter-
ministic) equilibria, in which each player must choose
one of these two strategies, and mixed (randomized)
equilibria in which a player can choose a probability
distribution over the two strategies. We tackle funda-
mental questions, including: Does a pure equilibrium
always exist? Are equilibria in this environment “glob-
ally efficient”? What is the complexity of determining
the existence and computing equilibria? And more.

Our Contributions. We study the properties of
equilibria in pay or play games both from a game-
theoretic perspective and a computational perspective.
We now briefly summarize our results:

We begin by showing that a pure Nash equilibrium
may not always exists and characterize some sub-
classes pay or play games which always admit a pure
Nash equilibrium. The next natural question is how
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hard is it to determine whether such an equilibrium
exists or not—a question tackled in a large variety
of other game-theoretic contexts. We show that this
task is, in general, intractable from both a com-
putational perspective (NP-hard) and information-
theoretic (communication complexity) perspective.

A main criticism against Nash equilibria is that they
are not resilient to deviations by coalitions of players.
Equilibria that are resilient against all such deviations,
called “strong equilibria”, are hence of special interest.
We identify conditions for the existence of a strong
equilibrium. Our main positive result is that any pay
or play game admits an equilibrium with a slightly
weaker property, namely, a “semi-strong” equilibrium.

Next, we explore the conditions under which pay or
play games are Pareto efficient, i.e., when no scenario
that is strictly better for at least a single player and no
worse for all others exists. We also quantify the gap
in global efficiency (sum of players’ costs) between an
equilibrium and the optimum solution (which does not
take into account players’ own selfish agendas).

Lastly, we discuss the implications of our results for
two special cases of pay or play games: classical mod-
els of immunization [1, 2] and of differential pricing
[15, 16]. In particular, we show that the game de-
scribed in [1] always admits a Pareto efficient pure
Nash equilibrium.

Related Work Decision between actions with cer-
tain and uncertain outcomes is the subject of much
research in decision theory. Indeed, the rich litera-
ture about the (so called) value of information, which
concentrates on measuring the gain one obtains by ac-
quiring information. See, e.g., [6, 12, 5, 13].

Equilibrium analysis is fundamental to game theory
and has recently also received much attention from
a computer science perspective. In particular, estab-
lishing when different kinds of equilibria (pure Nash
equilibrium, strong Nash equilibrium, and more) are
guaranteed to exist, and the complexity of comput-
ing such equilibria, are two important, and extensively
studied, research topics. See, e.g., classical game-
theoretic results on the existence of pure Nash equilib-
ria in congestion games [14], potential games [11], and
player-specific congestion games [10], and also more
recent results on computing equilibria in these envi-
ronments [3, 4].

We have already mentioned that pay or play games
generalizes classical models of immunization and dif-
ferential pricing. An additional class of games gener-
alized by the pay or play class are Interdependent Se-
curity Games [7, 8]. Similarly to immunization games
in these games players decide whether to invest in se-

curity or not and their decision affects both their own
vulnerability and their peers vulnerability.

2 Model and Preliminaries

In pay or play games we have a set of N self-interested
players (|N | = n), each with two strategies: pay or
play. We denote the choices of the players by a strat-
egy vector x = (x1, . . . , xn). When referring to pure
(deterministic) strategy profiles, that is, the scenario
that each player selects either pay or play with prob-
ability 1, we shall use xi = 0 to indicate that player i
chooses the play strategy and xi = 1 to indicate that
player i chooses the pay strategy. We denote by A(x)
the set of players who choose the play strategy in pure
strategy vector x. The cost of player i in pure strategy-
vector x, ci(x), is some fixed number hi if i pays in x
(i.e., xi = 1) and a function of the set of players who
play in x, gi(A(x)), if i plays in x. Formally, we define:

ci(x) =

{
hi xi = 1

gi(A(x)) xi = 0

In cases that all the players have the same cost function
we will refer to the fixed cost as simply h and the cost
of the play strategy as g(·).
We require gi(·) to be monotone nondecreasing (that
is, as more players choose play the cost of player i
should increase). Formally, if S ⊆ T and i ∈ S then
gi(S) ≤ gi(T ).

Recall that a player plays a mixed strategy when he
selects some probability distribution over the two ac-
tions. For mixed strategies, xi will denote the proba-
bility that player i chooses the pay strategy. (Observe
that a pure strategy is a special case of a mixed strat-
egy.) The cost of player i in a mixed strategy vector x,
ci(x), is his expected cost over the induced distribution
over pure strategy vectors: ci(x) =

xi · hi + (1− xi) ·
∑
S⊆N−{i}

∏
j∈S(1− xj)gi(S ∪ {i}).

Our focus in this paper is on the Nash equilibria of
play or play games that are defined as follows:

Definition 2.1 A vector of mixed (pure) strategies x
is a mixed (pure) Nash equilibrium if for every player i
and every mixed (pure) strategy x′i: ci(x

′
i, x−i) ≥ ci(x).

As common is game theory literature, x−i is used as
shorthand for the strategy vector describing all play-
ers’ strategies but that of player i, and (xi, x−i) de-
notes the strategy vector in which player i’s strategy
is xi and the other players’ strategies are as in x−i.
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3 Pure Nash Equilibria

We begin by addressing the natural question of
whether a pure Nash equilibrium always exists in pay
or play games. We provide an affirmative answer to
this question for some subclasses of pay or play games,
but show that, in general, the class includes games
that do not admit a pure Nash equilibrium. Further-
more, we show that determining whether a specific pay
or play game admits a pure Nash equilibrium is hard
both from a computational perspective (NP-hardness)
and from an information-theoretic perspective (can in-
volve the communication of exponentially many bits).
As each player has a two strategies, though not all
pay or play games possess a pure Nash equilibrium,
all games do admit at least a single mixed Nash equi-
librium. We discuss the properties of such equilibria
later on.

3.1 Sufficient Conditions for Existence

Note that pay or play games in which (i) the cost func-
tions of all players depend only on the number of play-
ers who choose the play strategy and (ii) all players
have the same cost function belong to the classic game-
theoretic category of “congestion games” [14], and so
are guaranteed to possess a pure Nash equilibrium. We
now show that a sufficient condition for a play or pay
game to admit a pure Nash equilibrium is for just one
of these two properties to hold.

First, consider pay or play games in which the cost
function of the play strategy (gi(·)) of all the players
depends only on the number of players who choose the
play strategy (and not on their identities). It is not
hard to observe that such games belong to the class of
player-specific congestion games. This class of games
was defined by Milchtaich [10], who showed that these
games always admit a pure Nash equilibrium. Thus,
the following claim holds for pay or play games:

Claim 3.1 If for every player i there exists a function
wi such that for every S ⊆ N − {i},gi(S ∪ {i}) =
wi(|S|+ 1), then a pure Nash equilibrium exists.

We now show that if the players are symmetric (i.e.,
all have the same cost function), then a pure Nash
equilibrium always exists. We point out that the cost
function of the players is allowed to depend on the
identities of players who choose to play (and not just
on their number).

Claim 3.2 If all players in a pay or play game are
symmetric, then a pure Nash equilibrium of the game
always exists and can be computed efficiently.

Proof: We present a simple greedy algorithm for

computing a pure Nash equilibrium in polynomial
time: begin with the strategy vector x = 1n in which
all players choose the pay strategy. While there ex-
ists a player i /∈ A(x) such that g(A(x) ∪ {i}) < h set
xi = 0.

We claim that the resulting strategy vector is a pure
Nash equilibrium. Observe that once the algorithm
halts every player i ∈ A(x) has a cost smaller than h,
and so prefers the play strategy. On the other hand,
every player j /∈ A(x) would have a cost greater than
h for choosing the play strategy.

3.2 Computational Hardness

Next, we show that if the costs are both player-specific
and can depend on the identities of the players, a pure
Nash equilibrium might not exist at all. This is true
even when the cost functions are restricted to be sub-
modular 1.

Claim 3.3 The pay or play class contains games that
do not admit a pure Nash equilibrium, even for sub-
modular cost functions.

Proof: Consider the following game consisting of
three players numbered 0, 1, 2. The cost of player i is
defined as: hi = 1.5, gi({i − 1, i, i + 1}) = 2, gi({i −
1, i}) = 2, gi({i, i + 1}) = 1, gi({i}) = 1. Where
i+ 1 and i− 1 are computed modulo 3. We show that
this game does not admit any pure Nash equilibrium
by doing a case by case analysis of all the possible
strategy vectors:

• There is no pure Nash equilibrium in which all
players choose the play strategy – one of the play-
ers can benefit from choosing the pay strategy.

• There is no pure Nash equilibrium in which two
players choose the play strategy – if players j and
j + 1 choose the play strategy then the cost of
player j + 1 is 2 and hence he prefers to choose
the pay strategy.

• There is no pure Nash equilibrium in which at
most a single player chooses the play strategy – if
players j and j + 1 choose the pay strategy then
player j can reduce his cost to 1 by switching to
the play strategy.

We are now ready to show that determining whether
a pure Nash equilibrium exists or not is NP-hard. The
proof is based on a reduction from a 3-SAT formula
to a pay or play game and uses the construction from
the previous claim as a gadget.

1A cost function g(·) is submodular if for every two sets
of players S ⊆ T and for ever player j /∈ T it holds that:
g(T ∪ {j})− g(T ) ≤ g(S ∪ {j})− g(S).
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Theorem 3.4 Determining whether a pure Nash
equilibrium exists or not in a pay or play game is NP-
hard.

Proof: Given an instance of 3-SAT we construct the
following pay or play instance where all players have
the same fixed cost of 1.5 but different cost functions
for the play strategy.

• For each variable vi of the 3-SAT formula, we cre-
ate two players – ti and fi. We construct their
cost functions such that whenever fi chooses to
play then ti prefers to pay and vice versa. For-
mally, we define for all subsets S such that fi ∈ S:
gti(S) = 2 and for all S such that fi /∈ S:
gti(S) = 1. Similarly, we define for all S such
that ti ∈ S: gfi(S) = 2 and for all S such that
ti /∈ S: gfi(S) = 1.

• For every clause i we create three players,
a3i, a3i+1, a3i+2. We find it easiest to define their
costs by an example: consider, for instance, i =
(vj ∨ v̄k ∨ vl), if tj /∈ S or fk /∈ S or tl /∈ S then
ga3i+r

(S) = 1 for r ∈ {0, 1, 2}. Else, for a set S
such that tj , fk, tl ∈ S and a3i, a3i+1, a3i+2 /∈ S ,
we reconstruct the example from Claim 3.3 and
define:

– g3i+r({a3i+r−1, a3i+r, a3i+r+1} ∪ S) = 2
– g3i+r({a3i+r−1, a3i+r} ∪ S) = 2
– g3i+r({a3i+r, a3i+r+1} ∪ S) = 1
– g3i+r({a3i+r} ∪ S) = 1

where r + 1 and r − 1 are computed modulo 3.

Claim 3.5 The 3-SAT formula can be satisfied if and
only if the previously defined game admits a pure Nash
equilibrium.

Proof: First assume that the formula is satisfiable.
Let φ be an assignment satisfying it. We show that
the following strategy vector is an equilibrium: ev-
ery player of type ai uses the play strategy, player
ti chooses the play strategy if and only if φi = T
and player fi chooses the play strategy if and only
if φi = F . To verify that this is indeed a Nash equi-
librium observe the following: first, for every i player
ai has a cost of 1 which is smaller than the cost of 1.5
for choosing the pay strategy. If player ti uses the pay
strategy, then player fi does not use the pay strategy
– thus the cost of player ti for using the pay strategy is
1.5, if it instead chooses the play strategy it would pay
2. Player fi cost is 1 for playing so this is its best re-
sponse as well. Similarly, one can show that this is also
an equilibrium for players ti and fi such that ti uses
the play strategy and player fi uses the pay strategy.

Next, we show that if there exists a pure Nash equi-
librium then the formula is satisfiable. Let x be the
Nash equilibrium. Clearly it has to be the case that

for all pairs fi, ti exactly one of the players chooses pay
and the other chooses play. Consider the assignment
φi = T if xti = 1 and φi = F if xti = 0. Assume
towards a contradiction that there exists some clause
i which is not satisfied by the assignment φ. Suppose,
for instance, that i = (vj ∨ v̄k ∨ vl). This implies that,
tj , fk and tl all use the play strategy. Therefore, by
construction the three players a3i, a3i+1, a3i+2 are in
the exact same configuration as the nodes in Claim
3.3 and thus a Nash equilibrium does not exist.

3.3 Communication Hardness

We now prove that determining whether a pure Nash
equilibrium exists in a pay or play game is also hard
from an information-theoretic perspective. Specifi-
cally, we consider the problem of determining whether
a Nash equilibrium exists in Yao’s classic communica-
tion complexity model [17]: Suppose that each of the
n players in a pay or play game knows only his own
cost function and the different players wish to find out
whether, when put together, their cost functions in-
duce a game that admits a pure Nash equilibrium. No
computational restrictions whatsoever are imposed on
the players. We set an exponential (in the number of
players, n) lower bound on the number of bits the play-
ers must exchange to learn the answer to this question.
(Observe that a player cannot always simply reveal his
entire cost function to others as its specification can,
in general, be exponential in n.)

Theorem 3.6 Determining whether a Nash equilib-
rium exists in a pay or play game requires commu-
nicating an exponential (in n) number of bits.

Proof: To prove the lower bound we present a re-
duction from the well-studied DISJOINTNESS prob-
lem from communication complexity theory. In this
classical setting, there are two parties 1 and 2, each
holding a subset Ai ⊆ {1, . . . , r}. The objective in
DISJOINTNESS is to distinguish between the follow-
ing two possibilities: (1) A1 ∩A2 6= ∅ (2) A1 ∩A2 = ∅.
Classical results in communication complexity estab-
lish that solving DISJOINTNESS necessitates (in the
worst case) transmitting Ω(r) bits. For more informa-
tion the interested reader is referred to [9].

We now show how to construct an n-player pay or play
game G such that a pure Nash equilibrium in G exists
if and only if A1 ∩ A2 6= ∅ in the DISJOINTNESS in-

stance. Suppose that r =
(n−6

2
n−6
4

)
(w.l.o.g., let n = 4k+6

for some integer k > 0). We identify each element
j ∈ {1, . . . , r} with a unique set Sj ⊆ {1, ..., n−62 } of
size n−6

4 . We create n−6 players as follows. For every
element j ∈ {1, ..., n−62 } we create two players vj and
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uj . We construct their cost functions such that when-
ever vj chooses to play uj prefers to pay and vice versa.
Formally, vj ’s cost when choosing the pay strategy is
1.5, as for the play strategy, for all subsets of players
S such that uj ∈ S: gvj (S) = 2, and for all S such
that uj /∈ S: gvj (S) = 1. The cost function of player
uj is defined similarly.

We create 6 more players: t0, t1, t2, and w0, w1, w2.
The cost functions of each of the three players t0, t1,
and t2 are similar to those in the example from Claim
3.3 and are defined as follows: the cost of player ti,
hti = 1.5; for any set S ⊆ {1, ..., n−62 } let VS =⋃
i∈S{vi}; if there is some j ∈ A1 such that Sj ⊆ S,

gti(VS) = 2; if Sj is not contained in S for any
j ∈ A1, gti(ti−1, ti, ti+1, VS) = 2, gti(ti−1, ti, VS) = 2,
gti(ti, ti+1, VS) = 1, gti(ti, VS) = 1, where i + 1 and
i − 1 are computed modulo 3. The cost functions
of each of the three players w0, w1, w2 are defined
similarly: the cost of player wi, hwi

= 1.5; for any
set S ⊆ {1, ..., n−62 } let US =

⋃
i∈S{ui}; if there is

some j ∈ A2 such that SCj ⊆ S, where SCj denotes
the complement of Sj , then gwi(US) = 2; otherwise,
gwi

(wi−1, wi, wi+1, US) = 2, gwi
(wi−1, wi, US) = 2,

gwi
(wi, wi+1, US) = 1, gwi

(wi, US) = 1. i + 1 and
i− 1 are again computed modulo 3.

Claim 3.7 There is a Nash equilibrium in the pay or
play game G if and only if A1 ∩ A2 6= ∅ in the DIS-
JOINTNESS instance.

Proof: First consider the scenario that A1 ∩A2 6= ∅
in the original DISJOINTNESS instance. We show
that in this case there is indeed a pure Nash equilib-
rium in G. Let j ∈ A1 ∩ A2. For every i ∈ Sj set
the strategy of player vi to be play and the strategy
of player ui to be pay. For every i ∈ {1, ..., n−62 } \ Sj
set the strategy of player vi to be pay and the strat-
egy of player ui to be play. Observe that none of the
vi’s or ui’s wish to unilaterally deviate from this (still
partial) specification of players’ strategies as each of
these players’ strategies is the exact opposite of that
of his counterpart. Now, set the strategies of all ti’s
and wi’s to be pay. Observe the ti’s do not wish to
deviate as the set of vi-players who chose to play cor-
responds to the set Sj . Observe also that the wi’s do
not wish to deviate as the set of ui’s who chose to play
corresponds to the set SCj .

Next, we show that if there exists a Nash equilibrium
then A1 ∩ A2 6= ∅. We make the following crucial ob-
servation: in any Nash equilibrium exactly n−6

4 of the
vi’s are using the play strategy. To see this, consider a
specific Nash equilibrium. Observe that if more than
n−6
4 vi’s choose to play then in any pure Nash equilib-

rium their ui counterparts would choose to pay. This
means that less than n−6

4 ui’s pay, which in turn means

that, by construction, the three players w0, w1, w2 are
in the exact same configuration as the nodes in Claim
3.3—this leads to a contradiction, since for the three
nodes in this configuration a pure Nash equilibrium
does not exist. A similar argument establishes that
no less than n−6

4 of the vi’s must play in any Nash
equilibrium as otherwise the ti’s will find themselves
in the same predicament. Consider now the case that
exactly n−6

4 vi’s play. Observe that the ti’s avoid be-
ing in the configuration in Claim 3.3 only if the set of
vi’s who play corresponds to some Sj where j ∈ A1

and the same holds for the wi players only if the set
of ui who chose play corresponds to SCj and j ∈ A2.
Hence, j ∈ A1 ∩A2.

4 Strong and Semi-Strong Equilibria

One of the criticism often raised against Nash equilib-
ria is that they are not resilient to deviations by coali-
tions of players. Hence, games that admit an equilib-
rium that is resilient against deviations by coalitions
are of special interest. Such equilibria are called strong
equilibria.

Definition 4.1 An equilibrium x is strong if there is
no strategy vector y, such that, for every player i ∈
{j|xj 6= yj}, ci(y) < ci(x). When y is restricted to
be a pure strategy vector we say that x is strong with
respect to pure deviations.

We show that pay or play games that admit a pure
Nash equilibrium also admit a strong pure Nash equi-
librium:

Theorem 4.2 If there exists a pure Nash equilibrium
in a pay or play game then this equilibrium is strong
with respect to pure deviations.

Proof: Let x be a pure Nash equilibrium. Assume
towards contradiction that there exists a deviation of
the set of players S that reduces the cost of all of them.
Observe that S cannot include any player i that pre-
viously used the play strategy (xi = 0). The cost of
such players is at most hi since x is an equilibrium and
by switching to the pay strategy their cost would be
exactly hi. Thus, the set consists of players that use
the pay strategy in x (xi = 1) and deviate to the play
strategy. However, by monotonicity, if player i prefers
the play strategy when more players are choosing it,
then he should also prefer it when a smaller subset is
playing it – in contradiction to the fact that x is an
equilibrium.

One might also require the stronger property that an
equilibrium would be also resilient against (uncoordi-
nated) mixed deviations. Unfortunately, as the follow-
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ing example demonstrates, Nash equilibria (both pure
and mixed) in our games are not necessarily strong
with respect to mixed deviations.

Example 4.3 Consider the following symmetric 2-
player instance: the cost of the pay strategy is 2+ε, for
some small ε. The cost of the play strategy is 2 if both
players choose it and 1 if only one of them chooses it.
The unique equilibrium is for both players to choose
the play strategy. Observe that this equilibrium is not
resilient against mixed deviations: if the two players
choose the play strategy each one exhibits a cost of 2.
On the other hand, if they both deviate and use the
mixed strategy of choosing to pay with probability 1/2
to play with probability 1/2, their cost is reduced to
1
2 (2 + ε) + 1

2 ( 1
2 · 1 + 1

2 · 2) = 7
4 + 1

2ε.

On the bright side, as we shall show below, the equilib-
ria of games in our class are resilient against mixed de-
viations in a slightly weaker sense, called semi-strong
Nash equilibrium. Roughly speaking, even though
players can benefit from a joint deviation, this devi-
ation is not “stable”, as there always exists a player
who can improve his cost by deviating again. For in-
stance, the players in Example 4.3 could profit from
jointly deviating to the mixed strategy xi = 1

2 . How-
ever, after this deviation, each one of the players can
decrease his cost even more by deviating to the strat-
egy xi = 0. The fact that deviations are not stable
renders coalition formation hard (as there will always
be a player who has an incentive to “betray” the others
and deviate from the plan).

Definition 4.4 A mixed equilibrium x is semi-strong
if for every mixed strategy vector y at least one of the
following properties hold:

1. There exists a player i such that xi 6= yi and
ci(y) > ci(x).

2. There exists a player i such that xi 6= yi and a
strategy zi 6= yi such that ci(zi, y−i) < ci(y).

We are now ready to prove our main positive result:
every equilibrium of a pay or play game is semi-strong.
The proof is based on the following simple, yet pow-
erful, fact: if player i plays a mixed strategy then his
expected cost is exactly hi, since in a mixed equilib-
rium the player’s two strategies should give the same
payoff.

Theorem 4.5 Every mixed Nash equilibrium in a pay
or play game is semi-strong.

Proof: Consider an equilibrium x, assume towards a
contradiction that it is not a semi-strong equilibrium.
Let strategy vector y be the one for which the two
properties of the definition do not hold. Observe that

the second property implies that y is an equilibrium
with respect to the players in the set S = {i|xi 6=
yi}. This implies that the cost of any player i ∈ S
for which yi > 0 is hi since he either plays a mixed
strategy in an equilibrium or he plays the pure pay
strategy. As the maximal cost a player can exhibit in
an equilibrium is hi, this implies that the only players
in S are ones for which yi = 0. Now, by monotonicity
of the play function, for every player i ∈ S we have
that ci(0, x−i) ≤ ci(y) < ci(x), in contradiction to the
fact that x is an equilibrium.

Corollary 4.6 Every instance of the pay or play class
admits at least a single semi-strong Nash equilibrium.

This quite remarkable property that a semi-strong
Nash equilibrium always exists ceases to hold once we
remove the restriction that one of the strategies should
have a fixed payoff. This is illustrated by the next ex-
ample which is a variation on the prisoner’s dilemma.
For ease of exposition, the game is defined in terms of
positive utility the players wish to maximize, instead
of cost.

Example 4.7 Consider the following 3-player game.
Players 1 and 2 are paired together such that unless
they pick the same strategy all the players have a utility
of 0. When players 1 and 2 choose the same strategy,
the players utilities are defined by the following matrix
where players 1 and 2 are the row player and player 3
is the column player.

c d
c 4, 4 0, 0
d 6, 0 1, 1

For brevity we only show that there is no mixed semi-
strong Nash equilibrium. Let p1, p2, p3 be the coop-
eration probabilities (strategy c) of the three players
respectively. Then, player 1 uses a mixed strategy if
4p2 · p3 = (1− p2)(6p3 + (1− p3)). Similarly, player 2
uses a mixed strategy if 4p1·p3 = (1−p1)(6p3+(1−p3)).

Therefore, we have that players 1 and 2 always play
the same strategy, implying p1 = p2. Hence, player 3
plays a mixed strategy if: 4p21 = (1− p1)2.

By solving this system of equations we get that: p1 =
p2 = 1/3 and p3 = 7/9. To complete the proof, observe
that this is not a semi-strong equilibrium since players
1 and 2 can deviate to the pure strategy d and increase
their utility from 4/3 · 7/9 to 42/9.

5 Pareto Efficient Equilibria

One of the desirable properties of an equilibrium, in-
creasing its stability, is Pareto efficiency. Roughly
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speaking, a strategy vector is Pareto efficient if any de-
viation that reduces the cost of one player (or more)
strictly increases the cost of at least a single player.
More formally:

Definition 5.1 An equilibrium x is Pareto efficient
if there is no strategy vector y, such that, for every
player i, ci(y) ≤ ci(x), and for at least a single player
the inequality is strict. If y is restricted to be a pure
strategy vector we say that x is Pareto efficient with
respect to pure deviations.

We show that any Nash equilibrium of a “generic”
pay or play game, i.e., a game in which players’ best-
responses are unique, is Pareto efficient. Formally, we
define generic pay or play games as follows:

Definition 5.2 A pay or play game is generic if for
every player i and set of players S such that i ∈ S:
hi 6= gi(S).

We now prove the following:

Theorem 5.3 In a generic pay or play game, any
pure Nash equilibrium is Pareto efficient with respect
to pure deviations.

Proof: Consider a Nash equilibrium x. Assume to-
wards a contradiction that x is not Pareto efficient.
Let y be a deviation reducing the cost of at least a
single player. Define S = {i|xi 6= yi}. By the as-
sumption that this is a generic game, we have that the
cost of every player i choosing the play strategy in x
is strictly less than hi. Therefore, it has to be the case
that for all players j ∈ S it holds that xj = 1. Now,
similarly to our argument for the strong Nash equilib-
rium in Theorem 4.2, if there is a set of players that
can reduce their cost by jointly switching from the pay
strategy to the play strategy, then by monotonicity it
is beneficial for a single player to perform this devia-
tion. This is in contradiction to the fact that x is a
Nash equilibrium.

Corollary 5.4 In a pay or play game, any pure Nash
equilibrium in which every player i who uses the play
strategy incurs a cost strictly lower than hi is Pareto
efficient with respect to pure deviations.

Unfortunately, the previous theorem no longer holds
for mixed deviations, as Example 4.3 illustrates.

Next, we demonstrate the importance of requiring the
game to be generic. By tweaking the example from
Claim 3.3 we create an instance in which in every equi-
librium some players are indifferent between the two
strategies, but their choice effects other players’ cost.

Claim 5.5 The class of pay or play games contains
games that possess pure Nash equilibria, and all such
equilibria are not Pareto efficient.

Proof: Consider the following game which includes
four players numbered 0, 1, 2, 3. The cost of player
i ∈ {0, 1, 2} is defined as: hi = 1.5 for the pay strategy.
gi({i − 1, i, i + 1}) = 2, gi({i − 1, i}) = 2, gi({i, i +
1}) = 1.5, gi({i}) = 1. Where i + 1 and i − 1 are
computed modulo 3. The cost of player 3 is: h3 = 10
and g3(S) = |S| for a set S such that 3 ∈ S. Observe
that in all Nash equilibria exactly one player of the
players 0, 1, 2 chooses the pay strategy and the rest
of the players choose the pay strategy. First, without
loss of generality, we show that the strategy vector in
which player 0 is the only one using the pay strategy
is an equilibrium. Notice that player 1 is indifferent
between the two strategies as both have a cost of 1.5.
Players 2 and 3 strictly prefer the play strategy, hence
this is an equilibrium. Next, we do a case by case
analysis and show that any strategy vector in which
the number of players using the pay strategy is not
exactly one, is not an equilibrium.

1. There is no pure Nash equilibrium in which none
of the players choose the pay strategy, since in
this case one of the players {0, 1, 2} can reduce its
cost by choosing the pay strategy.

2. There is no pure Nash equilibrium in which two
players (or more) choose the pay strategy. Clearly
player 3 never choose the pay strategy. Now, if
players j and j + 1 choose the pay strategy then
if player j switches to the pay strategy it reduces
its cost to 1.

Observe that this equilibrium, in which a single player
i ∈ {0, 1, 2} chooses the pay strategy is not Pareto
efficient. The reason is that, if player i+ 1 switches to
the pay strategy then player 3 strictly benefit and the
cost of the rest of the players remains the same.

In the next section, we present in more depth one of
the well studied games that belong to the pay or play
class and show that every instance of this game admits
a Pareto efficient pure Nash equilibrium.

6 Examples: Vaccination Games and
Differential Pricing

The pay or play class is quite broad. In this section
we focus on two well-studied subclasses of games that
is contained in this class: vaccination games and dif-
ferential pricing.
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6.1 Vaccination Games

We first discuss the class of games presented by Aspnes
et al. [1], which we refer to as “vaccination games”.
A vaccination game is played on a network G with
|V | = n nodes that are the players of the game. Each
player is faced with the following decision: buy a vac-
cination or not. If a player buys a vaccination then
he pays a fixed cost, denoted by c. Else, the player
risks getting his computer infected and exhibiting a
loss of l. After all the players make their decisions one
of the nodes in the network is selected uniformly at
random to be infected by some virus. Next, the virus
spreads in discrete rounds, such that in every round
all the neighbors of every infected node that are not
vaccinated get infected.

More formally, let x be the strategy vector describing
the decisions of the players whether to get the vaccine
or not. xi = 1 for a player that chooses to get the vac-
cine (pay) and xi = 0 for a player that chooses not to
get it (play). Denote by R(x) the set of nodes choos-
ing the pay strategy – getting the vaccine. Let Gx be
the attack graph that is constructed by removing all
nodes in R(x) and all their incident edges. The cost of
the play strategy for node i depends on the size of the
connected component in Gx that i belongs to and the
loss l. More precisely, the expected cost of the play
strategy for a node i in a connected component of size
ki in Gx is ki

n · l. It is not hard to see that this func-
tion is monotone increasing in the number of players
choosing the play strategy and thus, this game belongs
to the the pay or play framework.

It is shown in [1] that a pure Nash equilibrium for
this game always exists. The proof is via a potential
function, which relates the players’ best responses to
the size of the connected components in the attack
graph. Let α = cn

l . The set of pure Nash equilibria
is characterized in [1] as follows: (1) every connected
component of Gx has a size of at most α; and (2)
for every player i ∈ R(x) the size of its connected
component in Gx when node i is added to the graph
together with all its incident edges is at least α.

By utilizing the framework of pay or play games, we
are able to prove a new result for vaccination games
– showing that a pareto-optimal Nash equilibrium al-
ways exists. As was discussed in the previous section,
this property does not hold for pay or play games in
general.

Theorem 6.1 The vaccination game admits a Pareto
efficient Nash equilibrium.

Proof: Assume without loss of generality that l =
1. This implies that the cost of the play strategy for
player i in strategy vector x is simply the size of its

connected component in Gx+ i divided by n. We refer
to this as its infection probability. We show that there
exists an equilibrium in which the infection probability
of every node choosing the play strategy is strictly less
than c. In other words, this implies that the size of
every connected component of Gx is strictly smaller
than c. By Corollary 5.4 we have that this implies
the equilibrium is pareto-optimal which completes the
proof.

Assume towards a contradiction that in every equilib-
rium x there exists a connected component of Gx of
size c. Let x be an equilibrium for which Gx has the
minimal number of connected components of size c.
Note that in case one of the connected components is
not a tree, then it is possible to construct a new equi-
librium with less connected components of size c. If
the connected component is not a tree then there ex-
ists a node that can change its strategy to pay without
harming the connectivity of its connected component
in the attack graph. Denote this player by i. The new
strategy vector is an equilibrium since player i is in-
different between the two strategies. The only other
affected players are ones in i’s connected component
that still want to use the play strategy and ones using
the pay strategy which are adjacent to i’s connected
component. The adjacent nodes do not want to change
their strategy to play since by doing that they will be
a part of a connected component of size at least c, thus
they do not want to switch.

Thus, it remains to handle the case in which all con-
nected components of size c are trees. Consider a leaf
i in one such tree, if this leaf is not connected to any
other node (except its parent in the tree), then it can
switch its strategy to play and it is still an equilib-
rium. Otherwise, it is connected to nodes who choose
the pay strategy, denote this set of nodes by S. Go
over the nodes in S in some arbitrary order, for each
node j check the size of its connected component, if it
is at most c − 2 change its strategy to play and con-
tinue. We claim that the resulting strategy vector is an
equilibrium with a smaller number of connected com-
ponents of size c. Observe that by construction the
size of each connected component of the attack graph
of the new strategy vector including neighbors of i,
is smaller than c, therefore all nodes using the play
strategy prefer it over the pay strategy. Also by con-
struction, all the nodes in S that use the pay strategy
would be in a connected component of size at least c
if they decide to switch their strategy. Thus, the new
strategy vector y is an equilibrium such that Gy has
less connected connected components of size c than
Gx, a contradiction.
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6.2 Differential Pricing

Lastly, we briefly discuss another well-studied envi-
ronment: differential pricing. Consider the following
scenario: n buyers are interested in purchasing some
good, say a laptop. Each buyer has two options: (1)
he can buy a laptop for a fixed price p (there is a
large enough supply of laptops to sell to all buyers);
(2) take part in a lottery in which k < n laptops will
be assigned to k bidders, uniformly at random, and
each buyer who receives a laptop is charged a lower
price q < p. (Of course, if there are less than k buy-
ers who decide to participate in the lottery, each of
these buyers will be given a laptop). Observe that this
can easily be formulated as a pay or play game. We
note that every such environment admits a pure Nash
equilibrium (and it is, in fact, a congestion game).

7 Price of Anarchy and Price of
Stability

A natural metric for measuring the efficiency of a pure
Nash equilibrium is by comparing its social cost (the
sum of all players’ costs) and the cost of the socially
optimal solution (the strategy vector minimizing the
sum of all players’ costs). We present several simple re-
sults bounding the ratio between the optimal solution
and worst pure Nash equilibrium (a.k.a price of anar-
chy) and the ratio between the optimal solution and
best pure Nash equilibrium (a.k.a “price of stability”)
with respect to different restrictions on the cost func-
tions. We begin with a positive result showing that
for a very restricted subclass of pay or play games the
price of anarchy is 2:

Claim 7.1 If all players have the same submodular
cost functions, and the cost function does not depend
on players’ identities, then the (pure) price of anarchy
is bounded by 2.

Proof: Consider a specific pure Nash equilibrium
x and optimal solution o. Denote by kx and ko the
number of players using the play strategy in x and
o receptively. Observe that if ko ≤ n

2 , then at least
n/2 players choose to pay and hence the cost of the
optimal solution is at least n

2 ·h. The cost of the Nash
equilibrium is at most n · h, since players can always
choose the pay strategy and pay h. Thus, the price of
anarchy for this case is at most 2.

We are left with the case that ko >
n
2 . Observe that

this trivially implies that kx ≤ 2ko. Also, it is not
hard to see that ko ≤ kx. Now, consider the difference
in cost between the pure Nash equilibrium and the
optimal solution: c(x)−c(o) = ((n−kx)h+kx ·g(kx))−
((n − ko)h + ko · g(ko)) = (ko − kx)h + kx · g(kx) −

ko · g(ko). The fact that kn <
ko
2 , together with the

submodularity of the cost function, and the fact that
the cost function is nondecreasing, imply that g(kx) ≤
g(2ko) ≤ 2g(ko). Hence, c(x)−c(o) < (ko−kx)h+2kx ·
g(ko)− kog(ko) = (ko − kx)h+ (2kx − ko)g(ko) ≤ kx ·
g(ko) ≤ n·g(ko) ≤ c(o), where the last two inequalities
follow from the simple observation that h ≥ g(ko)

Next, we show that once we lift either of the two re-
strictions previously imposed: (1) all players have the
same cost functions, (2) the cost function depends only
on the number of players choosing the play strategy,
the price of stability can be very high:

Claim 7.2 The (pure) price of stability of a game with
player-specific cost functions that are not dependent on
players’ identities can be linear in n.

Proof: Consider the following n-player instance, for
player 1, h1 = n + ε and g1(S) = |S| for i ∈ S ⊆ N .
For player j 6= 1 hj = 2ε and gj(S) = ε for j ∈ S ⊆ N .
In the optimal solution of this instance, player 1 is
the only one choosing the play strategy – the cost is
1 + 2(n− 1)ε. On the other hand, in the unique Nash
equilibrium all players choose the play strategy, the
social cost in this case n+ (n− 1)ε.

Claim 7.3 If all players have the same submodular
cost function (possibly depends on the players’ identi-
ties) then the (pure) PoS can be linear in n.

Proof: Consider the following instance where h =
1 + ε and for any set S such that 1 /∈ S we define
g({1} ∪ S) = 1 and g(S) = 0. Then, in the optimal
solution player 1 chooses the pay strategy, for a social
cost of 1+ε. In any Nash equilibrium all players choose
the play strategy for a total cost of n.

8 Conclusions

We introduced the pay or play framework, which cap-
tures a simple scenario in which decision makers se-
lect between certain and uncertain outcomes, and the
realization of the uncertain outcome is solely depen-
dent on the decision makers and not on “nature”.
We studied the properties of equilibria (existence, ef-
ficiency, complexity, and more) in pay or play games
from both a game-theoretic perspective and a compu-
tational perspective. Our main positive result estab-
lished that games in this class always possess a semi-
strong equilibrium. We regard our results for pay or
play as a first step, and believe that further explor-
ing the game-theoretic and computational properties
of this class of games (and its subclasses) can provide
valuable insights into strategic decision making under
uncertainty.
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Abstract

We evaluate four computational models of ex-
planation in Bayesian networks by compar-
ing model predictions to human judgments.
In two experiments, we present human par-
ticipants with causal structures for which the
models make divergent predictions and either
solicit the best explanation for an observed
event (Experiment 1) or have participants
rate provided explanations for an observed
event (Experiment 2). Across two versions of
two causal structures and across both exper-
iments, we find that the Causal Explanation
Tree and Most Relevant Explanation mod-
els provide better fits to human data than
either Most Probable Explanation or Expla-
nation Tree models. We identify strengths
and shortcomings of these models and what
they can reveal about human explanation.
We conclude by suggesting the value of pur-
suing computational and psychological inves-
tigations of explanation in parallel.

1 Introduction

Representing statistical dependencies and causal re-
lationships is important for supporting intelligent
decision-making and action – be it executed by hu-
man or machine. Causal knowledge not only allows
predictions about what will happen, but is also used
in explanations for events that have already occurred.
For example, a set of symptoms might be explained by
appeal to a particular disease, or an electrical circuit
failure by appeal to a set of faulty gates.

Previous work in machine learning has provided a
range of models for what counts as an explanation in
cases involving a known causal system and observed
effects.These models differ in what they allow as po-
tential explanations or ‘hypotheses’ as well as in the

objective function they aim to maximize (for a review,
see Lacave and Dı́ez [2002]). For example, one ap-
proach says hypotheses are settings for all unknown
variables where you then choose the hypothesis that
maximizes a posteriori probability given observed data
[Pearl, 1988]; another allows hypotheses to be any non-
empty variable setting and selects the hypothesis that
maximizes the probability of observations under that
hypothesis relative to every other hypothesis [Yuan
and Lu, 2007]. While these models differ in their for-
mal properties, arguments for one model over another
typically come down to which provides a better fit to
researchers’ intuitions about the best explanations in
a given case.

In this paper we evaluate four formal models of expla-
nation by empirically investigating their fit to human
judgments. Our aims are threefold. First, methods
from cognitive psychology allow us to test how well
competing models correspond to general human in-
tuitions, rather than the intuitions of a small group
of researchers. Second, by using human judgment as
a constraint on formal models of explanation, we in-
crease the odds of choosing an objective function with
interesting properties for learning and inference. A
growing literature in psychology and cognitive science
suggests that generating and evaluating explanations
plays a key role in learning and inference for both chil-
dren and adults (for a review, see Lombrozo [2012]),
so effectively mimicking these effects of explanation in
formal systems is a promising step towards closing the
gap between human and machine performance on chal-
lenging inductive problems. Finally, formal models
of explanation that successfully correspond to human
judgment can contribute to the psychological study
of explanation, as almost no formal models of expla-
nation generation or evaluation have been proposed
within the psychological sciences.

We present two experiments in which we gave peo-
ple information about a causal system and had them
either generate explanations (Experiment 1) or eval-
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uate explanations (Experiment 2). The causal sys-
tems can be formally defined by Bayesian networks
and correspond to those used in prior work to differ-
entiate among models of explanation [Nielsen et al.,
2008, Yuan and Lu, 2007]. Across two versions of two
causal structures and across both experiments, we find
that the Causal Explanation Tree [Nielsen et al., 2008]
and Most Relevant Explanation [Yuan and Lu, 2007]
models provide better fits to human data than either
Most Probable Explanation [Pearl, 1988] or Explana-
tion Tree models [Flores et al., 2005]. The results of
our experiments identify strengths and shortcomings
of these models, ultimately suggesting that human ex-
planation is poorly characterized by models that em-
phasize only maximizing posterior probability.

2 Bayesian networks

A Bayesian network provides a compact representation
for the joint probability of a set of random variables,
X , which explicitly represents various conditional in-
dependence statements between variables in X . We
specify a directed acyclic graph with a node corre-
sponding to each variable in X . We say that each
node X ∈ X has a set of “parent nodes” (Pa(X)), and
that this gives us conditional probability distributions
for every X given its parents p(X|Pa(X)). We assume
that the full joint probability distribution can be spec-
ified this way, i.e., that p(X ) =

∏
X∈X p(X|Pa(X)).

This is equivalent to assuming that X is independent
of all nondescendent variables given its parents, and
allows us to use the structure of the graph to read
off which conditional independence relations must hold
between the variables [Pearl, 1988].

Figure 1 shows an example of a Bayesian network spec-
ifying conditional probability distributions between
random variables. The graph on the left (Pearl, named
after Pearl [1988]) represents whether a particular
alien has a disease (D), whether that alien has a ge-
netic risk factor for that disease (G), and whether or
not the alien was vaccinated for the disease (V ). The
graph on the right (Circuit) can be interpreted as a
circuit that always receives input and for which we
can measure the output. A,B,C, and D are gates
that, if functional, break the circuit, stopping the in-
put from reaching the output. Each gate has an in-
dependent probability of failing and allowing current
to cross through it. If the current can travel from the
input to the output via any path made possible by a
set of failed gates, then there will be output. These
two examples hint at the richness of the Bayesian net-
work formalism. We will continue to refer to these
graphs throughout, which are the basis for our stim-
uli in Experiments 1 and 2, with the parameter values
indicated in Figure 1.

Gene 
(G)

Vaccine
(V)

Disease
(D)

P(G) = 0.5

P(V|G=1)
P(V|G=0)

= 0.75
= 0.25

P(V |G=0,V=0)
P(V |G=0,V=1)

= 0.3
= 0.2

P(V |G=1,V=0)
P(V |G=1,V=1)

= 0.7
= 0.6

A

B

C

D

Input
(I = 1)

Output
(O)

P (A) = 0.016

P (B) = 0.1

P (C) = 0.15

P (D) = 0.1

Pearl Circuit

Figure 1: The Pearl and Circuit networks used in our
experiments; as in Pearl [1988], Nielsen et al. [2008],
Yuan and Lu [2007] and Yuan et al. [2011].

2.1 Explanations in Bayesian networks

Suppose we observe the values for k of the variables in
a graph, {O1 = o1, . . . , Ok = ok},∀i Oi ∈ X . We may
not wish to explain every observation, so let us call the
variables we want to explain Oexp, with values oexp.
These values oexp are the “target” of our explanation,
or the explanandum, which is a subset of O, the set of
possible observation sets. We will refer to Ô as the set
of variables that were observed and ô as the observed
values. Then Onot-exp = onot-exp are those variables

that are observed and unexplained (or Onot-exp ≡ Ô \
Oexp).

A candidate explanation (the explanans, or “hypoth-
esis”) is a set of variable assignments for some of the
variables not in Oexp. We exclude Oexp to avoid circu-

larity, though elements in Ô = ô but not in Oexp(i.e.,
observed but unexplained variables) could be included.
However, we should note that most models require
that every observed variable be explained; formally
Ô ≡ Oexp. For the sake of clarity, a hypothesis (our
term for potential explanans henceforth) will be repre-
sented by h, the variables assigned in that hypothesis
by H, and the set of hypotheses (treating each set of
assignments as a separate hypothesis) as H.

The first question a formal account of explanation
must answer is which variables should be used in con-
structing H. One possibility is for every explanation
to include an assignment for every unobserved vari-
able. However, Bayesian networks often use variables
not meant to correspond to real entities in the world
(e.g., a noisy-or gate for combining the influence of two
causes). Additionally, there are often many variables
that are not invoked in an explanation, and so a notion
of “relevance” can be useful, allowing assignments to
a subset of the unobserved variables (or even variables
that are observed but not in Oexp).
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Some models first generate H and then evaluate each
hypothesis and rank them accordingly. Others “grow”
their hypotheses by iteratively adding variables based
on their ability to improve the explanation, stopping
when the hypothesis cannot be improved further [Flo-
res et al., 2005, Nielsen et al., 2008]. The hypotheses
under consideration can then be evaluated and ranked,
but note that what counts as an improved hypothesis
and what counts as a better explanation can be based
on different criteria even within the same model. Some
models aim to maximize the probability of the hypoth-
esis given the observations (p(h|ô)) [Pearl, 1988, Shi-
mony, 1991]. Some models are more concerned with
other metrics, such as the relative likelihood of the
observations under one hypothesis (p(ô|h)) compared
to the rest of the hypothesis set [Yuan and Lu, 2007,
Yuan et al., 2011]. And some models aim to maximize
how much information is gained about the explanan-
dum were the hypothesis assumed or made to be true
[Flores et al., 2005, Nielsen et al., 2008].

We now introduce the four models that we consider in
this paper — Most Probable Explanation [Pearl, 1988],
Most Relevant Explanation [Yuan and Lu, 2007], Ex-
planation Trees [Flores et al., 2005], and Causal Ex-
planation Trees [Nielsen et al., 2008].

2.2 Most Probable Explanation (MPE)

Most Probable Explanation (MPE) ranks highly hy-
potheses with the most probable assignments to all
unobserved variables, conditioning on Ô. That is, ev-
ery h in H includes an assignment for every variable
in X \ Ô.1 This model leverages the intuition that the
best explanation is one that is most probable given
what we have observed [Pearl, 1988]. The result is

MPE = arg max
h∈H

p(h|ô). (1)

2.3 Most Relevant Explanation (MRE)

Rather than choosing the hypothesis that maximizes
the probability of the unobserved variables given the
observed values, we could choose values for the un-
observed variables to maximize the probability of the
observations (arg maxh∈H p(ô|h)). Methods that pur-
sue this route are known as likelihood models.

One problem faced by likelihood models is that multi-
ple hypotheses will sometimes give the same high prob-
abilities to the observed data [Nielsen et al., 2008]. For

1We might allow h ∈ H to include only those variables

that are relevant for explaining Ô. This is known instead
as the maximum a posteriori model. There are a variety of
possible relevance criteria as explored by De Campos et al.
[2001], but this problem is substantially more computa-
tionally complex than MPE. Here, we focus on MPE.

example, consider the case where we know the struc-
ture of a causal system like the circuit in Figure 1 from
Yuan and Lu [2007]. Likelihood methods would treat
any hypothesis containing a union of A, “B and C”, or
“B andD” as equally good — the current flows equally
well (perfectly), regardless of the particular path it
takes. This can make it difficult to choose between
these explanations within the likelihood framework.

Rather than maximizing the likelihood per se, we can
instead choose the hypothesis, h, that has the highest
likelihood relative to the summed likelihood of all the
other hypotheses in H except for h:

p(O|h)∑
hj 6=h,hj∈H p(O|hj)

. (2)

Yuan and colleagues’ Most Relevant Explanation
(MRE) model [Yuan and Lu, 2007, Yuan et al., 2011]
proposes that the best explanation maximizes this
quantity. This term plays an important role in statis-
tics, known as the Generalized Bayes Factor [Fitelson,
2007], and in psychology, as a measure of how repre-
sentative some data is of a hypothesis [Tenenbaum and
Griffiths, 2001, Abbott et al., 2012].

2.4 Tree-based models: ET and CET

The methods we have explored so far presume that
you have H and then evaluate each hypothesis to de-
termine which is best. However, in cases where the
variable set is large, this can be difficult and compu-
tationally prohibitive. A class of tree-based models
addresses this problem by using an iterative process
for arriving at explanations. These models construct
an explanation piece-wise, adding variables to the hy-
pothesis one at a time, by choosing the best variable,
assigning the variable a value and repeating until no
further gains can be made. The resulting hypotheses
are then evaluated based on some criteria, producing a
list of explanations ranked by their goodness. Models
differ in how they choose the best variable to add, how
they decide to stop, and how they then evaluate the
resulting hypotheses.

The Explanation Tree (ET) model — as proposed by
Flores et al. [2005] — determines which variable car-
ries the most information about the rest of the un-
known nodes, conditioned on what is already known.
In ET what is already known includes Ô and any vari-
ables included in hypotheses farther up the tree. This
means that at the beginning (when the hypothesis is
∅) the model selects the node that provides the most
information about the rest of the unobserved variables
conditioned on Ô. Formally, we grow h′ (the hypoth-
esis up to that point) by choosing the Xi as the max-
imum of

∑
Y INF(Xi;Y |Ô, h′), where Y is shorthand
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for X \ {Ô ∪ h′ ∪ {Xi}, or all of the variables not ob-
served, included in the current hypothesis or currently
under consideration, and INF(·) is a metric of infor-
mativeness. In our calculations we will use mutual
information as our INF(·), as in Nielsen et al. [2008].2

Once a variable is chosen, each assignment creates a
new branch, and that assignment is added to the in-
terim hypothesis h′, and is effectively treated as an
observed variable. The process is then repeated until
adding any more variables is deemed to provide a hy-
pothesis with a probability that is too low, as defined
by parameter βET , or to carry too little information, as
defined by parameter αET. This process provides mul-
tiple, mutually exclusive explanations that can vary in
their complexity based on how much information the
complexity buys.3 Once these hypotheses are assem-
bled, the model ranks the explanations by the poste-
rior probability of each branch of the tree – i.e., how
likely each hypothesis is, given the observed data.

Up to this point every model we have considered as-
sumes the set of observed data is the data we are ex-
plaining, or Ô ≡ Oexp. The ET model further assumes
that we aim to reduce uncertainty of the entire vari-
able set X in deciding which variables are ostensibly
relevant to our explanandum, Oexp. However, these
assumptions can be problematic. For example, in ET,
a variable that is unrelated to Oexp but carries a lot
of information about other unknown variables may be
added to the hypothesis despite its irrelevance to our
explanans.

The Causal Explanatory Tree (CET) model intro-
duced by Nielsen et al. [2008] addresses these weak-
nesses. Rather than using traditional measures of
information such as mutual information, CET uses
causal information flow [Ay and Polani, 2008] to de-
cide how the tree will grow. Causal information flow
uses the post-intervention distribution on nodes (as
proposed in Pearl [2000]) rather than considering the
joint probability distribution “as is”. To extend Ay
and Polani [2008]’s analogy, imagine pouring red dye
into a flowing river. You could identify which way is
downstream by tracking the red streak that results; if
you were to pour in the dye just after a fork in the
river, you would not find red dye in the other half of
the fork. Now consider the case of a static, dammed
river — a river that does not flow. If you poured the
dye just after the fork, redness would gradually dif-
fuse through the water, eventually reaching the other
path from the fork and tinting the whole river. In this
case, there is no concept of something being ‘down-
stream’. Causal information attempts to capture the

2Flores et al. [2005] consider several versions of INF.
3Mutual exclusivity refers to the fact that once a vari-

able is assigned, it holds through the rest of the tree.

notion of ‘downstream’ influence that is absent in tra-
ditional mutual information.

We denote post-intervention distributions with a “ ¯ ”
on a conditioned variable. If we have variables
W,X, Y, Z, where we have observed W = w, inter-
vened on Z (giving us post-intervention values Z̄ = z̄),
then the causal information passed from X to Y is,

∑

x∈X
p(X = x|W = w, Z̄ = z̄) ×

∑

y∈Y
p(Y = y|X̄ = x̄, w, z̄) log

p(y|x̄, w, z̄)
p(y|w, z̄) . (3)

This allows us to specifically ask the degree to which
a variable (X ≡ Xi) influences the explained data
(Y ≡ Oexp), treating the non-explained data as ob-
served (W ≡ Onot-exp) and previous parts of the ex-
planation as intervened on (Z ≡ h′). This solves
the problem of distinguishing between explained and
unexplained observations (W 6= Y ). It also allows
us to maximize information about the Oexp rather

than X \ Ô as in ET. However, like ET, the CET
model proposes variables iteratively, until no remain-
ing variables add more causal information than the cri-
terion αCET. Then each branch is assigned the score

log
(p(Oexp|h̄′,Onot-exp)

p(Oexp|Onot-exp)

)
where h̄′ is the total set of as-

signed values in a hypothesis at a branching point.

3 Comparing model and human
judgments about explanations

We now compare the prediction of these four mod-
els against human judgments when both generating
and evaluating explanations. We focus on explana-
tions in the two Bayesian networks shown in Figure
1. The Pearl structure is derived and parameterized
as in Nielsen et al. [2008]; the Circuit graph and its
parameters are taken from Yuan and Lu [2007]. These
networks have been used previously to distinguish be-
tween the performance of different models. Each net-
work consists of several binary variables, prior prob-
abilities on those variables, and relationships between
variables. We consider the case where only one vari-
able is observed, in Pearl D = 1 and in Circuit O = 1,
and these act as both Ô and Oexp, i.e., each is the only
variable we observe and explain in that structure.

The models diverge in how they rank explanations in
Pearl and Circuit. In past research, the Pearl struc-
ture was used by Nielsen et al. [2008] to argue in favor
of the CET, and the Circuit structure was used by
Yuan and Lu [2007] to argue in favor of the MRE.4

4The CET had not been published by the writing of
Yuan and Lu [2007]. Yuan et al. [2011] addresses CET
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By drawing from distinct research lines we aim to be
as fair as possible in testing the models.

In addition to being useful for distinguishing be-
tween models, these structures have properties that
are particularly interesting from a psychological per-
spective. The Pearl structure includes complex causal
dependencies that cannot be easily captured by the
paradigms used in cognitive psychology. The Circuit
structure contains explanations with equal (perfect)
likelihoods for the observation, but which vary in the
number of variables cited in the explanation. Research
on people’s preferences for simplicity bear on this case,
which shows that people may choose an explanation
with fewer causes even if it is less likely than other
more complex alternatives [Lombrozo, 2007].

In the past, researchers used the match between their
own explanatory intuitions and the models’ predic-
tions to provide support for their model. However,
this method can be problematic: Nielsen et al. [2008]
and Yuan and Lu [2007] conflict in their intuitions,
leaving us in a quandary. We generalize the intuition-
matching approach using two experiments in which we
ask people to generate (Experiment 1) and evaluate
(Experiment 2) explanations in cases formally equiv-
alent to Circuit and Pearl. We used MPE, MRE,
ET, and CET to rank the quality of various expla-
nations, and analyze these rankings as they compare
to the rankings derived from human explanations. By
appealing to a wider array of human judgments we
hope to extricate ourselves from this quandary.

4 Experiment 1: Generation

4.1 Participants

We recruited 188 participants through Amazon Me-
chanical Turk; 9.6% of those failed to complete the
study, did not consent to taking the study, or did
not follow the instructions, and 35.9% failed at least
one explicit reading/attention check. This left 109
participants for analysis (M(age) = 27.7, %-Female
= 29.3%).

4.2 Materials & procedure

Participants were randomly assigned to either the
Pearl or Circuit structure. They then were assigned
to one of two semantically-enriched stories embodying
a causal structure, involving either novel alien diseases
or the ecology of lakes. For example, one of the two
scenarios adapted from the Circuit structure taught
participants about the effects of novel diseases on pro-

but that work involves more complicated scenarios than
those considered here.

ducing a kind of fever.

For this scenario, participants received facts about
the base rates of four novel diseases (corresponding to
p(A), p(B), p(C), and p(D)), and information allow-
ing them to understand which diseases would produce
the fever, which would only occur in the presence of
two proteins X and Y. One disease (corresponding to
A) produced both the necessary proteins and thereby
caused the fever. The second disease (corresponding
to B) produced one of these proteins, and when paired
with either the third and/or the fourth diseases (i.e.,
C or D) which produced the other protein, would be
sufficient to cause the fever. X and Y were added to
provide an intuitive mechanism outside of the domain
of circuits that describes the complexities of Circuit ’s
causal relations. Probabilities were presented as fre-
quencies (out of 1000) and act as realizations of the
probabilities in the graphs in Figure 1.

In order to ensure that participants were paying at-
tention, we asked questions that required simply read-
ing the information off a figure (e.g., “Out of 1000,
how many aliens have [disease A]?”). Participants
who failed any comprehension questions were excluded
from subsequent analyses. To ensure that partici-
pants’ judgments were not limited by memory, the
base rates and causal structure were available when
answering these reading checks as well as during the
generation portion of the experiment. Participants
were asked to use the information that had been pro-
vided to write down “the SINGLE BEST EXPLA-
NATION” for the observed effect (e.g., for a partic-
ular alien’s fever), where “a ‘single’ explanation can
include more than one causal factor.” Participants
were explicitly asked not to list multiple possible ex-
planations, but rather to “identify the one explana-
tion that you think is the best.” This was meant to
exclude what we call “disjunctive” explanations like
“It was A or B and C and not D”, or, formally, as
A = 1 ∪ {B = 1 ∩ C = 1 ∩D = 0}.

4.3 Results and discussion

Participants’ explanations were coded by an assistant
blind to the authors’ hypotheses. The coder’s goal was
to identify which variables were mentioned and what
values were assigned to those variables. We excluded
participants who gave a response that conflicted with
our instructions, such as providing a disjunctive expla-
nation.

In Circuit, most participants provided explanations
that fell into one of two options: BC (43%) or A
(40%), and, in Pearl, most participants chose one op-
tion: they attributed the disease to the presence of a
genetic risk factor and not receiving the vaccine (73%,
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see Figure 1).

For the explanations participants generated, we com-
puted measures of explanation quality under each of
the four models and saw which models gave bet-
ter scores to those explanations that were generated
more frequently. This process provides us a rank for
each participant’s explanation according to each of the
models and a rank of how frequently each explanation
was generated, which allows us to calculate a Spear-
man rank-order correlation between participant’s ag-
gregate explanation choices and the models’ predic-
tions, see Table 1.

Note, we used two versions of the tree-algorithms: one
where explanations not reached by the tree received
the lowest possible rank (which we give the subscript
“tree”), and one where we ignored these exclusions and
applied the evaluation criteria used at each branch
point. The tree models were designed to both gen-
erate and evaluate explanations “on the fly”, but it
is not clear whether the way models generate expla-
nations has led to their success in previous literature.
Model success (or failure) may be the result of the
branch evaluation criterion, rather than the result of
the algorithm for generating hypotheses. This is why
we analyze these parts of the algorithms separately.

We find that MRE and CET are most consistent with
participants’ judgments (though they still only reach
marginal significance in the Circuit case). In contrast,
for both structures, models that rely only on an assign-
ment’s probability (i.e., MPE and ET) poorly pre-
dict the explanations that people generate (in Circuit,
MPE had a negative coefficient).

The major weakness of the tree versions of CET and
ET lies in the fact that once a node is chosen for ex-
pansion, it remains expanded. Thus, mutually exclu-
sive explanations cannot be reached in the same tree.
That is, in Circuit, A and BC were the two most pop-
ular explanations and A ∩ BC = ∅, so the first step
to include either A or B will preclude the other ex-

Table 1: Rank-correlations for models and human data
in Experiment 1, Pval < 0.05 in bold, < 0.10 in italics.

Circuit Pearl

Models ρSpearman Pval ρSpearman Pval

MPE -0.06 0.631 0.32 0.449
MRE 0.20 0.074 0.83 0.017
ET 0.08 0.460 0.17 0.700
ETtree 0.01 0.900 0.41 0.310
CET 0.22 0.055 0.93 0.003
CETtree 0.06 0.590 0.77 0.032

planation. Empirically, participants are roughly split
between these two explanations, which suggests that
any method that generates a unique best explanation
will always fail to capture the variability that results
when people are generating explanations, even if those
people are generating explanations about the same sys-
tem. We studied only deterministic algorithms which
may be causing the models to diverge from people in
how they generate hypotheses. Adding probabilistic
rules may also be important for accounting for uncer-
tainty about the parameter estimates, which in the
real world are typically not given to you but must be
inferred from data as well.

Note that CET in this case treats all explanations
that sufficiently determine the observations as having
equivalent rank. Because the system is determinis-
tic, all 38 of the sufficient explanations are ranked as
number 1 — or rather, because they are so numer-
ous, number 19. This is a problem unique to CET,
and results from its use of intervention, which ignores
variables’ prior distributions in determining an expla-
nation’s score.

5 Experiment 2: Evaluation

In Experiment 1, we found evidence that at least some
of the proposed models capture people’s explanatory
intuitions. Of course we should have expected some
of the models to perform well; what is remarkable is
how poorly some of the models did. In particular,
we saw surprisingly poor performance from the tree-
growth models as compared to their exhaustive-search
evaluative counterparts.

Generating explanation is harder than only evaluat-
ing them — generation requires searching through the
hypothesis set and then evaluating the generated ex-
planations, while evaluation only requires computing
a known evaluation function. The tree versions of the
tree models are designed to make generation tractable.
However, if complexity were the primary hurdle, in
Circuit where the hypothesis space was much larger,
we would expect tree methods to perform compara-
tively better than in Pearl. But they were relatively
worse. This was due to the fact that the tree models
were guaranteed to cut off at least 40% of participants
since A and BC were the top choices, and cannot be
reached in the same tree.

It is striking that methods that relied on probability
(MPE and ET) performed so poorly in contrast to
MRE and CET. However, these results may only ap-
ply to situations in which explanations are generated;
explanations with large absolute probabilities may be
difficult to access when generating explanations but
could still be preferred if people only need to evaluate
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predefined hypotheses. There are many cases in which
a hypothesis proves incredibly hard to generate, but
once generated quickly becomes welcomed as the best
explanation for many phenomena (e.g., Newton’s and
Einstein’s physics). And, if conquering search prob-
lem is one of the driving factors behind the success of
MRE and CET, it is possible that they could fail in
the evaluation case.

In order to test these ideas, we conduct an experiment
that is almost identical to Experiment 1. But, rather
than asking people to generate explanations, we take
that burden off of their shoulders. Instead, we ask
them to evaluate a set of explanations that we generate
for them.

5.1 Participants

A total of 245 participants were recruited through
Amazon Mechanical Turk, with 9.8% excluded for
failing to provide consent or otherwise complete the
study and 25.3% excluded for failing one or more read-
ing checks. This left 165 participants for analysis
(M(age) = 31.3,%-Female = 34%): 46 in the disease
version of Circuit, 46 in the lake version of Circuit,
34 in the disease version of Pearl, and 39 in the lake
version of Pearl.

5.2 Stimuli

An explanation was included in the study if either cri-
terion held:

• The explanation was generated by more than one
participant in any one condition in Experiment 1.

• The explanation was in the top two explanations
generated by any of the models.5

This yielded thirteen explanations for the Circuit
causal structure and six for the Pearl causal structure.

5.3 Procedure

The materials and methods were nearly identical to
those in Experiment 1, with the following important
change: instead of providing an explanation, partici-
pants were asked to rate the quality of several provided

5Because there are many ways one can interpret what
counts as one of the two “top” explanations, we allowed
the top two as defined by any interpretation found in the
literature of how to rank a model’s results. For example,
Yuan [2009] and Yuan et al. [2011] include only minimal
explanations (i.e., explanations for which no subset has
appeared prior to it in the ranking of explanations) when
determining the results of MRE, whereas Nielsen et al.
[2008] simply listed explanations based on their scores re-
gardless of their minimal or non-minimal status.

explanations. Specifically, they were asked to rate each
explanation “by placing the slider next to each expla-
nation along the spectrum from Very Bad Explanation
(furthest to the left) to Very Good Explanation (fur-
thest to the right),” where intermediate ratings could
fall anywhere in between.

Although the sliders were not presented with a num-
bering, positions implicitly corresponded to values be-
tween 0 and 100. Based on these ratings we can again
create an explanation ranking for each participant,
with ties being treated as in Experiment 1 as a re-
peated average value. By using ranks rather than con-
tinuous ratings we need only assume that participants
have a monotonic relationship between bad and good,
and avoid making assumptions about the particular
nature of that scale for each participant.

5.4 Assessing model predictions

For each model, we calculated the scores assigned to
the explanations that were provided to human par-
ticipants. Because we were interested in explanation
evaluation, we did not limit the ranks derived from
CET or ET to those generated by the trees, but we
did limit MPE to complete assignments, as otherwise
it would be equivalent to ET.

To generate scores indicating the quality of each
model, we created a set of intersection proportions.
To illustrate, were we to consider only a single par-
ticipant, this involves the following process. We take
the human ranking as the veridical ranking. We then
check whether the model’s top rank explanation is the
same as the participant’s. We then check whether the
model’s two highest-ranked explanations are included
in either of the two highest-ranked human explana-
tions. We continue to do this for the whole explanation
set, identifying the number of model explanations that
were ranked at a level less than or equal to each level of
human ranking. We can repeat this with every partic-
ipant, to obtain the number of explanations matched
at each rank for each participant. We can then take
the average of these scores at each rank, giving us the
intersection size for the full population.

It is important to note that the absolute intersection
size is less useful than the proportion when we are com-
paring between causal structures. We can transform
these values into intersection proportions by dividing
each value by the total number of model explanations.
This maps to a measure of how many of the model’s
top explanations are thought by the models to be at
least as good as those generated by the average person
up to that point.

To illustrate, suppose that we had explanation set
H : A, BC, BD, ABCD, and B, and we were con-
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Figure 2: Results for Experiment 2: Average intersec-
tion proportions for Circuit conditions.

sidering a participant(P ) with a ranking of P (1) =
BC, P (2) = A, P (3) = ABCD, P (4) = BD, and
P (5) = B. To compute a model’s performance,
we would look at the ranking that the model(M)
assigned to the different explanations. If their top
ranks matched, i.e., M(1) = BC was the model’s top
choice, then the first value would be V (M,P, 1) = 1

5 =
|M(1)={BC}∩P (1)={BC}|

|H| , and if it was not the score

would be 0 since M(1) ∩ P (1) = ∅. This process
would be repeated for the first and second values, i.e.,

the next value is V (M,P, 2) = |{M(1)M(2)}∩{P (1)P (2)}|
|H| ,

and so on until we got to V (M,P, 5) which will neces-
sarily equal 1 since both rankings were defined relative
to the same set, meaning the two sets are equivalent
and are also both equivalent to H.

Figure 2 displays the intersection proportion for the
Circuit structure, and Figure 3 displays those for the
Pearl structure.

Another method for capturing overall model perfor-
mance is to take the sum of the average values at each
point. The best one can do in the intersection propor-
tion is to match every explanation up to that rank at

each rank. A perfect summary score is,
∑|H|
i=1 i/|H|.

For Circuit the maximum summed intersection value
is
∑13
i=1 i/13 = 7 and for Pearl it is

∑6
i=1 i/6 = 3.5.6

These values can be found in Table 2.

5.5 Results and discussion

As you can see in Figures 2 and 3, both MRE and
CET are closer to the dotted line in general, i.e., they
are better on average than either MPE or ET.

One interesting pattern to note is a trend that echoes
results for CET in Experiment 1. CET stays flat

6One could think of this as an estimate of the area under
the curve defined by the intersection proportions.

Figure 3: Results for Experiment 2: Average intersec-
tion proportions for Pearl conditions.at zero for a while and then rapidly accelerates as it
goes forward. This is a consequence of the interac-
tion between CET’s reliance on intervention and the
deterministic causal system in the Circuit condition.
Because so many of the explanations are sufficient for
bringing about the effect in question, many explana-
tions share the role of the ’best’ explanation. And
because we choose an explanation’s rank in the case of
a tie as the average rank of all those in the tie had they
not been in a tie, many of the best explanations are
given a fairly high value. Thus, once we get to the sixth
item, M(1)-M(5) have had equal scores to M(6), and
once the values pass that threshold CET’s V (M,P, ·)
rapidly catches up to and passes MRE’s (which was
otherwise in the lead). MPE, on the other hand, has
the opposite problem: only two of its values are de-
fined and so the other eleven explanations all receive
a score of 8, resulting in perfect performance from 8
onwards (though most of its ranks are, by definition,
undefined).

Table 2 shows that in both structures CET does the
best, followed by MRE, then MPE and finally ET.

6 General discussion

We began this paper with the aim of systematically
evaluating formal models of explanation against hu-
man intuitions as well as clarifying human explana-

Table 2: Summed intersection values for models.

Models Circuit Score Pearl Score

MPE 5.26 2.64
MRE 5.43 2.96
ET 4.99 2.55
CET 5.60 3.00

Max Value: 7 3.5
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tion through the lens of computational models. We
consider how our results address these aims.

6.1 Evaluating models of explanation

We find that CET and MRE provide reasonable but
imperfect fits to human judgments in both the Circuit
and Pearl structures, and for both explanation gen-
eration and evaluation. MPE and ET perform less
well. This suggests that human explanation is not ex-
plained well by appealing to maximum posterior prob-
ability values. Instead, it seems that a measure of
evidence (MRE) or causal information (CET) may
better model human explanation.

These findings indicate that the algorithms used for
generating explanations in the tree methods (ET and
CET) fail to capture an important aspect of human
intuitions about explanation — explanations that are
radically different from one another (i.e., that cannot
be reached by the same tree) may both be seen as valid
explanations. In the generation task, the purely evalu-
ative tree models outperformed their generative coun-
terparts. The evaluation function seems to be quite
important, but it has been emphasized less than the
generation algorithm in previous work [Flores et al.,
2005, Nielsen et al., 2008]. The evaluation function
merits closer inspection.

Speaking generally, our work reveals the degree to
which a model’s objective alters that model’s predic-
tions. Our analyses highlight the problem with using
hard intervention in deterministic cases. CET gave
the same score to all 38 sufficient explanations that,
presumably, we would want the model to distinguish.
MPE and ET excel at doing what they were cre-
ated to do, but we may wish to distinguish between
their goals (which do not correspond closely to human
explanation judgments) and the goals of models like
CET and MRE (which do).

6.2 Bidirectional implications from human
and formal explanation

These results indicate that formally characterizing the
objective function implicit in human explanation may
be a challenging but exceptionally useful task. The
variability in how well these formal models performed
demonstrates that despite seeming straightforward,
how people choose a good explanation has many hid-
den subtleties and complexities. The good perfor-
mance of CET and MRE relative to MPE and ET
suggest that human explanation is likely more con-
cerned with causal intervention or the relative quality
of a hypothesis than it is with absolute judgments of
posterior probability. But the alternative hypothesis
set and the role of intervention have received relatively

little attention in psychological research on explana-
tion. On the other hand, simplicity was not explicitly
represented in the formal models we explored (but, see
De Campos et al. [2001]), but has been found to af-
fect human explanatory judgments [Lombrozo, 2012].
Then, it is surprising that a large proportion of peo-
ple explain using BC over A in the Circuit example,
when BC is both less likely and more complex than
A. Probability, simplicity, intervention and alternative
hypotheses seem to weave a rather complex image —
an image just asking to be unraveled.

All of the models we studied require knowing a pri-
ori the causal structure and parameterization, whereas
people must infer these values from finite amounts of
data. Though explanation has been tied to improved
learning, we know much less about how the learning
process and the processes for generating and evaluat-
ing explanations interact with one another. Addition-
ally, developing extensions of these models that can
learn from finite amounts of data will increase the ex-
pressivity of the models while also making them more
able to deal with the problems that both humans and
many real intelligent systems face.

6.3 Conclusion

Given that explanation plays an important role in hu-
man inductive judgments [Lombrozo, 2012], where hu-
mans still outperform artificial systems, we propose
that models will benefit from a closer match to hu-
man judgments. And conversely, given that formal
models need to make explicit the roles played by dif-
ferent parts of the explanatory problem and its solu-
tion, we propose that psychological accounts of expla-
nation will benefit from models that precisely specify
formal characteristics for what makes a good expla-
nation. Both inquiries benefit from attending to the
other. Our work, in simultaneously analyzing mod-
els of explanation from artificial intelligence and the
psychology of human explanation, embodies this view.
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Abstract

This paper is devoted to fair optimization
in Multiobjective Markov Decision Processes
(MOMDPs). A MOMDP is an extension of
the MDP model for planning under uncer-
tainty while trying to optimize several re-
ward functions simultaneously. This applies
to multiagent problems when rewards define
individual utility functions, or in multicrite-
ria problems when rewards refer to different
features. In this setting, we study the deter-
mination of policies leading to Lorenz-non-
dominated tradeoffs. Lorenz dominance is a
refinement of Pareto dominance that was in-
troduced in Social Choice for the measure-
ment of inequalities. In this paper, we in-
troduce methods to efficiently approximate
the sets of Lorenz-non-dominated solutions of
infinite-horizon, discounted MOMDPs. The
approximations are polynomial-sized subsets
of those solutions.

1 INTRODUCTION

Planning under uncertainty is a central problem in de-
veloping intelligent autonomous systems. This prob-
lem is often represented by a Markov Decision Process
(MDP) that provides a general formal framework for
optimizing decisions in dynamic systems [2, 11]. Appli-
cations of MDPs occur in contexts such as robotics, au-
tomated control, economics, and manufacturing. The
MDP model is characterized by a set of possible states,
a set of possible actions enabling transitions from
states to states, a reward function that gives the im-
mediate reward generated by any admissible action a
is any state s, and a transition function that gives, for
any state-action pair (a, s), the resulting probability
distribution over states. In such problems, the aim is
to identify an optimal policy, i.e., a sequence of de-

cision rules giving, at any stage of the process, and
in any state, the action that must be selected so as
to maximize the expected discounted reward over the
long run.

However, there are various planning contexts in which
the value of a policy must be assessed with respect to
different point of views (individual utilities, criteria)
and is not necessarily representable by a single reward
function. This is the case in multiagent planning prob-
lems [3, 9] where every agent may have its own value
system and its own reward function. This is also the
case of multiobjective problems [1, 15, 4], for example
path-planning problems under uncertainty when dis-
tance, travel time, and energy consumption are to be
minimized simultaneously.

In such problems, resorting to n distinct reward func-
tions is natural, so as to express utilities of actions
with respect to the different objectives. Hence, MDPs
are generalized into MOMDPs (Multiobjective Markov
Decision Processes) by extending the reward function
to map a state-action pair to a reward vector which
assigns a scalar reward for each objective. The value
function will also be vector-valued, and the Bellman
equation will continue to define the value of a policy
in all states [27]. Note that a policy that maximizes
on one objective will not necessarily do the same for
another. Some policies will favor one objective, some
another objective, and some will be balanced towards
all objectives. Even when the reward functions could
be aggregated linearly, keeping them separate enables
a better control of tradeoffs and better recommenda-
tion possibilities. This explains the current interest
for multiobjective (multicriteria or multiagent) exten-
sions of Markov Decision Processes in the literature
[15, 4, 3, 9, 16].

When several objectives must be optimized simulta-
neously, most of the studies on Markov Decision Pro-
cesses concentrate on the determination of the entire
set of Pareto optimal feasible tradeoffs, i.e., reward
vectors (corresponding to feasible policies) that can-
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not be improved on one objective without being down-
graded on another objective. However, when random-
ized policies are allowed, there are infinitely many such
policies. Furthermore, when only deterministic poli-
cies are allowed, there are instances of MDPs in which
the size of the Pareto set grows exponentially with the
number of states, thus making its exact determination
intractable.

In practical cases however, there is generally no need
to determine the entire set of Pareto-optimal feasible
tradeoffs, but only a reduced sample of solutions repre-
sentative of the diversity of feasible tradeoffs. For this
reason, some authors propose to work on the determi-
nation of a polynomially sized approximation of the
Pareto set covering within a given threshold all feasi-
ble tradeoffs [19]. When richer preference information
is available, an alternative approach consists in opti-
mizing a scalarizing function measuring the value of
any feasible reward vector [25]. In multicriteria op-
timization, the scalarizing function can be any pref-
erence aggregation function monotonically increasing
with Pareto dominance or any measure of the distance
to a given target in the space of criteria (reference
point approach, [28]). In multiple agents problems, the
scalarizing function can be any Social Welfare Func-
tion aggregating individual rewards.

In this paper we propose a third approach that con-
sists in focusing the search on Lorenz-optimal trade-
offs, i.e., Pareto-optimal tradeoffs achieving a fair shar-
ing of rewards among objectives. Lorenz dominance
(L-dominance for short) is a partial preference order
refining Pareto-dominance while including an idea of
fairness in preferences. It is used for the measure-
ment of inequalities in mathematical economics [24],
for example to compare income distributions over a
population. In our context, it can be used to compare
reward vectors by inspecting how they distribute re-
wards over components. L-dominance is grounded on
an axiomatic principle stating that any policy modifi-
cation that induces a reward transfer reducing inequal-
ities in the satisfaction of objectives will improve the
solution. Within the Pareto-set, the subset of Lorenz-
optimal solutions deserve special attention because it
includes all tradeoffs of interest provided a balanced
reward vector is sought. Moreover, the definition of
Lorenz dominance does not require any specific pref-
erence information (neither weights nor target trade-
offs), beyond the fact that there is a preference for fair
solutions.

The paper is organized as follows: in Section 2 we
introduce basic concepts for MOMDPs, Pareto opti-
mality and Lorenz optimality. Section 3 presents ap-
proximate optimality concepts for multiobjective prob-
lems and establishes preliminary results concerning the

construction of minimal approximation of L-optimal
tradeoffs. In Section 4, we describe a general method
based on linear programming to approximate the set of
L-optimal solutions in the case of n objectives (n ≥ 2)
and a greedy algorithm to find approximation of min-
imal cardinality in the bi-objective case. Finally, in
Section 5 we describe numerical tests on random in-
stances of MDPs showing the efficiency of the proposed
approaches.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

A Markov Decision Process (MDP) is a tuple
〈S,A, p, r〉 where: S is a finite set of states, A is a fi-
nite set of actions, p : S×A×S → [0, 1] is a transition
function giving, for each state and action the proba-
bility of reaching a next state, and r : S × A → R
is a reward function giving the immediate reward for
executing a given action in a given state [22].

Solving an MDP amounts to finding a policy, i.e., de-
termining which action to choose in each state, which
maximizes a performance measure. In this paper, we
focus on the expected discounted total reward as the
performance measure. A policy π is called determin-
istic if it can be defined as a function from states
to actions, i.e., π : S → A. A policy π is called
randomized if for each state, it defines a probabil-
ity distribution over actions, i.e., π : S × A → [0, 1]
where ∀s,∑a π(s, a) = 1. Note that a determinis-
tic policy is a special case of randomized policy, i.e.,
∀s,∀a, π(s, a) ∈ {0, 1}. The expected discounted total
reward for a randomized policy π in a state s can be
obtained as a solution of the following equation:

V π(s) =
∑

a∈A
π(s, a)[r(s, a) + γ

∑

s′

p(s, a, s′)V π(s′)].

(1)
Function V π : S → R is called the value function of π.

A policy whose value function is maximum in every
state is an optimal policy. In (infinite horizon, dis-
counted) MDPs, an optimal deterministic policy is
known to exist. Such an optimal policy can be found
using linear programming or dynamic programming
techniques such as value iteration or policy iteration
[22].

2.2 MULTIOBJECTIVE MDP

A Multiobjective MDP (MOMDP) is defined as an
MDP with the reward function replaced by r:S ×
A → Rn where n is the number of criteria, r(s, a) =
(r1(s, a), . . . , rn(s, a)) and ri(s, a) is the immediate re-
ward for objective i. Now, a policy π is valued by a
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value function V π : S → Rn, which gives the expected
discounted total reward vector in each state and can
be computed with a vectorial version of (1) where ad-
ditions and multiplications are componentwise.

Although MOMDPs can be used to solve some cen-
tralized planning problems involving multiple agents,
it should not be confused with Multiagent MDPs
(MMDPs) introduced in [3], which are models for coor-
dinating agents having independent actions but a com-
mon reward function. In MOMDPs, actions are not
necessarily “distributed” over agents and rewards are
valued by vectors (one per agent) whereas in MMDPs,
there is a single common objective and a consensus
in the evaluation of states; moreover actions are dis-
tributed over agents.

To compare the value of policies in a given state s,
the basic model adopted in most previous studies [8,
26, 27] is Pareto dominance (P-dominance for short).
The weak Pareto-dominance is defined as follows:
∀v, v′ ∈ Rn, v %P v′ ⇔ ∀i = 1, . . . , n, vi ≥ v′i where
v = (v1, . . . , vn) and v′ = (v′1, . . . , v

′
n) and Pareto-

dominance as: v �P v′ ⇔ v %P v′ and not(v′ %P v).
For a set X ⊂ Rn, a vector v ∈ X is said to be P-
dominated if there is another vector v′ ∈ X such that
v′ �P v; vector v is said to be P-optimal is there is no
vector v′ such that v′ �P v. For a set X ⊂ Rn, the
set of Pareto-optimal vectors of X, called Pareto set,
is PND(X) = {v ∈ X : ∀v′ ∈ X, not v′ �P v}.
In MOMDPs, for a given probability distribution µs
over initial states, a policy π is preferred to a policy
π′ if

∑
s µsV

π(s) �P
∑
s µsV

π′
(s). Standard meth-

ods for MDPs can be extended to solve MOMDPs by
finding Pareto-optimal policies. We recall the linear
programming approach [26].

max zi =
∑

s∈S

∑

a∈A
ri(s, a)xsa i = 1, . . . , n

(P0)
∑

a∈A
xsa − γ

∑

s′∈S

∑

a∈A
xs′ap(s

′, a, s) = µs ∀s ∈ S

xsa ≥ 0 ∀s ∈ S,∀a ∈ A

Recall that there is a one-to-one mapping between
variables (xsa) satisfying constraints of P0 and ran-
domized policies π (i.e., π(s, a) = xsa/

∑
a xsa) and∑

s∈S
∑
a∈ARi(s, a)x(s, a) =

∑
s µsV

π
i (s) for all i =

1, . . . , n. More specifically, the constraints of P0 de-
fine a polytope whose extreme points are deterministic
policies. For a deterministic policy, in every state s,
xsa is non-null only for one action a. Thus, solving this
multiobjective linear program amounts to optimizing
the objective function

∑
s∈S µsV (s), called the value

vector and interpreted as the expectation of a vector
value function V w.r.t. probability distribution µs.

Following [7], one could add the following constraints

to this linear program, obtaining then a mixed linear
program with 0, 1 variables, to restrict the search to
deterministic policies only:

∑

a∈A
dsa ≤ 1 ∀s ∈ S

(1− γ)xsa ≤ dsa ∀s ∈ S, ∀a ∈ A
dsa ∈ {0, 1} ∀s ∈ S, ∀a ∈ A.

(2)

As Pareto dominance is a partial relation, there gener-
ally exist many Pareto-optimal policies. In fact, in the
worst case, it may happen that the number of Pareto-
optimal value vectors corresponding to deterministic
policies is exponential in the number of states as shown
in the following example, adapted from [10].

Example 1 Let N > 0. Consider the following deter-
ministic MOMDP represented in Figure 1. It has N+1
states. In each state, two actions (Up or Down) are
possible except in the absorbing state N . The rewards
are given next to the arcs representing the two actions.
Here, we can take γ = 1 as state N is absorbing. In
this example, there are 2N+1 stationary determinis-
tic policies. Stationary deterministic policies that only
differ from one another on the choice of the action in
the last state N have the same value functions as the
reward and the transition in those states for both ac-
tions are identical. In the initial state 0, the remaining
policies induce 2N different valuation vectors, of the
form (x, 2N − 1 − x) for x = 0, 1, . . . , 2N − 1. Those
different vectors are in fact all Pareto-optimal as they
are on the line x+ y = 2N − 1.

This example suggests that computing all Pareto-
optimal solutions is not feasible in the general case.
Moreover, deciding whether there exists a determin-
istic policy whose value vector P-dominates a given
vector is known to be NP-hard [4, 23].

In this paper, we want to determine a subset of the
Pareto set containing only policies that fairly dis-
tribute rewards among agents. The aim of gener-
ating well-balanced solutions has been tackled with
scalararizing functions such as max-min [18, 12], aug-
mented Tchebycheff norm [21] or WOWA of regrets
[16]. However, each of these criteria focuses on a very
specific idea of fairness and can only be justified when
we have a very precise preferential information. A
more cautious approach is to rely on Lorenz domi-

0 1 . . . N-1 N

(0, 1)

(1, 0)

(0, 2)

(2, 0)

(0, 2N−1)

(2N−1, 0)

(0, 2N )

(2N , 0)

Figure 1: An instance where all deterministic policies
have distinct Pareto-optimal value vectors
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nance that is a partial order, leaving room for various
optimally fair solutions. Let us now introduce more
precisely the notions of Lorenz dominance and Lorenz
optimality.

Lorenz dominance relies on a cautious idea of fairness,
namely the transfer principle: Let v ∈ Rn+ such that
vi > vj for some i, j. Then for all ε > 0 such that
ε ≤ vi − vj , any vector of the form v − εei + εej is
preferred to v, where ei (resp. ej) is the vector whose
ith (resp. jth) component equals 1, all others being 0.

This principle captures the idea of fairness as fol-
lows: If vi > vj for some value vector v ∈ Rn+,
slightly improving component vj to the detriment of
vi while keeping the sum unchanged would produce
a better distribution of rewards, and consequently a
more suitable solution. Such transfers reducing in-
equalities are named admissible transfers also known
as Pigou-Dalton transfers in Social Choice Theory. For
example, value vector (10, 10) should be preferred to
(14, 6) because there is an admissible transfer of size
4. Note that using a similar transfer of size greater
than 8 would be counterproductive because it would
increase inequalities in satisfaction. This explains why
the transfers must have a size ε ≤ vi − vj .
The transfer principle provides arguments to discrimi-
nate between vectors having the same average rewards.
When combined with Pareto monotonicity (compat-
ibility of preference with P-dominance), it becomes
more powerful. For example, consider value vectors
(11, 11) and (12, 9) respectively, we can remark that
on the one hand, (11, 11) is better than (11, 10) due to
Pareto dominance and (11, 10) is better than (12, 9)
thanks to the Transfer Principle. Hence, we are able
to conclude that (11, 11) is better than (12, 9) by tran-
sitivity. In order to better characterize those vectors
that can be compared using improving sequences based
on P-dominance and admissible transfers, we recall the
definition of Lorenz vectors and Lorenz dominance (for
more details see e.g. [14, 24]):

Definition 1 For all v ∈ Rn+, the Lorenz Vector as-
sociated to v is the vector:

L(v) = (v(1), v(1) + v(2), . . . , v(1) + v(2) + . . .+ v(n))

where v(1) ≤ v(2) ≤ . . . ≤ v(n) represents the compo-

nents of v sorted by increasing order. The kth compo-
nent of L(v) is Lk(v) =

∑k
i=1 v(i).

Definition 2 Hence, the Lorenz dominance relation
(L-dominance for short) on Rn+ is defined by:

∀v, v′ ∈ Rn+, v %L v′ ⇐⇒ L(v) %P L(v′)

Its asymmetric part is defined by:

v �L v′ ⇐⇒ L(v) �P L(v′).

Within a set X, any element v is said to be L-
dominated when v′ �L v for some v′ in X, and L-
optimal when there is no v′ in X such that v′ �L v.
The set of L-optimal elements in X, called the Lorenz
set, is denoted LND(X). In order to establish the link
between Lorenz dominance and preferences satisfying
the combination of P-Monotonocity and the transfer
principle we recall a result of [5]:

Theorem 1 For any pair of vectors v, v′ ∈ Rn+, if
v �P v′, or if v is obtained from v′ by a Pigou-Dalton
transfer, then v �L v′. Conversely, if v �L v′, then
there exists a sequence of admissible transfers and/or
Pareto-improvements to transform v′ into v.

This theorem establishes Lorenz dominance as the
minimal transitive relation (with respect to inclusion)
satisfying compatibility with P-dominance and the
transfer principle. As a consequence, the subset of
L-optimal value vectors appears as a very natural so-
lution concept in fair optimization problems. A conse-
quence of Theorem 1 is that v �P v′ implies v �L v′.
Hence, L-dominance is a refinement of P-dominance
and the set of L-optimal vectors is included in the set
of P-optimal vectors.

The number of Lorenz-optimal tradeoffs is often sig-
nificantly smaller than the number of Pareto-optimal
tradeoffs. For instance in Example 1, while there
is an exponential number of Pareto-optimal policies,
with distinct value vectors, there are only two Lorenz-

optimal policies with value vectors (b 2N−12 c, d 2N−12 e)
and (d 2N−12 e, b 2N−12 c). Unfortunately, there exist in-
stances where the number of Lorenz-optimal value vec-
tors corresponding to deterministic policies is exponen-
tial in the number of states, as shown in the following
example adapted from [20].

Example 2 Let N > 0. Consider the following deter-
ministic MOMDP represented in Figure 2, which is an
adaptation of Example 1. It has N + 1 states. In each
state, two actions (Up or Down) are possible except in
the absorbing state N . The rewards are given next to
the arcs representing the two actions. Here, we can
take γ = 1 as state N is absorbing.

0 1 2 . . . N

(0, 2N+1 + 2)

(0, 2N+1 + 2)

(0, 21)

(20, 0)

(0, 22)

(21, 0)

(0, 2N−1)

(2N−2, 0)

Figure 2: An instance where all deterministic policies
have distinct Lorenz-optimal value vectors

From state 1, all the possible value vectors are in the
set {

(
x, 2(2N−1 − 1 − x)

)
|x = 0, 1, 2, . . . , 2N−1 − 1}.

Then, from the initial state s0, the possible value vec-
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tors are in {
(
x, 3×2N −2x

)
|x = 0, 1, 2, . . . , 2N−1−1}.

The set of Lorenz vectors is then {
(
x, 3× 2N − x

)
|x =

0, 1, 2, . . . , 2N−1−1}, implying that all the Lorenz vec-
tors are Pareto-optimal.

This example shows that, although more discriminat-
ing than Pareto dominance, Lorenz dominance might
leave many solutions incomparable. Therefore, on
large instances, it may be infeasible to determine all
Lorenz non-dominated solutions. Moreover, in deter-
ministic MOMDPs, deciding whether there exists a
policy whose value vector L-dominates a fixed vector
is NP-hard [20].

3 APPROXIMATION OF PARETO
AND LORENZ SETS

3.1 ε-COVERING OF NON-DOMINATED
ELEMENTS

The examples provided at the end of Section 2 show
that, even if we restrict ourselves to deterministic poli-
cies and two objectives, the set of P-optimal trade-
offs and the set of L-optimal tradeoffs may be very
large. Their cardinality may grow exponentially with
the number of states. Hence one cannot expect to
find efficient algorithms to generate these sets exactly.
This suggests that relaxing the notion of L-dominance
(resp. P-dominance) to approximate the Lorenz set
(resp. the Pareto set) with performance guarantees
on the approximation would be a good alternative in
practice. We first recall some definitions used to ap-
proximate dominance and optimality concepts in mul-
tiobjective optimization. We then investigate the con-
struction of an approximation of the set of L-optimal
tradeoffs. First, we consider the notion of ε-dominance
defined as follows [19, 13]:

Definition 3 For any ε > 0, the ε-dominance rela-
tion is defined on value vectors of Rn as follows:

x %εP y ⇔ [∀i ∈ N, (1 + ε)xi ≥ yi].

Hence we can define the notion of approximation of
the Pareto set as follows:

Definition 4 For any ε > 0 and any set X ⊆ Rn of
bounded value vectors, a subset Y ⊆ X is said to be
an ε-covering of PND(X) if ∀x ∈ PND(X), ∃y ∈ Y :
y %εP x.

For example, on the left part of Figure 3, the five black
points form an ε-covering of the Pareto set. Indeed,
dotted lines define 5 cones delimiting the areas where
value vectors are ε-dominated by a black point. One
can see that the union of these cones covers all feasi-
ble value vectors. Of course, a given set X of feasible

Figure 3: ε-coverings of the Pareto set

tradeoffs may include multiple ε-covering sets, set X
is itself an ε-covering of X. In practice, we are in-
terested in finding an ε-covering the size of which is
polynomially bounded.

The strength of the ε-covering concept is derived from
the following result of Papadimitriou and Yannakakis
[19]: for any fixed number of criteria n > 1, for any
finite ε > 0 and any set X of bounded value vectors
such that 0 < xi ≤ K for all i ∈ N , there exists in
X an ε-covering of the Pareto set PND(X) the size of
which is polynomial in log K and 1/ε. The result can
be simply explained as follows: to any reward vector
x ∈ Zn, we can assign vector ϕ(x) the components of
which are ϕ(xi) = d log xi

log(1+ε)e. Due to the scaling and

rounding operation, the number of different possible
values for ϕ is bounded on each axis by dlogK/ log(1+
ε)e. Hence the cardinality of set ϕ(X) = {ϕ(x), x ∈
X} is upper bounded by dlogK/ log(1 + ε)en.

This can easily be illustrated using the right part of
Figure 3 representing a logarithmic grid in the space of
criteria. Any square of the grid represents a different
class of value vectors having the same image through
ϕ. Any vector belonging to a given square covers any
other element of the square in terms of %εP . Hence,
choosing one representative in each square, we cover
the entire set X. If n > 2, squares become hypercubes.
The size of the covering is bounded by the number of
hypercubes in the hypergrid which is dlogK/ log(1 +
ε)en. The covering can easily be refined by keeping
only the elements of PND(ϕ(X)) due to the following
proposition:

Proposition 1 ∀x, y ∈ X,ϕ(x) %P ϕ(y)⇒ x %εP y.

Hence, remarking that for any fixed x1, . . . , xn−1 there
is no more than one Pareto-optimal element in vec-
tors {ϕ(x1, . . . , xn−1, z), z ∈ R} the ε-covering set will
include at most dlogK/ log(1 + ε)en−1 elements. In
Example 1 where n = 2, if we consider the instance
with 21 states, the Pareto set contains more than one
million elements (220) whereas dlog 220/ log 1.1e = 146
elements are sufficient to cover this set with a tolerance

512



of 10% (ε = 0.1).

Similarly, we can define the notion of approximation
of the Lorenz set as follows:

Definition 5 For any ε > 0 and any set X ⊆ Rn of
bounded value vectors, a subset Y ⊆ X is said to be
an ε-covering of LND(X) if ∀x ∈ LND(X) ∃y ∈ Y :
y %εL x, i.e. L(y) %εP L(x).

In other words, Y is a ε-covering of LND(X) if L(Y ) =
{L(y), y ∈ Y } is a ε-covering PND(L(X)).

Hence, assuming that an algorithm A generates an ε-
covering of P-optimal elements in any set X, there
are two indirect ways of constructing an ε-covering
of LND(X). The first way consists of computing
L(X) = {L(x), x ∈ X} and then calling A to deter-
mine an ε-covering of PND(L(X)). This approach is
easily implementable when the set of feasible trade-
offs X is given explicitly. Unfortunately, in the case
of MOMDPs as in many other optimization problems,
the feasible set X is only implicitly known. We show in
Section 4 how this approach can be modified to over-
come the problem in MOMDPs. A second way consists
of first computing an ε-covering Y of PND(X) with A
and then determine L(Y ) and PND(L(Y )). This yields
an ε-covering of LND(X) as shown by:

Proposition 2 For any set X of vectors, if Y is
an ε-covering of PND(X), then PND(L(Y )) is an ε-
covering of LND(X).

Proof: For any x ∈ PND(X), there is a y ∈ Y such
that y %εP x. Hence (1 + ε)y %P x and L((1 + ε)y) %P
L(x) by Theorem 1. Since L((1 + ε)y) = (1 + ε)L(y)
we obtain (1 + ε)L(y) %P L(x). Also, there is z ∈
PND(L(Y )) such that L(z) %P L(y) and therefore (1+
ε)L(z) %P (1 + ε)L(y). Hence by transitivity we get
(1 + ε)L(z) %P L(x) and therefore L(z) %εP L(x) �

The general result of Papadimitriou and Yannakakis
[19] holds for MOMDPs, as shown by Chatterjee et al.
[4]. For any MOMDP 〈S,A, p, r〉 with discount factor
γ ∈ (0, 1), for all ε > 0, there exists an ε-covering of
Pareto-optimal tradeoffs whose size is polynomial in
|S| (the number of states), |γ|, |R| (an upper bound
on rewards), and 1/ε, and exponential in n. Moreover,
there exists an algorithm to construct an ε-covering of
the Pareto set in time polynomial in |S|, |γ|, |R|, and
1/ε and exponential in n. This algorithm is based on a
systematic inspection of the squares of the grid given in
Figure 1, using linear programming techniques. Hence
when the number of criteria is fixed, Proposition 2 can
be used to show the existence of a fully polynomial
approximation scheme (fptas) for the set of L-optimal
tradeoffs:

Proposition 3 For any fixed number of criteria n >
1, for any MOMDP 〈S,A, p, r〉 involving n criteria and
a discount factor γ ∈ (0, 1), for all ε > 0, there ex-
ists an ε-covering of Lorenz-optimal tradeoffs whose
size is polynomial in |S|, |γ|, |R|, and 1/ε. More-
over, there exists an algorithm to construct an ε-
covering of Lorenz-optimal tradeoffs in time polyno-
mial in |S|, |γ|, |R|, and 1/ε.

Proof: For any fixed n > 1, we know that an ε-
covering of the Pareto set Y of size polynomial in
|S|, |γ|, |R|, and 1/ε can be computed in time poly-
nomial in |S|, |γ|, |R|, and 1/ε. Moreover, we have
PND(L(Y )) ⊆ L(Y ) and |L(Y )| ≤ |Y |, therefore
|PND(L(Y ))| is polynomial in |S|, |γ|, |R|, and 1/ε.
Moreover, L(Y ) can be derived from Y in polynomial
time and then PND(L(Y )) is obtained from L(Y ) in
polynomial time using pairwise comparisons. Proposi-
tion 2 concludes the proof since PND(L(Y )) is known
to form an ε-covering of L-optimal solutions. �

Proposition 2 suggests a two-phase approach: first ap-
proximate the Pareto set and then derive an approx-
imation of the Lorenz set. In the next section we in-
vestigate more direct methods to construct an approx-
imation of the set of Lorenz-optimal tradeoffs.

4 DIRECT CONSTRUCTIONS OF
ε-COVERING OF LORENZ SET

4.1 GENERAL PROCEDURE

We now present a direct procedure for constructing an
ε-covering of the Lorenz set (of bounded size), with-
out first approximating the Pareto set. This procedure
relies on the observation made in the previous sec-
tion: let X be the set of feasible tradeoffs and L(X)
its image through the Lorenz transformation. Then
PND(L(X)), the set of P-optimal vectors in L(X) is
an ε-covering of the Lorenz set.

Hence to any feasible tradeoff x ∈ X, we can assign

a vector ψ(x) where ψ(x)i = d logLi(x)
log(1+ε) e. Function ψ

defines a logarithmic hypergrid on L(X) rather than
on X. Any hypercube defined by ψ in the hypergrid
represents a class of value vectors that all have the
same image through ψ. Any Lorenz vector L(x) be-
longing to a given hypercube covers any other Lorenz
vector L(y) of the same hypercube in terms of %εP .
Hence, the original vectors x, y are such that x %εL y.
Moreover the following property holds:

Proposition 4 ∀x, y ∈ X,ψ(x) %P ψ(y)⇒ x %εL y.

Thus, we can use P -optimal ψ vectors to construct
an ε-covering of the Lorenz set. Besides, due to the
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scaling and rounding operations, the number of dif-
ferent possible values for ψ is bounded on the ith

axis by dlog iK/ log(1 + ε)e, where K is an upper
bound such that 0 < xi ≤ K . Hence the car-
dinality of set ψ(X) = {ψ(x), x ∈ X} is upper
bounded by Πn

i=1dlog(iK)/ log(1+ε)e. Moreover, since
Li(x) ≤ Li+1(x) we have ψ(x)i ≤ ψ(x)i+1 for all
i = 1, . . . , n. Therefore, when a ψ(x) does not meet
this constraint the corresponding hypercube is nec-
essarily empty and does not need to be inspected.
Thus the number of hypercubes that must be in-
spected is at most Πn

i=1dlog(iK)/ log(1 + ε)e/n! ≤
Πn
i=1di logK/ log(1 + ε)e/n! ≤ Πn

i=1idlogK/ log(1 +
ε)e/n! = dlogK/ log(1 + ε)en. Hence, by choosing one
representative in each of these hypercubes, we cover
the entire set L(X). The size of the covering is there-
fore bounded by Πn

i=1dlog(iK)/ log(1 + ε)e/n!, which
is smaller than dlogK/ log(1 + ε)en. Let us consider
the following example:

Example 3 If K = 10000, n = 3 and ε =
0.1, the grid scanned in the Lorenz space in-
cludes Πn

i=1dlog(iK)/ log(1 + ε)e/n! = 186, 935 hy-
percubes whereas the grid for the Pareto set includes
dlogK/ log(1 + ε)en = 941, 192 hypercubes (5 times
more).

Thus, this approach is expected to be faster than
the two-phase method presented in the previous sec-
tion. This is confirmed by tests provided in Section
5. Moreover the resulting covering set can be reduced
in polynomial time so as to keep only the elements
of PND(ψ(X)). If any hypercube can be inspected
in polynomial time, this direct approach based on the
grid defined in the Lorenz space provides a fptas for
the set of L-optimal value vectors in MOMDPs. Let
us show now how hypercubes can be inspected using
linear programming.

Let z be the set of feasible value vectors (z1, . . . , zn)
defined by P0 introduced in Section 2. We consider
the following optimization problem designed to test
whether there exists a feasible z whose Lorenz vec-
tor L(z) P-dominates a given reference vector η ∈ Rn
representing the lower corner of an hypercube in the
Lorenz space.

maxLn(z)

(Pη) Lk(z) ≥ ηk, k = 1, . . . , n− 1,

z ∈ Z.

The objective of this optimization program is linear in
variables zi since Ln(z) =

∑n
i=1 zi. However, none of

the constraints is linear since Lk(z) is the sum of the
k greatest components of z which requires sorting the
components for every z. Fortunately, for any fixed z,
the kth Lorenz component Lk(z) can be defined as the

solution of the following linear program [17]:

min
n∑

i=1

aikzi

(PLk
)

{ ∑n
i=1 aik = k

aik ≤ 1 i = 1 . . . n.

aik ≥ 0 i = 1 . . . n.

This does not directly linearize the constraints of Pη
because PLk

is a minimization problem and conse-
quently

∑n
i=1 aikzi ≥ ηk does not imply that Lk(z) ≥

ηk. Fortunately, by duality theorem, Lk(x) is also the
optimal value of the dual problem of PLk

:

max ktk −
n∑

i=1

bik

(DLk
)

{
tk − bik ≤ zi i = 1 . . . n

bik ≥ 0 i = 1 . . . n.

Since DLk
is a maximization problem, imposing con-

straint krk −
∑n
i=1 bik ≥ ηk together with the con-

straints of DLk
implies that Lk(z) ≥ ηk. Hence we

obtain the following linear reformulation of Pη:

max

n∑

k=1

zk

(LPη)





ktk −
∑n
i=1 bik ≥ ηk, k = 1 . . . n− 1

tk − bik ≤ zi, i, k = 1 . . . n
z ∈ Z.
bik ≥ 0 i, k = 1 . . . n.

Finally, if Z is the set of feasible value vectors
of program P0 (see Section 2), then for any p =
(p1, . . . , pn) ∈ Nn, one can test whether there exists
a randomized policy, the Lorenz vector of which P-
dominates vector: ηpε = ((1 + ε)p1 , . . . , (1 + ε)pn) by
solving program LP ′η below with η = ηpε and checking
that the objective at optimum is greater or equal to
(1 + ε)pn .

max
n∑

k=1

zk

(LP ′η)





zk =
∑

s∈S

∑

a∈A
rk(s, a)xsa, k = 1 . . . n

ktk −
∑n
i=1 bik ≥ ηk, k = 1 . . . n− 1

tk − bik ≤ zi, i, k = 1 . . . n

bik ≥ 0 i, k = 1 . . . n

xsa ≥ 0 ∀s ∈ S,∀a ∈ A

Hence the whole logarithmic hypergrid in the Lorenz
space can be entirely inspected using a polynomial
number of calls to LP ′

ηpε
. One needs at most one

call per integer valued vector p ∈ Nn−1 such that
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Figure 4: Grid in the Lorenz space

pi ≤ di logK/ log(1 + ε)e and p1 ≤ p2 ≤ . . . ≤ pn−1.
These vectors p are enumerated in lexicographic order.

This systematic inspection can be significantly sped up
due to the following observation illustrated in Figure 4:
let L(z) be the optimal Lorenz vector obtained by solv-
ing LP ′

ηpε
(represented by a triangle in Figure 4). Then

none of the hypercubes corresponding to an η vector
such that L(z) %P η %P ηpε (white points in Figure
4) needs to be inspected because vectors falling in this
area (colored in grey on Figure 4) are ε-dominated by
L(z). Hence calls to LP ′η for such η can be skipped to
go directly to the next non-dominated η vectors in the
grid (grey points in Figure 4).

This procedure provides an ε-covering of L-optimal
randomized pure policies. Whenever we want to re-
strict the search to deterministic policies, a similar pro-
cedure applies, we just need to add constraints given
in Equation (2) as explained in Section 2. In this case,
program LPηpε becomes a mix-integer linear program.

4.2 MINIMAL ε-COVERINGS: THE
BIOJECTIVE CASE

The grid used to partition the entire space in the above
procedure enables to avoid many unnecessary redun-
dancies in the construction of a covering set because
we keep at most one feasible policy in each hypercube.
However, this procedure does not ensure that a cov-
ering of minimal cardinality will be found. In this
subsection, we propose a greedy approach to gener-
ate an ε-approximation of minimal cardinality for the
Lorenz set (and the Pareto set). The principle of this
approach relies on a general scheme proposed in [6] for
finding a minimal covering of the Pareto set in general
biobjective optimization problems. Considering two
objective functions z1 and z2, the construction con-
sists in solving a sequence of optimization problems
alternating two complementary subproblems:

Restrict-1(α1). For any given value α1, we want to
maximize z2 subject to the constraint z1 ≥ α1. The
procedure returns the optimal value vector or answers
no when no such solution exists.

Restrict-2(α2). For any given value α2, we want to
maximize z1 subject to the constraint z2 ≥ α2. The
procedure returns the optimal value vector or answers
no when no such solution exists.

Hence, the greedy construction of an ε-covering starts
with the initial call v0 =Restrict-2(0). Then we com-
pute the following alternated sequences for n ≥ 1:

un = Restrict-1(vn−1/(1 + ε))

vn+1 = Restrict-2((1 + ε)un).

We let n increase until the feasible domain of Restrict
becomes empty. Point v0 optimizes objective 1 but
does not enter into the covering set. Instead we use u1
which is, by construction, more “central” while still
covering v0. Then, we obtain v1 as the rightmost
Pareto-optimal point on the z1 axis that is not covered
by u1. Like v0, v1 does not enter into the covering. In-
stead we include u2 that improves z2 while covering
v1 and so on. The resulting set {u1, . . . , uq} provides
an ε-covering set of minimal cardinality. This proce-
dure makes only 2q calls to Restrict. Further details
on this greedy approach and its optimality for general
biobjective problems are given in [6].

The specification of procedures Restrict-1 and
Restrict-2 to construct an ε-covering of the Pareto set
of minimal cardinality in biobjective MDPs is straight-
forward from P0. For constructing an ε-covering of
minimal cardinality for the Lorenz set in biobjective
MDPs we solve Restrict-i(αi) using program LP ′i (αi),
for i=1,2, where LP ′i (αi) is a convenient adaptation of
LP ′η defined as follows:

max z3−i

LP ′i (αi)





zk =
∑

s∈S

∑

a∈A
rk(s, a)xsa, k = 1, 2

iti − b1i − b2i ≥ αi,
tk − bjk ≤ zj , j, k = 1, 2

bik ≥ 0 i, k = 1, 2

xsa ≥ 0 ∀s ∈ S, ∀a ∈ A.

Hence, Restrict-i(αi) can be solved in polynomial time
for randomized policies. Whenever we want to restrict
the search to deterministic policies, we just have to
add constraints given in Equation (2). In that case
program LP ′i is a MIP which cannot be expected to
be solved in polynomial time. It is still easily solvable
by current solvers, as is shown in the next section.

5 EXPERIMENTAL RESULTS

We tested the different methods presented in this
paper on random instances of MOMDPs. The re-
wards on each objective were randomly drawn from
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Figure 5: ε approximation of Pareto and Lorenz sets

ε 0.05 0.1 0.15 0.2
L(PNDε) 265.7 169.4 126.7 101.7
LNDε 5.4 4.8 4.4 4.2

Table 1: Computation times of ε-covers

{0, 1, . . . , 99}. All the experiments were run on stan-
dard PCs with 8Gb of memory and an IntelCore 2 Duo
3.33GHz GHz processor. All LPs were solved using
Gurobi 5.0. All the experimental results are averaged
over 10 runs with discount factor γ set to 0.9.

First, we illustrate how the size of ε-covers can be re-
duced using the greedy approach both for Pareto and
Lorenz. In this first series of experiments, all the in-
stances are biojective MDPs. We set the number of
states to 200 and the number of actions to 5. Parame-
ter ε was set to 0.01. Figure 5 shows the value vectors
in the objective space. PNDε (resp. LNDε) is ε-cover
of PND (resp. LND), min PNDε and min PNDε are
the minimal ε-cover sets.

In the second series of experiments, we present the
computation times (expressed in seconds) for com-
puting the different ε-covers. In these experiments,
the number of states is set to 50, the number of ac-
tions to 5 and the number of objectives to 3, and
ε ∈ {0.05, 0.1, 0.15, 0.2}. The results are presented in
Table 1 and shows that the direct approach is the most
efficient. The longer computation time for the indirect
method is mainly due to the determination of the ap-
proximate Pareto set.

To show the effectiveness of our approach, we com-
puted the ε-covers for the graph presented in Exam-
ple 2 with N = 30. The size of the ε-covers are given
in Table 2.

6 CONCLUSION

We have proposed, compared and tested several ef-
ficient procedures for approximating (with perfor-

ε 0 0.05 0.1 0.15 0.2
PNDε 230 361 194 135 104
L(PNDε) 230 16 8 6 4
min PNDε 230 15 8 5 4
L(min PNDε) 230 9 5 3 3
LNDε 230 17 9 6 5
min LNDε 230 4 2 2 1

Table 2: Sizes of ε-covers for the graph in Example 2

mance guarantee) the set of Lorenz-optimal elements
in MOMDPs. For randomized policies, the proce-
dures presented are fully polynomial approximation
schemes. Moreover for the bi-objective case, we pre-
sented a greedy approach which constructs, in polyno-
mial time, for any given ε > 0, an ε-approximation of
minimal cardinality of the set of Lorenz optimal trade-
offs. A similar approach works also for the Pareto set.
We have shown how to modify this approach to deter-
mine covering sets using only deterministic policies.
This has a computational cost since we have to solve
MIPs instead of LPs. However, the numerical tests
performed show that the approach remains efficient
for deterministic policies on reasonably large instances.
Moreover, the direct approximation of Lorenz-optimal
elements enable to address larger problems than those
requiring prior approximation of the Pareto set. Note
that beside the restrict procedure, the approach is
quite generic and could probably easily be adapted to
other multiobjective problems.

These tools provide useful information for selecting
optimal actions and policies in dynamic systems. By
playing with threshold ε we can increase or decrease on
demand the size of our sample of solutions and provide
more or less contrasted tradeoffs to cover the Pareto
set or the Lorenz set. This approach could also be used
to approximate f -optimal tradeoffs for any scalarizing
function f monotonic with respect to Pareto or Lorenz
dominance.

Beside the application to aggregation functions, an-
other research direction would be to look for proce-
dures to construct minimal covering sets for MOMDPs
involving more than two objectives. To the best of our
knowledge this remains an open problem.
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Abstract

We propose solution methods for previously-
unsolved constrained MDPs in which actions can
continuously modify the transition probabilities
within some acceptable sets. While many meth-
ods have been proposed to solve regular MDPs
with large state sets, there are few practical
approaches for solving constrained MDPs with
large action sets. In particular, we show that the
continuous action sets can be replaced by their
extreme points when the rewards are linear in the
modulation. We also develop a tractable opti-
mization formulation for concave reward func-
tions and, surprisingly, also extend it to non-
concave reward functions by using their concave
envelopes. We evaluate the effectiveness of the
approach on the problem of managing delinquen-
cies in a portfolio of loans.

1 Introduction

This paper is motivated by the need of a loan services
provider to efficiently manage a portfolio of loans in var-
ious, finite, levels of delinquency over a finite number of
decision periods. In the absence of interventions, a loan is
assumed to transition from one delinquency level to another
across time periods according to an exogenous base transi-
tion probability. This transition probability can, however,
be controlled by taking various intervention actions, the
cost of which depends on the deviation from the base tran-
sition probability. The overall objective in managing such a
portfolio of loans is to choose interventions that maximize
the expected financial gain of a loan servicing operator (or
equivalently to minimize its loan servicing cost), subject to
some constraints on the performance of the loan portfolio in
expectation. These performance constraints are motivated
by both regulatory and business reasons, and are typically
in terms of acceptable bounds on the expected percentage
of loans that would result in a default (the most delinquent

level) at the end of a planning horizon, or at various in-
termediate time periods. While we focus specifically on
loans, our models and results are applicable to other do-
mains, such as maintenance scheduling, debt collection,
and marketing [1].

To determine the right sequence of such interventions, one
needs to solve a stochastic dynamic decision problem. Note
that it suffices to optimize the sequence of interventions
independently for each loan, since all important metrics
(decision-making objectives and constraints) are expressed
in terms of expectations. For each decision period t we
assume a finite set of states St that represent the various
levels of loan delinquency for the period t. For any loan
state st ∈ St, let b(st) denote the base transition probabil-
ity distribution over the finite support St+1. The decision-
maker can modify b(st) into any probability distribution
p(st) that belongs to a set Pst of feasible distributions. In
other words, p(st) is the modulated transition probability
to other delinquency states St+1 after an intervention cor-
responding to st. The cost of achieving this modulation is
assumed to be a function of the difference, p(st)− b(st).

Given the chosen interventions, let d(s) represent the prob-
ability of visiting state s ∈ ST in time period T following
a sequence of T − 1 interventions. In vector notation, we
have that:

d = αTP1 · P2 · · · · · PT−1,

where α is an initial probability distribution over the finite
set S1 and Pt = [p(st)]st∈St is the transition probability
matrix induced by the interventions. The portfolio per-
formance constraints require that for some selected states
s and values q(s), d(s) ≤ q(s). Note that d is a com-
plex polynomial function of the decisions p. Consequently,
the total expected costs corresponding to a sequence of
T − 1 interventions and transitions, as well as the perfor-
mance constraints are also non-convex polynomials of de-
gree |T −1|. Because non-convex polynomial optimization
problems are usually very hard to solve, this direct formu-
lation is unlikely to lead to a tractable solution.

To derive tractable algorithms we instead cast the problem
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as an instance of a constrained Markov decision process
(CMDP) [2]. The MDP states in this formulation repre-
sent the levels of a loan delinquency and the actions rep-
resent the available interventions. The performance con-
straints can then be conveniently represented in the CMDP
framework. While CMDPs with small state and action sets
can easily be formulated and solved as linear programs,
the loan delinquency management problem has a contin-
uous action set—the available interventions can continu-
ously adjust the transition probabilities between different
states. Continuous action MDPs and CMDPs have been
studied extensively in terms of existence of the optimal
policies, but there have been few practical computational
methods proposed [2, 9]. In this paper, we propose and an-
alyze methods for solving some specific classes of CMDPs
with continuous action sets.

Continuous action spaces in the form of compact spaces
Ps have been considered in the context of robust Markov
decision problems [4, 5]. Our setting is more complex
because of the constraints on state visitation probabilities
and non-linear reward functions. Continuous action spaces
have also been considered in the context of reinforcement
learning [6, 11]. The reinforcement learning approaches,
unlike the methods we propose, are only approximate and
cannot easily handle state probability constraints. Finally,
continuous action spaces have been also considered in re-
cent work on Markov decision process with linear transi-
tion structure [8, 7]. However, the required linear struc-
ture is not present in the loan servicing problem. Finally,
CMDPs have recently been used in optimizing the tax col-
lection for NY state [1]. The number of actions available in
the tax collection problem, however, is small and the prob-
lem can be solved using standard MDP and reinforcement
learning techniques.

The remainder of the paper is organized as follows. In
Section 2, we define the finite-horizon MDP framework
with continuous action spaces and state probability con-
straints. In Section 3, we show that the continuous-action
CMDP can be reformulated as an identical finite action
CMDP under some mild assumptions. While this formu-
lation has a finite number of actions, it may still be too
large to be solved efficiently in practice. In Section 4, we
show a tractable formulation of the CMDPs with concave
reward functions as a convex mathematical optimization
program. Then, Section 5 extends the convex formulation
to non-concave reward functions with tractable concave en-
velopes. Finally, Section 6 demonstrates the efficiency of
the method on a realistic loan servicing problem.

2 Framework

In this section, we first describe the basic properties of con-
strained Markov decision processes with continuous mod-
ulation of transition probabilities. Then, we briefly discuss

a CMDP formulation of the loan management problem.

We use ∆n to denote the probability simplex in Rn: ∆n =
{p ∈ Rn : 1Tp = 1}—this represents the set of all proba-
bility distributions over n elements. We also use 0, 1, I to
denote a vector of all zeros, all ones, and an identity matrix
respectively; their sizes are given by the context.

First, we define an abstract finite-horizon constrained
Markov decision process (CMDP) M with continuously
modulated transition probabilities. The finite time horizon
is assumed to be: t = 1 . . . T .

The finite state set at time t is denoted as St and the set of
all states is S =

⋃
t=1...T St. The underlying base transi-

tions probability from any state st ∈ St is b(st) ∈ ∆|St+1|;
that is the vector of transition probabilities from some st
to any st+1 ∈ St+1, when no action is taken. The infi-
nite continuous actions space for any st ∈ St is denoted
as A(st). The set A(st) must be compact and satisfies
A(st) ⊆ ∆|St+1| and b(st) ∈ A(st). The compactness
assumption ensures that all the optima are achieved. An
action at ∈ A(st) for st ∈ St denotes the modulated tran-
sition probability distribution over st+1 ∈ St+1.

The rewards are denoted as: r(st, a) for state st and action
a. The initial probability distribution is: α ∈ ∆|S1|. Fi-
nally, the solution must satisfy quality constraints such that
the visitation probability for states in Qi ⊂ S are bounded
by qi for some indices i ∈ I.

Next, we summarize the known properties of the optimal
solutions of CMDPs with continuous actions. Similarly to
unconstrained MDPs, there exists an optimal Markov pol-
icy π (e.g. Theorem 6.2 in [2]) under some mild assump-
tions, but this policy may need to be randomized. The set
of randomized Markov policies ΠR = {π : S → ∆|A|}.
Note that the existence of an optimal policy requires that
the action space is compact. A Markov policy is determin-
istic when the action distribution is degenerate; the set of
deterministic policies is ΠD = {π : S → A}.
Definition 2.1. The objective of the constrained MDP op-
timization is:

max
π∈ΠR

E

[
T−1∑

t=1

r(St, π(St))

]
s.t.

∑

t=1..T
s∈Qi

P [St = s] ≤ qi ,

for all i ∈ I where St are state-(St)-valued random vari-
ables and the constraints ensure the required solution qual-
ity.

Remark 2.2 (Uniformly optimal policies [2]). Unlike in
regular MDPs, there may not be any uniformly optimal
policies in a CMDP regardless of the initial state. The ini-
tial distribution is thus a key part of the CMDP definition.

In the remainder of the paper, we use sums instead of in-
tegrals to simplify the notation when using the continuous
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action space. Formally, one could replace all the sums by
Lebesgue integrals.

For each policy π ∈ ΠR, uπ(st, a) ∈ [0, 1] denotes joint
state action visitation probability, and dπ(st) ∈ [0, 1] de-
notes the state visitation probability. Using these terms, the
return of a policy π can be written as [2]:

ρ(π) =

T∑

t=1

∑

st∈St
at∈A(st)

r(st, at) · uπ(st, at) (2.1)

where uπ is uniquely determined by the following con-
straints [9]:

∑

at∈A(st)

uπ(st, at) = dπ(st) (2.2)

∑

st,at

uπ(st, at) · at(st+1) = dπ(st+1) (2.3)

dπ(s1) = α(s1) (2.4)

uπ(st, at)

dπ(st)
= π(st, at) , (2.5)

where we implicitly assume that st ∈ St, at ∈
A(st), at+1 ∈ A(st+1) in (2.3) and the constraint must
hold for each t and st+1. Note that these constraint imply
that u ≥ 0.

The intuitive meaning of the above constraints is as follows.
Constraint (2.2) requires that the state visitation probabil-
ity is simply marginalized state-action visitation probabil-
ity. Constraint (2.3) can be seen as a flow conservation
constraint denoting that the probability of transiting to state
st+1 from any state st is equal to the probability of visit-
ing the state. Note that at in (2.3) is a vector of transition
probabilities. Constraint (2.4) ensures that the initial proba-
bilities are correct and finally, Constraint (2.5) ensures that
the actions are taken with the probabilities specified by the
policy π.

The return in (2.1) is maximized over policies that satisfy
the quality constraints of the CMDP:

∑

s∈Qi

dπ(s) ≤ qi

for all i.

In the remainder of the paper, we use π(s) = a to denote a
deterministic policy that chooses a with probability 1 and
use π(s, a) to denote a probability of taking an action a.
Finally, π(s) for a stochastic policy denotes the vector of
action probabilities.

The constraints in the CMDP make it somewhat harder to
solve than regular MDPs. In particular, the standard MDP
solution methods, such as value iteration and policy iter-
ation cannot be used. The main reason is that, as Re-
mark 2.2 notes, the optimality of a policy depends on the

initial distribution. Therefore, the optimal value function
cannot be computed without a reference to the initial dis-
tribution. Constrained MDPs are instead solved using an
extended linear program formulation of the MDP [2].

The CMDP with continuous probability modulations is
even harder to solve than regular CMDPs because of the
continuous action sets. In the remainder of the paper, we
show how to solve the continuous-action CMDP when the
reward function satisfies certain properties. In particular,
if the rewards are affine the continuous-action CMDP can
be reduced to one with a finite number of actions. More
generally, when the rewards are concave there exists a
tractable convex formulation and, surprisingly, there may
exist a tractable formulation even when the rewards are
non-concave.

The loan management problem can be formulated as a
CMDP as follows. As mentioned above, we can formulate
the evolution of each individual loan independently from
other. Let the possible delinquency states be from a set D.
Assume, in addition, that the loan size is one of discrete
levels from set L; the value of loan may change as its state
evolves and it is important in determining the cost of a de-
fault. The MDP states are then defined as:

St = {(t, s, l) : s ∈ D, l ∈ L} t = 1 . . . T.

When no intervention is taken, the loan transitions between
the states according to a base transition probability b(st)
for each st ∈ St.
The transitions represent both the change in the delin-
quency state and the loan value. The interventions modify
base transition probabilities to reduce the probability of the
delinquency. The feasible actions we consider in our appli-
cation are A(st) = {p ∈ ∆St+1 : ‖p − b(st)‖∞ ≤ ε}—
that is the difference from the base transition probability
is bounded element-wise. Each intervention has a cost as-
sociated with it. The costs are convex in the scope of the
transition probability modulation. In particular, we use an
appropriately weighted version of ‖a − b(st)‖1 to repre-
sent the cost of action a for each state st. The rewards
correspond to negative costs and are, therefore, concave.

3 CMDPs with Affine Rewards

In this section, we show that the continuous action sets can
be replaced by finite sets when 1) the rewards are affine
functions of transition probabilities, and 2) the action sets
A(s) are polytopes for every s ∈ S. In particular, we show
that there exists an optimal (randomized) policy that only
takes actions that correspond to the extreme points of the
polytope A(s).
Assumption 1. The reward r(s, a) is an affine function of
a ∈ A(s) for each s ∈ S:

r(s, a) = eTs a+ fs ,
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for some es and fs.

Consider a CMDPM1 with continuous action sets as de-
fined in Section 2. We can now construct a CMDP M2

with an identical state space toM1 and actions defined as:

Ā(s) = ext(A(s)),

for each s ∈ S where ext denotes the extreme points of the
set. That is, the actions inM2 also define the actual transi-
tion probabilities as inM1; except the actions are restricted
to the subset Ā(s). The reward functionM2 is identical to
the reward function inM1.

Theorem 3.1. Assume that A(s) is a convex polytope and
that Assumption 1 holds. Then, the optimal returns inM1

andM2 are identical. In addition, for any optimal policy
π?2 inM2 there exists a deterministic policy π?1 inM1 with
the same return.

To prove Theorem 3.1 we first need to establish the exis-
tence of an optimal deterministic policy forM1 when the
reward function is concave (or affine).

Lemma 3.2. Assume that the function r(s, a) is concave in
a and A(s) is convex for each s ∈ S. Then, there exists an
optimal deterministic policy π? inM1.

Proof. Assume an optimal randomized policy π0 ∈ ΠR;
we show there exists a deterministic policy π1 ∈ ΠD such
that ρ(π0) = ρ(π1). The deterministic policy π1 is con-
structed as:

π1(s) =
∑

a∈A(s)

π0(s, a) · a,

for each s ∈ S. Note that a is vector in this equation; that is
the action π1 is a convex combination of elements ofA(s).

The action π1(s) is in A(s) from because this is a convex
set and π1(s) is a convex combination of the elements of
the set. Using (2.3) and (2.4) the state visitation probabil-
ities of π1 and π2 are the same: dπ0

= dπ1
. Using this

equality and the concavity of r, we have that:

rπ1
(s) = r(s, π1(s)) = r

(
s,
∑

a∈A(s)

π0(s, a) · a
)

≥
∑

a∈A(s)

π0(s, a)r(s, a) = rπ0
(s).

It readily follows that the transition probabilities under π0

and π1 are identical and therefore ρ(π1) ≥ ρ(π0). The
lemma then follows from the optimality of π0 and from the
monotonicity of the Bellman operator. The monotonicity
of the Bellman operator implies that uniformly increasing
the rewards also increases the return.

Proof of Theorem 3.1. Let π?i and ρ?i be the optimal policy
and return inMi respectively. We show the equality ρ?1 =

ρ?2 in two steps; first, we show that ρ?2 ≥ ρ?1. Assume,
from Lemma 3.2, that π?1 is deterministic. Then, create a
randomized policy π2 in M2 such that for each s ∈ S it
satisfies: ∑

ā∈Â(s)

π2(s, ā) · ā = π?1(s) (3.1)

There always exists a unique π2 that satisfies the above con-
dition since Â(s) = ext(A(s)) and A(s) is convex—each
point in a polytope is a unique convex combination of its
extreme points (e.g. Krein–Milman Theorem). The con-
dition (3.1) guarantees that the transitions probabilities for
π?1 and π2 are the same. It remains to show that the rewards
for π?1 and π2 equal:

rπ2
(s) =

∑

ā∈Â(s)

π2(s, ā) · r(s, ā)

= eTs

( ∑

ā∈Â(s)

π2(s, ā) · ā
)

+ fs = rπ?
1
(s)

(3.2)

by (3.1) of π2 and Assumption 1. The monotonicity of the
Bellman operator then implies that ρ?2 ≥ ρ2 ≥ ρ?1.

Next, we show that ρ?1 ≥ ρ?2. Let π?2 be an optimal ran-
domized policy inM2. Define a deterministic policy π1 as
follows:

π1(s) =
∑

ā∈Â(s)

π?2(s, ā) · ā. (3.3)

Note that (3.3) represents a convex combination of individ-
ual action vectors. It can be readily shown from (3.3) that
the transition probabilities for policies π?2 and π1 are the
same. Next, we show that rπ1

(s) ≥ rπ?
2
(s):

rπ?
2
(s) =

∑

ā∈Â(s)

π?2(s, ā) · r(s, ā)

≤ r
(
s,
∑

ā∈Â(s)

π?2(s, ā) · ā
)

= r(a, π1(s)) = rπ1
(s),

using the concavity of the reward function. The monotonic-
ity of the Bellman operator implies that ρ?1 ≥ ρ?2. This
shows the required equality and the necessary policies can
be constructed as defined in (3.2) and in (3.3).

There are two main limitations of the reduction in Theo-
rem 3.1. First, the reward function must be linear. This
limitation can be easily relaxed by extending the results to
rewards that are piece-wise linear and concave by consid-
ering the extreme points of the hypograph of this function.
Second, even though the number of actions in this formu-
lation is finite, it still may be very large; in the worst case,
the number of the finite actions may be exponential in the
number of states even when A are specified by a polyno-
mial number of linear constraints. In the following sec-
tions, we resolve this limitation by directly formulating the
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continuous-action CMDP as a convex optimization prob-
lem.

4 CMDPs with Concave Rewards

In this section, we describe a direct formulation of the
CMDP as a convex mathematical optimization problem.
This formulation significantly relaxes the necessary as-
sumptions on the MDP structure compared to Theorem 3.1
and also leads to a tractable algorithm.

We start by extending the reward function r : St ×
∆|St+1| → R to r̄ : St × R|St+1|

+ → R which also as-
signs rewards for actions that are not valid distributions.
The extended function r̄(s, a) is defined as:

r̄(s, a) = 1Ta · r
(
s,

a

1Ta

)
,

where r̄(s,0) = 0. Note that this function is positively
homogeneous; that is r̄(s, q ·a) = q ·r(s, a) for q ≥ 0. This
transformation also preserves the convexity or concavity of
the reward function as the following lemma states.
Lemma 4.1. For each st ∈ St, the function f̄(a) = 1Ta ·
f(a/1Ta) is concave (convex) on R|St+1| if and only if f(a)
is concave (convex) on ∆|St+1|.

Proof. This is a standard result which can be readily shown
directly from the definition of concavity (convexity) for q ·
f(x/q) for q ≥ 0. Assume any non-negative α + β = 1,
then:

(αq1 + βq2) · f
(αx1 + βx2

αq1 + βq2

)
=

= (αq1 + βq2) · f
( αx1q1

αq1 + βq2

x1

q1
+

βx2q2

αq1 + βq2

x2

q2

)
=

= αq1 · f
(x1

q1

)
+ βq2 · f

(x2

q2

)
.

The lemma then follows from the restriction of q = 1Tx.

Below, we show several examples of the extended function.
Example 4.2. Assume that the reward is linear: r(s, a) =
eTs a+ fs. Then, the extended reward function is:

r̄(s, a) = eTs a+ 1Ta · fs .

Example 4.3. Assume that the reward is defined by a norm:
r(s, a) = −‖a − ās‖. Then, the extended reward function
is:

r̄(s, a) = −‖a− 1Ta · ās‖ .
Example 4.4. Assume that the reward is defined by a
squared L2 norm: r(s, a) = −‖a − ās‖22. Then, the ex-
tended reward function is:

r̄(s, a) = − 1

1Ta
· ‖a− 1Ta · ās‖22 .

We are now ready to formulate the convex optimization
problem. Constrained MDPs are typically solved using a
linear program formulation based on the state-action visita-
tion probabilities u as the optimization variables [2]. Such
formulation would clearly lead to a semi-infinite optimiza-
tion problem because of the continuous action space and
the need to have a decision variable for each state and ac-
tion pair. To get a tractable formulation, we instead use de-
cision variables u(st, st+1), which represent the joint prob-
ability of visiting st and transiting to st+1. State visitation
probabilities d(st) can be derived from these variables by
marginalizing over st+1 similar to (2.2).

The main challenge with the formulation based on the deci-
sion variables u(st, st+1) is to ensure that the correspond-
ing transition probabilities represent feasible actions in
A(s). We use the notation u(st, ·) represents the vector of
values indexed by the second argument. Then, the vector of
transition probabilities from state st is u(st, ·)/d(st) which
must be feasible inA(st). The constraints u(st, ·)/d(st) ∈
A(st) are non-linear and non-convex in the state visitation
probabilities d(st). Therefore, a direct formulation would
be non-convex and difficult to solve.

To derive a convex formulation, let A(st) be a convex set
defined by convex constraints for st ∈ St:

A(st) = {a ∈ ∆|St+1| : f jst(a) ≤ 0, j ∈ J } ,

for some f jst . The feasibility constraints on the transition
probabilities that have to be satisfied by the solution u then
become:

f js

(u(s, ·)
d(s)

)
≤ 0 . (4.1)

This function is non-convex in d(s) and, therefore, cannot
be used to formulate a convex optimization problem. To get
an identical but convex constraint, first define an extended
constraint function:

f̄ js (a) = 1Ta · f js
( a

1Ta

)
,

where by definition f̄ js (0) = 0. Note that d(s) = 1Tu(s, ·).
The constraint (4.1) can be multiplied by d(s) to get the
constraint:

d(s) · f js
(u(s, ·)
d(s)

)
= f̄ js (u(s, ·)) ≤ 0 . (4.2)

The function f̄ js is convex from Lemma 4.1 and the con-
straint (4.2) is equivalent to (4.1) since d(s) ≥ 0 and
u(s, ·) = 0 whenever d(s) = 0.

We are now ready to formulate the optimization problem
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that can be used to compute the optimal policy in CMDPs:

max
u≥0,d≥0

∑

s∈S
r̄(s, u(s, ·))

s.t. d(s1) = α(s1) ∀s1 ∈ S1

d(st) =
∑

st+1

u(st, st+1)

d(st) =
∑

st−1

u(st−1, st)

∑

s∈Qi

d(s) ≤ qi i ∈ I

f̄ js (u(s, ·)) ≤ 0 j ∈ J

(4.3)

Each st is implicitly considered to be in St and each s is
implicitly considered to be in S. Note that:

∑

s∈S
r̄(s, u(s, ·)) =

∑

s∈S
d(s) · r

(
s,
u(s, ·)
d(s)

)
.

The formulation in (4.3) reduces to a linear program when
the sets of feasible actions are polytopes as the following
example shows.

The intuitive meaning of the constraints in (4.3) the same
as in Eqs. (2.2) to (2.5). The main difference from the stan-
dard LP formulation is the objective function, which is ex-
pressed in terms of the extended reward function, and the
last constraint, which is expressed in terms of the extended
action constraint functions. The optimal policy π? can be
extracted from the optimal solution u?, d? as according to
Theorem 4.6.

Example 4.5. Assume that the set of feasible actions is a
polytope for each st ∈ St:

A(st) = {a ∈ ∆|St+1| : Hsa ≤ hs}.

Then, the constraints f̄ js (a) ≤ 0 for all j ∈ J become:

1Ta ·Hs
a

1Ta
≤ 1Ta · hs

Hsa ≤ 1Ta · hs ,

which is a set of linear constraints.

The following theorem states the correctness of the formu-
lation (4.3).

Theorem 4.6. Assume that, for each s ∈ S, r(s, a) is con-
cave in a and the set A(s) is convex. Let u?, d? be the
optimal solution of (4.3) and define a deterministic policy
π:

π(s) = u?(s, ·)/d?(s).
That is, π(s) maps a state to a vector of state transition
probabilities. Then, π is an optimal policy and the objec-
tive value of (4.3) equals to ρ(π). In addition, (4.3) is a
convex optimization problem.

Figure 1: A convex function and its concave envelope over
a unit square.

Proof. We first show that the optimal policy π? is feasible
in (4.3) and the corresponding objective value equals the
return of the optimal policy π?. Given an optimal deter-
ministic policy π? (from Lemma 3.2), construct the solu-
tion u, d in (4.3) as u(st, ·) = d(st) · π?(st, ·). It is well
known (e.g. [9]) that there is a unique such solution to all
constraints without f̄ js (u(s, ·)) ≤ 0. As described above,
this constraint is valid from (4.1) and (4.2) because d ≥ 0.
Therefore,

∑
s∈S r̄(s, u

?(s, ·)) ≥ ρ(π?). The reverse in-
equality

∑
s∈S r̄(s, u

?(s, ·)) ≤ ρ(π?) can be shown sim-
ilarly by constructing a feasible policy from any solution
u, d using the construction from the statement of the the-
orem. The convexity of the optimization problem follows
readily from Lemma 4.1.

The computational complexity of solving (4.3) depends
on the form of r̄; the problem is tractable for most com-
mon concave functions. In particular, (4.3) is tractable for
concave piecewise linear functions and concave quadratic
functions. Note that this formulation generalizes the setting
in Section 3 and has a smaller computational complexity.

5 CMDPs with Non-concave Rewards

In this section, we describe how to tractably solve CMDPs
with non-concave reward functions. The approach relies on
the fact that the optimal return of any constrained MDP is
unaffected if the rewards are replaced by their concave en-
velope thereby obtaining a concave maximization problem.

The concave envelope g(x) of a function f(x) is defined
as [3]:

g(x) = sup{t : (x, t) ∈ conv hypo f},

where conv is the convex hull and hypo is the hypograph of
f . A hypograph of f is defined as: hypo f = {(x, t) : t ≤
f(x)}. The supremum above is achieved whenever f is
bounded andA(s) are compact, which are the assumptions
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Figure 2: Example of concave envelope of the reward
achievable by a randomized policy.

that we make. A concave envelope is important because it
is the smallest concave function that is greater than f .

Example 5.1. Consider a function f(x, y) = x2 + 2 · y2−
x · y+ 2− x− y defined on the interval [0, 1]× [0, 1]. The
concave envelope of this convex function is the piecewise
linear concave function g(x, y) = min{y + 2,−x + 3}.
Fig. 1 shows the convex function f and its concave envelope
g.

Assume a CMDPMwith a reward function r and construct
a CMDPMe with a reward re that is the concave envelope
of r for each s ∈ S:

re(s, a) = sup{t : (x, t) ∈ conv hypo r(s, x)},

where hypo is overA(s). Let ρ(π) and ρe(π) be the returns
of π inM andMe respectively.

The motivation for considering the concave envelope of the
rewards is that the transition probabilities with this reward
can be actually achieved by appropriately randomizing the
policy. The following example shows this property.

Example 5.2. Consider a state s with transitions to two
other states s1 and s2 with continuous modulation of prob-
abilities in the set A(s) = ∆2. For any action a, let a1

and a2 represent the transition probabilities to states s1

and s2 respectively. Consider a convex reward function
r(s, a) = a2

2 and its concave envelope re(s, a) = a2 de-
picted in Fig. 2. To show that the optimal policy will be
always randomized between the extreme points, assume for
example that the optimal policy is to take the transition
probability (0.6, 0.4). Directly taking an action (0.6, 0.4)
accrues a reward 0.42 = 0.16. However, taking action
(0, 1) with probability 0.4 and action (1, 0) with probabil-
ity 0.6 accrues a higher reward of 0.4. In general, the maxi-
mal reward for each transition probability can be achieved
by the maximal convex combination of other feasible ac-
tions which exactly yields the concave envelope.

The CMDPM cannot be solved using (4.3) because of the

non-concave rewards. On the other hand, because the re-
wards in Me are concave, it can be easily formulated as
(4.3). Note, however, that the optimal solution ofMe is not
necessarily optimal in M. The following theorem states
that the optimal solution for M can be easily constructed
from the optimal solution toMe by appropriately random-
izing between the extreme points of the concave envelope.

Theorem 5.3. Let π?e be an optimal policy in CMDPMe.
Then, one can construct an optimal policy π? in M such
that 1) ρe(π?e) = ρ(π?) and 2) the transition probabilities
π? and π?e are identical.

Proof. First, we can assume π?e to be deterministic without
loss of generality from Lemma 3.2. Clearly, we have from
the optimality of π?e and from re(s, a) ≥ r(s, a) that:

ρe(π
?
e) ≥ ρe(π?) ≥ ρ(π?) .

To show the equality, it only remains to show that ρe(π?e) ≤
ρ(π?). For any s ∈ S , because the value re(s, ·) is
a maximum in a closed convex hull, it is on its bound-
ary. Therefore, for any a there exist ai ∈ A(s) such that
re(s, ai) = r(s, ai) (i.e. the extreme points of the hypo-
graph) and λi ∈ [0, 1] such that:

re(s, a) =
m∑

i=1

λi · r(s, ai),

such that λ ≥ 0,
∑
i λi = 1, and a =

∑
i λi · ai. Then,

construct a policy π as follows:

π(s, ai) = λi.

It can be shown readily that the transition probabilities of π
and π?e are the same, since a =

∑
i λi · ai when assuming

a = π?e(s). Then:

rπ(s) =
∑

i

λi · r(s, ai) = re(s, a) = reπ?
e
(s).

Therefore, the rewards and transitions of π and π? are the
same, which also implies ρe(π?e) ≤ ρ(π?).

A CMDP with non-concave rewards, therefore, can be
solved as follows. First, construct a concave envelope of
the rewards. Then, use (4.3) to solve the new CMDP and
get a policy π?e . Finally, construct the optimal π? accord-
ing to the construction in the proof of Theorem 5.3. That is,
any action a is replaced by randomizing among actions ai
by probabilities λi. The points ai depend on the construc-
tion of the concave envelope. The values λi can be readily
computed by linear programming in general settings.

The tractability of the concave envelope approach depends
on several factors. First, constructing a concave envelope
is difficult in general. Second, the computed concave enve-
lope may not have a formulation that is easily optimized. A
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particular case of interest is when the rewards are convex.
Then, the concave envelope is piecewise linear and can be
expressed in terms of the extreme points ofA(s) as a linear
program—it is a maximization over the convex combina-
tion of the extreme points. When the reward function is
submodular on the lattice of extreme points, the envelope
can be further simplified [10].

6 Application to Loan Delinquency
Management

In this section, we describe the empirical results from an
application of the new CMDP solution methods for both
a real and a synthetic loan delinquency management prob-
lem.

We applied the proposed methods to managing the delin-
quencies of a loan portfolio of an actual service provider.
While we are not authorized to disclose detailed results of
this application, we can report the impact of our solution
method. There are 8 possible states of loan delinquency;
the transition probabilities can be modulated in 4 of them.
The probabilities are influenced by investing resources,
such as principal reduction, in the appropriate loans. The
portfolio performance targets need to be achieved within a
horizon of 6 months. The ranges of possible modulations
and their costs were derived from corresponding transition
probabilities in prior months.

The real-world empirical study was conducted to establish
the necessity of a global optimization method for solving
this problem. We initially evaluated a simple greedy al-
gorithm which iteratively finds an optimal modulation of
probabilities in a month t assuming that the base transitions
in future months will not be modified. This greedy method
returned solutions characterized by high fluctuations in
monthly investments in loan servicing operations. Because
the method assumes no modulations after the month t, the
modulations in month t had to be overly aggressive. In
the next month t + 1, the portfolio would be in a suffi-
ciently good state to merit no further modulations. These
month-to-month fluctuation are resource-intensive and un-
desirable. The optimal method proposed here smoothens
out these fluctuations and can result in a significant overall
reduction of resources needed to meet portfolio targets over
the whole planning horizon. Experiments on six actual loan
portfolios for a time horizon of six months have revealed
that using the optimal method proposed in this paper has
allowed for an average 13.97% reduction in the expected
costs of portfolio servicing operations in comparison with
the benchmark strategies used by loan managers.

Next, we proceed with an evaluation of the solution quality
and scalability of the proposed algorithms on a set of syn-
thetic loan delinquency management problems. We con-
sider a variable number of loan delinquency states and a

Figure 3: Time to solve a CMDP for as a function of num-
ber of states. The method “extreme points” is described in
Section 3 and “concave” is described in Section 4.

fixed horizon of 6 periods. The states are ordered; the in-
creasing order represent the increasing delinquency state
of a loan, such as the number of weeks behind payments.
The first state represents the loan to be current and the last
state represents the default. The probability of increasing
delinquency in the given period increases logarithmically
with the current state of delinquency. In other words, ac-
counts that are delinquent now are more likely to become
even more delinquent in the future. The probability of the
delinquency decreasing to any less delinquent state is uni-
form. The feasible actions are allowed to modulate any
single transition probability by at most ε = 0.4. The re-
wards are linear in the deviation from the base probability
in each element: −‖a− b‖1. The quality constraints on the
probability of the default (last state) is q = 0.04.

Fig. 3 compares the time to solve the CMDP using the
extreme points formulation described in Section 3 ver-
sus the tractable concave method described in Section 4.
The timings were obtained using CPLEX 12.5 running on
an Intel Core i5 1.5 GHz processor. As expected, the
tractable method scales much better with the number of
states. While the concave method can easily solve prob-
lems with 100s of states, the extreme-point method be-
comes intractable with more than 30 states. In our bench-
mark problem, the number of extreme points grows expo-
nentially with the number of states. The solution quality
with the two methods is identical since they are both opti-
mal. Fig. 4 shows the sensitivity of the return to the quality
constraint—the limit on the probability of a loan to end in
default.

Because the rewards may often be non-concave, we also
evaluate the approach assuming convex quadratic rewards
‖a− b‖22; this is relevant in particular when the economies
of scale become important. We compare the algorithm
from Section 5 with a simple naive approach which uses
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Figure 4: Return of the optimal solution as a function of
the limit on the fraction of loans in default.

a linear approximation of the reward function. For the
quadratic function and 30 delinquency states, the optimal
method based on the concave envelope achieves a return of
0.14, while the approximation achieves return of 0. The
difference in the return between these two methods can be
arbitrarily large depending on the problem formulation.

7 Conclusion

We proposed three solution methods for solving con-
strained MDPs with continuous modulation of the proba-
bilities. The MDP formulation was motivated by a practi-
cal need to optimally manage the delinquencies of a loan
portfolio. We are not aware of any previous methods in
the literature that can be used to solve this class of prob-
lems. The first method reduces the continuous action sets
to finite when the rewards are affine and feasible sets poly-
hedral. The second formulation is a tractable optimization
problem which applies to arbitrary concave reward func-
tions. Finally, the third formulation extends the second one
to non-concave rewards.

Our experimental results show that the method based on
the convex optimization problem scales well and can solve
problems with a large number of states in a few seconds.
The method based on extreme point enumeration does not
scale well, but performs better for very small problems
and can be used in theoretical analysis of the result. Fi-
nally, when using the concave envelope of the rewards
can significantly improve the solution quality when com-
pared to naive approaches. While this method has not
been deployed yet, the initial test results indicate that it can
lead to significant improvements compared with the current
greedy approach.

There are several important way in which our results can
be extended. First, we considered a risk-neutral loan ser-
vice provider whose utility can be expressed in terms of ex-
pectations. However, it may be desirable to extend the ap-
proach to risk-averse setting in which the service provider
would be willing to trade off a higher servicing cost for a

lower probability of violating the quality constraints. Other
extensions involve improving the scalability of the concave
envelopes for various classes of convex functions and ex-
tensions to problems with many states.
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Abstract

We propose a probabilistic model to infer
supervised latent variables in the Hamming
space from observed data. Our model al-
lows simultaneous inference of the number
of binary latent variables, and their values.
The latent variables preserve neighbourhood
structure of the data in a sense that objects
in the same semantic concept have similar
latent values, and objects in different con-
cepts have dissimilar latent values. We for-
mulate the supervised infinite latent variable
problem based on an intuitive principle of
pulling objects together if they are of the
same type, and pushing them apart if they
are not. We then combine this principle with
a flexible Indian Buffet Process prior on the
latent variables. We show that the inferred
supervised latent variables can be directly
used to perform a nearest neighbour search
for the purpose of retrieval. We introduce
a new application of dynamically extending
hash codes, and show how to effectively cou-
ple the structure of the hash codes with con-
tinuously growing structure of the neighbour-
hood preserving infinite latent feature space.

1 Introduction

In statistical data analysis, latent variable models are
used to represent components or properties of data
that have not been directly observed, or to repre-
sent hidden causes that explain the observed data.

In many cases, a natural representation of an object
would allow each object to admit multiple latent fea-
tures. Classical statistical techniques require the num-
ber of latent features to be fixed a priori. Recently,
nonparametric Bayesian models have emerged as an
elegant approach to deal with this issue by allowing
the number of features to be inferred from data. One
class of these models utilise the Indian Buffet Process
(IBP) prior (Griffiths & Ghahramani, 2005) to allow
an unbounded number of features. Almost all IBP-
based statistical models are geared towards unsuper-
vised latent feature learning. While unsupervised la-
tent feature models are promising, for example, as an
exploratory tool for discovering compact hidden struc-
tures in observed data, in many practical settings we
seek supervised latent variables, that are semantically
meaningful and encode supervised side information.
Such supervised side information can be expressed as
neighbours (similar) and non-neighbours (dissimilar)
data pairs, as in (Schultz & Joachims, 2003) for ex-
ample, and can be used for retrieval of semantically
similar neighbours (Weiss et al., 2009).

This paper presents a method to simultaneously in-
fer the dimension of the binary latent representations,
and their values so as to encode supervised side infor-
mation. Binary representations are very attractive for
reducing storage requirements and accelerating search
and retrieval in large collections of high dimensional
data. In recent years, there has been a lot of inter-
est in designing compact binary hash codes such that
vectors that are similar in the original data space are
mapped to similar binary strings as measured by Ham-
ming distance (Salakhutdinov & Hinton, 2007). How-
ever, existing hashing work is typically performed in a
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static way, that is, a fixed number of bits has to be dis-
covered to model data. We aim to have an approach
that is flexible to add bits automatically in order to
model new unseen data. This is useful for adaption of
hash code to the dynamic and streaming nature of the
Internet data, for example.

We present an application of our method to dynamic
hash code extension in image retrieval. This appli-
cation combines the merits of non-Bayesian methods
that can handle large data (such as Weiss et al. (2009))
and non-parametric Bayes that allows extension of
codes as required. Our goal is to utilise existing bi-
nary hash codes, and learn how to extend the codes
pro re nata in a supervised way when more data be-
come available. For a model that attempts to identify
hash codes of dynamically changing data, we argue
that the assumption on the number of extended bits
to be fixed beforehand is unrealistic.

Our supervised latent variable model enforces latent
variables associated with objects of the same semantic
concept to have similar values, and latent variables as-
sociated with objects of different concepts to have dis-
similar values. To achieve this, we define a likelihood
function in Section 2 that views this criterion as pref-
erence relation. When coupled with a flexible prior on
infinite sparse binary matrices and a data likelihood,
we are able to characterise a probabilistic model for
supervised infinite latent variables problems. For the
data likelihood, we explore two directions: a standard
linear Gaussian model, and our proposed linear probit
dependent model, detailed in Section 3. We discuss in-
ference in Section 4 and predictive distribution of our
model in Section 5. We present experimental results,
including an application in extending hash codes, in
Section 6, and draw conclusions in Section 7. First,
however, we give a short overview of related work to
provide some context for our contributions.

1.1 Nearest Neighbour Retrieval

The majority of retrieval techniques today rely on
some form of nearest neighbour search. Supervision
is an integral component to improve the quality of re-
trieved results. This is achieved, for instance, in a
query-dependent manner by analysing pairs of docu-
ments that are returned in response to the text query
(Schultz & Joachims, 2003). The supervised informa-
tion is used to perform metric learning, which maps the
original representation of the data samples to a new,
preferably low-dimensional, representation where sim-
ilar samples have small Euclidean distance, and dis-
similar samples are separated by a large distance.

For datasets with millions or even billions of en-
tries, even approximate nearest neighbours search

techniques such as randomised neighbourhood graphs
(Arya et al., 1998) and cover trees (Beygelzimer et al.,
2006) are typically infeasible, and one has to resort
to hashing approaches. Hash code is a short binary
string that can act as an index to directly access ele-
ments in a database. Indyk & Motwani (1998) intro-
duce locality sensitive hashing, which purely relies on
randomisation techniques yet provides guarantees of
preserving metric similarity for sufficiently long codes.
Next, several machine learning methods have been de-
veloped to learn a compact hash code Salakhutdinov
& Hinton (2007); Torralba et al. (2008); Weiss et al.
(2009); Norouzi et al. (2012) among others, and to
learn hash codes with better discrimination power, Mu
et al. (2010); Wang et al. (2012) for example.

1.2 Distance Metric Learning

Approximate nearest neighbour search in general, and
hashing-based approaches in particular, provide a
powerful and well developed tool for efficient nearest
neighbour retrieval from large databases. However,
they typically rely on the availability of a meaningful
Euclidean metric between the data samples. If such
a metric is not readily available, metric learning can
be applied to construct one. Basic unsupervised tech-
niques in this area are PCA for dimensionality reduc-
tion and the suppression of noise, or its non-linear gen-
eralisation, kernel-PCA. Supervised techniques typi-
cally work by learning linear projections that place
related samples closer together, and unrelated sam-
ples farther apart. Often they are based on optimising
parametric distance functions such as the Mahalanobis
distance with a maximum margin criteria (Schultz &
Joachims, 2003; Weinberger & Saul, 2009; Quadrianto
& Lampert, 2011), or approximately minimising the
leave-one-out classification error as in neighbourhood
component analysis of Goldberger et al. (2004).

1.3 Infinite Latent Feature Models

Another popular approach for discovering low dimen-
sional structure from high dimensional data is based on
latent feature models. We are interested in Indian Buf-
fet Process (IBP) based models that allow number of
the latent features to be learnt from data. By defining
appropriate data generating likelihood functions, the
IBP can be used in, among others, binary factor anal-
ysis (Griffiths & Ghahramani, 2005), choice behaviour
modelling (Görür et al., 2006), sparse factor and inde-
pendent component analysis (Knowles & Ghahramani,
2007), link prediction (Miller et al., 2009), and invari-
ant features (Austerweil & Griffiths, 2010; Zhai et al.,
2012). For a recent comprehensive review of the IBP
models, please refer to Griffiths & Ghahramani (2011).
Lately, there is also surging interest in making the
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Figure 1: Graphical model for our supervised infinite latent variable models based on preference relations. Shade
indicates the observed variables. The term j �

i
l = 1 denotes that object i prefers object j to object l. 1(a):

linear Gaussian model is used to generate the observed data based on latent features. 1(b): linear probit model
is used to generate latent features based on the observed data. Note the difference between 1(a) and 1(b) is
encoded in the direction of arrows modelling the dependency between data x and latent features z.

latent representations dependent on some known de-
gree of relatedness among observed data (Williamson
et al., 2010), in learning correlated non-parametric fea-
ture models (Doshi-Velez & Ghahramani, 2009; Miller
et al., 2008), or in the direction of supervised mod-
elling, as for dimensionality reduction (Rai & Daume
III, 2009). In a recent technical report, Gershman
et al. (2012) express a goal closely related to ours, that
nearby data is more likely to share latent features than
distant data (as induced by distances between data in
time or space, for example). However, encouraging
sharing features between nearby data does not pro-
vide sufficient margin of separation between features
of distant data. Our goal is to discover a binary la-
tent space where meaningful notions of similarity and
difference are preserved in term of metric distances.

2 The Neighbourhood Model

We are given a set of N observed data samples
{x1, . . . ,xN} ⊂ X , and we have used X to denote
the input space. For example, for image objects, X
can be features extracted based on the content of
the image itself. We further assume that supervised
side information is available in the form of triplet set
T = {(i, j, l) : i ∼ j, i 6∼ l}, such that sample i has
similar semantic concept to sample j and has no simi-
lar concept to sample l. Metaphorically, samples i and
j are considered neighbours whereas samples i and l
are non-neighbours. Usually this type of supervised
similarity triplets do not require explicit class labels
and thus are easier to obtain. For instance, in a con-
tent based image retrieval, to collect feedback, users
may be required to report whether an image xi looks

more similar to xj than it is to a third image xl. This
task is typically much easier in comparison to labelling
each individual image.

For each data point xn, we introduce a K dimensional
vector zn from a binary latent space, where zkn = 1 de-
notes that object n possesses feature k, and zkn = 0 oth-
erwise, and K is inferred from data. Targeting directly
our goal of learning neighbourhood preserving latent
space that is suitable for nearest neighbour search, we
require that zi is similar to zj to model i ∼ j, and zi is
dissimilar to zl to model i 6∼ l. The underlying idea of
learning the supervised representations is based on a
folk-wisdom principle (Goldberger et al., 2004; Wein-
berger & Saul, 2009; Quadrianto & Lampert, 2011) of
pulling objects together if they are similar, and push-
ing them apart if they are not. Further, this principle
is formalised as a preference relation.

When we observe that objects i and j are neighbours
while objects i and l are non-neighbours, we say that
object i prefers object j to object l, and use a nota-
tion j �

i
l. Let T be an N ×N ×N preference tensor

with entries {tijl} where tijl = 1 whenever j �
i
l is

observed. Let w be a K × 1 non-negative weight vec-
tor that affects the probability of preference relations
among object i, j, and l. We assume that preference
relations are independent conditioned on Z and w, and
furthermore only the latent features of objects i, j, and
l influence the tendency of i preferring j to l. With
the above assumptions, the label preference likelihood
function is given by

Pr(T|Z,w) =
∏

(i,j,l)∈T
Pr(tijl = 1|zi, zj , zl,w). (1)
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We will subsequently use pijl to denote Pr(tijl =
1|zi, zj , zl,w). We define the individual preference
probability as follows:

pijl =
1

C

∑

k

wkI[zki = zkj ](1− I[zki = zkl ]), (2)

where C =
∑
k wkI[zki = zkj ](1 − I[zki = zkl ]) +∑

k wk(1−I[zki = zkj ])I[zki = zkl ] is the normalising con-
stant. In the above, we make use of Iverson’s bracket
notation: I[P ] = 1 for the condition P is true and it is
0 otherwise. The term

∑
k wkI[zki = zkj ](1−I[zki = zkl ])

collects the weights for all features that object i and
j have but object l does not have, and the weights
for all features that object i and j do not have, but l
has. Thus, the choice between two alternatives j and
l from point-of-view i depends on latent features that
are shared between i and j but not l. This type of
preference model (2) is inspired by the choice model
of Görür et al. (2006) and is based on a standard Res-
tle’s choice model in psychology (Restle, 1961).

We take a fully Bayesian approach by treating latent
variables Z and w, as random variables, and comput-
ing the posterior distribution over them by invoking
Bayes’ theorem. We discuss the selection of prior prob-
abilities on Z and w in detail in the next section.

3 The Generative Process

We want to define a flexible prior on Z that allows
simultaneous inference of the number of features and
all the entries in Z at the same time. We will thus
put the Indian Buffet Process (IBP) prior (Griffiths &
Ghahramani, 2005) on Z. The IBP is a prior on in-
finite binary matrices such that with probability one,
a feature matrix drawn from it will only have a finite
number of non-zero features for a finite number of sam-
ples (entries). More importantly, the IBP prior has a
full support for any feature matrix regardless of the
number of non-zero features it has. We choose to put
a Gamma distribution as a prior for the elements of
w. This is a natural prior for a non-negative weight
vector. Section 2 describes a likelihood function for
modelling the supervised side information, the next re-
quired modelling is to define the data likelihood. We
explore two directions: one is to use a standard linear
Gaussian model which assumes data are generated via
a linear superposition of latent features. The second
one is to make the latent features be dependent on ob-
served data via a novel and simple linear probit model.
We discuss both models in the next sections (refer to
Figure 1 for graphical model representations).

3.1 Z → X Linear Gaussian Feature Model

This data generating model was initially explored
for the IBP in the unsupervised context by Griffiths
& Ghahramani (2005). In this model, for an M -
dimensional input space X = RM , the data point
xn ∈ RM is generated as follows:

xn = Vzn + σxε where ε ∼ N (ε|0, I). (3)

In the above, V is a real-valued M × K matrix of
weights. We use a spherical Gaussian conjugate prior
with a covariance matrix σ2

vI for this feature weight
matrix, V. The generative process for our preference
model with a linear Gaussian likelihood is then:

Z ∼ IBP(α); V ∼ N (0, σ2
vI); xn|zn,V ∼ N (Vzn, σ

2
xI);

wk
i.i.d.∼ G(γw, θw); j �

i
l|Z,w ∼ Bernoulli(pijl),

where pijl is defined in Equation (2). We can subse-
quently compute the posterior distribution of the la-
tent feature matrix Z and the weights w using the con-
ditional independence assumptions depicted in Figure
1(a). This is given as, Pr(Z,w|X,T) ∝
∫
Pr(T|Z,w)Pr(X|Z,V, σx)Pr(Z|α)Pr(V|σv)Pr(w|γw, θw)dV.

(4)

3.2 X → Z Linear Probit Dependent Model

The neighbourhood model with linear Gaussian data
likelihood requires the inferred latent features to ex-
plain supervised similarity in given triplets and to gen-
erate observed data. Modelling observed data is a hard
task by itself. Instead, we can devote the latent fea-
tures to model supervised similarity triplets and to
have an IBP model where the probability of a feature
k being on is dependent on some object covariate infor-
mation xn ∈ RM . To achieve a dependent IBP model,
we start with the stick breaking construction of the
IBP (Teh et al., 2007):

zkn|bk ∼ Bernoulli(bk); bk := vkbk−1 =
k∏

j=1

vj (5)

vj ∼ Beta(α, 1) and b0 = 1. (6)

Williamson et al. (2010) observe that a Bernoulli(β)
random variable z can be represented as

z = I[u < Φ−1(β|µ, σ2)] (7)

u ∼ N (µ, σ2), (8)

where Φ(·|µ, σ2) is a Gaussian cumulative distribution
function (CDF), and for simplicity we focus on the
standard Gaussian CDF, that is Φ0,1(·) := Φ(·|0, 1).
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Therefore, we propose a simple alternative to depen-
dent model of Williamson et al. (2010) by linearly pa-
rameterising the cut off variable ukn, as follows:

zkn = I[ukn < Φ−10,1(bk)] (9)

ukn = −x>n gk + ε, (10)

where gk ∈ RM is a vector of regression coefficients for
each feature k, and ε ∼ N (0, 1). Equivalently we can
integrate out ε, and write Pr(zkn = 1|xn,gk, bk)

=

∫
I[ε < x>n gk + Φ−10,1(bk)]N (ε)dε (11)

= Φ0,1(x>n gk + Φ−10,1(bk)). (12)

The interpretation of the dependent model above is,
that whether a feature k is on is given by a probit re-
gression model, with decreasing biases Φ−10,1(bk), which
will ensure that only finitely many features are used.
Note that this scenario of dependence on per object
covariates xn is not covered by the dependent IBP
of Williamson et al. (2010). Their model defines a
prior over multiple IBP matrices which (for certain
settings of the model) are marginally IBP: a similar
statement for our construction is meaningless since we
only have one IBP matrix. However, our model does
have the property that Z is IBP distributed conditional
on gk = 0 for all k. We use a spherical Gaussian conju-
gate prior with a covariance matrix σ2

gI for the regres-
sion coefficient matrix, [g1,g2, . . . ,gK ] := G. With
the above construction, the generative process for our
preference model with linear probit likelihood is then:

vj ∼ Beta(α, 1); bk =
k∏

j=1

vj ; G ∼ N (0, σ2
gI);

zkn|x,g,b ∼ Bernoulli(Φ0,1(x>n gk + Φ−10,1(bk)));

wk
i.i.d.∼ G(γw, θw); j �

i
l|Z,w ∼ Bernoulli(pijl),

The posterior distribution of the latent feature matrix
Z, the feature presence probability b, the weights w,
and the regression coefficient matrix G using the con-
ditional independence assumptions depicted in Figure
1(b) is then Pr(Z,b,w,G|X,T) ∝
Pr(T|Z,w)Pr(Z|X,G,b)Pr(w|γw, θw)Pr(G|σg)Pr(b|α).

(13)

4 Inference

In the inference phase, the goal is to compute the joint
posterior over the latent binary feature matrix Z, the
non-negative weights w and the regression coefficient
matrix G (for the linear probit dependent model) as
expressed in (4) and (13). For our proposed model,
exact inference is computationally intractable. Thus,
we employ a Markov Chain Monte Carlo (MCMC)
method to explore the posterior distributions.

4.1 Sampling for Linear Gaussian Model

M-H sampling of Z: The sampler for the bi-
nary feature matrix Z consists of sampling existing
features, proposing new features with corresponding
weights, and accepting or rejecting them based on the
Metropolis-Hasting (M-H) criterion. We sample each
row zn one after another. For sampling existing fea-
tures, we have: Pr(zkn = 1|X,T,w) ∝
∫
m−n,kPr(T|w, Z−n,k, zkn = 1)Pr(X|Z−n,k, zkn = 1,V)Pr(V)dV,

(14)

where m−n,k denote the number of non-zero entries
in column k excluding row n. For sampling new fea-
tures, we simultaneously propose (Knew,Znew,wnew)
where a number Knew for new features are sampled
from the prior Poisson(α/N). We propose wnew from
its Gamma prior. We consider this proposal with a M-
H acceptance ratio which reduces to the ratio of the
likelihoods (Meeds et al., 2007).

Slice sampling of w: We sample each of the non-
negative weights that correspond to the non-zero fea-
tures and drop the weights that correspond to zero
features. We use a slice sampling procedure of Neal
(2003). Due to our Gaussian assumptions, the real-
valued weight matrix V in (14) can be marginalised
analytically (Griffiths & Ghahramani, 2005).

4.2 Sampling for Linear Probit Model

We adapt a slice sampling procedure with stick break-
ing representation of Teh et al. (2007).

Adaptive rejection sampling of b: The form of
the conditional distribution of b can be found in Teh
et al. (2007), and due to log-concavity of this distribu-
tion, Teh et al. (2007) suggest to use adaptive rejection
sampling (ARS) (Gilks & Wild, 1992) to draw samples.

Sampling of Z: As in Teh et al. (2007), given the
auxiliary slice variable, we will only update the la-
tent feature for each observation and each dimension
where its feature presence probability is below the
slice. The required conditional distributions for our
case are: Pr(zkn = 1|xn,T,w,gk, bk) ∝

Φ0,1(x>n gk + Φ−10,1(bk))Pr(T|w, Z−n,k, zkn = 1). (15)

Slice sampling of w: Similar to the linear Gaussian
case, we update the non-negative weights using a slice
sampling procedure.

Elliptical slice sampling of G: We propose to sam-
ple each component gk of the regression coefficient
matrix [g1,g2, . . . ,gK ] using elliptical slice sampling
(ESS) (Murray et al., 2010), an efficient MCMC pro-
cedure for training of tightly coupled latent variables
with a Gaussian prior.
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Figure 2: Visualisation of the binary latent space. 2(a): 150 synthetic data points with 10 categories from a
mixture of 2-D multivariate Gaussians. 2(b)-2(f): The corresponding binary representations of the data generated
by various methods (’1’ is white, and ’0’ is black). The supervised side information is given by a set of triplets.
In this example, each training data point has L neighbours from the same category and L non-neighbours from
different categories encoded in the form of triplets (sample, its neighbour, its non-neighbour). Here, the binary
representations are visualised by grouping observations according to their categories. Our methods preserve
given triplets structure by assigning distinct features for different categories.

5 Prediction on Test Data

5.1 Linear Gaussian Model

For a previously unseen test point x∗ ∈ RM ,
the joint predictive distribution for the latent vari-
able z∗ and the preference relation variable t∗ is:
Pr(z∗, t∗|X,T,x∗) =

∫ ∑

Z

Pr(z∗, t∗|Z,w,X,x∗)Pr(Z,w|X,T)dw, where

Pr(z∗, t∗|Z,w,X,x∗) = Pr(t∗|z∗,w)Pr(z∗|Z,X,x∗).
This involves averaging over the predictions made by
each of the posterior samples of Z and w. The pref-
erence relation variable t∗ is a binary variable repre-
senting whether object x∗ is preferred or not in some
triplet. Since we have trained the binary latent space
in a supervised manner, we could predict the neigh-
bours and non-neighbours of the new test point by
performing a nearest neighbour classification of the in-
ferred test latent variable z∗ with respect to the train-
ing latent variables Z. Therefore, we are interested
only in the predictive distribution over the latent vari-
able z∗, and it is in the form of:

Pr(z∗|X,x∗) =
∑

Z

Pr(z∗|Z,X,x∗)Pr(Z|X), where

Pr(z∗|Z,X,x∗) ∝ Pr(x∗|z∗,Z,X)Pr(z∗|Z). (16)

We notice that the explicit form of Pr(x∗|z∗,Z,X) is
[

X
x∗

]
∼ N

(
0,

[
ZZ> + σ2

x/σ
2
vI Zz∗>

z∗Z> z∗z∗> + σ2
x/σ

2
vI

])
,

thus Pr(x∗|z∗,Z,X) ∼ N (µ∗,Σ∗) where

µ∗ = z∗(Z
>Z + σ2

x/σ
2
vI)−1Z>X (17a)

Σ∗ = z∗z∗
> − z∗(Z

>Z + σ2
x/σ

2
vI)−1Z>Zz∗

>. (17b)

The above predictive distribution Pr(x∗|z∗,Z,X) de-
fines a distribution of the mapping from a latent space
to the observed data space.

Fast approximation In cases where we are only in-
terested in a maximum a posteriori (MAP) estimate of
the latent variables, it is desirable to avoid sampling
from the predictive distribution, and directly find an
approximate MAP estimate in a computationally effi-
cient way. In our case, we use the predictive mean of
Pr(x∗|z∗,Z,X) in (17a) to approximate z∗ by solving
a linear system of equations, resulting in a continuous
estimate ẑ∗ of the binary vector z∗.
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5.2 Linear Probit Dependent Model

Similar to the linear Gaussian model but with explicit
representation of the regression coefficient matrix, the
joint predictive distribution of the latent variable z∗
and the preference variable t∗ for a new test point
x∗ ∈ RM is: Pr(z∗, t∗|T,x∗) =

∫∫∫
Pr(z∗, t∗|G,w,b,x∗)

∑
Z Pr(Z,b,w,G|X,T)dbdwdG,

with test likelihood given as follows:

Pr(z∗, t∗|G,w,b,x∗) = Pr(t∗|z∗,w)Pr(z∗|G,b,x∗).
(18)

As earlier, we are only concerned with the predic-
tive distribution over the latent variable z∗ for the
new input x∗, that is Pr(z∗|G,b,x∗). Based on
our linear probit model, this will simply be Pr(zk∗ =
1|G, bk,x∗) = Φ0,1(x>∗ gk + Φ−10,1(bk)).

6 Experiments

To assess the efficacy of our models, we perform two
sets of experiments. We start with a synthetic data ex-
periment to explore the structure of the latent space
Z produced by the proposed models (Section 6.1-6.2).
Our second experiment is extending hash codes in im-
age data (Section 6.3).

6.1 Visualisation of the Binary Latent Spaces

Data We generate 150 synthetic data points with 10
categories from a mixture of 2-D multivariate Gaus-
sians with uniformly drawn standard deviations in the
range [0, 1]. The means are uniformly drawn in the
range [−1, 1] per category. The visualisation of the
generated data is provided at Figure 2(a).

Algorithms We compare the generated latent space
of our supervised linear Gaussian (Super Gaussian

IBP) and supervised linear probit (Super Probit

IBP) models with the Indian buffet process (IBP), and
the distance dependent Indian buffet process with dis-
tance defined on X (Input dd-IBP), and on the la-
bels (Output dd-IBP)1. The supervised side informa-
tion is given by a set of triplets generated the same
way as in Weinberger & Saul (2009). Specifically, for
each training data point, we are given its L neigh-
bours from the same category, and L non-neighbours
from different category encoded in the form of triplets
(in this experiment we use L = 15). As a practi-
cal note, triplets as supervised side information cor-
respond only to a small number of observed entries

1We use the implementation provided by Gershman
et al. (2012) at http://www.princeton.edu/~sjgershm/
ddIBP_release.zip
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Figure 3: Extending observed binary variables. The
first 5 given binary variables do not respect the neigh-
bourhood structure, for example, categories 1 and 2
have the same ‘01101’ representation. Our supervised
models allow coupling between given and inferred la-
tent features. As a result, the inferred latent fea-
tures enforce separation among categories and amend
shortcomings that the observed binary representations
might have in respecting the neighbourhood structure.

in T. This translates to a small computational over-
head compared to the standard IBP inference. For
all methods, we place conjugate priors on the hyper-
parameters, and subsequently perform posterior infer-
ence over them. Our Super Gaussian IBP and Super

Probit IBP methods discover binary representations
which preserve neighbourhood structure. The results
are shown in Figure 2. In comparison to the IBP 2(d),
dd-IBP input 2(e), and dd-IBP output 2(f) models, the
inferred feature matrix Z of the proposed models 2(b)
and 2(c) appears to have a notable supervised struc-
ture for all categories by assigning distinct features for
different categories.

6.2 Model with Observed Binary Variables

We are interested to explore how our model can be
used to extend an existing binary hash of the data.
To do so, we assume that we are already given 5 bi-
nary variables that partially separates the objects ac-
cording to their categories. In this case, categories 1
and 2 have binary representations ‘01101’, categories 3
and 4 have ‘10101’ representations, categories 5 and 6
have ‘11000’, and categories 7, 8, 9 and 10 have 10010.
Refer to the first 5 dimensions of Figure 3(a) for il-
lustration. The task is to extend the binary vector
to model the supervised neighbourhood information,
thereby disambiguating classes with the same observed
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Table 1: Extending hash codes results for image data. k-NN accuracy mean ± std over 5 random repeats. IBP:
standard IBP algorithm (Griffiths & Ghahramani, 2005); dd-IBP: distance dependent IBP (Gershman et al.,
2012) where Input: distance on X , and Output: distance on the labels; Super Gaussian IBP: Our proposed
supervised IBP with linear Gaussian feature model; Super Probit IBP: Our proposed supervised IBP with
linear probit dependent model; Reference: original 128 real-valued feature representations. The best result and
those not significantly worse than it, are in boldface. We use a one-sided paired t-test with 95% confidence.

Hash IBP Input dd-IBP Output dd-IBP Super Gaussian IBP Super Probit IBP Reference

5 animal categories
1 NN 26.3±2.2 30.3±2.0 27.9±6.3 29.7±3.5 33.8±1.6 42.8±2.4 40.9±4.7
3 NN 29.5±2.9 29.6±3.6 31.0±1.4 34.6±2.3 41.9±3.4 40.2±3.4

15 NN 31.5±2.6 27.8±2.8 28.1±3.2 35.5±1.0 44.5±2.1 39.3±3.7
30 NN 29.5±3.2 24.3±3.0 23.6±3.4 33.8±0.7 45.9±4.1 36.1±2.8

10 animal categories
1 NN 12.7±2.5 17.1±3.1 12.9±2.6 15.9±2.3 17.3±1.2 25.0±2.9 25.0±2.2
3 NN 17.9±2.8 13.1±2.4 15.3±2.3 18.2±1.2 25.1±3.0 26.0±1.7

15 NN 16.4±2.5 14.7±2.3 15.1±1.8 18.0±1.5 26.6±2.7 27.8±2.8
30 NN 17.7±3.4 14.5±1.9 14.0±1.9 18.3±1.4 27.5±2.4 25.8±1.4

binary hash. In this setting, we want to extend the ob-
served binary representations hn ∈ H (for each exam-
ple xn) where H ∈ {0, 1}D with a latent binary feature
zn, forming an extended representation [hn

>zn
>]>.

Let H be the observed N × D binary representation
matrix (D = 5 in our experiment) and wH be a D× 1
non-negative weight vector. The full preference prob-
ability is now, pijl = 1

C

∑
k wkI[zki = zkj ](1 − I[zki =

zkl ]) +
∑
d w

d
HI[hdi = hdj ](1 − I[hdi = hdl ]), where the

normalising constant C ensures pijl + pilj = 1. The la-
tent features are inferred to enforce separation among
categories and amend shortcomings that the observed
binary variables might have in respecting the neigh-
bourhood structure.

Results The supervised models are trained to utilise
the given binary features, and to add additional binary
latent representations only when it is needed to sup-
port the discrimination between categories (see Figure
3). As an example, in case of categories 1 and 2 that
are indistinguishable under the given 5 binary vectors,
3(a)-3(b) learn at least unit distance in the extended
representation for these categories, and increase the
separation of the codes for the rest of categories. For
this example, Super Gaussian IBP (Figure 3(a)) dis-
covers additional 3 binary latent variables where cate-
gory 1 has ‘0∗∗’ and category 2 has ‘1∗∗’. While Super
Probit IBP (Figure 3(b)) discovers 5 more binary la-
tent variables with ‘∗ ∗ 0 ∗ ∗’ and ‘∗ ∗ 1 ∗ ∗’ assigned to
category 1 and 2, respectively.

6.3 Extending Hash Codes Application

In this experiment, we assume that we are given binary
hash codes, for example, via a spectral hashing method
(Weiss et al., 2009) or via binary attribute predictors
(Lampert et al., 2009) explained in the subsequent sec-

tion, and our goal is to extend these observed codes
with latent binary features. We expect the extended
codes to have a better nearest neighbour search per-
formance, especially in the case where the hash codes
do not respect the neighbourhood structure of data.

Data We use the Animals with Attributes dataset 2.
The dataset consists of 30, 475 images. Each of the im-
ages has a category label which corresponds to the an-
imal class. There are 50 animal classes in this dataset.
The dataset also contains semantic information in the
form of an 85-dimensional Osherson’s (Osherson et al.,
1991; Kemp et al., 2006) attribute vector for each ani-
mal class describing colour, texture, shape, among oth-
ers. Images are represented by colour histograms of
quantised RGB pixels with a codebook of size 128.

Hash Codes The hash codes at training phase are
given by the Osherson’s attribute vector. In the test-
ing phase, we build hash codes using attribute predic-
tors trained offline (Lampert et al., 2009). We gener-
ate the hash codes as follows: each class is assigned
an attribute binary string of length D (in our case,
the Osherson’s vector), subsequently we learn D lo-
gistic regression functions, one for each bit position in
these binary strings. When a new data point arrives,
we evaluate each of the D test logistic regressors to
generate a D-bit hash code.

Results We use 27, 032 images from 45 classes to be
our initial image corpus for learning the attribute hash
codes. We use the colour histograms to represent im-
ages, and we focus on colour attributes hash codes,
which corresponds to the first 5-bits in the Osherson’s
attribute vector. This simulates the case where a large
pool of data is available for building the hash codes.
From the remaining five classes, we randomly sample

2http://attributes.kyb.tuebingen.mpg.de/
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Table 2: Accuracy comparison between SVM with a
linear kernel and Super Probit IBP. The best result
and those not significantly worse than it, are in bold-
face (one-sided paired t-test with 95% confidence).

5 categories 10 categories
Linear SVM 43.3±4.0 29.0±3.3

Super Probit IBP 45.9±4.1 (30 NN) 27.5±2.4 (30 NN)

300 images with uniform class proportions to form a
refinement set for training our models, and the test
set using 50/50 split. Our refinement set simulates
the case where training samples are from different cat-
egories than in initial corpus, and therefore have differ-
ent unseen properties. We repeat the above procedure
for a refinement set with 10 new categories. That is,
we use 23, 266 images from 40 classes to learn the hash
codes, and randomly sample 600 images from the re-
maining 10 classes for training and test with 50/50
split. The supervised similarity triplets are formed in
the same way as in synthetic experiments (L = 30).
We note that the costly MCMC procedure is per-
formed offline at the training phase. At test time, we
simply perform a fast approximation via matrix vector
multiplication in linear Gaussian (Section 5.1) or com-
pute probit regression in linear probit (Section 5.2).

The full results with a comparison to the predicted
hash codes using logistic regressors and the standard
IBP and dd-IBP are summarised in Table 13. We
observe that our proposed models, Super Gaussian

IBP and Super Probit IBP, exceed the performance
of IBP and dd-IBP in all cases. We further notice that
Super Probit IBP is far superior to Super Gaussian
IBP. We credit this to the fact that linear Gaussian
models are less suitable for modelling real-valued im-
ages (Austerweil & Griffiths, 2010; Zhai et al., 2012).
One of the solutions would be to define a more so-
phisticated likelihood function (Austerweil & Griffiths,
2010; Zhai et al., 2012). Instead in this work we focus
on generating binary features that depend on the ob-
served images via probit regression. As a reference, we
also provide k-NN performance in the original 128 real-
valued features. Original features will require storage
of 8, 192 (128∗64) bits per image, while our Super Pro-
bit IBP code with 80 inferred binary latent dimensions
will only consume approximately 80 bits per image and
gives better results. Further, to put our results in a
wider perspective, we also provide results of running
SVM4 on the original real-valued features with a linear
kernel in Table 2.

3The k-NN performance of the hash method does not
depend on k, because for training we use the given Osher-
son’s colour hash codes defined per class.

4We use the LIBSVM library available at http://www.
csie.ntu.edu.tw/~cjlin/libsvm/.

Table 3: Effect of Bayesian Averaging on Super Probit
IBP. Accuracy mean±std. last: using a sample from
the last iteration; average: using samples from the
last 50 iterations. boldface is significant using a one-
sided paired t-test with 95% confidence.

5 animal categories 10 animal categories
last average last average

1 NN 42.8±2.4 42.7±3.2 25.0±2.9 25.5±3.9
3 NN 41.9±3.4 44.0±2.7 25.1±3.0 27.1±2.9

15 NN 44.5±2.1 46.5±2.3 26.6±2.7 27.7±2.3
30 NN 45.9±4.1 46.5±2.3 27.5±2.4 27.2±2.7

Bayesian approach allows us to learn a distribution
over hash codes. In our experiments, we run MCMC
until a fixed number of iterations, and subsequently
consider the hash codes given by the last iteration.
We can instead exploit the full distribution by av-
eraging the nearest neighbour retrieval performances
after burn-in period. The results of Bayesian averag-
ing on Super Probit IBP are summarised in Table 3.
Clearly, averaging has a positive effect in the perfor-
mance, however, with a price in storage requirement
where now several databases have to be maintained.

7 Discussion and Conclusion

We have presented probabilistic models to simultane-
ously infer the number of binary latent variables, and
their values so as to preserve a given neighbourhood
structure. The models map objects in the same se-
mantic concept to similar latent values, and objects
in different concepts to dissimilar latent values. We
substantiate our claim that the proposed supervised
models encourage coupling among latent features by
showing that when given binary representations, the
models utilise the given representation, and add di-
mensions in a latent space when it is needed to pre-
serve the neighbourhood structure.

Our experiments in a nearest neighbour search show
that our methods are able to find semantically similar
neighbours due to the supervised nature of the latent
space, and far exceed the performance of other state-
of-the-art infinite latent variable models, such as the
standard Indian buffet process (IBP) and its recent
extension, the distance dependent IBP (dd-IBP).
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Abstract

We introduce online learning algorithms which
are independent of feature scales, proving regret
bounds dependent on the ratio of scales existent
in the data rather than the absolute scale. This
has several useful effects: there is no need to pre-
normalize data, the test-time and test-space com-
plexity are reduced, and the algorithms are more
robust.

1 Introduction

Any learning algorithm can be made invariant by initially
transforming all data to a preferred coordinate system. In
practice many algorithms begin by applying an affine trans-
form to features so they are zero mean with standard de-
viation 1 [Li and Zhang, 1998]. For large data sets in the
batch setting this preprocessing can be expensive, and in
the online setting the analogous operation is unclear. Fur-
thermore preprocessing is not applicable if the inputs to
the algorithm are generated dynamically during learning,
e.g., from an on-demand primal representation of a ker-
nel [Sonnenburg and Franc, 2010], virtual example gener-
ated to enforce an invariant [Loosli et al., 2007], or ma-
chine learning reduction [Allwein et al., 2001].

When normalization techniques are too expensive or im-
possible we can either accept a loss of performance due
to the use of misnormalized data or design learning al-
gorithms which are inherently capable of dealing with
unnormalized data. In the field of optimization, it is a
settled matter that algorithms should operate independent
of an individual dimensions scaling [Oren, 1974]. The
same structure defines natural gradients [Wagenaar, 1998]
where in the stochastic setting, results indicate that for
the parametric case the Fisher metric is the unique invari-
ant metric satisfying a certain regular and monotone prop-
erty [Corcuera and Giummole, 1998]. Our interest here is
in the online learning setting, where this structure is rare:
typically regret bounds depend on the norm of features.

The biggest practical benefit of invariance to feature
scaling is that learning algorithms “just work” in a
more general sense. This is of significant impor-
tance in online learning settings where fiddling with
hyper-parameters is often common, and this work can
be regarded as an alternative to investigations of opti-
mal hyper-parameter tuning [Bergstra and Bengio, 2012,
Snoek et al., 2012, Hutter et al., 2013]. With a normalized
update users do not need to know (or remember) to pre-
normalize input datasets and the need to worry about hyper-
parameter tuning is greatly reduced. In practical experi-
ence, it is common for those unfamiliar with machine learn-
ing to create and attempt to use datasets without proper nor-
malization.

Eliminating the need to normalize data also reduces com-
putational requirements at both training and test time. For
particularly large datasets this can become important, since
the computational cost in time and RAM of doing normal-
ization can rival the cost and time of doing the machine
learning (or even worse for naive centering of sparse data).
Similarly, for applications which are constrained by test-
ing time, knocking out the need for feature normalization
allows more computational performance with the same fea-
tures or better prediction performance when using the freed
computational resources to use more features.

1.1 Adversarial Scaling

Adversarial analysis is fairly standard in online learning.
However, an adversary capable of rescaling features can in-
duce unbounded regret in common gradient descent meth-
ods. As an example consider the standard regret bound for
projected online convex subgradient descent after T rounds
using the best learning rate in hindsight [Zinkevich, 2003],

R ≤
√
T ||w∗||2 max

t∈1:T
||gt||2.

Here w∗ is the best predictor in hindsight and {gt} is the
sequence of instantaneous gradients encountered by the al-
gorithm. Suppose w∗ = (1, 1) ∈ R2 and imagine scaling
the first coordinate by a factor of s. As s→∞, ||w∗||2 ap-

537



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1  1  10  100  1000

te
s
t 
s
q
u
a
re

d
 l
o
s
s

scale of first feature

Loss as feature scale varies

Adaptive grad.
NAG (this paper)

Figure 1: A comparison of performance of NAG (this pa-
per) and adaptive gradient [McMahan and Streeter, 2010,
Duchi et al., 2011] on a synthetic dataset with varying scale
in the first feature.

proaches 1, but unfortunately for a linear predictor the gra-
dient is proportional to the input, so maxt∈1:T ||gt||2 can be
made arbitrarily large. Conversely as s → 0, the gradient
sequence remains bounded but ||w∗||2 becomes arbitrarily
large. In both cases the regret bound can be made arbitrar-
ily poor. This is a real effect rather than a mere artifact of
analysis, as indicated by experiments with a synthetic two
dimensional dataset in figure 1.1.

Adaptive first-order online meth-
ods [McMahan and Streeter, 2010, Duchi et al., 2011]
also have this vulnerability, despite adapting the geometry
to the input sequence. Consider a variant of the adaptive
gradient update (without projection)

wt+1 = wt − η diag(
t∑

s=1

gsg
T
s )−1/2gt,

which has associated regret bound of order

||w∗||2 d1/2

√√√√inf
S

{
T∑

t=1

〈gt, S−1gt〉 : S � 0, tr(S) ≤ d
}
.

Again by manipulating the scaling of a single axis this can
be made arbitrarily poor.

The online Newton step [Hazan, 2006] algorithm has a re-
gret bound independent of units as we address here. Unfor-
tunately ONS space and time complexity grows quadrat-
ically with the length of the input sequence, but the ex-
istence of ONS motivates the search for computationally
viable scale invariant online learning rules.

Similarly, the second order percep-
tron [Cesa-Bianchi et al., 2005] and
AROW [Crammer et al., 2009] partially address this
problem for hinge loss. These algorithms are not unit-
free because they have hyperparameters whose optimal
value varies with the scaling of features and again have

running times that are superlinear in the dimensionality.
More recently, diagonalized second order perceptron and
AROW have been proposed [Orabona et al., 2012]. These
algorithms are linear time, but their analysis is generally
not unit free since it explicitly depends on the norm of the
weight vector. Corollary 3 is unit invariant. A comparative
analysis of empirical performance would be interesting to
observe.

The use of unit invariant updates have been implicitly stud-
ied with asymptotic analysis and empirics. For exam-
ple [Schaul et al., 2012] uses a per-parameter learning rate
proportional to an estimate of gradient squared divided by
variance and second derivative. Relative to this work, we
prove finite regret bound guarantees for our algorithm.

1.2 Contributions

We define normalized online learning algorithms which are
invariant to feature scaling, then show that these are inter-
esting algorithms theoretically and experimentally.

We define a scaling adversary for online learning analysis.
The critical additional property of this adversary is that al-
gorithms with bounded regret must have updates which are
invariant to feature scale. We prove that our algorithm has
a small regret against this more stringent adversary.

We then experiment with this learning algorithm on a num-
ber of datasets. For pre-normalized datasets, we find that it
makes little difference as expected, while for unnormalized
or improperly normalized datasets this update rule offers
large advantages over standard online update rules. All
of our code is a part of the open source Vowpal Wabbit
project [Ross et al., 2012].

2 Notation

Throughout this draft, the indices i, j indicate elements of a
vector, while the index t, T or a particular number indicates
time. A label y is associated with some features x, and we
are concerned with linear prediction

∑
i wixi resulting in

some loss for which a gradient g can be computed with
respect to the weights. Other notation is introduced as it is
defined.

3 The algorithm

We start with the simplest version of a scale invariant online
learning algorithm.

NG (Normalized Gradient Descent) is presented in algo-
rithm 1. NG adds scale invariance to online gradient de-
scent, making it work for any scaling of features within the
dataset.

Without s,N , this algorithm simplifies to standard stochas-
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Algorithm 1 NG(learning rate ηt)

1. Initially wi = 0, si = 0, N = 0

2. For each timestep t observe example (x, y)

(a) For each i, if |xi| > si

i. wi ← wis
2
i

|xi|2
ii. si ← |xi|

(b) ŷ =
∑
i wixi

(c) N ← N +
∑
i
x2
i

s2i

(d) For each i,
i. wi ← wi − ηt tN 1

s2i

∂L(ŷ,y)
∂wi

tic gradient descent.

The vector element si stores the magnitude of feature i ac-
cording to sti = maxt′∈{1...t} |xt′i|. These are updated and
maintained online in steps 2.(a).ii, and used to rescale the
update on a per-feature basis in step 2.(d).i.

Using N makes the learning rate (rather than feature scale)
control the average change in prediction from an update.
Here N/t is the average change in the prediction excluding
η, so multiplying by 1/(N/t) = t/N causes the average
change in the prediction to be entirely controlled by η.

Step 2.(a).i squashes a weight i when a new scale is en-
countered. Neglecting the impact of N , the new value is
precisely equal to what the weight’s value would have been
if all previous updates used the new scale.

Many other online learning algorithms can be
made scale invariant using variants of this ap-
proach. One attractive choice is adaptive gradient
descent [McMahan and Streeter, 2010, Duchi et al., 2011]
since this also has per-feature learning rates. The nor-
malized version of adaptive gradient descent is given in
algorithm 2.

In order to use this, the algorithm must maintain the sum of

gradients squared Gi =
∑

(x,y) observed
(
∂L(ŷ,y)
∂wi

)2

for
feature i in step 2.d.i. The interaction between N and G is
somewhat tricky, because a large average update (i.e. most
features have a magnitude near their scale) increases the
value of Gi as well as N implying the power on N must be
decreased to compensate. Similarly, we reduce the power
on si and |xi| to 1 throughout. The more complex update
rule is scale invariant and the dependence on N introduces
an automatic global rescaling of the update rule.

In the next sections we analyze and justify this algorithm.
We demonstrate that NAG competes well against a set of
predictorsw with predictions (w>x) bounded by some con-
stant over all the inputs xt seen during training. In practice,

Algorithm 2 NAG(learning rate η)

1. Initially wi = 0, si = 0, Gi = 0, N = 0

2. For each timestep t observe example (x, y)

(a) For each i, if |xi| > si

i. wi ← wisi
|xi|

ii. si ← |xi|
(b) ŷ =

∑
i wixi

(c) N ← N +
∑
i
x2
i

s2i

(d) For each i,

i. Gi ← Gi +
(
∂L(ŷ,y)
∂wi

)2

ii. wi ← wi − η
√

t
N

1
si
√
Gi

∂L(ŷ,y)
∂wi

as this is potentially sensitive to outliers, we also consider a
squared norm version of NAG, which we refer to as sNAG
that is a straightforward modification—we simply keep the
accumulator si =

∑
x2
i and use

√
si/t in the update rule.

That is, normalization is carried using the standard devia-
tion (more precisely, the square root of the second moment)
of each feature, rather than the max norm. With respect to
our analysis below, this simple modification can be inter-
preted as changing slightly the set of predictors we com-
pete against, i.e. predictors with predictions bounded by a
constant only over the inputs within 1 standard deviation.
Intuitively, this is more robust and appropriate in the pres-
ence of outliers. While our analysis focuses on NAG, in
practice, sNAG sometimes yield improved performance.

4 The Scaling Adversary Setting

In common machine learning practice, the choice of units
for any particular feature is arbitrary. For example, when
estimating the value of a house, the land associated with a
house may be encoded either in acres or square feet. To
model this effect, we propose a scaling adversary, which is
more powerful than the standard adversary in adversarial
online learning settings.

The setting for analysis is similar to adversarial online lin-
ear learning, with the primary difference in the goal. The
setting proceeds in the following round-by-round fashion
where

1. Prior to all rounds, the adversary commits to a fixed
positive-definite matrix S. This is not revealed to the
learner.

2. On each round t,

(a) The adversary chooses a vector xt such that
||S1/2xt||∞ ≤ 1, where S1/2 is the principal
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square root.
(b) The learner makes a prediction ŷt = w>t xt.
(c) The correct label yt is revealed and a loss

`(ŷt, yt) is incurred.
(d) The learner updates the predictor to wt+1.

For example, in a regression setting, ` could be the squared
loss `(ŷ, y) = (ŷ−y)2, or in a binary classification setting,
` could be the hinge loss `(ŷ, y) = max(0, 1 − yŷ). We
consider general cases where the loss is only a function of
ŷ (i.e. no direct penalty on w) and convex in ŷ (therefore
convex in w).

Although step 1 above is phrased in terms of an adversary,
in practice what is being modeled is “the data set was pre-
pared using arbitrary units for each feature.”

Step 2 (a) above is phrased in terms of ∞-norm for ease
of exposition, but more generally can be considered any p-
norm. Additionally, this step can be generalized to impose
a different constraint on the inputs. For instance, instead
requiring all points lie inside some p-norm ball, we could
require that the second moment of the inputs, under some
scaling matrix S is 1. This is the model of the adversary for
sNAG.

4.1 Competing against a Bounded Output Predictor

Our goal is to compete against the set of weight vectors
whose output is bounded by some constant C over the set
of inputs the adversary can choose. Given step 2 (a) above,
this is equivalent to WC

X = {w | ||S−1/2w||1 ≤ C}, i.e.,
the set of w with dual norm less than C. In other words,
the regret RT at timestep T is given by:

RT =
T∑

t=1

`(ŷt, yt)− min
w|∀t,w>xt≤C

T∑

t=1

`(w>xt, yt)

Here we use the fact that {w>xt ≤ C} = {w |
||S−1/2w||1 ≤ C}. In the more general case of a p-norm
for step 2 (a), we would chooseWC

X = {w | ||S−1/2w||q ≤
C} for q such that 1

p + 1
q = 1. Note that the “true” S of

the adversary is an abstraction. It is unknown and only par-
tially revealed through the data. In our analysis, we will
instead be interested to bound regret against bounded out-
put predictors for an empirical estimate of S, defined by
the minimum volume Lp ball containing all observed in-
puts. For p = ∞, WC

X for the “true” S is always a subset
of the predictors allowed under this empirical S (assuming
both are diagonal matrices). In general, this does not nec-
essarily hold for all p norms, but the empirical S always
allows a larger volume of predictors than the “true” S.

5 Analysis

In this section, we analyze scale invariant up-
date rules in several ways. The analysis is struc-

turally similar to that used for adaptive gradient de-
scent [McMahan and Streeter, 2010, Duchi et al., 2011]
with necessary differences to achieve scale invariance. We
analyze the best solution in hindsight, the best solution in
a transductive setting, and the best solution in an online
setting. These settings are each a bit more difficult than the
previous, and in each we prove regret bounds which are
invariant to feature scales.

We consider algorithms updating according to wt+1 =
wt − A−1

t gt, where gt is the gradient of the loss at time
t w.r.t. w at wt, and At is a sequence of d × d symmet-
ric positive (semi-)definite matrices that our algorithm can
choose. Both algorithms 1 and 2 fit this general framework.
Combining the convexity of the loss function and the defi-
nition of the update rule yields the following result.

Lemma 1.

2RT ≤ (w1 − w∗)A1(w1 − w∗)

+

T∑

t=1

(wt − w∗)>(At+1 −At)(wt − w∗)

+
T∑

t=1

g>t A
−1
t gt.

We defer all proofs to the appendix.

5.1 Best Choice of Conditioner in Hindsight

Suppose we start from w1 = 0 and before the start
of the algorithm, we would try to guess what is the
best fixed matrix A, so that At = A for all t. In
order to minimize regret, what would the best guess
be? This was initially analyzed for adaptive gradient
descent [McMahan and Streeter, 2010, Duchi et al., 2011].
Consider the case where A is a diagonal matrix.

Using lemma 1, for a fixed diagonal matrix A and with
w1 = 0, the regret bound is:

RT ≤
1

2

d∑

i=1

(
Aii(w

∗
i )2 +

T∑

t=1

g2
ti

Aii

)
.

Taking the derivative w.r.t. Aii, we obtain:

∂

∂Aii

1

2

d∑

i=1

(
Aii(w

∗
i )2 +

T∑

t=1

g2
ti

Aii

)

=
1

2

(
(w∗i )2 −

T∑

t=1

g2
ti

A2
ii

)
.

Solving for when this is 0, we obtain

A∗ii =

√∑T
t=1 g

2
ti

|w∗i |
.
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For this particular choice of A, then the regret is bounded
by

RT ≤
d∑

i=1


|w∗i |

√√√√
T∑

t=1

g2
ti


 .

We can observe that this regret is the same no matter the
scaling of the inputs. For instance if any axis i is scaled
by a factor si, then w∗i would be a factor 1/si smaller, and
the gradient gti a factor si larger, which would cancel out.
Hence this regret can be thought as the regret the algorithm
would obtain when all features have the same unit scale.

However, because of the dependency of A on w∗, this does
not give us a good way to approximate this with data we
have observed so far. To remove this dependency, we can
analyze for the best A when assuming a worst case for w∗.
This is the point at which the analysis here differs from
adaptive gradient descent where the dependence on w∗ was
dropped.

Lemma 2. Let S be the diagonal matrix with minimum
determinant (volume) s.t. ||S1/2xi||p ≤ 1 for all i ∈ 1 : T .
The solution to

min
A

max
w∗∈WC

X

1

2

d∑

i=1

(
Aii(w

∗
i )2 +

T∑

t=1

g2
ti

Aii

)

is given by

A∗ii =
1

C

√∑T
t=1 g

2
ti

Sii
,

and the regret bound for this particular choice ofA is given
by

RT ≤ C
d∑

i=1

√√√√Sii

T∑

t=1

g2
ti.

Again the value of the regret bound does not change if
the features are rescaled. This is most easily appreciated
by considering a specific norm. The simplest case is for
p = ∞ where the coefficients Sii can be defined directly
in terms of the range of each feature, i.e. Sii = 1

maxt |xti|2 .
Thus for p =∞, we can choose

A∗ii =
1

C

√√√√
T∑

t=1

g2
ti max
t∈1:T

|xti|,

leading to a regret of

RT ≤ C
d∑

i=1

√∑T
t=1 g

2
ti

maxt∈1:T |xti|
.

The scale invariance of the regret bound is now readily ap-
parent. This regret can potentially be order O(d

√
T ).

5.2 p = 2 case

For p = 2, computing the coefficients Sii is more compli-
cated, but if you have access to the actual coefficients Sii,
the regret is order O(

√
dT ). This can be seen as follows.

Let g′t = ∂`
∂ŷ

∣∣∣
ŷt,yt

the derivative of the loss at time t eval-

uated at the predicted ŷt. Then gti = g′txti and we can see
that: ∑d

i=1

√
Sii
∑T
t=1 g

2
ti

= d
∑d
i=1

1
d

√
Sii
∑T
t=1 g

2
ti

≤ d
√∑d

i=1
1
dSii

∑T
t=1 g

2
ti

=
√
d
√∑d

i=1 Sii
∑T
t=1 g

2
ti

=
√
d
√∑T

t=1 g
′2
t

∑d
i=1 Siix

2
ti

≤
√
d
√∑T

t=1 g
′2
t

where the last inequality holds by assumption. For p = 2,

we have RT ≤ C
√
d
√∑T

t=1 g
′2
t .

5.3 Adaptive Conditioner

Lemma 2 does not lead to a practical algorithm, since at
time t, we only observed g1:t and x1:t, when performing the
update for wt+1. Hence we would not be able to compute
this optimal conditioner A∗. However it suggests that we
could potentially approximate this ideal choice using the
information observed so far, e.g.,

At,ii =
1

C

√√√√
∑t
s=1 g

2
si

S
(t)
ii

, (1)

where S(t) is the diagonal matrix with minimum determi-
nant s.t. ||S1/2xi||p ≤ 1 for all i ∈ 1 : t. There are two po-
tential sources of additional regret in the above choice, one
from truncating the sum of gradients, and the other from
estimating the enclosing volume online.

5.3.1 Transductive Case

To demonstrate that truncating the sum of gradients has
only a modest impact on regret we first consider the trans-
ductive case, i.e., we assume we have access to all inputs
x1:T that are coming in advance. However at time t, we
do not know the future gradients gt+1:T . Hence for this
setting we could consider a 2-pass algorithm. On the first
pass, compute the diagonal matrix S, and then on the sec-
ond pass, perform adaptive gradient descent with the fol-
lowing conditioner at time t:

At,ii =
1

Cη

√∑t
j=1 g

2
ji

Sii
. (2)

We would like to be able to show that if we adapt the con-
ditioner in this way, than our regret is not much worse than
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with the best conditioner in hindsight. To do so, we must
introduce a projection step into the algorithm. The projec-
tion step enables us to bound the terms in lemma 1 corre-
sponding to the use of a non-constant conditioner, which
are related to the maximum distance between an interme-
diate weight vector and the optimal weight vector.

Define the projection ΠA
S,C,q as

ΠA
S,C,q(w

′) = arg min
w∈Rd|||S−1/2w||q≤C

(w − w′)>A(w − w′).

Utilizing this projection step in the update we can show the
following.

Theorem 1. Let S be the diagonal matrix with minimum
determinant s.t. ||S1/2xi||p ≤ 1 for all i ∈ 1 : T , and
let 1/q = 1 − 1/p. If we choose At as in Equation 2 with
η =

√
2 and use projection wt+1 = ΠAt

S,C,q(wt − A−1
t gt)

at each step, the regret is bounded by

RT ≤ 2C
√

2
d∑

i=1

√√√√Sii

T∑

j=1

g2
ji.

We note that this is only a factor 2
√

2 worse than when
using the best fixed A in hindsight, knowing all gradients
in advance.

5.3.2 Streaming Case

In this section we focus on the case p =∞.

The transductive analysis indicates that using a partial
sum of gradients does not meaningfully degrade the regret
bound. We now investigate the impact of estimating the en-
closing ellipsoid with a diagonal matrix online using only
observed inputs,

At,ii =
1

Cη

√√√√
t∑

j=1

g2
ji max
j∈1:t

|xji|. (3)

The diagonal approximation is necessary for computational
efficiency in NAG.

Intuitively the worst case is when the conditioner in equa-
tion 3 differs substantially from the transductive condi-
tioner of equation 2 over most of the sequence. This is
reflected in the regret bound below which is driven by the
ratio between the first non-zero value of an input xji en-
countered in the sequence and the maximum value it ob-
tains over the sequence.

Theorem 2. Let p = ∞, q = 1, and let S(t) be the diago-
nal matrix with minimum determinant s.t. ||S1/2xi||p ≤ 1

for all i ∈ 1 : t. Let ∆i = maxt∈1:T |xti|
|x
ti0i
| , for ti0 the

first timestep the ith feature is non-zero. If we choose At
as in Equation 3, η =

√
2 and use projection wt+1 =

ΠAt
S(t),C,q

(wt − A−1
t gt) at each step, the regret is bounded

by

RT ≤ C
d∑

i=1

√∑T
j=1 g

2
ji

maxj∈1:T |xji|

(
1 + 6∆i + ∆2

i

2
√

2

)
.

Comparing theorem 2 with theorem 1 reveals the degra-
dation in regret due to online estimation of the enclosing
ellipsoid. Although an adversary can in general manipu-
late this to cause large regret, there are nontrivial cases for
which theorem 2 provides interesting protection. For ex-
ample, if the non-zero feature values for dimension i range
over [si, 2si] for some unknown si, then 1 ≤ ∆i ≤ 2 and
the regret bound is only a constant factor worse than the
best choice of conditioner in hindsight.

Because the worst case streaming scenario is when the
initial sequence has much lower scale than the entire se-
quence, we can improve the bound if we weaken the ability
of the adversary to choose the sequence order. In particular,
we allow the adversary to choose the sequence {xt, yt}Tt=1

but then we subject the sequence to a random permutation
before processing it. We can show that with high probabil-
ity we must observe a high percentile value of each feature
after only a few datapoints, which leads to the following
corollary to theorem 2.

Corollary 1. Let {xt, yt}Tt=1 be an exchangeable sequence
with xt ∈ Rd. Let p =∞, q = 1, and let S(t) be the diago-
nal matrix with minimum determinant s.t. ||S1/2xi||p ≤ 1
for all i ∈ 1 : t. Choose δ > 0 and ν ∈ (0, 1). Let
∆i = maxt∈1:T |xti|

maxt∈1:τ |xti| , where

τ =

⌈
log(d/δ)

ν

⌉
.

If Rmax is the maximum regret that can be incurred on a
single example, then choosing η =

√
2, and using projec-

tion wt+1 = ΠAt
S(t),C,q

(wt−A−1
t gt) at each step, the regret

is bounded by

RT ≤
⌊

log(d/δ)
ν

⌋
Rmax

+C
∑d
i=1

√∑T
j=1 g

2
ji

maxj∈1:T |xji|

(
1+6∆i+∆2

i

2
√

2

)
,

and with probability at least (1− δ) over sequence realiza-
tions, for all i ∈ 1 : d,

∆i ≤
maxt∈1:T |xti|

Quantile ({|xti|}Tt=1, 1− ν)
,

where Quantile(·, 1 − ν) is the (1 − ν)-th quantile of a
given sequence.

The quantity Rmax can be related to C, if when mak-
ing predictions, we always truncate w>t xt in the interval
[−C,C]. For instance, for the hinge loss and logistic loss,
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Dataset Size Features Scale Range
Bank 45,212 7 [ 31, 102127 ]

Census 199,523 13 [ 2, 99999 ]
Covertype 581,012 54 [ 1, 7173 ]
CT Slice 53,500 360 [ 0.158, 1 ]

MSD 463,715 90 [ 60, 65735 ]
Shuttle 43,500 9 [ 105, 13839 ]

Table 1: Datasets used for experiments. CT Slice and MSD
are regression tasks, all others are classification. The scale
of a feature is defined as the maximum empirical absolute
value, and the scale range of a dataset defined as the mini-
mum and maximum feature scales.

Rmax ≤ C+1 if we truncate our predictions this way. Sim-
ilarly for the squared loss, Rmax ≤ 4C max(C,maxt |yt|).
Although in theory an adversary can manipulate the ratio
between the maximum and an extreme quantile to induce
arbitrarily bad regret (i.e. make maxt∈1:T |xti|

Quantile ({|xti|}Tt=1,1−ν)
ar-

bitrarily large even for small ν), in practice we can often
expect this quantity to be close to 11, and thus corollary 1
suggests that we may perform not much worse than when
the scale of the features are known in advance. Our experi-
ments demonstrate that this is the common behavior of the
algorithm in practice.

6 Experiments

Table 2 compares a variant of the normal-
ized learning rule to the adaptive gradient
method [McMahan and Streeter, 2010, Duchi et al., 2011]
with p = 2 and without projection step for both algorithms.
For each data set we exhaustively searched the space of
learning rates to optimize average progressive validation
loss. Besides the learning rate, the learning rule was the
only parameter adjusted between the two conditions. The
loss function used depended upon the task associated with
the dataset, which was either 0-1 loss for classification
tasks or squared loss for regression tasks. For regression
tasks, the loss is divided by the worst possible squared
loss, i.e., (max−min)2.

The datasets utilized are: Bank, the
UCI [Frank and Asuncion, 2010] Bank Marketing Data
Set [Moro et al., 2011]; Census, the UCI Census-
Income KDD Data Set; Covertype, the UCI Covertype
Data Set; CT Slice, the UCI Relative Location of CT
Slices on Axial Axis Data Set; MSD, the Million Song
Database [Bertin-Mahieux et al., 2011]; and Shuttle, the
UCI Statlog Shuttle Data Set. These were selected as

1For instance, if |xti| are exponentially distributed, ∆i is
roughly less than log(T/δ)/ log(1/ν) with probability at least
1 − δ, thus choosing ν = T−α, for α ∈ (0, 0.5] makes this
a small constant of order α−1 log(1/δ), while keeping the first
term involving Rmax order of Tα ≤

√
T .

Dataset NAG AG
η∗ Loss η∗ Loss

Bank 0.55 0.098 5.5 ∗ 10−5 0.109
(Maxnorm) 0.55 0.099 0.061 0.099
Census 0.2 0.050 1.2 ∗ 10−6 0.054
(Maxnorm) 0.25 0.050 8.3 ∗ 10−3 0.051
Covertype 1.5 0.27 5.6 ∗ 10−7 0.32
(Maxnorm) 1.5 0.27 0.2 0.27
CT Slice 2.7 0.0023 0.022 0.0023
(Maxnorm) 2.7 0.0023 0.022 0.0023
MSD 9.0 0.0110 5.5 ∗ 10−7 0.0130
(Maxnorm) 9.0 0.0110 6.0 0.0108
Shuttle 7.4 0.036 7.5 ∗ 10−4 0.040
(Maxnorm) 7.4 0.036 16.4 0.035

Table 2: Comparison of NAG with Adaptive Gradient (AG)
across several data sets. For each data set, the first line
in the table contains the results using the original data,
and the second line contains the results using a max-norm
pre-normalized version of the original data. For both al-
gorithms, η∗ is the optimal in-hindsight learning rate for
minimizing progressive validation loss (empirically deter-
mined). Significance (bolding) was determined using a
relative entropy Chernoff bound with a 0.1 probability of
bound failure.

Dataset sNAG AG
η∗ Loss η∗ Loss

Bank 0.3 0.098 5.5 ∗ 10−5 0.109
(Sq norm) 0.3 0.098 0.033 0.097
Census 0.11 0.050 1.2 ∗ 10−6 0.054
(Sq norm) 0.11 0.050 1.6 ∗ 10−3 0.048
Covertype 2.2 0.28 5.6 ∗ 10−7 0.32
(Sq norm) 2.7 0.28 0.04 0.28
CT Slice 2.7 0.0019 0.022 0.0023
(Sq norm) 2.7 0.0019 0.0067 0.0019
MSD 7.4 0.0119 5.5 ∗ 10−7 0.0130
(Sq norm) 7.4 0.0118 0.05 0.0120
Shuttle 11 0.026 7.5 ∗ 10−4 0.040
(Sq norm) 9 0.026 0.818 0.026

Table 3: (Online Mean Square Normalized) Comparison of
NAG with Adaptive Gradient (AG) across several data sets.
For each data set, the first line in the table contains the re-
sults using the original data, and the second line contains
the results using a squared-norm pre-normalized version of
the original data. For both algorithms, η∗ is the optimal in-
hindsight learning rate for minimizing progressive valida-
tion loss (empirically determined). Significance (bolding)
was determined using a relative entropy Chernoff bound
with a 0.1 probability of bound failure.
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Figure 2: A comparison of performance of NAG and pre-
normed AG. The results are identical, indicating that NAG
effectively obsoletes pre-normalization.

public datasets plausibly exhibiting varying scales or lack
of normalization. On other pre-normalized datasets which
are publicly available, we observed relatively little differ-
ence between these update rules. To demonstrate the effect
of pre-normalization on these data sets, we constructed
a pre-normalized version of each one by dividing every
feature by its maximum empirical absolute value.

Some trends are evident from table 2. First, the normalized
learning rule (as expected) has highest impact when the in-
dividual feature scales are highly disparate, such as data
assembled from heterogeneous sensors or measurements.
For instance, the CT slice data set exhibits essentially no
difference; although CT slice contains physical measure-
ments, they are histograms of raw readings from a single
device, so the differences between feature ranges is modest
(see table 1). Conversely the Covertype dataset shows a 5%
decrease in multiclass 0-1 loss over the course of training.
Covertype contains some measurements in units of meters
and others in degrees, several “hillshade index” values that
range from 0 to 255, and categorical variables.

The second trend evident from table 2 and reproduced in
figure 3 is that the optimal learning rate is both closer to 1
in absolute terms, and varies less in relative terms, between
data sets. This substantially eases the burden of tuning the
learning rate for high performance. For example, a random-
ized search [Bergstra and Bengio, 2012] is much easier to
conduct given that the optimal value is extremely likely to
be within [0.01, 10] independent of the data set.

The last trend evident from table 2 is the typical indiffer-
ence of the normalized learning rate to pre-normalization,
specifically the optimal learning rate and resulting pro-
gressive validation loss. In addition pre-normalization ef-
fectively eliminates the difference between the normalized
and Adagrad updates, indicating that the online algorithm

NAG

NAG
(pre-norm)

AG

AG
(pre-norm)

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01
 0.1

 1  10
 100

η*

Figure 3: Each color represents the range of optimal in-
hindsight learning rates η∗ across the datasets for the dif-
ferent learning algorithms. NAG exhibits a much smaller
range of optimal values even when the data sets are pre-
normalized, easing the problem of hyperparameter selec-
tion.

achieves results similar to the transductive algorithm for
max norm.

For comprehensiveness, we also compared sNAG with a
squared norm pre-normalizer, and found the story much
the same in table 3. In particular sNAG dominated AG on
most of the datasets and performed similarly to AG when
the data was pre-normalized with a squared norm (standard
deviation). It is also interesting to observe that sNAG per-
forms slightly better than NAG on a few datasets, agree-
ing with our intuition that it should be more robust to out-
liers. Empirically, sNAG appears somewhat more robust
than NAG at the cost of somewhat more computation.

7 Summary

We evaluated performance of Normalized Adaptive Gra-
dient (NAG) on the most difficult unnormalized pub-
lic datasets available and found that it provided perfor-
mance similar to Adaptive Gradient (AG) applied to pre-
normalized datasets while simultaneously collapsing the
range hyperparameter search required to achieve good per-
formance. Empirically, this makes NAG a capable and re-
liable learning algorithm.

We also defined a scaling adversary and proved that our
algorithm is robust and efficient against this scaling adver-
sary unlike other online learning algorithms.
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Abstract

A recent result has demonstrated that the
Bethe partition function always lower bounds
the true partition function of binary, log-
supermodular graphical models. We demon-
strate that these results can be extended
to other interesting classes of graphical
models that are not necessarily binary or
log-supermodular: the ferromagnetic Potts
model with a uniform external field and
its generalizations and special classes of
weighted graph homomorphism problems.

1 Introduction

A standard inference problem is to compute the par-
tition function, or normalizing constant, of a given
graphical model. As computing the partition function
of an arbitrary graphical model is NP-hard, the par-
tition function is often replaced by a more tractable
approximation. A popular approximation to the par-
tition function, due to its relationship to the belief
propagation algorithm and its practical performance,
is given by the Bethe partition function from statis-
tical physics. However, the relationship between the
Bethe partition function and the true partition func-
tion is difficult to characterize for an arbitrary graph-
ical model.

Using a combinatorial characterization of the Bethe
partition function from (Vontobel, 2013), we recently
demonstrated that there exist nice families of graphi-
cal models for which the Bethe partition function prov-
ably lower bounds the true partition function (Ruozzi,
2012). Specifically, for binary graphical models, when-
ever the potential functions of the graphical model are
all log-supermodular, the Bethe partition function al-
ways lower bounds the true partition function. As an
example, the partition function of the ferromagnetic

Ising model with an arbitrary external field can be ex-
pressed as the partition function of a log-supermodular
function. In a very technical sense, these results can
be extended beyond binary graphical models to other
models over finite distributive lattices (e.g., any finite
totally ordered set) as every finite distributive lattice
is isomorphic to a sublattice of the Boolean lattice over
{0, 1}n for some n (Alon and Spencer, 2000). However,
natural candidates for non-binary graphical models,
such as the ferromagnetic Potts model, for which one
might suspect that the Bethe partition function again
provides a lower bound are not log-supermodular in
this sense.

In this work, we show that the results of Ruozzi (2012)
can be extended to provide bounds on the Bethe par-
tition function of other, not necessarily binary or log-
supermodular, graphical models. Specifically, we show
that the partition functions of certain graphical mod-
els can be equivalently expressed as the partition func-
tions of log-supermodular graphical models over possi-
bly different factor graphs and state spaces. Under cer-
tain conditions, this log-supermodular transformation
can then be exploited to prove that, again, the Bethe
partition function always provides a lower bound on
the true partition function.

The models considered in this work include the fer-
romagnetic Potts model (with some restrictions on
the choice of external field), generalizations of the fer-
romagnetic Potts model to matroids, certain weight
enumerators of linear codes, and a subset of graph-
ical models for the weighted graph homomorphism
problem. For these models, we demonstrate that
the Bethe partition function always provides a lower
bound on the true partition function that is prov-
ably tighter than the lower bound corresponding to
the näıve mean-field partition function.

This paper is organized as follows. In Section 2, we
review the relevant background material: graphical
models, graph covers, and approximate partition func-
tions. In Section 4, we motivate the results in this work
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by looking at the simple case of pairwise binary graph-
ical models. In Section 5, we show that the Bethe free
energy provides a lower bound on the partition func-
tion of the ferromagnetic Potts model with a uniform
external field, demonstrating by counter example that
the results do not hold for arbitrary external fields.
In addition, we show that similar results are true for
several common generalizations of the ferromagnetic
Potts model that include certain weight enumerators
of linear codes. In Section 6, we consider the prob-
lem of counting weighted graph homomorphisms and
demonstrate that the Bethe partition function pro-
vides a lower bound under certain restrictions on the
target graph. Finally, we conclude with a short dis-
cussion in Section 7.

2 Graphical Models

Let f : Xn → R≥0 be a non-negative function where
X is a finite set. A function f factors with respect
to a hypergraph G = (V,A), if there exist potential
functions φi : X → R≥0 for each i ∈ V and ψα :
X |α| → R≥0 for each α ∈ A such that

f(x1, . . . , xn) =
∏

i∈V
φi(xi)

∏

α∈A
ψα(xα).

The graph G together with the collection of potential
functions φ and ψ define a graphical model that we
will denote as (G;φ, ψ). For a given graphical model
(G;φ, ψ), we are interested in computing the partition
function

Z(G;φ, ψ) =
∑

x∈X |V |

[∏

i∈V
φi(xi)

∏

α∈A
ψα(xα)

]
.

In general, computing the partition function is an NP-
hard problem, but in practice, local message-passing
algorithms based on approximations from statistical
physics, such as loopy belief propagation, produce rea-
sonable estimates in many settings.

2.1 Graph Covers

Graph covers have played an important role in our
understanding of inference in graphical models (Von-
tobel, 2013; Vontobel and Koetter, 2005), and in par-
ticular, they are intimately related to the approxima-
tions of the partition function that we will consider in
this work. Roughly speaking, if a graph H covers a
graph G, then H looks locally the same as G.

Definition 2.1. A graph H covers a graph G =
(V,E) if there exists a graph homomorphism h : H →
G such that for all vertices i ∈ G and all j ∈ h−1(i), h
maps the neighborhood ∂j of j in H bijectively to the
neighborhood ∂i of i in G.

1

4

2

3

(a) A graph, G.

1 2 3 4

1 2 3 4

(b) One possible cover of G.

Figure 1: An example of a graph cover. The nodes in
the cover are labeled for the node that they copy in
the base graph.

If h(j) = i, then we say that j ∈ H is a copy of i ∈ G.
Further, H is said to be anM -cover ofG if every vertex
of G has exactly M copies in H. For an example of a
graph cover, see Figure 1.

We will typically represent the hypergraph G = (V,A)
as a factor graph: a graph with a variable node for each
vertex i ∈ V , a factor node for each α ∈ A, and an
edge from i ∈ V to α ∈ A if and only if i ∈ α. In this
way, the above definition of graph covers can easily be
extended to hypergraphs.

For a connected hypergraph G = (V,A), each M -cover
consists of a variable node for each of the M |V | vari-
ables, a factor node for each of the M |A| factors, and
an edge joining each distinct copy of i ∈ V to a distinct
copy of α ∈ A whenever i ∈ α.

To any M -cover H = (V H ,AH) of G given by the
homomorphism h, we can associate a collection of po-
tentials: the potential at node i ∈ V H is equal to φh(i),
the potential at node h(i) ∈ G, and for each α ∈ AH ,
we associate the potential ψh(α). In this way, we can

construct a function fH : XM |V | → R≥0 such that
fH factorizes over H. We will say that the graphi-
cal model (H;φH , ψH) is an M -cover of the graphical
model (G;φ, ψ) whenever H is an M -cover of G and
φH and ψH are derived from φ and ψ as above.

Finally, it will be convenient to express fH as a func-
tion over M vectors in the set X |V |. We can partition
the vertex set V H into M disjoint sets V1, . . . , VM such
that each set contains exactly one copy of each vertex
in the graph G. Then, without loss of generality, any
x ∈ XM |V | can be expressed as x1, . . . , xm ∈ X |V |
where xm is an assignment to the variables in Vm
for all m ∈ {1, . . . ,M}. In this case, we will write
fH(x) = fH(x1, . . . , xM ).

2.2 The Bethe Approximation

The Bethe free energy is a standard approximation to
the so-called Gibbs free energy that is motivated by
ideas from statistical physics. At temperature T = 1,
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the Bethe approximation, is defined as follows.

logZB(G, τ ;φ, ψ) =
∑

i∈V

∑

xi

τi(xi) log φi(xi)

+
∑

α∈A

∑

xα

τα(xα) logψα(xα)

−
∑

i∈V

∑

xi

τi(xi) log τi(xi)

−
∑

α∈A

∑

xα

τα(xα) log
τα(xα)∏
i∈α τi(xi)

for τ in the local marginal polytope,

T ,{τ ≥ 0 | ∀α ∈ A, i ∈ α,
∑

xα\i

τα(xα) = τi(xi)

and ∀i ∈ V,
∑

xi

τi(xi) = 1}.

The Bethe partition function is defined to be the max-
imum value achieved by this approximation over T .

ZB(G;φ, ψ) = max
τ∈T

ZB(G, τ ;φ, ψ)

The primary reason for the popularity of this ap-
proximation is that fixed points of the belief propa-
gation algorithm correspond to stationary points of
logZB(G, τ ;φ, ψ) over T (Yedidia et al., 2005). As
such, all fixed points of the belief propagation algo-
rithm provide a lower bound on the Bethe partition
function. Our goal is to better understand the rela-
tionship between the Bethe partition function and the
true partition function for different graphical models.

A recent theorem of Vontobel (2013) provides a com-
binatorial characterization of the Bethe partition func-
tion in terms of graph covers.

Theorem 2.2.

ZB(G;φ, ψ) = lim sup
M→∞

M

√√√√
∑

H∈CM (G)

Z(H;φH , ψH)

|CM (G)|

where CM (G) is the set of all M -covers of G.

Proof. See Theorem 33 of (Vontobel, 2013).

This characterization suggests that bounds on the par-
tition functions of individual graph covers can be used
to bound the Bethe partition function. This was the
approach taken in (Ruozzi, 2012) and the approach
that we will take in this work.

2.3 The Näıve Mean-Field Approximation

Another typical approximation, sometimes referred
to as the näıve mean-field approximation, is to fur-
ther restrict the local marginal polytope, the set T
in the definition of the Bethe approximation, so that
τα(xα) =

∏
i∈α τi(xi) for all α ∈ A.

As it is simply a specialization of ZB, we must have
that ZMF(G;φ, ψ) ≤ ZB(G;φ, ψ). However, this does
not mean that the mean-field partition function is nec-
essarily a worse approximation to the true partition
function Z(G;φ, ψ), and unlike the Bethe partition
function, the mean-field partition function always pro-
vides a lower bound on the true partition function
(Jordan et al., 1999). More details about the mean-
field approximation, its relationship to the Bethe ap-
proximation, and some experimental comparisons can
be found in (Weiss, 2001).

3 Log-supermodularity and Lower
Bounds

For a given graphical model (G;φ, ψ), we are interested
in the relationship between the true partition function,
Z(G;φ, ψ), and the Bethe approximation ZB(G;φ, ψ).
In general, ZB(G;φ, ψ) can be either an upper or a
lower bound on the true partition function, but for
special families of graphical models, ZB(G;φ, ψ) is al-
ways a lower bound on Z(G;φ, ψ). In particular, this
is true whenever the graphical model consists of only
log-supermodular potentials.

Definition 3.1. A function f : {0, 1}n → R≥0 is
called supermodular if for all x, y ∈ {0, 1}n

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y) (1)

where (x∧y)i = min{xi, yi} and (x∨y)i = max{xi, yi}.
Definition 3.2. A function f : {0, 1}n → R≥0 is
called log-supermodular if for all x, y ∈ {0, 1}n

f(x)f(y) ≤ f(x ∧ y)f(x ∨ y). (2)

Definition 3.3. A graphical model (G;φ, ψ) is log-
supermodular if for all α ∈ A, ψα(xα) is log-
supermodular.

The definition of submodular and log-submodular
functions are obtained by reversing the inequality in
(1) and (2) respectively. Log-supermodular functions
have a number of special properties: the family is
closed under multiplication and marginalization. In
addition, they can be maximized in polynomial time.
However, in general, computing (or even approxi-
mating) the partition function of a log-supermodular
graphical model is computationally intractable (Gold-
berg and Jerrum, 2010).
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For any collection of vectors x1, . . . , xM ∈ {0, 1}n let
x[1], . . . , x[M ] denote the collection of vectors such that

for all i ∈ {1, . . . , n} and all m ∈ {1, . . . ,M}, x[m]
i is

the mth largest element among x1i , . . . , x
M
i . Equiva-

lently, if x1, . . . , xM are the columns of some matrix
B, then x[1], . . . , x[M ] are the columns of the matrix
obtained from B by sorting the elements in each row
from greatest to least.

In Ruozzi (2012), the following correlation inequality
was proven for log-supermodular functions.

Theorem 3.4. Let f1, . . . , fM : {0, 1}n → R≥0 and g :
{0, 1}Mn → R≥0 be nonnegative real-valued functions
such that g is log-supermodular. If for all x1, . . . , xM ∈
{0, 1}n,

g(x1, . . . , xM ) ≤
M∏

m=1

fm(x[m]), (3)

then

∑

x1,...,xM∈{0,1}n
g(x1, . . . , xM ) ≤

M∏

m=1

[ ∑

x∈{0,1}n
fm(x)

]
.

Applying this theorem to log-supermodular factoriza-
tions, with a bit of rewriting, yields the following the-
orem.

Theorem 3.5. If (G;φ, ψ) is a log-supermodular
graphical model, then for any M -cover, (H;φH , ψH),
of (G;φ, ψ), Z(H;φH , ψH) ≤ Z(G;φ, ψ)M .

Corollary 3.6. If (G;φ, ψ) is a log-supermodular
graphical model, then

ZMF(G;φ, ψ) ≤ ZB(G;φ, ψ) ≤ Z(G;φ, ψ).

As the value of the Bethe approximation at any of
the fixed points of BP is always a lower bound on
ZB(G;φ, ψ), ZB(G, τ ;φ, ψ) ≤ Z(G;φ, ψ) for any fixed
point of the BP algorithm, with corresponding be-
liefs τ , as well. Note however, that the inequality be-
tween ZB(G, τ ;φ, ψ) and the mean-field approximation
is only guaranteed to hold for the optimal choice of τ
in the local marginal polytope.

4 Pairwise Binary Models

In practice, many graphical models are not naturally
formulated as log-supermodular models, but Theorem
3.5 is a statement only about log-supermodular func-
tions. We want to understand when we can use Theo-
rem 3.5 to obtain bounds on ZB even when the graph-
ical model is not log-supermodular. In this section,
we motivate the results in this work by first examin-
ing this question for the special case of pairwise binary

graphical models (i.e., X = {0, 1} and |α| = 2 for all
α ∈ A). As each factor of a pairwise model depends
exactly two variables, the hypergraph G = (V,A) can
be represented as a standard graph, and we will abuse
notation and write G = (V,E) in this case.

We can sometimes convert a graphical model that is
not log-supermodular into a log-supermodular one by
a change of variables (e.g., for a fixed I ⊆ V , a change
of variables that sends xi 7→ 1− xi for each i ∈ I and
xi 7→ xi for each i ∈ V \I). These functions are the log-
supermodular analog of the “switching supermodular”
and “permuted submodular” functions considered in
(Crama and Hammer, 2011) and (Schlesinger, 2007)
respectively.

To illustrate this idea, consider the special case of log-
submodular, bipartite graphical models. A graph G =
(V,E) is bipartite if the vertex set can be partitioned
into two sets A ⊆ V and B = V \A such that A and B
are independent sets (i.e., there are no edges between
any two vertices v1, v2 ∈ A and similarly for B). We
will denote bipartite graphs as G = (A,B,E).

Let G = (A,B,E) be a bipartite graph1 and suppose
that (G;φ, ψ) is a pairwise binary, log-submodular
graphical model. For each edge (a, b) ∈ E with
a ∈ A and b ∈ B and all xa, xb, define ψ′ab(xa, xb) ,
ψab(xa, 1 − xb). Similarly, for each b ∈ B and all
xb, define φ′(xb) , φ(1 − xb). Finally, for each
a ∈ A and all xa, define φ′(xa) , φ(xa). Ob-
serve that ψ′ab is a log-supermodular function when-
ever ψab is a log-submodular function. The new
graphical model, (G;φ′, ψ′) is a pairwise binary, log-
supermodular graphical model that is obtained from
the original model via a change of variables. Con-
sequently, both graphical models have the same par-
tition functions and the same Bethe partition func-
tions, and we can apply Theorem 3.5 to conclude
that Z(G;φ, ψ) = Z(G;φ′, ψ′) ≥ ZB(G;φ′, ψ′) =
ZB(G;φ, ψ).

5 The Potts and Random Cluster
Models

As a first example of a family of graphical models with
non-binary state spaces for which the Bethe partition
function provides a lower bound on the true partition
function, we consider the Potts model (with no exter-
nal field) from statistical physics. For a fixed graph
G = (V,E), a positive integer q, and a vector of spins

1Factor graphs are always bipartite, but here we are
requiring that the graph G is bipartite when represented
as a standard graph.
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σ ∈ {1, . . . , q}|V |,

fGPotts(σ; q, J) =
∏

(i,j)∈E
eJijδ(σi,σj)

where each edge (i, j) ∈ E is weighted by Jij ∈ R and
the notation emphasizes the dependence on the model
parameters J and q. When Jij > 0 for all (i, j) ∈ E,
the model is said to be ferromagnetic (i.e., neighbor-
ing spins prefer to align), and the model is said to be
antiferromagnetic if Jij < 0 for all (i, j) ∈ E.

The case q = 2 corresponds to the Ising model. Each
pairwise potential in the ferromagnetic Ising model is
log-supermodular, so we can immediately apply The-
orem 3.5 in order to show that ZB gives a lower
bound on the partition function. However, when
q > 2 the pairwise potential functions need not be
log-supermodular, even in the ferromagnetic case.

Our goal in this section is to show that, like switching
log-supermodular functions, the ferromagnetic Potts
model is also a log-supermodular function in disguise.
Unlike the pairwise binary case, we will need more
than variable switching in order to produce a log-
supermodular function. First, we observe that the
partition function of the ferromagnetic Potts model
can be equivalently formulated as the partition func-
tion of a closely related model in statistical physics,
the random cluster model.

The random cluster model is a measure over subsets of
edges of the graph G = (V,E) and is related to mea-
sures that arise in the study of percolation problems.
For any subset A ⊆ E and nonnegative weights pij ,

fGrc(A; q, p) = qkG(A)
∏

(i,j)∈A
pij

where q is as above and kG(A) is the number of con-
nected components of the graph G = (V,A). If q
is a positive integer, Jij ≥ 0 for all (i, j) ∈ E, and
pij = eJij − 1 for all (i, j) ∈ E, then Zrc(G; q, p) =
ZPotts(G; q, J). A short proof of this standard result
from statistical physics can be found in Appendix A,
and more details about the Potts model and its rela-
tionship to the random cluster model can be found in
(Sokal, 2005) and (Grimmett, 2006).

5.1 Lower Bounds

As kG(A) is a supermodular function (here, think of
A as being represented by its 0-1 indicator vector),
qkG(A) is a log-supermodular function. From this, we
can conclude that fGrc is a log-supermodular function
whenever eJij − 1 > 0 for all (i, j) ∈ E.

Notice that fGrc does not factor over G as qkG(A) de-
pends on the entire set A. In fact, the factor graph

corresponding to fGrc is a tree: it has one factor node
that is adjacent to all of the variable nodes. Although,
the Bethe free energy is exact for this model, com-
puting the partition function remains computationally
intractable. Instead, we will exploit the theoretical
equivalence of the two partition functions to show that
for any cover (H; q, JH) of the ferromagnetic Potts
model (G; q, J), ZPotts(H; q, JH) ≤ ZPotts(G; q, J)M .
Specifically, we will show how to apply Theorem 3.4
directly to the random cluster partition function cor-
responding to each cover of (G; q, J) in order to show
the desired inequality for the Potts model. See the end
of Section 2.1 for a reminder of the notation related to
graph covers.

Lemma 5.1. Let (H; q, JH) be an M -cover of the
Potts model (G; q, J). For any A = (A1, . . . , AM ) ⊆
EH ,

fHrc (A1, . . . , AM ; q, pH) ≤
M∏

m=1

fGrc(A[m]; q, p)

whenever q ≥ 1 and pij = eJij − 1 ≥ 0 for all (i, j) ∈
EG.

Proof. We will show that for any M -cover, H, of G,

kH(A1, . . . , AM ) ≤
M∑

m=1

kG(A[m]).

The result will then follow from the definition of frc
and the definition of H.

We prove this by induction on |A|, the number of
edges in the set A. For the base case, |A| = 0,

kH(∅) =
∑M
m=1 kG(∅). Now, suppose |A| > 0. Fix one

edge in A = (A1, . . . , AM ) and let B = (B1, . . . , BM )
be the edges of its corresponding connected compo-
nent. There are two possibilities. First, if B =
A, then the result follows from the observation that∑M
m=1 kG(A[m]) ≥ η − 1 + kH(A1, . . . , AM ) where

η is the maximum element of the vector given by∑M
m=1A

m. Otherwise, if B 6= A, let C = A \ B.
With the notation that C = (C1, . . . , CM ),

kH(A) = kH(B) + kH(C)− |V H |
(a)

≤
M∑

m=1

kG(B[m]) +

M∑

m=1

kG(C [m])− |V H |

(b)

≤
M∑

m=1

kG(A[m]) +
M∑

m=1

kG(∅)− |V H |

=
M∑

m=1

kG(A[m])

where (a) follows from the induction hypothesis and
(b) follows from the supermodularity of kG.
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x1

x2 x3

ψ12

ψ23

ψ13

Figure 2: A simple cycle.

Theorem 5.2. For the ferromagnetic Potts model
with q ≥ 1,

ZMF(G; J, q) ≤ ZB(G; J, q) ≤ ZPotts(G; J, q).

Proof. By Lemma 5.1 and Theorem 3.4,

Zrc(H; q, pH) ≤ Zrc(G; q, p)M

for any M -cover (H; q, JH) of (G; q, J) with pij =

eJij − 1 for all (i, j) ∈ EG and pHij = eJ
H
ij − 1 for

all (i, j) ∈ EH .

The proof then follows from the equivalence between
ZPotts and Zrc and the characterization of ZB in The-
orem 2.2.

5.2 Potts Models with External Fields

Unlike the results of Ruozzi (2012) for the ferromag-
netic Ising model, the results of Section 5.1 do not hold
in the case that there is an arbitrary external field (i.e.,
arbitrary self-potentials). As an example, consider an
instance of the ferromagnetic Potts model with an ex-
ternal field that factors over the graph in Figure 2.

f(x) =
3∏

k=1

eh
k
xk

∏

i 6=j
e2δ(xi,xj)

where the vectors h1, h2, and h3 are defined as follows.

h1 =



e2

e−1

e−1


 h2 =



e−1

e2

e−1


 h3 =



e−1

e−1

e2




For this simple model, we can compute ZB and Z ex-
actly: ZB − Z ≈ 973.046.

In general, the Potts model becomes much more diffi-
cult to analyze when there is an external field. How-
ever, for uniform external fields, we can extend the
results of Section 5.1. Consider the following general-
ization of the Potts model for a given h ∈ Rq.

fGPotts+(σ; J, q, h) =
∏

k∈V
ehσk

∏

(i,j)∈E
eJijδ(σi,σj)

The corresponding random cluster representation is
given by

fGrc+(A; q, p, h) =
∏

C∈comp(A)

[ q∑

w=1

ehw|V (C)|
] ∏

(i,j)∈A
pij

where comp(A) is the set of connected components
of the graph (V,A) and V (C) is the set of vertices
contained in the connected component C.

The equivalence between ZPotts+ and Zrc+ for appro-
priate choices of the parameters can be verified by the
same techniques used in Appendix A. As before, fGrc+
is a log-supermodular function of A, though the proof
of this statement is non-trivial (see Theorem III.1 of
(Biskup et al., 2000)). The analogs of Lemma 5.1 and
Theorem 5.2 for this more general model can be proven
by using the same arguments as before with minimal
modification; we omit the proofs due to space con-
straints.

Lemma 5.3. Let (H; q, JH , hH) be an M -cover of
the extended Potts model (G; q, J, h). For any A =
(A1, . . . , AM ) ⊆ EH ,

fHrc+(A1, . . . , AM ; q, pH , hH) ≤
M∏

m=1

fGrc+(A[m]; q, p, h)

whenever q ≥ 1 and pij = eJij − 1 ≥ 0 for all (i, j) ∈
EG.

Theorem 5.4. For the extended ferromagnetic Potts
model with q ≥ 1,

ZMF(G; J, q, h) ≤ ZB(G; J, q, h) ≤ ZPotts+(G; J, q, h)

5.3 Generalizations to Matroids

Theorem 5.2 and Lemma 5.1 can be extended, with ar-
guments analogous to those in Appendix A, to Potts
models defined on hypergraphs as considered in Gold-
berg and Jerrum (2010). The Potts and random clus-
ter models (like the closely related Tutte polynomial)
can also be generalized to matroids Sokal (2005). In
this section, we describe the generalization to linear
matroids and demonstrate the analog of Lemma 5.1 in
this case.

Let S be a matrix over GF (q) for some prime power
q whose rows are indexed by the set V S and whose
columns are indexed by the set AS . The columns of
S define a matroid with corresponding rank function
rS(A) which is defined to be the rank, over GF (q),
of the submatrix formed by the columns indexed in

A ⊆ AS . For σ ∈ {1, . . . , q}|V S |, the normalized Potts
model corresponding to this matroid is

fSPotts(σ; q, J) =
1

q|V S |

∏

α∈AS
exp

[
Jαδ(

∑

i∈V S
Si,ασi, 0)

]
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where δ(
∑
i Si,ασi, 0) = 1 if

∑
i Si,ασi ≡ 0 over GF (q).

Notice that the elements of S form the vertex-edge
incidence matrix of a hypergraph GS = (V S ,AS). As
a result, we will denote the graphical model for this
generalization as (S; q, J).

The partition function of the Potts model for the ma-
troid over S can also be expressed as the partition
function of an appropriate generalization of the ran-
dom cluster model. For each A ⊆ AS , the normalized
random cluster model over S is given by

fSrc(A; q, p) = q−rS(A)
∏

α∈A
pα.

The partition functions of these two models agree
whenever pα = exp(Jα) − 1 for all α ∈ AS . When
pα ≥ 0 for all α ∈ AS , fSrc is a log-supermodular func-
tion. For a proof of the equivalence of Zrc(S; q, J) and
ZPotts(S; q, J), see Theorem 3.1 of Sokal (2005).

Lemma 5.5. For a prime power q and a matrix S
over GF (q), let (SH ; q, JH) be an M-cover of the nor-
malized Potts model (S; q, J).

For any A = (A1, . . . , AM ) ⊆ AH ,

rSH (A1, . . . , Am) ≥
M∑

m=1

rS(A[m]).

Proof. As in the case of Lemma 5.1, the proof follows
by induction on |A| = |A1| + · · · + |AM |. For |A| = 0
or 1, the result follows trivially. Suppose |A| > 1. We
separate the proof into two cases. In the first case,
rSH (A) = |A|. Fix any a ∈ A and let B = A \ {a} and
C = {a}. We have

rSH (A1, . . . , AM ) = rSH (B) + rSH (C)

(a)

≥
M∑

m=1

rS(B[m]) + rS(C)

(b)

≥
M∑

m=1

rS(A[m])

where (a) follows from the induction hypothesis and
(b) follows from the submodularity of rS .

For the second case, rSH (A) < |A|. Choose B1 ⊇ . . . ⊇
BM such that for all m ∈ {1, . . . ,M}, Bm ⊆ A[m]

and |Bm| = rS(A[m]). This can be accomplished by
constructing a basis for the columns of S spanned by
A[M ] and then extending it to a basis of A[M−1] and
so on. Similarly, construct an “unsorted” version of
B1, . . . , BM by choosing C1, . . . , CM such that for all
m ∈ {1, . . . ,M}, Cm ⊆ Am and C [m] = B[m]. With
these definitions, we have

M∑

m=1

rS(A[m]) =
M∑

m=1

rS(Bm)

(a)
=

M∑

m=1

rS(Cm)

(b)
= rSH (C1, . . . , CM )

(c)

≤ rSH (A1, . . . , AM )

where (a) follows from the submodularity of rS , (b)
follows from the induction hypothesis, and (c) follows
from the monotonicity of rSH .

With this lemma, we can again use the observation
that ZPotts and Zrc are equivalent and apply Theorem
3.4 to conclude the following.

Theorem 5.6. For any linear matroid S over GF (q)
for some prime power q,

ZPotts(S; J, q) ≥ ZB(S; J, q) ≥ ZMF(S; J, q)

whenever Jα ≥ 0 for all α ∈ AS.

5.4 Weight Enumerators of Linear Codes

As an application of the results of Section 5.3, we
demonstrate that the Bethe partition function can be
used to compute lower bounds on the weight enumera-
tor of linear codes over GF (q) for some prime power q.
Similar results have been demonstrated for the prob-
lem of counting the number of codewords of a binary
cycle code (Vontobel, 2013). Let S ∈ GF (q)k×n be
the generator matrix of a linear code. A codeword
corresponds to any vector in GF (q)n that is contained
in the span of the rows of S. Denote the set of valid
codewords as C. The weight enumerator of a linear
code is defined to be

∑

c∈C
λw(c)

where λ is a positive real and w(c) is the number of
nonzero entries in the codeword c.

Equivalently, we can formulate this weight enumerator
as the partition function of a generalized Potts model.

∑

c∈C
λw(c) =

∑

σ∈{1,...,q}k
λw(

∑k
i=1 σiSi,∗)

=
∑

σ∈{1,...,q}k

∏

α∈AS
λ1−δ(

∑k
i=1 σiSi,α,0)

= λ|A
S | ∑

σ∈{1,...,q}|V S |

∏

α∈AS
λ−δ(

∑
i∈V S σiSi,α,0)

= qkλnZPotts(S; q, log
1

λ
)

where Si,∗ is the ith row of S.
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Using the previous results for the generalized ferro-
magnetic Potts model, we have that, for λ ∈ (0, 1],

∑

c∈C
λw(c) ≥ qkλnZB(S; q, log

1

λ
)

≥ qkλnZMF(S; q, log
1

λ
).

As a consequence, belief propagation can be used to
compute lower bounds on the weight enumerator in
this regime.

6 Weighted Graph Homomorphisms

In this section, we consider the problem of counting
weighted graph homomorphisms. For a fixed graph
G = (V,E), a nonegative matrix Γ ∈ Rn×n, and a
vector of nonnegative weights w ∈ Rn, consider the
following function for each σ ∈ {1, . . . , n}|V |.

fGhom(σ;w,Γ) =
∏

i∈V
wσi

∏

(i,j)∈E
Γσi,σj

If Γ is the adjacency matrix of a graph G and w is
the all ones vector, then Zhom(G;w,Γ) is equal to the
number of graph homomorphisms from G to G.

We will show that the Bethe partition function pro-
vides a lower bound on the true partition function,
Zhom(G;w,Γ), whenever

Γ = aa′ + bb′, (4)

where a and b are two non-negative column vectors in
Rn and v′ denotes the transpose of the vector v ∈ Rn.

For Γ as in (4), Zhom(G;w,Γ) can be reformulated as
the partition function of an edge coloring model. For
each A ⊆ E, define

fGedge(A;w, a, b) =
∏

i∈V

[ n∑

σi=1

wσia
si(A)
σi b|∂i|−si(A)

σi

]

where si(A) = |{j ∈ ∂i : (i, j) ∈ A}|. By convention,
we take 00 = 1.

The proof of equivalence between Zhom(G;w, aa′+bb′)
and Zedge(G;w, a, b) can be found in Appendix B. This
proof is a special case of a more general relationship
between the partition function of specific vertex color-
ing functions (our weighted homomorphism function)
and the partition function of a more general class of
edge coloring functions (Szegedy, 2007).

The edge coloring function fGedge is a log-supermodular
function. However, unlike the ferromagnetic Potts
model and its generalizations, the proof of this ob-
servation for the edge coloring model requires some
work.

Lemma 6.1. If a, b, and w are nonnegative vectors in
Rn, then fGedge(A;w, a, b) is a log-supermodular func-
tion of A ⊆ E.

Proof. As a product of log-supermodualr functions is
log-supermodular, it suffices to show that

n∑

σ=1

wσa
si(A)
σ b|∂i|−si(A)

σ

is log-supermodular for each choice of i ∈ V or equiv-
alently that

n∑

σ=1

xσc
si(A)
σ

is a log-supermodular function of A for any nonnega-
tive vectors x and c.

Now, observe that, for all A1, A2 ⊆ E,

[ n∑

σ=1

xσc
si(A

1)
σ

][ n∑

σ=1

xσc
si(A

2)
σ

]
=
∑

σ,γ

xσxγc
si(A

1)
σ csi(A

2)
γ .

The desired inequality will follow from the observation
that

csi(A
1)

σ csi(A
2)

γ + csi(A
2)

σ csi(A
1)

γ ≤
csi(A

1∨A2)
σ csi(A

1∧A2)
γ + csi(A

1∧A2)
σ csi(A

1∨A2)
γ (5)

for all σ, γ ∈ [1, . . . , n].

When σ = γ in (5), the inequality is tight as si(A
1 ∧

A2) + si(A
1 ∨ A2) = si(A

1) + si(A
2). To show the

inequality (5) when σ 6= γ, let s = si(A
1 ∧ A2) +

si(A
1 ∨A2), and observe that, as a function of t ∈ R,

ctσc
s−t
γ + cs−tσ ctγ

is symmetric about its minimum at t = s/2 and
monotonic increasing for t ≥ s/2. The inequal-
ity (5) follows from choosing t = si(A

1 ∨ A2) ≥
max{si(A1), si(A

2)} ≥ s/2.

Theorem 6.2. For any graph G = (V,E), any non-
negative w ∈ Rn≥0, and any matrix Γ = aa′ + bb′ for
some nonnegative vectors a, b ∈ Rn≥0,

ZMF(G;w,Γ) ≤ ZB(G;w,Γ) ≤ Zhoms(G;w,Γ).

Proof. The factor graphs corresponding to the
weighted homomorphism model and the edge color-
ing model are isomorphic (they simply exchange the
role of the factor nodes and the variable nodes).
As a result, every factor graph corresponding to
an M -cover of a weighted homomorphism model is
isomorphic to a factor graph of some M -cover of
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the edge coloring model. Because, fGedge is log-
supermodular, an application of Theorem 3.5 gives
that Zedge(G;w, a, b)M ≥ Zedge(H;wH , aH , bH) for
any M -cover (H;wH , aH , bH) of (G;w, a, b). The
equivalence of the partition functions of the two mod-
els combined with the combinatorial characterization
of the Bethe partition function in Theorem 2.2 then
yields the desired result.

7 Discussion

In a survey of submodular functions, Lovász (1983)
noted that “submodularity is not a deep property, but
it is often difficult to recognize the circumstances un-
der which it occurs.” The above examples serve to
illustrate that the same is true of log-supermodularity.

For each model considered in this work, we trans-
formed the problem of computing the partition func-
tion of a graphical model (G;φ, ψ) that is not log-
supermodular into the computation of the partition
function of a log-supermodular graphical model. This
transformation was then applied to graph covers of
(G;φ, ψ) in order to demonstrate that (3) holds for
the transformed version of each cover. By the equal-
ity of the partition functions, this holds for the parti-
tion function of each graph cover of (G;φ, ψ) as well.
Finally, we applied Theorem 3.4 to demonstrate that
ZB(G;φ, ψ) ≤ Z(G;φ, ψ). This implies that any fixed
point of the belief propagation algorithm over the
model (G;φ, ψ) must yield a lower bound on the true
partition function.
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A The Potts and Random Cluster
Models

In this appendix, we present a short algebraic proof
of the equivalence between the partition function of
the Potts model and the random cluster model under
an appropriate choice of parameters. For any graph
G = (V,E) and any positive integer q, this equivalence
follows primarily from the observation that qkG(A)

counts the number of colorings of the vertices of the
graph G with q different colors such that any two ver-
tices in the same connected component of the subgraph
(V,A) are assigned the same color. This results in the
following expression.

qkG(A) =
∑

σ∈{1,...,q}|V |

∏

(i,j)∈A
δ(σi, σj) (6)

for all A ⊆ E.

Given (6), the proof of equivalence follows from simple
algebraic manipulations.

∑

A⊆E
fGrc(A; q, p) =

∑

A⊆E

[
qkG(A)

∏

(i,j)∈A
pij

]

=
∑

A⊆E

[ ∑

σ∈{1,...,q}|V |

∏

(i,j)∈A
pijδ(σi, σj)

]

=
∑

σ∈{1,...,q}|V |

[ ∑

A⊆E

∏

(i,j)∈A
pijδ(σi, σj)

]

=
∑

σ∈{1,...,q}|V |

∏

(i,j)∈E

[
1 + pijδ(σi, σj)

]

Substituting pij = eJij − 1 for all (i, j) ∈ E yields

∑

A⊆E
fGrc(A; q, p) =

∑

σ∈{1,...,q}|V |

∏

(i,j)∈E
eJijδ(σi,σj)

=
∑

σ∈{1,...,q}|V |
fGPotts(σ; q, J).

B The Weighted Homomorphism and
Edge Coloring Models

In this appendix, we present a short algebraic proof
of the equivalence between the partition function of
the weighted homomorphism graphical model and the
partition function of the edge coloring model whenever
Γ is a rank two matrix of the form aa′ + bb′ for two
vectors a and b.

fGedge(A; a, b, w) =
∏

i∈V

[ n∑

σi=1

wσia
si(A)
σi b|∂i|−si(A)

σi

]

=
∑

σ∈{1,...,n}|V |

∏

i∈V

[
wσia

si(A)
σi b|∂i|−si(A)

σi

]

=
∑

σ∈{1,...,n}|V |

∏

i∈V
wσi

∏

(i,j)∈E
cij(A)

where

cij(A) = a
A(i,j)
σi a

A(i,j)
σj b

1−A(i,j)
σi b

1−A(i,j)
σj

and A(i,j) = 1 if (i, j) ∈ A and zero otherwise. Notice
that

∑
A⊆E

∏
(i,j)∈E cij(A) =

∏
(i,j)∈E Γσi,σj and that

cij(A) only depends on whether or not the edge (i, j) ∈
A. Consequently,

Zedge(G; a, b, w) =
∑

A⊆E
fGedge(A; a, b, w)

=
∑

σ∈{1,...,n}|V |

∏

i∈V
wσi

∏

(i,j)∈E
Γσi,σj

= Zhom(G;w,Γ).
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Abstract

We propose a kernel method to identify finite
mixtures of nonparametric product distribu-
tions. It is based on a Hilbert space embed-
ding of the joint distribution. The rank of
the constructed tensor is equal to the num-
ber of mixture components. We present an
algorithm to recover the components by par-
titioning the data points into clusters such
that the variables are jointly conditionally in-
dependent given the cluster. This method
can be used to identify finite confounders.

1 Introduction

Latent variable models are widely used to model het-
erogeneity in populations. In the following (Sections
2-4), we assume that the observed variables are jointly
conditionally independent given the latent class. For
example, given a medical syndrome, different symp-
toms might be conditionally independent. We con-
sider d ≥ 2 continuous observed random variables
X1, X2,. . . ,Xd with domains {Xj}1≤j≤d and assume
that their joint probability distribution P (X1, . . . , Xd)
has a density with respect to the Lebesgue measure.
We introduce a finite (i.e., that takes on values from
a finite set) random variable Z that represents the
latent class with values in {z(1), . . . , z(m)}. Assum-
ing X1, . . . , Xd to be jointly conditionally independent
given Z (denoted by X1 ⊥⊥ X2 ⊥⊥ . . . ⊥⊥ Xd |Z) im-
plies the following decomposition into a finite mixture
of product distributions:

P (X1, . . . , Xd) =

m∑

i=1

P (z(i))

d∏

j=1

P (Xj |z(i)) (1)

where P (z(i)) = P (Z = z(i)) 6= 0.

By parameter identifiability of model (1), we refer to
the question of when P (X1, . . . , Xd) uniquely deter-

mines the following parameters: (a) the number of
mixture components m, and (b) the distribution of
each component P (X1, . . . , Xd|z(i)) and the mixing
weights P (z(i)) up to permutations of z-values. In
this paper, we focus on determining (a) and (b), when
model (1) is identifiable. This can be further used to
infer the existence of a hidden common cause (con-
founder) of a set of observed variables and reconstruct
this confounder. The remainder of the paper is orga-
nized as follows: in Section 2, a method is proposed to
determine (a), i.e., the number of mixture components
m, Section 3 discusses established results on the identi-
fiability of the parameters in (b). Section 4 presents an
algorithm for determining these parameters and Sec-
tion 5 uses the findings of the previous sections for
confounder identification. Finally, the experiments are
provided in Section 6.

2 Identifying the Number of Mixture
Components

Various methods have been proposed in the litera-
ture to select the number of mixture components in
a mixture model (e.g., Feng & McCulloch (1996);
Böhning & Seidel (2003); Rasmussen (2000); Iwata
et al. (2013)). However, they impose different kind
of assumptions than the conditional independence as-
sumption of model (1) (e.g., that the distributions of
the components belong to a certain parametric family).
Assuming model (1), Kasahara & Shimotsu (2010)
proposed a nonparametric method that requires dis-
cretization of the observed variables and provides only
a lower bound on m. In the following, we present a
method to determine m in (1) without making para-
metric assumptions on the component distributions.

2.1 Hilbert Space Embedding of
Distributions

Our method relies on representing P (X1, . . . , Xd) as a
vector in a reproducing kernel Hilbert space (RKHS).
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We briefly introduce this framework. For a random
variable X with domain X , an RKHS H on X with
kernel k is a space of functions f : X → R with
dot product 〈·, ·〉, satisfying the reproducing property
(Schölkopf & Smola, 2002): 〈f(·), k(x, ·)〉 = f(x), and
consequently, 〈k(x, ·), k(x′, ·)〉 = k(x, x′). The kernel
thus defines a map x 7→ φ(x) := k(x, .) ∈ H satisfying
k(x, x′) = 〈φ(x), φ(x′)〉, i.e., it corresponds to a dot
product in H.

Let P denote the set of probability distributions on
X , then we use the following mean map (Smola et al.,
2007) to define a Hilbert space embedding of P:

µ : P → H; P (X) 7→ EX [φ(X)] (2)

We will henceforth assume this mapping to be injec-
tive, which is the case if k is characteristic (Fukumizu
et al., 2008), as the widely used Gaussian RBF kernel

k(x, x′) = exp(−‖x− x′‖2 /(2σ2)).

We use the above framework to define Hilbert space
embeddings of distributions of every single Xj . To this
end, we define kernels kj for each Xj , with feature
maps xj 7→ φj(xj) = k(xj , .) ∈ Hj . We thus obtain an
embedding µj of the set Pj into Hj as in (2).

We can apply the same framework to embed the
set of joint distributions P1,...,d on X1 × . . . ×
Xd. We simply define a joint kernel k1,...,d by

k1,...,d((x1, . . . , xd), (x
′
1, . . . , x

′
d)) =

∏d
j=1 kj(xj , x

′
j),

leading to a feature map into H1,...,d :=
⊗d

j=1Hj with

φ1,...,d(x1, . . . , xd) =
⊗d

j=1 φj(xj) (where
⊗

stands for
the tensor product). We use the following mapping of
the joint distribution:

µ1,...,d : P1,...,d →
d⊗

j=1

Hj (3)

P (X1, . . . , Xd) 7→ EX1,...,Xd
[

d⊗

j=1

φj(Xj)]

2.2 Identifying the Number of Components
from the Rank of the Joint Embedding

By linearity of the maps µ1,...,d and µj , the embedding
of the joint distribution decomposes into

UX1,...,Xd
:=µ1,...,d(P (X1, . . . , Xd))

=
m∑

i=1

P (z(i))
d⊗

j=1

EXj
[φj(Xj)|z(i)] . (4)

Definition 1 (full rank conditional) Let A,B two
random variables with domains A,B, respectively. The
conditional probability distribution P (A|B) is called a

full rank conditional if {P (A|b)}b with b ∈ B is a lin-
early independent set of distributions.

Recalling that the rank of a tensor is the minimum
number of rank 1 tensors needed to express it as a
linear combination of them, we obtain:

Theorem 1 (number of mixture components)
If P (X1, . . . , Xd) is decomposable as in (1) and
P (Xj |Z) is a full rank conditional for all 1 ≤ j ≤ d,
then the tensor rank of UX1,...,Xd

is m.

Proof. From (4), the tensor rank of UX1,...,Xd

is at most m. If the rank is m′ < m, there
exists another decomposition of UX1,...,Xd

(apart

from (4)) as
∑m′

i=1

⊗d
j=1 vi,j , with non-zero vec-

tors vi,j ∈ Hj . Then, there exists a vector
w ∈ H1, s.t. w ⊥ span{v1,1, . . . , vm′,1} and
w 6⊥ span{(EX1

[φ1(X1)|z(i)])1≤i≤m}. The dual vector
, w〉 defines a linear form H1 → R. By overloading
notation, we consider it at the same time as a linear
map H1 ⊗ · · · ⊗ Hd → H2 ⊗ · · · ⊗ Hd , by extend-
ing it with the identity map on H2 ⊗ · · · ⊗ Hd. Then,

〈∑m′

i=1

⊗d
j=1 vi,j , w〉 =

∑m′

i=1〈vi1, w〉
⊗d

j=2 vi,j = 0 but
〈UX1,...,Xd

, w〉 6= 0. So, m = m′. �

The assumption that P (Xj |Z) is a full rank condi-
tional, i.e., that {P (Xj |z(i))}i≤m is a linearly inde-
pendent set, is also used by Allman et al. (2009) (see
Sec. 3). It does not prevent P (Xj |z(q)) from being it-
self a mixture distribution, however, it implies that,
for all j, q, P (Xj |z(q)) is not a linear combination of
{P (Xj |z(r))}r 6=q. Theorem 1 states that, under this
assumption, the number of mixture components m of
(1) (or equivalently the number of values of Z) is iden-
tifiable and equal to the rank of UX1,...,Xd

. A straight-
forward extension of Theorem 1 reads:

Lemma 1 (infinite Z) If Z takes values from an in-
finite set, then the tensor rank of UX1,...,Xd

is infinite.

2.3 Empirical Estimation of the Tensor Rank
from Finite Data

Given empirical data for every Xj ,

{x(1)j , x
(2)
j , . . . , x

(n)
j }, to estimate the rank of (4),

we replace it with the empirical average

ÛX1,...,Xd
:=

1

n

n∑

i=1

d⊗

j=1

φj(x
(i)
j ) , (5)

which is known to converge to the expectation in
Hilbert space norm (Smola et al., 2007).

The vector (5) still lives in the infinite dimensional
feature space H1,...,d, which is a space of functions
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X1 × · · · × Xd → R. To obtain a vector in a finite
dimensional space, we evaluate this function at the

nd data points (x
(q1)
1 , . . . , x

(qd)
d ) with qj ∈ {1, . . . , n}

(the d-tuple of superscripts (q1, . . . , qd) runs over all
elements of {1, . . . , n}d). Due to the reproducing ker-
nel property, this is equivalent to computing the inner
product with the images of these points under φ1,...,d:

Vq1,...,qd :=

〈
ÛX1,...,Xd

,

d⊗

j=1

φj(x
(qj)
j )

〉

=
1

n

n∑

i=1

d∏

j=1

kj(x
(i)
j , x

(qj)
j ) (6)

For d = 2, V is a matrix, so one can easily find low rank
approximations via truncated Singular Value Decom-
position (SVD) by dropping low SVs. For d > 2, find-
ing a low-rank approximation of a tensor is an ill-posed
problem (De Silva & Lim, 2008). By grouping the vari-
ables into two sets, say X1, . . . , Xs and Xs+1, . . . , Xd

without loss of generality, we can formally obtain the
d = 2 case with two vector-valued variables. This
amounts to reducing V in (6) to an n × n matrix by
setting q1 = · · · = qs and qs+1 = · · · = qd. In the-
ory, we expect the rank to be the same for all possible
groupings. In practice, we report the rank estimation
of the majority of all groupings. The computational
complexity of this step is O(2d−1N3).

3 Identifiability of Component
Distributions and Mixing Weights

Once we have determined the number of mixture com-
ponents m, we proceed to step (b) of recovering the
distribution of each component P (X1, . . . , Xd|z(i)) and
the mixing weights P (z(i)). In the following, we de-
scribe results from the literature on when these pa-
rameters are identifiable, for known m. Hall & Zhou
(2003) proved that when m = 2, identifiability of pa-
rameters always holds in d ≥ 3 dimensions. For d = 2
and m = 2 the parameters are generally not identi-
fiable (there is a two-parameter continuum of solu-
tions). In this case, one can obtain identifiability if,
for all j, P (Xj |Z) is pure (a conditional P (X|Y ) is
called pure if for any two values y, y′ of Y , the sum
P (X|y)λ + P (X|y′)(1 − λ) is a probability distribu-
tion only for λ ∈ [0, 1] (Janzing et al., 2011)). Allman
et al. (2009) established identifiability of the param-
eters whenever d ≥ 3 and for all m under weak con-
ditions 1, using a theorem of Kruskal (1977). Finally,
Kasahara & Shimotsu (2010) provided complementary
identifiability results for d ≥ 3 under different condi-
tions with a constructive proof.

1the same assumption used in Theorem 1 that P (Xj |Z)
is a full rank conditional for all j.

4 Identifying Component
Distributions and Mixing Weights

We are given n data points from an identifiable dis-
tribution P (X1, . . . , Xd). Our goal is to cluster the
data points (using m labels) in such a way that the
distribution of points with label i is close to the (un-
observed) empirical distribution of every mixture com-
ponent, Pn(X1, . . . , Xd|z(i)).

4.1 Existing Methods

Probabilistic mixture models or other clustering meth-
ods can be used to identify the mixture components
(clusters) (e.g., Von Luxburg (2007); Böhning & Seidel
(2003); Rasmussen (2000); Iwata et al. (2013)). How-
ever, they impose different kind of assumptions than
the conditional independence assumption of model (1)
(e.g., Gaussian mixture model). Assuming model
(1), Levine et al. (2011) proposed an Expectation-
Maximization (EM) algorithm for nonparametric es-
timation of the parameters in (1), given that m is
known. Their algorithm uses a kernel as smoothing
operator. They choose a common kernel bandwidth
for all the components because otherwise their itera-
tive algorithm is not guaranteed not to increase from
one iteration to another. As stated also by Chauveau
et al. (2010), the fact that they do not use an adaptive
bandwidth (Benaglia et al., 2011) can be problematic
especially when the distributions of the components
differ significantly.

4.2 Proposed Method: Clustering with
Independence Criterion (CLIC)

The proposed method, CLIC, assigns each of the n
observations to one of them (as estimated in Section 2)
mixture components (clusters). We do not claim that
each single data point is assigned correctly (especially
when the clusters are overlapping). Instead, we aim
to yield the variables jointly conditionally independent
given the cluster in order to recover the components.

To measure conditional independence of X1, . . . , Xd

given the cluster we use the Hilbert Schmidt Inde-
pendence Criterion (HSIC) (Gretton et al., 2008). It
measures the Hilbert space distance between the ker-
nel embeddings of the joint distribution of two (pos-
sibly multivariate) random variables and the product
of their marginal distributions. If d > 2, we test for
mutual independence. For that, we perform multi-
ple tests, namely: X1 against (X2, . . . , Xd), then X2

against (X3, . . . , Xd) etc. and use Bonferroni correc-
tion. For each cluster, we consider as test statistic the
HSIC from the test that leads to the smallest p-value
(“highest” dependence).
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We regard the negative sum of the logarithms of all p-
values (each one corresponding to one cluster) under
the null hypothesis of independence as our objective
function. The proposed algorithm is iterative. We
first randomly assign every data point to one mixture
component. In every iteration we perform a greedy
search: we randomly divide the data into disjoint sets
of c points. Then, we select one of these sets and
consider all possible assignments of the set’s points to
the m clusters (mc possible assignments). The assign-
ment that optimizes the objective function is accepted
and the points of the set are assigned to their new
clusters (which may coincide with the old ones). We,
eventually, repeat the same procedure for all disjoint
sets and this constitutes one iteration of our algorithm.
After every iteration we test for conditional indepen-
dence given the cluster. The algorithm stops after an
iteration when any of the following happens: we ob-
serve independence in all clusters, no data point has
changed cluster assignment, an upper limit of itera-
tions is reached. It is clear that the objective function
is monotonously decreasing.

The algorithm may not succeed at producing condi-
tionally independent variables for different reasons:
e.g., incorrect estimation of m from the previous step
or convergence to a local optimum. In that case, CLIC
reports that it was unable to find appropriate clusters.

Along the iterations, the kernel test of independence
updates the bandwidth according to the data points
belonging to the current cluster (in every dimension).
Note, however, that this is not the case for the algo-
rithm in Section 2. There, we are obliged to use a
common bandwidth, because we do not have yet any
information about the mixture components.

The parameter c allows for a trade-off between speed
and avoiding local optima: for c = n, CLIC would find
the global optimum after one step, but this would re-
quire checking mn cluster assignments. On the other
hand, c = 1 leads to a faster algorithm that may get
stuck in local optima. In all experiments we used c = 1
since we did not encounter many problems with local
optima. Considering c to be a constant, the computa-
tional complexity of CLIC is O(mcN3) for every iter-
ation. Algorithm 1 includes the pseudocode of CLIC.

5 Causality: Identifying Confounders

Drawing causal conclusions from observed statistical
dependences without being able to intervene on the
system always relies on assumptions that link statis-
tics to causality (Spirtes et al., 2001; Pearl, 2000).
The least disputed one is the Causal Markov Condi-
tion (CMC) stating that every variable is condition-
ally independent of its non-descendant, given its par-

Algorithm 1 CLIC

1: input data matrix X of size n× d, m, c
2: random assignment cluster(i) ∈ {1, . . . ,m}, i =

1, . . . , n of the data into m clusters
3: while conditional dependence given cluster and

clusters change do
4: obj = computeObj(cluster)
5: choose random partition Sj , j = 1, . . . , J of the

data into sets of size c
6: for j = 1 to J do
7: newCluster = cluster
8: for all words w ∈ {1, . . . ,m}c do
9: newCluster(Sj) = w

10: objNew(w) = computeObj(newCluster)
11: end for
12: wOpt = argmin(objNew)
13: cluster(Sj) = wOpt
14: end for
15: end while

16: if conditional independence given cluster then
17: output cluster
18: else
19: output “Unable to find appropriate clusters.”
20: end if

ents (Spirtes et al., 2001; Pearl, 2000) with respect
to a directed acyclic graph (DAG) that formalizes the
causal relations. We focus on causal inference prob-
lems where the set of observed variables may not be
causally sufficient, i.e. statistical dependences can also
be due hidden common causes (confounders) of two or
more observed variables. Under the assumption of lin-
ear relationships between variables and non-Gaussian
distributions, confounders may be identified using In-
dependent Component Analysis (Shimizu et al., 2009).
Other results for the linear case are presented in Silva
et al. (2006) and for the non-linear case with addi-
tive noise in Janzing et al. (2009). Fast Causal Infer-
ence (Silva et al., 2006) can exclude confounding for
some pairs of variables, given that many variables are
observed. Finally, the reconstruction of binary con-
founders under the assumption of pure conditionals is
presented in Janzing et al. (2011).

In this section, we use the results of the previous sec-
tions to infer the existence and identify a finite con-
founder that explains all the dependences between the
observed variables. We assume that latent variables
are not caused by observed variables (the same as-
sumption has been used by Silva et al. (2006)). Unlike
previous methods, we do not make explicit assump-
tions on the distribution of the variables. Instead, we
postulate a different assumption, namely that the con-
ditional of each variable given its parents is full rank:
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Assumption 1 (full rank given parents) Let
PAY denote the parents of a continuous variable Y
with respect to the true causal DAG. Then, P (Y |PAY )
is a full rank (f.r.) conditional.

Lemma 2 (full rank given parent) By Assump-
tion 1 it follows that, if A ∈ PAY is one of the parents
of Y , i.e., A → Y , then, since P (Y |PAY ) is a f.r.
conditional, P (Y |A) is also a f.r. conditional (after
marginalization).

Remark: If Assumption 1 holds and A→ B → C, then
P (B|A) and P (C|B) are f.r. conditionals (Lemma 2),
which implies that P (C|A) is also a f.r. conditional,
since it results from their multiplication.

Lemma 3 (shifted copies) Let R be a probability
distribution on R and TtR its copy shifted by t ∈ R
to the right. Then {TtR}t∈R are linearly independent.

Proof. Let
q∑

j=1

αjTtjR = 0 , (7)

for some q and some q-tuple α1, . . . , αq. Let R̂ be the
Fourier transform of R. If we set g(ω) :=

∑q
j=1 αje

iωtj

then (7) implies g(ω)R̂(ω) = 0 for all ω ∈ R, hence g
vanishes for all ω with R̂(ω) 6= 0, which is a set of
non-zero measure. Since g is holomorphic, it therefore
vanishes for all ω ∈ R and thus all coefficients are zero.
�
The following theorem shows that Assumption 1 is typ-
ically satisfied for a class of causal models considered
by Hoyer et al. (2009):

Theorem 2 (additive noise model) Let Y be
given by Y = f(PAY ) + N , where N is a noise
variable that is statistically independent of PAY and
f is an injective function. Then P (Y |PAY ) is a full
rank conditional.

The proof is a straightforward application of Lemma 3.

Theorem 3 (rank of cause-effect pair) Assume
there is a direct causal link A → B between two
observed variables A and B, with {A,B} not neces-
sarily being a causally sufficient set (i.e., there may
be unobserved common causes of A and B). Then,
given Assumption 1, the rank of UA,B is equal to the
number of values that A takes, if A is finite. If A is
infinite, then the rank of UA,B is infinite.

Proof. By Assumption 1, P (B|A) is a f.r. conditional
(Lemma 2). Since A ⊥⊥ B |A, applying Theorem 1 for
finite Z := A we conclude that the rank of UA,B is
equal to the number of values of A. For infinite A, we

similarly apply Lemma 1 and we get infinite rank of
UA,B . �

Theorem 4 (rank of confounded pair) Assume
A ← C → B, and A, B do not have other common
causes apart from C. Then, given Assumption 1, the
rank of UA,B is equal to the number of values of C.

Proof. The proof is straightforward: by Assump-
tion 1, P (A|C) and P (B|C) are f.r. conditionals
(Lemma 2). Additionally, A ⊥⊥ B |C and then, ac-
cording to Theorem 1, the rank of UA,B is equal to the
number of values of Z := C (for infinite C, the rank is
infinite). �
Theorems 3 and 4 state what is the expected rank of
UA,B for various causal structure scenarios. However,
in causal inference we are interested in inferring the
unknown underlying causal DAG. The following Theo-
rem uses Theorem 3 to infer the causal structure based
on the rank of the embedding of the joint distribution.

Theorem 5 (identifying confounders) Let
Y1, . . . , Yd denote all observed variables. Assume
they are continuous, pairwise dependent, and there is
at most one (if any) hidden common cause of two or
more of the observed variables. If Assumption 1 holds
and the rank of UY1,...,Yd

, with d ≥ 3, is finite, then
Fig. 1 depicts the only possible causal DAG with W
being an unobserved variable and P (Y1, . . . , Yd,W ) is
identifiable up to reparameterizations of W .

Proof. Assume there is at least one direct causal
link Yi → Yi′ . Then, according to Theorem 3, the
rank of UYi,Yi′ , and thus the rank of UY1,...,Yd

, would
be infinite. Therefore, direct causal links between
the {Yj} can be excluded and the statistical depen-
dencies between {Yj} can only be explained by hid-
den common causes. Since we assumed that there
is at most one hidden common cause (and the ob-
served variables are pairwise dependent), the only pos-
sible causal graph is depicted in Fig. 1. This implies
Y1 ⊥⊥ Y2 ⊥⊥ . . . ⊥⊥ Yd |W (according to the CMC), so
model (1) holds, with Z := W being the latent vari-
able. According to the previous sections (Theorem 1
and Section 3), this model is identifiable. �
Based on Theorem 1, the number of values of W is
equal to the rank of UY1,...,Yd

and P (Y1, . . . , Yd,W ) can
be identified according to Section 4. Note that the
single common cause W could be the result of merging
many common causes W1, ..,Wk to one vector-valued
variable W . Thus, at first glance, it seems that one
does not lose generality by assuming only one common
cause. However, Assumption 1, then, excludes the case
where W consists of components each of which only
acts on some different subset of the {Yj}. W1, ..,Wk

should all be common causes of all {Yj}.
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W

Y1 Y2 Yd

Figure 1: Inferred causal DAG (the dotted circle rep-
resents an unobserved variable).

Note that, when we are given only finite data, the esti-
mated rank of UY1,...,Yd

is always finite, highly depend-
ing on the strength of the causal arrows and the sample
size. Then, we are faced with the issue that, based on
Theorem 5, we would always infer that Fig. 1 depicts
the only possible causal DAG, with the number of val-
ues of W being equal to the estimated rank. However,
the lower the rank, the more confident we get that
this is, indeed, due to the existence of a confounder
that renders the observed variables conditionally inde-
pendent (Fig. 1). On the other hand, high rank can
also be due to direct causal links between the observed
variables or continuous confounders. For that, we con-
sider Theorem 5 to be more appropriate for inferring
the existence of a confounder with a small number of
values which would lead to low rank. However, we ad-
mit that what is considered “high” or “low” is not well
defined. For example, how much “high” rank values
we expect for the DAG Y1 → Y2 highly depends on
the strength of the causal arrow: the lower the depen-
dence between Y1 and Y2 is, the lower is, generally, the
estimated rank. In practice, we could make a vague
suggestion that whenever the estimated rank is below
5 (although the dependence between {Yj} is strong),
it is quite probable that this is due to a confounder
(Fig. 1) but for higher rank it is getting more difficult
to decide on the underlying causal structure.

6 Experiments

We conducted experiments both on simulated and real
data. In all our experiments we use a Gaussian RBF
kernel k(x, x′) = exp

(
−‖x− x′‖2/(2σ2)

)
. Concerning

the first step of determining the number of mixture
components: a common way to select the bandwidth
σj for every kj is to set it to the median distance be-
tween all data points in the jth dimension of the em-
pirical data. However, this approach would usually
result in an overestimation of the bandwidth, espe-
cially in case of many mixture components (see also
Benaglia et al. (2011)). To partially account for this,
we compute the bandwidth for every Xj as the median
distance between points in the neighborhood of every
point in the sample. The neighborhood is found by the
10 nearest neighbors of each point computed using all
other variables apart from Xj . To estimate the rank
of V , we find its SVD and report the estimated rank

as m̂ = argmini(SVi+1/SVi) within the SVs that cover
90-99.999% of the total variance. Finally, concerning
CLIC, we use 7 as the maximum number of iterations,
but usually the algorithm terminated earlier.

6.1 Simulated Data

Simulated data were generated according to the DAG
of Fig. 1 (we henceforth refer to them as the first set
of simulated data), e.i., model (1) holds with Z := W ,
since Y1 ⊥⊥ Y2 ⊥⊥ . . . ⊥⊥ Yd |W . We first generated Z
from a uniform distribution on m values. Then, the
distribution of each mixture component in every di-
mension (P (Xj |z(i))) was chosen randomly between:
(i) a normal distribution with standard deviation 0.7,
1, or 1.3, (ii) a t-distribution with degrees of freedom
3 or 10, (iii) a (stretched) beta distribution with alpha
0.5 or 1 and beta 0.5 or 1, and (iv) a mixture of two
normal distributions with variance 0.7 for each. The
distance between the components in each dimension
was distributed according to a Gaussian with mean
2 and standard deviation 0.3. We chose the distance
and the mixtures such that the experiments cover dif-
ferent levels of overlap between the components, and
at the same time {P (Xj |z(i))}i≤m are generically lin-
early independent. We ran 100 experiments for each
combination of d = 2, 3, 5 and m = 2, 3, 4, 5, with the
sample size being 300×m.

For comparison, we additionally generated data where
the observed variables are connected also with di-
rect causal links and thus are conditionally dependent
given the confounder (we henceforth refer to them as
the second set of simulated data). For that, we first
generated data according to the DAG of Fig. 1, as
above, for d = 2 and m = 1 (which amounts to no
confounder) and for d = 2 and m = 3 (3-state con-
founder). X2 was then shifted by 4X1 to simulate a di-
rect causal link X1 → X2. In this case, X1 ⊥⊥ X2 |X1,
so we have infinite Z := X1.

6.1.1 Identifying the Number of Mixture
Components
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Figure 2: Histograms of the estimated number of mix-
ture components m for the first set of simulated data,
for m = 2 throughout, and d = 2 (left), d = 3 (mid-
dle), d = 5 (right).

We first report results on the first part of identifica-
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Figure 3: As Figure 2 but for m = 3.
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Figure 4: As Figure 2 but for m = 4.
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Figure 5: As Figure 2 but for m = 5.

tion, i.e. identifying the number of mixture compo-
nents m in (1). The empirical rank estimation may
depend on the strength of the causal arrows, the ker-
nel bandwidth selection, the sample size and the way
to estimate the rank by keeping only large eigenvalues.
Figures 2, 3, 4 and 5 illustrate histograms of the es-
timated number of components (equivalently the esti-
mated number of values of the confounder) for the first
set of simulated data form = 2, 3, 4 and 5, respectively.
Each figure contains one histogram for every value of
d = 2, 3 and 5. We can observe that as m increases
the method becomes more sensitive in underestimat-
ing the number of components, a behavior which can
be explained by the common sigma selection for all the
data in each dimension or by high overlap of the distri-
butions (which could violate Assumption 1). On the
other hand, as d increases the method becomes more
robust in estimating m correctly due to the group-
ing of variables that allows multiple rank estimations.
The “low” estimated rank values provide us with some
evidence that the causal DAG of Fig. 1 is true (Theo-
rem 5). Of course, as stated also at the end of Sec. 5,
it is difficult to define what is considered a low rank.

Figure 6 depicts histograms of the estimated number
of components for the second set of simulated data.
According to Theorem 3, the direct causal link X1 →
X2 results in an infinite rank of UX1,X2 . Indeed, we
can observe that in this case the estimated m is much
higher. The “high” estimated rank values provide us
with some evidence that the underlying causal DAG

may include direct causal links between the observed
variables or confounders with a high or infinite number
of values. Note that, depending on the strength of the
causal arrow X1 → X2, we may get higher or lower
rank values. For example, if the strength is very weak
we get lower rank values since the dependence between
X1 and X2 tends to be dominated by the confounder
(that has a small number of values).

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

Estimated m
0 5 10 15 20 25 30 35 40 45

0

5

10

15

Estimated m

Figure 6: Histograms of the estimatedm for the second
set of simulated data (including a direct causal arrow).
Left: no confounder, right: 3-state confounder.

6.1.2 Full Identification Framework

Next, we performed experiments, using the first set
of simulated data to evaluate the performance of the
proposed method (CLIC) (Section 4.2), the method
of Levine et al. (2011) (Section 4.1) and the EM algo-
rithm using a Gaussian mixture model (EM is repeated
5 times and the solution with the largest likelihood is
reported). In the following, we refer to these meth-
ods as CLIC, Levine, and EM, respectively. For each
data point, the two latter methods output posterior
probabilities for the m clusters, which we sample from
to obtain cluster assignments. Figure 7 illustrates the
cluster assignments of these three methods for one sim-
ulated dataset with m = 3 and d = 2 (this is more
for visualization purposes because for these values of
d and m model (1) is not always identifiable). Note
that permutations of the colors are due to the ambi-
guity of labels in the identification problem. However,
EM incorrectly identifies a single component (having
a mixture of two Gaussians as marginal density in X1

dimension) as two distinct components. It is clear that
this is because it assumes that the data are generated
by a Gaussian mixture model and not by model (1),
as opposed to CLIC and Levine methods.

We compare the distribution of each cluster output
(for each of the three methods) to the empirical distri-
bution, Pn(X1, . . . , Xd|z(i)), of the corresponding mix-
ture component (ground truth). For that we use the
squared maximum mean discrepancy (MMD) (Gret-
ton et al., 2012) that is the distance between Hilbert
space embeddings of distributions. We only use the
MMD and not one of the test statistics described in
Gretton et al. (2012), since they are designed to com-
pare two independent samples, whereas our samples
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Figure 7: From left to right: ground truth, input, CLIC output, Levine output, and EM output for simulated
data generated for m = 3. Each color represents one mixture component.
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Figure 8: Squared MMD between output and ground truth clusters (for each of the three methods) for simulated
data with (a) d = 3,m = 2, (b) d = 3,m = 3 and (c) d = 5,m = 2

(output and ground truth) have overlapping observa-
tions. To account for the permutations, we measure
the MMD for all cluster permutations and select the
one with the minimum sum of MMD for all clusters.
Figures 8(a)-8(c) report the squared MMD results of
the three methods for different combinations of m and
d. Each point corresponds to the squared MMD for
one cluster of one of the 100 experiments. Results are
provided only for the cases that the number of com-
ponents m was correctly identified from the previous
step. The CLIC method was unable to find appropri-
ate clusters in 2 experiments for d = 3 and m = 3 and
in 13 for d = 5 and m = 2. Without claiming that the
comparison is exhaustive, we can infer that both CLIC
and Levine methods perform significantly better than
EM, since they impose conditional independence. For
higher d, EM improves since the clusters are less over-
lapping. However, the computational time of CLIC is
higher compared to the other two methods.

6.2 Real data

Further, we applied our framework to the Breast
Cancer Wisconsin (Diagnostic) Data Set from the
UCI Machine Learning Repository (Frank & Asun-
cion, 2010). The dataset consists of 32 features of
breast masses along with their classification as be-
nign (B) or malignant (M). The sample size of the
dataset is 569 (357 (B), 212 (M)). We selected 3 fea-
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Figure 10: Breast data: features conditionally depen-
dent given the class. Left: estimated m = 62, right:
estimated m = 8.

tures, namely perimeter, compactness and texture,
which are pairwise dependent (the minimum p-value
is pval = 2.43e − 17), but become (close to) mutu-
ally independent when we condition on the class (B or
M) (pvalB = 0.016, pvalM = 0.013). We applied our
method to these three features (assuming the class is
unknown) and we succeeded at correctly inferring that
the number of mixture components is 2. Figure 9 de-
picts the ground truth of the breast data, the input and
the results of CLIC, Levine and EM, and Fig. 12(a) the
corresponding squared MMDs. We can observe that
Levine method performs very poorly for this dataset.

Additionally, we selected different features, namely
perimeter and area, and concavity and area, which are
not conditionally independent given the binary class.
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Figure 9: From left to right: ground truth, input, output CLIC, Levine, and EM for the breast data.
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Figure 11: From left to right: ground truth, input, output CLIC, Levine, and EM for the arrhythmia data.

In this case, we got rank values higher than two, i.e.,
62 and 8, respectively (Fig. 10).

We similarly applied our framework to the Arrhythmia
Data Set (sample size 452) (Frank & Asuncion, 2010).
We selected 3 features, namely height, QRS duration
and QRSTA of channel V1 which are dependent (min-
imum pval = 8.96e − 05), but become independent
when we condition on a fourth feature, the sex of a
person (Male or Female) (pvalM = 0.0607, pvalF =
0.0373). We applied our method to the three fea-
tures and we succeeded at correctly inferring that the
number of mixture components is 2. Figure 11 de-
picts the ground truth, the input and the results of
CLIC, Levine and EM, and Fig. 12(b) the correspond-
ing squared MMDs. We can observe that Levine and
EM methods perform very poorly for this dataset.

Finally, we applied our method to a database with
cause-effect pairs2. It includes pairs of variables with
known causal structure. Since there exists a direct
causal arrow X → Y , we expect the rank of UX,Y
to be infinite given our assumptions (Theorem 3),
even if there exist hidden confounders or not. How-
ever, the estimated rank from finite data is always fi-
nite, its magnitude strongly depending on the strength
of the causal arrow and the sample size, as men-
tioned in Sec. 5. Figure 13 depicts 4 cause-effect
pairs (which were taken from the UCI Machine Learn-
ing Repository (Frank & Asuncion, 2010)) with the
same sample size (1000 data points) but various de-
grees of dependence, specifically: pval = 7.16e − 12,
pval = 9.41e− 63, pval = 1.21e− 317, pval = 0. The
estimated ranks are m = 1, 4, 8 and 63, respectively.
Note that when X and Y are close to independent
(e.g., the first plot of Fig. 13) the assumption of pair-

2http://webdav.tuebingen.mpg.de/cause-effect/

wise dependence of Theorem 5 is almost violated.
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Figure 12: Squared MMD between output and ground
truth clusters for (a) breast and (b) arrhythmia data.
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Figure 13: Four cause-effect pairs. Estimated m from
left to right: m = 1, m = 4, m = 8, and m = 63.

7 Conclusion

In this paper, we introduced a kernel method to iden-
tify finite mixtures of nonparametric product distri-
butions. The method was further used to infer the
existence and identify a hidden common cause of a set
of observed variables. Experiments on simulated and
real data were performed for evaluation of the pro-
posed approach. In practice, our method is more ap-
propriate for the identification of a confounder with a
small number of values.
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Abstract

Semi-supervised clustering is the task of clus-
tering data points into clusters where only a
fraction of the points are labelled. The true
number of clusters in the data is often un-
known and most models require this param-
eter as an input. Dirichlet process mixture
models are appealing as they can infer the
number of clusters from the data. However,
these models do not deal with high dimen-
sional data well and can encounter difficulties
in inference. We present a novel nonparame-
teric Bayesian method to cluster data points
without the need to prespecify the number
of clusters or to model complicated densities
from which data points are assumed to be
generated from. The key insight is to use
determinants of submatrices of a kernel ma-
trix as a measure of how close together a set
of points are. We explore some theoretical
properties of the model and derive a natural
Gibbs based algorithm with MCMC hyper-
parameter learning. We test the model on
various synthetic and real world data sets.

1 INTRODUCTION

Finding clusters amongst data points has been a
key idea addressed by many researchers in machine
learning, statistics and signal processing. In practice
it is often the case that copious amounts of data can
be easily collected, but subsequent labelling of the
data is expensive and slow to obtain. Semi-supervised
learning algorithms aim to utilise information from
both labelled and unlabelled data to inform choices
about how best to partition data points or where
decision boundaries lie.

A natural approach for a Bayesian practitioner

would be to consider a generative model of the data.
This involves explicit modelling of the density which
produced the observations and averaging over possible
clusterings of the unlabelled training data. Next any
parameters of the density model can be integrated out
to produce a predictive clustering of unseen test data.

The choice of density model is integral and highly
influential on the results of the training. A non-
parametric Bayesian model is attractive in that it
can incorporate an unbounded number of parameters
and is able, in theory, to learn the correct density
model e.g. Dirichlet Process Mixture Model [Escobar
and West, 1995]. However such an approach can be
expensive as typically, when clustering, we are not
interested in the density itself whilst much effort is
spent in learning it. Adams and Ghahramani [2009]
propose a fully-Bayesian generative approach to
semi-supervised classification which avoids the need
to model complex density functions. Nonetheless this
model does require prior specification of the number of
classes and the training of a Gaussian process per class.

Discriminative models tend to be more popular
for Bayesian semi-supervised learning [Zhu, 2005].
Lawrence and Jordan [2005] construct a nonpara-
metric Bayesian model for binary semi-supervised
classification, which is extended to the multi-class
case by Rogers and Girolami [2007]. Similar Gaussian
process based discriminative models that exploit
graph-based information are suggested by Chu et al.
[2007] and Sindhwani et al. [2007]. All of these
examples also require knowledge of the total number
of classes that the data is divided into.

In this work we present a novel discriminative
nonparametric Bayesian method for clustering points
using a kernel matrix determinant based measure of
similarity between data points. It is nonparametric in
that prior mass is assigned to all possible partitions
of the data. This method is highly appropriate in
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the case where a generative model is computation-
ally prohibitively expensive to train but where a
kernel between pairs of data points can be easily
computed e.g. in high dimensional data which cannot
be adequately represented on a low dimensional
manifold. Thus we bring together some of the most
attracive properties of discriminative kernel methods
(removing the need to model the input observations)
and Bayesian nonparametrics (the ability to infer the
number of clusters and kernel hyperparameters).

Our model makes use of a popular determinant
based likelihood model called the determinantal point
process (DPP) [Kulesza and Taskar, 2013]. This
is a prior on the set of all subsets of a data set
which places higher mass on subsets which contain
diverse elements. DPPs arise in classical theory
such as random matrix theory [Mehta and Gaudin,
1960, Ginibre, 1965] and quantum physics [Macchi,
1975]. They have more recently been used for human
pose estimation, search diversification and document
summarization [Kulesza and Taskar, 2010, 2011a,b].

In Section 2 we introduce the determinantal clustering
process likelhood and discuss some of its properites.
In Section 3 we explain how such a model can
be applied to semi supervised clustering problems
and develop a Gibbs based inference scheme with
MCMC hyperparameter updates. We consider related
research in Section 4 and describe the novel features
of the DCP amongst other algorithms. Experimental
performance of the model is outlined in Section 5 and
finally conclusions are discussed in Section 6.

2 THE DETERMINANTAL
CLUSTERING MODEL

Consider data points X = {xn}Nn=1 which live in a
space X . We assume that xi 6= xj whenever i 6= j
without loss of generality (since we can assign any
pair of points which violate this condition to the same
cluster). In this work we typically consider the case
X = RD, but the ideas can easily be extended to more
general spaces. Suppose further that we are given a
positive definite kernel function, k, which depends on
hyperparameters belonging to a space Θ, such that
k : X × X ×Θ→ R.

For a given set of hyperparameters, θ ∈ Θ and
ordered subsets A,B ⊆ X of sizes NA, NB , define the
NA ×NB Gram matrix Kθ

A,B as

Kθ
A,B(i, j) = k(xai , xbj , θ), (1)

where xai is the ith element in A and xbj is the jth

element in B. For notational convenience we write

Kθ
A,A as Kθ

A.

Let S be the set of all partitions of X. Hence
an element S ∈ S is a set of subsets of X such that
for any S, S′ ∈ S, S ∩ S′ = ∅ and

⋃
S∈S S = X. We

introduce the notion of a determinantal clustering
process (DCP) for a given kernel function k and
hyperparameters θ ∈ Θ, defined as a probability
measure on the set S with density function

p(S ∈ S|θ) ∝
∏

S∈S
det
(
Kθ
S

)−1
. (2)

Note that whilst DPPs have been extensively used as
priors over subsets to encourage diversity [Kulesza and
Taskar, 2013], we use the inverse of the determinant
as a measure of similarity amongst points in a cluster
which has very different properties which we discuss
in the next section.

2.1 PROPERTIES OF THE DCP

(a) (b)

Figure 1: In (a) the volume represents the determinant

of
(

10 1 2
1 10 1
2 1 10

)
whilst the in (b) the volume represents

the determinant of
(

10 8 7
8 10 8
7 8 10

)
. The more similar the

rows of the matrix are, the smaller the determinant is.

Note that for any S ∈ S ∈ S the matrix Kθ
S is positive

definite implying that det(Kθ
S) > 0. The determinan-

tal clustering process probability measure (Eq. (2))
therefore places positive mass on every S ∈ S. This
is a crucial property which is highly attractive in a
clustering task as it removes the need to prespecify the
number of clusters the data should be partitioned into.

The geometric interpretation of the determinant
of an M × M matrix is the volume spanned by its
rows. A small determinant implies the rows are
‘similar’ to each other, whilst conversely a large
determinant implies ‘dissimilarity’ amongst the rows.
This phenomenon is illustrated in Figure 1. The
reciprocal of the determinant is therefore a natural
measure of similarity between data points.
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Taking the product of such reciprocal determi-
nants is a simple yet natural way to amalgamate the
score for each cluster into a global score for a given
partition. It also permits very simple sampling and
inference which is discussed later.

Notice that unlike many popular clustering methods
e.g. k-means or mixtures of Gaussians, the DCP does
not assume that each cluster has a mean about which
points occur with elliptically symmetrically. Such
methods are often highly sensitive to initialisation
and outliers which can be avoided by using a DCP
type cluster scoring method. We explore this idea
further in the Experiments section.

2.1.1 Relation to Gaussian Clustering in
Feature Space

Suppose φ : X → RP is a non linear feature mapping
for some P ∈ N. Given data x1, ..., xN ∈ X , let Φ be
the P × N matrix with nth column equal to φ(xn).
Now imagine that each row of Φ is an independent
draw from a multivariate Gaussian with mean 0 and
covariance Σ. The probability of Φ is given by

L(Φ|Σ) ∝ 1√
det(Σ)

exp
(
− 1

2
Trace(ΦΣ−1Φ>)

)
. (3)

The maximum likelihood estimator of Σ is Σ̂ =
Φ>Φ. Note that Σ̂ is a kernel matrix with Σ̂m,n =
φ(xm)>φ(xn). Finally it is easy to show that

L(Φ|Σ̂) ∝ 1√
det(Φ>Φ)

exp
(
− 1

2
Trace(Φ(Φ>Φ)−1Φ>)

)

∝ det(Φ>Φ)−1/2. (4)

The points φ(x1), ..., φ(xN ) are close together
if and only if the covariance between points
φ(x1)p, ..., φ(xN )p is small for each p ∈ {1, ..., P}. This
is the case exactly when det(Φ>Φ) is small. The prob-
ability of Φ is therefore large when φ(x1), ..., φ(xN )
are close together.

Suppose we partition the data and fit a Gaus-
sian with the maximum likelihood covariance matrix
to each partition. The resulting likelihood would be
proportional to a product of terms like in Eq 4. This
expression is identical to the DCP likelihood where
we simply set K = Φ>Φ and temper the likelihood
(which is discussed in Section 2.2). The DCP does
not require explicit specification of the feature map
φ and works entirely on the kernel matrix. Note
that clustering the columns of Φ leads to an entirely
different process; Gaussian mixture modelling in
feature space [Wang et al., 2003].

2.1.2 A Simple Example

Consider the delta kernel function

k(i, j, θ) =

{
θ if xi = xj ,

0 otherwise.
(5)

Recall that xi 6= xj for i 6= j, therefore for any A ⊆ X
of size NA, Kθ

A = θINA
where INA

is an NA × NA
identity matrix and det(Kθ

A) = θNA . In fact for any
partition S ∈ S, p(S ∈ S|θ) ∝ θN which is indepen-
dent of S. For this choice of kernel, the DCP there-
fore places uniform mass over the set of all partitions.
This is what we would expect intuitively since the ker-
nel suggests that points are only similar to themselves
and dissimilar to everything else.

2.1.3 Discouraging Singleton Clusters

A potential concern with such a model is that it may
favour a large number of very small clusters. A similar
problem was observed by Wu and Leahy [1993] when
proposing a clustering scheme based on a minimum
cut method, where leaf nodes tended to belong to their
own clusters. We show that such a drawback does not
exist under a DCP framework. A proof of the following
can be found in Gentle [2007].

Lemma 1. Suppose K, a symmetric positive definite
matrix, is written in black matrix form,

K =

(
A CT

C B

)
,

then det(K) = det(A) det(B − CA−1CT ).

For a kernel function k and hyperparameters θ ∈ Θ,
consider a set A ⊂ X and x ∈ X\A. By applying
Lemma 1, note that

det
(
Kθ
A∪{x}

)

= det
(
Kθ
A

)
det
(
Kθ
{x} −Kθ

{x},AK
θ
A

−1
Kθ
A,{x}

)

= det
(
Kθ
A

)
×
(
Kθ
{x} −Kθ

{x},AK
θ
A

−1
Kθ
A,{x}

)

≤ det
(
Kθ
A

)
×
(
Kθ
{x}
)

= det
(
Kθ
A

)
det
(
Kθ
{x}
)
,

where we use the fact that the determinant of a scalar
is the scalar and the inequality comes from the fact

that yKθ
A

−1
yT > 0 for any non-zero vector y by posi-

tive definiteness. We trivially deduce that

det
(
Kθ
A∪{x}

)−1 ≥ det
(
Kθ
A

)−1
det
(
Kθ
{x}
)−1

and hence that the DCP would always prefer to add a
singleton to an existing cluster rather than to assign
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it to a new one.

It is important to appreciate that such a result
does not necessarily hold when comparing the union
of two sets each of size greater than 1 i.e. for A,B ⊂ X
disjoint each containing more than 1 element, it may
be the case that

det
(
Kθ
A∪B

)−1
< det

(
Kθ
A

)−1
det
(
Kθ
B

)−1
.

If this were never possible the DCP would be a poor
model as, we could show inductively, that its mode
would be at the clustering where all points are clus-
tered together for any set of data points X.

2.1.4 Choosing a Kernel Function

The behaviour of the DCP is entirely encoded in the
functional form of the kernel and its parameters. This
is entirely analogous to the fact that the behaviour
of a support vector machine or a function drawn
from a Gaussian process prior with mean 0 is entirely
encoded in its covariance kernel function.

Many classes of positive definite kernel functions
and more information about Gaussian processes can
be found in Rasmussen and Williams [2006]. The
squared exponential kernel is a common choice of
kernel and is defined by

k(x, x′, {l, σ}) = σ2 exp
(
−1

2
(x−x′)>Diag(l)−1(x−x′)

)
,

(6)
where Diag(l) is a diagonal matrix with li as the ith

diagonal entry. For any N × N positive definite ma-
trix K, det(αK) = αN det(K). Since the DCP is a
probability measure the constant multiplier becomes
redundant hence we can set σ = 1 without losing any
modelling flexibility.

2.2 Using a ‘Temperature’ Parameter

The addition of a temperature parameter to the DCP
likelihood adds another layer of flexibility to the clus-
tering process. Consider

p(S ∈ S|θ) ∝
∏

S∈S
det
(
Kθ
S

)−τ
, (7)

where τ ∈ R+. This parameter has the effect of de-
termining how peaked or flat the density is analogous
to the temperature parameter in simulated annealing.
Here, a large τ will make the density highly peaked
at the mode whilst a small τ will encourage a uniform
density over all partitions.

2.2.1 Kernel Hyperparameters

In some types of data analysis a user may actually
know a good, application specific choice of kernel

function and hyperparameters they wish to use. In
such a case the DCP may be used as a prior over all
possible clusterings directly with no further parameter
learning required.

In most cases kernel hyperparameters are un-
known apriori and have to be learned from data. We
proceed under this assumption. In particular, we
consider the case of observing many data points only
some of which have been labelled. This is developed
further in Section 3.1.2.

3 SEMI SUPERVISED
CLUSTERING WITH DCP

Unlike for a classification problem, the ‘name’ of a
particular cluster is irrelevant. For example, consider
the clustering {{1, 4}, {2, 3}}. Whether we call the
set {1, 4} ‘cluster 1’ or ‘cluster 2’ is arbitrary, the
important information is that 1 and 4 belong to the
same cluster whilst 2 and 3 belong to another one.

We therefore can encode the relevant informa-
tion about the clustering of points in X using a binary
indicator matrix C, where for xi, xj ∈ X

C(xi, xj) =

{
1 if xi, xj in the same cluster,

0 otherwise.
(8)

Moreover notice that every partition S ∈ S will have
a unique such binary matrix representation which we
denote CS.

In the semi-supervised setting we assume that
some portion of our data set is labelled. Let Z ⊂ X
be the set of observed points for which we have labels,
i.e. we observe the binary indicator matrix ĈZ defined
on pairs of inputs xi, xj ∈ Z.

For a given kernel function and hyperparameters
θ ∈ Θ our DCP likelihood function becomes

p(S ∈S|ĈZ , θ, τ) (9)

∝
∏

S∈S
det
(
Kθ
S

)−τ ∏

x,y∈Z
I
(
CS(x, y) = ĈZ(x, y)

)
,

where I(.) is an indicator which takes value 1 when its
argument is true and 0 otherwise. This second product
encodes all the observed labels into the DCP model.

3.1 INFERENCE

Assuming a given parameterized kernel function, we
describe a Gibbs based sampling method for allocating
unlabelled data points to clusters and a MCMC step
for learning kernel hyperparameters.
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3.1.1 Sampling clusters

Suppose the sampler is currently at a particular par-
tition S = {S1, ..., SM} for some integer M ≤ N .
Further suppose that for each cluster Sm, we have

Kθ
Sm

−1
stored in memory. We wish to update the

cluster location of point x ∈ X\Z given the cluster-
ing of the remaining points. Without loss of gener-
ality, suppose x ∈ SM and let S\{x} = {S1, ..., SM ′}
where M ′ = M − 1 if SM = {x} and M ′ = M oth-
erwise. In the latter case, we remove x from SM and

update Kθ
SM

−1
using the following lemma (proof found

in Gentle [2007]).

Lemma 2. Suppose we know K−1A for some non-
empty set A. If we add an element x ∈ X\A to the
set A, we have

K−1A∪{x} =

(
U V
V T 1

w

)
,

where

w = K{x} −K{x},AK−1A KA,{x},

U = K−1A +
1

w
K−1A KA,{x}K{x},AK

−1
A ,

V = − 1

w
K−1A KA,{x}.

We now must assign x to a particular cluster. For
m ∈ {1, ...,M ′},

p(x ∈Sm|S\{x}, θ, τ) =
p({S1, .., Sm ∪ {x}, .., SM ′}|θ, τ)

p({S1, ..., SM ′}|θ, τ)

∝
det
(
Kθ
Sm∪{x}

)−τ

det
(
Kθ
Sm

)−τ

∝
(
Kθ
{x} −Kθ

{x},Sm
Kθ
Sm

−1
Kθ
Sm,{x}

)−τ
, (10)

and for m = M ′ + 1,

p(x ∈ Sm|S\{x}, θ, τ) =
p({S1, ..., SM ′ , {x}}|θ, τ)

p({S1, ..., SM ′}|θ, τ)

∝ det
(
Kθ
{x}
)−τ

∝ Kθ
{x}
−τ
. (11)

We therefore allocate x to an existing cluster or a
new cluster using a discrete uniform sample with

these computed probabilities and update Kθ
Sm

−1
us-

ing Lemma 2. This procedure is repeated for each
x′ ∈ X\Z.

Note the conceptual similarity between this sampler
and the collapsed Gibbs sampler for Dirichlet process
mixtures; for each data point, the sampler decides
whether to assign it to an existing (10) or new (11)
cluster.

3.1.2 Sampling Kernel Hyperparameters and
Temperature

Given a particular partition of the data S ∈ S, we wish
to update the kernel hyperparameters and the temper-
ature parameter using MCMC. We take ψ = (θ, τ) to
represent all these parameters in the proceeding dis-
cussion. Assume a prior density p(ψ) over the param-
eter space Θ×R+. The posterior density for ψ is given
by

p(ψ|S) =
p(S|ψ)p(ψ)∫
p(S|ψ′)p(ψ′)dψ′ . (12)

We conjecture that the normalising constant of the
DCP is analytically intractable. Whilst this is difficult
to prove formally, we believe it to be true in part due
to the sheer size of the set S, known as the N th Bell
number [Wilf, 2006].

Consequently, we say that the posterior density is
doubly intractable as the integral in the denominator
is intractable and the likelihood in the numerator
has an intractable normalising constant. A typical
Metropolis-Hastings MCMC step would require the
ability to compute the numerator of this posterior
exactly.

To combat this issue we appeal to the Exchange
Sampling algorithm of Murray et al. [2006] where we
generate auxiliary data to avoid the need to compute
normalising constants for the likelihood. Given that
the current hyperparameters are set to ψ ∈ Θ × R+,
suppose we have a proposal distribution q(ψ → ψ′).
The Single Variable Exchange Algorithm says to
sample ψ′ ∼ q(ψ → ψ′) and then to sample an
auxiliary data set S′ ∼ p(S′|ψ′) (note that this can be
done using the Gibbs based method of Section 3.1.1).
The acceptance probability is set to

a = min

(
1,
q(ψ → ψ′)p(S|ψ′)
q(ψ′ → ψ)p(S|ψ)

× p(S′|ψ)

p(S′|ψ′)

)
. (13)

Notice the normalising constants for the observed data
likelihoods cancel with those of the auxiliary data like-
lihoods removing the need to compute them explicitly.
Murray et al. [2006] show that using such an accep-
tance probability, the Markov chain converges to the
required posterior in the limit.

4 RELATED WORK

It is natural to question the relationship between
determinantal clustering and spectral clustering
[Shi and Malik, 2000]. Whilst both methods have
similar matrix based inputs, their processes are
fundamentally different. Spectral clustering maps
this similarity matrix to its eigenspace and then
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performs a simple clustering algorithm e.g. k-means.
Similarly kernel k-means [Dhillon et al.] maps the
data to some feature space and performs k-means
in this new space. In both examples, the kernel
matrix is used to map inputs to a latent feature
space before performing a simple clustering algo-
rithm. This is not the case for the determinantal
clustering process. The DCP simply uses the kernel
to ensure positive definiteness so that determinants
can be used as a measure of the size of a cluster.
The DCP also does not require the prespecification
of the number of clusters and learns this from the data.

The Dirichlet Process Gaussian Mixture Model
(DPGMM) is a popular nonparametric Bayesian tool
for clustering e.g. . This model assumes that each
cluster is generated by an independent Gaussian
distribution whose parameters are learnt from the
data. Such a model requires modelling the joint
distribution of all the data which can be difficult in
high dimensions. Conversely the DCP requires just
the ability to compute a kernel function between pairs
of inputs.

There are plenty of flexible discriminative nonparam-
eteric Bayesian models for multi-class classification
problems based on transformed Gaussian processes
[Lawrence and Jordan, 2005, Sindhwani et al., 2007,
Chu et al., 2007, Rogers and Girolami, 2007, Adams
and Ghahramani, 2009]. However, these all require
knowledge of the number of classes apriori and are
inappropriate for clustering tasks where the number
of clusters is unknown.

Nonparametric clustering in spectral space is possible
using the similarity-dependent Chinese restaurant
process [Socher et al., 2011] or by combining the ideas
of the DP-means algorithm [Kulis and Jordan, 2012]
and kernel k-means to get a hard clustering which is
able to infer the number of clusters.

5 EXPERIMENTS

We implement determinantal clustering on both syn-
thetic and real data sets to demonstrate its properties.
To provide a benchmark of results we compare the
performance of the DCP with three other popular
clustering methods: k-means, spectral clustering [Shi
and Malik, 2000] and DPGMM [Escobar and West,
1995]. The DPGMM is a generative nonparametric
Bayesian model whilst the other two methods require
pre-specification of the number of clusters.

Two clustering metrics are computed to reflect
the quality of clusterings sampled by these algo-

rithms: adjusted rand index (ARI) Hubert and
Arabie [1985] and normalized mutual information
(NMI) [Manning et al., 2008]. Both are popular met-
rics for unsupervised clustering tasks. In cases where
classes of data are actually known, we may use classi-
fication metrics such as precision and recall, however,
we assume that we do not have this knowledge and
only are interested in pairwise relationships between
points. The ARI takes its maximum value at 1 for a
perfect match in clustering, 0 represents a clustering
which is equivalent in score to a random clustering
and the ARI can also take negative values. The NMI
is also maximized at 1 for a perfect clustering, but
cannot take negative values. In our experiements,
we compare these scores for the unlabelled test data
points.

5.1 SYNTHETIC DATA

We illustrate two useful properties of the DCP over
other clustering methods in this section. One common
underlying assumption of clustering models is that
data from a particular cluster are distributed ellipti-
cally symmetrically about some single cluster mean.
Under this paradigm, the further away you are from a
cluster mean, the less likely a point is to belong to that
cluster. In many instances such an assumption is not
a valid one and can lead to poor results. In the syn-
thetic experiments we assume that the number of clus-
ters is known. We use the squared exponential kernel
for spectral and determinantal clustering learning the
hyperparameters using cross validation and MCMC re-
spectively. When computing clustering metrics for the
DCP or DPGMM we sample partitions from the poste-
rior and average scores over samples. For k-means and
spectral clustering we average scores over a number of
alternative initializations.

5.1.1 Clusters with Overlapping Boundaries

Consider the 2 cluster problem illustrated in Fig-
ure 2(a). Each cluster was generated from a two-
dimensional Gaussian distribution and a few points
were added near the boundary of the clusters which
are not necessarily closer to their own cluster mean
than the other cluster mean. In this experiment all
the points other than the ones in squares were given
labels and the task was to predict the cluster assign-
ment of these points.

The performance of all models on the synthetic exper-
iments is shown in Table 1. All models other than
the DCP struggle with this type of data, especially
k-means and spectral clustering since both procedures
assign points to the clusters whose mean they are clos-
est to. The DPGMM does slightly better as it allocates
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Table 1: Results of Synthetic Experiments

DCP DPGMM k-means Spectral

Overlap
ARI 0.051 0.006 -0.007 -0.004
NMI 0.143 0.062 0.044 0.046

Multi
Modal

ARI 0.213 -0.052 -0.127 -0.103
NMI 0.382 0.176 0.150 0.122

points probabilistically, but the DCP is the outright
winner. This is precisely due to the use of volume
spanned by all points as opposed to distance from one
point when determining clusters. Moving 1 point over
a boundary may severely penalise the squared distance
from the mean without affecting the cluster volume as
adversarially. In this sense, the DCP is a more robust
model.

5.1.2 Multi-Modal Clusters

Clusters of data points may actually be multimodal in
their feature spaces. In such a case choosing a model
which assumes elliptical symmetry about a single point
is a poor choice. In Figure 2(b) we consider 2 clus-
ters where the first is drawn from a mixture of two
Gaussians and the second is drawn from a mixture of
3 Gaussians. Again, all points but the ones in black
squares are labelled and the task was to predict the
cluster assignments of these points.

Notice that an entire Gaussian mixture in the second
cluster is unobserved. From the results in Table 1 we
see that DPGMM, k-means and spectral clustering all
perform poorly. Both DPGMM and k-means struggle
because of their initialised cluster means. The hid-
den mixture component is roughly equidistant from
these means, so during prediction roughly half of these
points are assigned to one cluster and half to the other.
Spectral clustering struggles as the learnt kernel pa-
rameters are essentially overfit to the training data.
The performance of DCP is significantly better than
these other models again reflecting the potential ben-
efits of a volume based cluster size metric.

5.2 REAL WORLD DATA

5.2.1 Wheat Kernels

This data set due to Charytanowicz et al. [2010] is a
collection of geometric properties of 3 types of wheat
kernels: Kama, Rosa and Canadian. The properties
are real valued and include the wheat kernels’ area,
perimeter, compactness, length, width, asymmetry co-
efficient and length of kernel groove. We randomly
select 20 examples from each type of wheat kernel to
construct our data set. In this experiment we observe
6 labelled data points (3 from each of 2 randomly se-
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Figure 2: Synthetic datasets. Points to be predicted
have dark squares.

lected wheat types) and leave 5 data points from each
wheat type as unobserved test points. The remaining
39 points are observed but unlabelled. The task was
to predict the cluster assignments of the 15 test points.
The results of the experiments are shown in Table 2.

In this experiment the DPGMM outperforms other
methods. Since the data is 7-dimensional, a mixture
of Gaussians is still a powerful technique to use. For
k-means and spectral clustering, the number of clus-
ters has to be prespecified. Notice that there are only
2 clusters in the training data and that for k = 2 both
models are poor choices. For k = 3, spectral clustering
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Figure 3: Results of the Car Lane Occupancy data experiments. We show (a) ARI and (b) NMI for each method
varying the number of labelled training points. In (c)-(h) we plot the DCP posterior sampled number of clusters
for 5, 10, 15, 20, 25 and 30 labelled points respectively.
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Table 2: Results of Wheat Kernel Experiments

k-means Spectral
DCP DPGMM k = 2 k = 3 k = 2 k = 3

ARI 0.696 0.773 0.355 0.513 0.397 0.707
NMI 0.767 0.834 0.510 0.608 0.527 0.778

does well, but only marginally better than the DCP.

5.2.2 Car Lane Occupancy Data

This data was collated by Cuturi [2011] from the Cali-
fornian Department of Transportation PEMS website.
The data describes occupancy rates between 0 and
1 of San Francisco bay area freeways every 10 min-
utes of every day for 15 months. A total of 963 road
detectors were used. Hence for each day we have a
144×963 = 138672 long feature vector. The task is to
cluster data from different days of the week together.

Since this data is extremely high dimensional, using a
DPGMM is simply infeasible. In our experiments we
extract data points every 2 hours rather than every 10
minutes, leaving our data 11566 dimensional and still
beyond the capability of the DPGMM model. How-
ever, we are still able to compute a kernel between
these feature vectors. In this experiment we consider
a 1 parameter squared exponential kernel which has a
shared lengthscale parameter across all dimensions.

First we select 6 days of the week: Saturday, Sunday
and 4 weekdays. For each day we randomly select 20
data points and set aside 5 from each group as unseen
test points; this gives 90 training and 30 test points.
We vary the number of labelled points and try to pre-
dict the test points. In the ith experiment we assume
5× i of the training points are labelled and belong in
equal numbers to i different clusters. Therefore not
only do we vary the number of labels, we also vary
the number of observed cluster labels. The results are
shown in Figure 3.

Spectral clustering results were generally poor here
and this seems to be due to low flexibility of the kernel
which only has 1 parameter. Despite the DCP using
the same type of kernel function, it has significantly
better results. This is due to the increased flexibility
offered by the temperature parameter. The posterior
sampler seemed to have a mode at around 4 for this
data, which suggests that the 1 parameter kernel func-
tion was not sufficient in differentiating clusters.

We observe good performance from the k-means algo-
rithm, in particular when we set k to the true value
of 6. It should be noted that for k = 5 however, the
DCP has competitive performance versus k-means as
the number of labels increase, suggesting that when

the number of clusters is truly unknown the DCP can
be a powerful tool.

The sampled number of clustered under the DCP
framework appears slightly multimodal at first. The
peak at 2 is due to the process partitioning the week-
end against the weekdays. This feature is most pro-
nounced when labels from 2 clusters are observed in
Figure 3(b) (one label was for a weekday the other for
a weekend day). In Figure 3(f) there is no posterior
mass on 1, 2 or 3 clusters and this is because labels for
4 clusters are observed so there is 0 likelihood of the
data having less than 4 clusters.

6 CONCLUSIONS AND FUTURE
WORK

In this work we have presented a novel kernel-based
nonparameteric Bayesian approach to learning clus-
ters in data. The key insight involves the use of kernel
matrix determinants to score how close together sub-
sets of data points are to each other. We discuss some
elegant properties of the process and demonstrate its
performance against other popular clustering methods.

Using a volume based cluster measurement proved
beneficial for clusters which were not necessarily
spread symmetrically about some mean point. A non-
parametric Bayesian approach was shown to be fruitful
when labelled data was scarce, whilst spectral clus-
tering tended to overfit the kernel hyperparameters
in cross validation, especially when the labelled data
came from a small number of clusters in relation to
the total number of clusters in the data set.

One drawback of such a model is that the computa-
tional cost of one cycle of Gibbs updates is O(N3) since
each update requires matrix multiplication which is up
to O(N2). An interesting research direction may be to
use existing theory in matrix approximations to im-
prove on this cost. Having a non-analytic normalising
constant in the DCP likelihood adds another layer of
difficulty in inference; exchange sampling is expensive.
In future work it may be worth approximating this
constant or using a variational method which makes
hyperparameter learning relatively easy.

The remarkable property of this model is the fact that
it overcomes the typically difficult task of dealing with
complex high dimensional data. As long as any sensi-
ble positive definite kernel can be computed between
pairs of data points, the determinantal clustering pro-
cess can infer interesting properties about the data.
This feature, combined with not having to prespecify
the number of clusters makes the DCP a great con-
tender for analysing complex data sets such as biolog-
ical sequences, images, text and other multimedia.
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Abstract

Hidden variables are ubiquitous in practi-
cal data analysis, and therefore modeling
marginal densities and doing inference with
the resulting models is an important problem
in statistics, machine learning, and causal
inference. Recently, a new type of graphi-
cal model, called the nested Markov model,
was developed which captures equality con-
straints found in marginals of directed acyclic
graph (DAG) models. Some of these con-
straints, such as the so called ‘Verma con-
straint’, strictly generalize conditional inde-
pendence. To make modeling and inference
with nested Markov models practical, it is
necessary to limit the number of parameters
in the model, while still correctly capturing
the constraints in the marginal of a DAG
model. Placing such limits is similar in spirit
to sparsity methods for undirected graphical
models, and regression models. In this paper,
we give a log-linear parameterization which
allows sparse modeling with nested Markov
models. We illustrate the advantages of this
parameterization with a simulation study.

1 Introduction

Analysis of complex multidimensional data is often
made difficult by the twin problems of hidden vari-
ables, and a dearth of data relative to the dimension
of the model. The former problem motivates the study
of marginal and/or latent models, while the latter has
resulted in the development of sparsity methods.

A particularly appealing model for multidimensional
data analysis is the Bayesian network or directed
acyclic graph (DAG) model [10], where random vari-
ables are represented as vertices in the graph, with

directed edges (arrows) between them. The popular-
ity of DAG models stems from their well understood
theory, and from the fact that they elicit an intuitive
causal interpretation: an arrow from a variable A to
a variable B in a DAG model can be interpreted, in a
way which can be made precise, to mean that A is a
‘direct cause’ of B.

DAG models assume all variables are observed, and
a latent variable model based on DAGs simply re-
laxes this assumption. However, latent variables intro-
duce a number of problems: it is difficult to correctly
model the latent state, and the resulting marginal den-
sities are quite challenging to work with. An alter-
native is to encode constraints found in marginals of
DAG models directly; a recent approach in this spirit
is the nested Markov model [15]. The advantage of
the nested Markov model is that it correctly captures
the conditional independences and other equality con-
straints found in marginals of DAG models. However,
the discrete parameterization of nested Markov mod-
els has the disadvantage of being unable to represent
constraints in various marginals of DAGs concisely,
that is with few non-zero parameters. This implies
that model selection methods based on scoring (via
the BIC score [13] for instance) often prefer simpler
models which fail to capture independences correctly,
but which contain many fewer parameters [15].

More generally, in high dimensional data analyses
there is often such a shortage of samples that clas-
sical statistical inference techniques do not work. To
address these issues, sparsity methods have been de-
veloped, which drive as many parameters in the sta-
tistical model to zero as possible, while still providing
a reasonable fit to the data. Sparsity methods have
been developed for regression models [16], undirected
graphical models [8, 9], and even some marginal mod-
els [4].

It is not natural to apply sparsity techniques to ex-
isting parameterizations of nested Markov models, be-
cause the parameters are context (or strata) specific.
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Figure 1: (a) A DAG with nodes 6 and 7 represent-
ing hidden variables. (b) An ADMG representing the
same conditional independences as (a) among the vari-
ables corresponding to 1, 2, 3, 4, 5.

In this paper, we develop a log-linear parameteriza-
tion for discrete nested Markov models, where the pa-
rameters represent (generalizations of) log odds-ratios
within ‘kernels’ (informally ‘interventional’ densities).
These can be viewed as interaction parameters, of the
kind commonly set to zero by sparsity methods. Our
parameterization allows us to represent distributions
containing ‘Verma constraints’ in a sparse way, while
maintaining advantages of nested Markov models, and
avoiding the disadvantages of using marginals of DAG
models directly.

2 Disadvantages of the Möbius
Parameterization of Nested Markov
Models

One drawback of the standard parameterization of
nested Markov models is that parameters are variation
dependent; that is, fixing the value of one parameter
constrains the ‘legal’ values of other parameters. This
is in direct contrast with parameterizations of DAG
models where parameters associated with a particu-
lar Markov factor (a conditional density for a variable
given all its parents in the DAG) do not depend on
parameters associated with other Markov factors.

We illustrate another difficulty with an example. Here,
and in subsequent discussions, we will need to draw
distinctions between vertices in graphs, and corre-
sponding random variables in distributions or ‘kernels.’
We use the following notation: v (lowercase) denotes
a vertex, Xv the corresponding random variable, and
xv a value assignment to this variable. Likewise A
(uppercase) denotes a vertex set, XA the correspond-
ing random variable set, and xA an assignment to this
set.

Consider the marginal DAG shown in Fig. 1 (a). We
wish to avoid representing this domain with a DAG
directly, in order not to commit to a particular state
space of the unobserved variables X6 and X7, and be-
cause, even if we were willing to make such an assump-
tion, the margin over (X1, X2, X3, X4, X5) obtained
from a density that factorizes according to this DAG
can be complicated to work with [7].

To use nested Markov models for this domain, we first
construct an acyclic directed mixed graph (ADMG)
that represents this DAG marginal, using the latent
projection algorithm [17]. This graph is shown in Fig.
1 (b); directed arrows in the resulting ADMG repre-
sent directed paths in the DAG where any intermediate
nodes are unobserved (in this case there are no such
paths, and all directed edges in the ADMG are directly
inherited from the DAG). Similarly, bidirected arrows
in the ADMG, such as 2↔ 5, represent marginally d-
connected paths in the DAG which start and end with
arrowheads pointing away from the path, in this case
2← 6→ 5.

If we now use the nested Möbius parameters, described
in more detail in subsequent sections, to parameter-
ize the resulting ADMG, we will quickly discover that
this results in a model of higher dimension relative to
the dimension of DAG models which share their skele-
ton with this ADMG. For example, the binary nested
Markov model of the graph in Fig. 1 (b) has 16 param-
eters, while both binary DAG models corresponding to
graphs in Fig. 7 (a) and (b) have 11 parameters each.

This leads to a worry that a structure learning al-
gorithm that tries to use nested Möbius parameters
to recover an ADMG from data by means of a score
method, such as BIC [13], which rewards fit and pa-
rameter parsimony, may prefer at low sample sizes in-
correct independence models given by DAGs in pref-
erence to correct models given by ADMGs, simply be-
cause the DAG models compensate for their poor fit
of the data with a much smaller parameter count. In
fact, this precise issue has been observed in simulation
studies reported in [15].

Addressing this problem with a Möbius parameteriza-
tion is not easy, because Möbius parameters are strata
or context-specific; in other words, the parameteriza-
tion is not independent of how the states are labeled.
For instance, some of the Möbius parameters repre-
senting confounding between X2,X4 and X5 are: 1

θ{2,4,5}(x1, x3) = p(04, 05|x3, 02, x1) p(02|x1)

for all values of x1, x3. In a binary model, this gives 4
parameters. The kinds of regularities in the true gen-
erative process, which we may want to exploit to cre-
ate a dimension reduction in our model, typically in-
volve a lack of interactions among variables, or a latent
confounder with a low dimensional state space. Such
regularities may often not translate into constraints
naturally expressible in terms of Möbius parameters.

To avoid this difficulty, we need to construct parame-
ters for nested Markov models which represent various

1To save space, here and elsewhere we will write 1i for
an assignment of Xi to 1, and 0i for an assignment to 0.
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types of interactions among variables directly. In fact,
parameters representing interactions are well known in
log-linear models, of which undirected graphical mod-
els and certain regression models form a special case.

3 Log-linear Parameters for
Undirected Models

We will use undirected graphical models, also known
as Markov random fields, to illustrate log-linear mod-
els. A Markov random field over a multivariate binary
state space XV , is a set of densities p(xV ) represented
by an undirected graph G with vertices V , where

p(xV ) = exp


 ∑

C∈cl(G)
(−1)‖xC‖1λC


 ;

here cl(G) is the collection of (not necessarily maximal)
cliques in the undirected graph, ‖ · ‖1 is the L1-norm,
and λC is a log-linear parameter. Note that the pa-
rameter λ∅ ensures the expression is normalized.

Consider the undirected graph shown in Fig. 2. In this
graph, all subsets of {1, 2, 3}, {2, 4}, and {4, 5, 6} are
cliques. The model represents densities where, condi-
tional upon its adjacent nodes, each node is indepen-
dent of all others. The log-linear parameter(s) corre-
sponding to each such subset of size k can be viewed
as representing k-way interactions among appropriate
variables in the model. Setting some such interaction
parameters to zero in a consistent way results in a
model which still asserts the same conditional indepen-
dences, but has a smaller parameter count, and with
all strata in each clique treated symmetrically. For in-
stance, if we were to set all parameters for cliques of
size k > 2 to zero, so that there remained only param-
eters corresponding to vertices and individual edges,
we would obtain a model known as a Boltzmann ma-
chine [1]. A similar idea had been used to give a sparse
parameterization for discrete DAG models [12].

In the remainder of the paper, we describe nested
Markov models, and give a log-linear parameteriza-
tion for these models which contains similar parame-
ters that may be set to zero. While in Markov ran-
dom field models the parameters are associated with
sets of nodes which form cliques in the corresponding
undirected graph, in nested Markov models parame-
ters will be associated with special sets of nodes in the
corresponding ADMG called intrinsic sets. Further,
log-linear parameterizations of this type can often in-
corporate individual-level continuous baseline covari-
ates [5].

1 2

3

4 5

6

Figure 2: An undirected graph representing a log-
linear model.

4 Graphs, Kernels, and Nested
Markov Models

We now introduce the relevant background needed to
define the nested Markov model.

A directed mixed graph G(V,E) is a graph with a set of
vertices V and a set of edges E, where the edges may
be directed (→) or bidirected (↔). A directed cycle
is a path of the form x→ · · · → y along with an edge
y → x. An acyclic directed mixed graph (ADMG)
is a mixed graph containing no directed cycles. An
example is given in Fig. 1 (b).

Let a, b and d be vertices in a mixed graph G. If b→ a
then we say that b is a parent of a, and a is a child of
b. If a↔ b then a is said to be a spouse of b. A vertex
a is said to be an ancestor of a vertex d if either there
is a directed path a → · · · → d from a to d, or a = d;
similarly d is said to be a descendant of a. The sets of
parents, children, spouses, ancestors and descendants
of a in G are written paG(a), chG(a), spG(a), anG(a),
deG(a) respectively. We apply these definitions dis-
junctively to sets, e.g. anG(A) =

⋃
a∈A anG(a).

4.1 Conditional ADMGs

A conditional acyclic directed mixed graph (CADMG)
G(V,W,E) is an ADMG with a vertex set V ∪ W ,
where V ∩W = ∅, subject to the restriction that for all
w ∈ W , paG(w) = ∅ = spG(w). The vertices in V are
the random vertices, and those in W are called fixed.

Whereas an ADMG with vertex set V represents a
joint density p(xV ), a conditional ADMG represents
the Markov structure of a conditional density, or kernel
qV (xV |xW ). Following [8, p.46], we define a kernel to
be a non-negative function qV (xV |xW ) satisfying:

∑

xV

qV (xV | xW ) = 1 for all xW . (1)

We use the term ‘kernel’ and write qV (·|·) (rather than
p(·|·)) to emphasize that these functions, though they
satisfy (1) and thus most properties of conditional den-
sities, are not in general formed via the usual operation
of conditioning on the event XW = xW . To conform
with standard notation for densities, for every A ⊆ V
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let

qV (xA|xW ) ≡
∑

V \A
qV (xV |xW ),

qV (xV \A|xW∪A) ≡ qV (xV |xW )

qV (xA|xW )
.

For a CADMG G(V,W,E) we consider collections
of random variables (Xv)v∈V indexed by variables
(Xw)w∈W ; throughout this paper the random vari-
ables take values in finite discrete sets (Xv)v∈V and
(Xw)w∈W . For A ⊆ V ∪W we let XA ≡ ×u∈A(Xu),
and XA ≡ (Xv)v∈A. That we will always hold the
variables in W fixed is precisely why we do not permit
edges between vertices in W .

An ADMG G(V,E) may be seen as a CADMG in which
W = ∅. In this manner, though we will state sub-
sequent definitions for CADMGs, they also apply to
ADMGs.

The induced subgraph of a CADMG G(V,W,E) given
by a set A, denoted GA, consists of G(V ∩A,W∩A,EA)
where EA is the set of edges in G with both endpoints
in A. In forming GA, the status of the vertices in A
with regard to whether they are in V or W is pre-
served.

4.2 Districts and Markov Blankets

A set C is connected in G if every pair of vertices in C is
joined by a path such that every vertex on the path is
in C. For a given CADMG G(V,W,E), denote by (G)↔
the CADMG formed by removing all directed edges
from G. A set connected in (G)↔ is called bidirected
connected.

For a vertex x ∈ V , the district (or c-component) of
x, denoted by disG(x), is the maximal bidirected con-
nected set containing x. For instance in the ADMG
shown in Fig. 1 (b), the district of node 2 is {2, 4, 5}.
Districts in a CADMG form a partition of V ; vertices
in W are excluded by definition. In a DAG G(V,E)
the set of districts is the set of all single element sets
{v} ⊆ V .

A set of vertices A in G is called ancestral if a ∈ A⇒
anG(a) ⊆ A. In a CADMG G(V,W,E), if A is an
ancestral subset of V ∪W in G, t ∈ A∩V , and chG(t)∩
A = ∅, then the Markov blanket of t in A is defined
as:

mbG(t, A) ≡ paG
(

disGA(t)
)
∪
(

disGA(t) \ {t}
)
.

4.3 The fixing operation and fixable vertices

We now introduce a ‘fixing’ operation on a CADMG
which has the effect of transforming a random vertex

1 2 3 4

5(a)

1 2 3 4

(b)

Figure 3: (a) The graph from Fig. 1 (b) after fixing 3.
(b) An ADMG inducing a non-trivial nested Markov
model.

into a fixed vertex, thereby changing the graph. How-
ever, this operation is only applicable to a subset of
the vertices, which we term the (potentially) fixable
vertices.

Definition 1 Given a CADMG G(V,W,E) the set of
fixable vertices is

F(G) ≡ {v | v ∈ V,disG(v) ∩ deG(v) = {v}} .

In words, v is fixable in G if there is no vertex v∗ that
is both a descendant of v and in the same district as
v. For the graph in Fig. 1 (b), the vertex 2 is not
fixable, because 4 is both its descendant and in the
same district; all the other vertices are fixable.

Definition 2 Given a CADMG G(V,W,E), and a
kernel qV (XV | XW ), with every r ∈ F(G) we associate
a fixing transformation φr on the pair (G, qV (XV |
XW )) defined as follows:

φr(G) ≡ G∗(V \ {r},W ∪ {r}, Er),

where Er is the subset of edges in E that do not have
arrowheads into r, and

φr(qV (xV | xW );G) ≡ qV (xV | xW )

qV (xr | xmbG(r,anG(disG(r))))

Returning to the ADMG in Fig. 1 (b), fixing 3 in the
graph means removing the edge 2 → 3, while fixing
x3 in p(x1, x2, x3, x4, x5) means dividing this marginal
density by q1,2,3,4,5(x3 |x2) = p(x3|x2). The resulting
CADMG, shown in Fig. 3 (a), represents the resulting
kernel q1,2,4,5(x1, x2, x4, x5|x3).

We use ◦ to indicate composition of operations in the
natural way, so that: φr ◦ φs(G) ≡ φr(φs(G)) and

φr ◦φs(qV (XV |XW );G)

≡ φr (φs (qV (XV |XW );G) ;φs(G)) .

4.4 Reachable and Intrinsic Sets

In order to define the nested Markov model, we will
need to define special classes of vertex sets in ADMGs.
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Definition 3 A CADMG G(V,W ) is reachable from
an ADMG G∗(V ∪W ) if there is an ordering of the ver-
tices in W = 〈w1, . . . , wk〉, such that for j = 1, . . . , k,

w1 ∈ F(G∗) and for j = 2, . . . , k,

wj ∈ F(φwj−1
◦ · · · ◦ φw1

(G∗)).

A subgraph is reachable if, under some ordering, each
vertex wi is fixable in φwi−1(· · ·φw2(φw1(G∗)) · · · ).
Fixing operations do not in general commute, and thus
only some orderings are valid for fixing a particular set.
For example, in the ADMG shown in Fig. 1 (b), the
set {2, 3} may be fixed, but only under the ordering
where 3 is fixed first, to yield the CADMG shown in
Fig. 3 (a), and then 2 is fixed in this CADMG. Fixing
2 first in Fig. 1 (b) is not valid, because 4 is both a
descendant of 2 and in the same district as 2 in that
graph, and thus 2 is not fixable.

If a CADMG G(V,W ) is reachable from G∗(V ∪W ),
we say that the set V is reachable in G∗. A reachable
set may be obtained by fixing vertices using more than
one valid sequence. We will denote any valid compo-
sition of fixing operations that fixes a set A by φA if
applied to the graph, and by φXA

if applied to a kernel.
With a slight abuse of notation (though justified as we
will later see) we suppress the precise fixing sequence
chosen.

Definition 4 A set of vertices S is intrinsic in G if it
is a district in a reachable subgraph of G. The set of
intrinsic sets in an ADMG G is denoted by I(G).

For example, in the graph in Fig. 1 (b), the set {2, 4, 5}
is intrinsic (and reachable), while the set {1, 2, 4, 5} is
reachable but not intrinsic.

In any DAG G(V,E), I(G) = {{x}|x ∈ V }, while in
any bidirected graph G, I(G) is equal to the set of all
connected sets in G.

4.5 Nested Markov Models

Just as for DAG models, nested Markov models may
be defined via one of several equivalent Markov prop-
erties. These properties are all nested in the sense that
they apply recursively to either reachable or intrinsic
sets derived from an ADMG. In particular, there is
a nested analogue of the global Markov property for
DAGs (d-separation), the local Markov property for
DAGs (which asserts that variables are independent of
non-descendants given parents), and the moralization-
based property for DAGs. These definitions appear
and are proven equivalent in [11]. It is possible to as-
sociate a unique ADMG with a particular marginal
DAG model, and a nested Markov model associated

with this ADMG will recover all independences which
hold in the marginal DAG [11].

We now define a nested factorization on probability
distributions represented by ADMGs using special sets
of nodes called ‘recursive heads’ and ‘tails.’

Definition 5 For an intrinsic set S ∈ I(G) of a
CADMG G, define the recursive head (rh) as: rh(S) ≡
{x ∈ S | chG(x) ∩ S = ∅}.

Definition 6 The tail associated with a recursive
head H of an intrinsic set S in a CADMG G is given
by: tail(H) ≡ (S \H) ∪ paG(S).

In the graph in Fig. 1 (b), the recursive head of the
intrinsic set {2, 4, 5} is equal to the set itself, while the
tail is {1, 3}.
A kernel qV (XV |XW ) satisfies the head factorization
property for a CADMG G(V,W,E) if there exist kernels
{fS(XH |Xtail(H)) |S ∈ I(G), H = rhG(S)} such that

qV (XV |XW ) =
∏

H∈JV KG
S:rhG(S)=H

fS(XH |Xtail(H)) (2)

where JV KG is a partition of V into heads given in [14].

Let G(G) ≡ {(G∗,w∗) | G∗ = φw∗(G)} for an ADMG
G. That is, G(G) is the set of valid fixing sequences
and the CADMGs that they reach. The same graph
may be reached by more than one sequence w∗. We say
that a distribution p(xV ) obeys the nested head factor-
ization property for G if for all (G∗,w∗) ∈ G(G), the
kernel φw∗(p(XV );G) obeys the head factorization for
φw∗(G) ≡ G∗. We denote the set of such distributions
by Pnh (G). Nested Markov models have been defined
via a nested district factorization criterion [15], and a
number of Markov properties [11]. The head factor-
ization is another way of defining the nested Markov
model due to the following result.

Theorem 7 The set Pnh (G) is the nested Markov
model of G.

Our decision to suppress the precise fixing sequence
from the fixing operation applied to sets is justified,
due to the following result.

Theorem 8 If p(xV ) is in the nested Markov model
of G, then for any reachable set A in G, any valid fixing
sequence on V \A gives the same CADMG over A, and
the same kernel qA(xA|xV \A) obtained from p(xV ).

4.6 A Möbius Parameterization of Binary
Nested Markov Models

We now give the original parameterization for binary
nested Markov models. The approach generalizes in
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a straightforward way to finite discrete state spaces.
Multivariate binary distributions in the nested Markov
model for an ADMG G may be parameterized by the
following:

Definition 9 The nested Möbius parameters associ-
ated with a CADMG G are a set of functions: QG ≡{
qS(XH = 0 |xtail(H)) for H = rh(S), S ∈ I(G)

}
.

Intuitively, a parameter qS(XH = 0|xtail(H)) is the
probability that the variable set XH assumes values
0 in a kernel obtained from p(xV ) by fixing XV \S ,
and conditioning on Xtail(H). As a shorthand, we
will denote the parameter qS(XH = 0|xtail(H)) by
θH(xtail(H)).

Definition 10 Let ν : V ∪ W 7→ {0, 1} be an as-
signment of values to the variables indexed by V ∪W .
Define ν(T ) to be the values assigned to variables in-
dexed by a subset T ⊆ V ∪W . Let ν−1(0) = {v | v ∈
V, ν(v) = 0}.
A distribution P (XV | XW ) is said to be parameter-
ized by the set QG, for CADMG G if:

p(XV =ν(V ) |XW =ν(W )) =
∑

B : ν−1(0)∩V⊆B⊆V
(−1)|B\ν−1(0)|×

∏

H∈JBKG

θH(Xtail(H) = ν(tail(H))) (3)

where the empty product is defined to be 1.

For example, the graph shown in Fig. 3 (b) rep-
resenting a model over binary random variables
X1, X2, X3, X4 is parameterized by the following sets
of parameters:

θ1 = p(01)

θ2(x1) = p(02|x1)

θ1,3(x2) = p(03|x2, 01)p(01)

θ3(x2) =
∑

x1

p(03|x2, x1)p(x1)

θ2,4(x1, x3) = p(04|x3, 02, x1)p(02|x1)

θ4(x3) =
∑

x2

p(04|x3, x2, x1)p(x2|x1).

The total number of parameters is 1+2+2+2+4+2 =
13, which is 2 fewer than a saturated parameterization
of a 4 node binary model, which contains 24 − 1 = 15
parameters. The two missing parameters reflect the
fact that θ4(x3) does not depend on x1, which is a
constraint induced by the absence of the edge from 1
to 4 in Fig. 3 (b). Note that this constraint is not
a conditional independence. In fact, no conditional
independences over variables corresponding to vertices
1, 2, 3, 4 are advertised in Fig. 3 (b).

This parameterization maps θH parameters to prob-
abilities in a CADMG via the inverse Möbius trans-
form given by (3), and generalizes both the standard
Markov parameterization of DAGs in terms of param-
eters of the form p(xi = 0 |pa(xi)), and the parame-
terization of bidirected graph models given in [3].

5 A Log-linear Parameterization of
Nested Markov Models

We begin by defining a set of objects which are func-
tions of the observed density, and which will serve as
our parameters.

Definition 11 Let G(V,E) be an ADMG and p(xV )
a density over a set of binary random variables XV

in the nested Markov model of G. For any S ∈ I(G),
let M = S ∪ paG(S), A ⊆ M (with A ∩ S 6= ∅), and
let qS(xS |xM\S) = φV \S(p(xV );G) be the associated
kernel. Then define

λMA =
1

2|M |
∑

xM

(−1)‖xA‖1 log qS(xS |xM\S),

to be the nested log-linear parameter associated with
A in S. Further let Λ(G) be the collection

{λMA |S ∈ I(G),M = S ∪ paG(S), rhG(S) ⊆ A ⊆M}

of these log-linear parameters. We call Λ(G) the
nested ingenuous parameterization of G.

This parameterization is based on the graphical con-
cepts of recursive heads and corresponding tails. We
call the parameterization ‘nested ingenuous’ due to
its similarity to a marginal log-linear parameterization
called ingenuous in [6], and in contrast to other log-
linear parameterizations which may exist for nested
Markov models. Marginal model parameterizations of
this type were first introduced in [2]. This definition
extends easily to non-binary discrete data, in which
case some parameters λMA become collections of pa-
rameters.

As an example, consider the graph shown in Fig. 3
(b) which represents a binary nested Markov model.
The nested ingenuous parameters associated with the
marginal p(x1) and conditional p(x2|x1) are

λ11 =
1

2
log

p(01)

p(11)

λ212 =
1

4
log

p(02|01) · p(02|11)

p(12|01) · p(12|11)

λ2121 =
1

4
log

p(02|01) · p(12|11)

p(12|01) · p(02|11)
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whereas parameters associated with the kernel
q4(x4|x3) =

∑
x2
p(x4|x3, x2, x1)p(x2|x1) are

λ434 =
1

4
log

q4(04|03) · q4(04|13)

q4(14|03) · q4(14|13)

λ4343 =
1

4
log

q4(04|03) · q4(14|13)

q4(14|03) · q4(04|13)

A parameter λMA , where M is the union of a head H
and its tail T , can be viewed, by analogy with similar
clique parameters in undirected log-linear models, as a
|A|-way interaction between the vertices in A, within
the kernel corresponding to M . For instance the kernel
q2,4(x2, x4|x1, x3) = p(x4|x3, x2, x1) p(x2|x1),2 makes
an appearance in 4 parameters in a binary model:
λ123424 , λ1234124 , λ1234234 , and λ12341234. If we set λ12341234 to
0, we claim there is no 4-way interaction between
X1, X2, X3, X4 in the kernel.

It can be shown that while the Möbius parameteriza-
tion of the graph in Fig. 3 (b) is variation dependent,
the nested ingenuous parameterization of the same
graph is variation independent. This is not true in
general. In particular both parameterizations for the
graph in Fig. 1 (b) are variation dependent.

6 Main Results

In this section we prove that the nested ingenuous pa-
rameters indeed parameterize discrete nested Markov
models. We start with an intermediate result.

Lemma 12 Let H ⊆ M and q(xH |xM\H) be a ker-
nel. Then q is smoothly parameterized by the col-
lection of NLL parameters {λMA |H ⊆ A ⊆ M} to-
gether with the (|H| − 1)-dimensional margins of q,
q(xH\{v} |xM\H), v ∈ H.

Proof: The proof is essentially identical to the proof
of Lemma 4.4 in [6]. �

6.1 The Main Result

We now define a partial order on heads and use this
order to inductively establish the main result.

Definition 13 Let ≺I(G) be the partial order on
heads, Hi, of intrinsic sets, Si, in G such that Hi ≺I(G)
Hj whenever Si ⊂ Sj.

Theorem 14 The nested ingenuous parameterization
of an ADMG G with nodes V parameterizes precisely
those distributions p(xV ) obeying the nested global
Markov property with respect to G.

2This kernel, viewed causally, is p(x2, x4|do(x1, x3)).

Proof: Let ≺I(G) be the partial ordering on heads
given in Definition 13. We proceed by induction on
this ordering. For the base case, we know that sin-
gleton heads {h} with empty tails are parameterized
by λhh. If a singleton head has a non-empty tail, the
conclusion follows immediately by Lemma 12.

Now, suppose that we wish to find the kernel with a
non-singleton head H† and a tail T † corresponding to
the intrinsic set S†. Assume, by inductive hypothe-
sis, that we have already obtained the kernels with
all heads H such that H ≺I(G) H†. We claim this is

sufficient to give the (|H†| − 1)-dimensional marginal
kernels qS†(xH†\{v}|xT †), for all v ∈ H†.
Fix a particular v ∈ H†. The set S† \{v} is reachable,
since V \ S† is a set with a valid fixing sequence, and
any v ∈ H† has no children in S† in φV \S†(G) so is
fixable in φV \S†(G). Theorem 7 and Theorem 8 imply
that for every reachable set A, (2) holds. Hence:

qS†(xS†\{v}|xV \(S†\{v})) =
∏

H∈JS†\{v}KG
S:rhG(S)=H

qS(xH |xtail(H)).

(4)

For any S such that rhG(S) = H, and H ⊆ S† \ {v},
H ≺I(G) H†, hence by the induction hypothesis, the
kernel qS(xS |xpa(S)\S) is already obtained, and all ker-
nels which appear in (4) can be derived by condi-
tioning from some such qS(xS |xpa(S)\S). The desired
kernel qS†(xH†\{v}|xT †) can itself be obtained from
qS†(xS†\{v}|xpa(S†)\S†) by conditioning.

We can repeat this argument for any v ∈ H†. Fi-
nally, the nested ingenuous parameterization contains

λH
†∪T †

A for H† ⊆ A ⊆ H†∪T †. The result then follows
by Lemma 12. �

7 Simulations

To illustrate the utility of setting higher order parame-
ters to zero (‘removing’), we present a simulation study
based on the ADMG in Fig. 5 (b). This graph is a
special case of two bidirected chains of k vertices each,
with a path of directed edges alternating between the
chains, for k = 4. The number of parameters in the
relevant binary nested Markov model grows exponen-
tially with k in graphs of this type.

Consider also the latent variable model defined by re-
placing each bidirected edge with an independent la-
tent variable shown in Fig. 5 (a), so that 1 ↔ 3 be-
comes 1← 9→ 3. If the state space of each latent vari-
able is the same and fixed, then the number of param-
eters in this hidden variable DAG model grows only
linearly in k. This suggests that the nested Markov
model may include higher order parameters which are
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Figure 4: Histograms showing the increase in deviance associated with setting to zero any nested log-linear
parameters with effects higher than orders (from left to right) seven, six and five respectively. This corresponds
to removing 6, 18 and 35 parameters respectively; the relevant χ2 density is plotted in each case.
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Figure 5: (a) A hidden variable DAG used to generate
samples for Section 7. (b) The latent projection of this
generating DAG.

not really necessary in this case (though the higher
order parameters may become necessary again if the
state space of latent variables grows).

We generated distributions from the latent variable
model associated with the DAG in Fig. 5 (a) as fol-
lows: each of the six latent variables takes one of three
states with equal probability, and each observed vari-
able takes the value 0 with a probability generated
as an independent uniform random variable on (0, 1),
conditional upon each possible value of its parents.

For each of 1,000 distributions produced independently
using this method, we generated a dataset of size 5,000.
We then fitted the nested model generated by the
graph in Fig. 5 (b) to each dataset by maximum like-
lihood estimation, using a variation of an algorithm
found in [5], and measured the increase in deviance
associated with zeroing any nested ingenuous param-
eters corresponding to effects above a certain order.
If these parameters were truly zero, we would expect
the increase to follow a χ2-distribution with an ap-
propriate number of degrees of freedom; the first two
histograms in Fig. 4 demonstrate that the distribution

of actual increases in deviance looks much like the rele-
vant χ2-distribution if we remove interactions of order
6 and higher. The third histogram shows that this
starts to break down slightly when 5-way interactions
are also zeroed.

These results suggest that higher order parameters
are often not useful for explaining finite datasets, and
more parsimonious models can be obtained by remov-
ing them; a similar simulation was performed for the
Markov case in [6].

7.1 Distinguishing Graphs

The use of score-based search methods for recovering
nested Markov models had been investigated [15]. It
was found that relatively large sample sizes were re-
quired to reliably recover the correct graph, even in
examples with only 4 or 5 binary nodes and after en-
suring that the underlying distributions were approx-
imately faithful to the true graph. One phenomenon
identified was that incorrect but more parsimonious
graphs, especially DAGs, tended to have lower BIC
scores than the correct models, which include higher
order parameters. Although BIC is guaranteed to be
smaller on the correct model asymptotically, in finite
samples it applies strong penalties for having addi-
tional parameters with little explanatory power.

Here we present a simulation to show how the new
parameterization can help to overcome this difficulty.
Using the method described in the previous subsec-
tion, we generated 1,000 multivariate binary distribu-
tions which were nested Markov with respect to the
graph in Fig. 1 (b). For each distribution we gen-
erated a dataset, and fitted the data to the correct
model, which has 16 parameters, as well as the two
DAGs given in Fig. 7 (a) and (b), which each have
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Figure 6: From the experiment in Section 7.1: in red,
the proportion of times graph in Fig. 1 (b) had lower
BIC than the DAGs in Fig. 7, for varying sample sizes;
in black, the proportion of times some restricted ver-
sion of this model had a lower BIC than any restricted
versions of either DAG.

11 parameters. This was repeated at various sample
sizes.

The plot in Fig. 6 shows, in red, the proportion of
times in which the BIC score for the correct model
was lower than that for each of the DAGs, at various
sample sizes. The correct graph only has the lowest
BIC score of the three graphs on less than 3% of runs
at sample size of n = 1,000, increasing to around 50%
for n = 20,000.

In addition to the full models, we fitted the datasets
to versions of the models with higher order parameters
removed; the graph in Fig. 1 (b) can be restricted by
zeroing the 5-way parameter (leaving 15 free parame-
ters), the 4-way and and above (13 params), or 3-way
and above (10 params). Similarly we can restrict the
DAGs to have no 3-way effects, giving each model 10
free parameters. Fig. 6 shows, in black, the proportion
of times that one of these restricted versions of the true
model had a lower BIC than any version of either DAG
model. We see that the correct graph has the lowest
score in 40% of runs at n = 1,000, rising to around
70% at n = 20,000. Note that these results should not
be compared directly to those in [15], since the single
ground truth law used in that paper was generated so
as to ensure faithfulness to the correct graph, whereas
we are randomly sampling multiple laws without both-
ering to ensure any particular properties in these laws
other than consistency with the underlying DAG.

These results suggest that these submodels of the
nested model may be advantageous in recovering the
correct graphical structure using score-based methods.

1 2 3 4

5

(a) 1 2 3 4

5

(b)

Figure 7: (a) and (b) two DAGs with the same skeleton
as the graph in Fig. 1 (b).

Note that determining which higher order parameters
should be set to zero for a given data set and sample
size remains non-trivial. Automatic selection might be
possible with an L1-penalized approach [16, 4].

8 Discussion and Conclusions

We have introduced a new log-linear parameterization
of nested Markov models over discrete state spaces.
The log-linear parameters correspond to ‘interactions’
in kernels obtained after an iterative application of
truncation and marginalization steps (informally ‘in-
teractions in interventional densities’). By contrast the
Möbius parameters [15] correspond to context specific
effects in kernels (informally ‘context specific causal
effects’).

We have shown by means of a simulation study that
in cases where data is generated from a marginal of
a DAG with ‘weak confounders’, we can reduce the
dimension of the model by ignoring higher order in-
teraction parameters, while retaining the advantages
of nested Markov models compared to modeling weak
confounding directly in a DAG.

Though there is no efficient, closed form mapping from
ingenuous parameters to either Möbius parameters or
standard probabilities, this is a smaller disadvantage
than it may seem. This is because in cases where
the ingenuous parameterization was used to select a
particular submodel based on a dataset, we may still
reparameterize and use Möbius parameters, or even
standard joint probabilities if desired. Moreover, this
reparameterization step need only be performed once,
compared to multiple calls to a fitting procedure which
identified the particular graph corresponding to our
submodel in the first place.

The ingenuous and the Möbius parameterizations are
thus complementary. The natural application of the
ingenuous parameterization is in learning graph struc-
ture from data in situations where many samples are
not available, but we expect most confounding to be
weak. The natural application of the Möbius param-
eterization is the support of probabilistic and causal
inference in a particular graph [14, 15], in cases where
an efficient mapping from parameters to joint proba-
bilities is important.
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Abstract

We propose a general matrix-valued mul-
tiple kernel learning framework for high-
dimensional nonlinear multivariate regression
problems. This framework allows a broad
class of mixed norm regularizers, includ-
ing those that induce sparsity, to be im-
posed on a dictionary of vector-valued Repro-
ducing Kernel Hilbert Spaces. We develop
a highly scalable and eigendecomposition-
free algorithm that orchestrates two inex-
act solvers for simultaneously learning both
the input and output components of separa-
ble matrix-valued kernels. As a key appli-
cation enabled by our framework, we show
how high-dimensional causal inference tasks
can be naturally cast as sparse function esti-
mation problems, leading to novel nonlinear
extensions of a class of Graphical Granger
Causality techniques. Our algorithmic de-
velopments and extensive empirical studies
are complemented by theoretical analyses in
terms of Rademacher generalization bounds.

1 Introduction

Consider the problem of estimating an unknown non-
linear function, f : X 7→ Y, from labeled examples,
where Y is a “structured” output space [6]. In princi-
ple, Y may be endowed with a general Hilbert space
structure, though we focus on the multivariate regres-
sion setting, where Y ⊆ Rn. Such problems can be
naturally formulated as Tikhonov Regularization [35]
in a suitable vector-valued Reproducing Kernel Hilbert
Space (RKHS) [25, 1]. The theory and formalism of
vector-valued RKHS can be traced as far back as the
work of Laurent Schwarz in 1964 [32]. Yet, vector-
valued extensions of kernel methods have not found
widespread application, in stark contrast to the versa-

tile popularity of their scalar cousins. We believe that
two key factors are responsible:

◦ The kernel function is much more complicated - it
is matrix-valued in this setting. Its choice turns into
a daunting model selection problem. Contrast this
with the scalar case where Gaussian or Polynomial
kernels are a default choice requiring only a few hy-
perparameters to be tuned.

◦ The associated optimization problems, in the most
general case, have much greater computational com-
plexity than in the scalar case. For example,
a vector-valued Regularized Least Squares (RLS)
solver would require cubic time in the number of
samples multiplied by the number of output coordi-
nates.

Scalable kernel learning therefore becomes a basic ne-
cessity – an unavoidable pre-requisite – for even con-
sidering vector-valued RKHS methods for an applica-
tion at hand. Our contributions in this paper are as
follows:

◦ We propose a general framework for function esti-
mation over a dictionary of vector-valued RKHSs
where a broad family of variationally defined reg-
ularizers, including sparsity inducing norms, serve
to optimally combine a collection of matrix-valued
kernels. As such our framework may be viewed as
providing generalizations of scalar multiple kernel
learning [20, 26, 21, 29] and associated structured
sparsity algorithms [8].

◦ We specialize our framework to the class of sepa-
rable kernels [1] which are of interest due to their
universality [9], conceptual simplicity and potential
for scalability. Separable matrix-valued kernels are
composed of a scalar input kernel component and a
positive semi-definite output matrix component (to
be formally defined later). We provide a full resolu-
tion of the kernel learning problem in this setting by
jointly estimating both components together. This
is in contrast to recent efforts [12, 18] where only
one of the two components is optimized, and the
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full complexity of the joint problem is not addressed.
Our algorithms achieve scalability by orchestrating
carefully designed inexact solvers for inner subprob-
lems, for which we also provide convergence rates.

◦ We provide bounds on Rademacher Complexity for
the vector-valued hypothesis sets considered by our
algorithm. This complements and extends general-
ization results in the multiple kernel learning litera-
ture for the scalar case [11, 38, 19, 24, 20].

◦ We demonstrate that the generality of our frame-
work enables novel non-standard applications. In
particular, when applied to multivariate time series
problems, sparsity in kernel combinations lends it-
self to a natural causality interpretation. We be-
lieve that this nonlinear generalization of graphical
Granger Causality techniques (see [3, 22, 33] and
references therein) may be of independent interest.

A number of results are stated in this paper for com-
pleteness, but without proofs due to space considera-
tions. For detailed proofs, please see a version of this
paper with Supplementary Material available at [34].

2 Vector-valued RLS & Separable
Matrix-valued Kernels

Given labeled examples {(xi,yi)}l
i=1, xi ∈ X ⊂

Rd, yi ∈ Y ⊂ Rn, the vector-valued Regularized Least
Squares (RLS) solves the following problem,

argmin
f∈H−→

k

1

l

l∑

i=1

‖f(xi) − yi‖2
2 + λ‖f‖2

H−→
k
, (1)

where H−→
k

is a vector-valued RKHS generated by the

kernel function
−→
k , and λ > 0 is the regularization

parameter. For readers unfamiliar with vector-valued
RKHS theory that is the basis of such algorithms, we
provide a first-principles overview in our Supplemen-
tary Material (see [34], section 4).

In the vector-valued setting,
−→
k is a matrix-valued

function, i.e., when evaluated for any pair of inputs

(x, z), the value of
−→
k (x, z) is an n-by-n matrix. More

generally speaking, the kernel function is an input-
dependent linear operator on the output space. The
kernel function is positive in the sense that for any
finite set of l input-output pairs {(xi,yi)}l

i=1, the fol-

lowing holds:
∑l

i,j=1 yT
i

−→
k (xi,xj)yj ≥ 0. A general-

ization [25] of the standard Representer Theorem says
that the optimal solution has the form,

f(·) =

l∑

i=1

−→
k (xi, ·)αi, (2)

where the coefficients αi are n-dimensional vectors.

For RLS, these coefficient vectors can be obtained solv-
ing a dense linear system, of the familiar form,

(−→
K + λlInl

)
vec(CT ) = vec(YT ),

where C = [α1 . . .αl]
T ∈ Rl×n assembles the coef-

ficient vectors into a matrix; the vec operator stacks
columns of its argument matrix into a long column

vector;
−→
K is a large nl × nl-sized Gram matrix com-

prising of the blocks
−→
k (xi,xj), for i, j = 1 . . . l, and

Inl denotes the identity matrix of compatible size. It
is easy to see that for n = 1, the above developments
exactly collapse to familiar concepts for scalar RLS
(also known as Kernel Ridge Regression). In gen-
eral though, the above linear system requires O((nl)3)
time to be solved using standard dense numerical lin-
ear algebra, which is clearly prohibitive. However, for
a family of separable matrix-valued kernels [1, 9] de-
fined below, the computational cost can be improved
to O(n3 + l3); though still costly, this is atleast com-
parable to scalar RLS when n is comparable to l.

Separable Matrix Valued Kernel and its Gram
matrix: Let k be a scalar kernel function on the input
space X and K represent its Gram matrix on a finite
sample. Let L be an n×n positive semi-definite output

kernel matrix. Then, the function
−→
k (x, z) = k(x, z)L

is positive and hence defines a matrix valued kernel.

The Gram matrix of this kernel is
−→
K = K ⊗ L where

⊗ denotes Kronecker product.

For separable kernels, the corresponding RLS dense
linear system (Eqn 3 below) can be reorganized into a
Sylvester equation (Eqn 4 below):

(K ⊗ L + λlInl) vec(CT ) = vec(YT ), (3)

KCL + λlC = Y. (4)

Sylvester solvers are more efficient than applying a
direct dense linear solver for Eqn 3. The classical
Bartel-Stewart and Hessenberg-Schur methods (e.g.,
see MATLAB’s dlyap function) are usually used for
solving Sylvester equations. They are similar in fla-
vor to an eigendecomposition approach [1] we describe
next for completeness, though they take fewer floating
point operations at the same cubic order of complexity.

Eigen-decomposition based Sylvester Solver:
Let K = TMTT and L = SNST denote the eigen-
decompositions of K and L respectively, where M =
diag(σ1 . . . σl),N = diag(ρ1 . . . ρn). Then the solution
to the matrix equation KCL + λC = Y always exists
when λ > 0 and is given by C = TX̃S where X̃ij =
(TT YS)

ij

σiρj+λ .

Output Kernel Learning: In recent work [12] de-
velop an elegant extension of the vector-valued RLS
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problem (Eqn. 1), which we will briefly describe here.

We will use the shorthand
−→
k = kL to represent the

implied separable kernel and correspondingly denote
its RKHS by HkL. [12] attempt to jointly learn both
f ∈ HkL and L, for a fixed pre-defined choice of k. In
finite dimensional language, L and C are estimated by
solving the following problem [12],

arg min
C∈Rl×n,L∈Sn

+

1

l
‖KCL−Y‖2

F +λtr(CT KCL)+ρ‖L‖2
F ,

where tr(·) denotes trace, ‖ · ‖F denotes Frobenius
norm, and Sn

+ denotes the cone of positive semi-
definite matrices. It is shown that the objective func-
tion is invex, i.e., its stationary points are globally op-
timal. [12] proposed a block coordinate descent where
for fixed L, C is obtained by solving Eqn. 4 using an
Eigendecomposition-based solver. Under the assump-
tion that C exactly satisfies Eqn. 4, the resulting up-
date for L is then shown to automatically satisfy the
constraint that L ∈ Sn

+. However, [12] remark that ex-
periments on their largest dataset took roughly a day
to complete on a standard desktop and that the “lim-
iting factor was the solution of the Sylvester equation”.

3 Learning over a Vector-valued
RKHS Dictionary

Our goals are two fold: one, we seek a fuller resolution
of the separable kernel learning problem for vector-
valued RLS problems; and two, we wish to derive ex-
tensible algorithms that are eigendecomposition-free
and much more scalable. In this section, we expand
Eqn. 1 to simultaneously learn both input and output
kernels over a predefined dictionary, and develop op-
timization algorithms based on approximate inexact
solvers that execute cheap iterations.

Consider a dictionary of separable matrix valued
kernels, of size m, sharing the same output kernel
matrix L: DL = {k1L, . . . kmL}. Let H(DL) denote
the sum space of functions:

H(DL) =



f =

m∑

j=1

fj : fj ∈ HkjL



 , (5)

and equip this space with the following lp norms:

‖f‖lp(H(DL)) = inf
f :f=

∑
j fj

∥∥(
‖f1‖Hk1L

, . . . , ‖fm‖HkmL

)∥∥
p
.

The infimum in the above definition is in fact attained
as a minimum (see Proposition 2 in our Supplementary
Material [34]), so that one can write

‖f‖lp(H(DL)) = min
f :f=

∑
j fj

∥∥(
‖f1‖Hk1L

, . . . , ‖fm‖HkmL

)∥∥
p
.

For notational simplicity, we will denote these norms
as ‖f‖lp though it should be kept in mind that their
definition is with respect to a given dictionary of
vector-valued RKHSs.

Note that ‖f‖l1, being the l1 norm of the vector of
norms in individual RKHSs, imposes a functional no-
tion of sparsity on the vector-valued function f . We
now consider objective functions of the form,

argmin
f∈H(DL),L∈Sn

+(τ)

1

l

l∑

i=1

‖f(xj) − yi‖2
2 + λΩ(f), (6)

where L is constrained to belong to the Spectahedron
with bounded trace:

Sn
+(τ) = {X ∈ Sn

+|trace(X) ≤ τ},

where Sn
+ denotes the cone of symmetric positive semi-

definite matrices, and Ω is a regularizer whose canoni-
cal choice will be the squared lp norm (with 1 ≤ p ≤ 2),
i.e.,

Ω(f) = ‖f‖2
lp(H(DL)).

When p → 1, Ω induces sparsity, while for p → 2,
non-sparse uniform combinations approaching a sim-
ple sum of kernels is induced. Our algorithms work for
a broad choice of regularizers that admit a quadratic
variational representation of the form:

Ω(f) = min
η∈Rm

+

m∑

i=1

‖fi‖2
HkiL

ηi
+ ω(η), (7)

for an appropriate auxiliary function ω : Rm
+ 7→ R.

For squared lp norms, this auxillary function is the
indicator function of a convex set [5, 36, 26]:

ω(η) = 0 if ηi ≥ 0,

m∑

i=1

ηq
i ≤ 1, and ∞ otherwise, (8)

where q = p
2−p ∈ [1, ∞] for p ∈ [1, 2].

We rationalize this framework as follows:

◦ Penalty functions of the form above define a broad
family of structured sparsity-inducing norms that
have extensively been used in the multiple kernel
learning and sparse modeling literature [5, 36, 27].
They allow complex non-differentiable norms to be
related back to weighted l2 or RKHS norms, and
optimizing the weights η in many cases infact ad-
mits closed form expressions. Infact, all norms ad-
mit quadratic variational representations of related
forms [5].

◦ Optimizing L over the Spectahedron allows us to
develop a specialized version of the approximate
Sparse SDP solver [16] whose iterations involve the
computation of only a single extremal eigenvector of
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the (partial) gradient at the current iterate – this in-
volves relatively cheap operations followed by quick
rank-one updates.

◦ By bounding the trace of L, we show below that a
Conjugate Gradient (CG) based iterative Sylvester
solver for Eqn. 3 would always be invoked on well-
conditioned instances and hence show rapid numeri-
cal convergence (particularly also with warm starts).

◦ The trace constraint parameter τ , together with the
regularization parameter λ, also naturally appears
in our Rademacher complexity bounds.

3.1 Algorithms

First we give a basic result concerning sums of vector-
valued RKHSs. The proof, given in our Supplementary
Material [34], follows Section 6 of [4] replacing scalar
concepts with corresponding notions from the theory
of vector-valued RKHSs [25].

Proposition 1. Given a collection of matrix-valued

reproducing kernels
−→
k 1 . . .

−→
k m and positive scalars

ηj > 0, j = 1 . . .m, the function:

−→
k η =

m∑

i=1

ηi
−→
k i,

is the reproducing kernel of the sum space H = {f :
X 7→ Y|f(x) =

∑m
j=1 fj(x), fj ∈ H−→

k j
} with the norm

given by:

‖f‖2
H−→

k η

= min
f=

∑
m
j=1 fi,fj∈H−→

k j

m∑

j=1

‖fj‖2

ηj
.

This result combined with the variational represen-
tation of the penalty function in Eqn. 7 allows us to
reformulate Eqn. 6 in terms of a joint optimization
problem over η,L and f ∈ HkηL, where we define the
weighted scalar kernel kη =

∑m
j=1 ηjkj . This formu-

lation allows us to scale gracefully with respect to m,
the number of kernels. Denote the Gram matrix of
kη on the labeled data as Kη, i.e., Kη =

∑m
j=1 ηjKj ,

where Kj denotes the Gram matrices of the individual
scalar kernel kj . The finite dimensional version of the
reformulated problem becomes,

arg min
C∈Rn×l,L∈Sn

+(τ),η∈Rm
+

1

l
‖KηCL − Y‖2

F

+λ trace
(
CT KηCL

)
+ ω(η). (9)

A natural strategy for such a non-convex problem is
Block Coordinate Descent. The minimization of C
or L keeping the other variables fixed, is a convex

optimization problem. The minimization of η ad-
mits closed form solution. At termination, the vector-
valued function returned is

f⋆(x) = LCT [kη(x,x1) . . . kη(x,xl)]
T ,

which is a matrix version of the functional form for the
optimal solution as specified by the Representer theo-
rem (Eqn. 2) for separable kernels. We next describe
each of the three block minimization subproblems.

A. Conjugate Gradient Sylvester Solver: For
fixed η,L, the optimal C is given by the solution of
the dense linear system of Eqn 3 or the Sylvester equa-
tion 4, with K = Kη. General dense linear solvers
have prohibitive O(n3l3) cost when invoked on Eqn. 3.
The O(n3 + l3) eigendecomposition-based Sylvester
solver performs much better, but needs to be invoked
repeatedly since L as well as Kη are changing across
(outer) iterations. Instead, we apply a CG-based it-
erative solver for Eqn 3. Despite the massive size of
the nl × nl linear system, using CG infact has several
unobvious quantifiable advantages due to the special
Kronecker structure of Eqn. 3:

◦ A CG solver can exploit warm starts by initializing
from previous η,L, and allow early termination at
cheaper computational cost.

◦ The large nl × nl coefficient matrix in Eqn.3 never
needs to be explicitly materialized. For any CG it-
erate C(k), matrix-vector products can be efficiently
computed since,

(Kη⊗L+λlInl)vec(C(k)T ) = vec(KηC
(k)L+λlC(k)).

CG can exploit additional low-rank or sparsity
structure in Kη and L for fast matrix multiplication.
When the base kernels are either (a) linear kernels
derived from a small group of features, or (b) arise
from randomized approximations, such as the ran-
dom Fourier features for Gaussian Kernel [28], then
Kη =

∑m
j=1 ηjZjZ

T
j where Zj has dj ≪ l columns.

In this case, Kη need never be explicitly material-
ized and the cost of matrix multiplication can be
further reduced.

CG is expected to make rapid progress in a few iter-
ations in the presence of strong regularization as en-
forced jointly by λ and the trace constraint parameter
τ on L. This is because the coefficient matrix of the
linear system in Eqn. 3 is then expected to be well
conditioned for all possible Kη,L that the algorithm
may encounter, as we formalize in the following propo-
sition. Below, let ‖Ki‖2 denote the spectral norm of
the Gram matrix Ki, i.e., its largest eigenvalue.

Proposition 2 (Convergence Rate for CG-solver for
Eqn. 3 with K = Kη). Assume l1 norm for Ω in
Eqn. 6. Let C(k) be the CG iterate at step k, C⋆ be
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the optimal solution (at current fixed η and L) and
C(0) be the initial iterate (warm-started from previous
value). Then,

‖C(k) − C∗||F ≤ 2
√

φ

(√
φ − 1√
φ + 1

)k

||C(0) − C∗||F ,

where φ = 1+ γτ
lλ with γ = maxi ‖Ki‖2. For dictionar-

ies involving only Gaussian scalar kernels, φ ≤ 1 + τ
λ ,

i.e., the convergence rate depends only on the relative
strengths of regularization parameters λ, τ .

The proof is given in our Supplementary Material [34].

B. Updates for η: Note from Eqn. 7 that the op-
timal weight vector η only depends on the RKHS
norms of component functions, and is oblivious to the
vector-valued, as opposed to scalar-valued, nature of
the functions themselves. This is essentially the rea-
son why existing results [5, 36, 26] routinely used in
the (scalar) MKL literature can be immediately ap-
plied to our setting to get closed form update rules.
Define αj = ‖fj‖kjL = η̂j

√
trace(CKjCL) where η̂j

refers to previous value of ηj . The components of the
optimal weight vector η are given below for two choices
of Ω.

◦ For Ω(f) = ‖f‖2
lp

, the optimal η is given by:

ηj = α
2

q+1

j /




m∑

j=1

α
2

q+1

j




q

for q =
p

2 − p
(10)

◦ For an elastic net type penalty, Ω(f) = (1 −
µ)‖f‖1

l1
+ µ‖f‖2

l2
, we have ηj = αj/ (1 − µ + µαj).

Several other choices are also infact possible, e.g., see
Table 1 in [36], discussion around subquadratic norms
in [5] and regularizers for structured sparsity intro-
duced in [27].

C. Spectahedron Solver: Here, we consider the L
optimization subproblem, which is:

argmin
L∈Sn

+(τ)

g(L) =
1

l
‖AL − Y‖2

fro + λtrace(BT L), (11)

where A = KηC and B = CT A. Hazan’s Sparse SDP
solver [16, 13] based on Frank-Wolfe algorithm [10],
can be used for problems of the general form,

L⋆ = argmin
L∈Sn

+,trace(L)=1

g(L),

where g is a convex, symmetric and differentiable func-
tion. It has been successfully applied in matrix com-
pletion and collaborative filtering settings [17].

In each iteration, Hazan’s algorithm optimizes a lin-
earization of the objective function around the current

iterate L(k), resulting in updates of the form,

L(k+1) = L(k) + αk(vkvT
k − L(k)), (12)

where vk = ApproxEV
(
∇g(L(k)),

Cg

k2

)
, αk =

min
(
1, 2

k

)
and Cg is a constant which measures the

curvature of the graph of g over the Spectahedron.
Here, ApproxEv is an approximate eigensolver which
when invoked on the gradient of g at the current it-
erate L(k) (a positive semi-definite matrix) computes
the single eigenvector corresponding to the smallest
eigenvalue, only to a prespecified precision. Hazan’s
algorithm is appealing for us since each iteration it-
self tolerates approximations and the updates pump in
rank-one terms. We specialize Hazan’s algorithm to
our framework as follows (below, note that A = KηC
and B = CT A):

◦ Using bounded trace constraints, trace(L) ≤ τ ,
instead of unit trace is more meaningful for our set-
ting. The following modified updates optimize over
Sn

+(τ): L(k+1) = L(k) +αk(τvkvT
k −L(k)), where vk

is reset to the zero vector if the smallest eigenvalue
is positive.

◦ The gradient for our objective is: ∇g(L) =
G+GT −diag(G) where G = λB+2ATAL−2AT Y
and diag(·) assembles the diagonal entries of its ar-
gument into a diagonal matrix.

◦ Instead of using Hazan’s line search parameter αk,
we do exact line search along the direction P =
τvkvk−L(k) which leads to a closed form expression:

αk = − trace((1
l AL(k) − Y)T AP + 1

2λBP )

trace(1
l P

T AT AP )
.

Adapting the analysis of Hazan’s algorithm in [13]
to our setting, we get the following convergence rate
(proof given in our Supplementary Material [34]):

Proposition 3 (Convergence Rate for optimizing L).
Assume l1 norm for Ω in Eqn. 6. For k ≥ 16(τγ)2/ǫ,
the iterate in Eqn. 12 satisfies g(L(k+1))−g(L⋆) ≤ ǫ/2
where γ = maxi ‖Ki‖2.

Remarks: Note that Propositions 2 and 3 offer
convergence rates for the convex optimization sub-
problems associated with optimizing C and L respec-
tively keeping other variables fixed. These results
strongly suggest that inexact solutions to subproblems
may be quickly obtained in a few iterations. A full
theoretical convergence analysis of Block Coordinate
Descent to stationary points of the objective function
under inexact updates is currently not within the scope
of this paper. An empirical analysis of convergence be-
havior is provided in Section 4.
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3.2 Rademacher Complexity Results

Here, we complement our algorithms with statistical
generalization bounds. The notion of Rademacher
complexity is readily generalizable to vector-valued hy-
pothesis spaces [23]. Let H be a class of functions
f : X → Y, where Y ⊂ Rn. Let σ ∈ Rn be a vector of
independent Rademacher variables, and similarly de-
fine the matrix Σ = [σ1, . . . , σl] ∈ Rn×l. The empirical
Rademacher complexity of the vector-valued class H
is the function R̂l(H) defined as

R̂l(H) =
1

l
EΣ

[
sup
f∈H

l∑

i=1

σT
i f(xi)

]
. (13)

We now state bounds on the Rademacher complex-
ity of hypothesis spaces considered by our algorithms,
both for general matrix-valued kernel dictionaries as
well as the special case of separable matrix-valued ker-
nel dictionaries. When the output dimensionality is
set to 1, our results essentially recover existing results
in the scalar multiple kernel learning literature given
in [11, 38, 19, 24]. Our bounds in part (B) and (C)
in the Theorem below involve the same dependence
on the number of kernels m, and on p (for lp norms)
as given in [11], though there are slight differences in
stated bounds since our hypothesis class is not exactly
the same as that in [11]. In particular, for the case
of p = 1 (part C below), we obtain a

√
log m depen-

dence on the number of kernels which is known to be
tight for the scalar case [11, 24]. Since this logarith-
mic dependence is rather mild, we can expect to learn
effectively over a large dictionary even in the vector-
valued setting.

Theorem 3.1. Let H = {f =
∑m

j=1 fj, fj ∈ H−→
k j

}.
For 1 ≤ p ≤ ∞, consider the hypothesis class

Hp
λ = {f ∈ H : f =

m∑

j=1

fj , fj ∈ H−→
k j

,

||f ||H(lp) = min
fj∈H−→

k j
,
∑

m
j=1 fj=f




m∑

j=1

||fj||pH−→
k j




1/p

≤ λ}.

(A) For any p, 1 ≤ p ≤ ∞, the empirical Rademacher
complexity of Hp

λ can be upper bounded as follows:

R̂l(Hp
λ) ≤ λ‖u‖1

l
,

where u =

[√
trace(

−→
K1), . . . ,

√
trace(

−→
Km)

]
. For the

case of separable kernels, where
−→
k i(x, z) = ki(x, z)L

such that supx∈X ki(x, x) ≤ κ and trace(L) ≤ τ , we
have

R̂l(Hp
λ) ≤ λm

√
κτ

l
.

(B) If p is such that q ∈ N, where 1
p + 1

q = 1, then

R̂l(Hp
λ) ≤ λ

l

√
η0q||u||q,

where η0 = 23
22 . For separable kernels,

R̂l(Hp
λ) ≤ λm1/q

√
η0qκτ

l
.

(C) If p = 1, so that q = ∞, then

R̂l(H1
λ) ≤ λ

l

√
η0r||u||r, ∀r ∈ N.

For separable kernels, we have

R̂l(H1
λ) ≤

{
λ
√

η0κτ
l , if m = 1,

λ
√

η0e⌈2 ln m⌉κτ
l , if m > 1.

Due to space limitations, the full proof of this Theorem
is provided our Supplementary Material [34].

Using well-known results [7], these bounds on
Rademacher complexity can be immediately turned
into generalization bounds for our algorithms.

4 Empirical Studies

Statistical Benefits of Joint Input/Output Ker-
nel Learning: We start with a small dataset of weekly
log returns of 9 stocks from 2004, studied in [39, 31]
in the context of linear multivariate regression with
output covariance estimation techniques. We consider
first-order vector autoregressive (VAR) models of the
form xt = f(xt−1) where xt corresponds to the 9-
dimensional vector of log-returns for the 9 companies
at week t and the function f is estimated by solving
Eqn. 6. Our experimental prototcol is exactly the same
as [39, 31]: data is split evenly into a training and a
test set and the regularizaton parameter λ is chosen by
10-fold cross-validation. All other parameters are left
at their default values (i.e., p = 1). We generated a
dictionary of 117 Gaussian kernels defined by univari-
ate Gaussian kernels on each of the 9 dimensions with
13 varying bandwidths. Results are shown in Table 1
where we compare our methods in terms of mean test
RMSE against standard linear regression (OLS) and
linear Lasso independently applied to each output co-
ordinate, and the sparse multivariate regression with
covariance estimation approaches of [31, 39], labeled
MRCE and FES respectively. We see that joint input
and output kernel learning (labeled IOKL) yields the
best return prediction model reported to date on this
dataset. As expected, it outperforms models obtained
by leaving output kernel matrix fixed as the identity
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Table 1: VAR modeling on financial datasets.

OLS Lasso MRCE FES IKL OKL IOKL
WMT 0.98 0.42 0.41 0.40 0.43 0.43 0.44
XOM 0.39 0.31 0.31 0.29 0.32 0.31 0.29
GM 1.68 0.71 0.71 0.62 0.62 0.59 0.47
Ford 2.15 0.77 0.77 0.69 0.56 0.48 0.36
GE 0.58 0.45 0.45 0.41 0.41 0.40 0.37
COP 0.98 0.79 0.79 0.79 0.81 0.80 0.76
Ctgrp 0.65 0.66 0.62 0.59 0.66 0.62 0.58
IBM 0.62 0.49 0.49 0.51 0.47 0.50 0.42
AIG 1.93 1.88 1.88 1.74 1.94 1.87 1.79
Average 1.11 0.72 0.71 0.67 0.69 0.67 0.61

and only optimizing scalar kernels (IKL), or only op-
timizing the output kernel for fixed choices of scalar
kernel (OKL). Of the 117 kernels, 13 have 97% of the
mass in the learnt scalar kernel combination.

Scalability and Numerical Behaviour: Our main
interest here is to observe the classic tradeoff in nu-
merical optimization between running few, but very
expensive steps versus executing several cheap itera-
tions. We use a 102-class image categorization dataset
– Caltech-101 – which has been very well studied in the
multiple kernel learning literature [12, 37, 14]. There
are 30 training images per category for a total of 3060
training images, and 1355 test images. Targets are
102-dimensional class indicator vectors. We define a
dictionary of kernels using 10 scalar-valued kernels pre-
computed from visual features and made publically
available by the authors of [37], for 3 training/test
splits. From previous studies, it is well known that
all underlying visual features contribute to object dis-
crimination on this dataset and hence non-sparse mul-
tiple kernel learning with lp, p > 1 norms are more
effective. We therefore set p = 1.7 and λ = 0.001
without any further tuning, since their choice is not
central to our main goals in this experiment. We vary
the stopping criteria for our CG-based Sylvester solver
(cgǫ) and the number of iterations (sdpiter) allowed
in the Sparse SDP solver, for the C and L subprob-
lems respectively. Note that the closed form η updates
(Eqn. 10) for lp norms take negligible time.

We compare our algorithms with an implementation
in which each subproblem is solved exactly using an
eigendecomposition based Sylvester solver for C, and
unconstrained updates for L developed in [12], respec-
tively. To make comparisons meaningful, we set τ to
a large value so that the optimization over L ∈ Sn

+(τ)
effectively corresponds to unconstrained minimization
over the entire psd cone Sn

+. In Figure 1, 2, we re-
port the improvement in objective function and classi-
fication accuracy as a function of time (upto 1 hour).
We see that insufficient progress is made in both ex-
tremes: when either the degree of inexactness is intol-
erable (cgǫ = 0.1, sdpiter = 100) or when subproblems
are solved to very high precision (cgǫ = 10−6, sdpiter =

3000). Our solvers are far more efficient than eigen-
decomposition based implementation that takes an ex-
orbitant amount of time per iteration for exact solu-
tions. Approximate solvers at appropriate precision
(e.g., cgǫ = 0.01, sdpiter = 1000) make very rapid
progress and return high accuracy models in just a
few minutes. In fact, averaged over the three train-
ing/test splits, the classification accuracy obtained is
79.43%± 0.67 which is highly competitive with state of
the art results reported on this dataset, with the kernels
used above. For example, [37] report 78.2% ± 0.4, [14]
report 77.7% ± 0.3 and [12] report 75.36%.

Figure 1: Objective function vs time
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Figure 2: Accuracy vs time
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4.1 Application: Non-linear Causal Inference

Here, our goal is to show how high-dimensional causal
inference tasks can be naturally cast as sparse func-
tion estimation problems within our framework, lead-
ing to novel nonlinear extensions of Grouped Graph-
ical Granger Causality techniques (see [33, 22] and
references therein). In this setting, there is an in-
terconnected system of N distinct sources of high di-
mensional time series data which we denote as xi

t ∈
Rdi , i = 1 . . .N . We refer to these sources as “nodes”.
The system is observed from time t = 1 to t = T , and
the goal is to infer the causal relationships between the
nodes. Let G denote the adjacency matrix of the un-
known causal interaction graph where Gij > 0 implies
that node i causally influences node j. In 1980, Clive
Granger gave an operational definition for Causality:
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Granger Causality [15]: A subset of nodes Ai = {j :
Gij > 0} is said to causally influence node i, if the past
values of the time series collectively associated with the
node subset Ai is predictive of the future evolution of
the time series associated with node i, with statisti-
cal significance, and more so than the past values of i
alone.

A practical appeal of this definition is that it links
causal inference to prediction, with the caveat that
causality insights are bounded by the quality of the
underlying predictive model. Furthermore, the prior
knowledge that the underlying causal interactions are
highly selective makes sparsity a meaningful prior to
use. Prior work on using sparse modeling techniques to
uncover causal graphs has focused on linear models [33,
22] while many, if not most, natural systems involve
nonlinear interactions for which a functional notion of
sparsity is more appropriate.

To apply our framework to such prob-
lems, we model the system as the prob-
lem of estimating N nonlinear functions:
xi

t = f i
(
x1

t ,x
1
t−1 . . .x1

t−L, . . . ,xN
t ,xN

t−1 . . .xN
t−L

)
,

for 1 ≤ i ≤ N , and where L is a lag parameter. The
dynamics of each node, f i, can be expressed as the
sum of a set of vector-valued functions,

f i =

N∑

j=1,s

f i
j,s (14)

where the component f i
j,s, for all values of the index s,

only depends on the history of node j, i.e., the observa-
tions xj

t−1 . . .xj
t−L. Each f i

j,s belongs to vector-valued

RKHS whose kernel is kj,s(·, ·)Li. In other words, we
set up a dictionary of separable matrix-valued kernels
DLi = {kj,sL

i}j,s, where scalar kernels kj,s depend
only on individual nodes j alone; and the output ma-
trix Li is associated with node i currently being mod-
eled. By imposing (functional) sparsity in the sum in
Eqn. 14 using our framework, i.e. estimating f i by
solving Eqn. 6, we can identify which subset of nodes
are causal drivers (in the Granger sense) of the dy-
namics observed at node i. The sparsity structure of
f i then naturally induces a weighted causal graph G:

Gij =
∑

s

ηi
j,s

where ηi
j,s are the kernel weights estimated by our algo-

rithm. Note that Gij 6= 0 only if a component function
associated with the history of node j (for some s) is
non-zero in the sum Eqn. 14). In addition to recovering
the temporal causal interactions in this way, the esti-
mated output kernel matrix Li associated with each
f i captures within-source temporal dependencies. We
now apply these ideas to a problem in computational
biology.

Causal Inference of Gene Networks: We use time-
course gene expression microarray data measured dur-
ing the full life cycle of Drosophila melanogaster [2].
The expression levels of 4028 genes are simultaneously
measured at 66 time points corresponding to various
developmental stages. We extracted time series data
for 2397 unique genes, and grouped them into 35 func-
tional groups based on their gene ontologies. The
goal is to infer causal interactions between functional
groups (represented by multiple time series associated
with genes in that group), as well obtain insight on
within-group relationships between genes. We con-
ducted four sets of experiments: with linear and non-
linear dictionaries (Gaussian kernels with 13 choices
of bandwidths per group), and with or without output
kernel learning. We use the parameters λ = 0.001 and
time lag of 7 without tuning. Figure 3 shows hold-
out RMSE from the four experiments, for each of the
35 functional groups. Clearly, nonlinear models with
both input and output kernel learning (labeled “non-
linear L” in Figure 3) give the best predictive perfor-
mance implying greater relability in the implied causal
graphs.

Figure 3: RMSE in predicing multiple time series
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In consultation with a professional biologist, we an-
alyzed the causal graphs uncovered by our approach
(Figure 4). In particular the nonlinear causal model
uncovered the centrality of a key cellular enzymatic
activity, that of helicase, which was not recognized by
the linear model. In contrast, the central nodes in the
linear model are related to membranes (lipid binding
and gtpase activity). Nucleic acid binding transcrip-
tion factor activity and transcription factor binding
are both related to the helicase activity, which is con-
sistent with biological knowledge of them being tightly
coupled. This was not captured in the linear model.
Molecular chaperone functions, which connect ATPase
activity and unfolded protein binding, was successfully
identified by our model, while the linear model failed
to recognize its relevance. It is less likely that unfolded
protein and lipid activity should be linked as suggested
by the linear model.
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Figure 4: Causal Graphs: Linear (left) and Non-linear
(right)
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In addition, via output kernel matrix estimation (i.e.,
Li), our model also provides insight on the conditional
dependencies within genes, shown in Figure 5, for the
unfolded protein binding group.

Figure 5: Interactions in unfolded protein binding group

5 Related work and Conclusion

Our work is the first to address efficient simultaneous
estimation of both the input and output components
of separable matrix-valued kernels. Two recent pa-
pers are closely related. In [12], the input scalar ker-
nel is predefined and held fixed, while the output ma-
trix is optimized in a block coordinate descent proce-
dure. As discussed in Section 2, this approach involves
solving Sylvester equations using eigendecomposition
methods which is computationally very costly. In very
recent work, concurrent with our work, [18] indepen-
dently propose a multiple kernel learning framework
for operator-valued kernels. Some elements of their
work are similar to ours. However, they only opti-
mize the scalar input kernel keeping the output matrix
fixed. Their optimization strategy also includes eigen-
decomposition, and Gauss-Siedel iterations for solving
linear systems, while we exploit the quadratic nature of
the objective function using CG and a fast sparse SDP
solver to demonstrate the scalability benefits of inexact
optimization. In addition, we provide generalization
analysis in terms of bounds on the Rademacher com-
plexity of our vector-valued hypothesis spaces, comple-
menting analogous results in the scalar multiple kernel
learning literature [11, 20]. We also outlined how our
framework operationalizes nonlinear Granger Causal-
ity in high-dimensional time series modeling problems,

which may be of independent interest. Future work
includes extending our framework to other classes of
vector-valued kernels [1, 9] and to functional data anal-
ysis problems [30].
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Abstract

This paper discusses General Random Utility
Models (GRUMs). These are a class of para-
metric models that generate partial ranks over
alternatives given attributes of agents and alter-
natives. We propose two preference elicitation
scheme for GRUMs developed from principles
in Bayesian experimental design, one for social
choice and the other for personalized choice.
We couple this with a general Monte-Carlo-
Expectation-Maximization (MC-EM) based al-
gorithm for MAP inference under GRUMs. We
also prove uni-modality of the likelihood func-
tions for a class of GRUMs. We examine the
performance of various criteria by experimental
studies, which show that the proposed elicitation
scheme increases the precision of estimation.

1 Introduction

In many situations, we need to know the preferences of
agents over a set of alternatives, in order to make deci-
sions. For example, in recommender systems, we can com-
pute recommendations of new products for a user based
on his reported preferences over some products. In social
choice, we need to know agent preferences over alterna-
tives, to make a joint decision. Predicting consumer behav-
ior based on reported preferences is an important topic in
econometrics [3, 4].

There are two closely related challenges in building a deci-
sion support system: preference acquisition and computer-
aided decision making [7].

Given preferences, the decision making problem can typi-
cally be solved through optimization techniques (e.g., com-
puting the choice that minimizes the maximum regret).
However, there is often a preference bottleneck, where it is

∗School of Engineering and Applied Sciences.

too costly or even impossible for users to report full infor-
mation about their preferences. This happens, for example,
in airline recommendation systems, where the number of
possible itineraries is large [7]. Another instance is com-
binatorial voting, where agents vote on multiple related is-
sues [15].

To overcome the preference bottleneck, a well accepted ap-
proach is preference elicitation. This aims to elicit as little
as possible of the agents’ preferences, to make a good de-
cision. Previous work focused on achieving one of the fol-
lowing two goals:

1. Social choice. We want to make a joint decision for all
agents. Applications include combinatorial auctions [21],
voting [11, 17], and crowdsourcing [19].

2. Personalized choice. We want to “learn” an agent’s
preferences based on a part of her own preferences or pref-
erences of other similar agents. Applications include prod-
uct configuration [7]. See [5, 13] for recent developments.

In this paper, we focus on elicitation for ordinal preference,
which means that the agents’ preferences are represented
by rankings. We assume that preferences are generated by
general random utility models (GRUMs). In a GRUM, an
agent’s preferences are generated as follows: Each alterna-
tive is characterized by a utility distribution, and the agents
rank the alternatives according to the perceived utilities,
which are generated from the corresponding utility distri-
butions. Parameters for each utility distribution are com-
puted by a combination of attributes of the alternative and
attributes of the agent. Parameters of the GRUM model the
interrelationship between alternative attributes and agent
attributes. See Section 2.1 for more details.

GRUMs are a significant extension of random utility mod-
els (RUMs) [22], where the effect of attributes of alterna-
tives and agents are not considered. RUMs have been ex-
tensively studied and applied in prior work but generally
in ways that are specialized to particular parametric forms;
e.g., the Bradley-Terry model [8] and the Plackett-Luce
model [18, 20].
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1.1 Contributions

We propose a general adaptive method (Algorithm 1) for
preference elicitation within the Bayesian experimental de-
sign framework (see, [10, e.g.]), guided by maximum ex-
pected information gain. In this paper, we focus on a spe-
cial case, where in each step a targeted agent reports her
preferences in full.

We target an agent for elicitation who, based on agent
attributes, will provide the greatest expected information
gain. In addition to using classical criteria in Bayesian ex-
perimental design, we also propose two new criteria that
are designed to best improve the quality of the inferred rank
preferences, one for predicting social choice, and the other
for predicting personalized choice.

Directly computing the optimal agent to target next can
be challenging due to the lack of efficient algorithms for
MAP inference and lack of efficient computation of ob-
served Fisher information. To overcome this, we extend
the MC-EM algorithm and conditions for convergence de-
veloped for RUMs by Azari et al. [1] to handle GRUMs.
We compute observed Fisher information within the E-step.

We test the prosed methods for MAP/MLE inference and
preference elicitation for GRUMs on both synthetic dataset
and the Sushi dataset [14].

We compare the performance under the new criteria and
performance under the standard criteria from Bayesian ex-
perimental design literature. Results show that our elic-
itation framework can significantly improve the precision
of estimation for a moderate number of samples in social
choice, relative to random and some of the classical elicita-
tion criteria.

1.2 Related Work

GRUMs are a specific case of the generative model stud-
ied by Berry, Levinsohn and Pakes (therefore BLP) [3].
The BLP model explicitly considers unobserved attributes
of alternatives and agents, whereas GRUMs only consider
observed attributes.

However, most work on the BLP model has focused on
calculating aggregate properties (for example, the demand
curve) when a distribution of the values of unobserved at-
tributes are given. Moreover, the methodologies developed
in [3] and subsequent papers only work for the logit model.
That is: the utility distributions are the standard Gumbel
distribution, which is a special case. Even when there are
no unobserved variables, BLP was not known to be com-
putationally tractable, beyond the logit case.

An approximate method, that of maximum simulated like-
lihood has been proposed for GRUMs [23]. We fo-
cus on MAP/MLE inference and preference elicitation for
GRUMs. We developed an MC-EM algorithm for a large

class of GRUMs. To the best of our knowledge, this is the
first practical algorithm for MAP/MLE inference for gen-
eral GRUMs, beyond the logit case. We note that RUMs
are a special class of GRUMs. Therefore, the new algo-
rithm naturally extends the algorithm developed by Azari
et al. [1] for RUMs. 1

For social choice, the elicitation scheme designed by Lu
and Boutilier [17] aims at computing the outcomes of dif-
ferent commonly studied voting rules. In comparison, the
proposed elicitation scheme aims at computing the MAP of
GRUMs, which we believe to be different from any com-
monly studied voting rules.

Compared to the elicitation scheme designed by Pfeiffer et
al. [19], which adopted the Bradley-Terry model, this paper
focuses on GRUMs, which is much more general. Also, as
we will see later in the paper in Example 2, the elicitation
scheme by Pfeiffer et al. is closely related to a well studied
criterion under the Bayesian experimental design frame-
work called D-optimality. In contrast, the new elicitation
framework allows us to use many other classical criteria
in Bayesian experimental design, including D-optimality.
Moreover, surprisingly, experimental results on synthetic
data show that D-optimality might not be a good choice for
social choice for rankings.

The new elicitation framework considers the attributes of
agents and alternatives, allowing for more options for elic-
itation (e.g. we can target an agent with specific at-
tributes). The proposed method is related to the general
idea in [13, 9, 6]. However, the proposed method is more
general, in the sense that we can handle orders with any
length (e.g. Sushi dataset which includes full orders and
not only pairwise data). It can also handle any partial order
situation due to missing data or design of voting rule (e.g.
k first voting or ranks for some missing parties).

2 Preliminaries

In this section, we formally define GRUMs and their corre-
sponding MAP mechanism. Further, we recall basic ideas
in Bayesian experimental design.

2.1 General Random Utility Models

We consider a preference aggregation setting with a set of
alternatives C = {c1, .., cm}, and multiple agents indexed
by i ∈ {1, . . . , n}. In GRUMs, for every j ≤ m, alterna-
tive j is characterized by a vector of L ∈ M real numbers,
denoted by ~zj . And for every i ≤ n, agent i is character-
ized by a vector of K ∈ N real numbers, denoted by ~xi.2

1Inference and elicitation for GRUMs with unobserved at-
tributes are two interesting directions for future research.

2In this paper we focus on the case where all ~xi and ~zj are
numerical attributes rather than categorical attributes.
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Throughout the paper, j denotes an alternative, i denotes
an agent, l denotes the attribute of an alternative, and k de-
notes an agent attribute.

The agents’ preferences are generated through the follow-
ing process.3 Let uij be agent i’s perceived utility for alter-
native j, and let B be a K × L real matrix that models the
linear inter-relation between attributes of alternatives and
attributes of agents.

uij = δj + ~xiB(~zj)
T + εij , (1)

uij ∼ Pr(·|~xi, ~zj , δj , B) (2)

In words, agent i’s utility for alternative j is composed of
the following three parts:

1. δj : The intrinsic utility of alternative j, which is the
same across all agents;

2. ~xiB(~zj)
T : The agent-specific utility, where B is the

same across all agents;

3. εij : The random noise generated independently across
agents and alternatives.

Given this, an agent ranks the alternatives according to
her perceived utilities for the alternatives in the descend-
ing order. That is, for agent i, cj1 �i cj2 if and only if
uij1 > uij2 .4 The parameters for a GRUM are denoted
by Θ = (~δ,B). When K = L = 0, the GRUM model
degenerates to RUM.
Example 1 Figure 1 illustrates a GRUM for three alterna-
tives (different kinds of sushi) and n agents. Each alterna-
tive is characterized by its attributes including heaviness,
price, and custom loyalty. Each agent is characterized by
attributes including gender and age. Agent attributes have
different relationships with alternative attributes. For in-
stance, a person’s salary can be related to a preference in
regard to the sushi’s price rather than heaviness. The out-
come of this relationship is a vector of nondeterministic
utilities, assigned to the alternatives by each agent.

2.2 MAP Inference

Given a GRUM, the preference profile is viewed as data,
D = {π1, . . . , πn}, where each πi is a permutation
(πi(1), . . . , πi(m)) of {1, . . . ,m} that represents the full
ranking [cπi(1) �i cπi(2) �i · · · �i cπi(m)]. We take the
standard maximum a posteriori (MAP) approach to esti-
mate the parameters.

Recall that each agent’s preferences are generated condi-
tionally independently given the parameters Θ. Therefore,
in GRUMs, the probability (likelihood) of the data given

3For better presentation, throughout the paper we assume that
the preferences are full rankings. The results and algorithms can
be extended to the case where the preferences are partial rankings.

4For all reasonable GRUMs the situations with tied perceived
utilities have zero probability measure.

Figure 1: The generative process for GRUMs.

the ground truth Θ is: Pr(D | Θ) =
∏n
i=1 Pr(πi | Θ),

where:

Pr(πi|Θ) =∫

uiπi(1)>···>uiπi(n)

∏

j

Pr(uiπi(j)|~xi, ~zj ,Θ) duiπi(j)

Suppose we have a prior over the parameters, for MAP in-
ference we aim at computing Θ to maximize the posterior
function:

Pr(Θ|D) =
∏n
i=1 Pr(πi | Θ) Pr(Θ)

After computing Θ∗ that maximizes posterior, we can make
joint decisions for the agents based on Θ∗.5 For example,
we can choose the winner to be the alternative whose util-
ity distribution has the highest mean, or choose a winning
ranking over alternatives by ranking the means of the utility
distributions.

2.3 One-Step Bayesian Experimental Design

Suppose we have a parametric probabilistic model. Let
Pr(Θ∗) denote the prior distribution over the parameters.
A one-step Bayesian experimental design problem is com-
posed of two parts: a set of designs H and a quality func-

5In the context of social choice, the prior is often uniform, and
MAP becomes MLE.
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tion G(·) defined on any distribution over the parametric
space.

A design h ∈ H is mathematically characterized by
Pr(·|Θ∗, h) that controls the way the data D are gener-
ated for any ground truth parameter vector Θ∗. Therefore,
for any given design h, we can compute the probability
for data D as Pr(D|h). Given any data D and design h,
we can compute the posterior distribution of parameters
Pr(·|D,h). The objective of Bayesian experimental de-
sign is to choose the design h that maximizes the expected
quality of the posterior of MAP parameters, where the ran-
domness comes from the data that are generated given h.
Formally, we aim at computing h∗ as follows.

h∗ = arg max
h

∫
G(Pr(·|D,h))× Pr(D|h) dD (3)

Often, directly computing (3) is hard. Even G(Pr(·|D,h))
is difficult to compute given D and h. Researchers have
taken various approximations to (3). A common ap-
proach is to approximate Pr(·|D,h) by a normal distribu-
tion N (Θ̂, [R(Θ̂) + Ih(Θ̂)]−1), where:

• Θ̂ is the MAP of D,

• R(Θ) is the precision matrix of the prior over Θ, that
is, R = ∇2

Θ log Pr(Θ), and

• Ih(Θ̂) is the Fisher information matrix defined as fol-
lows. Let Xπ = ∇Θ log Pr(π|~Θ, h), we have

Ih(Θ̂) = Eπ(Xπ(Xπ)T |Θ=Θ̂).

Equivalently, if log Pr(π|Θ, h) is twice differentiable
w.r.t. Θ for each ranking π, then

Ih(Θ̂) = −Eπ(∇2
Θ log Pr(π|Θ, h)|Θ=Θ̂).

If we approximate Pr(·|D,h) by N (Θ̂, [R(Θ̂) +
Ih(Θ̂)]−1), then the most commonly studied quality
functions are functions of Θ̂ and h. More precisely, they
are functions of Θ̂ and R(Θ̂) + Ih(Θ̂). In such cases,
we can rewrite G(N (Θ̂, Ih(Θ̂))) = G∗R(Θ̂, h). Then, (3)
becomes:

h∗ = arg max
h

∫
G∗R(Θ̂, h) · Pr(Θ̂|h)dΘ̂ (4)

Still the integration in (4) is often hard to compute, and
is approximated by G∗R(Θ∗, h), where Θ∗ is the mode of
Pr(Θ). Some popular quality functions and corresponding
approximations are summarized in Table 1.

Example 2 The adaptive elicitation approach by Pfeiffer
et al. [19] is a special case of Bayesian D-optimality de-
sign, where H is the set of all pairwise questions be-
tween alternatives. Pfeiffer et al. derived formulas for
Pr(·|Θ∗, h) for each h ∈ H , and chose h∗ according to
(3). The quality function they use is the negative Shannon
entropy, which is exactly D-optimality as shown in Table 1.

3 Our Preference Elicitation Scheme

In the new elicitation framework, we adapt the one-step
Bayesian experimental design to multiple iterations. For
any iteration t, let Dt denote the preferences elicited in all
previous iterations. The prior distribution Prt over param-
eters is the posterior of observing Dt, that is: for any Θ,
Prt(Θ) = Pr(Θ|Dt). Then we solve a standard one-step
Bayesian experimental design problem w.r.t. the prior Prt

to elicit a new agents’ preferences, and then form Dt+1 for
the next iteration.

Our general elicitation framework for GRUMs is presented
as Algorithm 1. To allow flexibility of using various crite-
ria of Bayesian experimental design, we let the input con-
sist of the heuristic G∗R(Θ̂, h), which is usually a function
of Θ̂ and R(Θ̂) + Ih(Θ̂). To present the main idea, in this
paper the set of designs H is the multi-set of all agents
attributes. That is, in each iteration (Steps 1∼3) we will
compute an h ∈ H and query the preferences of a ran-
dom agent whose attributes are h.6 Steps 1∼3 are hard to

Algorithm 1 Preference Elicitation for GRUMs

Heuristic: G∗R(Θ̂, h).
Randomly choose an initial set of data D1.
for t = 1 to T do

1: Compute Θt = MAP(Dt).
2: Compute the precision matrix Rt of Pr(Θ|Dt) at
Θt.
3: Compute ht ∈H that maximizes G∗Rt(Θ

t, ht).
4: Query an agent whose attributes are ht. Let πt

denote her preferences. Dt+1 ← Dt ∪ {πt}, H ←
H \ {ht}.

end for

compute. In this paper, we will use a multivariate normal
distributionN (Θ̂, JDt(Θ̂)−1) to approximate Pr(Θ|Dt) in
Step 2, where JDt(Θ̂) is the observed Fisher information
matrix, and we immediately have Rt = JDt(Θ̂).7 Given
any data D, JD(Θ̂, h) is defined as follows. Again, let
Θ̂ = MAP(D).

JD,h(Θ̂) =
∑

π∈D
(Xπ × (Xπ)T |Θ=Θ̂).

Equivalently, if log Pr(π|Θ, h) is twice differentiable
w.r.t. Θ for each ranking π, then we have:

JD,h(Θ̂) = −
∑

π∈D
(∇2

Θ log Pr(π|Θ, h)|Θ=Θ̂).

In Section 4 we propose an MC-EM algorithm to com-
pute MAP(Dt) in Step 1. In Section 4.3 we study how

6The elicitation scheme can be extended to other types of elic-
itation questions, for instance, pairwise comparisons and “top-k”.

7See e.g. page 224 [2] for justification of this approximation.
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Name Quality function Heuristics G∗R(Θ̂, h)

D-optimality Gain in Shannon information det(R+ Ih(Θ̂))

E-optimality Minimum eigenvalue of the information matrix λmin{R+ Ih(Θ̂)}
Proposed criterion for social choice Minimum inverse of pairwise coefficient of variation Equation (5)

Proposed criterion for personalized choice Minimum inverse of pairwise coefficient of variation Equation (6)

Table 1: Different criteria for experimental design.

to compute the observed Fisher information matrix Rt =
JDt(Θ

t), and use it for elicitation as well as accelerating
MC-EC algorithm. Computation of the Fisher information
matrix Ih(Θ̂) used in Step 3 will also be discussed in Sec-
tion 4.3.

The choice ofG∗R is crucial for the performance of the elic-
itation algorithm. The two first criteria summarized in Ta-
ble 1 are generic criteria for making the posterior as certain
as possible, which may not work well for eliciting the ag-
gregated ranking or individual rankings. In Section 6 we
report experimental results comparing performance of dif-
ferent G∗R in Table 1 and the new criteria we propose for
both social choice and individual ranking.

3.1 A New Elicitation Criterion for Social Choice

The social choice ranking is the ranking over the compo-
nents of ~δ. Therefore, if the objective is to elicit prefer-
ences for the aggregated ranking, it makes sense to make
each pairwise comparison as certain as possible. Follow-

ing the idea in t-test, we propose to use
|mean(δj1 − δj2)|

std(δj1 − δj2)
(which is the inverse of coefficient of variation) to evaluate
the certainty in pairwise comparison between cj1 and cj2 .
The larger the value is, the more certain we are about the
comparison between cj1 and cj2 . Therefore, we propose to
use the following quality function G distributions over Θ.
We recall that Θ = (~δ,B).

G(Pr) = min
j1 6=j2

|mean(δj1 − δj2)|
std(δj1 − δj2)

.

In words, G is the minimum inverse of the coefficient of
variation across all pairwise comparisons. The correspond-
ing G∗R is thus the following.

G∗R(Θ, h) = min
j1 6=j2

|mean(δj1 − δj2)|√
Var(δj1) + Var(δj2) + 2cov(δj1 , δj2)

,

(5)

Where |mean(δj1 − δj2)| can be computed from Θ and√
Var(δj1) + Var(δj2) + 2cov(δj1 , δj2) can be computed

from R+ Ih(Θ).

3.2 Generalization to Personalized Choice

Following the idea in the new criterion proposed in the last
subsection for social choice, for any agent with attributes

~x, we can define a similar quality function G~x(Pr). This
makes the ranking of the alternatives w.r.t. the deterministic
parts of the perceived utilities8 as certain as possible, as
follows. For any j ≤ m, let µj = δj + ~xB(~zj)

T . We note
that µj is a linear combination of the parameters in Θ.

G~x(Pr) = min
j1 6=j2

|mean(µj1 − µj2)|
std(µj1 − µj2)

(6)

G∗~x(Θ, h) can be defined in a similar way. However, usu-
ally we want to predict the rankings for a population of
agents, for which only a distribution over agent attributes
is known. Mathematically, let ∆ denote a probability dis-
tribution over RL. We can extend the criterion for person-
alized choice w.r.t. ∆ as follows.

G∆(Pr) =

∫

~x∈RT
G~x(Pr) ·∆(~x) d~x.

G∆ is usually hard to compute since it involves integrating
G~x over all ~x in support of ∆, which is often not analyti-
cally or computationally tractable. In the experiments, we
will use the criterion defined in (5) for personalized ranking
and surprisingly it works well.

4 An MC-EM Inference Algorithm

In this section, we extend MC-EM algorithm for
RUMs proposed by Azari et al. [1] to GRUMs. We
focus on GRUMs where the conditional probability
Pr(·|~xi, ~zj , δj , B) belongs to the exponential family, which
takes the following form: Pr(U = u|~xi, ~zj , δj , B) =
eηij ·T (u)−A(ηij)+H(u), where ηij is the vector of natural
parameters, which is a function of ~xi, ~zj ,Θ. A is a func-
tion of ηij and T and H are functions of u.

Let U = ( ~u1, . . . , ~un) denote the latent space, where
~ui = (ui1, . . . , uim) represent agent i’s perceived utilities
for the alternatives. The general framework of the proposed
EM algorithm is illustrated in Algorithm 2. The algorithm
has multiple iterations, and in each iteration there is an E-
step and a general M-step. Therefore, the algorithm is a
general EM (GEM) algorithm. We recall that Θ = (~δ,B)
represents the parameters.

The algorithm is performed for a fixed number of iterations
or until no Θt+1 in the M-step can be found. However, the

8That is, the intrinsic utility plus personalized utility.
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Algorithm 2 Framework of the EM algorithm
In each iteration.
E-Step : Q(Θ,Θt)

= E~U

{
log

n∏

i=1

Pr(~ui, π
i|Θ) + log(Pr(Θ))|D,Θt

}
(7)

M-step : compute Θt+1 s.t. Q(Θt+1,Θt) > Q(Θt,Θt)

E-step cannot be done analytically in general, and we will
use a Monte Carlo approximation for the E-step.

4.1 Monte Carlo E-Step: Gibbs Sampling

Our E-step is similar to the E-step in [1] with a modification
that considers the prior. We recall that Pr(·|~xi, ~zj , δj , B)
belongs to the exponential family. We have the following
calculation for iteration t, where µij = δij + ~xiB(~zj)

T for
any given Θ = (~δ,B), and µtij = δtij + ~xjB

t(~zi)
T .

Q(Θ,Θt) = E~U{log
n∏

i=1

Pr(~Ui, π
i | Θ) + log Pr(Θ) | D,Θt}

=
n∑

i=1

m∑

j=1

Euij{log Pr(uij |Θ) | πi,Θt}

=
n∑

i=1

m∑

j=1

ηijS
t
ij −A(ηij) +W,

where Stij = Euij∼Pr(uij |ηtij){uij |π
i}. (8)

We use a Monte Carlo approximation similar to that used
in [1], which involves sampling U from the distribution
Pr(U | D,Θt) using a Gibbs sampler, and then approxi-
mate St+1

ij by 1
N

∑N
k=1 u

k
ij . Each step of the Gibbs sam-

pler is sampling from a truncated exponential distribution,
illustrated in Figure 2 in [1].

4.2 General M-Step

After we compute St+1
ij ’s, the M-step aims at improving

Q(Θ,Θt):

Q(Θ,Θt) =

m∑

j=1

n∑

i=1

log Prj(uij = St+1
ij |Θ)+log(Pr(Θ))

We use steps of Newton’s method to improve Q(Θ,Θt) in
the M-step (we can use as many steps at each iteration to
ensure the convergence for each M-step).

Θt+1 = Θt − (∇2
ΘQ(Θ,Θt)|Θt)−1∇ΘQ(Θ,Θt)|Θt (9)

∇2
ΘQ(Θ,Θt) and ∇ΘQ(Θ,Θt) can be computed immedi-

ately from Stij as follows.

∇2
ΘQ(Θ,Θt) =

n∑

i=1

m∑

j=1

∇2
ΘηijS

t
ij −∇2

ΘA(ηij)

∇ΘQ(Θ,Θt) =
n∑

i=1

m∑

j=1

∇ΘηijS
t
ij −∇ΘA(ηij)

4.3 Computing Observed Fisher information

Computation of the observed Fisher information will not
only be used in Step 2 of the new elicitation scheme Algo-
rithm 1, but also will accelerate the GEM algorithm [16].
Fisher information can be computed by the following
method proposed by Louis [16]. From the independence
of agents we have: JD(Θ̂) =

∑
i Jπi(Θ̂), where,

Jπi(Θ) = EUi{−∇2
Θ logP (πi, Ui|Θ)|Θ, πi}

− EUi{∇Θ logP (πi, Ui|Θ)∇Θ logP (πi, Ui|Θ)T |Θ, πi}

Jπi(Θ̂) is computed using the samples (uij’s) generated in
MC step in every iteration of EM algorithm as follows.

∇2
Θ logP (πi, Ui|Θ) =

n∑

i=1

m∑

j=1

∇2
ΘηijUij −∇2

ΘA(ηij)

∇Θ logP (πi, Ui|Θ) =

n∑

i=1

m∑

j=1

∇ΘηijUij −∇ΘA(ηij)

The Fisher information matrix Ih(Θ̂) used in Step 3 of Al-

gorithm 1 can be approximated by limn→∞
JDn (Θ̂)

n , where
Dn is the dataset of n rankings randomly generated ac-
cording to Pr(π|Θ̂). Therefore, we can use the techniques
developed in this subsection to approximately compute
Ih(Θ̂).

4.4 MC-EM Algorithm in Detail

The details of the proposed EM algorithm (with fixed num-
ber of iterations) are illustrated in Algorithm 3.

Algorithm 3 MAP for GRUM
Input: D = (π1, . . . , πn), Θstart, T ∈ N
Let Θ0 = Θstart

for t = 1 to T do
for every πi ∈ D do

Compute St+1
ij and J(Θt+1) according to (8) for all

j ≤ m.
end for
Compute Θt+1 according to (9).

end for
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5 Global Optimality for Posterior
Distribution

In this section, we generalize theorems on global optimal-
ity of likelihood for RUMs proved in [1] to GRUMs. All
proofs are omitted due to the space constraint. The EM
algorithm tends to find local optimal of the posterior distri-
bution, hence, proving global optimality of MAP helps to
avoid issues due to EM. First, we present concavity of the
posterior distribution in GRUMs.

Theorem 1 For the location family, if for every j ≤ m the
joint probability density function for ~εi and the prior Pr(Θ)
are log-concave, then Pr(Θ|D) is concave up to a known
transformation.

For P-L, Ford, Jr. [12] proposed the following neces-
sary and sufficient condition for the set of global max-
ima solutions to be bounded (more precisely, unique) when∑m
j=1 e

Θj = 1. The conditions are generalized to the case
of RUMs in [1]. We prove that this condition is also neces-
sary and sufficient for global maxima solutions of the like-
lihood function of GRUMS to be bounded.

Condition 1 Given the dataD, in every partition of the al-
ternatives C into two nonempty subsets C1∪C2, there exists
c1 ∈ C1 and c2 ∈ C2 such that there is at least one ranking
in D where c1 � c2.

Theorem 2 Suppose we fix µ11 = 0. Then, the set SD of
global maxima solutions to Pr(Θ|D) is bounded in Θ if
and only if the data D satisfies Condition 1 and the linear
model describing µ in terms of Θ is identifiable.

6 Experimental Results

In this section, we report experimental results on synthetic
data and a Sushi dataset from Kamishima [14] for three
types of tests described below.

6.1 Social Choice and Synthetic Data

We first show the consistency of the model for so-
cial choice. We generate random data sets with
δj ∼ Normal(1, 1), Bij ∼ Normal(0, 1), Xi ∼
Normal(0, 1), Zi ∼ Normal(0, 1), and then generate ran-
dom utilities with the random noise εij generated with
mean zero and variance of 1. The results in Figure 2 are
generated by varying the number of agents for which we
have preference information. For each number of agents,
we estimate the parameter set Θ, and evaluate the Kendall
correlation between estimated and true ranks with respect
to δj’s. These results illustrate the improvement in esti-
mated social choice order as the number of agents in the
population increases.
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Figure 2: Asymptotic behavior for synthetic data and social
choice. The y-axis is the average Kendal correlation between the
estimated social choice and the ground truth order.

In studying elicitation for social choice, we test the perfor-
mance of the elicitation schemes shown in Table 1, i.e. D-
optimality, E-optimality, and the proposed criterion in (5),
and compare the results to random elicitation. We adopt
the following two synthetic datasets:

Dataset 1: (Bij ∼ N(0, 1), Xi ∼ N(0, 1), Zi ∼
N(0, 1)), δj ∼ 0.1 ∗ N(1, 1) and the error term εij ∼
N(0, 1).

Dataset 2: The same as Dataset 1, except that the δj ∼
N(1, 1) and the error term εij ∼ N(0, 1/4).

Compared to the GRUM in Dataset 1, the model adopted
in Dataset 2 has a heavier social component and less noise.
For each dataset we generate 100 agents’ preferences, and
use the three criteria shown in Table 1 to elicit n ∈ [1, 100]
rankings. For each n, we apply Algorithm 3 and compare
the ranking over the learned δj’s with the ground truth so-
cial choice ranking.

The results are shown in Figure 3 (graphs are smoothed
with a moving window with length 25), where the x-axis
is the number of agents whose preferences are elicited, and
the y-axis is the Kendall correlation between the learned
ranking and the ground truth ranking. We make the follow-
ing observations.

• In Dataset 1 where the social component is small, it is not
clear which criteria is better, as shown in Figure 3(a), and
there are no statistically significant results.

• In Dataset 2 where the social component is large,
E-optimality generally works better than the proposed
method, while both work better than random, which works
surprisingly better than D-optimality, as shown in Fig-
ure 3(b). However, only a few of these observations are
statistically significant with 90% confidence, for example,
considering the interval of [34, 44] agents, E-optimality and
the proposed method outperforms Random but the compar-
ison between the other methods is not significant at 90%.
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(a) Social choice: Dataset 1. (b) Social choice: Dataset 2.

Figure 3: Comparison of elicitation criteria described in Table 1 for synthetic data and social choice.
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(a) Personalized choice: Dataset 1. (b) Personalized choice: Dataset 2.

Figure 4: Comparison of elicitation criteria described in Table 1 for synthetic data for personalized choice.
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(a) Social choice: Sushi dataset. (b) Personalized choice: Sushi dataset.

Figure 5: Comparison of elicitation criteria described in Table 1 for the Sushi dataset [14].

6.2 Personalized Choice and Synthetic Data

For personalized choice we first show the consistency re-
sults in Figure 6, where the bottom box-plot shows the
Kendall correlation between noisy data (i.e., an individual

agent’s random utility and thus preference order) and the
true preference order for each agent, and the top box-plot
shows Kendall correlation between estimated agent prefer-
ence orders and true preference orders, as obtained through
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the model.

Turning to preference elicitation, we compare the schemes
in Table 1 with the random method for the same two
datasets as were adopted for social choice. The results
are shown in Figure 4(graphs are smoothed with a mov-
ing window with length 20). For each group of 100 agents,
and for any n ∈ [1, 100] and each elicitation scheme, we
compute the MAP of Θ, and use it to compute the Kendall
correlation between the true preferences and the predicted
preference for all 100 agents in this group. We make the
following observations:
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Figure 6: Asymptotic behavior for synthetic data and person-
alized choice. The y-axis is the average Kendall correlation be-
tween an estimated preference order and ground truth preference
order for an agent. The top box-plot shows the result of inference,
the bottom box-plot the correlation from raw data.

• In Dataset 1, where the social component is small, when
the number of agents used in elicitation is not too large (<
50), the proposed method works better than E-optimality,
which is itself comparable to random. Both methods are
better than D-optimality. See Figure 4(a). Some of these
observations are statistically significant, for example, when
n = [24, 25], E-optimality works better than D-optimality
with 90% significance, E-optimality works better than ran-
dom with 75% significance, the proposed method works
better than E-optimality with 75% significance, and the
proposed method works better than D-optimality with 75%
significance.

• In Dataset 2, where the social component is large,
E-optimality generally works better than the proposed
method, both work better than random, and random is
more effective than D-optimality, as shown in Figure 4(b).
However, only a few of these observations are statistically
significant with 90% confidence interval, for example E-
optimality outperforms D-optimality when the number of
agents is in the interval [29, 42].

6.3 Sushi Data

In synthetic experiments, we have access to the ground
truth. However, in the real world data (Sushi data) there are
no data available as ground truth. In this experiment, we es-
timated parameters Θ using preferences from 1000 agents,
randomly chosen from the 5000 agents in the dataset. And
adopt those parameters as the ground truth for the experi-
mental study. The categorical features are discarded from
the data set.9

The results are shown in Figure 5 (graphs are smoothed
with a moving window with length 10), where (a) shows
comparisons for social choice (where we rank δ’s), and (b)
shows comparisons for personalized choice. We make the
following observations:

• For social choice (a), none of the criteria work well (and
note that the Kendall correlations are low for all criteria).
We feel that this is reasonable since preferences over sushi
is likely high personalized with a small social component
to preferences.

• For personalized choice (b), we observe that the proposed
method is generally the most effective, while the perfor-
mance of E-optimality and D-optimality is very close to
random. None of these results are statistically significant
with 90% confidence.

7 Conclusion and Future Work

We have proposed a method for preference elicitation based
on ordinal rank data, adopting the framework of Bayesian
experimental design. This includes two new criteria for so-
cial and personalized case. The proposed criterion for so-
cial choice can significantly improve the precision of esti-
mation, relative to random and some of the classical elicita-
tion criteria. This work can also be seen as preference elic-
itation for learning to rank. In the future, we can adopt the
methodology in other preference elicitation applications;
for example recommendation systems, product prediction
and so forth.
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Abstract 

The Trek Separation Theorem (Sullivant et al. 
2010) states necessary and sufficient conditions 
for a linear directed acyclic graphical model to 
entail for all possible values of its linear 
coefficients that the rank of various sub-matrices 
of the covariance matrix is less than or equal to 
n, for any given n. In this paper, I extend the 
Trek Separation Theorem in two ways: I prove 
that the same necessary and sufficient conditions 
apply even when the generating model is 
partially non-linear and contains some cycles. 
This justifies application of constraint-based 
causal search algorithms to data generated by a 
wider class of causal models that may contain 
non-linear and cyclic relations among the latent 
variables.  

1 INTRODUCTION 
In many cases, scientists are interested in inferring causal 
relations between variables that cannot be directly 
measured (e.g. intelligence, anxiety, or impulsiveness) by 
administering test surveys with measured “indicators” that 
indirectly measure the unmeasured or “latent” variables. 
In other cases, scientists are interested in estimating the 
values of the latent variables from the measured 
indicators. The variances of the estimates of the latent 
variables of interest can be reduced in various ways by 
employing multiple indicators for each latent variable. A 
model in which each latent variable of interest is 
measured by multiple indicators (which may also be 
caused by other latents of interest as well as the error 
variable) is called a multiple indicator model. Multiple 
indictor models are quite common in many disciplines 
such as educational research, psychology, political 
science, etc. (Bartholomew et al., 2002).  

Two major problems are how to use the values of the 
measured indicator variables to make reliable inferences 
about the causal relationships between the latent variables 
of interest, and to predict the values of the latent variables 
from the values of the measured indicators. A number of 
complications make both of these tasks very difficult: 

• Associations among indicators are often confounded 
by additional unknown latent common causes; 

• One indicator may directly affect other indicators 
(e.g. “anchoring effects”); 

• There are often a plethora of alternative causal 
models that are consistent with the data and with the 
prior knowledge of domain experts, often far too 
many models to test individually; 

• There may be non-linear dependencies among latent 
variables; 

• There may be feedback relationships among latent 
variables. 

The most common algorithms for using measured 
indicators to find causal relations among latent variables 
or to infer the values of the latent variables use some 
version of factor analysis. However, given the models 
with the features cited above, factor analytic algorithms, 
as well as the FindHidden algorithm of Elidan (2001) 
have been shown to perform poorly (Silva et al. 2006).  

One class of model search algorithms that have had some 
success dealing with some of the complications listed 
above is constraint-based search. A constraint-based 
search attempts to find the set of models that most closely 
match the measured constraints on a probability 
distribution that are entailed for all values of the free 
parameters (e.g. conditional independence constraints that 
are entailed by d-separation) with constraints that are 
judged to hold in the population (as determined by a 
statistical test).  

Although multiple indicator models rarely entail any 
conditional independence constraints among just the 
measured indicators, multiple indicator models often 
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entail constraints on the rank of sub-matrices of the 
covariance matrix among the measured indicators (e.g. 
vanishing tetrad differences explained below), and there 
are searches based on these rank constraints that have 
desirable properties (Silva et al. 2006).  

Multiple indicator models are special cases of structural 
equation models, and the form of the equations can be 
represented by a directed graph (Pearl 2000, Spirtes et al. 
2001).  Under the assumption of linearity, the graphical 
structure representing the multiple indicator model can 
linearly entail constraints on the covariance matrix of the 
variables, that is, constraints that hold for all values of the 
free parameters (the linear coefficients associated with the 
edges, and the variances of the error terms). For example, 
a multiple indicator model represented by a graph with a 
single latent variable L that is the parent of measured 
indicators X, Y, Z, and W and contains no other edges, 
entails the vanishing tetrad difference (e.g. ρ(X,Y)ρ(Z,W) 
– ρ(X,Z)ρ(Y,W) = 0) for all values of the linear 
coefficients, which is equivalent to a constraint that the 
rank of a submatrix of the covariance matrix is less than 
or equal to 1. 

The Trek Separation Theorem (Sullivant et al. 2010) 
states necessary and sufficient conditions for a directed 
acyclic graph to linearly entail that the rank of various 
sub-matrices of the covariance matrix among the 
measured variables are less than or equal to n, for any n.  

The Trek Separation Theorem is one way to justify the 
correctness of the BuildPureClusters algorithm (Silva et 
al. 2006), that searches for the set of multiple indicator 
models that most closely match the set of vanishing tetrad 
differences judged to hold in the population by 
application of statistical tests to the sample data. 
BuildPureClusters is a pointwise consistent algorithm 
that, depending upon the input data, either outputs “Can’t 
tell” or an equivalence class of graphs that linearly entail 
the same set of vanishing tetrad differences and zero 
partial correlation constraints. The algorithm has been 
successfully applied to a number of data sets (Silva et al. 
2006, Jackson & Scheines 2005) 

However, there are a number of significant limitations on 
usefulness of the Trek Separation Theorem (and hence on 
the BuildPureClusters algorithm): 

• The Trek Separation Theorem does not apply to 
cyclic graphs (as in feedback models); 

• The Trek Separation Theorem does not apply if any 
of the causal relations between the variables are non-
linear.  

In this paper, I prove an extension of the trek separation 
theorem which gives necessary and sufficient conditions 
for a directed graph (cyclic or acyclic) that has some 
functions relating variables to other variables that are non-
linear, and in which there may be some feedback 
(represented by cyclic graphs) to entail that the rank of 
various sub-matrices of the covariance matrix are less 
than or equal to n, for any n. This theorem has at least two 

uses for causal discovery: it serves as the basis for 
proving that existing algorithms for the linear case can be 
reliably applied to partially non-linear or cyclic models 
(described in section 4), and it could be used in the 
development of new algorithms for causal inference 
among models in which measured indicators have 
multiple latent parents but have non-linear or cyclic 
relations among the latent parents. 

In section 2, I describe multiple indicator models and the 
Trek Separation Theorem in more detail. In section 3, I 
state an extension of the trek separation theorem that 
applies to graphs that may have cyclic and non-linear 
relationships among some variables. In section 4, I 
discuss the issue of the extent to which it is to be expected 
that rank constraints on the covariance matrix might hold, 
or approximately hold, in the population even if they are 
not entailed by the model to hold for all values of the free 
parameters of the model. In section 5, I describe open 
research questions.  The Appendix contains the proofs. 

2 STRUCTURAL EQUATION MODELS 
In what follows, random variables are in italics, and sets 
of random variables are in boldface.. 

In a structural equation model (SEM) the random 
variables are divided into two disjoint sets, the substantive 
variables (typically the variables of interest) and the error 
variables (summarizing all other variables that have a 
causal influence on the substantive variables) (Bollen, 
1989). Corresponding to each substantive random 
variable V is a unique error term εV. A fixed parameter 
SEM S has two parts <φ , θ>, where φ  is a set of equations 
in which each substantive random variable V is written as 
a function of other substantive random variables and a 
unique error variable, together with θ , the joint 
distributions over the error variables. An example of a 
linear SEM is the case where φ  contains the pair of linear 
equations X =  3L + εX, and L = εL, and θ  is a standardized 
Gaussian distribution over εX and εL and εX and εL are 
independent. Together φ  and θ  determine a joint 
distribution over the substantive variables in S, which will 
be referred to as the distribution entailed by S. 

A free parameter linear SEM model replaces some of the 
real numbers in the equations in φ with real-valued 
variables and a set of possible values for those variables, 
e.g. X = aX,L L + εX, where aX,L can take on any real value. 
In addition, a free parameter SEM can replace the 
particular distribution over εX and εL with a parametric 
family of distributions, e.g. the bi-variate Gaussian 
distributions with zero covariance. The free parameter 
SEM also has two parts <Φ , Θ>, where Φ  contains the 
set of equations with free parameters and the set of values 
the free parameters are allowed to take, and Θ  is a family 
of distributions over the error variables.  

In general, I will assume that there is a finite set of free 
parameters, and all allowed values of the free parameters 
lead to fixed parameter SEMs that have a reduced form 
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(i.e. each substantive variable X can be expressed as a 
function of the error variables of X and the error variables 
of its ancestors), all variances and partial variances among 
the substantive variables are finite and positive, and there 
are no deterministic relations among the measured 
variables. 

The path diagram of a SEM with jointly independent 
errors is a directed graph, written with the conventions 
that it contains an edge B → A if and only if B is a non-
trivial argument of the equation for A. The error variables 
are not included in the path diagram. A fixed-parameter 
acyclic structural equation model (without double-headed 
arrows) is an instance of a Bayesian Network <G, P(V)>, 
where the path diagram is G, and P(V) is the joint 
distribution over the variables in G entailed by the set of 
equations and the joint distribution over the error 
variables (Pearl, 2000; Spirtes et al. 2001). It has been 
shown that when a directed cyclic graph is used to 
represent non-linear structural equations, then d-
separation between A and B conditional on C does not 
entail the corresponding conditional independence. Even 
in non-linear cyclic structural equation models, if A and B 
are d-separated conditional on the empty set, then A and 
B are entailed to be independent (Spirtes, 1995), and that 
is the only feature of cyclic graphs that the proofs below 
depend upon. 

A polynomial equation Q on the entries of a covariance 
(or correlation) matrix C holds when C is a solution to Q. 
A polynomial Q is entailed by a free parameter SEM 
when all values of the free parameters entail covariance 
matrices that are solutions to Q. 

For example, a vanishing tetrad difference among {X,W} 
and {Y,Z}, which holds if ρ(X,Y)ρ(Z,W) – ρ(X,Z)ρ(Y,W) 
= 0, is entailed by a free parameter SEM S in which X, Y, 
Z, and W are all children of just one latent variable L since 
any value of the free parameters in S entails a covariance 
matrix that is a solution to ρ(X,Y)ρ(Z,W) – ρ(X,Z)ρ(Y,W) 
= 0. 

The following definitions are illustrated in Figure 1. A 
trek in G from I to J is an ordered pair of directed paths 
(P1; P2) where P1 has sink I, P2 has sink J, and both P1 
and P2 have the same source k (e.g. (<L1,X1>;<L1,X2>). 
The common source k is called the top of the trek, 
denoted top(P1; P2) (e.g. top(<L1,X1>;<L1,X2>) is L1). 
Note that one or both of P1 and P2 may consist of a single 
vertex, i.e., a path with no edges. A trek (P1; P2) is simple 
if the only common vertex between P1 and P2 is the 
common source top(P1; P2). Let A, B, be two disjoint 
subsets of vertices V in G. Let T(A,B) and S(A,B) denote 
the sets of all treks and all simple treks from a member of 
A to a member of B, respectively. For example, if A = 
{X1} and B = {X2}, S(A,B) = {(<L1,X1>;<L1,X2>); 
(<L2,X1>;<L2,X2>)}. 

For two sets of variables A and B, and a covariance or 
correlation matrix over a set of variables V containing A 
and B, let cov(A, B) be the sub-matrix of Σ  that contains 

the rows in A and columns in B. For example, if A = {X1, 
X2, X3}, and B = {X4, X5, X10}, then  

                    X4               X5                 X10

cov(A,B) =
X1

X2

X3

ρ(X1,X4 ) ρ(X1,X5 ) ρ(X1,X10 )
ρ(X2,X4 ) ρ(X2,X5 ) ρ(X2,X10 )
ρ(X3,X4 ) ρ(X3,X5 ) ρ(X3,X10 )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 
Figure 1: A Multiple Indicator Model 

In the case where A and B both have size 3, if the rank of 
the matrix is less than or equal to 2, the determinant of 
cov(A,B) = 0. In that case the matrix is said to satisfy a 
sextad constraint. An example of a sextad constraint is 

Det
ρ(X1,X4 ) ρ(X1,X5 ) ρ(X1,X10 )
ρ(X2,X4 ) ρ(X2,X5 ) ρ(X2,X10 )
ρ(X3,X4 ) ρ(X3,X5 ) ρ(X3,X10 )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 0

 

Let A, B, CA, and CB be four subsets of the set V of 
vertices in G, which need not be disjoint. The pair 
(CA;CB) trek separates (or t-separates) A from B if for 
every trek (P1; P2) from a vertex in A to a vertex in B, 
either P1 contains a vertex in CA or P2 contains a vertex in 
CB; CA and CB are choke sets for A and B. For example, 
({L1}; {L2}), ({L1, L2}; ∅), and (∅; {L1,L2}) all t-separate 
A from B in this example. 

Theorem 1 (Trek Separation Theorem): For all 
directed acyclic graphs (path diagrams) G, the sub-matrix 
cov(A,B) has rank less than or equal to r for all 
covariance matrices of  linear SEMs with path diagram G, 
if and only if there exist subsets CA, CB ⊂ V(G) with #CA 
+ #CB ≤ r such that (CA; CB) t-separates A from B (where 
#CA is the number of variables in CA, and V(G) is the set 
of vertices in G). (Sullivant et al., 2010) 

Since the rank of cov(A, B) is less than or equal to r, if 
CA ∩ CB = ∅, #A = #B = 3, #CA + #CB = 2, and (CA; CB) 
t-separates A from B, then G entails a sextad constraint 
among the variables in A and B. For example, in Figure 1, 
({L1, L2};{ }) trek separates {X1, X2, X3} from {X4, X5, 
X10}, and hence  

rank
ρ(X1,X4 ) ρ(X1,X5 ) ρ(X1,X10 )
ρ(X2,X4 ) ρ(X2,X5 ) ρ(X2,X10 )
ρ(X3,X4 ) ρ(X3,X5 ) ρ(X3,X10 )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
≤ #CA + #CB = 2
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which in turn entails that the determinant of the matrix is 
zero for all values of the free parameters in a linear SEM.  

3 AN EXTENSION OF THE TREK 
SEPARATION THEOREM 

The Trek Separation Theorem can be extended by 
weakening the assumptions that the graph be linear 
everywhere and acyclic everywhere. The exact definition 
of linear acyclicity (or LA for short) below a choke set is 
somewhat complex (and is given below), but roughly a 
directed graphical model is LA below sets (CA; CB) for A 
and B respectively, if there are no directed cycles between 
CA and A or CB and B, and for every vertex V on any 
directed path P from CA to A, V is a linear function of its 
parents along P plus an arbitrary function of the parents 
not along P (including the error variables); and similarly 
for CB and B. For example in Figure 1, let the sets CA and 
CB for A = {X1, X2, X3}, and B = {X4, X5, X10} be CA = 
{L1, L2} and CB = ∅. Linear acyclicity below the sets CA, 
CB, for A, B requires that for i = 1…3, Xi = ai,1 L1 + ai,2 L2 
+ fi(εi), where εi is the error term for Xi, and fi is an 
arbitrary measurable function. (Since CB = ∅, linear 
acyclicity below the set CB is trivially true). Note that 
there can be non-linear and/or cyclic relationships 
between any of the latent variables.   

More formally, let D(CA,A,G) be the set of vertices on 
directed paths in G from CA to A except for the members 
of CA (but including members of A\CA). If S is a fixed-
parameter SEM <φ,θ> with path diagram G, S is LA 
below the sets CA, CB for A, B iff for each member of W 
= D(CA,A,G) ∪ D(CB,B,G), 

(i) Vext = V ∪ {εX: X ∈W};  

(ii) no member of W lies on a cycle; 

(iii) Gext is a directed graph over Vext with sub-graph G, 
together with an edge from εX to X for each X ∈W, 

(iv) for each X ∈ D(CA,A,Gext),  

X = aX ,V
V∈Parents(X ,Gext )∩(D(CA ,A,Gext )∪CA )

∑ V +

fX (Parents(X,Gext ) \ (D(CA ,Α,Gext )∪CA )) (1)
  

and for each X ∈ D(CB,B,Gext),  

X = aX ,V
V∈Parents(X ,Gext )∩(D(CB ,B,Gext )∪CB )

∑ V +

gX (Parents(X,Gext ) \ (D(CB,B,Gext )∪CB ))  (2)
 

Note that D(CA,A,G) = D(CA,A,Gext) for any A and CA 
that do not contain an error variable. 

Theorem 2 (Extended Trek Separation Theorem): 
Suppose G is a directed graph containing CA, A, CB, and 
B, and (CA;CB) t-separates A and B in G. Then for all 
covariance matrices entailed by a fixed parameter 
structural equation model S with path diagram G that is 
LA below the sets CA and CB for A and B, 

rank(cov(A,B)) ≤ #CA + #CB. 

The converse of Theorem 2 is basically guaranteed by the 
“only-if” clause of Theorem 1. 

Theorem 3: For all directed graphs G, if there does not 
exist a pair of sets C’A, C’B, such that (C’A; C’B) t-
separates A and B and #C’A + #C’B ≤ r, then for any CA, 
CB there is a fixed parameter structural equation model S 
with path diagram G that is LA below the sets (CA; CB) 
for A and B that entails rank(cov(A,B)) > r. 

In order to use the Extended Trek Separation theorems, it 
is necessary to have statistical tests of when rank 
constraints hold, or equivalently, when the corresponding 
determinants are zero. Drton & Olkin (2008) describe a 
statistical test of the rank constraints, that assumes a 
Normal distribution; however, in practice even when the 
distributions is non-Normal, the test often performs well. 
The Wishart test for vanishing tetrad constraints is a 
special case of this test (and was used in all of the 
simulations performed.)  

There is also a much slower, but asymptotically 
distribution-free statistical test of rank constraints based 
on the test developed by Bollen and Ting (Bollen & Ting, 
1993). 

4 FAITHFULNESS 
Let a distribution P be linearly rank-faithful to a directed 
acyclic graph G if every rank-constraint on a sub-
covariance matrix that holds in P is entailed by every 
free-parameter linear structural equation model with path 
diagram equal to G.  

If a distribution is linearly rank-faithful to its causal 
graph, then it is possible to use the rank-constraints 
among the observed variables to draw conclusions about 
the t-separation structure of the causal graph by using the 
Trek Separation Theorem to identify latent choke sets. 
For example, given a quartet of variables V = {X1, X2, X3, 
X4}, if for every partition of V into two sets of equal size 
(e.g. A = {X1, X2}, B = {X3, X4}) the rank of cov(A,B) is 
1, this indicates that there are sets CA with one member 
and CB = ∅ such that (CA;CB) t-separates(A;B). By 
combining this with other rank constraints and partial 
correlation constraints, it is possible to conclude, e.g. that 
X1, X2, X3 and X4 have a single latent common cause 
(Silva et al. 2006)  

In practice, there is no oracle that states whether a given 
rank constraint holds in a population, so statistical tests of 
rank constraints are substituted for an oracle. But is the 
assumption of linear rank-faithfulness reasonable? One 
justification for the assumption of rank-faithfulness is that 
the Trek Separation Theorem entails that if there is no 
pair of sets CA and CB such that # CA + # CA ≤ r, and A 
and B are t-separated by (CA;CB) then the rank of 
cov(A,B) is not linearly entailed to be ≤ r for all values of 
the free parameters of a free parameter structural equation 
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model with path diagram G. Moreover, since cov(A,B) is 
a linear function of the covariance matrix among the 
latents and the covariance matrix of the error terms, and 
the rank is not linearly entailed to be of rank r or less, it 
follows that the set of values of free parameters for which 
rank(cov(A,B)) ≤ r is of Lebesgue measure 0. This fact 
can be used to demonstrate the pointwise consistency of 
algorithms that rely on statistical tests of rank-constraints 
(Silva et al. 2006) under the assumption of linear rank-
faithfulness. 

This does not settle the practicality of such algorithms on 
reasonable sample sizes. Since statistical tests of the rank 
constraints are used to determine whether or not a rank-
constraint holds in a population, if the relevant 
determinants that determine rank are very close to, but not 
exactly equal to zero, any algorithm relying on statistical 
tests of rank could be incorrect with high probability 
unless the sample sizes were unrealistically large. This 
can occur for example, when some of the correlations 
between observed indicators are either very close to zero 
or very close to 1. Nevertheless, simulation tests and real 
applications are positive evidence that BuildPureClusters 
works at reasonable sample sizes. For a further discussion 
of faithfulness assumptions see Spirtes et al. (2001), 
Robins et al. (2003), Kalisch & Buhlmann (2007), and 
Uhler et al. (2012). 

The concept of linear rank faithfulness can be extended in 
the following way. If Φ  is a set of functions that contains 
the linear functions as a special case, a distribution P is 
<Φ , Θ>-LA below the sets CA, CB for A, B rank faithful 
to a directed graph G if every rank constraint that holds in 
P is entailed to hold by every free parameter SEM <Φ , 
Θ> with path diagram G that is LA below the sets CA, CB 
for A, B.  

Suppose in what follows that a given free parameter 
structural equation model S = <Φ , Θ> is LA below the 
sets (CA; CB) for A, B, and that for each equation X = f(Y) 
in Φ  not required to be linear by definition, a linear 
equation with any value of the coefficients 

                             X = aX ,Y
Y∈Y
∑ Y   

is the result of a substitution of some value for the free 
parameters in S. For example, if X = a1Y + a2Y2, then for 
any value of a1, X = a1Y is the result of setting the free 
parameter a2 to zero. In contrast, if Φ contained only X = 
a2Y2, the correlations between X and Y would be forced to 
be zero for all a2, which in general could lead to rank 
constraints holding for all values of the free parameters 
even without the corresponding t-separation relations 
holding in G. 

If all of the variables in Φ are analytic functions, 
whenever the set of solutions to an analytic function is not 
the entire space of values, the set of solutions has 
Lebesgue measure 0 (Kilmer et al. 1996). So the same 
kind of argument for faithfulness in the LA-below-the-

choke-set case can be made as in the linear case, as long 
as Φ contains all LA functions among the part of the 
graph that is not below the choke sets as a special case. 

This still leaves the question of whether there are 
common “almost” violations of rank faithfulness that 
could only be discovered with enormous sample sizes (i.e. 
the relevant determinants are very close to zero).  

In order to illustrate one use of the extension of the Trek 
Separation Theorem and to do a preliminary test of the 
extent to which the introduction of non-linearity makes 
the problem of almost violations of the assumption of 
rank-faithfulness more common, I performed a simulation 
study of the Silva et al. BuildPureClusters Algorithm, 
using both linear models, and LA-below the choke set 
models.  

The BuildPureClusters Algorithm (Silva et al. 2006) takes 
as input sample data and attempts to find a subset S of the 
measured indicators such no two members of S have a 
directed edge between them, no member of S has more 
than one latent parent, and the measured variables in S are 
partitioned into clusters, where each member of a cluster 
is the child of the same latent parent. (This is useful for 
determining which measured variables are measuring 
which latent variables, and is input to the MIMBuild 
algorithm that searches for the causal structure among the 
latent variables.) BuildPureClusters uses tests of 
vanishing tetrad differences to select and cluster the 
variables (which are equivalent to tests of whether various 
2 × 2 submatrices of the covariance matrix have rank 1.) 
Not all of the rank tests that BuildPureClusters uses in 
general are also entailed for the case where the 
relationships between the latents are non-linear (which is 
not the same as LA below the choke sets), but all of the 
ones that it uses for this particular study are entailed in the 
non-linear case. 

Figure 2 illustrates a model that contains an impure 
measurement model because of the X1 → X6 edge and 
because X10 has two latent parents (indicated by the red 
arrows) while Figure 3 illustrates that if X6 and X10 are 
removed, the resulting model has a pure measurement 
model. Thus correct output for Figure 2 would either be 
{X1, X2, X3, X4, X5} and {X7, X8, X9} or {X2, X3, X4, X5} 
and {X6, X7, X8, X9}. 

The model in the simulation contained 5 latent variables 
(L1 through L5), each with 5 measured children (X1 
through X25), with L2 through L5 children of L1.  It also 
contained edges X1 → X6, X15 → X19, L3 → X10, and L4 → 
X21, which introduced impurities. The input to the 
algorithm in each case was raw data at one of 3 sample 
sizes, 100, 500, and 1000. Each variable is a linear 
function of its parents plus a unique error term, where the 
linear coefficients were chosen uniformly from the range 
0.5 to 2.0, and the error terms were independent standard 
Gaussian. Each latent variable Li (i = 2…5) was equal to 
aL1 + bcL1

3 + εi, where a was chosen uniformly from 0.25 
to 1.0, c was chosen uniformly from 0.5 to 2.0, and the 
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degree of non-linearity was varied by setting b to each of 
the values 0.0, 0.01, 0.02, 0.03, and 0.05 in turn. The 
degree of non-linearity of the relationship between the 
measured variables was measured by the median p-value 
of the White test of non-linearity between each pair of 
measured variables (which is 0.5 for linear relationships). 

 
Figure 2: Impure Measurement Model 

 
Figure 3: Pure Measurement Submodel 

In order to avoid detectible cases of almost unfaithful 
rank constraints, if the correlation matrix of the observed 
indicators contained correlations close to zero (less than 
0.09) or close to 1 (greater than .9) the data was rejected. 
(In actual practice, instead of rejecting the data a user 
could simply search for a subset of variables that did not 
contain extreme correlations.) The simulation set the p-
value used in the algorithm to 0.01 for every case, and the 
TETRAD IV implementation was used 
(http://www.phil.cmu.edu/projects/tetrad/current.html). 

The correctness of the output of BuildPureClusters was 
measured in three ways:  

1. How many clusters the algorithm found (which 
was a maximum of 5 in each case). 

2. How far a given output cluster was from being a 
pure cluster. I set Purity for a given output cluster 
to Purity = (Size of largest pure subcluster 
contained in output cluster)/(size of output cluster). 
For example, if the output cluster for data 
generated by the a model had 7 variables {X1, X2, 
X3, X4, X5, X6, X9}, and X1 – X6 were all children of 
latent variable L1, and X9 was a child of latent 
variable L2, X9 would have to be removed in order 
to make the output cluster pure (leaving 6 
variables), so Purity for the output cluster would be 
equal to 6/7. 

3. The percentage of the largest pure actual 
subclusters included in the output.  I set Fraction 
size = (Size of the output cluster)/(size of the 
largest actual pure subcluster containing it).  For 
example, if a model has an actual pure subcluster 
of size 8 (e.g. X1 – X8) and if the output contained a 
corresponding subcluster of size 6 (e.g. X1 – X6) 
then Fraction size for the output cluster is 6/8. (If 
the output contained only four subclusters instead 
of the potential five subclusters, I calculated this 
only for the subclusters that were actually output. 

 

100 data sets were generated at each sample size, for both 
the linear and non-linear case. Then the BuildPureClusters 
algorithm was applied to each data set, using the Wishart 
test of vanishing tetrad differences. The Wishart test 
assumes the variables have joint Gaussian distributions, 
which is true in the linear Gaussian case but not the non-
linear case.  

Size Cubic Cluster 
Number 

Average 
Purity 

Average 
Fraction 

Median 
White 

100 0.00 3.89 .909 .782 .500 
100 0.01 4.26 .930 .792 .414 
100 0.02 4.32 .931 .806 .291 
100 0.03 4.26 .935 .809 .285 
100 0.05 4.29 .937 .809 .241 
500 0.00 4.34 .957 .820 .508 
500 0.01 4.41 .953 .813 .349 
500 0.02 4.34 .950 .813 .119 
500 0.03 4.29 .954 .813 .088 
500 0.05 4.48 .957 .829 .0001 
1000 0.00 4.78 .930 .900 .510 
1000 0.01 4.91 .953 .926 .288 
1000 0.02 4.55 .924 .909 .030 
1000 0.03 4.31 .912 .899 .017 
1000 0.05 4.52 .956 .831 4.43e-10 

Table 1: Output of First Simulation Study 

The results of the simulation test are summarized in Table 
1, where each row gives values for 100 runs of a given 
kind. The columns in order give the sample size, the value 
of the b coefficient, the average number of clusters, 
average Purity, average Fraction size, and median p-value 
of a White test of non-linearity applied to each pair of 
measured variables. The maximum correct number of 
clusters is 5, the maximum average Purity is 1, and the 
maximum average Fraction is 1.  

The results of the simulation study (Table 1) indicate that 
at least with respect to vanishing tetrad differences, the 
BuildPureClusters algorithm performs about as well in the 
nonlinear and the linear case using the Wishart test. There 
is no systematic advantage of linear over non-linear or 
vice-versa, and the results are generally close in both 
cases. Hence, in this limited test, the non-linearity that 
was introduced did not make the problem of almost 
unfaithful rank constraints much worse in terms of the 
output. 

A simulation study of the extent to which violation of the 
assumption that the observed variables are linearly related 
to their latent parents affects the performance of the 
BuildPureClusters algorithm was also performed. The 
input to the algorithm in each case was raw data at one of 
2 sample sizes, 100 and 1000. The latent variables were 
simulated in the same was as in the previously described 
simulation. Each measured variable was set equal to (1 – 
d)eLi + dfLi

3 + εi (where Li is the parent of the measured 
variable in the graph), e and f were independently selected 
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from a uniform distribution between 0.5 and 2.0, and the 
degree of non-linearity of the relationship between the 
measured and the latents was varied by setting d to either 
0.01 or 0.05 in turn. The error terms were independent 
standard Gaussians. The results are shown in Table 2, 
where the second column reports the values both of b (the 
first number, from the equation for the relationships 
between the latents) and d (the second number, from the 
equations relating the measured variables to their latent 
parent.)  

As with the previously described simulation, the result of 
making the relationships between the latents non-linear 
does not have any systematic effect on the performance of 
the BuildPureClusters Algorithm However, as the 
nonlinearity of the relationship between the measured 
variables and their latent parents increases, the output 
becomes much less informative (as evidenced by the large 
decreases in the Number of Clusters, and the Average 
Fraction), but is generally not incorrect (as evidenced by 
the small decreases in the Average Purity).  When the 
assumption of linear relationships between the measured 
and latent variables is violated, the algorithm actually 
performs better at smaller sample sizes, presumably 
because at larger sample sizes even small deviations from 
the assumption lead to rejection of the rank constraints. 

Sample 
Size 

Cubic Number 
of 

Clusters 

Average 
Purity 

Average 
Fraction 

Median 
White 

100 0:.01 3.42 .909 .755 .302 
100 0:.05 2.65 .874 .668 .205 
100 .05:.01 2.65 .903 .754 .346 
100 .05:.05 3.23 .902 .679 .212 
1000 0:.01 2.21 .942 .713 .019 
1000 0:.05 0.72 .868 .344 6.1e-4 

1000 .05:.01 3.22 .942 .749 .106 
1000 .05:.05 1.20 .895 .305 6.9e-4 

Table 2: Output of Second Simulation Study 

5 OPEN QUESTIONS 
In this paper I have proved that the necessary and 
sufficient conditions for a class of rank constraints on 
submatrices of a covariance matrix to be implied by a 
linear model can be extended to models that contains 
some non-linear and/or cyclic relationships. This shows 
that existing algorithms that use these rank constraints to 
search for causal models can be reliably applied to a much 
wider class of models, as long a rank-faithfulness 
condition holds. I also argued that the same kind of 
considerations that argue for rank-faithfulness in linear 
models can be extended to some kinds of non-linear 
structure equation models. 

In order to make full use of this theorem, it would be very 
helpful to have a computationally feasible test of when 
two models are equivalent with respect to rank constraints 

of a given kind assuming they are both LA below their 
choke sets. Nor is it known how to graphically represent 
the features that each member of such an equivalence 
class has in common. In addition, the question of the 
extent to which almost violations of faithfulness are made 
worse by different classes of non-linear functional 
relationships among variables also needs to be more fully 
investigated. 

6 APPENDIX 
The proof of Theorem 2 requires the following two 
lemmas. 

Lemma 1: Suppose that CA ≠ ∅, A = ΛACA + f (Ε A ) , and 

cov(f (Ε A ),B) = 0 , where ΛA is a #A by #CA matrix of 
real numbers. Then rank(cov(A,B)) ≤ #CA.  
Proof.  

cov(A,B) = cov(ΛACA + f(ΕA),B) = cov(ΛACA,B) + 
cov(f(ΕA),B) = ΛAcov(CA,B). Hence rank(cov(A,B) = 
rank(ΛAcov(CA,B)). It follows that 

rank(cov(CA ,B)) ≤min(#CA , #B) ≤ #CA
rank(ΛA ) ≤min(#CA , #A) ≤ #CA
rank(ΛA cov(CA ,B)) ≤
min(rank(ΛA ),rank(cov(CA ,B))) ≤
min(#CA , #CA ) ≤ #CA

 

Q.E.D.

 
Next consider the case where A is a linear function of CA 
plus a function of a set of variables ΕA, B is a linear 
function of CB plus a function of a set of variables ΕB, 
and all of the variables in ΕA are uncorrelated with all of 
the variables in ΕB.

 
Lemma 2: Suppose that CA ≠ ∅, CB ≠ ∅, #CA  = p, #CB  
= q, #A = r, #B = s, A = ΛACA+ f(ΕA), cov(f(ΕA), g(ΕB) = 
0, B = ΛBCB+ f(ΕB). Then rank(cov(A,B)) ≤ #CA + #CB.  
Proof.  

cov(A,B) = cov(ΛACA + f (Ε A ),Λ BCB + g(Ε B )) =
cov(ΛACA ,Λ BCB + g(Ε B )) + cov(f (Ε A ),Λ BCB ) +
cov(f (Ε A ),g(Ε B )) =
ΛA cov(CA ,Λ BCB + g(Ε B )) + cov(f (Ε A ),CB )Λ B

T

 

rank(cov(CA ,Λ BCB + g(Ε B ))) ≤ min(p, s) ≤ p
rank(ΛA ) ≤ min(r, p) ≤ p

 

rank(ΛA cov(CA ,Λ BCB + g(Ε B ))) ≤
min(rank(ΛA ), rank(cov(CA ,Λ BCB + g(Ε B ))) ≤
min(p, p) ≤ p
rank(cov(f (Ε A ),CB )) ≤ min(r,q) ≤ q
rank(Λ B ) ≤ min(q, s) ≤ q
rank(cov( f (Ε A ),CB ))Λ B

T ) ≤ min(q,q) ≤ q

. 

 

It follows that the sum of two matrices of the same 

612



 

number of rows and columns is at most #CA+#CB. Q.E.D.  
Theorem 2: Suppose G is a directed graph containing CA, 
A, CB, and B, and (CA; CB) t-separates A and B in G. 
Then for all covariance matrices entailed by a fixed 
parameter structural equation model S with path diagram 
G that is LA below the sets CA and CB for A and B, 
rank(cov(A,B)) ≤ #CA + #CB. 

Proof. In the proof, the graphical relations all refer to Gext, 
so the graphical arguments will be dropped when 
referring to parents and directed paths. I will prove the 
theorem by showing that t-separation of A and B by (CA; 
CB) entails that A can be written as a linear function of CA 
plus a function of a set of variables ΕA, that B can be 
written as a linear function of CB plus a function of a set 
of variables ΕB, and that all of the variables in ΕA are 
uncorrelated with all of the variables in ΕB. Then applying 
Lemmas 1 and/or 2 proves the theorem. 

Case 1: If CA  = CB  = ∅, then there are no treks between 
A and B. Hence A and B are jointly independent. It 
follows that cov(A,B) = 0, which is of rank 0 = #CA+#CB  
Case 2: CA  ≠ ∅. I will show that for each Ai ∈A,  

Ai = ai,V
V∈CA
∑ V + fi (Ε i )

 

where each member of Ei is not in D(CA ,A) ∪ CA  and is 
an ancestor of Ai via some (possibly single-vertex) path 
that does not intersect CA. 

Case 2a: Ai ∈CA . Set Ai = 1 × Ai, Ei = ∅ , and fi(Ei) = 0. 
Since Ai is in CA, Ai is a linear function of CA, and 
trivially each member of Ei is not in D(CA ,A) ∪ CA  and 
is an ancestor of Ai via some (possibly single-vertex) path 
that does not intersect CA . 
Case 2b: Ai ∉CA . 
Case 2b(i): D(CA, Ai) = ∅. Set Ei = {Ai}, fi(Ei)  = Ai.  By 
assumption, each member of Ei is not in D(CA ,A) ∪ CA  
and is an ancestor of Ai via some (possibly single-vertex) 
path that does not intersect CA . 
Case 2bii: D(CA, Ai) ≠ ∅. The longest directed path from 
CA to Ai is of finite length. Let R = {V ∈ Parents(Ai) ∩ 
(D(CA) ∪ CA)}. By the assumption of LA below the 
choke sets CA, CB, for A, B, 

Ai = ai ,V
R

∑ V + fi (Parents(Ai ) \ (D(CA ,A)∪CA ))  

The algorithms in this section of the proof are illustrated 
in Figure 4 and Figure 5 (where only the relevant error 
variables are shown in the graph). For each vertex in R, 
substitute the r.h.s of equation 1 in for V. Continue 
substitutions until no more substitutions based on 
equation 1 can be made. The proof is by induction on the 
number of substitutions. 

Let Vi = Parents(Ai) ∩ D(CA, A) ∪ CA), fi
1 = fi and

Ε i

1 = Parents(Ai ) \ (D(CA ,A)∪CA ) at stage 1 of equation 1. 

Every member of Ε i

1 is not in D(CA, A) ∪ CA  by 

definition. An edge from any member of Ε i

1 to Ai 
constitutes a path to Ai that does not intersect CA.  

Suppose for an induction hypothesis that after n 
substitutions,  

Ai = a
i ,V

n

V∈Vn

∑ V + fi
n (Ε i

n ) + a
i ,X

n X  

whereVn ⊆ D(CA ,Α)∪CA , X ∈D(CA ,A)∩Vn , there is 
no member of  Vn whose longest path to Ai is shorter than 
the longest path from X to Ai, and each member of Ε i

n is 
not a member of D(CA ,A) ∪ CA  but is an ancestor of Ai 
via a directed path that does not intersect CA. The 
superscripts represent which substitution the superscripted 
term first appeared in. If no such X exists (because Ai is 
expressed as a function of members of CA and variables 
that are not on paths from CA to A), the algorithm is done. 

 

Figure 4: Illustration of base stage of substitutions 

Otherwise, Let R = Parents(X) ∩ D(CA, A) ∪ CA. 
Substitute the r.h.s. of  

X = aX ,V
V∈R

∑ V + fX (Parents(X ) \ (D(CA ,A)∪CA )  

in for X in the equation. After the substitution,   

Ai = ai ,V
n

V∈Vn

∑ V + fi
n (Ε i

n ) +

a
i ,X

n aX ,V
V∈Vn

∑ V + fx (Parents(X ) \ (D(CA ,A)∪CA ))
⎛
⎝⎜

⎞
⎠⎟

 

= a
i ,V

n

V∈Vn

∑ V + a
i ,X

n aX ,V
V∈R

∑ V⎛
⎝⎜

⎞
⎠⎟ +

fi
n (Ε i

n ) + a
i ,X

n f (Parents(X ) \ (D(CA ,A)∪CA )) =

 

 X2 = 3 X1 + f2(ε2,X6)    X4 = 0.6 L1 + f4(ε4) 
X1 = 2 L1 + f1(ε1)         X5 = 0.9 L1 + f5(ε5) 
X3 = 0.8 L1 + f3(ε3) 
A = {X2, X3}  B = {X4, X5} CA = {L1} CB = ∅ 
D(CA, A) = {X1, X2, X3} D(CB, B) = ∅ 
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a
i ,V

n+1

V∈Vn+1

∑ V + fi
n+1 (Ε i

n+1 )

Vn+1 = (Vn ∪ (Parents(X )∩ (D(CA ,A)∪CA ))) \ X
, 

Ε i

n+1 = Ε i

n ∪ (Parents(X ) \ (D(CA ,A)∪CA )),  
a

i ,V

n+1 = a
i ,X

n aX ,V  for parents of X  
fi
n+1 (E i

n+1 ) = fi
n (E i

n ) +

ai,X fX
n (Parents(X ) \ (D(CA,A)∪CA ))

 

Figure 5 contains an illustration of the substitutions for 
the example shown in Figure 4.  
Each member of Ε i

n+1 ∩ Ε i

n  is not on a directed path from 
CA to A but is an ancestor of Ai via a path that does not 
intersect CA by the induction assumption. Ε A '

n+1 \ Ε A '

n ⊆

Parents(X ) \ (D(CA ,A)∪CA )  and hence not a member 

of D(CA ,A)∪CA . Because X is expanded by substitution 
only if it is not in CA, and occurs on the r.h.s only by 
substituting in for variables not in CA, X is an ancestor of 
Ai via a directed path that does not intersect CA; hence 
each member of Parents(X ) \ (D(CA ,A)∪CA )  is an 
ancestor of Ai via a directed path that doesn’t intersect CA. 

 

Figure 5: Illustration of substitutions 

After a finite number of substitutions, all of the members 
of Vn are members of CA, and no more substitutions are 
done. At that stage, by induction,  

Ai = ai ,V
V∈CA

∑ V + f (Ε i )  

where Ε i ∩ (D(CA ,A)∪CA ) = ∅ , but each member of Εi 
is an ancestor of Ai via some path that does not intersect 
CA .  

Case 2b(ii): D(CA, Ai) ≠ ∅.	
   This	
   case	
   now divides into 
two subcases, CB  = ∅ or CB  ≠ ∅. First consider the case 
where CB  = ∅. Let ΕA be the union of all of the Εi.	
  For 
each X ∈ Ε i, if there is a trek T between X and B, then it 
intersects CA on the X side, since otherwise (CA; ∅) does 
not t-separate A and B. It follows then that there is a 
directed path from CA to X, and X is on a directed path 

from CA to A, contrary to what was proved about each 
member of EA. Hence there is no trek between X and B. It 
follows that EA is independent of B, and hence f(EA) is 
independent of B, and cov(f(EA),B) = 0. Then by Lemma 
1, rank(cov(A,B)) ≤ #CA .	
  
Now suppose CB  ≠ ∅. Similarly to the case for A, for 
each Bi in B, 

Bi = bi ,V
V∈CB

∑ V + gi (Ε i )  

where each member of Ei is not in D(CB ,B)∪CB , but is 
an ancestor of Bi via some path that does not intersect CB. 

I will now show that for any two members X and Y of EA 
and EB respectively, cov(X,Y) = 0. By the construction of 
EA and EB, there is a directed paths P1 from X to some Ai 
that does not intersect CA, and a directed path P2 from Y 
to some Bj that does not intersect CB . If X = Y, then there 
is a trek between A and B that does not intersect CA on 
the A side or CB on the B side, contrary to the assumption 
that (CA;CB) t-separates A and B. Similarly, if X ≠ Y, but 
there is a trek T between X and Y, it either intersects CA  
on the X side or CB  on the Y side, since otherwise 
(CA;CB) does not t-separate A and B. But if T intersects 
CA on the X side or CB on the Y side, then there is a 
directed path from CA to X or CB to Y, in which case X is 
on a directed path from CA to A, or Y is on a directed path 
from CB to B, contrary to what was shown about EA and 
EB. Hence there is no trek between X and Y and X ≠ Y. It 
follows that EA is independent of EB, and for any 
functions f and g, f(EA) is independent of g(EB). Hence 
cov(f(EA), g(EB)) = 0. By Lemma 2, rank(cov(A,B)) ≤ 
#CA + #CB. Q.E.D. 

Theorem 3: For all directed graphs G, if there does not 
exist a pair of sets C’A, C’B, such that (C’A; C’B) t-
separates A and B and #C’A + #C’B ≤ r, then for any CA, 
CB there is a fixed parameter structural equation model S 
with path diagram G that is LA below the sets (CA; CB) 
for A and B that entails rank(cov(A,B)) > r. 

Proof. G can always be made acyclic by setting the 
coefficients of edges occurring in cycles to zero. By the 
Trek Separation Theorem, there is a fixed parameter 
linear structural equation model S’ with path diagram G in 
which rank(cov(A,B)) > r. By definition, S’ is LA below 
the sets CA, CB for any CA, CB. Q.E.D. 

Acknowledgements: I wish to thank Rina Foygel, Kelli 
Talaska, Jan Draisma, Seth Sullivant, and Mathias Drton 
for substantial help with the proofs at a 2010 AIM 
workshop on Parameter Identification in Graphical 
Models.

X2 = 3 X1 + f2(ε2,X6)   V1 = {X1} 
 

Substitute r.h.s of equation for X1 in for X1, in 
equation for X2 
X2 = 3 X1 + f2(ε2,X6) = 3 (2 L1 + f1(ε1)) + f2(ε2,X6) =  
6 L1 + 3 f1(ε1)) + f2(ε2,X6) 
V2 = {L1} 
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Abstract

We introduce a type of Deep Boltzmann Ma-
chine (DBM) that is suitable for extracting
distributed semantic representations from a
large unstructured collection of documents.
We overcome the apparent difficulty of train-
ing a DBM with judicious parameter tying.
This enables an efficient pretraining algo-
rithm and a state initialization scheme for
fast inference. The model can be trained
just as efficiently as a standard Restricted
Boltzmann Machine. Our experiments show
that the model assigns better log probability
to unseen data than the Replicated Softmax
model. Features extracted from our model
outperform LDA, Replicated Softmax, and
DocNADE models on document retrieval and
document classification tasks.

1 Introduction

Text documents are a ubiquitous source of informa-
tion. Representing the information content of a docu-
ment in a form that is suitable for solving real-world
problems is an important task. The aim of topic
modeling is to create such representations by discover-
ing latent topic structure in collections of documents.
These representations are useful for document classi-
fication and retrieval tasks, making topic modeling an
important machine learning problem.

The most common approach to topic modeling is to
build a generative probabilistic model of the bag of
words in a document. Directed graphical models,
such as Latent Dirichlet Allocation (LDA), CTM, H-
LDA, have been extensively used for this [3, 2, 8].
Non-parametric extensions of these models have also
been quite successful [13, 1, 5]. Even though exact
inference in these models is hard, efficient inference

schemes, including stochastic variational inference, on-
line inference, and collapsed Gibbs have been devel-
oped that make it feasible to train and use these meth-
ods [14, 16, 4]. Another approach is to use undi-
rected graphical models such as the Replicated Soft-
max model [12]. In this model, inferring latent topic
representations is exact and efficient. However, train-
ing is still hard and often requires careful hyperparam-
eter selection. These models typically perform better
than LDA in terms of both the log probability they
assign to unseen data and their document retrieval
and document classification accuracy. Recently, neural
network based approaches, such as Neural Autoregres-
sive Density Estimators (DocNADE) [7], have been to
shown to outperform the Replicated Softmax model.

The Replicated Softmax model is a family of Re-
stricted Boltzmann Machines (RBMs) with shared pa-
rameters. An important feature of RBMs is that they
solve the “explaining-way” problem of directed graph-
ical models by having a complementary prior over hid-
den units. However, this implicit prior may not be the
best prior to use and having some degree of flexibility
in defining the prior may be advantageous. One way of
adding this additional degree of flexibility, while still
avoiding the explaining-away problem, is to learn a two
hidden layer Deep Boltzmann Machine (DBM). This
model adds another layer of hidden units on top of the
first hidden layer with bi-partite, undirected connec-
tions. The new connections come with a new set of
weights. However, this additional implicit prior comes
at the cost of more expensive training and inference.
Therefore, we have the following two extremes: On
one hand, RBMs can be efficiently trained (e.g. us-
ing Contrastive Divergence), inferring the state of the
hidden units is exact, but the model defines a rigid,
implicit prior. On the other hand, a two hidden layer
DBM defines a more flexible prior over the hidden rep-
resentations, but training and performing inference in
a DBM model is considerably harder.

In this paper, we try to find middle ground between
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these extremes and build a model that combines the
best of both. We introduce a two hidden layer DBM
model, which we call the Over-Replicated Softmax
model. This model is easy to train, has fast approxi-
mate inference and still retains some degree of flexibil-
ity towards manipulating the prior. Our experiments
show that this flexibility is enough to improve signifi-
cantly on the performance of the standard Replicated
Softmax model, both as generative models and as fea-
ture extractors even though the new model only has
one more parameter than the RBM model. The model
also outperforms LDA and DocNADE in terms of clas-
sification and retrieval tasks.

Before we describe our model, we briefly review the
Replicated Softmax model [12] which is a stepping
stone towards the proposed Over-Replicated Softmax
model.

2 Replicated Softmax Model

This model comprises of a family of Restricted Boltz-
mann Machines. Each RBM has “softmax” visible
variables that can have one of a number of different
states. Specifically, let K be the dictionary size, N
be the number of words appearing in a document, and
h ∈ {0, 1}F be binary stochastic hidden topic features.
Let V be a N×K observed binary matrix with vik = 1
if visible unit i takes on the kth value. We define the
energy of the state {V,h} as :

E(V,h;θ) = −
N∑

i=1

F∑

j=1

K∑

k=1

Wijkhjvik (1)

−
N∑

i=1

K∑

k=1

vikbik −N
F∑

j=1

hjaj ,

where θ = {W,a,b} are the model parameters; Wijk

is a symmetric interaction term between visible unit i
that takes on value k, and hidden feature j, bik is the
bias of unit i that takes on value k, and aj is the bias
of hidden feature j. The probability that the model
assigns to a visible binary matrix V is:

P (V;θ) =
1

Z(θ, N)

∑

h

exp (−E(V,h;θ)) (2)

Z(θ, N) =
∑

V′

∑

h′

exp (−E(V′,h′;θ)),

where Z(θ, N) is known as the partition function, or
normalizing constant.

The key assumption of the Replicated Softmax model
is that for each document we create a separate RBM
with as many softmax units as there are words in the
document, as shown in Fig. 1. Assuming that the order

h(1)

V

W1

W1

W1 W2

W2

W2 W1 W2

Latent Topics Latent Topics

Softmax Visibles Multinomial
Visible

Figure 1: The Replicated Softmax model. The top layer
represents a vector h of stochastic, binary topic features
and the bottom layer represents softmax visible units V.
All visible units share the same set of weights, connect-
ing them to binary hidden units. Left: The model for
a document containing three words. Right: A different
interpretation of the Replicated Softmax model, in which
N softmax units with identical weights are replaced by a
single multinomial unit which is sampled N times.

of the words can be ignored, all of these softmax units
can share the same set of weights, connecting them to
binary hidden units. In this case, the energy of the
state {V,h} for a document that contains N words is
defined as:

E(V,h) = −
F∑

j=1

K∑

k=1

Wjkhj v̂k −
K∑

k=1

v̂kbk −N
F∑

j=1

hjaj ,

where v̂k =
∑N
i=1 v

k
i denotes the count for the kth

word. The bias terms of the hidden variables are scaled
up by the length of the document. This scaling is im-
portant as it allows hidden units to behave sensibly
when dealing with documents of different lengths. The
conditional distributions are given by softmax and lo-
gistic functions:

P (h
(1)
j = 1) = σ

( K∑

k=1

Wjkv̂k +Naj

)
, (3)

P (vik = 1) =
exp

(∑F
j=1Wjkh

(1)
j + bk

)

∑K
k′=1 exp

(∑F
j=1Wjk′h

(1)
j + bk′

) . (4)

The Replicated Softmax model can also be interpreted
as an RBM model that uses a single visible multino-
mial unit with support {1, ...,K} which is sampled N
times (see Fig. 1, right panel).

For this model, exact maximum likelihood learning is
intractable, because computing the derivatives of the
partition function, needed for learning, takes time that
is exponential in min{D,F}, i.e the number of visible
or hidden units. In practice, approximate learning is
performed using Contrastive Divergence (CD) [6].

3 Over-Replicated Softmax Model

The Over-Replicated Softmax model is a family of two
hidden layer Deep Boltzmann Machines (DBM). Let
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us consider constructing a Boltzmann Machine with
two hidden layers for a document containing N words,
as shown in Fig. 2. The visible layer V consists of N
softmax units. These units are connected to a binary
hidden layer h(1) with shared weights, exactly like in
the Replicated Softmax model in Fig. 1. The second
hidden layer consists of M softmax units represented
by H(2). Similar to V, H(2) is an M×K binary matrix

with h
(2)
mk = 1 if the m-th hidden softmax unit takes

on the k-th value.

The energy of the joint configuration {V,h(1),H(2)}
is defined as:

E(V,h(1),H(2);θ) = −
N∑

i=1

F∑

j=1

K∑

k=1

W
(1)
ijkh

(1)
j vik (5)

−
M∑

i′=1

F∑

j=1

K∑

k=1

W
(2)
i′jkh

(1)
j h

(2)
i′k −

N∑

i=1

K∑

k=1

vikb
(1)
ik

−(M +N)

F∑

j=1

h
(1)
j aj −

M∑

i=1

K∑

k=1

h
(2)
ik b

(2)
ik

where θ = {W(1),W(2),a,b(1),b(2)} are the model
parameters.

Similar to the Replicated Softmax model, we create a
separate document-specific DBM with as many vis-
ible softmax units as there are words in the docu-
ment. We also fix the number M of the second-
layer softmax units across all documents. Ignoring
the order of the words, all of the first layer softmax
units share the same set of weights. Moreover, the
first and second layer weights are tied. Thus we have

W
(1)
ijk = W

(2)
i′jk = Wjk and b

(1)
ik = b

(2)
i′k = bk. Compared

to the standard Replicated Softmax model, this model
has more replicated softmaxes (hence the name “Over-
Replicated”). Unlike the visible softmaxes, these addi-
tional softmaxes are unobserved and constitute a sec-
ond hidden layer1. The energy can be simplified to:

E(V,h(1),H(2);θ) = −
F∑

j=1

K∑

k=1

Wjkh
(1)
j

(
v̂k + ĥ

(2)
k

)
(6)

−
K∑

k=1

(
v̂k + ĥ

(2)
k

)
bk − (M +N)

F∑

j=1

h
(1)
j aj

where v̂k =
∑N
i=1 vik denotes the count for the kth

word in the input and ĥ
(2)
k =

∑M
i=1 h

(2)
ik denotes the

count for the kth “latent” word in the second hidden
layer. The joint probability distribution is defined as:

P (V,h(1),H(2);θ) =
exp (−E(V,h(1),H(2);θ))

Z(θ, N)
,

1This model can also be seen as a Dual-Wing Harmo-
nium [17] in which one wing is unclamped.

H(2)

h(1)

V

W1

W1

W1

W1
W1

W2

W2

W2

W2 W2

W1 W2

W1 W2

Latent
Topics

Softmax Visibles

Softmax Hiddens

Multinomial
Visible

Multinomial
Hidden

Figure 2: The Over-Replicated Softmax model. The bot-
tom layer represents softmax visible units V. The middle
layer represents binary latent topics h(1). The top layer
represents softmax hidden units H(2). All visible and hid-
den softmax units share the same set of weights, connecting
them to binary hidden units. Left: The model for a docu-
ment containing N = 3 words with M = 2 softmax hidden
units. Right: A different interpretation of the model, in
which N softmax units with identical weights are replaced
by a single multinomial unit which is sampled N times and
the M softmax hidden units are replaced by a multinomial
unit sampled M times.

Note that the normalizing constant depends on the
number of words N in the corresponding document,
since the model contains as many visible softmax units
as there are words in the document. So the model can
be viewed as a family of different-sized DBMs that are
created for documents of different lengths, but with a
fixed-sized second-layer.

A pleasing property of the Over-Replicated Softmax
model is that it has exactly the same number of train-
able parameters as the Replicated Softmax model.
However, the model’s marginal distribution over V is
different, as the second hidden layer provides an addi-
tional implicit prior. The model’s prior over the latent
topics h(1) can be viewed as the geometric mean of the
two probability distributions: one defined by an RBM
composed of V and h(1), and the other defined by an
RBM composed of h(1) and H(2):2

P (h(1);θ) =
1

Z(θ, N)

(∑

v

exp

( F∑

j=1

K∑

k=1

Wjkv̂kh
(1)
j

))

︸ ︷︷ ︸
RBM with h(1) and v

∑

H(2)

exp

( F∑

j=1

K∑

k=1

Wjkĥ
(2)
k h

(1)
j

)


︸ ︷︷ ︸
RBM with h(1) and H(2)

. (7)

Observe that
∑K
k=1 v̂k = N and

∑K
k=1 ĥ

(2)
k = M , so

the strength of this prior can be varied by changing the
numberM of second-layer softmax units. For example,

2We omit the bias terms for clarity of presentation.
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if M = N , then the model’s marginal distribution over
h(1), defined in Eq. 7, is given by the product of two
identical distributions. In this DBM, the second-layer
performs 1/2 of the modeling work compared to the
first layer [11]. Hence, for documents containing few
words (N �M) the prior over hidden topics h(1) will
be dominated by the second-layer, whereas for long
documents (N � M) the effect of having a second-
layer will diminish. As we show in our experimental
results, having this additional flexibility in terms of
defining an implicit prior over h(1) significantly im-
proves model performance, particularly for small and
medium-sized documents.

3.1 Learning

Let h = {h(1),H(2)} be the set of hidden units in the
two-layer DBM. Given a collection of L documents
{V}Ll=1, the derivative of the log-likelihood with re-
spect to model parameters W takes the form:

1

L

L∑

l=1

∂ logP (Vl;θ)

∂Wjk
= EPdata

[
(v̂k + ĥ

(2)
k )h

(1)
j

]
−

EPModel

[
(v̂k + ĥ

(2)
k )h

(1)
j

]
,

where EPdata
[·] denotes an expectation with re-

spect to the data distribution Pdata(h,V) =
P (h|V;θ)Pdata(V), with Pdata(V) = 1

L

∑
l δ(V −Vl)

representing the empirical distribution, and EPModel
[·]

is an expectation with respect to the distribution de-
fined by the model. Similar to the Replicated Soft-
max model, exact maximum likelihood learning is in-
tractable, but approximate learning can be performed
using a variational approach [10]. We use mean-field
inference to estimate data-dependent expectations and
an MCMC based stochastic approximation procedure
to approximate the models expected sufficient statis-
tics.

Consider any approximating distribution Q(h|V;µ),
parameterized by a vector of parameters µ, for the
posterior P (h|V;θ). Then the log-likelihood of the
DBM model has the following variational lower bound:

logP (V;θ) ≥
∑

h

Q(h|V;µ) logP (V,h;θ) +H(Q),

where H(·) is the entropy functional. The bound be-
comes tight if and only if Q(h|V;µ) = P (h|V;θ).

For simplicity and speed, we approximate the true pos-
terior P (h|V;θ) with a fully factorized approximating
distribution over the two sets of hidden units, which
corresponds to the so-called mean-field approximation:

QMF (h|V;µ) =

F∏

j=1

q(h
(1)
j |V)

M∏

i=1

q(h
(2)
i |V), (8)

where µ = {µ(1),µ(2)} are the mean-field parame-

ters with q(h
(1)
j = 1) = µ

(1)
j and q(h

(2)
ik = 1) = µ

(2)
k ,

∀i ∈ {1, . . . ,M}, s.t.
∑K
k=1 µ

(2)
k = 1. Note that due to

the shared weights across all of the hidden softmaxes,

q(h
(2)
ik ) does not dependent on i. In this case, the vari-

ational lower bound takes a particularly simple form:

logP (V;θ) ≥
∑

h

QMF (h|V;µ) logP (V,h;θ) +H(QMF )

≥
(
v̂> +Mµ(2)>

)
Wµ(1) − logZ(θ, N) +H(QMF ),

where v̂ is a K×1 vector, with its kth element v̂k con-
taining the count for the kth word. Since

∑K
k=1 v̂k = N

and
∑K
k=1 µ

(2)
k = 1, the first term in the bound linearly

combines the effect of the data (which scales as N)
with the prior (which scales as M). For each training
example, we maximize this lower bound with respect
to the variational parameters µ for fixed parameters θ,
which results in the mean-field fixed-point equations:

µ
(1)
j ← σ

( K∑

k=1

Wjk

(
v̂k +Mµ

(2)
k

))
, (9)

µ
(2)
k ←

exp
(∑F

j=1Wjkµ
(1)
j

)

∑K
k′=1 exp

(∑F
j=1Wjk′µ

(1)
j

) , (10)

where σ(x) = 1/(1 + exp(−x)) is the logistic func-
tion. To solve these fixed-point equations, we simply
cycle through layers, updating the mean-field param-
eters within a single layer.

Given the variational parameters µ, the model param-
eters θ are then updated to maximize the variational
bound using an MCMC-based stochastic approxima-
tion [10, 15, 18]. Let θt and xt = {Vt,h

(1)
t,h

(2)
t} be

the current parameters and the state. Then xt and
θt are updated sequentially as follows: given xt, sam-
ple a new state xt+1 using alternating Gibbs sampling.
A new parameter θt+1 is then obtained by making a
gradient step, where the intractable model’s expecta-
tion EPmodel

[·] in the gradient is replaced by a point
estimate at sample xt+1.

In practice, to deal with variable document lengths, we
take a minibatch of data and run one Markov chain for
each training case for a few steps. To update the model
parameters, we use an average over those chains. Simi-
lar to Contrastive Divergence learning, in order to pro-
vide a good starting point for the sampling, we initial-
ize each chain at ĥ(1) by sampling from the mean-field
approximation to the posterior q(h(1)|V).

3.2 An Efficient Pretraining Algorithm

The proper training procedure for the DBM model de-
scribed above is quite slow. This makes it very impor-
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Figure 3: Pretraining a two-layer Boltzmann Machine
using one-step contrastive divergence. The second hidden
softmax layer is initialized to be the same as the observed
data. The units in the first hidden layer have stochastic
binary states, but the reconstructions of both the visible
and second hidden layer use probabilities, so both recon-
structions are identical.

tant to pretrain the model so that the model param-
eters start off in a nice region of space. Fortunately,
due to parameter sharing between the visible and hid-
den softmax units, there exists an efficient pretraining
method which makes the proper training almost re-
dundant.

Consider a DBM with N observed and M hidden soft-
max units. Let us first assume that the number of hid-
den softmaxesM is the same as the number of wordsN
in a given document. If we were given the initial state
vector H(2), we could train this DBM using one-step
contrastive divergence with mean-field reconstructions
of both the states of the visible and the hidden softmax
units, as shown in Fig. 3. Since we are not given the
initial state, one option is to set H(2) to be equal to the
data V. Provided we use mean-field reconstructions
for both the visible and second-layer hidden units, one-
step contrastive divergence is then exactly the same as
training a Replicated Softmax RBM with only one hid-
den layer but with bottom-up weights that are twice
the top-down weights.

To pretrain a DBM with different number of visible
and hidden softmaxes, we train an RBM with the
bottom-up weights scaled by a factor of 1 + M

N . In
other words, in place of using W to compute the con-
ditional probability of the hidden units (see Eq. 3), we
use (1 + M

N )W:

P (h
(1)
j = 1|V) = σ

(
(1 +

M

N
)
K∑

k=1

vkWkj

)
. (11)

The conditional probability of the observed softmax
units remains the same as in Eq. 4. This procedure is
equivalent to training an RBM with N +M observed
visible units with each of the M extra units set to be
the empirical word distribution in the document, i.e..

for i ∈ {N + 1, . . . , N +M},

vik =

∑N
j=1 vjk∑N

j=1

∑K
k′=1 vjk′

Thus the M extra units are not 1-of-K, but represent
distributions over the K words3.

This way of pretraining the Over-Replicated Softmax
DBMs with tied weights will not in general maximize
the likelihood of the weights. However, in practice
it produces models that reconstruct the training data
well and serve as a good starting point for generative
fine-tuning of the two-layer model.

3.3 Inference

The posterior distribution P (h(1)|V) represents the la-
tent topic structure of the observed document. Con-
ditioned on the document, these activation probabili-
ties can be inferred using the mean-field approximation
used to infer data-dependent statistics during training.

A fast alternative to the mean-field posterior is to mul-
tiply the visible to hidden weights by a factor of 1+ M

N
and approximate the true posterior with a single ma-
trix multiply, using Eq. 11. Setting M = 0 recovers
the proper posterior inference step for the standard
Replicated Softmax model. This simple scaling opera-
tion leads to significant improvements. The results re-
ported for retrieval and classification experiments used
the fast pretraining and fast inference methods.

3.4 Choosing M

The number of hidden softmaxes M affects the
strength of the additional prior. The value of M can
be chosen using a validation set. Since the value of
M is fixed for all Over-Replicated DBMs, the effect of
the prior will be less for documents containing many
words. This is particularly easy to see in Eq. 11. As
N becomes large, the scaling factor approaches 1, di-
minishing the part of implicit prior coming from the
M hidden softmax units. Thus the value of M can be
chosen based on the distribution of lengths of docu-
ments in the corpus.

4 Experiments

In this section, we evaluate the Over-Replicated Soft-
max model both as a generative model and as a feature
extraction method for retrieval and classification. Two
datasets are used - 20 Newsgroups and Reuters Corpus
Volume I (RCV1-v2).

3Note that when M = N , we recover the setting of
having the bottom-up weights being twice the top-down
weights.
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4.1 Description of datasets

The 20 Newsgroups dataset consists of 18,845 posts
taken from the Usenet newsgroup collection. Each
post belongs to exactly one newsgroup. Following the
preprocessing in [12] and [7], the data was partitioned
chronologically into 11,314 training and 7,531 test ar-
ticles. After removing stopwords and stemming, the
2000 most frequent words in the training set were used
to represent the documents.

The Reuters RCV1-v2 contains 804,414 newswire ar-
ticles. There are 103 topics which form a tree hier-
archy. Thus documents typically have multiple labels.
The data was randomly split into 794,414 training and
10,000 test cases. The available data was already pre-
processed by removing common stopwords and stem-
ming. We use a vocabulary of the 10,000 most frequent
words in the training dataset.

4.2 Training details

The Over-Replicated Softmax model was first pre-
trained with Contrastive Divergence using the weight
scaling technique described in Sec. 3.2. Minibatches of
size 128 were used. A validation set was held out from
the training set for hyperparameter selection (1,000
cases for 20 newsgroups and 10,000 for RCV1-v2). The
value of M and number of hidden units were chosen
over a coarse grid using the validation set. Typically,
M = 100 performed well on both datasets. Increasing
the number of hidden units lead to better performance
on retrieval and classification tasks, until serious over-
fitting became a problem around 1000 hidden units.
For perplexity, 128 hidden units worked quite well and
having too many units made the estimates of the par-
tition function obtained using AIS unstable. Starting
with CD-1, the number of Gibbs steps was stepped up
by one after every 10,000 weight updates till CD-20.
Weight decay was used to prevent overfitting. Addi-
tionally, in order to encourage sparsity in the hidden
units, KL-sparsity regularization was used. We de-
cayed the learning rate as ε0

1+t/T , with T = 10, 000

updates. This approximate training was sufficient to
give good results on retrieval and classification tasks.
However, to obtain good perplexity results, the model
was trained properly using the method described in
Sec. 3.1. Using 5 steps for mean-field inference and
20 for Gibbs sampling was found to be sufficient. This
additional training gave improvements in terms of per-
plexity but the improvement on classification and re-
trieval tasks was not statistically significant.

We also implemented the standard Replicated Softmax
model. The training procedure was the same as the
pretraining process for the Over-Replicated Softmax
model. Both the models were implemented on GPUs.
Pretraining took 3-4 hours for the 2-layered Boltzmann

Table 1: Comparison of the average test perplexity per
word. All models use 128 topics.

20 News Reuters

Training set size 11,072 794,414
Test set size 7,052 10,000
Vocabulary size 2,000 10,000
Avg Document Length 51.8 94.6

Perplexities
Unigram 1335 2208
Replicated Softmax 965 1081
Over-Rep. Softmax (M = 50) 961 1076
Over-Rep. Softmax (M = 100) 958 1060

Machines (depending on M) and the proper training
took 10-12 hours. The DocNADE model was run us-
ing the publicly available code4. We used default set-
tings for all hyperparameters, except the learning rates
which were tuned separately for each hidden layer size
and data set.

4.3 Perplexity

We compare the Over-Replicated Softmax model
with the Replicated Softmax model in terms of per-
plexity. Computing perplexities involves comput-
ing the partition functions for these models. We
used Annealed Importance Sampling [9] for doing
this. In order to get reliable estimates, we ran
128 Markov chains for each document length. The
average test perplexity per word was computed as

exp
(
−1/L

∑L
l=1 1/Nl log p(vl)

)
, where Nl is the num-

ber of words in document l. Table 1 shows the per-
plexity averaged over L = 1000 randomly chosen test
cases for each data set. Each of the models has 128
latent topics. Table 1 shows that the Over-Replicated
Softmax model assigns slightly lower perplexity to the
test data compared to the Replicated Softmax model.
For the Reuters data set the perplexity decreases from
1081 to 1060, and for 20 Newsgroups, it decreases from
965 to 958. Though the decrease is small, it is sta-
tistically significant since the standard deviation was
typically ±2 over 10 random choices of 1000 test cases.
Increasing the value of M increases the strength of the
prior, which leads to further improvements in perplex-
ities. Note that the estimate of the log probability
for 2-layered Boltzmann Machines is a lower bound on
the actual log probability. So the perplexities we show
are upper bounds and the actual perplexities may be
lower (provided the estimate of the partition function
is close to the actual value).

4http://www.dmi.usherb.ca/~larocheh/code/
DocNADE.zip
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20 Newsgroups
(a) 128 topics (b) 512 topics

Reuters RCV1-V2
(c) 128 topics (d) 512 topics

Figure 4: Comparison of Precision-Recall curves for document retrieval. All Over-Replicated Softmax models use M =
100 latent words.

4.4 Document Retrieval

In order to do retrieval, we represent each document
V as the conditional posterior distribution P (h(1)|V).
This can be done exactly for the Replicated Softmax
and DocNADE models. For two-layered Boltzmann
Machines, we extract this representation using the fast
approximate inference as described in Sec. 3.3. Per-
forming more accurate inference using the mean-field
approximation method did not lead to statistically
different results. For the LDA, we used 1000 Gibbs
sweeps per test document in order to get an approxi-
mate posterior over the topics.

Documents in the training set (including the valida-
tion set) were used as a database. The test set was
used as queries. For each query, documents in the
database were ranked using cosine distance as the sim-
ilarity metric. The retrieval task was performed sep-
arately for each label and the results were averaged.
Fig. 4 compares the precision-recall curves. As shown
by Fig. 4, the Over-Replicated Softmax DBM out-

performs other models on both datasets, particularly
when retrieving the top few documents.

To find the source of improvement, we analyzed the
effect of document length of retrieval performance.
Fig. 5 plots the average precision obtained for query
documents arranged in order of increasing length. We
found that the Over-Replicated Softmax model gives
large gains on documents with small numbers of words,
confirming that the implicit prior imposed using a
fixed value of M has a stronger effect on short doc-
uments. As shown in Fig. 5, DocNADE and Repli-
cated Softmax models often do not do well for docu-
ments with few words. On the other hand, the Over-
Replicated softmax model performs significantly bet-
ter for short documents. In most document collections,
the length of documents obeys a power law distribu-
tion. For example, in the 20 newsgroups dataset 50%
of the documents have fewer than 35 words (Fig. 5c).
This makes it very important to do well on short doc-
uments. The Over-Replicated Softmax model achieves
this goal.
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20 Newsgroups

(a) 128 topics (b) 512 topics (c) Document length distribution

Reuters

(d) 128 topics (e) 512 topics (f) Document length distribution

Figure 5: Effect of document size on retrieval performance for different topic models. The x-axis in Figures (a), (b),
(d), (e) represents test documents arranged in increasing order of their length. The y-axis shows the average precision
obtained by querying that document. The plots were smoothed to make the general trend visible. Figures (c) and (f) show
the histogram of document lengths for the respective datasets. The dashed vertical lines denote 10-percentile boundaries.
Top : Average Precision on the 20 Newsgroups dataset. Bottom : Mean Average Precision on the Reuters dataset. The
Over-Replicated Softmax models performs significantly better for documents with few words. The adjoining histograms
in each row show that such documents occur quite frequently in both data sets.

4.5 Document Classification

In this set of experiments, we evaluate the learned rep-
resentations from the Over-Replicated Softmax model
for the purpose of document classification. Since the
objective is to evaluate the quality of the represen-
tation, simple linear classifiers were used. Multino-
mial logistic regression with a cross entropy loss func-
tion was used for the 20 newsgroups data set. The
evaluation metric was classification accuracy. For the
Reuters dataset, we used independent logistic regres-
sions for each label since it is a multi-label classifica-
tion problem. The evaluation metric was Mean Aver-
age Precision.

Table 2 shows the results of these experiments. The
Over-Replicated Softmax model performs significantly
better than the standard Replicated Softmax model
and LDA across different network sizes on both
datasets. For the 20 newsgroups dataset using 512
topics, LDA gets 64.2% accuracy. Replicated Softmax
(67.7%) and DocNADE (68.4%) improve upon this.
The Over-Replicated Softmax model further improves

Table 2: Comparison of Classification accuracy on 20
Newsgroups dataset and Mean Average Precision on
Reuters RCV1-v2.

Model
20 News Reuters
128 512 128 512

LDA 65.7 64.2 0.304 0.351
DocNADE 67.0 68.4 0.388 0.417
Replicated Softmax 65.9 67.7 0.390 0.421
Over-Rep. Softmax 66.8 69.1 0.401 0.453

the result to 69.4%. The difference is larger for the
Reuters dataset. In terms of Mean Average Precision
(MAP), the Over-Replicated Softmax model achieves
0.453 which is a very significant improvement upon
DocNADE (0.427) and Replicated Softmax (0.421).

We further examined the source of improvement by
analyzing the effect of document length on the clas-
sification performance. Similar to retrieval, we found
that the Over-Replicated Softmax model performs well
on short documents. For long documents, the perfor-
mance of the different models was similar.
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5 Conclusion

The Over-Replicated Softmax model described in this
paper is an effective way of defining a flexible prior
over the latent topic features of an RBM. This model
causes no increase in the number of trainable param-
eters and only a minor increase in training algorithm
complexity. Deep Boltzmann Machines are typically
slow to train. However, our fast approximate train-
ing method makes it possible to train the model with
CD, just like an RBM. The features extracted from
documents using the Over-Replicated Softmax model
perform better than features from the standard Repli-
cated Softmax and LDA models and are comparable
to DocNADE across different network sizes.

While the number of hidden softmax units M , con-
trolling the strength of the prior, was chosen once and
fixed across all DBMs, it is possible to have M de-
pend on N . One option is to set M = cN , c > 0. In
this case, for documents of all lengths, the second-layer
would perform perform c/c+1 of the modeling work
compared to the first layer. Another alternative is to
set M = Nmax −N , where Nmax is the maximum al-
lowed length of all documents. In this case, our DBM
model will always have the same number of replicated
softmax units Nmax = N +M , hence the same archi-
tecture and a single partition function. Given a docu-
ment of length N, the remaining Nmax−N words can
be treated as missing. All of these variations improve
upon the standard Replicated Softmax model, LDA,
and DocNADE models, opening up the space of new
deep undirected topics to explore.
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Abstract

We tackle the challenge of efficiently learning
the structure of expressive multivariate real-
valued densities of copula graphical models.
We start by theoretically substantiating the
conjecture that for many copula families the
magnitude of Spearman’s rank correlation
coefficient is monotonic in the expected con-
tribution of an edge in network, namely the
negative copula entropy. We then build on
this theory and suggest a novel Bayesian ap-
proach that makes use of a prior over values
of Spearman’s rho for learning copula-based
models that involve a mix of copula families.
We demonstrate the generalization effective-
ness of our highly efficient approach on siz-
able and varied real-life datasets.

1 Introduction

Learning expressive real-valued multivariate distribu-
tions is of central interest in numerous fields ranging
from computational biology to economics to climatol-
ogy. When the joint distribution of interest is far from
multivariate normal, this modeling task can be a great
challenge. In statistics, copulas [Joe, 1997, Nelsen,
2007] are the central tool for capturing flexible mul-
tivariate real-valued distributions by separating the
choice of the univariate marginals and the copula func-
tion that links them. Copulas are typically only effec-
tive in low dimensions, and much of the research in the
field in fact focuses on the bivariate case. Accordingly,
in the last decade, various high-dimensional construc-
tions that build on a collection of copulas have been
suggested, most notably those based on the vine con-
struction [Bedford and Cooke, 2002, Kurowicka and
Cooke, 2002]. These models have proved to be quite
effective for crossing the few variable barrier. However,
in the context of many tens of variables to hundreds

and thousands of variables, applications have been few
and involve costly and time-consuming expert elicita-
tion [Hanea et al., 2010].

In machine learning, probabilistic graphical models,
and in particular directed Bayesian networks (BNs)
[Pearl, 1988], have become increasingly popular as a
flexible and intuitive framework for modeling multi-
variate densities based on a qualitative graph struc-
ture G that encodes the independencies in the do-
main. Graphical models are geared toward the high-
dimensional case and numerous algorithms for estima-
tion, model selection and prediction using these mod-
els have been developed in recent decades [Koller and
Friedman, 2009]. Unfortunately, due to computational
considerations, real-valued high-dimensional modeling
using this framework is often limited to a structured
multivariate Gaussian model.

In recent years, several works suggested a fusion be-
tween copulas and graphical models [Kirshner, 2007,
Elidan, 2010], with the goal of allowing for flexible
real-valued modeling that is practical in the high-
dimensional setting. The basic idea is that the joint
density is defined via a collection of local copula func-
tions that capture the direct dependence between a
variable and its parents in the graph G, as well as
a set of univariate marginals that are shared across
the entire model. As with standard graphical models,
the super-exponential task of learning the structure
of such models from data poses practical difficulties.
Specifically, the computational bottleneck of structure
learning is the assessment of the quality of candidate
structures, which in turn requires costly estimation of
maximum likelihood parameters. Indeed, even when
using a simple greedy procedure to traverse the space
of structures, or when limiting ourselves to tree struc-
tured models, structure learning can be computation-
ally demanding for non-Gaussian models. Our goal in
this work is to cope with this challenge.

Recently, Elidan [2012] suggested a highly efficient
approach for learning the structure of copula-based
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Bayesian networks. Briefly, the building block of struc-
ture learning is the ranking of the merit of an edge
X → Y given M training samples. Using U ≡ FX(x),
V ≡ FY (y) to denote the marginal distributions of
these variables and assuming a copula-based model,
they note that the benefit of the edge is asymptoti-
cally equal to the negative differential entropy

−H(cθ(U, V )) =

∫
cθ(u, v) log cθ(u, v)dudv, (1)

where c(·) denotes the (copula) density that corre-
sponds to the joint distribution of X and Y . They
then suggest that −H(cθ(U, V )) is monotonic in the
easy to compute Spearman’s ρs measure of correla-
tion. This in turn facilitates highly efficient struc-
ture learning where simple Spearman’s ρs computa-
tions are used to rank candidate edge modifications.
The monotonicity is proved for the Gaussian copula
and algebraically simple Farlie-Gumbel-Morgenstern
(FGM) copula family. Based on simulations, they fur-
ther conjectured that the result holds for several ad-
ditional copula families. Finally, they show that the
method can be used to learn the structure of copula-
based models that generalize well very efficiently. The
method’s main limitation, other than the gap in the-
ory, is the fact that the same copula family is used to
parameterize all edges in the model.

In this work we extend Elidan [2012] along two im-
portant axes. First, we provide a formal proof of the
monotonicity conjecture given a sufficient condition
that applies to a wide range of common copula fami-
lies, a novel contribution to the theory of copulas on
its own. Second, we tackle the challenge of perform-
ing structure learning while also allowing for a mixed
combination of copulas, thereby significantly increas-
ing the expressive power of the model. Briefly, our
theoretical result suggests that the selection between
copula families can be made based on expected like-
lihood characteristic curves that are computed once.
A natural Bayesian prior is then used to “calibrate”
the curves for several families. Finally, the posterior
curves are used to select a copula family for each edge
based only on Spearman’s ρs computations.

We use our speedy model selection (SMS) approach to
learn copula-based tree structured models for several
real-life datasets that are quite substantial in size in
the context of structure learning with the number of
variables ranging from 100 to close to 900. In all cases,
we demonstrate impressive performance benefits rela-
tive to learning a model that is constrained to using
a single copula family. Further, in many instances we
show that our highly efficient approach is competitive
with the computationally demanding golden standard
where the best copula for each edge is computed via
costly maximum likelihood estimation for each family.

2 Background

In this section we briefly provide the necessary back-
ground on copulas, Spearman’s ρs and stochastic or-
ders of multivariate distributions.

2.1 Copula and Spearman’s ρs

A copula function joins univariate marginals into a
joint real-valued multivariate distribution. Formally,

Definition 2.1: Let U1, . . . , Un be random variables
marginally uniformly distributed on [0, 1]. A copula
function C : [0, 1]n → [0, 1] is a joint distribution

Cθ(u1, . . . , un) = P (U1 ≤ u1, . . . , Un ≤ un),

where θ are the parameters of the copula function.

Now consider an arbitrary set X = {X1, . . . Xn} of
real-valued random variables (typically not marginally
uniformly distributed). Sklar’s seminal theorem
[Sklar, 1959] states that for any joint distribution
FX (x), there exists a copula function C such that

FX (x) = C(F1(x1), . . . , Fn(xn)).

When the univariate marginals are continuous, C is
uniquely defined.

The constructive converse, which is of central inter-
est from a modeling perspective, is also true. Since
Ui ≡ Fi is itself a random variable that is always uni-
formly distributed in [0, 1], any copula function tak-
ing any marginal distributions {Fi(xi)} as its argu-
ments, defines a valid joint distribution with marginals
{Fi(xi)}. Thus, copulas are “distribution generating”
functions that allow us to separate the choice of the
univariate marginals and that of the dependence.

To derive the joint density f(x) = ∂nF (x1,...,xn)
∂x1...∂xn

from
the copula construction, assuming F has n-order par-
tial derivatives (true almost everywhere when F is con-
tinuous), and using the chain rule, we have

f(x) =
∂nC(F1(x1), . . . , Fn(xn))

∂F1(x1) . . . ∂Fn(xn)

∏

i

fi(xi)

≡ c(F1(x1), . . . , Fn(xn))
∏

i

fi(xi),

where c(F1(x1), . . . , Fn(xn)), is called the copula den-
sity function.

Example 2.2: The Gaussian copula is undoubtedly
the most commonly used copula family and is defined
as

CΣ({Ui}) = ΦΣ

(
Φ−1(U1), . . . ,Φ−1(UN )

)
, (2)
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Figure 1: Samples from the
bivariate Gaussian copula with
correlation θ = 0.25. (left)
with unit variance Gaussian
marginals; (right) with a mix-
ture of Gaussian and Gamma
marginals.

Normal marginals Gaussian Mix & Gamma marginals

where Σ is a correlation matrix, Φ is the standard nor-
mal distribution, and ΦΣ is a zero mean normal distri-
bution with correlation matrix Σ. Figure 1 exemplifies
the flexibility that comes with this seemingly limited
elliptical copula family.

Copula are intimately connected to many dependence
concepts such as Spearman’s ρs measure of association

ρs(X1, X2) =
cov(FX1

, FX2
)

STD(X1)STD(X2)
,

which is simply Pearson’s correlation applied to the
cumulative distributions of X1 and X2. For the copula
associated with the joint FX1,X2

(x1, x2), we have

ρs(X1, X2) = ρs(C) ≡ 12

∫ ∫
C(u, v)dudv − 3.

Thus, Spearman’s ρs is monotonic in the copula cumu-
lative distribution function associated with the joint
distribution of X1 and X2. See [Nelsen, 2007, Joe,
1997] for an in-depth exploration of the framework of
copulas and its relationship to dependence measures.

2.2 Stochastic Orderings

The vast majority of copula families are parameterized
by a dependence parameter θ that defines a stochastic
ordering in the bivariate case. Below we define two
such related orders that will be used in the sequel. In
the rest of the paper, we use X, Y to denote bivari-
ate random vectors with distributions FX(u, v) and
FY(u, v), respectively.

Definition 2.3: Y is said to be more positive quad-
rant dependent than X, denoted by X ≤PQD Y, if
∀(u, v) ∈ R2, FX(u, v) ≤ FY(u, v).

Thus, PQD ordering corresponds to a fast accumu-
lation of density. To define the second ordering, we
first need the notion of supermodularity. In what fol-
lows we use the following notation: u∨ v ≡ min(u, v),
u ∧ v ≡ max(u, v).

Definition 2.4: A function Ψ : R2 → R is said to be
supermodular if

∀(u, v) ∈ R2,Ψ(u ∨ v) + Ψ(u ∧ v) ≥ Ψ(u) + Ψ(v)

Ψ is submodular when the inequality is reversed.

The supermodular ordering can now be defined:

Definition 2.5: Y is said to be greater than X in the
supermodular order, denoted by X ≤sm Y, if ∀Ψ such
that Ψ is super modular: E[Ψ(X)] ≤ E[Ψ(Y)]

This property is important in our context since, in
the bivariate case, we have the following result due to
Shaked and Shanthikumar [2007]:

Theorem 2.6: X ≤PQD Y ⇐⇒ X ≤sm Y.

3 Monotonicity of the Copula Entropy
in the Dependence Parameter

As discussed in the introduction, Elidan [2012] sug-
gested that the magnitude of Spearman’s ρs is
monotonic in the negative copula entropy which in
turn asymptotically approximates the expected log-
likelihood of a model, thereby giving rise to an effi-
cient structure learning procedure. In this section we
prove the conjecture for a wide range of copula families
and discuss its relationship to real-valued majoriza-
tion. In the next section we present a novel algorithmic
approach called speedy model selection (SMS) that
builds on this theory and allows us to efficiently per-
form structure learning while at the same time choose
the local copula family.

3.1 TP2 Density Implies Entropy Ordering

We now present our central result, namely the identi-
fication of a widely applicable sufficient condition for
the monotonicity of the copula entropy in the depen-
dence parameter, and consequently in Spearman’s ρs.

Recall that X, Y are two bivariate random vec-
tors. Throughout this section let X ∼ Cθ1(u, v),Y ∼
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Cθ2(u, v) with θ1 < θ2, where Cθ(u, v) is an absolutely
continuous bivariate copula family that is increasing
in <PQD so that the cumulative distribution of Y is
greater than that of X for all (u, v). Note that essen-
tially all copula families that are parameterized by a
so called dependence parameter θ are PQD ordered.

Before stating the main result, using u∨v ≡ min(u, v),
u ∧ v ≡ max(u, v), we define the following notion:

Definition 3.1: A function Ψ : R2 → R is TP2 (total
positive of order 2) if the following holds:

∀(u, v) ∈ R2 Ψ(u ∨ v) ·Ψ(u ∧ v) ≥ Ψ(u) ·Ψ(v).

Ψ is called RR2 (reversed regular of order 2) when the
inequality is reversed.

Note that the density for many copulas is a TP2 or
RR2 function (for example, 8 of the twelve B1-B12
families defined in Joe [1997] are known to be TP2
and the property may hold for some of the others).

The following property of TP2 (RR2) functions, easily
proved using logarithmic properties, will be needed:

Observation 3.2 : Given a positive function Ψ(u, v)
which is TP2 (RR2), Φ(u, v) = log(Ψ(u, v)) is super-
modular (submodular).

We are now ready for our central result:

Theorem 3.3: If Cθ(u, v) is a copula family that de-
fines a positive PQD ordering, and the copula density
cθ(u, v) is TP2 for all values of θ, then

θ1 < θ2 ⇒ −H(cθ1) ≤ −H(cθ2)

When Cθ(u, v) is RR2 the inequality is reversed.

Proof: Recall that X ∼ cθ1 and Y ∼ cθ2 , and that
θ1 < θ2. We will show that the following holds:

−H(X) =

∫
cθ1(u, v)log(cθ1(u, v))dudv

≤
∫
cθ2(u, v)log(cθ1(u, v))dudv

≤
∫
cθ2(u, v)log(cθ2(u, v))dudv = −H(Y)

First inequality. Since Cθ(u, v) defines a PQD or-
dering, we have from Theorem 2.6 that X ≤sm Y. Let
Ψ(u, v) = log(cθ1(u, v)). Since cθ1(u, v) is TP2, from
Observation 3.2 we have that Ψ(u, v) is super modular,
that is E(Ψ(X)) ≤ E(Ψ(Y)). Thus:
∫
cθ1(u, v)Ψ(u, v)dudv ≤

∫
cθ2(u, v)Ψ(u, v)dudv.

The first inequality follows by substitution of Ψ.

Family CDF condition
Normal Φθ(Φ

−1(u),Φ−1(v)) 0 ≤ θ ≤ 1
FGM uv + θuv(1−u)(1−v) −1 ≤ θ ≤ 1

Gumbel e−[(û)θ+(v̂)θ)]1/θ 1 ≤ θ ≤ ∞,
û = −log(u)

Frank − 1
θ log

(
1− τ(u)τ(v)

τ(1)

) 0 ≤ θ ≤ ∞,
τ(x) = 1− e−θx

Clayton max
(
u−θ+v−θ−1, 0

)− 1
θ θ∈[−1,∞], 6= 0

Joe
1−

(
ūδ + v̄δ − ūδ v̄δ

) 1
δ δ ∈ [1,∞),

ū = 1− u
AMH* uv

1−θ(1−u)(1−v) −1 ≤ θ ≤ 1

GB* uve−θln(u)ln(v) 0 ≤ θ ≤ 1

Table 1: TP2/RR2 Copula families. ’*’ marks families
for which, to the best of our knowledge, this property
was not previously known.

Second inequality. The difference between the two
sides of the second inequality is
∫
cθ2(u, v) [log(cθ1(u, v))− log(cθ2(u, v))] dudv

The result follows by noting that this is simply the
Kullback-Leibler divergence between the two densities
cθ2 and cθ1 , and the fact that this divergence is always
non-negative [Cover and Thomas, 1991].

Note that the above theorem is stated for positively
PQD ordered copula families. For negatively ordered
families (e.g., Gumbel-Barnett) a reverse monotone re-
lationship holds, as can be similarly proved.

The following is an immediate consequence of Theo-
rem 3.3 and the known monotonicity of ρs in the de-
pendence parameter θ for PQD ordered families:

Corollary 3.4 : If the copula density cθ(u, v) is
TP2/RR2 for all θ, then the magnitude of Spearman’s
ρs is monotonic in the copula entropy.

Note that, phrased in terms of the magnitude of ρs, the
result also holds for PQD families such as the Gaus-
sian copula that are TP2 for one side of the parameter
values (0 ≤ θ ≤ 1) and RR2 otherwise (−1 ≤ θ ≤ 0).

3.2 Examples of TP2/RR2 Copulas

As discussed, the density of many copulas is a
TP2/RR2 function making our theoretical result
widely applicable. Table 1 lists these copula families
and provides their distribution function.

The Gaussian, Fairlie-Gumbel-Morgenstern (FGM),
Frank, Gumbel, Clayton and Joe copulas are all known
to have a TP2/RR2 density [Joe, 1997]. Thus, for all
these families the negative entropy is monotonic in θ,
and consequently in the magnitude of Spearman’s ρs.
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Two additional popular copula families are confirmed
to have a TP2/RR2 density:

Lemma 3.5: The Ali-Mikhail-haq (AMH) copula has
a TP2 density for nonnegative θ values and an RR2
density otherwise. The Gumbel-Barnett (GB) copula
has an RR2 density.

Proof of this result can be found in Appendix 7.

3.3 Other Copula Families

For completeness, we now discuss another sufficient
condition for the monotonicity of the entropy in the
dependence parameter and its relation to the TP2
condition. To the best of our knowledge, other than
the work of Elidan [2012] that formulated the conjec-
ture proved above, the only work that sheds theoret-
ical light on the relationship between the copula de-
pendence parameter θ and the entropy is that of Joe
[1987]. The relevant details are summarized below.

If f, g are two n-dimensional densities, then f is said to
be majorized by g, denoted by f � g, iff

∫
Φ(f)dx ≤∫

Φ(g)dx for all convex functions Φ. In particular,
since Φ(x) = xlog(x) is convex, then letting X,Y be
two n-dimensional random vectors, such that X ∼ f1,
Y ∼ f2, and f1 is majorized by f2, we have that

−H(X) ≡
∫
f1log(f1)dX

≤
∫
f2log(f2)dY ≡ −H(Y).

With some additional technical details (see [Joe,
1987]), it is possible to show that for all elliptical cop-
ula families the dependence parameter θ implies a ma-
jorization ordering, which in turn implies monotonicity
of the entropy in the absolute value of Spearman’s ρs.

Thus, the monotonicity of the entropy in the corre-
lation parameter for a bivariate Gaussian copula can
be proved via majorization or Theorem 3.3. However,
majorization does not hold for the other families which
have a TP2 density. Conversely, the t-copula elliptical
family defines a majorization ordering but its density
is neither TP2 nor RR2 for some degrees of freedom
[Allan.R.Sampson, 1983].

Finally, the widely used Plackett family of copulas has
a density that is neither a TP2 function, nor does it
define a majorization ordering. However, as the sim-
ulations of Elidan [2012] suggest, the monotonicity of
the entropy in the dependence parameter also holds
for this copula family. Identification of the conditions
necessary for the monotonicity relationship to hold re-
mains a future challenge.

4 A Bayesian Approach for Learning
Expressive Copula Trees

Base on the theoretical developments presented in the
previous section, we now present a speedy model se-
lection (SMS) approach for learning the structure of
copula-based graphical models while allowing for dif-
ferent copula families within the same model. For clar-
ity and simplicity of exposition, we focus on the case of
copula trees where the relationship between the the-
ory and practice is most direct. As we shall see in
Section 5, even in this seemingly simple setting, our
approach offers significant generalization benefits. We
start with a brief review of a copula tree model and
how Spearman’s ρs can be used to learn its structure
for a single copula family.

4.1 Structure Learning using Spearman’s ρs

We now we briefly review the idea put forth by Elidan
[2012] for using Spearman’s ρs to learn the structure of
a copula network, an idea whose theoretical substanti-
ation has been greatly increased by the developments
in the previous section.

In a tree structured copula model [Kirshner, 2007, El-
idan, 2010], the joint density is represented as a prod-
uct of bivariate copula densities corresponding to the
edges of the tree T and the univariate marginals:

fX (x1, . . . , xn) =
∏

(i,j)∈T
cij(Fi(xi), Fj(xk))

∏

i

fi(xi).

When learning the structure of a model, we seek a
graph for which the (penalized) maximum likelihood
function is highest. Since the likelihood function it-
self decomposes, the building block of learning is the
evaluation of the merit of an edge X → Y , indepen-
dently of all other edges. In the case of the copula
parameterization the relevant term is

Score(X,Y ) ≡
M∑

m=1

log cθ̂(FX(x[m]), FY (y[m])),

where θ̂ are the estimated parameters, the sum is over
training instances, and the marginal terms that do not
depend on the graph’s structure have been dropped.

Evaluation of Score(X,Y ) can be computationally dif-
ficult. However, all that we really need to identify the
optimal tree is a ranking of the scores for all possible
edges. If we assume that the data is generated from
the copula, then as M →∞ we have that

Score(X,Y )→ −H(Cθ(U, V )),

where U, V are the ranks of X,Y , respectively.
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Figure 2: (left) expected log-likelihood vs. Spearman’s ρs for the normal, Gumbel and Clayton copula families.
(right) expected posterior vs. Spearman’s ρs.

Thus, having proved that |ρs| is monotonic in
−H(Cθ(U, V )), we can simply use an easy to compute
empirical estimate of ρs to rank candidate edges, and
find the optimal tree with respect to this measure us-
ing a simple maximum spanning tree algorithm.

4.2 Choosing From Multiple Copula Families

The above approach, suggested by Elidan [2012] allows
for efficient structure learning of a copula based model
that makes use of a single copula family. Obviously,
not all pairs of variables share the same dependence
characteristics and while the interaction between one
pair of variable be be Gaussian, the interaction be-
tween another pair may be heavy-tailed and exhibit,
for example, a behavior that is close to a Gumbel dis-
tribution. As an example, for the Crime census do-
main described in Section 5, the optimal tree includes
around 41% edges parameterized by a Gaussian cop-
ula, 48% edges parameterized by a Gumbel copula,
and 11% edges parameterized by a Clayton copula.
Obviously, the need for a mix of copula families is real.

We now present an efficient approach for learning
copula-based graphical models while allowing for a mix
of copula families while retaining the lightning-speed
efficiency of learning that is based on Spearman’s ρs
empirical evaluation. Naively, since the expected log-
likelihood is monotonic in Spearman’s ρs, the following
procedure may seem reasonable:

• Simulate the characteristic curve of expected log-
likelihood for each copula family (note that this
needs to be carried out only once).

• For each value of Spearman’s ρs choose the family
that offers the highest expected log-likelihood

Unfortunately, such a procedure can fail since the the-
oretical result guarantees monotonicity within a cop-
ula family and not between copula families. In fact, as
Figure 2(left) shows, the expected log-likelihood vs.
Spearman’s ρs is highest for Clayton copula family
through much of the range of ρs values. Using the
naive approach would lead us in this case to over-favor
the Clayton copula.

An intuitive explanation to the above phenomenon is
that while characteristic curves indeed capture the be-
havior given Spearman’s ρs for a particular family,
they do not take into account the likelihood of see-
ing a particular value of ρs within each family. In fact,
we can expect the density of ρs (which is always in the
range [−1, 1]) to be quite different between the nor-
mal copula family whose dependence parameter is in
the range [−1, 1] and, for example, the Clayton copula
family whose parameter has infinite support.

Given the above, we would like to somehow take into
account a prior density over ρs for each copula family.
Using C to denote the set of copula families and fc(ρs)
to denote the density of ρs for a copula family c ∈ C,
we will then choose the copula family that maximize
the expected posterior

argamaxc∈CE (log c(F (x), F (y); ρs) + logfc(ρs) (3)

Importantly, this approach still relies on precomputed
(posterior) characteristic curves and thus is as efficient
as learning with a single copula family, regardless of
the number of copula families considered.

The obvious question is how to choose the prior fc(ρs)
for each copula family. In depth exploration of this
question is left to future work and in here we use
a straightforward approach which, as will be seen
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Figure 3: (left) Average log probability per instance over 10 folds. Compared are the Gaussian copula model,
the model with a mix of copula families using our SMS method, and the golden standard of learning using
exact maximum likelihood computations. Shown are results for the Crime, SP500, and Gene datasets. (right)
comparison of our approach to the Gaussian copula baseline for all repetitions for the SP500 domain.

in Section 5, proves quite effective in practice. We
choose a prior that, while taking into account the range
of dependence parameter for each copula family, as-
signs higher density to the independence model where
ρs = 0. Appealingly, this is both uninformative while
at the same time ensuring that we do not encourage
dependence that is due to finite data noise.

Concretely, in this paper we consider the normal cop-
ula and the most popular Archimedean copula fami-
lies, namely the Clayton, Frank, and Gumbel copula
families. For the normal copula, the above translates
into a standard truncated Laplace (also known as dou-
ble exponential prior). For the Gumbel copula we use
a shifted by unity exponential distribution (according
to dependence parameter support) and for Clayton we
take exponential distribution with parameter λ = 4.
The resulting characteristic curves are shown in Fig-
ure 2(right) where it is clear that different copula fam-
ilies are preferred (highest) in different regions. In the
next section we will show that using this curve to auto-
matically choose the copula family based on empirical
Spearman’s ρs evaluation results in competitive mod-
els that are learned very efficiently.

We note that the characteristic curve for the Frank
copula family is missing from this graph because of its
similarity to that of the normal copula family. The im-
plication of this similarity is that our method cannot
be used to separate these two copula families. This
should not come as a great surprise since the symmet-
ric Frank density, while not Gaussian, is much more
similar to the normal distribution than, for example,

the asymmetric heavy-tailed Gumbel one. While this
may sound problematic, due to the similarity of densi-
ties, the practical implications of wrongly choosing be-
tween the Frank and Gaussian copulas are relatively
small, as confirmed in preliminary experiments (not
shown here for clarity of exposition).

5 Experimental Evaluation

In this section we demonstrate the practical benefit of
our speedy model selection (SMS) method for learn-
ing expressive real-valued copula graphical models. As
noted, we focus on tree structures where the learning
task decomposes into the bivariate evaluation of the
merit of each edge in the network individually. The
significant generalization advantage of copula-based
graphical models over the standard Gaussian BN has
been demonstrated in the past [Kirshner, 2007, Elidan,
2010] (and confirmed for our datasets). For clarity, in
here we focus on the additional advantage over models
that involve only a single copula family.

For each edge we allow for a Gaussian, Clayton or
Gumbel copula, with the prior for each family as de-
fined in Section 4. As a baseline we consider learning
only with a Gaussian copula, which is the strongest
of all single family baselines. We also compare to
the golden standard of learning using exact maximum
likelihood computations. For the univariate marginals
in all cases, we use standard kernel-based approach
[Parzen, 1962] with the common Gaussian kernel (see,
for example, [Bowman and Azzalini, 1997] for details).
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Figure 4: (left) Average fraction of edges that overlap between the model learned using our SMS method and
the golden standard model learned using exact maximum likelihood computations. (middle) average fraction of
edges, among those common to the two models, that agree on the copula family. (right) average speedup factor
of our SMS method over learning with exact computations.

We consider three varied real-life datasets:

• Crime (UCI repository). 100 variables relating to
crime ranging from household size to fraction of chil-
dren born outside of a marriage, for 1994 communi-
ties across the U.S.

• SP500. End of day changes of the value of the
500 stocks (variables) comprising the Standard and
Poor’s index (S&P 500) over a period of close to
2000 trading days (samples).

• Gene. A compendium of gene expression experi-
ments used in [Marion et al., 2004]. We chose genes
that have at most one missing experiment. This re-
sulted in 765 variables (genes) and 1088 samples.

Results for all three datasets are reported over 10 ran-
dom equal splits into train and test samples.

We start by considering the average test log proba-
bility per instance, shown in Figure 3(left). The su-
periority of the mixed family model (white bars) over
the Gaussian copula model (gray bar) is clear. Fur-
ther, in the two bigger datasets, our highly efficient
SMS approach improves substantially over the base-
line both when taking into account the maximum like-
lihood golden standard and in absolute terms of bit per
instance improvement. Appealingly, as the domain be-
comes more complex and the number of variable grows,
so does our advantage. Figure 3(right) shows a typ-
ical more detailed comparison of performance for the
SP500 domain. As can be clearly seen, our superiority
is consistently substantial over all random repetitions.

Next, we consider the qualitative ability of our SMS
approach that is based on Spearman’s ρs evaluation to
correctly identify both the structure and the best cop-
ula family for each edge. Figure 4 (left) shows for each
of the datasets the average percentage of edges, over
the 10 random runs, that are common to the model

learned by our SMS method and the one learned using
exact time-consuming computations. As can be clearly
seen, the overlap between the trees learned is nontriv-
ial considering the size of the domain the fact that
our structure learning approach only relies on simple
empirical Spearman’s ρs estimates. To evaluate the
ability of our approach to also correctly choose the
right parameterization for each edge, Figure 4 (mid-
dle) shows the average percentage of edges that, in
addition to being in both the SMS model and that
learned using exact computations, also agree on the
copula family. Again, given the inherent difficulty of
model selection, the similarity between the two models
is appealing. The least favorable overlap for the crime
domain also explains why our log-probability perfor-
mance for the crime domain is the least impressive.
Still, even in this case, performance is superior to the
baseline Gaussian copula only model.

Finally, we consider the speedup factor of our SMS
method when learning a mixed family copula model
relative to learning using exact computations. Fig-
ure 4(right) shows the average speedup factor. For
all three domains the speedup is quite impressive at
around two orders of magnitude. Learning the SP500
model, for example, takes only minutes on a single
CPU making structure learning a significantly more
accessible task than in the past. We note that the
growth rate of both our SMS method and the exact
one as a function of the number of variables is similar,
and that the difference is in the dependence on the op-
erations that have to be carried our for each training
instance. The speedup reported confirms this since,
for example, the Gene dataset has almost half the
samples of the Crime dataset. Thus, while achieving
impressive speedups even for the modest datasets con-
sidered here, our SMS method is particularly suited to
handle a substantial number of training samples.
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6 Summary and Future Work

In this paper we addressed the computationally de-
manding challenge of structure learning for real-valued
domains in the context of expressive copula-based
models. First, we significantly extended the result
of Elidan [2012] and substantiated the conjecture of
the monotonic relationship between the magnitude of
Spearman’s ρs and the expected likelihood of an edge
in the network. Second, we suggested a novel Bayesian
approach for performing structure learning while also
allowing for the selection of a different copula family
for each edge, without incurring any computational
cost. Third, we demonstrated the effectiveness of our
SMS approach on varied real-life domains.

Importantly, the domains considered are quite sizable
by structure learning standards and dramatically so
for copula models. Further, to the best of our knowl-
edge, ours is the first method for automated learning
of multivariate copula-based models that allows for a
mix of different copula families.

An obvious open theoretical question is the identifica-
tion of necessary conditions for the monotonicity re-
lationship between Spearman’s ρs and the copula en-
tropy. Another important and practical avenue of re-
search is the exploration of appropriate priors for the
density of ρs for different copula families. More gen-
erally, it would be useful to find other efficient proxies
for speedy model selection, e.g., based on other de-
pendence measures such as the Schwizer-Wolff sigma
[Schweizer and Wolff, 1981].

7 Appendix

We now prove that the Ali-Mikhail-haq and Gumbel-
Barnett copula densities are TP2/RR2, allowing us to
apply Theorem 3.3 to these families. We start with a
useful property of TP2 that will be used in our proof:

Observation 7.1 : Let f1(x, y), f2(x, y) be two real
non-negative TP2 (RR2) functions. Then Ψ(x, y) =
f1f2 is TP2 (RR2).

Proof: From the TP2 property we have

Ψ(x1, y1)Ψ(x2, y2) =

= f1(x1, y1)f1(x2, y2)f2(x1, y1)f2(x2, y2)

≤ f1(x1 ∨ x2, y1 ∨ y2)f1(x1 ∧ x2, y1 ∧ y2)

×f2(x1 ∨ x2, y1 ∨ y2)f2(x1 ∧ x2, y1 ∧ y2)

≡ Ψ(x1 ∨ x2, y1 ∨ y2)Ψ(x1 ∧ x2, y1 ∧ y2),

where the last line follows from the previous by def-
inition after rearranging of terms. The result follows
from the definition of a TP2 density.

Lemma 7.2: The Ali-Mikhail-haq (AMH) density

c(u, v) =
1 + θ[(1 + u)(1 + v)− 3] + θ2(ũ)(ṽ)

[1− θ(ũ)(ṽ)]−3
,

for θ ∈ [−1, 1] and where ũ ≡ (1 − u), ṽ ≡ (1 − v), is
TP2 when θ ∈ [0, 1] and RR2 when θ ∈ [−1, 0).

Proof: We will show that for θ ∈ [0, 1], the AMH den-
sity is a product of two non-negative TP2 functions,
and the result will follow from Observation 7.1:

f1(u, v) = 1 + θ[(1 + u)(1 + v)− 3] + θ2ũṽ,

f2(u, v) = [1− θũṽ]−3.

The positivity of f1, f2, can be easily verified. Fur-
ther, a positive function is TP2 iff it is supermodular
on the log scale. Also, a function f(u, v) is supermod-
ular iff its second order derivatives are positive, that
is ∂u∂vf(u, v) ≥ 0, (u, v) ∈ R2. We now have,

∂2 log f2(u, v)

∂u∂v
=
−3θ2ũṽ − θ[1− θũṽ]

[1− θũṽ]2
.

This second order derivative is positive so that f2(u, v)
is TP2. Using the same technique, we can show that
log f1(u, v) is supermoduler, hence f1(u, v) is also TP2.
The proof for θ ∈ [−1, 0) is similar.

Lemma 7.3: The Gumbel-Barnett (GB) density by

c(u, v) = (−θ + [1− θù][1− θv̀]) e−θùv̀,

for θ ∈ (0, 1], and where ù = θlog(1− u), v̀ = θlog(1−
v), is an RR2 function.

Proof: We will show that the GB density is a product
of two non-negative RR2 functions. Define

f1(u, v) = −θ + [1− θù][1− θv̀]

f2(u, v) = e−θùv̀

f2 is non-negative and since c(u, v) is a density func-
tion, f1 must also be non-negative. Also note that a
function is RR2 only if is submodular on the log scale,
and that a function is submodular if its second order
derivative is non-positive. Starting with f1(u, v), we
have

∂2 log f1(u, v)

∂u∂v
=

−θ3

(1− u)(1− v)
,

and this term is always non-positive for θ ∈ (0, 1].
Thus, f1(u, v) is RR2. The proof that f2(u, v) is RR2
is similar. It follows that the Gumbel-Barnett density
is an RR2 function.
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Abstract

We consider the problem of learning by
demonstration from agents acting in un-
known stochastic Markov environments or
games. Our aim is to estimate agent prefer-
ences in order to construct improved policies
for the same task that the agents are trying
to solve. To do so, we extend previous prob-
abilistic approaches for inverse reinforcement
learning in known MDPs to the case of un-
known dynamics or opponents. We do this
by deriving two simplified probabilistic mod-
els of the demonstrator’s policy and utility.
For tractability, we use maximum a posteri-
ori estimation rather than full Bayesian in-
ference. Under a flat prior, this results in a
convex optimisation problem. We find that
the resulting algorithms are highly compet-
itive against a variety of other methods for
inverse reinforcement learning that do have
knowledge of the dynamics.

1 Introduction

We consider the problem of learning by demonstra-
tion from agents acting in stochastic Markov environ-
ments, or in stochastic Markov games [13, 18], when
we do not know the underlying dynamics of the envi-
ronment or the opponent strategy. This type of learn-
ing is very useful, since it can significantly decrease
the time needed to acquire a particular task. Another
possible application are games such as chess, where
large libraries of expert play have been accumulated
over the years. Inverse reinforcement learning offers a
principled method to use this data for imitating ex-
pert play, even when the experts are deviating from
the optimal strategy. In this paper, we learn through
demonstration by estimating the preferences and pol-
icy of the agent giving the demonstration. These can

then be used to estimate improved policies, by com-
bining the inferred agent preferences with policy im-
provement schemes. This is not always trivial, since
the demonstrations may be sub-optimal and the un-
derlying dynamics are unknown to us.

Our main technical contribution is two inverse rein-
forcement learning algorithms for the case of unknown
dynamics. These are inspired by two Bayesian models
for inverse reinforcement learning in known environ-
ments [7, 17]. Our first algorithm extends the original
model to unknown dynamics by coupling probabilistic
preference and policy estimation with approximate dy-
namic programming schemes and maximum a poste-
riori estimation. Thus, we avoid explicitly estimating
a model altogether. Our second algorithm proposes
a simpler model where the policy and value function
are jointly represented by the same set of parameters.
We can thus eliminate both the dynamic programming
step and estimation of the dynamics. Finally, we ex-
perimentally evaluate our schemes against a broad se-
lection of algorithms which do know the dynamics. We
consider both agents acting in unknown environments,
as well agents playing stochastic games, and show that
we can approach and even surpass the performance of
methods that use knowledge of the dynamics.

The remainder of the paper is organised as follows.
Section 2 formally introduces the setting, while Sec-
tion 3 discusses related work and our contribution.
Section 4 describes our models and algorithms. Com-
parisons with other methods are given in Section 5,
and we conclude with a discussion in Section 6.

2 Setting

In our setting, we observe a set of demonstrations D
from an agent acting in an unknown Markov environ-
ment or game ν ∈ N , where N is a set of possible
environments. The k-th demonstration dk ∈ D is a
Tk-long trajectory, consisting of a sequence of envi-
ronment states s ∈ S and agent actions a ∈ A with
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dk =
(
(sk1 , a

k
1), . . . , (skTk

, akTk
)
)
. We assume that both

the agent policy π and the environment ν are Marko-
vian. Consequently, the action at only depends on the
current state st and the next state st+1 only depends
on st, at. The agent acts according to some (unknown
to us) reward function ρ : S × A. In particular, any
policy π that the agent chooses, has a value defined in
terms of the expected utility with respect to ρ:

V πν,ρ(s) , Eπ,ν(Uρ | s1 = s), Uρ ,
T∑

t=1

ρ(st, at),

(2.1)

where T may be random.1 We denote the optimal
policy for a reward function by π∗(ν, ρ), with either of
those two arguments omitted if it is clear from context.
The optimal value function is denoted by:

V ∗ν,ρ , sup
π
V πν,ρ. (2.2)

Similarly, we define Qπν,ρ(s, a) , Eπ,ν(Uρ | s1 = s, a1 =
a) to be the expected utility of taking action a at state
s and following π thereafter, while Q∗ν,ρ(s, a) is the
optimalQ-function. We assume that the agent’s policy
is ε-optimal with respect to ρ, that is:

V πν,ρ ≥ V ∗ν,ρ − ε. (2.3)

In our setting, we can observe the sequence of states
and actions taken and we know (the distribution of)
T . However, the policy π, the environment ν and the
reward function ρ, as well as the ε-optimality of the
policy are unknown to us.

3 Related work and contribution

Inverse reinforcement learning [15] is the problem of
estimating the reward function of an agent acting in
a dynamic environment. It is thus closely related to
preference elicitation [3], since the reward function can
be used to calculate the agent preferences, and appren-
ticeship learning [1], since for each reward function one
can calculate the optimal policy.

Much previous work in this setting employs a linear
approximation with feature expectations. The gen-
eral idea is to find a reward function minimising some
loss between the expert features expectations and the
one of the optimal policy for the approximated dy-
namics and reward function. A representative ex-
ample is [8], which uses the quadratic programming
maximum-margin approach proposed in [1] to obtain a
reward function and least squares temporal differences

1For geometrically distributed T , the expected utility
function is identical to that obtained when T → ∞ and
the rewards are exponentially discounted.

(LSTD) [4] for policy evaluation. LSTD is also used
to estimate the feature expectation of the expert. A
similar approach is taken in [14], which used the game-
theoretic algorithm MWAL [20] where a near optimal
policy is found by using LSPIf, a variant of LSPI [11]
for discrete finite horizon Markov decision processes.

Other methods avoid using policy iteration, but nev-
ertheless indirectly employ knowledge of the environ-
ment. The most important work in this category is rel-
ative entropy inverse reinforcement learning [2]. The
main idea is to perform a sub-gradient ascent on an
appropriate loss. The sub-gradient is estimated us-
ing importance sampling on trajectories generated us-
ing a stochastic policy on the real environment. An-
other work in this category is the SCIRL (Structured
Classification for Inverse Reinforcement Learning) al-
gorithm [9]. Using the observation that the reward
and the Q function share the same parameter, then es-
timate it by minimising an appropriately defined loss.
While we use a similar idea, SCIRL uses the real en-
vironment model to calculate feature expectations.

An altogether different approach is taken by [12],
which constructs reward features from a set of compo-
nent features through logical conjunctions. Given a set
of trajectories, and the true environment model, the
algorithm then estimates a reward function by finding
the most effective feature combinations.

Our algorithms are inspired by two recently proposed
probabilistic models for Bayesian inverse reinforce-
ment learning. The first model starts by specifying a
prior on the reward function and a reward-conditional
distribution on policies through a prior on policy ran-
domness [17]. The second model instead specifies a
prior on the policy directly and policy-conditional dis-
tribution on the reward functions through a prior on
policy optimality [7]. These methods have been de-
scribed and evaluated on problems where the dynamics
are known and the authors suggest that handling the
unknown dynamics case would be possible by simply
adding a prior distribution on the dynamics.

3.1 Our contribution

Our own work focuses on the problem of learning from
demonstration in the case where the transition model
of the process is unknown. This is the case when
the agent is either acting in an environment with un-
known dynamics, or playing an alternating Markov
game against an unknown opponent. Unlike most pre-
vious approaches, we do not have prior knowledge of
the dynamics, either in the form of an analytically
available transition kernel, or in the form of a sim-
ulator from which we can take samples.

With respect to the reward-prior model specified
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in [17], our main technical novelty is to avoid esti-
mating the dynamics altogether. Instead, we use ap-
proximate dynamic programming (LSTDQ) in combi-
nation with linear parametrisation to obtain policies
and value functions for the reward prior model.

With respect to the policy-optimality-prior specified
in [7], our main technical novelty is that we eliminate
the need for a dynamic programming step altogether.
This significant simplification is achieved by placing a
prior on value functions rather than reward functions.
Then, instead of considering all possible value func-
tions for which a given policy is ε-optimal, we restrict
the space by jointly parametrising the policy and value
function.

Thirdly, our models use features, rather than the raw
state observations. Thus our algorithms are more gen-
erally applicable.

Finally, for computational simplicity, we employ max-
imum a posteriori (MAP) estimation, rather than full
Bayesian inference, as also suggested in [5]. Then infer-
ence can be performed quickly using any appropriate
global or local optimisation algorithm.

Our main experimental contribution is to show that
our proposed algorithms are highly competitive against
six other methods, even if those are using knowledge
of the dynamics. In particular, we investigate the
robustness of our algorithms, by tuning the hyper-
parameters, including the features, on a fixed set of
demonstrations and then testing their performance on
a large sample of demonstrations drawn from some
distribution.

We compare our approaches with the full Bayesian
method RPB in [17], the MAPIRL method in [5],
MWAL [20], the maximum entropy method Max-
Ent [21], the projection method Proj suggested in [1],
MMP [16] and finally the feature-based FIRL [12].
We outperform most of those methods in all of our
experiments, apart from the FIRL which (naturally)
had particularly good performance in a domain with
a high number of features. However, even in this case,
our algorithms, without any knowledge of the dynam-
ics, manage to approach the FIRL solution.

4 Models

The algorithms we provide are inspired by the proba-
bilistic models introduced in [7, 17], whose difference
from our models we describe in this section. Both of
these maintain a joint prior distribution ξ on policies
π ∈ P and reward functions ρ ∈ R. They only differ
on how they model their dependencies. The reward
prior model specifies a prior on reward functions and
a conditional distribution on policies given the reward.

The policy optimality model specifies a prior on poli-
cies and a conditional distribution on reward functions
given the policy. In both cases, the likelihood is simply
the probability p(D | π) of observing the demonstra-
tions under the estimated policy.

Both of our models use features, rather than direct
state observations. Thus, we define a mapping gR :
S × A → XR from the state-action space to a feature
space XR ⊂ RmR for the reward function. Similarly,
we also define a mapping gQ : S × A → XQ from the
state-action space to a feature space XQ ⊂ RmQ for
the state-action value function.

4.1 Reward prior (RP) model

The main difference between the original model
and ours is with respect to the reward function
parametrisation and the value function estimation.
In our model, we maintain a parameter wR ∈ RmR

parametrising the reward function via a linear func-
tion f : XR ×RmR → R, such that:

ρ(s, a) , f(gR(s, a),wR) , gR(s, a)
>
wR. (4.1)

Since the environment dynamics are not known,
we employ least-square temporal differences
(LSTDQ [11]) to obtain a parametrised state-action
value function:

Q̂∗(s, a) = gQ(s, a)
>
wQ. (4.2)

The use of LSTDQ allows us to consider the case where
the demonstration D comes from a suboptimal expert.
Since D is generated by the expert’s policy, we can
use the on-policy LSTDQ. This finds a parameter wQ
such that wQ = A−1b = A−1ZwR = CwR, with C =
A−1Z and :

A =
∑

dk∈D

Tk−1∑

t=1

gQ(skt , a
k
t )
(
gQ(skt , a

k
t )− γgQ(skt+1, a

k
t+1)

)>

(4.3)

b =
∑

dk∈D

Tk−1∑

t=1

gQ(skt , a
k
t )ρ(skt , a

k
t ) (4.4)

=
∑

dk∈D

Tk−1∑

t=1

gQ(skt , a
k
t )gR(skt , a

k
t )>wR (4.5)

=

(∑

dk∈D

Tk−1∑

t=1

gQ(skt , a
k
t )gR(skt , a

k
t )>
)
wR (4.6)

= ZwR. (4.7)

So:

Z =
∑

dk∈D

Tk−1∑

t=1

gQ(skt , a
k
t )gR(skt , a

k
t )>. (4.8)
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As the demonstration D is fixed, so are A, Z and C.
Then,

Q̂∗wR
(s, a) = gQ(s, a)

>
CwR. (4.9)

As in the original model, we assume that, the demon-
stration policy π is softmax with respect to the value
function:

πβ,wR
(a | s) , eβQ̂

∗
wR

(s,a)

∑
a′ e

βQ̂∗wR
(s,a′)

, (4.10)

Finally, the likelihood is simply:

p(D | β,wR) =
∏

dk∈D

Tk∏

t=1

πβ,wR
(akt | skt ), (4.11)

and the overall posterior can be factorised due to con-
ditional independence:

ξ(β,wR | D) ∝ p(D | β,wR)ξ(wR)ξ(β). (4.12)

The main question is which prior to select. If we as-
sume a uniform prior for the reward parameters wR
and β, taking the logarithm and replacing Q̂∗wR

by its
value results in the following maximisation problem:

max
wR

∑

dk∈D

{ Tk∑

t=1

βgQ(skt , a
k
t )
>
CwR

− ln
∑

a′

eβgQ(skt ,a
′)
>
CwR

}
. (4.13)

Equation 4.13 is a concave function which can be max-
imised efficiently. Note that since wR is not con-
strained and the prior for wR, β is uniform, β is essen-
tially a free parameter which can be set to an arbitrary
positive value. Then, we can get both the preference
of the expert wR, as well as the parameter of the value
function wQ.

An alternative is to use an exponential prior for β and
a Dirichlet prior for ρ. Intuitively, this should induce
a penalty for overfitting, and a sparse reward function.
However, the optimisation is in this case difficult, and
in preliminary experiments we found that it did not
improve upon the uniform prior.

4.2 Policy optimality (PO) model

This model starts with a prior ξ(π) on the policies.
This allows a posterior on the policy ξ(π | D) to be
obtained from the data directly. This type of “imi-
tator” policy is then tempered through use of a prior
on policy optimality. Briefly, if the policy is ε-optimal,
then there is a set of reward functions Rε such that
V πν,ρ ≥ V ∗ν,ρ − ε for any ρ ∈ Rε.

The original model assumed a prior ξ(ε) = e−ε, for
ε-optimality, and so obtained a distribution on reward
functions conditional on the policy and its optimality.
The overall posterior was then factorised as follows:

ξ(ε, π, ρ | D, ν) ∝ p(D | π, ν)ξ(ρ | π, ε)ξ(ε)ξ(π).

(4.14)

The difficulty with this model is that one has to con-
sider all reward functions for which a policy is ε-
optimal. This is not a problem for a finite set reward
functions, but it makes inference hard in the general
case. In addition, since ν is not known, one would have
to integrate (or maximise) over ν explicitly.

Our own model considers value functions directly,
rather than reward functions, thus eliminating the
need for a dynamic programming step. In particular, a
vector (wQ, β) with wQ ∈ RmQ , jointly parametrises
the optimal value function and the demonstrator pol-
icy. Specifically, the optimal state-action value func-
tion is parametrised via a linear function h : XQ ×
RmQ → R, such that:

Q(s, a) = h(gQ(s, a),wQ), (4.15)

while the policy is defined as:

πβ,wQ
(a | s) =

eβQ(s,a)

∑
a′∈A e

βQ(s,a′)
. (4.16)

Each parameter β,wQ corresponds to a unique policy-
value function pair. We assume an independent prior
ξ(β,wQ) = ξ(β)ξ(wQ). Our posterior probability is
then:

ξ(β,wQ | D) ∝ p(D | πβ,wQ
)ξ(β)ξ(wQ), (4.17)

since given β,wQ, the policy and value function are
uniquely determined.

Using uniform priors for all parameters, and taking
the logarithm, results in the following maximisation
problem:

max
wQ

∑

dk∈D

{
Tk∑

t=1

βgQ(skt , a
k
t )
>
wQ − ln

∑

a′

eβgQ(skt ,a
′)
>
wQ

}
.

(4.18)

It is easy to see that PO model can also be obtained
by replacing CwR in equation 4.13 by the value wQ.
Although both PO and RP look similar, the PO model
does not require the matrix C. Intuitively we can see
that PO considers value functions directly, rather than
reward functions, thus eliminating the need for a dy-
namic programming step. In particular, a vector wQ
jointly parametrises the optimal value function and the
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demonstrator policy defined in equation 4.10. Another
significant difference is that PO starts with a prior ξ(π)
on the policies. This allows a posterior on the policy
ξ(π | D) to be obtained from the data directly.

An alternative model is to use an exponential distribu-
tion, ξ(β−1) = Exp(1) for the scaling parameter, and
a Dirichlet distribution ξ(wQ) = Dirichlet(α) for the
other value function parameters, with α ∈ RmQ

+ such
that αi = 1

2 , so the posterior is:

ξ(β,wQ | D) ∝
∏

t

πβ,wQ
(at | st)

mQ∏

i=1

wαi−1
Qi e−β

−1

.

(4.19)

Taking the logarithm, we now need to solve the fol-
lowing maximisation problem, under the constraint
‖wQ‖1 = 1, and wQi ∈ [0, 1]:

max
β,wQ

∑

t

lnπβ,wQ
(at | st)−

1

2

mQ∑

i=1

lnwQi − β−1.

(4.20)

Now β−1 can be seen as a simple penalty to avoid over-
fitting. Due to the constraints, parameterswQ where a
few components have large values are favoured. Thus,
this model can be seen as a sparse regularised classifier.

5 Experiments

We performed a set of experiments in three domains.
These are either stochastic environments or alternat-
ing Markov games. In all those experiments, our al-
gorithms did not assume knowledge of the underly-
ing process, or opponent. For those cases where it
was possible to obtain an analytic model of the pro-
cess and/or of the opponent, we also compared our
algorithms with methods which assume knowledge of
the underlying dynamics. In all cases, we first tuned
hyper-parameters of the algorithms in a small set of
demonstration trajectories. These algorithms were
then evaluated on multiple runs with varying amounts
of demonstration trajectories, in order to examine the
robustness of algorithms and their performance im-
provement as the amount of data increased.

As mentioned in the previous section, we have a choice
of different priors for the models. The uniform pri-
ors lead to convex problems, which allow us to use
an efficient algorithm (L-BFGS) to find the maximum
a posteriori parameters. In preliminary experiments
with the alternative priors, we had to resort to random
restarts combined with local search. This didn’t led to
better results, possibly due to the difficulty of the op-
timisation problem. Consequently, in the presented

experiments, we only show results with uniform pri-
ors. We use LPO to denote the linear PO model and
LRP for the linear RP model.

All the experiments are performed on discrete environ-
ments, even though inference is performed on a set of
features instead. Consequently, it is possible to com-
pute the optimal policy with respect to a given reward
function on all of these environments. In our exper-
iments, we compare the performance of the policies
found by the inverse RL algorithms to that of the op-
timal policy of the environment. In particular, the loss
of a policy π is:

`(π) ,
∑

s∈S
µ(s)(V ∗(s)− V π(s)), (5.1)

where µ is the starting state distribution of the prob-
lem.

In all these experiments, the features are appropri-
ately scaled for each algorithm. For example, when
using MWAL the features are scaled so that they lie
in [−1, 1], whereas for Proj, they lie in [0, 1]. For all
experiments the features of the reward function gR are
state features.

5.1 Blackjack

The first domain is blackjack, as described in [19]. The
goal is to get cards such that their sum is as close as
possible to 21 without exceeding it. All face cards
count as 10 and the ace can be either 1 or 11 (usable).
At the beginning of the game, two cards are dealt to
both the dealer and the player. One of the card of
the dealer is face up, the other is face down. If the
player has immediately 21 (a face and an ace), then it
is a natural and he wins (+1.5 points). Otherwise, he
can request additional cards one by one (hits) until he
either stops (sticks) or exceeds 21 (goes bust). If he
goes bust, he loses (−1 points); if he sticks, then it is
the dealer’s turn. The dealer sticks when he has 17 or
greater; he hits otherwise. If the dealer goes bust, then
the player wins (+1 points); otherwise the outcome is
determined by who ever is closer to 21.

The state is determined by the sum of the player’s
hand (12-21), the dealer card (ace-10 or 1-10), and
whether or not the player holds a usable ace. We ig-
nore the case where the player sum is less than 12, as
then the player will always hit. This results in 201
states, including the terminal state.

We used 14 features for the reward function gR. They
included the state variables, their higher order (multi-
variate) polynomial terms (up to 2) and a bias (which
is always 1). For the value function features gQ, we
repeated the reward features for each action. In this
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domain, the initial state distribution µ is derived from
the uniform distribution on the set of cards.

The demonstrations are obtained from the optimal
policy. We varied the number of episodes (from 10 to
10000) to determine the ability of the different algo-
rithms to handle limited data. We report average per-
formance on 200 runs. This includes both the loss (5.1)
and CPU time.

5.2 Gridworld

The second experiment is on 32× 32 gridworlds. The
agent can move into 5 directions (west, east, north,
south, or be still). But with probability 0.3 it fails and
moves to a random direction. The grids are partitioned
into 3 non overlapping regions (one at the lower left
corner, one at the upper right corner and the third
elsewhere). The initial state is uniformly drawn from
the possible states. The true reward is positive in the
two regions at the corner and negative elsewhere.

We used 64 features for the reward function gR. These
features included the coordinates x and y and 62 bi-
nary features indicating if x or y is lower than some
value. For the value function features gQ, we repeated
the reward features for each action.

The demonstrations are obtained from an optimal
agent. The number of steps for each episode is 8. The
number of episodes is varied from 10 to 10000. We
measured the average performance loss with respect
to the optimal value function, over 10 experimental
runs.

5.3 Tic-Tac-Toe

The final experiment is the game of tic-tac-toe. It
is a 3 × 3 board game where two players (X and O)
take turns alternatively to place their mark on empty
spaces. The player who first places three marks in
a row, horizontally, vertically, or diagonally wins and
obtains a reward of +1. If there is no legal move re-
maining, the game is a draw. The game state can be
described by 9 factors, each indicating the mark at a
board location. Thus the total number of states is at
most 39, symmetry and unreachable states notwith-
standing. There are up to 9 possible actions.

To construct gR, we used the features described in [10]:
the number of singlets (horizontal, diagonal, vertical
lines with exactly one symbol X or O), doublets (hor-
izontal, diagonal, vertical lines with exactly two sym-
bols X or O), triplets (horizontal, diagonal, vertical
lines with exactly three symbols X or O), diversity (the
number of different singlet directions for each player)
and crosspoints (an empty field belonging to at least
two singlets of the same player) for each player; their
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Figure 1: Blackjack results.

higher order (multivariate) polynomial terms (up to 2)
as well as the 9 features for the raw board position.

The features gQ of the value function for a state-action
pair (s, a) are those of the resulting state s′ prior to the
opponents play. We learned the policy for player X.
The demonstrations are obtained from a game between
the optimal player (X) and a uniformly random player
(O). Player X randomly selects one of the available
minimax-optimal actions. We performed the experi-
ments by varying the number of demonstrations (from
10 to 10000) and report results averaged over 200 runs.
We evaluated two cases: one against a random player
and one against an optimal player.

5.4 Results

For clarity of presentation, the figures only compare
our algorithms with the original reward prior model
RPB, the maximum entropy method Max-Ent [21]
and the feature-based FIRL [12]. While results for
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MWAL [20], MAPIRL [5], MMP [16] and Proj [1],
are omitted for clarity of presentation, they did not
in general perform better than the methods shown.
Unlike our algorithms, all of the methods we compare
against use knowledge of the environment and conse-
quently enjoy an additional advantage.
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Figure 2: Gridworld results.

Figure 1(a) shows the expected loss ` for blackjack
for LPO, LRP and prior algorithms. We can see that
most algorithms found a good policy as the amount
of data increases. However, RPB, MMP and MWAL
(not shown) completely failed to find a reward induc-
ing a policy close to the expert’s one (always hits) even
after 104 demonstrations. The performance of Max-
Ent is better but does not improve with more data, in
contrast to the original Bayesian approach2 RPB, and
the maximum a posteriori approach MAPIRL. The
best competing approach is FIRL, but LRP manages
to surpass its performance, even without knowledge
of the dynamics. In addition, both LPO and LRP re-
quire significantly less computation time than all other
approaches, as can be seen in Fig. 1(b).

Figure 2 presents the expected value loss on the grid-
world. The performance of LRP, LPO, and FIRL
increases with more demonstrations. With less data,
we can see that LPO slightly outperforms all other al-
gorithms including FIRL. Again, the performance of
Max-Ent does not improve with more data. Also the
performance of the original Bayesian approach RPB
does not anymore increases with more data.

As a final example, we also present results on tic-tac-
toe in Fig 3. This way, one may obtain an idea of
how well our methods might be applicable to larger
games. Figure 3(a) presents the value difference when

2We also compared our method against the other mod-
els detailed in [7, 17], but RPB gave the best results in the
tested domains.
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Figure 3: Tic-Tac-Toe results

the opponent is random opponent, while Figure 3(b)
shows the results when the opponent is non determin-
istic but optimal. Against an optimal opponent, LPO,
LRP and Max-Ent quickly converge to the optimal
(minimax) policy. Against a random opponent both
LPO and LRP were able to outperform the optimal
(minimax) expert while Max-Ent did not improve
from the expert. This can be explained by the fact
that Max-Ent assumes that the expert is optimal
and then try to find a reward function which makes
the expert optimal. In constrast, LPO and LRP con-
siders a suboptimal expert (ε-optimal expert), then try
to find the true reward of this expert in order to out-
perform it if possible. Intuitively, the policy found by
LPO and LRP takes a little risk in order to beat the
expert against random opponents. At the same time,
the found policy never looses against an optimal (min-
imax) expert. In this experiment, FIRL (not shown)
completely failed to find a good policy. Its curve is
y=1 for both the random or the optimal opponent.
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Overall, our algorithms are extremely robust and per-
form near-optimally in all domains. In the blackjack
domain they reach the performance of the optimal pol-
icy and surpass all alternatives, all of which know the
environment model a priori. In the gridworld, they
compete well against FIRL and even outperformed
it with less data in spite of the sophisticated feature
discovery method and the knowledge of the dynamics
by FIRL. Finally, the tic-tac-toe illustration demon-
strates that such methods may also be useful in larger
games.

Finally, it should be noted that our algorithms always
outperform methods using a linear combination of the
features. This could be explained by the fact that our
cost function is convex and thus we are guaranteed
to find the global solution. This is supported by our
results for the fully Bayesian RPB method, as well as
our preliminary results using different priors, which
result in a non-convex problem.

6 Conclusion

We have provided a set of MAP approaches for proba-
bilistic inverse reinforcement learning in unknown en-
vironments. These approaches are inspired by prob-
abilistic models originally presented in [7, 17]. By
avoiding full Bayesian inference, we were able to ex-
tend these methods to the case of unknown dynam-
ics, Markov games and feature observations instead of
actual state-action observations. In addition, we pro-
posed an interesting simplification to the policy op-
timality model presented in [7], such that the set of
all ε-optimal reward functions for a particular policy
does not need to be searched for the policy optimality
algorithm.

Experimentally, both algorithms have a performance
which equals and even surpasses that of algorithms
which assume some knowledge of the underlying dy-
namics. This includes both approaches which use the
dynamics analytically and approaches which only sam-
ple from the dynamics. In addition, the computational
requirements of both methods are modest and signifi-
cantly lower than those of the alternatives we tried.

One question is whether it is possible or useful to ex-
tend these algorithms to the nonlinear case. This can
be done by using some kind of kernel, thus preserving
the linearity in the features. This could be of interest
for applications where the reward is complex with re-
spect to the features. Finally, we would like to apply
these methods to larger problems, and in particular to
learning to play games from databases of expert play.
It would be interesting to do so while extending them
to multiple reward functions, such as for the models
considered in [6, 7].
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Abstract

We seek to learn an effective policy for a
Markov Decision Process (MDP) with con-
tinuous states via Q-Learning. Given a set
of basis functions over state action pairs
we search for a corresponding set of linear
weights that minimizes the mean Bellman
residual. Our algorithm uses a Kalman filter
model to estimate those weights and we have
developed a simpler approximate Kalman fil-
ter model that outperforms the current state
of the art projected TD-Learning methods on
several standard benchmark problems.

1 INTRODUCTION

We seek an effective policy via Q-Learning for a
Markov Decision Process (MDP) with a continuous
state space. Given a set of basis functions that project
the MDP state action pairs onto a basis space, a lin-
ear function maps them into Q-values using a vector
of basis function weights. The challenge in implement-
ing such a projection-based value model is twofold: to
find a set of basis functions that allow a good fit to the
problem when using a linear model, and given a set of
basis functions, to efficiently estimate a set of basis
function weights that yields a high-performance pol-
icy. The techniques that we present here address the
second part of this challenge. For more background on
MDPs, see (Bellman, 1957, Bertsekas, 1982, Howard,
1960) and for Q-Learning see (Watkins, 1989).

In Kalman Filter Q-Learning (KFQL), we use a
Kalman filter (Kalman, 1960) to model the weights
on the basis functions. The entire distribution over
the value for any state action pair is captured in this
model, where more credible assessments will yield dis-
tributions with smaller variances. Because we have
probability distributions over the weights on the ba-
sis functions, and over the observations conditioned

on those weights, we can compute Bayesian updates
to the weight distributions. Unlike the current state
of the art method, Projected TD Learning (PTD),
Kalman Filter Q-Learning adjusts the weights on ba-
sis functions more when they are less well known and
less when they are more well known. The more obser-
vations are made for a particular basis function, the
more confident the model becomes in its assessment of
its weight.

We simplify KFQL to obtain Approximate Kalman
Filter Q-Learning (AKFQL) by ignoring depen-
dence among basis functions. As a result, each iter-
ation is linear in the number of basis functions rather
than quadratic, but it also appears to be significantly
more efficient and robust for policy generation than
either PTD or KFQL.

In the next section we present KFQL and AKFQL,
followed by sections on experimental results, related
work, and some conclusions.

2 KALMAN FILTER Q-LEARNING

In each time period an MDP has a continuous state s
and an action a is chosen from a corresponding set of
actions As. The transition probabilities to a successor
state s′ are determined by the state action pair (s, a),
and the reward R(s, a, s′) for that period is determined
by the two states and the action. We seek to learn
an optimal policy for choosing actions and the corre-
sponding optimal net present value of the future re-
wards given that we start with state action pair (s, a),
the Q-value Q(s, a). To make that analysis tractable
it is standard to introduce basis functions φ(s, a).

Given n basis functions φ(s, a) for MDP state ac-
tion pairs (s, a), we learn an n-vector of weights r for
those basis functions that minimizes the mean Bell-
man residual. Our prior belief is that r is multivariate
normal with n-vector mean µ and n×n covariance ma-
trix Σ. We model the Q-value by Q(s, a) = rTφ(s, a)
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with predicted value µTφ(s, a) and variance σ2(s, a).
We then treat the Q-Learning sample update ν(s, a) as
an observation with variance ε(s, a), which we assume
is conditionally independent of the prediction given r.
Under these assumptions we can update our beliefs
about r using a Kalman filter. This notation is sum-
marized in Table 1.

Table 1: Symbol Definitions

Symbol Definition

s current MDP state
s′ successor MDP state

a ∈ As action available in state s
R(s, a, s′) MDP reward

γ MDP discount rate
φ(s, a) basis function values for state ac-

tion pair (s, a)
r weights on the basis functions

that minimize the mean Bellman
residual

µ, Σ mean vector and covariance ma-
trix for r ∼ N(µ,Σ)

Q(s, a) Q-value for (s, a)
σ2(s, a) variance of Q(s, a)
ν(s, a) Q-Learning sample update value

for (s, a)
ε(s, a) variance of observation ν(s, a),

also called the sensor noise.

Kalman Filter Q-Learning, as discussed here, is im-
plemented using the covariance form of the Kalman
filter. In out experiments the covariance form was less
prone to numerical stability issues than the precision
matrix form. We also believe that dealing with co-
variances makes the model easier to understand and
to assess priors, sensor noise, and other model param-
eters. While the update equations for the KFQL are
standard, the notation is unique to this application.
We describe the exact calculations involved in updat-
ing the KFQL below.

2.1 THE KALMAN OBSERVATION
UPDATE

The generic Kalman filter observation update equa-
tions can be computed for any r ∼ N(µ,Σ) with
predicted measurement with mean µTφ and variance
φTΣφ. The observed measurement ν has variance ε.
First we compute the Kalman gain n-vector,

G = Σφ(φTΣφ+ ε)−1. (1)

The Kalman gain determines the relative impact the
update makes on the elements of µ and Σ.

µ← µ+G(ν − µTφ) (2)

Σ← (I −GφT )Σ (3)

The posterior values for µ and Σ can then be used
as prior values in the next update. For in-depth de-
scriptions of the Kalman Filter see these excellent
references: (Koller and Friedman, 2009, Russell and
Norvig, 2003, Welch and Bishop, 2001).

2.1.1 MDP Updates

r

µ,Σ

Q(s, a) s′

Q(s′, b)

Q(s′, c)

φ(s, a)

φ(s′, b)

φ(s′, c)

state transition
(s, a)→ s′

b

c

sample backup

Q(s, a) = rTφ(s, a) ≈ ν(s, a)
ν(s, a) = R(s, a, s′) + γ

[
max

(
µTφ (s′, b) , ..., µTφ (s′, c)

)]

Figure 1: The Sample Update

To update our distribution for r, we estimate the value
of a sampled successor state s′ and use that value in
our observation update. Because this method is simi-
lar to the Bellman residual minimizing approximation
used in Q-Learning, we will refer to it as the sample
update. It is shown in Figure 1. To arrive at the up-
date formulation, we start with the Bellman equation:

Q(s, a) ≈ R(s, a, s′) + γ max
a′∈As′

Q (s′, a′) (4)

and then we apply the Q-value approximation
Q(s, a) = rTφ(s, a), to get:

Q(s, a) = rTφ(s, a) (5)

≈ R(s, a, s′) + γE
[

max
a′∈As′

rTφ(s′, a′)
]
(6)

≈ R(s, a, s′) + γ max
a′∈As′

µTφ(s′, a′) (7)

= ν(s, a) (8)

There are several approximations implicit in this up-
date in addition to the Bellman equation. First, we
assume that the Q-value Q(s, a) can be represented by
rTφ(s, a). Second, we interchange the expectation and
maximization operations to simplify the computation.
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Finally, we do not account for any correlation between
the measurement prediction and the sample update,
both of which are noisy functions of the weights on
the basis functions r. Instead, we estimate the predic-
tion error σ2(s, a) = φ(s, a)TΣφ(s, a) separately from
the sensor noise ε(s, a) as explained below.

2.1.2 Computing the Sensor Noise

The sensor noise, ε(s, a), plays a role similar to that
of the learning rate in TD Learning. The larger the
sensor noise, the smaller the effect of each update
on µ. The sensor noise has three sources of uncer-
tainty. First, the sensor suffers from inaccuracies in-
herent in the model because it is unlikely that the Q-
values for all state action pairs can be fit exactly for
any value of r. Because this source of noise is due
to the model used, we will refer to it as model bias.
Second, there is sensor noise due to the random na-
ture of the state transition because the value of the
sample update depends on which new state s′ is sam-
pled. We will refer to this source of noise as sampling
noise. Both model bias and sampling noise are typi-
cally modeled as constant throughout the process, and
ε0 should be chosen to capture that combination. Fi-
nally, there is sensor noise from the assessments used
to compute ν because our assessment of Q(s′, a′) has
variance σ2(s′, a′) = φ(s′, a′)TΣφ(s′, a′). We will re-
fer to this variance as assessment noise. Assessment
noise will generally decrease as the algorithm makes
more observations. All together, the sample update is
treated as a noisy observation of Q(s, a) with sensor
noise ε(s, a).

We have tried several heuristic methods for setting the
sensor noise and found them effective. These include
using the variance of the highest valued alternative
(Equation 9), using the average of the variances of each
alternative (Equation 10), using the largest variance
(Equation 11), and using a Boltzmann-weighted aver-
age of the variances (Equation 12). Although each of
these techniques appears to have similar performance,
as is shown in the next section, the average and pol-
icy methods performed somewhat better in our exper-
iments.

The policy method:

ε(s, a) = ε0 + γ2σ2(s′, arg max
a′∈As′

µTφ(s′, a′)) (9)

The average method:

ε(s, a) = ε0 + γ2
∑
a′∈As′ σ

2(s′, a′)

|As′ |
(10)

The max method:

ε(s, a) = ε0 + γ2 max
a′∈As′

σ2(s′, a′) (11)

The Boltzmann method:

ε(s, a) = ε0 + γ2
∑
a′∈As′ σ

2(s′, a′)e
µT φ(s′,a′)

τ

∑
a′∈As′ e

µT φ(s′,a′)
τ

(12)

Regardless which heuristic method is used, the action
selection can be made independently. For example, in
our experiments in the next section we use Boltzmann
action selection.

Kalman Filter Q-Learning belongs to the family of
least squares value models, and therefore each update
has complexity O(n2). This has traditionally given
projected TD Learning methods an advantage over
least squares methods. Although projected TD Learn-
ing is generally less efficient per iteration than least
squares methods, each update only has complexity
O(n). This means that in practice, multiple updates
to the projected TD Learning model can be made in
the same time as a single update to the Kalman filter
model.

2.2 APPROXIMATE KALMAN FILTER
Q-LEARNING

We propose Approximate Kalman Filter Q-
Learning (AKFQL) which updates the value model
with only O(n) complexity, the same complexity up-
date as projected TD Learning. The only change in
AKFQL is to simply ignore the off-diagonal elements
in the covariance matrix. Only the variances on the
diagonal of the covariance matrix are computed and
stored. This approximation has linear update com-
plexity, rather than quadratic, in the number of basis
functions. Although KFQL outperforms AKFQL early
on (on a per iteration basis), somewhat surprisingly,
AKFQL overtakes it in the long run. We do not fully
understand the mechanism of this improvement, but
suspect that KFQL is overfitting.

Approximate Kalman Filter Q-Learning’s calculations
are simplified versions of KFQL’s calculations which
involve only the diagonal elements of the covariance
matrix Σ. The Kalman gain can be computed by

d =
∑

i

φi
2Σii + ε (13)

Gi =
Σiiφi
d

. (14)
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The Kalman gain determines the relative impact the
update makes on the elements of µ and Σ.

µi ← µi +Gi(ν − µTφ) (15)

Σii ← (1−Giφi)Σii (16)

The posterior values for µ and the diagonal of Σ
can then be used as prior values in the next update.
Finally, to compute the sample noise ε(s, a) we use
σ2(s, a) =

∑
i φ

2
i (s, a)Σii.

2.3 THE KFQL/AKFQL ALGORITHM

1 µ,Σ← prior distribution over r
2 s← initial state
3 while policy generation in progress do
4 choose action a ∈ As
5 observe transition s to s′

6 update µ and Σ using ν(s, a) and ε(s, a)
7 s← s′

8 if isTerminal(s) then
9 s← initial state

Algorithm 1 : [Approximate] Kalman Filter
Q-Learning

In Kalman Filter Q-Learning (KFQL) and Approxi-
mate Kalman Filter Q-Learning (AKFQL) we begin
with our prior beliefs about the basis function weights
r and we update them on each state transition, as
shown in Algorithm 1.

3 EXPERIMENTAL RESULTS

Because our primary goal is policy generation rather
than on-line performance, our techniques are not
meant to balance exploration with exploitation. In-
stead of testing them on-line, we ran the algorithms
off-line, periodically copied the current policy, and
tested that policy. This resulted in a plot of the av-
erage control performance of the current policy as a
function of the number of states visited by the algo-
rithm. In each of our experiments, we ran each test
32 − 50 times, and plotted the average of the results.
At each measurement point of each test run, we aver-
aged over several trials of the current policy.

In our results, we define a state as being visited when
the MDP entered that state while being controlled by
the algorithm. In the algorithms presented within this
paper, each state visited also corresponds to one it-
eration of the algorithm. The purpose of these mea-
surements is to show how the quality of the generated
policy varies as the algorithm is given more time to

execute. Thus, the efficiency of various algorithms can
be compared across a range of running times.

3.1 CART-POLE

The Cart-Pole process is a well known problem in
the MDP and control system literature (Anderson,
1986, Barto et al., 1983, Michie and Chambers, 1968,
Schmidhuber, 1990, Si and Wang, 2001). The Cart-
Pole process, is an instance of the inverted pendu-
lum problem. In the Cart-Pole problem, the controller
attempts to keep a long pole balanced atop a cart. At
each time step, the controller applies a lateral force, F ,
to the cart. The pole responds according to a system
of differential equations accounting for the mass of the
cart and pole, the acceleration of gravity, the friction
at the joint between the cart and pole, the friction
between the cart and the track it moves on, and more.

Figure 2: The Cart-Pole System

In our experiments, we used the corrected dynamics
derived and described by Florian in (Florian, 2007).

In our experiments, we used a control interval of .1
seconds, and the values listed in table 2. At each con-
trol interval, the controller chooses a force to apply
to the cart in {−5N, 0, 5N}. Then, this force and
an additional force which is uniformly distributed in
[−2N, 2N ] is also applied to the cart. The controller
receives a reward of 1 at each time step except when
a terminal state is reached. The problem is undis-
counted with γ = 1. Thus, the number of simulation
steps before the pole falls over is equal to the total
reward received.

3.1.1 Basis Functions

For the Cart-Pole process, we used a simple bilinear
interpolating kernel. For each action, a grid of points
is defined in the state space (θ, ω). Each point corre-
sponds to a basis function. Thus, every state-action
pair corresponds to a point within a grid box with a
basis function point at each of the four corners. All
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Table 2: Variable definitions for the Cart-Pole
process

VARIABLE DEFINITION

mc = 8.0kg Mass of the cart
mp = 2.0kg Mass of the pole
l = .5m Length of the pole
g = 9.81m/s2 Acceleration of gravity
µc = .001 Coefficient of friction between

the cart and the track
µp = .002 Coefficient of friction between

the pole and the cart
θ Angle of the pole from verti-

cal (radians)

θ̇ = ω Angular velocity of the pole
(rad/s)

θ̈ Angular acceleration of the
pole (rad/s2)

F Force applied to the cart by
the controller (Newtons)

basis function values for a particular state are zero ex-
cept for these four functions. The value of each of the
non-zero basis functions is defined by:

φ̃i =

(
1−

∣∣∣∣
θ − θφi
sθ

∣∣∣∣
)(

1−
∣∣∣∣
ω − ωφi
sω

∣∣∣∣
)

(17)

φi =
φ̃i∑
i φ̃i

(18)

where sθ = π
2 and sω = 1

4 , and the basis func-
tion points are defined for each combination of θφi ∈
{−π,−π2 , 0, π2 , π} and ωφi ∈ {− 1

2 ,− 1
4 , 0,

1
2 ,

1
4}. This

set of basis functions yields 5× 5 = 25 basis functions
for each of the three possible actions, for a total of 75
basis functions.

Each test on Cart Pole consisted of averaging over 50
separate runs of the generation algorithm, evaluating
each run at each test point once. Evaluation runs
were terminated after 72000 timesteps, corresponding
to two hours of simulated balancing time. Therefore,
the best possible performance is 72000.

For projected TD-Learning, a learning rate
of .5 1e6

1e6+t was used. This learning rate
was determined by testing every combination
of s ∈ {.001, .005, .01, .05, .1, .5, 1} and c ∈
{1, 10, 100, 1000, 10000, 100000, 1000000, 10000000}
for the learning rate, αn = s c

c+n . For KFQL and
AKFQL, a sensor variance of σ = .1, a prior variance
of Σii = 10000.

3.2 CASHIER’S NIGHTMARE

The Cashier’s Nightmare, also called Klimov’s
problem is an extension of the multi-armed bandit
problem into a queueing problem with a particular
structure. In the Cashier’s Nightmare, there are d
queues and k jobs. At each time step, each queue,
i, incurs a cost proportional to it’s length, gixi. Thus,
the total immediate reward at each time step is −gTxt.
Further, at each time step the controller chooses a
queue to service. When a queue is serviced, its length
is reduced by one, and the job then joins a new queue,
j, with probabilities, pij , based on the queue serviced.
Consequently, the state space, x, is defined by the
lengths of each queue with xi equaling the length of
queue i in state x.

The Cashier’s Nightmare has a state space of
〈
d
k

〉
=

(
d+k−1
k

)
states: one for each possible distribution of

the k jobs in the d queues. The instance of the
Cashier’s Nightmare that we used has d = 100 queues,
and k = 200 jobs, yielding a state space of

〈
100
200

〉
≈

1.39×1081 states. This also means that each timestep
presents 100 possible actions and each state transition,
given an action, presents 100 possible state transitions.
In this instance, we set gi = i

d with i ∈ {1, 2, ..., d} and
randomly and uniformly selected probability distribu-
tions for pij .

It is worth noting that although we use this problem
as a benchmark, the optimal controller can be derived
in closed form (Buyukkoc et al., 1983). However, this
is a challenging problem with a large state space, and
therefore presents a good benchmark for approximate
dynamic programming techniques.

3.2.1 Basis Functions

The basis functions that we use on Cashier’s Night-
mare are identical to those used by Choi and Van Roy
in (Choi and Van Roy, 2006). One basis function is
defined for each queue, and it’s value is based on the
length of the queue and the state transition probabil-
ities:

φi(x, a) = xi + (1− δxi,0)(pa,i − δa,i) (19)

This way, at least the short term effect of each action
is reflected in the basis functions.

For projected TD-Learning, a learning rate of .1 1e3
1e3+t

was used. This learning rate was determined by test-
ing every combination of s ∈ {.001, .01, .1, 1} and
c ∈ {1, 10, 100, 1000, 10000} for the learning rate, αn =
s c
c+n . For KFQL and AKFQL, a sensor variance of
σ = 1, a prior variance of Σii = 20.
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3.3 CAR-HILL

The Car-Hill control problem, also called the
Mountain-Car problem is a well-known continuous
state space control problem in which the controller at-
tempts to move an underpowered car to the top of
a mountain by increasing the car’s energy over time.
There are several variations of the dynamics of the
Car-Hill problem; the variation we use here is the same
as that found in (Ernst et al., 2005).

A positive reward was given when the car reached the
summit of the hill with a low speed, and a negative
reward was given when it ventured too far from the
summit, or reached too high of a speed:

r(p, v) =




−1 if p < −1 or |v| > 3
1 if p > 1 and |v| ≤ 3
0 otherwise

(20)

The implementation we used approximates these
differential equations using Euler’s method with a
timestep of .001s. The control interval used was .1s,
and the controller’s possible actions were to apply
forces of either +4N or −4N . A decay rate of γ = .999
was used.

Each test on Car-Hill consisted of averaging over 32
separate runs of the generation algorithm, evaluating
each run at each test point once. Evaluation runs were
terminated after 1000 timesteps, ignoring the small re-
maining discounted reward.

3.3.1 Basis Functions

We used bilinearly interpolated basis functions with
an 8x8 grid spread evenly over the p ∈ [−1, 1] and v ∈
[−3, 3] state space for each action. This configuration
yields 8x8x2 = 128 basis functions. The prior we used
was set to provide higher prior estimates for states
with positions closer to the summit:

µ0(p, v) = max

{
0, 1− 2(1− p)

3

}
(21)

For projected TD-Learning, a learning rate of .1 1e3
1e3+t

was used. This learning rate was determined by test-
ing every combination of s ∈ {.001, .01, .1, 1} and
c ∈ {1, 10, 100, 1000, 10000} for the learning rate, αn =
s c
c+n . For KFQL and AKFQL, a sensor variance of
σ = .5, a prior variance of Σii = .1.

3.4 RESULTS

Kalman Filter Q-Learning has mixed performance rel-
ative to a well-tuned projected TD Learning imple-
mentation. For the Cart-Pole process (Figure 3),

KFQL provides between 100 and 5000 times the ef-
ficiency of PTD. However, on the Cashier’s Nightmare
process (Figure 4) and the Car Hill process (Figure
5), KFQL was plagued by numerical instability, ap-
parently because KFQL underestimates the variance
leading to slow policy changes. Increasing the con-
stant sensor noise, ε0, can reduce this problem some-
what, but may not eliminate the issue.
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Figure 3: PTD, KFQL, and AKFQL on Cart-Pole
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Figure 4: PTD, KFQL, and AKFQL on Cashier’s
Nightmare
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Figure 5: PTD, KFQL, and AKFQL on Car-Hill
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Figure 6: Comparison of sensor noise models when
using KFQL on Cart-Pole

Approximate Kalman Filter Q-Learning, on the other
hand, provides a very large benefit over PTD on all
of the tested applications (Figures 3, 4, and 5). In-
terestingly, in two of the experiments, AKFQL also
outperforms KFQL by a large margin, even though
the effort per iteration is much less for AKFQL. This
is likely due to the fact that AKFQL ignores any de-
pendencies among basis functions. Instead of solving
the full least-squares problem (that a Kalman filter

solves), AKFQL is performing an update somewhere
between the least-squares problem and the gradient-
descent update of TD-Learning. This middle-ground
provides the benefits of tracking the variances on each
basis function’s weight, and the freedom from the de-
pendencies and numerical stability issues inherent in
KFQL. Additionally, AKFQL’s update complexity is
linear, just as is PTD’s, so it truly outperforms pro-
jected TD-Learning in our experiments.
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Figure 7: Comparison of sensor noise models when
using AKFQL on Cart-Pole

The choice of signal noise heuristic has a small effect
for the Cart-Pole process under either KFQL (Fig-
ure 6) or AKFQL (Figure 7). The average and pol-
icy methods appear to work better than the max and
Boltzmann methods. The other figures in this section
were generated using the max method.

4 RELATED WORK

Kalman Filter Q-Learning uses a projected value
model, where a set of basis functions φ(s, a) project
the MDP state action space onto the basis space. In
these methods, basis function weights r are used to
estimate Q-values, Q(s, a) ≈ rTφ, in order to develop
high performance policies.

4.1 PROJECTED TD LEARNING

Projected TD Learning (Roy, 1998, Sutton, 1988,
Tsitsiklis and Roy, 1996) is a popular projection-based
method for approximate dynamic programming. The
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version of TD Learning that we consider here is the
off-policy Q-learning variant with λ = 0. Thus, our
objective is to find an r such that Q∗(s, a) ≈ rTφ(s, a)
because we are primarily concerned with finding effi-
cient off-line methods for approximate dynamic pro-
gramming.

The projected TD Learning update equation is:

rt+1 = rt + αtφ(st, at)×[
(FΦrt)(st, at) + wt+1 − (Φrt)(st, at)

] (22)

where F is a weighting matrix and Φ is a matrix of ba-
sis function values for multiple states. We use stochas-
tic samples to approximate (FΦrt)(xt). The standard
Q-Learning variant that we consider here sets:

(FΦrt)(st, at) + wt+1 =
R(st, at, st+1) + γ max

a∈Ast+1

rTφ(st+1, a) (23)

where the state transition (st, at)→ (st+1) is sampled
according to the state transition probabilities, P (st →
st+1|st, at), of the MDP. Substituting Equation 23 into
Equation 22, we arrive at the update equation for this
variant of projected TD Learning:

rt+1 = rt + αtφ(st, at)×[(
R(st, at, st+1) + γ max

a∈Ast+1

rTφ(st+1, a)
)

−(Φrt)(st, at)
] (24)

The convergence properties of this and other versions
of TD learning have been studied in detail (Dayan,
1992, Forster and Warmuth, 2003, Pineda, 1997, Roy,
1998, Schapire and Warmuth, 1996, Sutton, 1988, Tsit-
siklis and Roy, 1996). Unlike our Kalman filter meth-
ods, PTD has no sense of how well it knows a par-
ticular basis functions weight, and adjusts the weights
on all basis functions at the global learning rate. As
with the tabular value model version of TD learning,
the choice of learning rates may greatly impact the
performance of the algorithm.

4.2 LEAST SQUARES POLICY
ITERATION

Least squares policy iteration (LSPI) (Lagoudakis
et al., 2003) is an approximate policy iteration method
which at each iteration samples from the process using
the current policy, and then solves the least-squares
problem:

minimize ||Âtw − b̂t||µ (25)

where Â and b̂ are:

Â = 1
L

∑
i=1..L

φ(si, ai)
[
φ(si, ai)− γφ(s′i, π(s′i))

]T

≈ ΦT∆µ(Φ− γPΠΦ)
(26)

b̂t+1 = b̂t + φ(st, at)rt
≈ ΦT∆µR

(27)

where P , R, Π, and Φ are matrices of probabilities, re-
wards, policies, and basis function values, respectively.

Solving this least squares problem is equivalent to us-
ing KFQL with a fixed-point update method, an infi-
nite prior variance and infinite dynamic noise. LSPI is
effective for solving many MDPs, but it can be prone
to policy oscillations. This is due to two factors. First,
the policy biases Â and b̂, can result in a substantially
different policy at the next iteration, which could lead
to a ping-ponging effect between two or more policies.
Second, information about Â and b̂ is discarded be-
tween iterations, providing no dampening to the oscil-
lations and jitter caused by simulation noise and the
sampling bias induced by the policy.

4.3 THE FIXED POINT KALMAN FILTER

The Kalman filter has also been adapted for use as a
value model in approximate dynamic programming by
Choi and Van Roy (Choi and Van Roy, 2006). Fixed
point Kalman filter models the same multivariate
normal weights r as KFQL but parametrizes them with
means rt and precision matrix Ht

−1 such that:

rt+1 = rt + 1
tHtφ(st, at)×[

(FΦrt)(st, at) + wt+1 − (Φrt)(st, at)
] (28)

where (FΦrt)(st, at)+wt+1 is the same as in Equation
23, yielding the update rule:

rt+1 = rt + 1
tHtφ(st, at)×[(

R(st, at, st+1) + γ max
a∈Ast+1

rTφ(st+1, a)
)
−

(Φrt)(st, at)
]

(29)

where Ht is defined as:
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Ht =
[1

t

t∑

i=1

φ(si, ai)φ
T (si, ai)

]−1
(30)

Non-singularity of Ht can be dealt with using any
known method, although using the psudo-inverse is
standard. The choice of an initial r0, H0 and the in-
version method for H are similar to choosing the prior
means and variance over r in the KFQL. The fixed
point Kalman filter represents the covariance of r by
a precision matrix rather than the covariance matrix
used by KFQL. This difference is significant because
KFQL performs no matrix inversion and avoids many
non-singularity and numerical stability issues.

4.4 APPROXIMATE KALMAN FILTERS

Many methods for approximating and adapting the
Kalman filter have been developed for other appli-
cations (Chen, 1993). Many of these methods can
be used in this application as well. AKFQL is just
one simple approximation technique that works well
and achieves O(n) instead of O(n2) complexity up-
dates. Other possible approximation techniques in-
clude fixed-rank approximation of Σ and particle filter-
ing (Doucet et al., 2001, Gordon et al., 1993, Kitagawa
and Gersch, 1996, Rubin, 1987).

5 CONCLUSIONS

In this paper we have presented two new methods
for policy generation in MDPs with continuous state
spaces. The Approximate Kalman Filter Q-Learning
algorithm provides significant improvement on sev-
eral benchmark problems over existing methods, such
as projected TD-Learning, as well as our other new
method, Kalman Filter Q-Learning. Continuous state
MDPs are challenging problems that arise in multiple
areas of artificial intelligence, and we believe that AK-
FQL provides a significant improvement over the state
of the art. We believe these same benefits apply to
other problems where basis functions are useful, such
as MDPs with large discrete sample spaces and mixed
continuous and discrete state spaces.

There are a variety of ways this work could be ex-
tended. The Kalman filter allows for linear dynamics
in the distribution of basis function weights r during
transitions from one MDP state action pair to another
or from one policy to another. Another possibility is
to incorporate more of a fixed point approach, recog-
nizing the dependence between the prediction variance
σ2(s, a) and the signal noise ε(s, a) conditioned on r.
Still another possibility is to use an approximation, ig-
noring off-diagonal elements like AKFQL, in the tradi-
tional fixed point approach. Finally, we could apply a

similar Kalman filter model to perform policy iteration
directly rather than by Q-Learning.
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Abstract

We tackle the problem of online reward max-
imisation over a large finite set of actions de-
scribed by their contexts. We focus on the
case when the number of actions is too big
to sample all of them even once. However we
assume that we have access to the similari-
ties between actions’ contexts and that the
expected reward is an arbitrary linear func-
tion of the contexts’ images in the related re-
producing kernel Hilbert space (RKHS). We
propose KernelUCB, a kernelised UCB algo-
rithm, and give a cumulative regret bound
through a frequentist analysis. For contex-
tual bandits, the related algorithm GP-UCB
turns out to be a special case of our algo-
rithm, and our finite-time analysis improves
the regret bound of GP-UCB for the agnos-
tic case, both in the terms of the kernel-
dependent quantity and the RKHS norm of
the reward function. Moreover, for the linear
kernel, our regret bound matches the lower
bound for contextual linear bandits.

1 Introduction

There are many situations in which an environment
repeatedly provides an agent with a very large num-
ber of actions together with some contextual informa-
tion (Cesa-Bianchi & Lugosi, 2006). These actions
yield rewards when chosen and the agent wants to
continually choose actions that yield high expected re-
ward while not having enough time to explore them
all. Thus it is natural to learn a relationship between
the context provided for each action and the expected
reward it produces. Kernel methods (Shawe-Taylor &
Cristianini, 2004) provide a way to extract from obser-
vations possibly non-linear relationships between the
contexts and the rewards while only using similarity

information between contexts. In many applications
similarity information is cheaply computable. In some
situations the contexts are not even available and in-
stead only similarities are given (Chen, Garcia, Gupta,
Rahimi, & Cazzanti, 2009).

A typical example (Li, Chu, Langford, & Schapire,
2010), is the case of online advertisement in which one
needs to continually show the most relevant ads to
users viewing a website; since there is a simple binary
reward of 1 for a click on the ad shown and 0 oth-
erwise it is always costly to show ads that have only
a small chance of being clicked on. Another exam-
ple is a recommender system for relevant content from
a large number of available news feeds (Steinberger,
Pouliquen, & Van der Goot, 2009); here it is assumed
that we can assess the relevance of the content of a
feed based on information such as the anchor text of
the feed link without having to get and process the
actual feed content, which is a costly operation.

Our modelling assumption is that the expected reward
obtained from choosing an action is a function of the
features associated with that action. In the adver-
tisement example the features are built from webpage
content and user attributes. In the news feeds, the fea-
tures come from easily retrievable information such as
URLs, feed titles, or anchor text. We refer to the fea-
tures as contexts and to the resulting problems of max-
imising cumulative reward as contextual bandit prob-
lems. One aspect that makes this setting different from
related settings is the possibly changing decision set.

Previous approaches (Li et al., 2010; Chu, Li, Reyzin,
& Schapire, 2011; Auer, 2002) to contextual bandit
problems have often assumed that the functional re-
lationship between the features and the expected re-
wards is linear. However the availability of similarity
information gives us the opportunity to search for a lin-
ear relationship in a reproducing kernel Hilbert space
(RKHS) defined by these similarities to discover a non-
linear relationship between the context and the re-
ward. Recently, Srinivas, Krause, Kakade, and Seeger
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(2010) proposed the GP-UCB algorithm that opti-
mises a function θ∗ sampled from a Gaussian Process
(GP) prior. In this paper we take an agnostic approach
(Table 1) and provide the KernelUCB algorithm which
comes directly from kernelising contextual linear ban-
dits. KernelUCB is a kernel-based upper confidence
bound algorithm which, given the similarity between
two data points, uses the dualisation of regularised lin-
ear regression in the RKHS to find upper confidence
bounds on the expected rewards of each action, and
then chooses an action with the highest upper confi-
dence bound. When the kernel is just the dot product
between feature vectors KernelUCB is identical to Lin-
UCB (Li et al., 2010), i.e., KernelUCB is a non-linear
extension of LinUCB.

Our main contribution is a theoretical analysis of
this approach. While kernelisation of linear bandits
is straighforward, the analysis has to deal with an
RKHS with potentially infinite dimension. We pro-
vide a data-dependent performance bound based on
a notion of the effective dimension d̃. This quan-
tity roughly measures the number of directions in the
RKHS along which the data mostly lies. We are able
to provide a cumulative regret bound that scales as

Õ(
√
T d̃), where T is the time and Õ hides log fac-

tors. When the kernel is just the dot product between
contexts, d̃ is upper bounded by the dimension of the
contexts, and we recover the regret bounds for Lin-
UCB for contextual linear bandits as a special case.
The GP-UCB algorithm is also a special case of Ker-
nelUCB when the regulariser is set to the model noise,
and we make (Section 4.1) a clear comparison with the
agnostic analysis of GP-UCB (Srinivas et al., 2010),
i.e. when their reward function θ∗ is not sampled from
a GP. For this agnostic case, Srinivas et al. (2010) ob-
tain a cumulative regret bound Õ(I(yT ; θ∗)

√
T ) where

I(yT ; θ∗) is the information gain between θ∗ and the
observed samples yT . We show that I(yT ; θ∗) is Ω(d̃)

and since our bound only scales with
√
d̃, our analysis

matches the lowerbound for the linear case, unlike the
agnostic analysis of GP-UCB. Furthermore, due to the
link between d̃ and I(yT ; θ∗) we can provide the data-
independent worst case upperbounds for the popular
kernels (such as RBF) by plugging the upperbounds
I(yT ; θ∗) derived by Srinivas et al. (2010) into our im-
proved analysis. Our analysis also gives us a guideline
on how to set the regularisation parameter.

Section 2 presents the basic linear contextual ban-
dit model and related work. In Section 3 we derive
the KernelUCB algorithm by directly kernelising con-
textual linear bandits. In Section 4 we analyse Ker-
nelUCB, provide an upper bound on the cumulative
regret and describe the tradeoff between the regular-
ization and the RHKS norm of the reward function.

Bayesian Frequentist

regression GP-Regression Kernel Ridge
Regression

bandits GP-UCB KernelUCB
this paper

Table 1: Bayesian and frequentist approaches to ker-
nelized regression and contextual bandits

2 Background

2.1 Basic Model

We describe the basic settings and goals of linear con-
textual bandit problems. At each time t, for each ac-
tion a ∈ A := {1, . . . , N}, there is an associated con-
text vector xa,t ∈ Rd. If action a is chosen at time t
we have at = a and receive a reward ra,t drawn from
a distribution νa,xa,t . An algorithm π is a method for
choosing an action at time t given the history i.e., the
previously observed contexts, actions and rewards, and
the current context:

Ht−1 :=
(
{xa,j}a∈A, aj , raj ,j

)
j<t
∪ {xa,t}a∈A,

π : Ht−1 7→ πt ∈ P(A),

where P(A) denotes the set of probability distributions
over A. For simplicity, we define xt := xat,t and rt :=
rat,t to be the context and the reward at the time t.

In the case of classical bandits, the reward distribu-
tions νa,xa,t are independent of the context vectors,
xa,t. In this case we define the optimal action as
a∗ := arg maxa∈A{E(ra)} and define the regret of an
algorithm at time T to be:

R(T ) :=

T∑

t=1

ra∗,t − rt.

For linear contextual bandits we assume a linear rela-
tionship between contexts and mean rewards,

E[ra,t | xa,t] = xT

a,tθ
∗,

for some fixed but unknown vector θ∗ ∈ Rd. Note, that
θ∗ is the same for all actions and thus this problem
is also called a fixed design setting (Bubeck & Cesa-
Bianchi, 2012). In some (noncontextual) linear bandit
settings (Dani, Hayes, & Kakade, 2008), the contexts
do not change and xa,t = xa.

In this paper we consider the case when the contexts,
and subsequently the optimal action, can change over
time. Thus we have a∗t := arg maxa∈A{E(ra,t | xa,t)}
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and the (contextual) regret of an algorithm at time T
becomes:

R(T ) :=

T∑

t=1

ra∗t ,t − rt. (1)

The aim in both of these situations is to find an algo-
rithm which minimises the regret at time T .

2.2 UCB Algorithms

Upper confidence bound (UCB) algorithms (Lai &
Robbins, 1985) provide a simple but efficient heuristic
approach to bandit problems. The central idea is to
maintain for each action, a, an estimate of the mean re-
ward µ̂a,t and a confidence interval around that mean
with width σ̂a,t. At each time t the algorithm then
chooses the action with the highest upper confidence
bound µ̂at + σ̂a,t; thus an action a is selected if ei-
ther it has a high estimated mean, or if there is much
uncertainty about the action so that the width σ̂a,t is
large.

For classical bandits (with no contextual information)
it is possible to obtain finite time analyses of such algo-
rithms along the following lines: Construct the widths
σ̂a,t so that they are large when a has not been played
often but small when it has been played a large num-
ber of times already, for example by relating them
to the standard deviations of the estimates µ̂a,t. As-
sume that a suboptimal action, a, has been played a
large number of times. Then through tools such as
the Azuma-Hoeffding inequality one can expect to ob-
tain high probability bounds on the events that µ̂a,t
is close to µa. From the construction of the widths it
follows that µ̂a,t + σ̂a,t will also be close to µa. In this
way as soon as a sub-optimal action a has been played
enough times so that µ̂a,t + σ̂a,t < µ̂a∗ , the proba-
bility this action will be played again becomes very
small. Such analyses typically conclude that UCB al-
gorithms are close to optimal, and they motivate the
choice of widths relating to the standard deviations of
the estimates µ̂a,t.

2.3 UCBs for Linear Contextual Bandits

Since we assume that there is a functional relationship
between the expected rewards of an action and the fea-
ture vectors observed, constructing the estimates µ̂a,t
and the widths σ̂a,t can be approached by regression.
In particular, when we assume a linear model we can
use regularised least squares regression to estimate the
mean rewards:

µ̂a,t := xT

a,tθ̂t

where θ̂t := C−1
t XT

t yt, yt := {ra1,1, . . . , rat,t}T, Xt :=
{xa1,1, . . . , xat,t}T, and Ct := XT

tXt + γId for some

γ > 0. Appropriate widths for the confidence intervals
can be described in terms of the Mahalanobis distance
of xa,t from the centre of mass of Xt:

σ̂a,t =
√
xT
a,tC

−1
t xa,t

These widths relate to variance in the data: For in-
stance in the case of standard normal noise (i.e. when
the rewards satisfy ra,t = xTa,tθ

∗ + εa,t, where all
εa,t ∼ N (0, 1)), σ̂2

a,t is exactly the variance of µ̂a,t.
Even when no assumption is made on the noise, this
Mahalanobis distance has the property of being small
when xa,t is close to the center of mass of data Xt, and
large otherwise. Consequently a generic UCB type al-
gorithm based on the estimators µ̂a,t and σ̂2

a,t chooses
an action at at time t such that:

at = arg max
a∈A

(
xT

a,tC
−1
t XT

t yt + η
√
xT
a,tC

−1
t xa,t

)
,

where η = η(t) is some (possibly time dependent) de-
terministic parameter of the algorithm which we call
the exploration parameter.

Based on these ideas, Li et al. (2010) propose LinUCB
which treats η(t) = η as a constant that needs to be
optimised. While this algorithm is simple to under-
stand and implement in practice, no optimal theoreti-
cal regret analysis exists in the literature for LinUCB.
Instead Chu et al. (Chu et al., 2011) give a theoreti-
cal analysis of a related algorithm, SupLinUCB, and
achieve with probability 1− δ a regret bound of:

O

(√
Td ln3(NT ln(T )/δ)

)
.

2.4 Related Work

The most related work to our setting is LinUCB (Li
et al., 2010) and SupLinUCB (Chu et al., 2011), which
were inspired by SupLinRel (Auer, 2002), an early al-
gorithm for linear contextual bandits. Instead of using
regularised linear regression SupLinRel uses eigende-
composition to make a pseudo-inverse of the covari-
ance matrix. A discussion of practical advantages
of SupLinUCB over SupLinRel can be found in (Li
et al., 2010). SupLinRel achieves a regret bound

O((Td ln3/2(2NT ln(T )/δ))1/2).

Interestingly, one can derive an instantiation of Ker-
nelUCB in the Bayesian setting. This is the case of
GP-UCB (Srinivas et al., 2010) a special case of Ker-
nelUCB, which assumes that the reward function is
drawn from a GP prior. The conceptual difference be-
tween the KernelUCB and GP-UCB is similar to the
difference between kernel regression and GP-regression
(Table 1). Nevertheless, Srinivas et al. (2010) also pro-
vide a frequentist analysis of GP-UCB, which we com-
pare to in Section 4.1. Krause and Ong (2011) later
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propose CGP-UCB, an extension of GP-UCB for the
setting when each action has its own intrinsic features,
as well as features associated to its changing environ-
ment. It therefore uses possibly different kernels for
the action and the context spaces.

Slivkins (2009) takes advantage of similarity informa-
tion between contexts, where he builds on previous
work (Kleinberg, Slivkins, & Upfal, 2008; Lu, Pál,
& Pál, 2010) that assume only a metric space struc-
ture on the context and action spaces. The setting
in (Slivkins, 2009) is different from ours: they assume
a Lipschitz property in a similarity space, which is a
weaker condition than in our setting, but as a conse-
quence their bound depends more heavily on the rele-
vant dimensions (the covering dimensions of the con-
text and action spaces appears in the exponent of T
whereas our effective dimension appears as a multi-
plicative factor only).

Another well known related family are the Confidence-
Ball algorithms (Abbasi-Yadkori, Pal, & Szepesvari,
2011; Dani et al., 2008; Rusmevichientong & Tsitsiklis,
2010). These solve the linear bandit problem in which
the action space is the context space and there is a
reward linear in contexts. When we fix the contexts in
our own setting we recover the linear bandit model for
a finite action set and in that sense our setting is more
general. For continuous action space linear bandits the
attainable lower bound for the regret is Ω(d

√
T ) (Dani

et al., 2008), whereas for finite action space linear con-
textual bandits the attainable lower bound on regret
is Ω(

√
dT ) (Chu et al., 2011).

A set of algorithms based on EXP4 (Auer,
Cesa-Bianchi, Freund, & Schapire, 2003) such as
EXP4.P (Beygelzimer, Langford, Li, Reyzin, &
Schapire, 2010) or Policy Elimination (Dudik, Hsu,
Kale, Karampatziakis, Langford, Reyzin, & Zhang,
2011) can deal with the general case of an arbitrary set
of hypotheses together with finite action sets. Their
definition of regret is different from ours since they
compare to the best fixed-parameter solution, whereas
we compare to the best action with respect to the
changing context. For a general discussion of the
advantages of approaches directly taking advantage
of structure in contextual bandit problems over the
EXP4 family we refer to (Chu et al., 2011). Epoch-
Greedy (Langford & Zhang, 2008), which also works
in a setting more general than ours, achieves a better
dependence on the size of the set of hypotheses but
a worse dependence on time T . The VE algorithm
(Beygelzimer et al., 2010) which is based on EXP4.P
has a regret bound that scales as O(

√
Td lnT ) where

d is the VC dimension of the hypothesis class.

Other related work includes (Seldin, Auer, Laviolette,

Shawe-Taylor, & Ortner, 2011) which studies a differ-
ent setting with finite context spaces, showing a re-
gret bound that depends on the mutual information
between contexts and actions, and Gaussian process
bandits (Grünewälder, Audibert, Opper, & Shawe-
Taylor, 2010) and convex bandits (Cesa-Bianchi & Lu-
gosi, 2006) study mostly continuous actions sets.

3 Kernelised UCB

In this section we show how to derive KernelUCB by
directly kernelising the LinUCB algorithm. In con-
trast GP-UCB is motivated from experimental design.
The derivation is straightforward and we provide it
for convenience and to introduce the notation which
is used in the analysis. Our derivation is the combi-
nation of the kernel trick (Shawe-Taylor & Cristianini,
2004) and the kernelised version of the Mahalanobis
(Haasdonk & Pekalska, 2010).

Kernel methods assume that there exists a mapping
φ : Rd → H that maps the data to a (possibly infinite
dimensional) Hilbert space in which a linear relation-
ship can be observed. We call Rd the primal space
and H the associated reproducing kernel Hilbert space
(RKHS). We use matrix notation to denote the inner
product of two elements h, h′ ∈ H, i.e. hTh′ := 〈h, h′〉H
and ‖h‖ =

√
〈h, h〉H to denote the RKHS norm. From

the mapping φ we have the kernel function, defined by:

k(x, x′) := φ(x)Tφ(x′), ∀x, x′ ∈ Rd,

and the kernel matrix of a data set {x1, . . . , xt} ⊂ Rd
given by Kt := {k(xi, xj)}i,j≤t. For our non-linear
contextual bandit model we assume the existence of a
φ for which there exists a θ∗ ∈ H such that:

E(ra,t | xa,t) = φ(xa,t)
Tθ∗.

Taking a∗t := arg maxa∈A{φ(xa,t)
Tθ∗} we can define

the regret as before in (1). Note that when φ ≡ Id, we
recover the linear bandit case.

To obtain the upper confidence bounds we derive pre-
diction and width estimators for the expected rewards.
LinUCB uses estimators built from ridge regression in
the primal. Since we assume that our model is linear
in the RKHS we show how to build estimators from
ridge regression in H. By deriving equivalent dual
forms which involve only entries of the kernel matrix
we avoid working directly in the possibly infinite di-
mensional RKHS.

First we take the prediction estimator to be of the form
µ̂a,t+1 = φ(xa,t+1)Tθt where θt is the minimiser of the
regularised least squares loss function:

L(θ) = γ‖θ‖2 +
t−1∑

i=1

(ri − φ(xi)
Tθ)

2
. (2)
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We derive a representation of this estimator involving
only kernels between context vectors. We denote Φt =
[φ(x1)T, . . . , φ(xt−1)T]

T
. Note that the solution of the

minimisation problem θt := minθ∈H L(θ) satisfies:

(ΦT

tΦt + γI)θt = ΦT

tyt.

Rearranging this equation we obtain:

θt = ΦT

tαt (3)

where αt = γ−1(yt−Φtθt) = γ−1(yt−ΦtΦ
T
tαt), which

implies that αt = (Kt + γI)−1yt. Finally, denoting
kx,t := Φtφ(x) = [k(x, x1), . . . , k(x, xt−1)]

T
we get:

µ̂a,t = kT

xa,t,t(Kt + γI)−1yt. (4)

While the computation of θt using (3) would require
evaluating φ(xi) for every data point xi, the dualised
representation of the prediction (4) allows the compu-
tation of µ̂a,t(x) only from objects in the kernel matrix.

Next we construct the widths of the confidence inter-
vals around the prediction. As for linear bandits we
find appropriate widths in terms of the Mahalanobis
distance of φ(xa,t) from the matrix Φt:

σ̂a,t :=
√
φ(xa,t)T(ΦT

tΦt + γI)−1φ(xa,t). (5)

Once again we motivate this choice of width by not-
ing that it is exactly the variance of the prediction
estimator when the noise in the dualised data is stan-
dard normal. In order to compute these widths we
derive a dualised representation of (5). Our deriva-
tion is similar to the kernelisation of the Mahalanobis
distance for centered data in (Haasdonk & Pekalska,
2010): Since the matrices (ΦT

tΦt+γI) and (ΦtΦ
T
t +γI)

are regularised they are strictly positive definite, and
therefore:

(ΦT

tΦt + γI)ΦT

t = ΦT

t(ΦtΦ
T

t + γI)

ΦT

t(ΦtΦ
T

t + γI)−1 = (ΦT

tΦt + γI)−1ΦT

t .

Now we can extract the Mahalanobis distance from
the last equation

(ΦT

tΦt + γI)φ(x) = (ΦT

tkx,t + γφ(x))

from which we deduce that

φ(x) = ΦT

t(ΦtΦ
T

t + γI)−1kx,t + γ(ΦT

tΦt + γI)−1φ(x)

and express φ(x)Tφ(x) as

kT

x,t(ΦtΦ
T

t + γI)−1kx,t + γφ(x)T(ΦT

tΦt + γI)−1φ(x).

Rearranging we get an expression for the width involv-
ing only inner products:

σ̂a,t := γ−1/2
√
k(xa,t, xa,t)− kT

xa,t,t(Kt + γI)−1kxa,t,t.

Algorithm 1 KernelUCB with online updates

Input and initialisation:
N the number of actions, T the number of pulls,
γ, η regularization and exploration parameters
k(·, ·) kernel function

u0 ← [1, 0, ..., 0]
T

(at start first action is pulled)
y0 ← ∅
Run:
for t = 1 to T do

Choose a← arg maxut−1 and get reward rt−1

Update yt ← [r1, . . . , rt−1]T

if t = 1 then
K−1
t ← 1/kxt,xt + γ

else {online update of the kernel matrix inverse}
b← (kx1 , kx2 , . . . , kxt−1)T

K22 ← (kxa,xa + γ − bTK−1
t−1b)

−1

K11 ← K−1
t−1 +K22K

−1
t−1bb

TK−1
t−1

K12 ← −K22Kt−1b
K21 ← −K22b

TK−1
t−1

K−1
t ← [K11,K12;K21,K22]

end if
for a = 1 to N do

σa,t ←
√
k(xa,t, xa,t)− kT

x,tK
−1
t kx,t

ua,t ←
(
kT
x,tK

−1
t yt + η

γ1/2σa,t

)

end for
end for

As for LinUCB, KernelUCB chooses the action at at
time t which satisfies

at := arg max
a∈A

(kT

xa,t,t(Kt + γIt)
−1yt+

+
η

γ1/2

√
k(xa,t, xa,t)− kT

xa,t,t(Kt + γI)−1kxa,t,t),

where η is a (possibly time dependent) exploration pa-
rameter of the algorithm. Considering at and σ̂a,t we
see that GP-UCB is a special case of KernelUCB where
the regularization constant is set to the model noise.

The selection of an appropriate kernel function is prob-
lem dependent (Shawe-Taylor & Cristianini, 2004).
The linear kernel corresponds to φ ≡ Id and leads
to the dual representation of the LinUCB algorithm
in the primal. A non-linear kernel function creates
a kernelised UCB algorithm for a non-linear bandit.
Typical examples of non-linear kernel functions in-
clude: the radial basis function where k(xi, xj) =
exp (−||xi − xj ||2/2σ2), for σ > 0 and the polyno-
mial kernel k(xi, xj) = (xT

ixj + 1)
p
. The pseudocode

of KernelUCB is displayed in Algorithm 1 and uses the
inversion update of Kt through the properties of the
Schur complement (Zhang, 2005).
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Algorithm 2 SupKernelUCB

Input and initialisation:
T number of arm pulls, S number of sets

Ψ
(s)
1 ← ∅ for all s ∈ [T ]

for t = 1 to T do
s← 1 and Â1 ← [N ]
repeat(

µ̂
(s)
t,a, σ̂

(s)
t,a

)
← BaseKernelUCB with Ψ

(s)
t for

all a ∈ Â(s)

if ησ̂
(s)
t,a ≤ 1/

√
T for all a ∈ Â(s) then

Choose at = arg maxa∈Â(s)

(
µ̂

(s)
t,a + ησ̂

(s)
t,a

)

Keep the sets Ψ
(s′)
t+1 = Ψ

(s′)
t for all s′ ∈ [S]

else
if ησ̂

(s)
t,a ≤ 2−s for all a ∈ Â(s) then

Â(s+1) ← {a ∈ Â(s)|µ̂(s)
t,a + ησ̂

(s)
t,a ≥

maxa′∈Â(s)
µ̂

(s)
t,a′ + ησ̂

(s)
t,a′ − 21−s}

s← s+ 1
else

Choose at ∈ Â(s) such that ησ̂
(s)
t,at > 2−s.

Update the index sets at all levels Ψ
(s′)
t+1 ={

Ψ
(s′)
t ∪ {t} if s = s

Ψ
(s′)
t otherwise.

end if
end if

until an action at is found
end for

4 Analysis

In this section we provide an upper bound on the cu-
mulative regret defined in Section 2 for KernelUCB. As
for LinUCB, the predictors for KernelUCB, µ̂a,t, are
sums of dependent random variables. Consequently,
we are unable to directly apply the Azuma-Hoeffding
inequality to gain control over the error in the pre-
dictors. To get around this problem we use the con-
struction of Auer (2002) and introduce the related al-
gorithm SupKernelUCB, the appropriate modification
of KernelUCB. SupKernelUCB (Algorithm 2) con-

structs special, mutually exclusive subsets {Ψ(s)
t }s of

the elapsed time. On each of these sets it builds pre-

dictors, µ̂
(s)
a,t, and widths, σ̂

(s)
a,t , in the same way that

KernelUCB does, using the BaseKernelUCB (Algo-
rithm 3) subroutine. In the pseudocodes and below,
[n] denotes the set {1, . . . , n}. At the beginning of

the algorithm all the subsets {Ψ(s)
1 }s are initialised to

the empty set, and at each time t ≥ 1 the value t is

included in at most one {Ψ(s)
t+1}s in such a way that

the event {t ∈ Ψ
(s)
t+1} is independent of the rewards

observed at times in Ψ
(s)
t . In this way the Azuma-

Algorithm 3 BaseKernelUCB

Input and initialisation:
Ψt ⊆ {1, 2, . . . , t− 1}
k(·, ·) kernel function, γ regularization parameter

K ← [k (xi, xj)]i,j∈Ψt
+ γI

y ← [rτ ]τ∈Ψt

for a ∈ [N ] do
µ̂t,a ← kT

xat ,t
K−1yt

σ̂t,a ← γ−1/2
√
k(xat , xat)− xT

atK
−1xat

end for

Hoeffding inequality can be applied on each subset

Ψ
(s)
t to get a regret bound.

If we directly applied known regret bounds (Auer,
2002; Chu et al., 2011) for linear contextual bandits
to our setting, we would obtain a bound in terms of
the dimension of the RKHS, which is possibly infinite.
We avoid this problem through a careful considera-
tion of the eigenvalues of the covariance matrix and
the choice of the regularisation constant and give a
bound in terms of a data dependent quantity d̃ which
we call the effective dimension: Let (λi,t)i≥1 denote
the eigenvalues of Cγt = ΦT

tΦt + γI in decreasing order
and define:

d̃ := min{j : jγ lnT ≥ ΛT,j} where ΛT,j :=
∑

i>j

λi,T−γ.

Theorem 1 Assume that ‖φ(xa,t)‖ ≤ 1 and |ra,t| ∈
[0, 1] for all a ∈ A and t ≥ 1, and set η =√

2 ln 2TN/δ. Then with probability 1 − δ, SupKer-
nelUCB satisfies:

R(T ) ≤
[

2 + 2

(
1 +

√
γ

2 ln(2TN(1 + lnT )/δ)

)
‖θ∗‖+

+ 8

√(
12 +

15

γ

)
max

{
ln

(
T

d̃γ
+ 1

)
, lnT

}3×

×
√(

2 ln
2TN(1 + lnT )

δ

)]√
d̃T

Remark 1 We call d̃ the effective dimension because
it gives a proxy for the number of principle directions
over which the projection of the data in the RKHS is
spread. If the data all fall within a subspace of H of
dimension d′, then ΛT,d′ = 0 and d̃ ≤ d′. However

more generally d̃ can be thought of as a measure of
how quickly the eigenvalues of ΦT

tΦt are decreasing.
For example if the eigenvalues are only polynomially
decreasing in i (i.e. λi ≤ Ci−α for some α > 1 and
some constant C > 0) then d̃ ≤ 1 + (C/(γ lnT ))1/α.

Remark 2 When Φ ≡ Id, d̃ ≤ d, the assumption that
‖φ(xa,t)‖ ≤ 1 becomes the assumption that the contexts
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are normalised in the primal, and we recover exactly
the result from (Chu et al., 2011) which matches the
lower bound for this setting.

Remark 3 Theorem 1 suggests that if we know that
‖θ∗‖ ≤ L, for some L, we should set γ to be of the

order of L−1 so that we obtain Õ(
√
Ld̃T ) regret. If

we do not have such knowledge, just setting γ to a
constant (e.g., found by a cross-validation) will incur

Õ(‖θ∗‖
√
d̃T ) regret.

The proof of this theorem follows the scheme of the
proof of Theorem 1 in (Chu et al., 2011). The first
step is to prove a high probability bound on the error

in the predictors µ̂
(s)
a,t, and to do this we use a classi-

cal concentration result, the Azuma-Hoeffding inequal-
ity. Our result here generalises Lemma 1 of Chu et al.
(2011) to 1) linear products in RKHS, 2) regularisa-
tion γ, and 3) no assumption that ‖θ∗‖ ≤ 1. Also the
trade-off between γ and ‖θ∗‖ becomes evident. For
ease of notation, in the below we drop the superscript
(s) whenever it is superfluous.

Lemma 1 Suppose that the conditions of Theorem 1

hold, and that the input index set Ψ
(s)
t for BaseKer-

nelUCB is constructed so that for fixed contexts xaτ ,τ ,

τ ∈ Ψ
(s)
t , the rewards raτ ,τ are independent random

variables. Then with probability at least 1− 2Ne−η
2/2

we have for all a ∈ A:

|µ̂(s)
a,t − φ(xa,t)

Tθ∗| ≤ (η(1 + ‖θ∗‖) + γ1/2‖θ∗‖)σ̂(s)
a,t .

Proof. We begin by noting that:

µ̂a,t − φ(xa,t)
Tθ∗ (6)

= φ(xa,t)
T(Cγt )−1ΦT

tyt − φ(xa,t)
T(Cγt )−1(ΦT

tΦt + γI)θ∗

= φ(xa,t)
T(Cγt )−1ΦT

t(yt − Φtθ∗)− γφ(xa,t)
T(Cγt )−1θ∗

Now by construction of the set Ψt we know that (yt−
Φtθ
∗) | Φt, xa,t is a vector of zero mean independent

random variables. Hence we can apply the Azuma-
Hoeffding inequality to obtain that:

P(|φ(xa,t)
T(Cγt )−1ΦT

t(yt − Φtθ
∗)| (7)

> (1 + ‖θ∗‖)ησ̂a,t) ≤ 2e−η
2/2,

since |rτ − φ(xτ )Tθ∗| ≤ 1 + ‖θ∗‖ for any τ and

σ̂2
a,t = φ(xa,t)

T(Cγt )−1φ(xa,t)

= φ(xa,t)
T(Cγt )−1(ΦT

tΦt + γI)(Cγt )−1φ(xa,t)

≥ ‖Φt(Cγt )−1φ(xa,t)‖2.

Now by the Cauchy-Schwarz inequality we find that:

|φ(xa,t)
T(Cγt )−1θ∗| ≤

≤ ‖θ∗‖
√
φ(xa,t)T(Cγt )−1γ−1γI(Cγt )−1φ(xa,t)

≤ γ−1/2‖θ∗‖
√
φ(xa,t)T(Cγt )−1Cγt (Cγt )−1φ(xa,t)

≤ γ−1/2‖θ∗‖σ̂a,t. (8)

The result follows by plugging (7) and (8) into (6).

The second step of the analysis bounds the widths σ̂
(s)
a,t

in terms of the change in eigenvalues of the matrix Cγt .
To do this we extend the argument in Lemma 11 by
Auer (2002) to possibly infinite matrices. Let us define

ψs,t := |Ψ(s)
t |.

Lemma 2 The eigenvalues of ΦT
tΦt do not depend on

the choice of basis for H. Moreover the representation
of ΦT

tΦt in any basis B created by extending a maximal
linearly independent subset of {φ(xa,τ )}τ∈Ψt has zeros
everywhere outside its top-left (ψt × ψt)-submatrix.

Proof. Assume that φ = φE is described in terms
of some basis E for H. Let B be any basis for H ex-
tended from a maximal linearly independent subset of
{φ(xa,s)}s≤t. If QBE denotes the change of basis ma-
trix from B to E then ΦE,t = ΦB,tQBE and:

ΦT

E,tΦE,t = QT

BEΦ
T

B,tΦB,tQBE ,

where ΦB,t and ΦE,t denote the matrix Φt with respect
to the bases B and E . Moreover the (i, j)-th entry
of ΦT

B,tΦB,t is zero when max{i, j} > ψt. Hence the
eigenvalues are independent of the choice of basis and
only the first t of them can be non-zero.

Lemma 3 Suppose that Ψ
(s)
t+1 = Ψ

(s)
t ∪ {t}. Then the

eigenvalues of Cγt can be arranged so that λj,t−1 ≤ λj,t
for each j ≥ 1, and:

σ̂
(s)
a,t ≤

√√√√
(

4 +
6

γ

) ψs,t+1∑

j=1

λj,t − λj,t−1

λj,t−1
.

where λj,0 := γ for all j.

Proof. Let B be a basis defined as in Lemma 2,
let CB,t := ΦT

B,tΦB,t, and let C̃t denote the top-left,

ψs,t+1×ψs,t+1-submatrix of CB,t and let φ̃(xt) denote
the first t entries in the vector φB(xt). It follows from
Lemma 2:

CB,t+1 + γI =

(
C̃t 0
0 0

)
+

(
φ̃(xt)φ̃(xt)

T 0
0 0

)
+ γI

and we may apply the argument of the proof of Lemma
11 by Auer (2002) to the top left ψs,t+1×ψs,t+1 blocks
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to obtain the result. Note that we only need to sum
up to ψs,t+1 because λj = γ for all j > ψs,t+1.

The third step of the analysis uses the bound on the
widths in Lemma 3 to bound their sum. Since our
matrices Cγt are possibly infinite we use the effective
dimension of the data, d̃, to reduce the analysis to the
finite dimensional case.

Lemma 4 Let lT = max{ln(T/(d̃γ)+1), lnT}. Then:

∑

t∈Ψ
(s)
T+1

σ̂
(s)
a,t ≤

√(
10 +

15

γ

)
d̃T lT for all s ∈ [S].

Proof. From Lemma 3 we know that the eigenvalues
of Cγt can be arranged so that λj,t−1 ≤ λj,t for each
j ≥ 1. Once such an arrangement exists we can al-
ways rearrange the eigenvalues so that they are also
decreasing in j, for each t. By Lemma 3 we have:

∑

t∈ΨT+1

σ̂a,t ≤
ψT+1∑

t=1

√√√√
ψT+1∑

j=1

λj,t − λ(s)
j,t−1

λj,t−1

≤
ψT+1∑

t=1



√√√√
∑

1≤j≤d̃

λj,t − λj,t−1

λj,t−1
+

√√√√√
ψT+1∑

j=d̃+1

λj,t − λj,t−1

λj,t−1




≤
ψT+1∑

t=1

√√√√
∑

1≤j≤d̃

λj,t − λj,t−1

λj,t−1

︸ ︷︷ ︸
(A)

+

√√√√ψT+1

γ

∑

j≥d̃+1

λj,T

︸ ︷︷ ︸
(B)

,

where we have used the Cauchy-Schwarz inequality for
the second inequality. Now by the definition of d̃, term

(B) is bounded by

√
d̃ψT+1 lnT . Writing αi,t = λi,t−

λi,t−1, term (A) becomes:

ψT+1∑

t=1

√√√√
d̃∑

i=1

αi,t∑t
s=1 αi,s + γ

where λi,0 = γ and
∑d̃
i=1 αi,t ≤ tr(Cγt ) − tr(Cγt−1) =

‖φ(xa,t)‖2 ≤ 1. We upper bound this object by solving
an easier maximisation problem:

max
(α)i,t,(ε)i,t

ψT+1∑

t=1

√√√√
d̃∑

i=1

αi,t∑t
s=1 εi,s + γ

under the constraints
∑
i αi,t =

∑
i εi,t ≤ 1. Us-

ing the method of Lagrange multipliers and the
Cauchy-Schwarz inequality1 we can upper bound

1We do not include a detailed derivation due to the
space constraints.

the solution to this maximisation problem by√
d̃ψT+1 log(ψT+1/(d̃γ) + 1). We conclude by noting

that ψT+1 ≤ T .

The fourth step is to bound the size of the sets Ψ
(s)
T+1.

This is achieved by plugging our Lemma 4 into the
proof of Lemma 16 in (Auer, 2002):

Lemma 5 For all s ∈ [S]:

ψs,T+1 ≤ 2sη

√(
10 +

15

γ

)
d̃ψs,T+1lT

The lemmas above have analysed the properties of
BaseKernelUCB assuming independence. The effect
of the SupKernelUCB construction is described in
Lemma 14 and 15 by Auer (2002), which we restate for
convenience using our notation. Lemma 6 shows that
there the trials given to BaseKernelUCB are indeed
independent:

Lemma 6 For each s ∈ [S], each t ∈ [T ], and any

fixed sequence of feature vectors xt with t ∈ Ψ
(s)
t , the

corresponding rewards rt are independent random vari-
ables such that E(rt) = φ(xt)

Tθ∗.

Lemma 7 gives the properties of SupKernelUCB
needed to provide the final regret bound, where the
first item is a consequence of Lemma 1:

Lemma 7 With probability 1−2Ne−η
2/2, for any t ∈

[T ] and any s ∈ [S], the following hold:

• |µ̂(s)
a,t −φ(xa,t)

Tθ∗| ≤ (η(1 + ‖θ∗‖) + γ1/2‖θ∗‖)σ̂(s)
a,t ,

for all a ∈ [N ]

• a∗t ∈ Âs, and

• E[ra∗t ,t]− E[rt] ≤ 23−s for any a ∈ Âs.

Now we find the final regret bound with a similar
scheme as Auer (2002) using all the previous lemmas.

Proof of Theorem 1. First we upper bound the
expected regret E[R(T )] with probability at least 1 −
2NTe−η

2/2 with:

∑

t∈[T ]\Ψ0

E(ra∗t ,t)− E(rt) =
S∑

s=1

∑

t∈Ψ
(s)
T+1

E(ra∗t ,t)− E(rt)

≤
S∑

s=1

23−sψs,T+1 ≤ ηS
√(

10 +
15

γ

)
d̃ψs,T+1lT (9)

and:

∑

t∈Ψ0

E(ra∗t ,t)− E(rt) ≤ 2

(
2 + ‖θ∗‖+

γ
1
2 ‖θ∗‖
η

)
√
T ,

(10)
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where Ψ0 := [T ] \ ⋃s∈[S] Ψ
(s)
T+1. In (9) we have used

Lemma 7 for the first inequality and Lemmas 5 and 6
for the second inequality. In (10) we used Lemma 1
and the construction of the Ψ0 set in SupKernelUCB.
Now a standard application of the Azuma-Hoeffding
inequality tells us that, with probability at least 1 −
2TNe−η

2/2:

|R(T )− E(R(T |HT−1))| ≤
√

2T ln(1/TNe−η2/2). (11)

Finally setting S = lnT , η =
√

2 ln 2TN/δ, and
bounding ψs,T+1 by T we obtain from (9), (10), and
(11):

R(T ) = E(R(T ))) + [R(T )− E(R(T |HT−1))]

≤8

√(
10 +

15

γ

)
l3T

(
2 ln

2TN

δ

)√
d̃T

+ 2

(
1 +

(
1 +

√
γ

2 ln(2TN/δ)

)
‖θ∗‖

)√
T

+
√

2 ln(1/δ)
√
T .

with probability 1− (1 + lnT )δ. The result follows by
substituting δ/(1 + lnT ) for δ.

4.1 Relationship with GP-UCB

We now relate our analysis to that of GP-UCB in
(Srinivas et al., 2010), and in particular to their The-
orem 3, which treats the agnostic case. In this case,
θ∗ is not assumed to be sampled from a GP, but in-
stead to have a bounded RKHS norm ‖θ∗‖. Under this
assumption, the cumulative regret is bounded as:

O
((
I(yA; θ∗) + ‖θ∗‖2

√
I(yA; θ∗)

)√
T
)
, (12)

where I(yT ; θ∗) is the mutual information between
θ∗ and the vector of (noisy) observations yT . Both
I(yT ; θ∗) in (12) and d̃ are data dependent quantities.
We now relate them in order to compare the analyses.

We have that:

I(yT ; f) = ln |I + σ−2KT | =
∑

i

ln(1 + σ−2λi,T )

≥ ln
(

1 + σ−2λd̃−1,T

)(
d̃− 1 +

∑
i>d̃−1 λi,T

λd̃−1,T

)

≥ (d̃− 1) ln
(

1 + σ−2λd̃−1,T

)[
1 +

γ lnT

λd̃−1,T

]

≥ (d̃− 1) max
B

min
{

ln(1 +B)γσ−2 ln(T ),
ln(1 +B)

B

}

≥ Ω(d̃ ln lnT )

In the second equality, we used the fact that the eigen-
values of ΦT

TΦT are the same as the eigenvalues of

ΦTΦT

T . In the second inequality we used the definition

of d̃. For the last inequality we considered the two
cases when λd̃−1,T ≤ Bσ2 and when λd̃−1,T ≥ Bσ2 for
some B.

This shows that d̃ is at least as good as I(yT ; θ∗), and
comparing our Theorem 1 with (12), our regret bound

only scales as O(
√
d̃), while the dependence of the

regret bound (12) is linear in I(yT ; θ∗). In particular,
this means that for the linear kernel we attain the lower
bound for linear contextual bandits, (Chu et al., 2011),
while GP-UCB is

√
d away. This concerns only the

agnostic case of GP-UCB, i.e. Theorem 3 in (Srinivas
et al., 2010), which is the same setting as ours. When
θ∗ is sampled from a GP, their result for linear case
also matches the lower bound.

Srinivas et al. (2010) also provide an upper bound on
I(yT ; θ∗), denoted by γT , for certain kernels. As a con-
sequence of the link between I(yT ; θ∗), γT and d̃, we
may also express our bounds in terms of γT . More-
over, in the agnostic case again, our bounds enjoy an
improved dependence on this parameter: for example,
for the widely used RBF kernel, our bound scales with
O(lnT )d/2 in place of O(lnT )d.

Finally, when ‖θ∗‖ is unknown and we are unable to
regularise appropriately, our regret bound only de-
pends on ‖θ∗‖ linearly (Remark 3), while the depen-
dence in (12) is quadratic.

5 Conclusion

We derive and analyse KernelUCB, an algorithm for
contextual bandits, which is able to run with just a
similarity function instead of context features. We give
a finite-time theoretical analysis that proves the cumu-

lative regret scales as Õ(
√
T d̃) where d̃ is the effective

dimension of the data in the feature space.

As a special case of our algorithm and its analysis,
we recover the known upper bound for LinUCB that
matches the lower bound for the linear problem. In
the case when we know an upper bound on the model
noise, then setting our regulariser to that value recov-
ers the GP-UCB algorithm. Moreover, we provide an
improved analysis for the agnostic case, when the re-
ward function is not necessarily sampled from a GP
prior. Finally, our analysis shows the dependence of
the regulariser on the RKHS norm of reward function.
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Abstract

In this paper, we investigate combining block-
ing and collapsing – two widely used strategies
for improving the accuracy of Gibbs sampling
– in the context of probabilistic graphical mod-
els (PGMs). We show that combining them is
not straight-forward because collapsing (or elim-
inating variables) introduces new dependencies
in the PGM and in computation-limited settings,
this may adversely affect blocking. We there-
fore propose a principled approach for tackling
this problem. Specifically, we develop two scor-
ing functions, one each for blocking and collaps-
ing, and formulate the problem of partitioning the
variables in the PGM into blocked and collapsed
subsets as simultaneously maximizing both scor-
ing functions (i.e., a multi-objective optimization
problem). We propose a dynamic, greedy algo-
rithm for approximately solving this intractable
optimization problem. Our dynamic algorithm
periodically updates the partitioning into blocked
and collapsed variables by leveraging correla-
tion statistics gathered from the generated sam-
ples and enables rapid mixing by blocking to-
gether and collapsing highly correlated variables.
We demonstrate experimentally the clear benefit
of our dynamic approach: as more samples are
drawn, our dynamic approach significantly out-
performs static graph-based approaches by an or-
der of magnitude in terms of accuracy.

1 Introduction

Blocking [1, 2] and collapsing [2] are two popular strate-
gies for improving the statistical efficiency of Gibbs sam-
pling [3] – arguably the most widely used approximate in-
ference scheme for probabilistic graphical models (PGMs).
Both these strategies trade sample quality with sample size.
The hope is that the user will achieve the right balance be-

tween the two for the specific PGM at hand, improving the
estimation accuracy as a result.

Unlike Gibbs sampling which samples each variable indi-
vidually given others, blocked Gibbs sampling partitions
the variables into disjoint groups or blocks and then jointly
samples all variables in each block given an assignment to
all other variables not in the block. Joint sampling is more
expensive than sampling variables individually but the sam-
ples are of higher quality in that for a fixed sample size, the
estimates based on blocked Gibbs sampling have smaller
variance than the ones based on Gibbs sampling [2]. A
collapsed Gibbs sampler1 operates by marginalizing out a
subset of variables (collapsed variables) and then generat-
ing dependent samples from the marginal distribution over
the remaining variables via conventional Gibbs sampling.
Marginalizing out variables is more expensive than sam-
pling them. However, since only a sub-space is sampled,
the samples are of higher quality.

Although, it is provably better to collapse a variable rather
than block (group) it with other variables [2], collapsing is
computationally more expensive than blocking and in prac-
tice, in many cases, the latter is feasible while the former
is not. Therefore, an obvious idea is to combine blocking
and collapsing, and the purpose of this paper is to investi-
gate this combination in the context of PGMs. Specifically,
the key question we seek to answer is: find a k-way parti-
tioning of the variables in the PGM where each of the first
k− 1 subsets is a block and the k-th subset contains all the
collapsed variables, such that the estimation error is mini-
mized and the resulting algorithm is tractable. This prob-
lem is non-trivial because of the complex interplay between
collapsing and blocking. For example,

Example 1. Consider the pair-wise Markov network (undi-
rected PGM) given in Fig. 1(a). Let us assume that each
variable in the network has d values in its domain and our

1Collapsing is often called Rao-Blackwellisation. Technically,
the latter is an advanced estimator while blocking and collapsing
are advanced sampling strategies. In principle, we can also use
the Rao-Blackwell estimator in blocked Gibbs sampling [4]. In
this paper, we will separate sampling from estimation.
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A E F

(a) A PGM

B C D

A

(b) Collapsed PGM

Figure 1: Example to illustrate trade-off between blocking and
collapsing.

time and memory resource constraints dictate that we can-
not incur more than O(d3) complexity. Let us further as-
sume that we have prior knowledge that A, B, C, and D
should be blocked in order to improve the estimation ac-
curacy (for instance, they are highly correlated or involved
in deterministic constraints). Notice that we can only col-
lapse (eliminate) E and F from the PGM . Otherwise, we
will violate the complexity constraints. However, elimi-
nating both E and F yields a clique over A,B,C,D (see
Fig. 1(b)) and we can no longer block these variables be-
cause the complexity of computing a joint distribution over
them (using junction tree propagation) and then sampling
from it is O(d4). A much better solution in this case is to
collapse F , create two blocks {A,B,C,D} and {E} and
perform blocked Gibbs sampling over this sub-space.

As seen from the above example, in computation-limited
settings, in many cases, variables that can be blocked in the
original PGM can no longer be blocked in the collapsed
PGM. In other words, there is a trade-off between blocking
and collapsing which needs to be taken into account while
combining the two schemes. We model this tradeoff by
(i) defining two integer parameters α and β which bound
the complexity of collapsing and blocking respectively and
thus allow the user to control the number of blocked ver-
sus collapsed variables; (ii) defining two scoring functions,
one each for blocking and collapsing, which favor blocks
that contain variables that are highly correlated with each
other and the collapsed set that contains variables which
are highly correlated with other variables in the network;
and (iii) casting the problem of finding the k-way parti-
tioning into blocked and collapsed variables as a multi-
objective optimization problem. This problem seeks to si-
multaneously maximize the scoring functions subject to the
tractability constraints enforced by α and β.

The optimization problem isNP-hard in general and there-
fore we propose a dynamic, greedy algorithm to solve it
approximately. We integrate this algorithm with blocked-
collapsed Gibbs sampling yielding a dynamic sampling al-
gorithm. The algorithm begins by generating samples from
the PGM using a feasible k-way partitioning computed us-
ing the (primal) graph associated with the PGM. It then
periodically updates the partitioning after everyM samples
by leveraging the correlations computed from the generated

samples and performs blocked-collapsed Gibbs sampling
using the new partitioning. As more samples are drawn and
as the accuracy of the measured correlation increases, the
underlying Markov chain is likely to mix rapidly because
highly correlated variables will be either blocked together
or collapsed out.

We experimentally evaluate the efficacy of our new dy-
namic approach on several benchmark PGMs from liter-
ature. For comparison, we use (naive) Gibbs sampling,
static blocked Gibbs sampling and static blocked collapsed
Gibbs sampling. Our results show that on most of the
benchmark PGMs, our dynamic approach is superior to the
static graph-based blocked collapsed Gibbs sampling ap-
proaches.

The rest of the paper is organized as follows. In the next
section, we present background. In section 3, we define the
scoring functions and our optimization problem formula-
tion. In section 4, we present a greedy approach to solve
the optimization problem and describe our dynamic Gibbs
sampling algorithm. In section 5, we present related work.
Section 6 describes our experimental results and we con-
clude in section 7.

2 Background

In this section, we present our notation and provide a brief
overview of PGMs, Gibbs sampling, blocking, collapsing
and various estimation techniques. For details, see [5, 6, 7].

A (discrete) PGM or a Markov network, denoted byM, is
a pair 〈X,Φ〉 where X = {X1, . . . , Xn} is a set of discrete
variables (i.e., they take values from a finite domain) and
Φ = {φ1, . . . , φm} is a set of positive real-valued func-
tions (or potentials).M represents the probability distribu-
tion P (x) = 1

Z

∏
φ∈Φ φ(xS(φ)) where x is an assignment

of values to all variables in X, xS(φ) is the projection of x
on the scope S(φ) of φ, and Z is a normalization constant
called the partition function. We will often abuse notation
and write φ(xS(φ)) as φ(x). The key inference tasks in
PGMs are (i) computing the partition function; (ii) com-
puting the 1-variable marginal probabilities, i.e., comput-
ing P (x) where x is an assignment of a value in the domain
of X ∈ X to X; and (iii) computing the most probable as-
signment, i.e., computing arg maxx P (x). In this paper,
we focus on the task of computing 1-variable marginals.

The primal (or interaction) graph associated with M =
〈X,Φ〉, denoted by G, is an undirected graph which has
variables of M as its vertices and an edge between any
two variables that are contained in the scope of a func-
tion φ ∈ Φ. The primal graph is useful because sev-
eral exact inference algorithms (e.g., the junction tree al-
gorithm [8], AND/OR graph search [9], variable (bucket)
elimination [10, 11], etc.) are exponential in the treewidth
of the primal graph and thus the primal graph can be used
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to quantify their complexity. The treewidth of a graph G,
denoted by tw(G), equals the minimum width over all pos-
sible orderings of its vertices. The width of an ordering
(either partial or full) π = (X1, . . . , Xn) of a graph G, de-
noted by w(π,G), is the maximum degree of Xi in Gi−1,
where G = G0,G1, . . . ,Gn is a sequence of graphs such that
Gi is obtained from Gi−1 by adding edges so as to make the
neighbor set of Xi in Gi−1 a clique, and then removing
Xi from Gi (i.e., eliminating Xi from Gi−1). For exam-
ple, Fig. 1(b) shows the graph obtained by eliminating E
and F from the graph given in Fig. 1(a). The width of the
partial order (E,F ) is 2 while the width of the total order
(E,F,A,B,C,D) is 3.

Computing the treewidth of a graph is a NP-complete
problem [12]. Therefore, in practice, we often employ
heuristic approaches such as the min-fill heuristic and min-
degree heuristic to find an upper-bound on the treewidth.
Hereafter, whenever we refer to the treewidth of a graph,
we implicitly assume that we have access to a close upper-
bound to the treewidth.

2.1 Gibbs Sampling

Given a PGMM = 〈X,Φ〉, Gibbs sampling [3] begins by
initializing all variables randomly, denoted by x(0). Then,
at each iteration j, it randomly chooses a variable Xi ∈ X
and samples a value xi for it from the conditional distribu-
tion P (Xi|x(j−1)

−i ), where x(j−1)
−i denotes the projection of

x(j−1) on all variables in the PGM other than Xi. The
new sample is x(j) = (xi, x

(j−1)
−i ). The computation of

the conditional distribution can be simplified by observing
that in a PGM, a variable Xi is conditionally independent
of all other variables given its neighbors (or its Markov
blanket) denoted by MB(Xi). Formally, P (Xi|x−i) =
P (Xi|xMB(Xi)). The Gibbs sampling procedure just de-
scribed is called random-scan Gibbs sampling in litera-
ture. Another variation is systematic-scan Gibbs sampling
in which we draw samples along a particular ordering of
variables. It is known that random-scan Gibbs sampling is
statistically more efficient than systematic-scan Gibbs sam-
pling (cf. [7]).

2.2 Blocking and Collapsing

Blocked/Blocking Gibbs sampling [1] is an advanced sam-
pling strategy in which some variables are sampled jointly
given assignments to other variables in the PGM. Let the
variables of the PGM be partitioned into disjoint groups
or blocks, denoted by B = {Bi}ki=1, where Bi ⊆ X and
∪iBi = X. Then, starting with a random assignment x(0)

to all variables in the PGM, in each iteration j of blocked
Gibbs sampling, we create a new sample x(j) by replacing
the assignment to all variables in a randomly selected block
Bi in x(j−1) by a new assignment that is sampled (jointly)
from the distribution, P (Bi|x(j−1)

X\Bi
), where x

(j−1)
X\Bi

is the

projection of x(j−1) on all variables not in Bi. We define
the Markov blanket (MB) of a block Bi as all other blocks
that contain at least one variable in MB(Xi), where Xi ∈
Bi. Similar to Gibbs sampling, an assignment to all vari-
ables in MB(Bi) makes Bi conditionally independent of
all other variables. Note that blocked Gibbs sampling is
feasible only when every block Bi is tractable given an as-
signment to MB(Bi). These tractability constraints are of-
ten imposed in practice by putting a limit on the treewidth
of the primal graph projected on the block.

Collapsing is an alternative technique for improving the ac-
curacy of Gibbs sampling. Collapsing operates by elimi-
nating or marginalizing out a subset of variables, say C,
from the PGM M yielding a collapsed PGM, MX\C.
Gibbs sampling is then performed on this smaller PGM
and this improves its accuracy (because only a sub-space
is sampled). In practice, collapsing is feasible only if there
exists an order π of the variables in C such that the width
of the ordering is bounded by a small constant.

2.3 Estimators

Given N samples {x(i)}Ni=1 drawn from the distribution P ,
we can use one of the following three estimators to compute
the 1-variable marginals.

1. Histogram estimator:

P̂ (xi) =
1

N

N∑

j=1

Ixi(x(j))

where Ixi(x(j)) is an indicator function which equals
1 if xi appears in x(j) and 0 otherwise.

2. Mixture Estimator:

P̂ (xi) =
1

N

N∑

j=1

P (xi|x(j)
MB(Xi)

)

3. Rao-Blackwell Estimator: This estimator general-
izes the mixture estimator and is given by

P̂ (xi) =
1

N

N∑

j=1

P (xi|x(j)
R )

where R ⊆X.

It has been shown that the Rao-Blackwell estimator has
smaller variance than the mixture estimator which in turn
has smaller variance than the histogram estimator [7] and
thus the Rao-Blackwell and the mixture estimators should
always be preferred. However, the Rao-Blackwell esti-
mator requires more computation since we are essentially
“ignoring” the samples on certain variables (non-sampled
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variables). The non-sampled variables, X \R should now
be marginalized out to obtain the estimate P̂ (xi). There-
fore, as the set of non-sampled variables grows larger, es-
timation becomes more accurate but also computationally
more expensive.

All the three estimators can be used with blocked as well
as collapsed Gibbs sampling. To use the Rao-Blackwell
estimator with blocked Gibbs sampling, we simply find the
block, say B, in which the variable resides, set R equal
to X \ B and compute P (xi|x(j)

R ) by marginalizing out
all variables other than Xi in the block. These compu-
tations are tractable because the block is assumed to be
tractable. In collapsed Gibbs sampling, we can use the Rao-
Blackwell estimator to estimate the 1-variable marginals
over all the collapsed variables.

3 Optimally Selecting Blocked and
Collapsed Variables

Integrating blocking and collapsing is tricky because they
interact with each other. Moreover, we cannot collapse
and block indiscriminately because for our algorithm to
be practical we need to ensure that both blocking and col-
lapsing are computationally tractable. In order to capture
these constraints and the complex interplay between block-
ing and collapsing in a principled manner, we formulate the
problem of selecting the blocks and collapsed variables as
an optimization problem, defined next.

Definition 1. Given a PGM M = 〈X,Φ〉, two scoring
functions ω and ψ for blocking and collapsing respectively
(see sec. 3.1), and integer parameters α, and β, find a
k-way partition of X denoted by X = B ∪ C, where
B = {Bi}k−1

i=1 is a set of k − 1 blocks and C is the set of
collapsed variables such that both ω(B) and ψ(C) are max-
imized, subject to two tractability constraints: (i) The min-
imum width of C in the primal graph G is bounded by α;
and (ii) The treewidth of G\C (the graph obtained by elim-
inating C from G) projected on each block Bi is bounded
by β, namely, ∀ Bi ∈ B, tw(G\C(Bi)) ≤ β .

The optimization problem just presented requires maxi-
mizing two functions and is thus an instance of a multi-
objective optimization problem [13, 14]. As one can imag-
ine, this problem is much harder than typical optimiza-
tion problems in machine learning which require optimiz-
ing just one objective function. In general, there may not
exist a feasible solution that simultaneously optimizes each
objective function. Therefore, a reasonable approach is to
find a Pareto optimal solution , i.e., a solution which is not
dominated by any other solution in the solution space. A
Pareto optimal solution cannot be improved with respect to
any objective without worsening another objective.

To find Pareto optimal solutions, we will use the lexico-
graphic method – a well-known approach for managing

the complexity of multi-objective optimization problems.
In this method, the objective functions are arranged in or-
der of importance and we solve a sequence of single ob-
jective optimization problems. Since collapsing changes
the structure of the primal graph while blocking does not,
it is obvious that we should first find the collapsed vari-
ables (i.e., give more importance to the objective function
for collapsing) and then compute the blocks. We will use
this approach. To reduce the sensitivity of the final solu-
tion to the objective-function for collapsing, we introduce
a hard penalty which penalizes solutions that result in small
block sizes (since the accuracy typically increases with the
block size). We describe our proposed scoring (objective)
functions and the hard penalty used next.

3.1 Scoring Functions

We wish to design scoring functions such that they im-
prove mixing time of the underlying Markov chain. Since
the exact mixing time is hard to compute analytically, we
use a heuristic scoring function that uses correlations be-
tween the variables measured periodically from the gener-
ated samples. In general, collapsing variables is much more
effective when the collapsed variables exhibit high correla-
tion with other variables in the PGM. For instance, a vari-
able X that is involved in a deterministic dependency (or
constraint) with another variable Y (e.g., Y = y→X = x)
is a good candidate for collapsing; sampling such variables
likely causes the Markov chain to get stuck and hinders
mixing. Similarly, blocking is effective when we jointly
sample variables which are tightly correlated because sam-
pling them separately may cause the sampler to get trapped.
Moreover, we also want to minimize the number of blocks
or maximize the number of variables in each block because
sampling a variable jointly with other variables in a block is
better than or at least as good as sampling the variables in-
dividually [7]. We quantify these desirable properties using
the following scoring functions:

ω(B) =
1

|B|
∑

Bi∈B

∑

Xj ,Xk∈Bi

D(Xj , Xk) (1)

where D(Xi, Xj) is any distance measure between the
joint distribution P (Xi, Xj) and the product of the
marginal distributions P (Xi)P (Xj).

ψ(C) =

p∑

i=1

1

|X \Ci−1|
∑

X∈X\Ci−1

D(Ci, X) (2)

where (C1, . . . , Cp) is a user-defined order on variables
in C, Ci = {C1, . . . , Ci} and C0 = ∅. We use the
Hellinger distance, which is a symmetric measure to com-
pute D(Xi, Xj). Formally, this distance is given by:

D(Xi, Xj) =
1√
2

√√√√∑

xi,xj

(√
P (xi, xj)−

√
P (xi)P (xj)

)2
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Algorithm 1: Greedy-Collapse
Input: A PGMM = 〈X,Φ〉, Integers α, and γ
Output: The collapsed PGMMX/C obtained by eliminating C

fromM
1 E = 0; C = ∅;
2 repeat

// Let G be the primal graph associated
with M

3 Compute the value of the heuristic evaluation function for
each vertex in G (see Eq. (4) );

4 Select a variable X with the maximum heuristic value such
that the degree deg(X,G) ≤ α where deg(X,G) is the
degree of X in G ;
// Let E(X,G) be the number of new edges

added to G by forming a clique over
neighbors of X

5 E = E + E(X,G);
6 Eliminate X fromM;
7 C = C ∪ {X};
8 until all vertices in G have degree larger than α or E > γ;
9 returnM;

D(Xi, Xj) measures the statistical dependence (correla-
tion) between variables. Higher values indicate that the
variables are statistically dependent while smaller values
indicate that the variables are statistically independent. No-
tice that in order to compute D(Ci, Cj), we need to know
the 1-variable and 2-variable marginals. Their exact val-
ues are clearly not available and therefore we propose to
estimate them from the generated samples.

As mentioned above, since we choose the collapsed vari-
ables before constructing the blocks, we have to penal-
ize the feasible solutions that are likely to yield small
blocks. We impose this penalty by using a hard con-
straint. The hard constraint disallows all feasible solutions
C such that eliminating all variables in C along the order-
ing (C1, . . . , Cp) will add more than γ edges to the primal
graph. Thus, γ controls the relative importance of blocking
versus collapsing. When γ is infinite or sufficiently large,
the optimal solution to the objective function for collaps-
ing is further refined to construct the blocks. On the other
hand, when γ is small, a suboptimal solution to the objec-
tive function for collapsing, which can in turn enable higher
quality blocking, is refined to construct the blocks.

4 Dynamic Blocked-Collapsed Gibbs
Sampling

Although splitting the multi-objective optimization prob-
lem into two single objective optimization problems makes
it comparatively easier to handle, it turns out that the result-
ing single objective optimization problems are NP-hard.
For instance, the problem of computing the set of collapsed
variables includes the NP-hard problem of computing the
(weighted) treewidth (cf. [12]) as a special case. We there-
fore solve them using greedy methods.

4.1 Solving the optimization problem for Collapsing

Our greedy approach for computing the collapsed variables
is given in Alg. 1. The algorithm takes as input the PGM
M, two integer parameters α and γ which constrain the
width of the collapsed variables (tractability constraints)
and the total number of edges added to the primal graph
after eliminating the collapsed variables (penalty) respec-
tively, selects the collapsed variables, and outputs a PGM
obtained by eliminating the collapsed variables.

Alg. 1 heuristically selects variables one by one for collaps-
ing until no variables can be selected because they will vi-
olate either the tractability constraints or the (penalty) con-
straint on the total number of edges added. For maximizing
the objective function, we want to collapse as many highly
correlated variables as possible. Thus, a simple greedy ap-
proach would be to select, at each iteration, the variable X
with the maximum correlation score ψ(X) where ψ(X) is
given by

ψ(X) =
1

|X|
∑

Xi∈X
D(X,Xi) (3)

However, this approach is problematic because a highly
correlated variable may add several edges to the primal
graph, potentially increasing its treewidth. This will in turn
constrain future selections and may yield solutions which
are far from optimal. In other words, at each iteration, we
have to balance locally maximizing the scoring function
with the number of edges added in order to have a better
chance of hitting the optimum or getting close to it. We
therefore use the following heuristic evaluation function to
evaluate the various choices:

χ(X) = ψ(X) +

((
α
2

)
− E(X,G)(

α
2

)
)

(4)

where ψ(X) is defined in Eq. (3) and E(X,G) is the num-
ber of new edges that will be added to G by forming a clique
over X . Note that since the maximum degree of any elim-
inated variable is bounded by α, the maximum number of
edges that can be added is bounded by

(
α
2

)
. Therefore, the

quantity in the brackets in Eq. (4) lies between 0 and 1 and
high values for this quantity are desirable since very few
edges will be added by eliminating the particular variable
(ψ(X) also lies between 0 and 1 and high values for it are
desirable too).

4.2 Solving the optimization problem for Blocking

Alg. 2 presents the pseudo-code for our greedy approach
for constructing the blocks. The algorithm takes as in-
put a PGM M and an integer parameter β which bounds
the treewidth of the primal graph ofM projected on each
block, and outputs a partitioning of the variables ofM into
blocks. The algorithm begins by having |X| blocks, each
containing just one variable. Then it greedily merges two
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Algorithm 2: Greedy-Block
Input: A PGMM = 〈X,Φ〉 and Integer β
Output: A partition of X denoted by B

1 Initialize B = {{X}|X ∈ X} (each block contains just one
variable);

2 repeat
// Let Bi,j denote the partitioning

formed from B by merging two blocks
Bi,Bj in B

3 Merge two blocks Bi and Bj in B such that:

1. they are in the Markov blanket of each other,

2. tw(G(Bi ∪Bj)) ≤ β

3. there does not exist another pair Bk, Bm in B which
satisfies the above two constraints and ω(Bk,m) > ω(Bi,j)

4 until ∀Bi,Bj ∈ B, tw(G(Bi ∪Bj)) > β;
5 return B;

Algorithm 3: Dynamic Blocked-Collapsed Sampling
Input: A PGMM = 〈X,Φ〉; integers T , M ; integers α, β and γ
Output: An estimate of marginal probabilities for all X ∈ X

1 Initialize all 1-variable P (xi) and 2-variable marginals
P (xi, xj) to zero;

2 for t = 1 to T do
3 MX\C = Greedy-Collapse(M,α,γ);
4 B = Greedy-Block(MX\C,β);
5 Generate M samples fromMX\C using Blocked Gibbs

sampling with B as blocks;
6 Update all 1-variable P (xi) and 2-variable marginals

P (xi, xj) using the Rao-Blackwell estimator (see Eq. (5)).

return P (xi) for all variable-value combinations.

blocks such that they will yield the maximum increase in
the score ω(B) under the constraint that the treewidth of
the merged block is bounded by β. (Note that computing
the treewidth is NP-hard [12] and therefore in our imple-
mentation we use the min-fill algorithm to compute an up-
per bound on it.) To guard against merging blocks which
are far away from each other in the primal graph (and thus
likely to be statistically independent), we merge two blocks
only if they are in the Markov blanket of each other.

4.3 Dynamic Blocked Collapsed Gibbs sampling

Next, we describe how to use the greedy blocking and col-
lapsing algorithms within a Gibbs sampler, yielding an ad-
vanced sampling technique. Our proposal is summarized in
Alg. 3. The algorithm takes as input a PGMM, parame-
ters α, β and γ for performing blocking and collapsing, and
two integers T and M which specify the sample size and
the interval at which the statistics are updated. At termi-
nation, the algorithm outputs an estimate of all 1-variable
marginal probabilities.

The algorithm maintains an estimate of 1-variable and 2-
variable marginals. The 2-variable marginals are used for

computing the scoring functions. At each iteration, given
a k-way partitioning of the variables into blocked and col-
lapsed variables, denoted by B and C respectively, the al-
gorithm generates M samples via blocked Gibbs sampling
over MX\C. After every M samples the algorithm up-
dates the blocks and collapsed variables using the greedy
procedures outlined in the previous two subsections. The
1-variable and 2-variable marginals are updated using the
Rao-Blackwell estimator.

Next, we describe how to update the 1-variable marginals
(2-variable marginals can be updated analogously). At each
iteration t where t ∈ {1, T}, let {x(i,t)}Mi=1 be the set of
M samples generated via Blocked Gibbs sampling and let
P̂t(x) denote the estimate of P (X = x) at iteration t. Then
P̂t(x) is given by:

P̂t(x) =
(t− 1)P̂t−1(x) +Qt(x)

t
(5)

where Qt(x) is computed as follows. If X ∈ C is a col-
lapsed variable, then without loss of generality, let Bk de-
note the largest block in B. Similarly, If X is a blocked
variable, then without loss of generality, let Bk denote the
block in B in which X is present. Let x(i,t)

−k denote the pro-
jection of x(i,t) on all variables in B\Bk. ThenQt is given
as follows:

Qt(x) =
1

M

M∑

i=1

P (x|x(i,t)
−k ) (6)

To compute P (x|x(i,t)
−k ) we have to marginalize out all vari-

ables in Bk ∪ C \ {X}. Computing this is tractable be-
cause according to our assumptions marginalizing out C is
tractable. After marginalizing out C, marginalizing out Bk

is tractable because its treewidth is bounded by β.

M controls the rate at which the blocks and collapsed vari-
ables are updated. Ideally, it should be greater than the
burn-in period. Also, although we have assumed a constant
M , it is easy to envision setting it using a policy in which
M is progressively increased as t increases. From the the-
ory of adaptive MCMC [15], it is easy to show that such
a policy will ensure that estimates output by Alg. 3 will
converge to P (xi) as T tends to infinity.

Note that when the correlation statistics are not available,
i.e., when t = 0, the blocked and collapsed variables
are computed by consulting the primal graph of the PGM.
Thus, the blocks are constructed by randomly merging vari-
ables which are in the Markov blanket of each other; ties
broken randomly. Similarly, the collapsed variables are se-
lected along a constrained min-fill ordering (constrained by
α). Thus, if we use a time bound, namely we stop sampling
after the time bound has expired, and set M to be suffi-
ciently large, Alg. 3 is equivalent to a static graph-based
blocked-collapsed Gibbs sampling procedure.
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Algorithm Blocked Collapsed RB Dynamic?
Geman & Geman [3] N N N N

Jensen et al. [1] 1 N N N
Bidyuk & Dechter [16] N Y Y N
Hamze & de Freitas [4] 2 N Y N

Paskin [17] M Y Y N
Our work M Y Y Y

Figure 2: Table comparing our work with previous work. Block-
ing (1: uses a single block, 2: uses 2 blocks, M: uses multiple
blocks, N: not blocked), collapsing (Y/N), Rao-Blackwell Esti-
mation (RB) (Y/N) and Dynamic (N: Static,Y: Dynamic).

5 Related Work

A number of earlier papers have investigated blocking and
collapsing in the context of PGMs. Fig. 2 summarizes
some notable ones and how they are related to our work.
Blocked Gibbs sampling was first proposed by Jensen et
al. [1]. The key idea in their algorithm was to create a “sin-
gle block” by removing variables one by one from the pri-
mal graph until the treewidth of the remaining network is
bounded by a constant and then sample this block using
the junction tree algorithm. Unlike Jensen et al.’s work,
we allow multiple blocks, combine collapsing with block-
ing and use the Rao-Blackwell estimator for computing the
marginals (Jensen et al. use the histogram estimator).

Our algorithm is related to the Rao-Blackwellised blocked
Gibbs sampling (RBBG) algorithm proposed by Hamze
and de Freitas [4]. RBBG operates by dividing the network
into two tractable tree-structured blocks and then perform-
ing Rao-Blackwellised estimation in each block. Unlike
our algorithm, RBBG is applicable to grid Markov net-
works only. Also, unlike our algorithm, RBBG does not
use multiple blocks and does not update the blocks dynam-
ically. Moreover, RBBG does not use collapsing.

Another related work is that of Bidyuk and Dechter [16]
in which the authors propose a collapsed Gibbs sampling
algorithm. The key idea in their work is similar to Jensen
et al.: remove variables one by one until the treewidth is
bounded by a constant w (the removed variables form a
w-cutset). However, unlike Jensen et al., they use the junc-
tion tree to sample the w-cutset variables. Formally, let W
be the set of w-cutset variables and V = X \W be the
set of remaining variables. Then, the junction tree is used
to compute the distribution P (Wi|w−i) and sample from
it. Effectively, the set V is always collapsed out. A key
drawback of this algorithm is that the junction tree algo-
rithm must be run from scratch for sampling each w-cutset
variable and as a result the algorithm can be quite slow. In
this paper, we save time by marginalizing out a subset of
variables before running the junction tree algorithm (i.e.,
marginalization is a pre-processing step before sampling).
Also, unlike our work, the Bidyuk and Dechter algorithm
does not use blocking and is not dynamic.

The sample propagation algorithm of Mark Paskin [17] is
the only blocked-collapsed algorithm for PGMs that we are
aware of. The algorithm integrates sampling with message
passing in a junction tree. The key idea is to walk the
clusters of a junction tree, sampling some of the current
cluster’s variables and then passing a message to one of its
neighbors. The algorithm designates a subset of variables
for sampling and marginalizes out the remaining variables
by performing message passing over the junction. In that
sense, sample propagation is similar to (but more efficient
than) Bidyuk and Dechter’s algorithm. The only difference
is that variables within each cluster are sampled jointly (or
blocked) if the cluster size is small enough or sampled us-
ing Metropolis-Hastings otherwise. Since the blocks in
sample propagation are confined to the clusters of a junc-
tion tree, they can be much smaller than the blocks used in
our algorithm. Also, this algorithm is not dynamic.

Our work is related to the recent work of Venugopal and
Gogate [18], who cast the problem of constructing blocks
in lifted Gibbs sampling as an optimization problem, but
do not update the blocks dynamically. Finally, our work is
related to parallel Gibbs sampling by Gonzalez et al. [19]
who use likelihood estimates to compute the blocks.

6 Experiments

In this section, we experimentally evaluate the perfor-
mance of the following algorithms on several benchmark
PGMs: (a) Naive Gibbs sampling (Gibbs); (b) Static
Blocked Gibbs sampling (SBG); (c) Static blocked col-
lapsed Gibbs sampling (SBCG); and (d) Dynamic blocked
collapsed Gibbs sampling (DBCG) . SBG is similar to the
algorithm of Hamze and de Freitas [4] except that we al-
low multiple blocks and do not constrain the blocks to be
tree structured. SBCG is an advanced version of Paskin’s
sample propagation algorithm [17]. We implemented SBG
and SBCG by setting M to a sufficiently large value i.e.,
these methods consult only the primal graph of the PGM
to choose the blocks and collapsed variables. To compute
marginals, we use the Rao-Blackwell estimator in SBG,
SBCG and DBCG, and the mixture estimator in Gibbs.

We tested the algorithms on several bench-
mark PGMs used in the UAI-2008 (graph-
mod.ics.uci.edu/uai08/Evaluation/Report), and the
UAI-2010 (cs.huji.ac.il/project/PASCAL) probabilistic
inference competitions. For each network, we measured
performance using the average Hellinger distance between
the true 1-variable marginals and the estimated 1-variable
marginals. We performed our experiments on a centOS
machine with a quad-core processor and 8GB RAM. Each
algorithm was run for 500 seconds on each benchmark for
the task of estimating 1-variable marginals. In DBCG we
set α = β = 8, γ = 50× α and M = 1000. We evaluate the
impact of α, β and γ in the next sub-section.
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Figure 3: Average Hellinger distance between the exact and the approximate 1-variable marginals plotted as a function of time. (a)-(c):
Grids, (d)-(g): Relational, (h)-(i): Linkage, (j)-(l): Promedas.

Fig. 3 shows the results. We see that DBCG is more accu-
rate than all other algorithms on almost all the PGMs, often
outperforming the competition by an order of magnitude.

Ising models. Figs. 3(a)-(c) show the performance of var-
ious algorithms on three Ising models of size 20×20 with
evidence on 5, 10 and 15 randomly selected nodes respec-
tively. DBCG is the best algorithm on all three PGMs.
SBCG performs better than the other two algorithms on
grid20x20.f10 and grid20x20.f15 and its performance is al-
most similar to SBG and Gibbs on grid20x20.f5.

Relational PGMs are formed by grounding statistical re-
lational models [20]. Statistical relational models such

as Markov logic networks [21, 22] often have large num-
ber of correlated variables as well as deterministic de-
pendencies. Our dynamic approach is beneficial on such
models because it has the ability to learn correlations and
adjust the partitions accordingly. We experimented with
three relational PGMs available from the UAI-08 repos-
itory: students-0015, blockmap-0014 and mastermind-
0014. Figs. 3 (d)-(f) show the results. Again, we see that
DBCG is the best performer followed by SBCG.

Linkage PGMs are used for performing genetic linkage
analysis [23]. Figs. 3 (g)-(i) show results on three link-
age PGMs. Again, on all three PGMs, DBCG is the best
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Figure 4: Blocking vs. Collapsing tradeoff. (a)-(d): Impact of varying α with β set to a constant value. (e)-(f): Impact of varying β
with α set to a constant value. We use γ = 50 × α. In all the plots, we plot the average Hellinger distance between the exact and the
approximate 1-variable marginals as a function of time. The notation shown in the plots is as follows. DBCG-ax-by indicates that α = x
and β = y.

performing algorithm and SBCG is the second best.

Promedas PGMs are noisy-OR medical diagnosis net-
works generated by the Promedas medical diagnosis sys-
tem [24]. The networks are two-layered bi-partite graphs
in which bottom layer has the symptoms and the top layer
has the diseases. We experimented with three PGMs: or-
chain-62, or-chain-129 and or-chain-236. Figs. 3 (j)-(l)
show the results. DBCG performs better than all other al-
gorithms in two out of the three PGMs. On or-chain-236,
SBCG is slightly better than DBCG, but has larger variance.

6.1 Impact of varying the parameters α and β

Fig. 4 shows the impact of changing the parameters α and
β on the performance of DBCG. For brevity, we show re-
sults on only one problem instance from each domain. Figs.
4 (a)-(d) show the impact of increasing α with β set to a
constant while Figs. 4 (e)-(h) show the impact of increas-
ing β with α set to a constant. We see that increasing α or β
typically increases the accuracy and reduces the variance as
a function of time. However, in some cases (e.g., Fig. 4(c)
and Fig. 4(g)), we see that the accuracy goes down as we
increase α and β, which indicates that there is a tradeoff be-
tween blocking and collapsing. In summary, α and β help
us explore the region between a completely collapsed and
a completely blocked sampler, and in turn help us achieve
the right balance between blocking and collapsing.

7 Summary

In this paper, we formulated the problem of combining
blocking and collapsing in computation-limited settings as
a multi-objective optimization problem. We proposed a

greedy algorithm to solve this problem. The greedy algo-
rithm assumes access to correlations between all pairs of
variables. Since the exact value of these correlations is not
available, we proposed to estimate them from the generated
samples, and update the greedy solution periodically. This
yields a dynamic blocked collapsed Gibbs sampling algo-
rithm which iterates between two steps: partitioning and
sampling. In the partitioning step, the algorithm uses the
current estimate of correlations between variables to parti-
tion the variables in the PGM into blocked and collapsed
subsets and constructs the collapsed PGM. In the sampling
step, the algorithm uses the blocks constructed in the pre-
vious step to generate samples from the collapsed PGM
and updates the estimate of the 1-variable marginals and
the correlations between variables. We performed a pre-
liminary experimental study comparing the performance
of our dynamic algorithm with static graph-based blocked
collapsed Gibbs sampling algorithms. Our results clearly
demonstrated the power and promise of our new approach:
in many cases, our dynamic algorithm was an order of mag-
nitude better in terms of accuracy than static graph-based
algorithms.
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Abstract

Recent advances in symbolic dynamic pro-
gramming (SDP) combined with the ex-
tended algebraic decision diagram (XADD)
data structure have provided exact solutions
for mixed discrete and continuous (hybrid)
MDPs with piecewise linear dynamics and
continuous actions. Since XADD-based ex-
act solutions may grow intractably large for
many problems, we propose a bounded er-
ror compression technique for XADDs that
involves the solution of a constrained bilin-
ear saddle point problem. Fortuitously, we
show that given the special structure of this
problem, it can be expressed as a bilevel lin-
ear programming problem and solved to op-
timality in finite time via constraint gener-
ation, despite having an infinite set of con-
straints. This solution permits the use of
efficient linear program solvers for XADD
compression and enables a novel class of
bounded approximate SDP algorithms for
hybrid MDPs that empirically offers order-of-
magnitude speedups over the exact solution
in exchange for a small approximation error.

1 Introduction

Many real-world sequential-decision making problems
involving resources, time, or spatial configurations nat-
urally use continuous variables in both their state and
action representation and can be modeled as Hybrid
Markov Decision Processes (HMDPs). While HMDPs
have been studied extensively in the AI literature [4; 7;
10; 9; 11; 12], only recently have symbolic dynamic pro-
gramming (SDP) [14; 17] techniques been introduced
to enable the exact solution of multivariate HMDPs
with continuous actions and arbitrary piecewise linear
dynamics and rewards.

(a)
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g(x)

0 5

4

0 5

4

x < 1

x < 2

x < 3

x < 4

1 2 3 2.75
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1 + 0.67x 3.8 – 0.27x

(b)

2.5

Figure 1: (a) A function f(x) for x ∈ [0, 5] and its
XADD representation (solid branch is true, dotted branch
is false); (b) A compressed XADD approximation g(x) of
f(x). While these simple XADDs are trees, XADDs are
more generally directed acyclic graphs as we show later.

What has proved crucial in this SDP solution of piece-
wise linear HMDPs is the use of the XADD data struc-
ture representation of functions like the simple exam-
ples shown in Figure 1(a,b) that allows the HMDP
value function to be represented compactly and SDP
operations to be computed efficiently. In brief, an
XADD is simply an extension of the algebraic deci-
sion diagram (ADD) [1] to continuous variables where
decisions may be boolean variable tests or inequalities
of continuous expressions and leaves may be contin-
uous expressions; XADDs are evaluated from root to
leaf like decision trees. Following the SDP work of [17]

for HMDPs with continuous actions that we extend,
we restrict XADDs to have linear decisions and leaves.

While XADDs have enabled SDP solutions to HMDPs
that would not be otherwise possible with more näıve
representations of piecewise functions, XADDs still
have limitations — for some problems the HMDP solu-
tion (represented by a value function) simply has many
distinct pieces and does not admit a more compact ex-
act XADD representation, e.g, Figure 1(a). However,
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motivated by previous approximation work in discrete
factored MDPs using ADD approximation [16], we
pose the question of whether there exists a method for
compressing an XADD in exchange for some bounded
approximation error. As a hint of the solution, we note
that Figure 1(a) can be approximated by 1(b) which
is more compact and induces relatively small error.

But how do we find such a compressed XADD? In the
simpler case of ADDs [16], this approximation process
was straightforward: leaves with nearby constant val-
ues are averaged and merged, leading to bottom-up
compaction of the ADD. In the XADD, if we wish
to take a similar approach, we see that the problem
is more complex since it is not clear (1) which leaves
to merge, or (2) how to find the best approximation
of these leaves that minimizes the error over the con-
strained, continuous space where each leaf is valid. In-
deed, as Figure 1(a,b) demonstrates, the answer is not
given simply by averaging leaves since the average of
constant leaves in (a) could never produce the linear
function in the leaves of (b). Hence, we wish to answer
questions (1) and (2) to produce a bounded and low-
error approximation over the entire continuous func-
tion domain as given in Figure 1(b).

To answer these questions, we propose a bounded er-
ror compression technique for linear XADDs that in-
volves the solution of a constrained bilinear saddle
point problem. Fortuitously, we show that given the
special structure of this problem, it can be expressed
as a bilevel linear programming problem. While the
second-level optimization problem in this bilevel pro-
gram implicitly represents an infinite number of con-
straints, we show that a constraint generation ap-
proach for this second stage allows the first stage to
terminate at optimality after generating only a finite
number of constraints. This solution permits the use of
efficient linear program solvers for XADD compression
and enables a novel class of bounded approximate SDP
algorithms for hybrid MDPs. Empirically we demon-
strate that this approach to XADD compression offers
order-of-magnitude speedups over the exact solution in
exchange for a small approximation error, thus vastly
expanding the range of HMDPs for which solutions
with strong error guarantees are possible.

2 Extended Algebraic Decision
Diagrams (XADDs)

We begin with a brief introduction to the extended
algebraic decision diagram (XADD), then in Section 3
we contribute approximation techniques for XADDs.
In Section 4, we will show how this approximation can
be used in a bounded approximate symbolic dynamic
programming algorithm for hybrid MDPs.

x>0

y>x

0.5*x0.2*x - 0.5*y

f(x, y) =

{
φ1 : f1
φ2 : f2

φ1 = θ11 ∨ θ12
θ11 = x<0

θ12 = x>0 ∧ x<−y

f1 =
x

2

φ2 = θ21

θ21 = x>0 ∧ y>x

f2 =
x

5
− y

2

Figure 2: Example of piecewise linear function in case and
XADD form: (top left) plot of function f(x, y); (top right)
XADD representing f(x, y); (bottom) case semantics for
f(x, y) demonstrating notation used in this work.

2.1 Case Semantics of XADDs

An XADD is a function represented by a directed
acyclic graph having a fixed ordering of decision tests
from root to leaf. For example, Figure 2(top left)
shows the plot of a piecewise function and 2(top right)
its XADD representation. Underlying this XADD is a
simple piecewise linear function that we can represent
semantically in case form. Specifically, given a do-
main of boolean and continuous variables (bT ,xT ) =
(b1, . . . , bn, x1, . . . , xm), where bi ∈ {0, 1} (1 ≤ i ≤ n)
and xj ∈ [xmin

j , xmax
j ] (1 ≤ j ≤ m) for xmin

j , xmax
j ∈ R

and xmax
j > xmin

j , a case statement representing an
XADD with linear decisions and leaf expressions takes
the following piecewise linear form

f(b,x) =





φ1(b,x) : f1(x)
...

...

φk(b,x) : fk(x)

. (1)

Here the fi are linear expressions over x and the φi are
logical formulae defined over the domain (bT ,xT ) that
can include arbitrary logical (∧,∨,¬) combinations of
(i) boolean variables and (ii) linear inequalities over x.

In the XADD example of Figure 2, every leaf repre-
sents a case value fi and every path from root to leaf
represents a conjunction of decision constraints. The
disjunction of all path constraints leading to leaf fi cor-
responds to a case partition 〈φi(b,x) : fi(x)〉. Clearly,
all case partitions derived from an XADD must be mu-
tually disjoint and exhaustive of the domain (bT ,xT ),
hence XADDs represent well-defined functions.

Since φi can be written in disjunctive normal form
(DNF), i.e., φi ≡

∨ni

j=0 θij where θij represents a con-
junction of linear constraints over x and a (partial)
truth assignment to b corresponding to the jth path
from the XADD root to leaf fi, we observe that every
θij contains a bounded convex linear polytope (x is
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finitely bounded in all dimensions as initially defined).
We formally define the set of all convex linear poly-
topes contained in φi as C(φi) = {Polytope(θij)}j ,
where Polytope extracts the subset of linear con-
straints from θij . Figure 2(top left) illustrates the
different polytopes in the XADD of 2(top right) with
corresponding case notation in 2(bottom).

2.2 XADD Operations

XADDs are important not only because they com-
pactly represent piecewise functions that arise in the
forthcoming solution of hybrid MDPs, but also be-
cause operations on XADDs can efficiently exploit
their structure. XADDs extend algebraic decision di-
agrams (ADDs) [1] and thus inherit most unary and
binary ADD operations such as addition ⊕ and mul-
tiplication ⊗. While the addition of two linear piece-
wise functions represented by XADDs remains linear,
in general their product may not (i.e., the values may
be quadratic); however, for the purposes of symbolic
dynamic programming later, we remark that we only
ever need to multiply piecewise constant functions by
piecewise linear functions represented as XADDs, thus
yielding a piecewise linear result.

Some XADD operations do require extensions over the
ADD, e.g., the binary max operation represented here
in case form:

max

({
φ1 :f1
φ2 :f2

,

{
ψ1 :g1
ψ2 :g2

)
=





φ1 ∧ ψ1 ∧ f1 > g1 : f1
φ1 ∧ ψ1 ∧ f1 ≤ g1 : g1
φ1 ∧ ψ2 ∧ f1 > g2 : f1
φ1 ∧ ψ2 ∧ f1 ≤ g2 : g2

...
...

While the max of two linear piecewise functions repre-
sented as XADDs remains in linear case form, we note
that unlike ADDs which prohibit continuous variables
x and only have a fixed set of boolean decision tests b,
an XADD may need to create new decision tests for the
linear inequalities {f1 > g1, f1 > g2, f2 > g1, f2 > g2}
over x as a result of operations like max.

Additional XADD operations such as symbolic sub-
stitution, continuous (action) parameter maximiza-
tion, and integration required for the solution of
hybrid MDPs have all been defined previously [14;
17] and we refer the reader to those works for details.

3 Bounded XADD Approximation

In this section, we present the main novel contribu-
tion of our paper for approximating XADDs within a
fixed error bound. Since the point of XADD approxi-
mation is to shrink its size, we refer to our method of
approximation as XADD Compression (XADDComp).
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(a) Original
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(Error = 0.5)
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(b) Step1
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(Error = 0.667)

(c) Step2

Figure 3: Successive pair merging XADD compression for
a simple 1D example. At each step two nodes are chosen for
merging, the best approximating hyperplane is determined
according to Section 3.2, and if the accumulated error is
within required bounds, the leaves are merged and internal
XADD structure simplified to remove unneeded decisions.

Following previous work on ADD compression [16],
we note that decision diagrams should be compressed
from the bottom up — merging leaves causes simplifi-
cations to ripple upwards through a decision diagram
removing vacuous decisions and shrinking the decision
diagram. For example, after merging leaves in Fig-
ure 1(a), we note that the only remaining decision in
1(b) is x < 3. Hence, we focus on a leaf merging ap-
proach to XADDComp, which poses two questions: (1)
what leaves do we merge? And (2) how do we find
the best approximation of merged leaves? We answer
these two questions in the following subsections.

3.1 Successive Leaf Merging

Since it would be combinatorially prohibitive to exam-
ine all possible leaf merges in an XADD, our XADDComp
approximation approach in Algorithm 1 uses a system-
atic search strategy of successive pairwise merging of
leaves. The idea is simple and is illustrated in Figure 3.
The bounded error property is guaranteed by accumu-
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Algorithm 1: XADDComp(XADD X, ε) −→ (X̂, ε̂)

ε̂← 0 // The max amount of error used so far1

X̂ ← X // The approximated XADD2

Open := {Li} = {〈φi, fi〉} ∈ X̂// cases in X̂3

while Open 6= ∅ do4

L1 := Open.pop()5

for L2 ∈ Open do6

// Merge and track accumulated error7

(f∗, ε̃) :=PairLeafApp(L1, L2)// Sec 3.28

f∗.error := ε̃+ max(f1.error , f2.error)9

// Keep merge if within error bounds10

if f∗.error < ε then11

ε̂ := max(ε̂, f∗.error)12

Open.remove(L2)13

// Replace leaves in X̂ and simplify14

X̂.f1 := f∗, X̂.f2 := f∗15

L1 :=〈φ1∨ φ2, f
∗〉// Keep merging L116

return (X̂, ε̂)// Comp. XADD and error used17

lating the amount of error ”used” in every merged leaf
and avoiding any merges that exceed a maximum error
threshold ε. However, we have not yet defined how to
find the lowest error approximation of a pair of leaves
in PairLeafApp, which we provide next.

3.2 Pairwise Leaf Approximation

In pairwise leaf merging, we must address the following
fundamental problem: given two XADD leaves rep-
resented by their case partitions L1 = 〈f1, φ1〉 and
L2 = 〈f2, φ2〉, our goal is to determine the best linear
case approximation of L1 and L2. As it must represent
L1 and L2, the solution must be defined in both regions
and is therefore of the form L∗ = 〈f∗, φ1 ∨ φ2〉. Since
we restrict to linear XADDs, then f1 = c1

T (xT , 1)T ,
f2 = c2

T (xT , 1)T and f∗ = c∗T (xT , 1)T (assuming
c1, c2, c

∗ ∈ Rm+1 where x ∈ Rm). Thus, our task
reduces to one of finding the optimal weight vector
c∗ which minimizes approximation error given by the
following bilinear saddle point optimization problem:

min
c∗

max
i∈{1,2}

max
x∈C(φi)

∣∣∣∣ ciT
[
x
1

]

︸ ︷︷ ︸
fi

− c∗T
[
x
1

]

︸ ︷︷ ︸
f∗

∣∣∣∣ (2)

This is bilinear due to the inner product of c∗ with x.

To better understand the structure of this bilinear sad-
dle point problem, we refer to Figure 4, which shows
on the left, two functions f1 and f2 and the respec-
tive single polytope regions C(φ1) and C(φ2) where
f1 and f2 are respectively valid. On the right, we
show a proposed approximating hyperplane f within

Figure 4: Illustration of the pairwise leaf approximation
problem: (left) the original linear leaf functions f1 and
f2 in their respective (single) polytope regions φ1 and φ2;
(right) a linear approximation f overlaid on f1 and f2 in
their regions showing errors at the polytope vertices.

the regions C(φ1) and C(φ2). Clearly we want to
choose the f∗ = f that minimizes the absolute dif-
ference between f and f1, f2 within their respective
polytopes. On account of this perspective and recall-
ing that C(φi) = {Polytope(θij)}j , we can rewrite (2)
as the following bi-level linear optimization problem:1

min
c∗,ε

ε (3)

s.t. ε ≥


max

x

∣∣∣∣ciT
[
x
1

]
− c∗T

[
x
1

]∣∣∣∣
s.t. x ∈ Polytope(θij)


 ;∀i ∈ {1,2},∀θij

While it may seem we have made little progress with
this rewrite of (2) — this still appears to be a diffi-
cult optimization problem, we can make an important
insight that allows us to remove the second stage of op-
timization altogether. While implicitly it appears that
the second stage would correspond to an infinite num-
ber of constraints — one for each x ∈ Polytope(θij),
we return to Figure 4. Since each of f , f1, and f2 are
all linear and C(φ1), C(φ2) represent (unions of) linear
convex polytopes, we know that the maximum differ-
ence between f and f1, f2 must occur at the vertices
of the respective polytope regions. Thus, denoting xk

ij

(k ∈ {1 . . . Nij}) as a vertex of the linear convex poly-
tope defined by θij , we can obtain a linear program
version of (2) with a finite number of constraints at
the vertices xk

ij of all polytopes:

min
c∗,ε

ε (4)

s.t. ε ≥
∣∣∣∣ciT

[
xk
ij

1

]
− c∗T

[
xk
ij

1

]∣∣∣∣ ;
∀i ∈ {1,2},∀θij ,
∀k ∈ {1 . . . Nij}

1To obtain a true bi-level linear program, we need two
separate second stage constraints to encode that ε is larger
than each side of the absolute value (the argument of the
absolute value and its negation), but this is a straightfor-
ward absolute value expansion in a linear program that we
will consider implicit to avoid notational clutter.
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Algorithm 2: PairLeafApp(L1, L2) −→ (c∗, ε)

c∗ := 0 // Arbitrarily initialize c∗1

ε∗ :=∞ // Initialize to invalid error2

C := ∅ // Start with an empty constraint set3

// Generate max error vertex constraints for c∗4

for i ∈ {1, 2}, θij ∈ C(φi) do5

6
xk
ij+

:= arg max
x

(
ci
T

[
x
1

]
− c∗T

[
x
1

])

s.t. x ∈ Polytope(θij)

xk
ij− := arg max

x

(
c∗T

[
x
1

]
− ci

T

[
x
1

])

s.t. x ∈ Polytope(θij)

C := C ∪ {ε>ci
T (xk

ij

T

+
, 1)T−c∗T (xk

ij

T

+
, 1)T }

C := C ∪ {ε>c∗T (xk
ij

T

−, 1)T−ciT (xk
ij

T

−, 1)T }7

// Re-solve LP with augmented constraint set8

(c∗, ε∗new ) := arg minc∗,ε ε subject to C9

if ε∗new 6= ε∗ then10

ε∗ := ε∗new , go to line 411

return (c∗, ε∗)// Best hyperplane and error12

Unfortunately, the drawback of this single linear pro-
gramming approach is that for Mij linear constraints
in Polytope(θij), the number of vertices of the polytope
may be exponential, i.e., Nij = O(expMij).

However, we make one final crucial insight: while we
may have an exponential number of constraints in (4),
we have a very efficient way to evaluate for a fixed solu-
tion c∗, the single point xk

ij in each Polytope(θij) with
max error — this is exactly what the second stage lin-
ear program in (3) provides. Hence, this suggests an
efficient constraint generation approach to solving (4)
that we outline in Algorithm 2. Beginning with an
empty constraint set, we iteratively add in constraints
for the polytope vertices xk

ij that yield maximal er-
ror for the current best solution c∗ (one constraint for
each side of the absolute value). Then we re-solve for
(c∗, ε∗) to see if the error has gotten worse; if not,
we have reached optimality since c∗ satisfies all con-
straints (vertices xk

ij not having constraints in C had
provably equal or smaller error than those in C) and
adding in all constraints could not reduce ε∗ further.

We conclude our discussion of PairLeafApp in Algo-
rithm 2 with a key observation: it will always termi-
nate in finite time with the optimal solution, since at
least two constraints are generated on every iteration
and there are only a finite number of possible polytope
vertices xk

ij for which to generate constraints. We later
demonstrate that PairLeafApp runs very efficiently in
practice indicating that it is generating only a small
subset of the possible exponential set of constraints.

4 Bounded Approximate Symbolic
Dynamic Programming

Having shown how to efficiently approximate XADDs
in Section 3, we switch to the main application fo-
cus of this work: finding bounded approximate solu-
tions for Hybrid MDPs (HMDPs). Specifically, in this
section, we build on the Symbolic Dynamic Program-
ming (SDP) [14; 17] framework for HMDPs that uses
the XADD data structure to maintain a compact rep-
resentation of the value function, extending it to al-
low next-state dependent rewards and synchronic arcs
in its transition function. In this work, we augment
SDP with a bounded value approximation step that we
will subsequently show permits the solution of HMDPs
with strong error guarantees that cannot be efficiently
solved exactly. We begin by formalizing an HMDP.

4.1 Hybrid Markov Decision Processes
(HMDPs)

In HMDPs, states are represented by variable assign-
ments. We assume a vector of variables (bT ,xT ) =
(b1, . . . , bn, x1, . . . , xm), where each bi ∈ {0, 1} (1 ≤
i ≤ n) is boolean and each xj ∈ R (1 ≤ j ≤ m) is con-
tinuous. We also assume a finite set of p parametrized
actions A = {a1(y1), . . . , ap(yp)}, where yk ∈ R|yk|

(1 ≤ k ≤ p) denote continuous parameters for respec-
tive action ak (often we drop the subscript, e.g., a(y)).

An HMDP model also requires the following: (i) a
joint state transition model P (b′,x′|b,x, a,y), which
specifies the probability of the next state (b′,x′) con-
ditioned on a subset of the previous and next state and
action a(y); (ii) a reward function R(b,x, a,y, b′,x′),
which specifies the immediate reward obtained by tak-
ing action a(y) in state (b,x) and reaching state
(b′,x′); and (iii) a discount factor γ, 0 ≤ γ ≤ 1.

A policy π specifies the action a(y) = π(b,x) to take
in each state (b,x). Our goal is to find an optimal
sequence of finite horizon-dependent policies Π∗ =
(π∗,1, . . . , π∗,H) that maximizes the expected sum of
discounted rewards over a horizon h ∈ H;H ≥ 0:

V Π∗(b,x) = EΠ∗

[
H∑

h=0

γh · rh
∣∣∣(b0,x0)

]
. (5)

Here rh is the reward obtained at horizon h following
Π∗ where we assume starting state (b0,x0) at h = 0.

HMDPs as defined above are naturally factored [3]

in terms of state variables (b,x); as such, transition
structure can be exploited in the form of a dynamic
Bayes net (DBN) [6] where the conditional probabili-
ties P (b′i| · · · ) and P (x′j | · · · ) for each next state vari-
able can condition on the action, current and next
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Algorithm 3: BASDP(HMDP, H, ε) −→ (V h, π∗,h)

begin1

V 0 := 0, h := 02

while h < H do3

h := h+ 14

foreach a ∈ A do5

Qha(y) := Regress(V h−1, a,y)6

Qha :=maxy Q
h
a(y) // Parameter max7

V h :=maxa Q
h
a // Max all Qa8

π∗,h := arg max(a,y) Q
h
a(y)9

V h = XADDComp(V h, ε)10

if V h = V h−1 then11

break // Stop if early convergence12

return (V h, π∗,h)13

end14

state. We allow synchronic arcs (variables that condi-
tion on each other in the same time slice) between any
pair of variables, binary b or continuous x so long as
they do not lead to cyclic dependencies in the DBN —
this leads to a natural topologically sorted variable or-
dering that prevents any variable from conditioning on
a later variable in the ordering. From these assump-
tions, we factorize the joint transition model as

P (b′,x′|b,x, a,y) =
n+m∏

k=1

P (v′k|b,x,v′<k, a,y)

where v′<k = (v′1, . . . , v
′
k−1), 1 ≤ k ≤ n+m.

The conditional probability functions P (b′i =
v′ki |b,x,v′<ki , a,y) for binary variables bi (1 ≤ i ≤ n)
can condition on state and action variables. For the
continuous variables xj (1 ≤ j ≤ m), we represent the
CPFs P (x′j = v′kj |b,x,v′<kj , a,y) with piecewise linear

equations (PLEs) satisfying three properties: (i) PLEs
can only condition on the action, current state, and
previous state variables, (ii) PLEs are deterministic
meaning that to be represented by probabilities they
must be encoded using Dirac δ[·] functions and (iii)
PLEs are piecewise linear, where the piecewise con-
ditions may be arbitrary logical combinations of the
binary variables and linear inequalities over the con-
tinuous variables. Numerous examples of PLEs will be
presented in the empirical results in Section 5.

While it is clear that our restrictions do not permit
general stochastic continuous transition noise (e.g.,
Gaussian noise), they do permit discrete noise in the
sense that P (x′j = v′kj |b,x,v′<kj , a,y) may condition

on b′, which are stochastically sampled according to
their CPFs. We note that this representation effec-
tively allows modeling of continuous variable transi-

Algorithm 4: Regress(V, a,y) −→ Q

begin1

Q = Prime(V ) // Rename all symbolic2

//variables bi → b′i and all xi → x′i
Q := R(b,x, a,y, b′,x′)⊕ (γ ·Q)3

// Any var order with child before parent4

foreach v′k in Q do5

if v′k = x′j then6

//Continuous marginal integration7

Q :=
∫
Q⊗ P (x′j |b,x,v′<k, a,y) dx′j8

if v′k = b′i then9

// Discrete marginal summation10

Q :=
[
Q⊗ P (b′i|b,x,v′<k, a,y)

]
|b′i=111

⊕
[
Q⊗ P (b′i|b,x,v′<k, a,y)

]
|b′i=0

return Q12

end13

tions as a mixture of δ functions, which has been used
frequently in previous exact continuous state MDP so-
lutions [7; 12].

We allow the reward function R(b,x, a,y, b′,x′) to be
a general piecewise linear function (boolean or linear
conditions and linear values) such as

R(b,x, a,y, b′,x′) =

{
b ∧ x1 ≤ x2+1 : 1− x′1 + 2x′2
¬b ∨ x1 > x2+1 : 3y + 2x2

The above transition and reward constraints ensure
that all derived functions in the solution of these
HMDPs will remain piecewise linear, which is essen-
tial for efficient linear XADD representation [14] and
for the XADD approximation techniques proposed in
Section 3.

4.2 Solution Methods

The algorithm we use for solving HMDPs is an ap-
proximate version of the continuous state and action
generalization of value iteration [2], which is a dynamic
programming algorithm for constructing optimal poli-
cies. It proceeds by constructing a series of h-stage-
to-go optimal value functions V h(b,x). Initializing
V 0(b,x) = 0, we define the quality Qha(b,x,y) of tak-
ing action a(y) in state (b,x) and acting so as to obtain
V h−1(b,x) thereafter as the following:

Qh
a(b,x,y) =

∑

b′

∫

x′

[
n+m∏

k=1

P (v′k|b,x,v′<k, a,y)· (6)

(
R(b,x, a,y, b′,x′) + γV h−1(b′,x′)

)]
dx′

Given Qha(b,x) for each a ∈ A, we can proceed to de-
fine the h-stage-to-go value function as the maximizing
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action parameter values y for the best action a in each
state (b,x) as follows:

V h(b,x) = max
a∈A

max
y∈R|y|

{
Qha(b,x,y)

}
(7)

If the horizon H is finite, then the optimal value
function is obtained by computing V H(b,x) and
the optimal horizon-dependent policy π∗,h at each
stage h can be easily determined via π∗,h(b,x) =
arg max(a,y)Q

h
a(b,x,y). If the horizon H = ∞ and

the optimal policy has finitely bounded value, then
value iteration can terminate at horizon h if V h =
V h−1; then V∞ = V h and π∗,∞ = π∗,h.

4.3 Bounded Approximate SDP (BASDP)

We will now define BASDP, our bounded approxi-
mate HMDP symbolic dynamic programming algo-
rithm. BASDP is provided in Algorithm 3 along with
a regression subroutine in Algorithm 4; BASDP is a
modified version of SDP [17] to support the HMDP
model with next-state dependent reward function and
synchronic arcs as defined previously along with the
crucial addition of line 10, which uses the XADDComp

compression method described in Section 3. Error
is cumulative over each horizon, so for example, the
maximum possible error incurred in an undiscounted
BASDP solution is Hε. All functions are represented
as XADDs, and we note that all of the XADD op-
erations involved, namely addition ⊕, multiplication
⊗, integration of Dirac δ functions, marginalization
of boolean variables

∑
bi

, continuous parameter max-
imization maxy and discrete maximization maxa, are
defined for XADDs as given by [14; 17]. For most
of these operations the execution time scales super-
linearly with the number of partitions in the XADD,
which can be greatly reduced by the XADDComp com-
pression algorithm. We empirically demonstrate the
benefits of approximation in the next section.

5 Empirical Results

In this section we wish to compare the scalability of
exact SDP (calling BASDP in Algorithm 4 with ε = 0)
vs. various levels of approximation error ε > 0 to
determine the trade-offs between time and space vs.
approximation error. To do this, we evaluated BASDP
on three different domains — Mars Rover1D, Mars
Rover2Dand Inventory Control— detailed next.

Mars Rover1D: A unidimensional continuous Mars
Rover domain motivated by Bresina et al [5] used in
order to visualize the value function and the effects of
varying levels of approximation. The position of the
rover is represented by a single continuous variable x
and the goal of the rover is to take pictures at specific
positions. There is only one action move(ax), where
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Figure 5: Value function at iteration 6 for
Mars Rover1D, showing how different levels of ap-
proximation error (eps) lead to different compressions.

ax is the movement distance. In the description of
the problem for the instance shown below, there are
two picture points and taking pictures is recorded in
two boolean variables (tp1 and tp2). The dynamics for
deterministic action move(ax) are as follows:

tp′1 =

{
tp1 ∨ (x > 40 ∧ x < 60) : 1.0

else : 0.0

tp′2 =

{
tp2 ∨ (x > −60 ∧ x < −40) : 1.0

else : 0.0

x′ = x+ ax

R = R1 +R2 − 0.1 ∗ |ax|

R1 =





(tp′1) ∧ (¬tp1) ∧ (x > 50) : 40− 0.2 ∗ (x− 50)

(tp′1) ∧ (¬tp1) ∧ (x < 50) : 40− 0.2 ∗ (50− x)

(tp′1) ∧ (tp1) : 1.1

else : −2

R2 =





(tp′2) ∧ (¬tp2) ∧ (x > −50) : 60− 0.2 ∗ (−x+ 50)

(tp′2) ∧ (¬tp2) ∧ (x < −50) : 60− 0.2 ∗ (x+ 50)

(tp′2) ∧ (tp2) : 1.2

else : −1

In Figure 5, we plot different value functions obtained
by compressing with different levels — we note that
in general larger ε results in a looser fit, but there are
exceptions, owing to the greedy nature of successive
pairwise merging for XADDs described in Section 3.

Mars Rover2D: In this multivariate version of a
Mars Rover domain the rover is expected to fol-
low a path. The position is represented by a pair of
continuous variables (x, y). There is only one action,
move(ax, ay), where |ax| < 10 and |ay| < 10. The new
position is given by (x′, y′) = (x+ ax, y+ ay). The re-
ward increases with x and decreases with the absolute
value of y, that is:

R =





(x>y + 25) ∧ (x>−y + 25) ∧ (y>0) : −10 + x− y
(x>y + 25) ∧ (x>−y + 25) ∧ (y<0) : −10 + x+ y

else : −1
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In Figure 6, we can clearly see the effect of compres-
sion. In the 3D plots, a much simpler surface is ob-
tained for the 5% error compression, and correspond-
ingly, in the diagrams, the number of nodes is greatly
reduced, which enables a much faster computation of
XADD operations and the bounded error solution.

Inventory Control: In an inventory problem [15],
we assume n continuous resources that can be bought
and sold. There are n order-i actions for each resource,
1 ≤ i ≤ n. The maximum amount of each resource
that is sold on one iteration depends on a stochastic
demand variable d that is true with 60% probability.
The reward is equal to the sum of the resources sold
in this iteration.The resource x′i for action order-i is
given by:

x′i =





(d′) ∧ (xi > 150) : xi + 200− 150

(d′) ∧ (xi < 150) : 200

(¬d′) ∧ (xi > 50) : xi + 200− 50

(¬d′) ∧ (xi < 50) : 200

and for other resources x′j , 1 ≤ j ≤ n, j 6= i:

x′j =





(d′) ∧ (xj > 150) : xj − 150

(d′) ∧ (xj < 150) : 0

(¬d′) ∧ (xj > 50) : xj − 50

(¬d′) ∧ (xj < 50) : 0

Figure 7 shows the time, space, and actual error of the
BASDP solutions vs. the exact solution for one Mars
Rover2D domain and one Inventory Control do-
main. In the space plots (left), we note how the ap-
proximation compresses the XADD significantly, even
for small ε. We witness approximately 10× savings in
time over the exact solution even for small ε and when
we examine the actual error (right) of the BASDP so-
lutions (compared to the exact solution), we see that
it tends to be less than 1

3 of the BASDP error bound.

6 Related Work

Boyan and Littman [4] presented the first exact solu-
tion for 1D continuous HMDPs with discrete actions,
linear reward and piecewise dynamics while Feng et
al [7] generalized this solution for a subset of mul-
tivariate HMDPs where all piecewise functions had
to have rectilinear piece boundaries (i.e., general lin-
ear inequalities like x + y > 0 where disallowed) and
actions were discrete. Li and Littman [10] extended
Feng et al’s model to the case of bounded approxima-
tion using rectilinear piecewise constant functions that
could not produce the low-error linear approximations
in Figures 1(a,b) or 3. In addition, all of these methods
could only provide (approximately) optimal solutions
for a rectilinear subset of discrete action HMDPs in
comparison to our more general setting of continuous
action HMDPs with linear piecewise dynamics and re-
wards building on the work of Zamani et al [17].

An alternative bounded error HMDP solution is the
phase-type approximation of Marecki et al [11] which
can arbitrarily approximate 1D continuous MDP so-
lutions but which does not extend to multivariate set-
tings or continuous actions. In an approximate linear
programming approach using basis functions, Kveton
et al [9; 8] explore bounded approximations and learn-
able basis functions for HMDPs but cannot provide a
priori guarantees on the maximum allowed error in a
solution as we can in our BASDP framework. Munos
and Moore [13] take a variable resolution discretiza-
tion approach to refining value functions and policies,
but these methods are based on rectilinear partitioned
kd-trees which can consume prohibitive amounts of
space to approximate the simple oblique piecewise lin-
ear function of Figure 2, represented exactly as a four
node XADD.

In an orthogonal direction to the work above, Meuleau
et al [12] investigate a search-based dynamic program-
ming solution to HMDPs that is restricted to optimal-
ity over a subset of initial states. We note that this
approach admits any dynamic programming backup
and value representation and hence can be combined
with BASDP and XADDs as proposed here — an in-
teresting avenue for future work.

7 Concluding Remarks

In this work, we introduced a novel bounded approx-
imate symbolic dynamic programming (BASDP) al-
gorithm for HMDPs based on XADD approximation,
where we contributed a bounded error compression
technique for XADDs involving the solution of a con-
strained bilinear saddle point problem. After exploit-
ing a number of key insights in the structure of this
problem, we were able to show that it could be solved
to optimality in finite time via constraint generation
in a linear programming framework (despite having an
apparent infinite set of potential constraints). Empiri-
cally, this BASDP solution yielded order-of-magnitude
speedups over the exact solution in exchange for a
small approximation error, thus vastly expanding the
range of HMDPs for which bounded error approximate
solutions are possible.
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(a) Value at 6th iteration for exact SDP.
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Figure 6: Value function at iteration 6 for the Mars Rover2Ddomain; (a) Exact value function; (b) Approximate value
function with error bounded 5% per iteration; (left) 3D Plots; (right) XADD Diagrams.
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Figure 7: Performance plots for Mars Rover2D and Inventory Control2 with 5 different relative errors (eps): (left)
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Abstract

Finding the most likely (MAP) configuration
of a Markov random field (MRF) is NP-hard
in general. A promising, recent technique
is to reduce the problem to finding a max-
imum weight stable set (MWSS) on a de-
rived weighted graph, which if perfect, al-
lows inference in polynomial time. We de-
rive new results for this approach, including a
general decomposition theorem for MRFs of
any order and number of labels, extensions
of results for binary pairwise models with
submodular cost functions to higher order,
and an exact characterization of which bi-
nary pairwise MRFs can be efficiently solved
with this method. This defines the power
of the approach on this class of models, im-
proves our toolbox and expands the range of
tractable models.

1 INTRODUCTION

Markov random fields (MRFs), also termed undirected
probabilistic graphical models, are a central tool in
machine learning with wide use in many areas includ-
ing speech recognition, vision and computational biol-
ogy. A model (V,Ψ) is specified by a set of n variables
V = {X1, . . . , Xn} together with (log) potential func-
tions over subsets c of V , Ψ = {ψc : c ∈ C ⊆ P(V )},
where P(V ) is the powerset of V . In this paper, each
variable Xi may take finite ki possible values which we
label {0, . . . , ki − 1}. Write x = (x1, . . . , xn) for one
particular complete configuration and xc for a config-
uration just of the variables in c. A potential function
ψc maps each possible setting xc of its variables c to a
real number ψc(xc).

Identifying a configuration of variables that is most
likely, termed maximum a posteriori or MAP infer-
ence, is very useful in many contexts, yet in general is

NP-hard (Shimony, 1994). In our notation this is the
combinatorial problem of identifying1

x∗ = arg max
x=(x1,...,xn)

∑

c∈C

ψc(xc). (1)

In general, an MRF may be considered a hypergraph
together with associated ψc functions (see section 2.1
for definitions). A popular alternative representation
is a factor graph, which is a bipartite graph where the
variables V form one stable partition and each c ∈ C
is a node in the other partition, with an edge from c to
each variable it contains. In the special case that all
variables Xi take values only in B = {0, 1}, the model
is said to be binary. If |c| ≤ 2 ∀c ∈ C then the model
is pairwise. Binary pairwise models play a key role in
computer vision both directly and as critical subrou-
tines in solving more complex problems (Pletscher &
Kohli, 2012). Note that it is possible to convert a gen-
eral MRF into an equivalent binary pairwise model
(Yedidia et al., 2001; Ravikumar & Lafferty, 2006),
though this may lead to a much larger state space.

1.1 RELATED WORK

It is well-known that the MAP estimate can be recov-
ered for junction trees and acyclic graphical models
using dynamic programming, junction tree algorithms,
as well as max-product message passing (Bertelé &
Brioschi, 1972; Pearl, 1988; Wainwright & Jordan,
2008). Such approaches hinge on the graph having
bounded dimension or low tree-width, which is indeed
the case for many useful Bayesian networks. Subse-
quently, graphical models with more general (and often
dense) topologies yet whose potentials are constrained
to be binary pairwise associative (ferromagnetic) func-
tions were shown to be solvable efficiently using graph-

1This formulation assumes each configuration has prob-
ability > 0. When this is not the case, typically 0 may be
replaced by a sufficiently small ǫ. Also cost functions are
the negative of our ψs, thus submodular cost functions are
equivalent to supermodular ψs.
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cuts or network flow (Greig et al., 1989; Boykov &
Kolmogorov, 2004). Many computer vision and im-
age processing problems can be handled by this class
of models. More recently, MAP estimation for cyclic
graphical models involving matching and b-matching
problems2 was shown to be solvable efficiently using
the max-product algorithm (Bayati et al., 2005; Huang
& Jebara, 2007; Sanghavi et al., 2008; Bayati et al.,
2008). In previous work, these three known cases were
all shown to compile to a maximum weight stable set
problem on a perfect graph, which is known to be solv-
able in polynomial time (Jebara, 2009; Jebara, 2012).
This paper derives new results for this approach, first
described in (Jebara, 2009; Sanghavi et al., 2009), and
examines which other models may be handled in this
manner.

An earlier method examining triangulated3 micro-
structure graphs was presented (Jégou, 1993) in the
context of constraint satisfaction problems (CSPs).
Valued CSPs (VCSPs) use soft constraints with ex-
plicit costs, and are closely related to MAP inference
problems. Many other techniques have been devel-
oped, including optimal soft arc consistency (Cooper
et al., 2010), belief propagation (Weiss et al., 2007)
and linear program relaxations (Sontag et al., 2008),
which may be considered to proceed through identify-
ing helpful reparameterizations (see section 2.5).

1.2 CONTRIBUTION AND SUMMARY

In section 2, we present important preliminary terms
and results from graph theory, and on the approach of
MAP inference via MWSS on a derived graph called
an NMRF (a nand Markov random field, see section
2.4). This reviews previous work and introduces some
novel concepts needed later.

In section 3 we derive a general decomposition theo-
rem for mapping MRFs to NMRFs, which can be used
to break apart a complex problem into smaller parts
that overlap only on single variables. In situations
where there are only a few of these overlapping vari-
ables, one could solve each subproblem and use a brute
force enumeration approach over all combinations of
the overlapping variables to find the global optimum,
but this is clearly exponential in the number of over-
lapping variables. Our approach, in contrast, runs in
polynomial time even for Ω(n) overlapping variables.
This general result applies for potential functions ψc

of any order, and variables with any number of labels.
Note that each subproblem could have high treewidth.

2These graphical models involve topological constraints
as well as various constraints on the potential functions
(not simply associativity or submodularity).

3Triangulated, or chordless, graphs are a subclass of
perfect graphs.

In section 4 we apply this general result specifically
to pairwise models, focusing on the binary case to de-
rive features of corresponding NMRFs. Applying these
results, we proceed in section 5 to build towards The-
orem 19, which provides a precise characterization of
which binary pairwise MRFs map to perfect NMRFs
for all valid ψc, and hence are amenable to this ap-
proach for efficient MAP inference.

In section 6 we explore a different direction, gener-
alizing the previous result (Jebara, 2012) that binary
pairwise MRFs with submodular cost functions can al-
ways be mapped to bipartite NMRFs (a special case of
perfect graphs, admitting faster inference). We show
that a bipartite pruned NMRF is obtained, for any
topology, for third order cost functions iff they are
submodular, and demonstrate that for interactions of
order ≥ 4, submodularity is a necessary but strictly
insufficient condition. Section 7 provides a conclusion
and outlines future work.

2 BACKGROUND

2.1 TERMS FROM GRAPH THEORY

We follow standard definitions and omit some familiar
terms, see (Diestel, 2010). A graph G(V,E) is a set of
vertices V , and edges E ⊆ V × V . Let n = |V | and
m = |E|. Throughout this paper, unless otherwise
specified, all graphs are finite and simple, that is a
vertex may not be adjacent to itself (no loops) and
each pair of vertices may have at most one edge (no
multiple edges).

The complete graph on n vertices, written Kn, has
all

(
n
2

)
edges. A path of length n is a graph Pn with

n edges connecting n + 1 vertices as v1 − v2 − · · · −
vn − vn+1. An induced subgraph H(U,F ) of a graph
G(V,E) is a graph on some subset of the vertices U ⊆
V , inheriting all edges with both ends in U , so F =
{(v, w) ∈ E : v, w ∈ U}. The union of two subgraphs,
H1(V1, E1) and H2(V2, E2) of a graph G(V,E), written
H1 +H2, is the induced subgraph of G on V1 ∪ V2.

A hypergraph (V,E) is a generalization of a graph
where the elements of E are any non-empty subsets
of V , not necessarily of size two. A general MRF may
be regarded as a hypergraph (V,C) together with func-
tions {ψc} ∀c ∈ C. For the special case of a pairwise
model, the structural relationships are naturally inter-
preted as a graph.

A graph is connected if there is a path connecting any
two vertices. A cut vertex of a connected graph G is
a vertex v ∈ V such that deleting v disconnects G.
A graph is 2-connected, equivalently biconnected, if it
is connected and contains no cut vertex. A block is
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a maximal connected subgraph with no cut vertex of
the subgraph. Every block is either K2 (two vertices
joined by an edge) or a maximal 2-connected subgraph
containing a cycle. Different blocks of G overlap on at
most one vertex, which must be a cut vertex. Hence
G can be written as the union of its blocks with every
edge in exactly one block. These blocks are connected
without cycles in the block tree for G.

A stable set in a graph is a set of vertices, no two of
which are adjacent. A weighted graph (V,E,w) is a
graph with a nonnegative real value for each vertex,
called its weight w(v). A maximum weight stable set
(MWSS) is a stable set with maximum possible weight.
A maximal maximum weight stable set (MMWSS) is
a MWSS of maximal cardinality (this is useful in our
context since, after reparameterization, we may have
many nodes with 0 weight, see sections 2.4 and 2.5).

A clique in a graph is a set of vertices, of which every
pair is adjacent. The clique number of a graph G,
written ω(G), is the maximum size of a clique in G.

The complement of a graph G(V,E) is the graph
Ḡ(V, F ) on the same vertices with an edge in F iff
it is not in E. Hence a clique is the complement of a
stable set and vice versa.

A coloring of a graph is a map from its vertices to the
integers (considered the colors of the vertices) such
that no two adjacent vertices share the same color.
The chromatic number of a graph G, written χ(G),
is the minimum number of colors required to color it.
Observe that clearly χ(G) ≥ ω(G) for any graph G.

A graph G is perfect iff χ(H) = ω(H) for all induced
subgraphs H of G. As examples, any bipartite or
chordal graph is perfect. Related concepts (see Theo-
rem 5) are: a hole in a graph G is an induced subgraph
which is a cycle of length ≥ 4 (note this means the cy-
cle must be chordless); an antihole is an induced sub-
graph whose complement is a hole. A hole or antihole
is odd if it has an odd number of vertices. Note that,
as a special case, a hole with 5 vertices is equivalent
to an antihole of the same size. It is easily shown that
odd holes and antiholes are not perfect.

2.2 FURTHER TERMS

This section may be skipped on a first reading, and
referred to later for definitions.

A clique group for a set of variables c is a clique in
an NMRF corresponding to all possible settings xc of
those variables of its MRF, see section 2.4.

An snode is a node in an NMRF relating to a setting
of a single variable from its MRF. Equivalently, it is a
node from a clique group deriving from c = {Xi} for

some i. An enode is a node from a clique group deriv-
ing from some c ∈ C with |c| ≥ 2. For example, when
considering binary pairwise models, an enode derives
from an edge of the MRF.

For a graph (V,E), if X ⊆ V and v ∈ V \X then v is
complete to X if v is adjacent to every member of X.
If X,Y ⊆ V are disjoint, then X is complete to Y if
every vertex in X is complete to Y .

A cutset S of a graph G is a set of vertices S ⊆ V (G)
s.t. G \ S is disconnected. A star-cutset S of G is a
cutset s.t. ∃ some x ∈ S s.t. x is complete to S \ {x}.
A signed graph (Harary, 1953) is a graph (V,E) to-
gether with one of two possible signs for each edge.
This is a natural structure when considering binary
pairwise models, where we characterize edges as either
associative or repulsive, see section 2.6. When dis-
cussing signed graphs, we use the notation ⊕ to show
an associative edge, and ⊖ for a repulsive edge. For
example, x⊕y⊖z is a graph with 3 vertices x, y and z,
and two edges, where x and y are adjacent via an asso-
ciative edge, and y and z are adjacent via a repulsive
edge.

A frustrated cycle in a signed graph is a cycle with an
odd number of repulsive edges.

A BR structure (see Figure 1 for an example) is a
signed graph over variables V with associative edges
EA and repulsive edges ER s.t. (V,ER) is bipartite and
∃ a disjoint bipartition V = V1∪V2 with all ER crossing
between the partitions V1 − V2, and no EA crossing
between them. Either EA or ER may be empty, so
for example, this includes any signed graph with only
associative edges.

x1

x2

x3

x4

x5

x6

Figure 1: A BR structure. Solid (dashed) edges are
associative (repulsive). Deleting any edges maintains
the BR property.

A Tm,n structure (see Figure 2 for an example) is a
2-connected signed graph containing m+ n ≥ 1 trian-
gles on a common base given by: 2 base vertices s, t
connected via a repulsive edge, so s⊖ t; together with
m ≥ 0 vertices ri, each adjacent only to s and t via
repulsive edges, so s ⊖ ri ⊖ t; and n ≥ 0 vertices ai,
each adjacent only to s and t via associative edges, so
s⊕ai⊕ t. Note Tm,n would be bipartite, with {s, t} as
one partition and all other vertices in the other, except
that we have the repulsive edge s⊖ t.
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s

t

r1r2 a1 a2 a3

Figure 2: A Tm,n structure with m = 2 and n = 3.
Solid (dashed) edges are associative (repulsive).

s

t

v1 v2 v3 v4 v5

Figure 3: A Un structure with n = 5. Solid (dashed)
edges are associative (repulsive).

A Un structure (see Figure 3 for an example) is a 2-
connected signed graph containing n ≥ 1 triangles on
a common base given by: 2 base vertices s, t connected
via an associative edge, so s ⊕ t; together with n ≥ 1
vertices vi, each adjacent only to s and t via one asso-
ciative and one repulsive edge (either way), so either
s⊕ vi ⊖ t or s⊖ vi ⊕ t.
Note that U1 is the same as T0,1 but this is the only
overlap. In Lemma 18, we show that Tm,n and Un

structures are the only 2-connected signed graphs con-
taining a frustrated cycle that map to a perfect NMRF.

2.3 PROPERTIES OF PERFECT GRAPHS

2.3.1 Complexity of MWSS

Our approach to MAP inference is to reduce the prob-
lem to finding a maximum weight stable set on a de-
rived weighted graph, as described in section 2.4. This
is helpful only if we can find a MWSS efficiently, yet
in general this is still an NP-hard problem for a graph
with N vertices. However, if the derived graph is per-
fect4, then a MWSS may be found in polynomial time
via the ellipsoid method (Grötschel et al., 1984).

Faster exact methods (Yildirim & Fan-Orzechowski,
2006) based on semidefinite programming are possible
in O(N6) and are improved using primal-dual methods
(Chan et al., 2009). Alternatively, linear programming
can solve MWSS problems but requires O(N3√nK)
time where nK is the number of maximal cliques in
the graph (Jebara, 2009; Jebara, 2012). Clearly, when-
ever nK is small, linear programming can be more ef-

4There are a few other classes of graphs that also admit
efficient MWSS, such as claw-free graphs, where significant
recent advances have been made (Faenza et al., 2011), but
so far these have not been useful in analyzing MRFs.

ficient than semidefinite programming. However, in
the worst case, nK may be exponentially large in N
which makes linear programming useful only in some
cases. Message-passing methods can also be applied
for finding the maximum weight stable set in a perfect
graph though they too become inefficient for graphs
with many cliques (Foulds et al., 2011; Jebara, 2012).

Where other methods exist for solving exact MAP
inference, the reduction to MWSS is typically not
the fastest method, yet there is hope for improve-
ment since the field is advancing rapidly, with signifi-
cant breakthroughs in recent years (Chudnovsky et al.,
2006; Faenza et al., 2011).

2.3.2 Other properties

There is a rich literature on perfect graphs. We high-
light key results used later in this paper.

Theorem 1 ((Gallai, 1962)). The graph obtained by
pasting two perfect graphs on a clique is perfect.

Theorem 2 ((Chvátal, 1985)). The graph obtained by
pasting two perfect graphs on a star-cutset is perfect.

Theorem 3 (Substitution Lemma, (Lovász, 1972)).
The graph obtained by substituting one perfect graph
for a vertex of another perfect graph is also perfect.

Here, substituting H for x in G means deleting x and
joining every vertex of H to those vertices of G which
were adjacent to x.

Theorem 4 (Weak Perfect Graph Theorem, (Lovász,
1972)). A graph is perfect iff its complement is perfect.

Theorem 5 (Strong Perfect Graph Theorem ‘SPGT’
(Chudnovsky et al., 2006)). A graph is perfect iff it
contains no odd hole or antihole.

2.4 MAP REDUCTION TO MWSS

Given an MRF model (V,Ψ), construct a nand Markov
random field (NMRF), see (Jebara, 2009):

• A weighted graphN(VN , EN , w) with vertices VN ,
edges EN and a weight function w : VN → R≥0.

• Each c ∈ C of the original model maps to a clique
group of N which contains one node for each pos-
sible configuration xc, all pairwise adjacent.

• Generally, nodes are adjacent iff they have incon-
sistent settings for any variable Xi.

• Nonnegative weights of each node in N are set
as ψc(xc) − minxc

ψc(xc), see section 2.5 for an
explanation of the subtraction.

See Figure 4 for an example. (Jebara, 2012) proved
that a maximal cardinality set of consistent config-
uration nodes in N with greatest total weight, i.e. a
MMWSS of N (see section 2.1), will identify a globally
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x1 x2 x3

x4

v00
21

v01
21

v10
21

v11
21

v00
23

v01
23

v10
23

v11
23

v00
24 v01

24

v10
24 v11

24

(a) Input MRF (b) Derived NMRF

Figure 4: An example of mapping an MRF with binary
variables (shown as a factor graph) to an NMRF (sub-
scripts denote the factor variables c and superscripts
denote the configuration xc).

consistent configuration of all variables of the original
MRF that solves the MAP inference problem (1).

Sketch proof: (Slightly different to (Jebara, 2012), this
will allow us to extend the result after discussing prun-
ing in section 2.5.) A MMWSS S is consistent by con-
struction and clearly contains at most one node from
each clique group. It remains to show it has at least
one from each clique group. Suppose a clique group
has no representative. Identify a member of this group
which could be added to S, establishing a contradic-
tion since S is maximal, as follows: the group overlaps
with some variables of S, copy the settings of these;
for all other variables in the group, pick any setting.
Note that if we do not insist on a maximal MWSS,
it is possible that we do not get a representative for
some clique groups and hence do not obtain a complete
MAP configuration for the initial MRF.

2.5 REPARAMETERIZATIONS AND
PRUNING

A reparameterization is a transformation

{ψc} → {ψ′
c} s.t. ∀x,

∑

c∈C

ψc(xc)=
∑

c∈C

ψ′
c(xc)+constant.

This clearly does not modify (1) but can be helpful to
simplify the problem.

One particular reparameterization is to add a constant
just to any ψc function, since any consistent configura-
tion has exactly one setting for each group of variables
c. Hence we may subtract the minimum ψc(xc) and
assume that in each clique group of N , the minimum
weight of a node is exactly zero. The earlier reduction
result in section 2.4 holds provided we insist on a max-
imal MWSS. To find a MMWSS, it is sufficient first to
remove or prune the zero weight nodes, find a MWSS

on the remaining graph, then reintroduce a maximal
number of the zero weight nodes while maintaining
stability of the set. Different reparameterizations will
yield different pruned NMRFs. By the earlier argu-
ment: MWSS will find one member from each of some
of the clique groups, then we can always find one of
the zero weight nodes to add from each of the remain-
ing groups using any greedy method. Hence we have
shown the following result.

Lemma 6. MAP inference on an MRF is tractable
provided ∃ an efficient reparameterization s.t. the
MRF maps to a perfect pruned NMRF.

2.6 SINGLETON TRANSFORMATIONS,
BINARY PAIRWISE MRFS AND
ASSOCIATIVITY

Another useful reparameterization is what we term
a singleton transformation, which is a change in one
or more ψ functions for a single variable, with corre-
sponding changes to a higher order term which brings
it to a convenient form.

Considering binary pairwise models only, it is easily
shown that a reparameterization of an edge via single-

ton transformations,

(
ψ00 ψ01

ψ10 ψ11

)
→

(
ψ′

00 ψ′
01

ψ′
10 ψ′

11

)
is

valid iff ψ00 +ψ11−ψ01−ψ10 = ψ′
00 +ψ′

11−ψ′
01−ψ′

10.
Hence this quantity, which we call the associativity of
the edge, is invariant with respect to any singleton
transformation, and thus is well defined.

We describe an edge as either associative5, in which
case it tends to pull its two end vertices toward the
same value, or repulsive, in which case it tends to push
its two end vertices apart to different values, accord-
ing to whether its associativity is > 0 or < 0. An
edge with 0 associativity may be removed since we
may transform its edge potential to the zero matrix.
A binary pairwise model is associative iff every one of
its edges is associative.

An associative edge may be reparameterized s.t. three
of its entries are 0, and therefore may be pruned, leav-
ing only either ψ′

00 or ψ′
11 (or both, though for our

purposes of mapping to a perfect NMRF, it is always
easier to prune more nodes) with a positive value. Sim-
ilarly, we may reparameterize a repulsive edge x⊖y to
leave only a (x = 0, y = 1) or (x = 1, y = 0) node.6

5Other equivalent terms used are attractive, ferro-
magnetic or regular. This is equivalent to ψ for the edge
being supermodular, or having submodular cost function.

6For repulsive edges, selecting one or other form is ex-
actly analogous to choosing an orientation of the edge,
x → y or x ← y. Further, such enodes from repulsive
edges are adjacent iff their directed edges connect ‘head
to tail’, hence the induced subgraph of an NMRF on these
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2.7 SINGLETON CLIQUE GROUPS

Since typically we would like to allow any finite values
for singleton potential functions, and singleton trans-
formations as described in section 2.6 without restric-
tion, in this paper we assume that any NMRF includes
the complete clique group for each of the single vari-
ables of its MRF. In particular contexts, however, one
may drop this requirement, and since this would re-
move nodes from the NMRF, it can only help to show
perfection (any induced subgraph of a perfect graph is
perfect), though then sometimes care must be taken
to confirm the decomposition result of Theorem 7.

3 NEW RESULTS FOR ALL MRFS

Theorem 7 (MRF Decomposition). If
MRFA(VA,ΨA) and MRFB(VB ,ΨB) both map
to perfect NMRFs NA and NB, and have exactly one
variable s in common, i.e. VA∩VB = {s}, with consis-
tent ψs, then the combined MRF ′(VA ∪ VB ,ΨA ∪ΨB)
maps to an NMRF N ′ which is also perfect. The
converse is true by the definition of perfect graphs.

Proof. 7 See section 2.2 for notation. We may assume
both ΨA and ΨB contain the same ψs forming the
complete s clique group Ks in NA and NB (see section
2.7, though in fact this Theorem holds more generally,
provided only that both NA and NB have the same
nodes from the clique group for s).

Let the possible values of s be {0, . . . , k−1}, and si be
the snode corresponding to (s = i). Let Ai be all those
vertices of NA\{si} which have setting s = i, similarly
define Bi for NB . Observe that Ai is complete to Aj

for all i 6= j, and similarly for Bi. N ′ is the result
of pasting NA and NB on Ks, together with all edges
from Ai to Bj if i 6= j.

Hence N ′ admits a star-cutset given by X = Ks+A1+
· · ·+Ak +B1 + · · ·+Bk with s0 complete to X \ {s0}.
Thus by Theorem 2, it is sufficient to show thatNA+X
and NB + X are each perfect. But this is true by
Theorem 3, since NA +X = NA +B1 + · · ·+Bk may
be obtained from NA by substituting (via Theorem 3)
Bi + si for si, i = 1, . . . , k; and similarly for NB .

3.1 BLOCK DECOMPOSITION

Theorem 7 is a powerful tool for analyzing MRFs of
any order and number of labels. As a special case, we
have an immediate corollary.

repulsive enodes is exactly a directed line graph of (V,ER).
7This proof, due to Maria Chudnovsky, is shorter and

neater than the authors’ original.

Theorem 8. A pairwise MRF maps to a perfect
NMRF for all valid ψ iff each of its blocks maps to
a perfect NMRF.

This provides an elegant way to derive a previous re-
sult (Jebara, 2009):

Theorem 9. A pairwise MRF whose graph structure
is a tree (i.e. no cycles) maps to a perfect NMRF.

Proof. By Theorem 8, we need only consider one edge
together with its two end vertices (then use induction).
The edge clique group together with each one of the
singleton clique groups is the complement of a bipar-
tite graph, hence is perfect (by Theorem 4). Now paste
the two together on the edge clique group to show the
whole is perfect (by Theorem 1).

We show the following further general result.

Lemma 10. Neither an odd hole H nor an odd anti-
hole A in a NMRF can contain ≥ 2 members, say s1
and s2, of any singleton clique group.

Proof. In H, s1 and s2 must be next to each other,
then moving out round H one node in each direction,
we cannot avoid a chord, contradiction. In A, there
must be at least 2 nodes between s1 and s2 in at least
one direction. Taking this way round A, the node next
to s1 must be adjacent to s2 but not s1, so has setting
s = 1. Continuing round A, the next node must be
adjacent to s1, so must have an s value 6= 1 but then
it is adjacent to its predecessor, contradiction.

4 NEW RESULTS FOR BINARY
PAIRWISE MRFS

Lemma 11. Let M be a binary pairwise MRF. ∃
a reparameterization s.t. M maps to perfect pruned
NMRF ⇔ ∃ a reparameterization with just one enode
per edge in the pruned NMRF which is perfect.

Proof. (⇐) is clear. (⇒) see section 2.6. With a stan-
dard reparameterization, we may always achieve just
one pruned enode (either 00 or 11 for associative, 01 or
10 for repulsive) from those already present. The re-
sult follows from the definition of a perfect graph.

Therefore henceforth, when referring to a pruned
NMRF of a binary pairwise MRF, we may assume just
one enode per edge.

Lemma 12. An antihole A of size ≥ 7 can never occur
in a pruned NMRF N from a binary pairwise MRF M.

Proof. Suppose A exists containing an snode, WLOG
say s0. This must be adjacent to ≥ 4 nodes in A, all
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of which must have s = 1 settings. The 2 closest to
s0 around A one way must both be adjacent to the
closest to s0 around A the other way, which cannot
be achieved, hence A must contain only enodes. By
Lemma 11, we have only one enode per edge of M .
Two enodes are adjacent in N if they have one end in
common with different settings - since only 2 settings
are possible, a triangle in N must derive from edges in
M that formed a triangle. Given 2 enodes which are
adjacent, there is exactly one possible third enode with
which they can form a triangle (e.g. for s0t1 and t0u0,
s1u1 is the unique third possible enode). Yet A must
contain ≥ 2 triangles which have the same 2 members
but a different third member, contradiction.

Since an antihole of size 5 is equivalent to a hole of the
same size, SPGT (Theorem 5) gives the following.

Lemma 13. For a binary pairwise MRF, a pruned
NMRF is perfect ⇔ it contains no odd hole.

5 WHICH BINARY PAIRWISE
MRFS YIELD PERFECT NMRFS

By Theorem 8, we need only consider 2-connected
graphs G (considering both associative and repulsive
edges), and by Lemma 13 we need only check for odd
holes. G either contains a frustrated cycle or does not.
If it does, we shall see that G must have the form Tm,n

or Un. If not, we show G must have the form BR. See
section 2.2 for definitions.

Lemma 14 ((Harary, 1953)). The following are equiv-
alent properties for a signed graph G on vertices V :

1. G contains no frustrated cycle
2. G is of the form BR

3. G is flippable to fully associative

(1)⇔(2) by a variant of the standard proof that a
graph is bipartite iff it has no odd cycle, considering
repulsive edges. (3) means ∃ some subset S ⊆ V s.t.
if we replace each Xi ∈ S by Yi = 1−Xi, and modify
potential functions accordingly, thereby flipping the
nature of each edge incident to Xi between associa-
tive and repulsive, then all edges of G can be made
associative. (2)⇔(3) by setting S as either partition.

Theorem 15. A binary pairwise MRF with the form
BR maps efficiently to a bipartite NMRF N .

Proof. Let the partitions of the variables be S and
T with snodes {s0i , s1i } from S, and {t0j , t1j} from T .
Choose a reparameterization s.t. any associative edge
x ⊕ y maps to an enode (x = 0, y = 0), and for any
repulsive edge pick either form. Hence in N we have:

{ei} associative enodes from S, form (si = 0, sj = 0),

{fi} associative enodes from T , form (ti = 0, tj = 0),
{ai} repulsive enodes S → T , form (si = 0, tj = 1),
{bi} repulsive enodes S ← T , form (si = 1, tj = 0).

Observe N is bipartite with partitions {ai, s
0
i , t

1
j , ei}

and {bi, s1i , t0j , fi}.

We now explore the case that G has a frustrated cycle.

Lemma 16. Any cycle C in a binary pairwise MRF
generates an induced (chordless) cycle H in its NMRF
N with size at least as great, and with the same parity
(odd/even number of vertices) as the number of repul-
sive edges (odd/even) in the MRF’s cycle.
In particular, if M contains any frustrated cycle with
≥ 4 edges, or with 3 edges requiring any snode to link
the enodes in N , then this maps to an odd hole in N .

Proof. By Lemma 11, we may assume just one enode
in N per edge in G. Form a cycle H in N using the
enodes corresponding to the edges of C, together with
connecting snodes as required (if two enodes meet at
a variable and have the same setting, add an snode
with the opposite setting). Clearly H is chordless and
|H| ≥ |C|.
Pick some enode e1 and orientation around H. Con-
sider the end parity of e1, that is the setting for the
next variable around H. For subsequent enodes, to
maintain end parity requires an even (odd) total num-
ber of nodes , including possible snodes, for associative
(repulsive) edges, and the reverse to flip end parity.
Let am and af be the number of times end parity is
maintained and flipped respectively using all associa-
tive edges around H, and similarly define rm and rf
for all repulsive edges. In order to connect to the other
end of e1 after traversing H requires in total (including
e1) an odd number of flips, hence af +rf ≡ 1 (mod 2).
The total number of nodes in H is comprised of the
first enode together with all subsequent nodes, hence

|H| ≡ 1 + 0.am + 1.af + 1.rm + 0.rf (mod 2)

≡ af + rm + 1 (mod 2) ≡ rf + rm (mod 2).

Using Lemmas 13 and 16 we show the following result.

Lemma 17. Let M be a binary pairwise MRF that
maps to an NMRF N . If N is not perfect then ∃ a
frustrated cycle in M that maps to an odd hole in N .
Hence, N is perfect ⇔ ∄ such a cycle in M .

Proof. By Lemma 13, N contains an odd hole H. By
Lemma 10, any snode in H is adjacent to two enodes,
and hence H must have derived from a cycle in M .
Lemma 16 completes the proof.

Lemma 18. The only 2-connected binary pairwise
MRFs containing a frustrated cycle, that map to a per-
fect NMRF, are of the form Tm,n or Un.
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Proof. See section 2.2 for definitions. By Lemmas 16
and 17, we need only consider a frustrated triangle in
M whose enodes in N require no connecting snodes.
This triangle may have either (1) one repulsive and
two associative edges, which we shall show must be of
the form Un or Tm,n with n ≥ 1, or (2) three repulsive
edges, which we shall show must be of the form Tm,n.

It is simple to check that, in either case, a fourth vertex
adjacent to all 3 vertices of the triangle, resulting in
a K4 clique, does not admit a reparameterization that
avoids a frustrated cycle requiring connecting snodes.

Case 1: Triangle with one repulsive edge. We have
a U1 structure. Let the configuration in the MRF be
s⊕t⊖v1⊕s. In order to avoid connecting snodes in N ,
we must have one of the following two reparameteriza-
tions: {(s = 0, t = 0), (t = 1, v1 = 0), (v1 = 1, s = 1)}
or {(s = 1, t = 1), (t = 0, v1 = 1), (v1 = 0, s = 0)}.
Once one edge has been selected, the others can fol-
low in only one way. Consider what may be added to
this graph while remaining 2-connected and avoiding
a frustrated cycle with ≥ 4 edges. Any additional ver-
tex v2 must be attached by disjoint paths to at least
2 vertices x and y of the triangle. If either path has
length ≥ 2 then, by choosing one or other path in the
original U1 from x to y, we always find a frustrated cy-
cle with ≥ 4 edges, leading to an odd hole. Using the
argument from the preceding paragraph, v2 must be
adjacent to exactly 2 vertices of U1. If these vertices
are connected by an associative edge, we now have U2;
otherwise we have T0,2. Checking cases now shows
that the only way to add further vertices results in Un

or Tm,n structures, with any m ≥ 0, n ≥ 1 allowed.

Case 2: Triangle with three repulsive edges. We have
T1,0. Similar reasoning to case 1 shows that the only
possibilities are Tm,n for any m ≥ 1, n ≥ 0.

Taking the results of this section together, we have the
following characterization.

Theorem 19. A binary pairwise MRF maps to a per-
fect NMRF for all valid ψc iff each of its blocks (using
all edges) has the form BR, Tm,n or Un.

5.1 REMARKS

Theorem 19 certainly has theoretical value in estab-
lishing the boundaries of the MWSS approach for this
class of MRFs. Further, it broadens the landscape of
tractable models. Each of the three block categories is
itself tractable by other methods in isolation: QPBO
(Rother et al., 2007) is guaranteed to be able to han-
dle a BR structure (though not Tm,n or Un), or indeed
a BR structure may be flipped to yield a fully asso-
ciative model which can be solved with any appropri-
ate technique such as graph cuts; and each Tm,n or

Un has low tree width so admits traditional inference
methods. To our knowledge, however, our approach
is the first to be able to handle an MRF containing
Ω(n) of these structures, including high tree width BR

sections, automatically in polynomial time.

5.1.1 Efficient Detection

Detecting if a binary pairwise MRF with topology
(V,E) satisfies our conditions may be performed in
time O(|E|): identifying block structure is an applica-
tion of DFS, then each block type may be efficiently
checked. The Tm,n and Un structures are straightfor-
ward. For BR, first test if it is bipartite using just ER

(an application of BFS). Next check each component
by ER to see that no EA cross partitions. Then stitch
together partitions from different components (if more
than one) using EA. If any EA cross partitions then
it is easy to see ∃ a frustrated cycle with ≥ 4 edges
which would lead to an odd hole in the NMRF.

6 HIGHER ORDER SUBMODULAR

As noted in the introduction, (Jebara, 2012) has shown
that a fully associative binary pairwise model, which
is equivalent to a model with supermodular pairwise
ψ functions (submodular cost functions), can always
be reparameterized so as to yield a bipartite pruned
NMRF. Indeed, we have seen in section 2.6 that, for
each associative edge x ⊕ y, one may reparameterize
and prune the edge clique group so as to leave only
either form (x = 0, y = 0) or (x = 1, y = 1). Here
we extend the analysis to consider higher order mod-
els, still focusing on submodular cost functions over
binary variables. We shall show that for potentials
over 3 variables, a bipartite pruned NMRF is obtained
for any topology iff all cost functions are submodular.
Further, we show that submodularity is a necessary
but strictly insufficient condition to obtain a bipartite
pruned NMRF for all orders higher than 3.

Considering other approaches, this is similar to the re-
sult of (Zivny et al., 2009) that all order 3 submodular
functions over Boolean variables can be represented
by order 2 submodular functions using auxiliary vari-
ables, but this is not always true when the order > 3.
Also, (Kolmogorov & Zabih, 2004) showed that sub-
modularity was necessary for a function to be graph-
representable. However, (Arora et al., 2012) recently
demonstrated a novel graph cuts method for submod-
ular cost functions of any order8 over binary variables.
Still, our result usefully clarifies the boundaries of our
approach if we restrict to bipartite NMRFs only, and
there is hope yet that a broader class of models may

8The time is exponential in the order of the potentials.
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map to the wider class of perfect NMRFs.

6.1 NOTATION

Let ψ be an order k potential function over k binary
variables X = {X1, . . . , Xk}. Let one setting be x =
(x1, . . . , xk). Let x − ij be a setting for all variables
other thanXi andXj . Let ψx = ψ(X = x). Define the
supermodularity s of ψ wrt Xi, Xj on the projection

given by x−ij, as sij
x−ij = ψ(Xi = 0, Xj = 0)+ψ(Xi =

1, Xj = 1) − ψ(Xi = 1, Xj = 0) − ψ(Xi = 0, Xj = 1)
where all other variables in X \{Xi, Xj} are held fixed
at x− ij.
Define αk =

∑
all 2k settings of x(−1)#0s in xψx. Ob-

serve that for k = 2, this is the supermodularity s
term. For k = 3, this is the difference between s with
(any) one variable set to 0 and that with the same
variable set to 1. For k = 4, we have the sum of two s
terms minus two others, etc.

∀Y ⊆ P(X), let OY and IY be weighted indicator
functions. The O functions are 0 unless all of Y are 0.
The I functions are 0 unless all of Y are 1. Otherwise,
OY and IY take values ZY and AY , respectively. Y = b
means fix variables Y at value b where b ∈ B = {0, 1}.
In order to map to a bipartite pruned NMRF for any
topology at order k, we must be able to represent every
ψx as the sum of a constant term and nonnegative9 O
and I indicator functions over all subsets of X, which
correspond exactly to the nodes in the pruned NMRF
(which is then clearly bipartite with stable sets corre-
sponding to the {OY } and {IY }).

6.2 RESULTS

Theorem 20. For k ≥ 2, mapping to a bipartite
pruned NMRF for any topology ⇒ ψ is supermodular,
equivalently every projection of ψ onto two variables is
supermodular.

Proof. Given the ψx representation from the previous
paragraph, consider which AY , ZY terms survive when
a general supermodularity term sij

x−ij is computed.
For some Y , analyze AY terms (a similar result holds
for ZY terms): Y will include either none, one or two
of the variables {Xi, Xj}. Consider the cases: If none,

then AY does not feature in the sij
x−ij computation.

If one, then we get plus AY (from the Xi = Xj = 1
term) minus AY (from the appropriate other term), so
they cancel. Finally, if two, then we simply get plus
the AY term. Hence for every sij

x−ij , it must be equal
to the sum of some AYi

and ZYj
terms, all of which

9It is critical that the functions be nonnegative in order
that the corresponding nodes in the NMRF are the only
ones not pruned.

are constrained to be ≥ 0. Hence all supermodularity
terms are ≥ 0.

Further, for k = 4, it is easily checked that αk = AX +
ZX , where we require AX , ZX ≥ 0, yet it also equals
sij

x−ij=00 + sij
x−ij=11 − sij

x−ij=01 − sij
x−ij=10 (for any 2

variables Xi, Xj), which may be positive but equally
may be negative.10 Similarly for all k > 4, we are not
able to represent all supermodular ψ functions.

Theorem 21. For general interactions over k = 3
variables, ψ is supermodular ⇔ we obtain a bipartite
pruned NMRF for any topology.

Proof. (⇐) follows from Theorem 20. (⇒) we provide
a constructive proof:11

If αk ≥ 0, use only OY for |Y | ≥ 2. Set ZX = αk.
For |Y | = 2, set ZY = sY

1 . For |Y | = 1, set ZY =
ψ(Y = 0, (X \ Y ) = 1)−ψ111. Set constant to ψ111 to
observe we match ψx values ∀x. Now reparameterize
all singleton terms and prune as usual, see section 2.5.

If αk ≤ 0, use only IY for |Y | ≥ 2. Set AX = −αk. For
|Y | = 2, set AY = sY

0 . For |Y | = 1, set AY = ψ(Y =
1, (X \ Y ) = 0) − ψ000. As before, set constant to
ψ000 to check values, then reparameterize all singleton
terms and prune, see section 2.5.

7 CONCLUSIONS

The MWSS approach to MAP inference is an exciting,
recent approach, leveraging the rapid progress in com-
binatorics. Here we have derived new general tools
(section 3), defined the scope of the approach in an
important, broad setting (sections 4 and 5), where we
were able to extend the range of known tractable mod-
els, and clarified the power of mapping to bipartite
NMRFs (section 6).

Future areas to explore include non-bipartite perfect
NMRFs for higher order potentials, and variables with
a greater number of labels.
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10An example of supermodular ψ for k = 4 where αk < 0:
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Abstract

Document clustering and topic modeling are
two closely related tasks which can mutu-
ally benefit each other. Topic modeling
can project documents into a topic space
which facilitates effective document cluster-
ing. Cluster labels discovered by document
clustering can be incorporated into topic
models to extract local topics specific to each
cluster and global topics shared by all clus-
ters. In this paper, we propose a multi-grain
clustering topic model (MGCTM) which inte-
grates document clustering and topic model-
ing into a unified framework and jointly per-
forms the two tasks to achieve the overall best
performance. Our model tightly couples two
components: a mixture component used for
discovering latent groups in document col-
lection and a topic model component used
for mining multi-grain topics including local
topics specific to each cluster and global top-
ics shared across clusters. We employ varia-
tional inference to approximate the posterior
of hidden variables and learn model param-
eters. Experiments on two datasets demon-
strate the effectiveness of our model.

1 INTRODUCTION

In the text domain, document clustering (Aggarwal
and Zhai, 2012; Cai et al., 2011; Lu et al., 2011; Ng
et al., 2002; Xu and Gong, 2004; Xu et al., 2003) and
topic modeling (Blei et al., 2003; Hofmann, 2001) are
two widely studied problems which have many appli-
cations. Document clustering aims to organize similar
documents into groups, which is crucial for document
organization, browsing, summarization, classification

∗The work is done while Pengtao Xie was visiting
Carnegie Mellon University.

and retrieval. Topic modeling develops probabilistic
generative models to discover the latent semantics em-
bedded in document collection and has demonstrated
vast success in modeling and analyzing texts.

Document clustering and topic modeling are highly
correlated and can mutually benefit each other. On
one hand, topic models can discover the latent seman-
tics embedded in document corpus and the semantic
information can be much more useful to identify doc-
ument groups than raw term features. In classic doc-
ument clustering approaches, documents are usually
represented with a bag-of-words (BOW) model which
is purely based on raw terms and is insufficient to cap-
ture all semantics. Topic models are able to put words
with similar semantics into the same group called topic
where synonymous words are treated as the same. Un-
der topic models, document corpus is projected into a
topic space which reduces the noise of similarity mea-
sure and the grouping structure of the corpus can be
identified more effectively.

On the other hand, document clustering can facilitate
topic modeling. Specifically, document clustering en-
ables us to extract local topics specific to each docu-
ment cluster and global topics shared across clusters.
In a collection, documents usually belong to several
groups. For instance, in scientific paper archive such as
Google Scholar, papers are from multiple disciplines,
such as math, biology, computer science, economics.
Each group has its own set of topics. For instance,
computer science papers cover topics like operating
system, network, machine learning while economics
papers contain topics like entrepreneurial economics,
financial economics, mathematical economics. Besides
group-specific topics, a common set of global topics are
shared by all groups. In paper archive, papers from all
groups share topics like reviewing related work, report-
ing experimental results and acknowledging financial
supports. Clustering can help us to identify the la-
tent groups in a document collection and subsequently
we can identify local topics specific to each group and
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global topics shared by all groups by exploiting the
grouping structure of documents. These fine-grained
topics can facilitate a lot of utilities. For instance,
we can use the group-specific local topics to summa-
rize and browser a group of documents. Global topics
can be used to remove background words and describe
the general contents of the whole collection. Standard
topic models (Blei et al., 2003; Hofmann, 2001) lack
the mechanism to model the grouping behavior among
documents, thereby they can only extract a single set
of flat topics where local topics and global topics are
mixed and can not be distinguished.

Naively, we can perform these two tasks separately.
To make topic modeling facilitates clustering, we can
first use topic models to project documents into a
topic space, then perform clustering algorithms such
as K-means in the topic space to obtain clusters. To
make clustering promotes topic modeling, we can first
obtain clusters using standard clustering algorithms,
then build topic models to extract cluster-specific lo-
cal topics and cluster-independent global topics by in-
corporating cluster labels into model design. However,
this naive strategy ignores the fact that document clus-
tering and topic modeling are highly correlated and fol-
low a chicken-and-egg relationship. Better clustering
results produce better topic models and better topic
models in turn contribute to better clustering results.
Performing them separately fails to make them mu-
tually promote each other to achieve the overall best
performance.

In this paper, we propose a generative model which
integrates document clustering and topic modeling to-
gether. Given a corpus, we assume there exist several
latent groups and each document belongs to one la-
tent group. Each group possesses a set of local topics
that capture the specific semantics of documents in
this group and a Dirichlet prior expressing preferences
over local topics. Besides, we assume there exist a
set of global topics shared by all groups to capture
the common semantics of the whole collection and a
common Dirichlet prior governing the sampling of pro-
portion vectors over global topics for all documents.
Each document is a mixture of local topics and global
topics. Words in a document can be either generated
from a global topic or a local topic of the group to
which the document belongs. In our model, the la-
tent variables of cluster membership, document-topic
distribution and topics are jointly inferred. Cluster-
ing and modeling are seamlessly coupled and mutually
promoted.

The major contribution of this paper can be summa-
rized as follows

• We propose a unified model to integrate document

clustering and topic modeling together.

• We derive variational inference for posterior infer-
ence and parameter learning.

• Through experiments on two datasets, we demon-
strate the capability of our model in simultane-
ously clustering document and extracting local
and global topics.

The rest of this paper is organized as follows. Sec-
tion 2 reviews related work. In Section 3, we propose
the MGCTM model and present a variational inference
method. Section 4 gives experimental results. Section
5 concludes the paper and points out future research
directions.

2 RELATED WORK

2.1 DOCUMENT CLUSTERING

Document clustering (Aggarwal and Zhai, 2012; Cai
et al., 2011; Lu et al., 2011; Ng et al., 2002; Xu and
Gong, 2004; Xu et al., 2003) is a widely studied prob-
lem with many applications such as document orga-
nization, browsing, summarization, classification. See
(Aggarwal and Zhai, 2012) for a broad overview. Pop-
ular clustering methods such as K-means and spectral
clustering (Ng et al., 2002; Shi and Malik, 2000) in
general clustering literature are extensively used for
document grouping.

Specific to text domain, one popular paradigm of
clustering methods is based on matrix factoriza-
tion, including Latent Semantic Indexing (LSI) (Deer-
wester et al., 1990), Non-negative Matrix Factorization
(NMF) (Xu et al., 2003) and Concept Factorization
(Cai et al., 2011; Xu and Gong, 2004). The basic idea
of factorization based methods is to transform docu-
ments from the original term space to a latent space.
The transformation can reduce data dimensionality,
reduce the noise of similarity measure and magnify the
semantic effects in the underlying data (Aggarwal and
Zhai, 2012), which are beneficial for clustering.

Researchers have applied topic models to cluster docu-
ments. (Lu et al., 2011) investigated clustering perfor-
mance of PLSA and LDA. They use LDA and PLSA to
model the corpus and each topic is treated as a cluster.
Documents are clustered by examining topic propor-
tion vector θ. A document is assigned to cluster x if
x = argmaxjθj .

2.2 TOPIC MODELING

Topic models (Blei et al., 2003; Hofmann, 2001) are
probabilistic generative models initially created to

695



model texts and identify latent semantics underly-
ing document collection. Topic models posit docu-
ment collection exhibits multiple latent semantic top-
ics where each topic is represented as a multinomial
distribution over a given vocabulary and each doc-
ument is a mixture of hidden topics. In the vision
domain, topic models (Fei-Fei and Perona, 2005; Zhu
et al., 2010) are also widely used for image modeling.

Several models have been devised to jointly model data
and their category labels or cluster labels. Fei-Fei (Fei-
Fei and Perona, 2005) proposed a Bayesian hierarchi-
cal model to jointly model images and their categories.
Each category possesses a LDA model with category-
specific Dirichlet prior and topics. In their problem,
category labels are observed. In this paper, we are
interested in unsupervised clustering where cluster la-
bel is unknown. Wallach (Wallach, 2008) proposed
a cluster based topic model (CTM) which introduces
latent variables into LDA to model groups and each
group owns a group-specific Dirichlet prior governing
the sampling of document-topic distribution. Each
document is associated with a group indicator and its
topic proportion vector is generated from the Dirichlet
prior specific to that group. (Zhu et al., 2010) pro-
posed a similar model used for scene classification in
computer vision. They associate each group a logistic-
normal prior rather than a Dirichlet prior. However, in
the two models, all groups share a single set of topics.
They lack the mechanism to identify local topics spe-
cific to each cluster and global topics shared by all clus-
ters. Another issue is topics inherently belonging to
group A may be used to generate documents in group
B, which is problematic. For instance, when modeling
scientific papers, it is unreasonable to use a “computer
architecture” topic in computer science group to gener-
ate an economics paper. Models proposed in (Wallach,
2008; Zhu et al., 2010) can not prohibit this problem
since topics are shared across groups. Eventually, the
inferred topics will be less coherent and are not dis-
criminative enough to differentiate clusters.

The idea of using fine-grained topics belonging to sev-
eral sets rather than flat topics from a single set to
model documents is exploited in (Ahmed and Xing,
2010; Chemudugunta and Steyvers, 2007; Titov and
McDonald, 2008). (Chemudugunta and Steyvers,
2007) represents each document as a combination of
a background distribution over common words, a mix-
ture distribution over general topics and a distribution
over words that are treated as being specific to that
document. (Titov and McDonald, 2008) proposed a
multi-grain topic model for online review modeling.
They use local topics to capture ratable aspects and
utilize global topics to capture properties of reviewed
items. (Ahmed and Xing, 2010) proposed a multi-

view topic model for ideological perspective analysis.
Each ideology has a set of ideology-specific topics and
an ideology-specific distribution over words. All doc-
uments share a set of ideology-independent topics. In
their problem, the ideology label for each document is
observed.

3 MULTI-GRAIN CLUSTERING
TOPIC MODEL

In this section, we propose the multi-grain clustering
topic model (MGCTM) and derive the variational in-
ference method.

3.1 THE MODEL

The MGCTM model is shown in Figure 1. Given a
corpus containing N documents d ∈ {1, 2, · · · , N}, we
assume these documents inherently belong to J groups
j ∈ {1, 2, · · · , J}. Each group j possesses K group-

specific local topics {β(l)
jk }Kk=1. Local topics are used to

capture the semantics specific to each group. Besides,
each group j has a group-specific local Dirichlet prior

α
(l)
j . Local topic proportion vectors of documents in

group j are sampled from α
(l)
j . Except local topics for

each group, we also assume there exist a single set of

R global topics {β(g)
k }Rk=1 shared by all groups. Global

topics are used to model the universal semantics of the
whole collection. A global Dirichlet prior α(g) is used
to generate proportion vectors over global topics and
is shared by all documents. A global multinomial prior
π is used to choose group membership for a document.
πj denotes the prior probability that a document be-
longs to group j.

Each document is associated with a group indicator
and has a multinomial distribution over local top-
ics and a multinomial distribution over global topics.
Words in a document can be either generated from lo-
cal topics or global topics. We introduce a Bernoulli
variable for each word to indicate whether this word
is sampled from a global topic or a local topic. The
Bernoulli distribution for each document is sampled
from a corpus level Beta prior γ. To generate a doc-
ument d containing Nd words wd = {wi}Ndi=1, we first
choose a group ηd from the multinomial distribution
parametrized by π. Then from the local Dirichlet prior

α
(l)
ηd corresponding to group ηd, we sample a local topic

proportion vector θ(l)
ηd

. From the global Dirichlet prior

α(g), a multinomial distribution θ
(g)
d over global topics

is sampled. From Beta distribution parameterized by
γ, we sample a Bernoulli distribution ωd from which a
binary decision is made at each word position to make
choice between local topics and global topics. To gen-
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Figure 1: Multi-Grain Clustering Topic Model
(MGCTM)

erate a word wdi, we first pick a binary variable δdi
from the Bernoulli distribution parameterized by ωd.
If δdi = 1, we assume wdi is generated from a local

topic. A local topic z
(l)
ηd,i

is picked up from the lo-

cal topic proportion vector θ(l)
ηd

and wdi is generated
from the topic-word distribution corresponding to lo-

cal topic z
(l)
di and group ηd. If δdi = 0, we assume

wdi is generated from a global topic. In this case, a

global topic z
(g)
di is first picked up from the global topic

proportion vector θ
(g)
d and wdi is generated from the

topic-word distribution corresponding to global topic

z
(g)
di .

The generative process of a document in MGCTM can
be summarized as follows

• Sample a group η ∼Multi(π)

• Sample local topic proportion θ(l)
η ∼ Dir(α(l)

η )

• Sample global topic proportion θ(g) ∼ Dir(α(g))

• Sample Bernoulli parameter ω ∼ Beta(γ)

• For each word w

– Sample a binary indicator δ ∼ Bernoulli(ω)

– If δ = 1

∗ sample a local topic z
(l)
η ∼Multi(θ(l)

η )

∗ sample w ∼Multi(β
z
(l)
η

)

– If δ = 0

∗ sample a global topic z(g) ∼Multi(θ(g))

∗ sample w ∼Multi(βz(g))

We claim that performing document clustering and
modeling jointly is superior to doing them separately.
MGCTM consists of a mixture model component and

a topic model component. Document clustering is
accomplished by estimating ζ and π of the mixture
component. Topic modeling involves inferring ω, Θ(l),
θ(g), δ, Z(l), z(g), γ, A(l), α(g),B(l), B(g) of the topic
model component. As described in Section 3.2, latent
variables are inferred by maximizing the log likelihood
of observed data {wd}Dd=1 or its lower bound. Per-
forming clustering and modeling separately is equiv-
alent to inferring latent variables of one component
while fixing those of the other component. In the
case where we first fit documents using topic model
and then perform clustering, we are actually clamp-
ing the latent variables of topic model component in
MGCTM to some predefined values and then estimat-
ing the mixture model component by maximizing the
log likelihood (or its lower bound) of observations. In
the other case where topic modeling follows cluster-
ing, latent variables of mixture model component are
predefined and we maximize the log likelihood (or its
lower bound) only with respect to those of the topic
model component. In contrast, performing the two
tasks jointly is equivalent to maximizing the log like-
lihood (or its lower bound) w.r.t latent variables of
two components simultaneously. Suppose we aim to
maximize a function f(x) defined over x. x can be
partitioned into two subsets xA and xB . Let f(x∗)
denote the optimal value that can be achieved over x.
Let f(x∗

A,xB = c) denote the optimal value obtained
by optimizing xA while fixing xB to some preset value
c. Let f(x∗

B ,xA = d) denote the optimal value ob-
tained by optimizing xB while fixing xA to some pre-
set value d. Clearly, the following inequalities hold:
f(x∗) ≥ f(x∗

A,xB = c), f(x∗) ≥ f(x∗
B ,xA = d).

From this property, we can conclude that jointly per-
forming clustering and modeling grants us better re-
sults than doing them separately.

It would be interesting to make a comparison of our
model with Gaussian mixture model (GMM) and clus-
ter based topic models (CTM) (Wallach, 2008; Zhu
et al., 2010) in the context of document clustering and
modeling. In GMM, each document is converted into
a term vector. GMM associates each cluster a mul-
tivariate Gaussian distribution. To generate a docu-
ment, GMM first samples a cluster, then generate the
document from the Gaussian distribution correspond-
ing to this cluster. In contrast, our model is a mix-
ture of LDAs. Each cluster is characterized by a LDA
model with a set of topics specific to this cluster and
a unique Dirichlet prior from which document-topic
distributions are sampled. To generate a document,
our model first samples a cluster, then use the corre-
sponding LDA to generate the document. In GMM,
documents are represented with raw terms, which are
insufficient to capture underlying semantics. In our
model, documents are modeled using LDA, which is
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well-known for its capability to discover latent seman-
tics. Different from CTM (Wallach, 2008; Zhu et al.,
2010) where all LDAs share a common set of topics,
we allocate each LDA a set of topics in our model.
This specific design owns two advantages. First, it
can explicitly infer group-specific topics for each clus-
ter. Second, it can avoid the problem of using topics
of one group to generate documents in another group.

3.2 VARIATIONAL INFERENCE AND
PARAMETER LEARNING

The key inference problem involved in our
model is to estimate the posterior distribution
p(η, ω,Θ(l),θ(g), δ,Z(l), z(g)| w,Θ) of latent variables

H = {η, ω,Θ(l),θ(g), δ,Z(l), z(g)} given observed
variables w and model parameters Π = {π,γ,
A(l),α(g),B(l),B(g)}. Since extract inference is
intractable, we use variational inference (Wainwright
and Jordan, 2008) to approximate the posterior. The
basic idea is to employ another distribution q(H|Ω)
which is parametrized by Ω and approximate the
true posterior by minimizing the Kullback-Leibler
(KL) divergence between p(H|w,Π) and q(H|Ω),
which is equivalent to maximizing a lower bound
Eq[log p(H,w|Π)]−Eq[log q(H|Ω)] of data likelihood.
The maximization is achieved via an iterative fixed-
point method. In E-step, the model parameters Π
is fixed and we update the variational parameters
Ω by maximizing the lower bound. In M-step, we
fix the variational parameters and update the model
parameters. This process continues until convergence.

The variational distribution q is defined as follows

q(η, ω,Θ(l),θ(g), δ,Z(l), z(g))

= q(η|ζ)q(ω|λ)
J∏
j=1

q(θ
(l)
j |µ

(l)
j )q(θ(g)|µ(g))

N∏
i=1

q(δi|τi)
J∏
j=1

q(z
(l)
i,j |φ

(l)
i,j)q(z

(g)
i |φ

(g)
i )

(1)

where ζ, {φ(l)
i,j}i=N,j=Ji=1,j=1 and {φ(g)

i }Ni=1 are multinomial

parameters, λ is Beta parameter, µ(l) and µ(g) are
Dirichlet parameters, {τi}Ni=1 are Bernoulli parame-
ters.

In E-step, we compute the variational parameters
while keeping model parameters fixed

ζj ∝ πj exp{log Γ(
K∑
i=1

α
(l)
ji )−

K∑
i=1

log Γ(α
(l)
ji )

+
K∑
k=1

(α
(l)
jk − 1)(Ψ(µ

(l)
jk )−Ψ(

K∑
i=1

µ
(l)
ji ))

+
N∑
i=1

τi{
K∑
k=1

φ
(l)
i,j,k(Ψ(µ

(l)
jk )−Ψ(

K∑
n=1

µ
(l)
j,n))

+
K∑
k=1

V∑
v=1

φ
(l)
i,j,kwiv log β

(l)
j,k,v}}

(2)

λ1 = γ1 +
N∑
i=1

τi, λ2 = γ2 +
N∑
i=1

(1− τi) (3)

µ
(l)
jk = ζjα

(l)
jk +

N∑
i=1

τiζjφ
(l)
i,j,k + 1− ζj (4)

µ
(g)
k = α

(g)
k +

N∑

i=1

(1− τi)φ(g)ik (5)

τi = {1 + exp{−Ψ(γ1) + Ψ(γ2)

−
J∑
j=1

K∑
k=1

ζjφ
(l)
i,j,k(Ψ(µ

(l)
jk )−Ψ(

K∑
n=1

µ
(l)
jn))

−
J∑
j=1

K∑
k=1

V∑
v=1

ζjφ
(l)
i,j,kwiv log β

(l)
j,k,v

+
K∑
k=1

φ
(g)
ik (Ψ(µ

(g)
k )−Ψ(

K∑
j=1

µ
(g)
j ))

+
K∑
k=1

V∑
v=1

φ
(g)
ik wiv log β

(g)
k,v}}−1

(6)

φ
(l)
i,j,k ∝ exp{τiζj(Ψ(µ

(l)
jk )−Ψ(

K∑
n=1

µ
(l)
j,n)

+
V∑
v=1

wiv log β
(l)
j,k,v)}

(7)

φ
(g)
ik ∝ exp{(1− τi)(Ψ(µ

(g)
k )−Ψ(

K∑
j=1

µ
(g)
j )

+
V∑
v=1

wiv log β
(g)
k,v)}

(8)

In M-step, we optimize the model parameters by max-
imizing the lower bound

πj =

D∑
d=1

ζdj

D
(9)

β
(l)
j,k,v ∼

D∑

d=1

Nd∑

i=1

ζjτdiφ
(l)
d,i,j,kwd,i,v (10)

β
(g)
k,v ∼

D∑

d=1

Nd∑

i=1

(1− τdi)φ(g)d,i,kwd,i,v (11)

We optimize Dirichlet priors A(l), α(g) and Beta pri-
ors γ using the Newton-Raphson method described in
(Blei et al., 2003).

4 EXPERIMENTS

We evaluate the document clustering performance of
our model and corroborate its ability to mine group-
specific local topics and group-independent global top-
ics on two datasets.

4.1 DOCUMENT CLUSTERING

We evaluate the document clustering performance of
our method in this section.
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4.1.1 Datasets

The experiments are conducted on Reuters-21578 and
20-Newsgroups datasets. These two datasets are the
most widely used benchmark in document cluster-
ing. For Reuters-21578, we only retain the largest
10 categories and discard documents with more than
one labels, which left us with 7,285 documents. 20-
Newsgroups dataset contains 18,370 documents from
20 groups. In all corpus, the stop words are removed
and each document is represented as a tf-idf vector.

4.1.2 Experimental Settings

Following (Cai et al., 2011), we use two metrics to mea-
sure the clustering performance: accuracy (AC) and
normalized mutual information (NMI). Please refer to
(Cai et al., 2011) for definitions of these two metrics.

We compare our method with the following baseline
methods: K-means (KM) and Normalized Cut (NC)
which are probably the most widely used clustering al-
gorithms; Non-negative Matrix Factorization (NMF),
Latent Semantic Indexing (LSI), Locally Consistent
Concept Factorization (LCCF) which are factorization
based approaches showing great effectiveness for clus-
tering documents. To study how topic modeling can
affects document clustering, we compare with three
topic model based methods. The first one is a naive
approach which first uses LDA to learn a topic propor-
tion vector for each document, then performs K-means
on topic proportion vectors to obtain clusters. We use
LDA+Kmeans to denote this approach. The second
one is proposed in (Lu et al., 2011), which treats each
topic as a cluster. Document-topic distribution θ can
be deemed as a mixture proportion vector over clus-
ters and can be utilized for clustering. A document is
assigned to cluster x if x = argmaxjθj . Note that this
approach is a naive solution for integrating document
clustering and modeling together. We use LDA+Naive
to denote this approach. The third one is cluster based
topic model (CTM) (Wallach, 2008) which integrates
document clustering and modeling as a whole.

In our experiments, the input cluster number required
by clustering algorithms is set to the ground truth
number of categories in corpus. Hyperparameters are
tuned to achieve the best clustering performance. In
NC, we use Gaussian kernel as similarity measure be-
tween documents. The bandwidth parameter is set to
10. In LSI, we retain top 300 eigenvectors to form
the new subspace. The parameters of LCCF are set as
those suggested in (Cai et al., 2011). In LDA+Kmeans
and LDA+Naive, we use symmetric Dirichlet prior α
and β to draw document-topic distribution and topic-
word distribution. α and β are set to 0.1 and 0.01
respectively. In LDA+Kmeans, the number of topics

Table 1: Clustering Accuracy (%)

Reuters-21578 20-Newsgroups
KM 35.02 33.65
NC 26.22 22.03

NMF 49.58 31.85
LSI 42.00 32.33

LCCF 33.07 11.71
LDA+Kmeans 29.73 37.19
LDA+Naive 54.88 55.38

CTM 56.58 45.63
MGCTM 56.01 58.69

Table 2: Normalized Mutual Information (%)

Reuters-21578 20-Newsgroups
KM 35.76 31.54
NC 27.40 20.31

NMF 35.89 27.82
LSI 37.14 29.78

LCCF 30.45 11.40
LDA+Kmeans 36.00 38.15
LDA+Naive 48.00 57.21

CTM 46.52 51.63
MGCTM 50.10 61.59

is set to 60. In CTM, we set the number of topics
to 60 for Reuters-21578 and 120 for 20-Newsgroups.
For MGCTM, we set 5 local topics for each cluster
and 10 global topics in Reuters-21578 dataset and
10 local topics for each cluster and 20 global topics
for 20-Newsgroups dataset. In MGCTM, we initialize
ζ with clustering results obtained from LDA+Naive.
The other parameters are initialized randomly.

4.1.3 Results

Table 1 and Table 2 summarize the accuracy and
normalized mutual information of different cluster-
ing methods, respectively. It can be seen that
topic modeling based clustering methods including
LDA+Kmeans, LDA+Naive, CTM and MGCTM are
generally better than K-means, normalized cut and
factorization based methods. This corroborates our as-
sumption that topic modeling can promote document
clustering. The semantics discovered by topic models
can effectively facilitate accurate similarity measure,
which is helpful to obtain coherent clusters.

Compared with LDA+Kmeans which performing clus-
tering and modeling separately, three methods includ-
ing LDA+Naive, CTM and MGCTM which jointly
performing two tasks achieve much better results. This
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corroborates our assumption that clustering and mod-
eling can mutually promote each other and couple
them into a unified framework produces superior per-
formance than separating them into two procedures.

Among LDA+Naive, CTM and MGCTM which unify
clustering and modeling, our approach is generally bet-
ter than or comparable with the other two. This is be-
cause MGCTM possesses more sophistication in terms
of model design, which in turn contributes to better
clustering results. LDA+Naive assigns each cluster
only one topic, which may not be sufficient to cap-
ture the diverse semantics within each cluster. CTM
fails to differentiate cluster-specific topics and cluster-
independent topics, thereby, the learned topics are not
discriminative in distinguishing clusters. Since topics
are shared by all clusters, CTM may try to use a topic
inherently belonging to cluster A to model a document
in cluster B, which is unreasonable and can cause se-
mantic confusion. Our model assigns each cluster a set
of topics and can avoid to use topics from one cluster
to model documents in another cluster, which is more
suitable to produce coherent clusters.

4.2 TOPIC MODELING

In this section, we study the topic modeling capability
of our model. We compare with two methods. The
first one is a naive approach which first uses K-means
to obtain document clusters, then clamps the values of
document membership variables ζ in MGCTM to the
obtained clusters labels and learns the latent variables
corresponding to topic model component. We use
Kmeans+MGCTM to denote this approach. Again,
the purpose of comparing with this naive approach is
to investigate whether integrating clustering and mod-
eling together is superior to doing them separately.
The other approach is CTM (Wallach, 2008). We use
three models to fit the 20-Newsgroups dataset. The
reason to choose 20-Newsgroups rather than Reuters-
21578 for topic modeling evaluation is that the cat-
egories in 20-Newsgroups are more semantically clear
than those in Reuters-21578. In CTM, we set the topic
number to 120. In MGCTM and Kmeans+MGCTM,
we set 5 local topics for each of the 20 groups and set
20 global topics. We evaluate the inferred topics both
qualitatively and quantitatively. Specifically, we are
interested in two things. First, how coherent a topic
(either local topic or global topic) is. Second, how is
a local topic related to a cluster.

4.2.1 Qualitative Evaluation

Table 3 shows three global topics inferred from 20-
Newsgroups by MGCTM. Each topic is represented
by the ten most probable words for that topic. It can

Table 3: Three Global Topics Inferred from 20-
Newsgroups by MGCTM

Topic 9 Topic 10 Topic 19
section time introduction
set year information
situations period archive
volume full address
sets local articles
field future press
situation note time
select meet body
hand case text
designed setting list

be seen that these global topics capture the common
semantics in the whole corpus and is not specifically
associated with a certain news group. Global topic 9
is about news archive organization. Topic 10 is about
time. Topic 19 is about article writing. These topics
can be used to generate documents in all groups.

Table 4 shows local topics for 4 obtained clusters1. As
can be seen, local topics effectively capture the specific
semantics of each cluster. For instance, in Cluster 1,
all the four local topics are highly related with com-
puter, including server, program, Windows, display.
In Cluster 2, all topics are about middle east politics,
including race, war, religion, diplomacy. In Cluster 3,
all topics are about space technology, including space,
planets, spacecraft, NASA. In Cluster 4, all topics are
closely related with health, including disease, patients,
doctors, food. These local topics enable us to under-
stand each cluster easily and clearly, without the bur-
den of browsing a number of documents in a cluster.
In our model, documents in a cluster can only be gen-
erated from local topics of that cluster and we prohibit
to use local topics of cluster A to generate documents
in cluster B. Thereby, each local topic is highly re-
lated with its own cluster and has almost no correla-
tion with other clusters. In other words, the leaned lo-
cal topics are very discriminative to differentiate clus-
ters. On the contrary, topics in CTM are shared by
all groups. Consequently, the semantic meaning of a
topic is very ambiguous and the topic can be related
with multiple clusters simultaneously. These topics
are suboptimal to summarize clusters because of their
vagueness. In Kmeans+MGCTM, the clusters are pre-
defined using K-means, whose clustering performance
is much worse than MGCTM as reported in Section
4.1.3. As a result, the quality of learned topics by
Kmeans+MGCTM is also worse than MGCTM. Their

1Due to space limit, we only show four local topics for
each cluster.
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Table 4: Lobal Topics of 4 Clusters Inferred from 20-Newsgroups by MGCTM

Cluster 1 Cluster 2
Topic 1 Topic 2 Topic 3 Topic 4 Topic 1 Topic 2 Topic 3 Topic 4
sun window server motif muslims armenian turkish armenian
file manager lib file serbs azerbaijan turkey armenians
openwindows display file version bosnian people university turkish
xview event xfree mit bosnia armenia history armenia
echo motif xterm color henrik armenians kuwait people
usr application running font war turkish jews genocide
xterm program mit server armenians azeri people turks
display widget usr sun muslim soviet professor soviet
ftp win window fonts turkey dead government war
run screen clients tar world russian turks russian

Cluster 3 Cluster 4
Topic 1 Topic 2 Topic 3 Topic 4 Topic 1 Topic 2 Topic 3 Topic 4
space space nasa space candida people vitamin msg
nasa launch gov nasa yeast pitt cancer food
hst cost space apr weight chronic medical people
larson shuttle energy alaska patients evidence information time
mission dc apr earth doctor body disease foods
orbit station earth satellite lyme time treatment chinese
theory nuclear ca gov disease disease patients eat
universe power jpl people kidney medicine retinol good
light program higgins high good years good pain
mass system gary shuttle people water pms effects

quantitative comparison is reported in Section 4.2.2.

4.2.2 Quantitative Evaluation

How to quantitatively evaluate topic models is a open
problem (Boyd-Graber et al., 2009). Some researchers
resort to perplexity or held-out likelihood. Such mea-
sures are useful for evaluating the predictive model
(Boyd-Graber et al., 2009). However, they are not
capable to evaluate how coherent and meaningful the
inferred topics are. Through large-scale user studies,
(Boyd-Graber et al., 2009) shows that topic models
which perform better on held-out likelihood may infer
less semantically meaningful topics. Thereby, we do
not use perplexity or held-out likelihood as evaluation
metric.

To evaluate how coherent a topic is, we pick up top
20 candidate words for each topic and ask 5 student
volunteers to label them. First, the volunteers need
to judge whether a topic is interpretable or not. If
not, the 20 candidate words in this topic are automat-
ically labeled as “irrelevant”. Otherwise, volunteers
are asked to identify words that are relevant to this
topic. Coherence measure (CM) is defined as the ra-
tio between the number of relevant words and total
number of candidate words.

Table 5 summarizes the coherence measure collected
from 5 students. As can be seen, the average coher-
ence of topics inferred by our model surpasses those
learned from Kmeans+MGCTM and CTM. In our

Table 5: Coherence Measure (CM) (%) of Learned
Topics

Kmeans+MGCTM CTM MGCTM
annotator 1 30.17 28.88 36.08
annotator 2 36.50 43.54 45.79
annotator 3 29.38 35.42 30.83
annotator 4 18.33 25.96 29.46
annotator 5 24.75 24.54 25.17

average 27.83 31.60 33.47

model, background words in the corpus are organized
into global topics and words specific to clusters are
mapped into local topics. Kmeans+MGCTM learns
local topics based on the cluster labels obtained by K-
means. Due to the suboptimal clustering performance
of K-means, some documents similar in semantics are
put into different clusters while some dissimilar docu-
ments are put into the same cluster. Consequently, the
learned local topics are less reasonable since they are
resulted from poor cluster labels. CTM lack the mech-
anism to differentiate corpus-level background words
and cluster-specific words and these two types of words
are mixed in many topics, making topics hard to in-
terpret and less coherent.

To measure the relevance between local topics and
clusters in our method, from the 5 learned local top-
ics for each cluster, we ask the 5 students to pick up
the relevant ones. The relevance measure (RM) is de-
fined as the ratio between number of relevant topics
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Table 6: Relevance Measure (RM) (%) between Topics
and Clusters

Kmeans+MGCTM CTM MGCTM
annotator 1 64 66 72
annotator 2 47 61 57
annotator 3 51 54 63
annotator 4 76 74 81
annotator 5 45 51 58

average 56.6 61.2 66.2

and total number of topics to be labeled. In CTM,
we choose 5 most related topics for each cluster us-
ing the method described in (Wallach, 2008) and ask
annotators to label.

Table 6 presents the relevance measure between
local topics and clusters. The relevance mea-
sure in our method is significantly better than
Kmeans+MGCTM and CTM. The suboptimal perfor-
mance of Kmeans+MGCTM still results from the poor
clustering performance of K-means. The comparison
of Kmeans+MGCTM and MGCTM in Table 5 and
Table 6 demonstrates that jointly performing cluster-
ing and modeling can produce better local and global
topics than performing them separately. In CTM, top-
ics are shared across groups. A certain topic T can be
used to model documents belonging to several groups.
Consequently T will be a composition of words from
multiple groups, making it hard to associate T to a
certain group clearly. On the contrary, our model al-
locates each cluster a set of cluster-specific topics and
prohibit to use local topics from one cluster to model
documents in another cluster. Thereby the relevance
between learned local topics and their clusters can be
improved greatly.

5 CONCLUSIONS AND FUTURE
WORK

We propose a multi-grain clustering topic model to si-
multaneously perform document clustering and model-
ing. Experiments on two datasets demonstrate the fact
that these two tasks are closely related and can mutu-
ally promote each other. In experiments on document
clustering, we show that through topic modeling, clus-
tering performance can be improved. In experiments
on topic modeling, we demonstrate that clustering can
help infer more coherent topics and can differentiate
topics into group-specific ones and group-independent
ones.

In future, we will extend our model to semi-supervised
clustering settings. In reality, we may have incomplete
external knowledge which reveals that some document

pairs are likely to be put into the same cluster. How
to incorporate these semi-supervised information into
our model would be an interesting question.
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Abstract

Conventional learning with expert advice
methods assume a learner is always receiv-
ing the outcome (e.g., class labels) of every
incoming training instance at the end of each
trial. In real applications, acquiring the out-
come from oracle can be costly or time con-
suming. In this paper, we address a new
problem of active learning with expert ad-
vice, where the outcome of an instance is dis-
closed only when it is requested by the on-
line learner. Our goal is to learn an accu-
rate prediction model by asking the oracle
the number of questions as small as possi-
ble. To address this challenge, we propose
a framework of active forecasters for online
active learning with expert advice, which at-
tempts to extend two regular forecasters, i.e.,
Exponentially Weighted Average Forecaster
and Greedy Forecaster, to tackle the task of
active learning with expert advice. We prove
that the proposed algorithms satisfy the Han-
nan consistency under some proper assump-
tions, and validate the efficacy of our tech-
nique by an extensive set of experiments.

1 Introduction

Learning with expert advice has been extensively s-
tudied for years in literature [19, 3, 13, 1]. Typically, a
conventional learning with expert advice task assumes
an online learner acts in an environment with a pool
of experts. At each trial, the learner receives an in-
coming training instance, and must make a prediction
on this instance based on the predictions made by the
pool of experts. The outcome of the incoming instance
will be disclosed by acquiring the feedback from an o-
racle after the learner has made the prediction, which
in turn determines the incurred losses of the learner

and the experts as well. The goal of this problem is
to enable the online learner be able to make a pre-
diction as accurate as possible. This framework was
first introduced by Littlestone and Warmuth [19], who
proposed the well-known weighted majority voting al-
gorithms. Over the past decades, the similar problem
has been extensively explored by other studies in liter-
ature, including Cesa-Bianchi et al. [3, 2], Freund and
Schapire [9], Foster and Vohra [8], Haussler et al. [12],
Vovk [22] etc.

The existing learning with expert advice methods as-
sume the outcome (e.g., the true class label) of ev-
ery incoming training instance will be always disclosed
from an oracle at each trial. However, requesting the
outcome of an instance from the oracle is often expen-
sive or time consuming in many real-world applica-
tions. Unlike the conventional approaches, this paper
investigates a new framework of active learning with
expert advice, in which the outcome of an incoming
instance may or may not be disclosed at each trial,
depending on if the learner decides to make a request
to the oracle. The goal of active learning with expert
advice is to train the online learner to make an accu-
rate prediction by making the number of requests to
the oracle as small as possible, which is potentially ap-
plied for improving online classification with multiple
kernel learning [14]. This problem is very challenging
because on one hand we need to design an effective
strategy to build the online learner for the training in-
stance whenever its outcome is disclosed, and on the
other hand, we must decide when the online learner
should make a request for an incoming instance.

To overcome the challenge of active learning with ex-
pert advice, we present a framework of Active Fore-
caster algorithms and proposed two specific algorithm-
s: (i) active weighted average forecaster and (ii) active
greedy forecaster. We analyze the theoretical regret
bound of the proposed algorithms, and validate their
empirical efficacy via an extensive set of experiments.

The rest of this paper is organized as follows. Section 2
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introduces the problem setting of learning with expert
advice and the greedy forecaster algorithm. Section 3
presents the active greedy forecaster algorithm for ac-
tive learning with expert advice and analyzes its theo-
retical performance. Section 4 shows our experimental
results, and Section 5 concludes this work.

2 Problem Setting and Background

Specifically, we considered solving online classification
problem through learning with expert advice. Online
classification has been extensively studied in machine
learning in the past few years [21, 4, 26, 24] for d-
ifferen problems, like sentiment detection [17], cost-
sensitive classification [23], feature selection [25] and
etc. To solve online classification problem, the prob-
lem setting of a typical learning with expert advice
task is as follows. Consider an unknown sequence of
instances x1, . . . ,xT ∈ Rd, a decision maker termed
as “forecaster” aims to predict the outcomes (e.g.,
class labels) of every incoming instance xt. The fore-
caster sequentially computes its predictions based on
the predictions from a set of N reference forecaster-
s called as “experts”. Specifically, at the t-th round,
after receiving an instance xt, the forecaster first ac-
cesses to the predictions made by the set of experts
{fi,t : Rd → [0, 1]|i = 1, . . . , N}, and then computes
its own prediction pt ∈ [0, 1] based on the prediction-
s of the N experts. After pt is computed, the true
outcome yt ∈ {0, 1} is disclosed.

With the true outcomes revealed from the environmen-
t/oracle, the prediction performance of the forecaster
and experts can be scored by some nonnegative loss
function between pt and yt, e.g., the absolute loss that
is defined as ℓ(pt, yt) = |pt − yt|. We can further cal-
culate the cumulative loss experienced by each expert
and the forecaster respectively as follows:

Li,t =
t∑

j=1

ℓ(fi(xj), yj), Lt =
t∑

j=1

ℓ (pj , yj)

The loss difference between the forecaster and the ex-
pert is known as the “regret”, i.e.,

Ri,t = Lt − Li,t, i = 1, . . . , N (1)

The goal of learning the forecaster is to make the regret
with respect to each expert as small as possible, which
is equivalent to minimizing the overall regret RT , i.e.,

RT = max
1≤i≤N

Ri,T = LT − min
1≤i≤N

Li,T (2)

In general, we wish to design an ideal forecaster that
can achieve a vanishing per-round regret, i.e.,

RT = o(T ) ⇐⇒ lim
T→∞

1

T

(
LT − min

1≤i≤N
Li,T

)
= 0

The above property is known as the Hannan consisten-
cy [11]. A forecaster satisfying this property is called
a Hannan-consistent forecaster [11, 2].

To solve the above task of learning with expert advice,
a natural framework is based on the weighted average
prediction strategy. Specifically, at time t, the fore-
caster makes its own prediction as:

pt =

∑N
i=1 wi,t−1fi(xt)∑N

i=1 wi,t−1

(3)

where wi,t−1 are the combination weights assigned to
the experts at time t-1. The intuitive idea of learning
the combination weights is to assign large weights for
those experts of low regrets/loss and small weights for
those of high regrets/loss.

Next we introduce a special case that leads to the well-
known forecaster, called “Exponentially Weighted Av-
erage Forecaster” (EWAF). In particular, by choosing

wi,t−1 = exp(ηLi,t−1)/
∑N

j=1 exp(ηLj,t−1), where η is
a positive parameter, the EWAF strategy makes the
following prediction:

pt =

∑N
i=1 exp(−ηLi,t−1)fi(xt)∑N

i=1 exp(−ηLi,t−1)
, (4)

In addition to the weighted average forecaster, we al-
so consider another kind of forecaster, known as the
“Greedy Forecaster” (GF), which makes the following
prediction:

pt = π[0,1]

(
1

2
+

1

2η
ln

∑N
i=1 exp(−ηLi,t−1 − ηℓ(fi(xt), 1))

∑N
i=1 exp(−ηLi,t−1 − ηℓ(fi(xt), 0))

)
,

where π[0,1](·) = max(0,min(1, ·)). According to the
existing studies [2], we have the following theorem of
regret bounds of the above EWAF and GF algorithms:

Theorem 1. Let the loss function ℓ(p, y) = |p − y|.
Then, for any T and η > 0, and for all y1, . . . , yT ∈
{0, 1}, the regrets of both the EWAF and GF algo-
rithms satisfy

RT = LT − min
1≤i≤N

Li,T ≤ ln N

η
+

ηT

8

In particular, by choosing η =
√

8 ln N/T , the upper

bound of the regret becomes
√

(T/2) lnN .

The above theorem shows both the EWAF and GF
algorithms satisfy the Hannan consistency, i.e., RT ≤
o(T ), which guarantees that the actual per-round re-
gret RT /T becomes negligible as T grows.

3 Active Learning with Expert Advice

In this section, we address a new problem of active
learning with expert advice. Unlike the above regular
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learning with expert advice task where the outcome
of every incoming instance is always revealed to the
online learner, in an active learning with expert ad-
vice task, the outcome of an incoming instance is only
revealed whenever the learner has made a request for
acquiring the label from the environment/oracle. In
this section, we aim to develop a framework of ac-
tive forecasters to tackle the challenging task of active
learning with expert advice.

We first introduce binary variables zs ∈ {0, 1}, s =
1, . . . , t to indicate if an active forecaster has decided to
request the class label of an incoming instance received
at s-th trial. We denoted by L̂i,t the loss function
experienced by the active learner w.r.t. the ith expert,
i.e., L̂i,t =

∑t
s=1 ℓ(fi(xs), ys)zs.

Hence, the class label for the t-th example predicted
by the active forecaster, denoted by p̂t, is computed
as p̂t = π[0,1](p̄t), where p̄t is computed by different
approaches for different forecasters:

p̄t =

∑N
i=1 exp(−ηL̂i,t−1)fi(xt))∑N

i=1 exp(−ηL̂i,t−1)
(EWAF);

p̄t =
1

2
+

1

2η
ln

∑N
i=1 exp[η(−L̂i,t−1 − ℓ(fi(xt), 1))]

∑N
i=1 exp[η(−L̂i,t−1 − ℓ(fi(xt), 0))]

(GF).

In the above formula of EWAF, since p̄t ∈ [0, 1], we
always have p̂t = π[0,1](p̄t) = p̄t.

The key challenge for active learning with expert ad-
vice is to decide when the active forecaster should or
should not make a request to acquire the class label
w.r.t. an incoming instance from the environmen-
t/oracle. A naive solution is to consider a random
sampling approach, which however may not be effec-
tive enough (this will be considered as a baseline for
comparison in our empirical study). To tackle this
challenge, our key motivation is to find some appropri-
ate confidence condition such that it helps the online
learner decide when we could skip the request of a label
whenever the confidence condition is satisfied. To this
end, we propose an idea to seek the confidence con-
dition by estimating the difference between pt and p̂t.
Intuitively, the smaller the difference, the more confi-
dent we have for the prediction made by the forecaster.
Before introducing our proposed confidence condition-
s, for convenience of presentation, we introduce a no-
tation: Ĥi,t =

∑t
s=1(1 − zs)ℓ(fi(xs), ys). It is easy to

see Li,t = L̂i,t + Ĥi,t.

Active Exponentially Weighted Average Forecaster
(AEWAF). We present a confidence condition for AE-
WAF in the following theorem, which guarantees a s-
mall difference between pt and p̂t.

Theorem 2. For a small constant δ > 0,
max1≤i,j≤N |fi(xt) − fj(xt)| ≤ δ implies |pt − p̂t| ≤ δ.

Proof. For the AEWAF strategy, the distance between
pt and p̂t is computed as follows:

|pt − p̂t|

=

∣∣∣∣∣

∑N
i=1 exp(−ηLi,t−1)fi(xt)∑N

i=1 exp(−ηLi,t−1)
−
∑N

i=1 exp(−ηL̂i,t−1)fi(xt)∑N
i=1 exp(−ηL̂i,t−1)

∣∣∣∣∣

=

∣∣∣∣∣

∑N
i=1 exp(−ηL̂i,t−1) exp(−ηĤi,t−1)fi(xt)∑N

i=1 exp(−ηL̂i,t−1) exp(−ηĤi,t−1)

−
∑N

i=1 exp(−ηL̂i,t−1)fi(xt)∑N
i=1 exp(−ηL̂i,t−1)

∣∣∣∣∣

=

∣∣∣∣∣

∑N
i=1

∑N
j=1 γi,j,t−1(fi(xt) − fj(xt))
∑N

i=1

∑N
j=1 γi,j,t−1

∣∣∣∣∣

where

γi,j,t−1 = exp(−ηL̂i,t−1) exp(−ηĤi,t−1) exp(−ηL̂j,t−1).

Thus, if max1≤i,j≤N |fi(xt) − fj(xt)| ≤ δ, it is easy to
prove that |pt − p̂t| ≤ δ.

Active Greedy Forecaster (AGF). We now propose a
confidence condition for AGF in the theorem below,
which guarantees a small difference between p̂t and pt.

Theorem 3. For a small constant δ > 0,
max1≤i≤N |fi(xt) − p̄t| ≤ δ implies |pt − p̂t| ≤ δ.

Proof. We can bound pt from the above as follows

pt

= π[0,1]

(
1

2
+

1

2η
ln

∑N
i=1 exp(−ηLi,t−1 − ηℓ(fi(xt), 1))

∑N
i=1 exp(−ηLi,t−1 − ηℓ(fi(xt), 0))

)

= π[0,1]

(
1

2
+

1

2η
ln

∑N
i=1 exp(−η(L̂i,t−1 + Ĥi,t−1) − ηℓ(fi(xt), 1))

∑N
i=1 exp(−η(L̂i,t−1 + Ĥi,t−1) − ηℓ(fi(xt), 0))

)

≤ π[0,1]

(
1

2
+

1

2η
ln

∑N
i=1 exp(−ηL̂i,t−1 − ηℓ(fi(xt), 1))

∑N
i=1 exp(−ηL̂i,t−1 − ηℓ(fi(xt), 0))

)

+π[0,1]

(
1

2η
ln

[
∑N

i=1 αi,t exp(−ηĤi,t−1)]

[
∑N

i=1 βi,t exp(−ηĤi,t−1)]

)

= p̂t + π[0,1]

(
1

2η
ln

[
∑N

i=1 αi,t exp(−ηĤi,t−1)]

[
∑N

i=1 βi,t exp(−ηĤi,t−1)]

)

where

αi,t =
exp

(
−η
[
L̂i,t−1 + ℓ(fi(xt), 1)

])

∑N
j=1 exp

(
−η
[
L̂j,n−1 + ℓ(fj(xt), 1)

]) ,

βi,t =
exp

(
−η
[
L̂i,t−1 + ℓ(fi(xt), 0)

])

∑N
j=1 exp

(
−η
[
L̂j,n−1 + ℓ(fj(xt), 0)

]) , i ∈ [N ].
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Since ∀i ∈ [N ]

αi,t

βi,t
=

∑N
j=1 exp

(
−η
[
L̂j,t−1 + ℓ(fj(xt), 0)

])

∑N
j=1 exp

(
−η
[
L̂j,t−1 + ℓ(fj(xt), 1)

]) ×

exp
(
−η
[
L̂i,t−1 + ℓ(fi(xt), 1)

])

exp
(
−η
[
L̂i,t−1 + ℓ(fi(xt), 0)

])

=
exp (−η [ℓ(fi(xt), 1) − ℓ(fi(xt), 0)])

exp (η (2p̄t − 1))

=
exp (η (2fi(xt) − 1))

exp (η (2p̄t − 1))

= exp (2η (fi(xt) − p̄t)) ≤ exp(2ηδ),

and lnx is an increasing function, we have

ln

∑N
i=1 αi,t exp(−ηĤi,t−1)∑N

j=1 βj,t−1 exp(−ηĤj,t−1)
≤ 2ηδ

and pt ≤ p̂t +δ. Similar to the above analysis, we have
pt lower bounded as pt ≥ p̂t − δ.

Based on the above analysis of the confidence condi-
tions, we can now present the general framework of
active forecasters for online active learning with ex-
pert advice, which is summarized in Algorithm 1.

Algorithm 1 A Framework of Active Forecaster

Input: a pool of experts fi, i = 1, . . . , N .
Initialize tolerance threshold δ and L̂i,t = 0, i ∈
[N ].
for t = 1, . . . , T do

receive xt and compute fi(xt), i ∈ [N ];
compute p̄t according to equation (5) and set p̂t =
π[0,1](p̄t);
if the confidence condition is satisfied then

skip the label request for instance xt

else
request label yt and update L̂i,t = L̂i,t−1 +
ℓ(fi(xt), yt), i ∈ [N ];

end if
end for

As shown in Algorithm 1, at each round, after receiv-
ing an input instance xt, we compute the prediction
by each expert in the pool, i.e., fi(xt). Then, we ex-
amine if the confidence condition is satisfied. If so, we
will skip the label request for this instance; otherwise,
the learner will request the class label for this instance
from the environment.

We now present a theorem about the upper bound of
the regret of the two active forecasters, i.e.,

R̂T = L̂T − min
i∈[N ]

Li,T

where L̂T =
∑T

t=1 ℓ(p̂t, yt), which is the overall loss
experienced by the active forecaster.

Theorem 4. Let the loss function ℓ(p, y) = |p − y|,
and denote by Q the total number of requested labels,
i.e., Q =

∑T
t=1 zt, then, for any T , η > 0 and for

all y1, . . . , yT ∈ {0, 1}, the regret R̂T of the two Active
Forecasters (AEWAF and AGF) can be bounded as:

R̂T = L̂T − min
i∈[N ]

Li,T ≤ lnN

η
+

ηT

8
+ δ(T − Q).

Proof. Firstly according to Theorem 2 and 3, we have
the following bound for L̂T − LT :

L̂T − LT =
T∑

t=1

(ℓ(p̂t, yt) − ℓ(pt, yt))

≤ (T − Q) ∗ |p̂t − pt| ≤ δ(T − Q).

Combining the above result with Theorem 1, we have
the regret of the Active Forecasters bounded:

R̂T = L̂T − min
1≤i≤N

Li,T = (L̂T − LT ) + (LT − min
1≤i≤N

Li,T )

≤ δ(T − Q) +
lnN

η
+

ηT

8
.

Remark. For the above theorem, if a learner requests
the labels for every instance, i.e., Q=T, the bound
reduces the bound of the regular forecasters. Based
on the above theorem, we have the following corollary
that shows the proposed Active Forecasters satisfy the
Hannan consistency.

Corollary 5. Consider 0 < a << T , if we set η =√
8 ln N

T (1+8a)−8aQ and δ = aη, then we have the regret

achieved by the proposed algorithms bounded as o(T ).

Proof. Following the result of Theorem 4, we have

R̂T ≤ ln N

η
+

ηT

8
+ δ(T − Q)

=
lnN

η
+ η

(
(a +

1

8
)T − Qa

)

= 2
√

ln N

√
T

(
a +

1

8

)
− Qa

where the last equation holds under the condition
ln N

η = η
(
(a + 1

8 )T − Qa
)
, i.e., η =

√
8 ln N

T (1+8a)−8aQ ,

and as a result δ = a
√

8 ln N
T (1+8a)−8aQ . Therefore, we

have R̂T = o(T ).
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4 Experimental Results

In this section, we evaluate the empirical performance
of the proposed Active Forecasters for online active
learning with expert advice tasks.

4.1 Experts and Compared Algorithms

To construct experts for an online sequential predic-
tion task, we choose to build the pool of experts by
adopting five well-known online learning algorithm-
s [7, 5, 20], which include: (implemented as in [16])

• PERCEPTRON: the classical Perceptron algo-
rithm [21];

• ROMMA: the Relaxed Online Maximum Margin
Algorithm [18];

• ALMAp(α): the Approximate Maximal Margin
Algorithm [10];

• PA: the Passive-Aggressive online learning algo-
rithm [4];

• AROW: the Adaptive Regularization Of Weights
algorithm [6].

We compare the two proposed active learning algo-
rithms (AEWAF and AGF) with the two regular fore-
casters (EWAF and GF) algorithm and their random
variants as well, which are listed below:

• EWAF: the Exponentially Weighted Forecast-
er [2];

• GF: the Greedy Forecaster algorithm [2];

• REWAF: the Random Exponentially Weighted
Forecaster, a variant of EWAF, which will ran-
domly select the indices according to uniform dis-
tribution;

• RGF: the Random Greedy Forecaster algorithm,
a variant of GF, which will randomly select the
indices according to uniform distribution;

• AEWAF: the proposed Active Exponentially
Weighted Forecaster algorithm;

• AGF: the proposed Active Greedy Forecaster al-
gorithm.

4.2 Experimental Testbed and Setup

To evaluate the performance, we conduct experiments
on a variety of benchmark datasets from web machine
learning repositories. Table 1 shows the details of 9

datasets used in our experiments. All of them can be
downloaded from LIBSVM website 1 and UCI machine
learning repository 2. These datasets are chosen fairly
randomly in order to cover various aspects of datasets.

Table 1: Datasets used in the experiments.

Dataset Name # instances # features

D1 a8a 32561 123
D2 codrna 271617 8
D3 covtype 581012 54
D4 gisette 7000 5000
D5 magic04 19020 10
D6 mushrooms 8124 112
D7 spambase 4601 57
D8 svmguide1 7089 4
D9 w8a 64700 300

All the expert algorithms learn a linear classifier for a
binary classification task. The parameter p and α in
ALMAp(α) are set to be 2 and 0.9 respectively. The
parameter C in PA is set to 5, and the parameter γ
is set to 1 for AROW. To make fair comparisons, all
the compared forecasters adopt the same setup. The
learning rate η is set to

√
8 ln N/T , for all the dataset-

s and forecasters. The sampling ratio for requesting
labeled data by the two random algorithms (REWAF
and RGF) are set according to the ratio of labeled da-
ta requested by AEWAF and AGF using different δ
values, respectively.

Each dataset is randomly divided into two subsets: a
training set consisting of 20% of the entire data for
training the experts; and a test set consisting of the
remaining data for learning the forecasters. The five
experts algorithms are applied on the training set to
learn the five expert functions ui ∈ Rd, i ∈ [5], where
d is the dimension of the instance. To satisfy the as-
sumptions, we adopt fi(x) = π[0,1](u

⊤
i x + 0.5) as the

expert functions. Then we test the forecasters on the
test set. All the test experiments were conducted over
20 runs of different random permutations for each test
set. All the results were reported by averaging over
these 20 runs. For performance metric, we evaluate
the forecasters by measuring the regret rate, ratio of
requested labeled data, and the running time cost.

4.3 Evaluation of Regular Forecasters

Table 2 summarizes the average performance of the E-
WAF and GF algorithms for conventional online learn-
ing with expert advice on the benchmark datasets.

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
2http://www.ics.uci.edu/~mlearn/MLRepository.html
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Table 2: Evaluation of two regular forecasters (EWAF
and GF) on all the datasets.

Dataset Alg. Measures

Regret (%) Time (s)

D1 EWAF 0.286 ± 0.001 0.694
GF 0.286 ± 0.001 0.841

D2 EWAF 0.207 ± 0.001 1.019
GF 0.207 ± 0.001 1.282

D3 EWAF 0.066 ± 0.001 10.942
GF 0.066 ± 0.001 13.428

D4 EWAF 0.609 ± 0.001 0.574
GF 0.609 ± 0.001 0.593

D5 EWAF 0.373 ± 0.001 0.332
GF 0.373 ± 0.001 0.414

D6 EWAF 0.483 ± 0.001 0.157
GF 0.483 ± 0.001 0.194

D7 EWAF 0.758 ± 0.001 0.084
GF 0.758 ± 0.001 0.103

D8 EWAF 0.506 ± 0.001 0.123
GF 0.506 ± 0.001 0.154

D9 EWAF 0.164 ± 0.001 1.760
GF 0.164 ± 0.001 2.031

From the experimental results in Table 2, we can draw
several observations. First, the regret rates of EWAF
and GF on every dataset are almost the same, which
is consistent to the theoretical result that shows that
they share the same regret bound. Second, EWAF
consumes slightly less time cost than GF for all the
cases due to the difference of their solutions. Finally,
we found that the larger the dataset size, the small-
er the average regret value achieved by the two algo-
rithms. This is consistent with the Hannan property
satisfied by the two algorithms, i.e., the average regret
is negligible when T is very large.

4.4 Evaluation of Active Forecasters on
Fixed Ratio of Queries

In this subsection, the tolerance threshold δ for AE-
WAF and AGF is set as 0.2. Table 3 summarizes the
average performance of the REWAF and AEWAF al-
gorithms over the experimental datasets. From the
experimental results, we can draw several observations
as follows.

First of all, since we choose the sampling threshold ρ
according to the ratios of required labels by AEWAF
using a fixed tolerances δ, the differences between the
ratios of requested labeled data for AEWAF and RE-
WAF are not statistically significant, which has been
verified by statistical t-tests. This implies that the s-
tatistical differences between the regret rates achieved
by AEWAF and REWAF, if any, are not caused by

Table 3: Evaluation of REWAF and AEWAF on all the
dataset. R. denotes REWAF and A. denotes AEWAF.
δ is set as 0.2.

Data Alg. Measures
Regret (%) Query (%) Time (s)

D1 R. 0.364 ± 0.017 77.35 ± 0.23 0.685
A. 0.292 ± 0.001 77.44 ± 0.01 0.762

D2 R. 0.491 ± 0.025 42.48 ± 0.16 0.796
A. 0.202 ± 0.001 42.46 ± 0.01 0.941

D3 R. 0.088 ± 0.002 74.26 ± 0.05 10.465
A. 0.064 ± 0.000 74.25 ± 0.01 11.958

D4 R. 1.342 ± 0.102 45.40 ± 0.59 0.566
A. 0.598 ± 0.003 45.40 ± 0.01 0.568

D5 R. 0.907 ± 0.076 40.94 ± 0.33 0.256
A. 0.344 ± 0.004 41.00 ± 0.01 0.300

D6 R. 1.575 ± 0.067 10.80 ± 0.38 0.104
A. 0.530 ± 0.004 10.63 ± 0.01 0.119

D7 R. 1.062 ± 0.066 71.64 ± 0.73 0.080
A. 0.756 ± 0.004 71.67 ± 0.01 0.091

D8 R. 0.718 ± 0.047 49.36 ± 0.50 0.100
A. 0.535 ± 0.006 49.41 ± 0.01 0.117

D9 R. 0.248 ± 0.006 40.79 ± 0.17 1.489
A. 0.169 ± 0.000 40.82 ± 0.01 1.636

the differences between their ratios of the requested
labeled data.

Second, compared with REWAF, AEWAF achieves s-
tatistically lower regret rates on all the datasets, which
validates the effectiveness of the proposed active learn-
ing strategy and also indicates the importance of ex-
ploiting the degree of agreements between different ex-
perts. In addition, AEWAF can achieve comparable
regret rates with EWAF by requesting a significant-
ly less amount of labels; while REWAF suffers sig-
nificantly more regret rates by requesting the same
amount of labels. This shows that AEWAF could be
an attractive alternative to the EWAF in order to save
the expensive labeling efforts in a real application.

Third, the time cost of the AEWAF algorithm is in
general comparable to or slightly higher than that of
the REWAF algorithm because the proposed confi-
dence conditions can be evaluated rather efficiently.

Finally, we would also like to examine if the proposed
active learning strategy can be generalized to different
types of forecasting algorithms. To this purpose, we al-
so evaluate the performance of the RGF and AGF algo-
rithms. Table 4 summarizes the experimental results
on all the datasets. As compared to the last experi-
ment, similar observations can be drawn from the ex-
perimental results. We found that AEWAF and AGF
request almost the same ratios of labels and achieve
comparable regret rates on all the datasets; while RE-
WAF and RGF achieve comparable regret rates, which
are significantly higher than those of the two proposed
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active algorithms. These results indicate that the pro-
posed active learning strategy can be generalized to
different types of forecasting algorithms, and again
validate the efficacy of the proposed active learning
algorithms.

Table 4: Evaluation of RGF and AGF on all the
dataset. R. denotes RGF and A. denotes AGF. δ is
set as 0.2.

Data Alg. Measures
Regret (%) Query (%) Time (s)

D1 R. 0.362 ± 0.022 76.61 ± 0.26 0.905
A. 0.288 ± 0.003 76.56 ± 0.04 0.974

D2 R. 0.474 ± 0.028 42.38 ± 0.21 1.363
A. 0.199 ± 0.002 42.40 ± 0.01 1.542

D3 R. 0.089 ± 0.002 74.21 ± 0.06 14.416
A. 0.063 ± 0.001 74.21 ± 0.01 15.959

D4 R. 1.344 ± 0.088 45.53 ± 0.71 0.610
A. 0.592 ± 0.005 45.27 ± 0.04 0.611

D5 R. 0.923 ± 0.096 40.13 ± 0.39 0.442
A. 0.335 ± 0.009 40.32 ± 0.07 0.498

D6 R. 1.633 ± 0.053 10.21 ± 0.41 0.206
A. 0.543 ± 0.005 10.22 ± 0.07 0.231

D7 R. 1.088 ± 0.080 71.18 ± 0.82 0.113
A. 0.752 ± 0.007 71.27 ± 0.06 0.126

D8 R. 0.726 ± 0.043 46.97 ± 0.48 0.164
A. 0.559 ± 0.015 47.01 ± 0.40 0.185

D9 R. 0.247 ± 0.005 40.55 ± 0.21 2.110
A. 0.171 ± 0.001 40.59 ± 0.01 2.303

4.5 Evaluation of Active Forecasters on
Varied Ratios of Queries

Firstly, Figure (1) shows the performance of the RE-
WAF and AEWAF algorithms on mushrooms with
varied ratios of queries. AEWAF outperforms RE-
WAF with all the ratios of queries, which verifies the
proposed active strategies are effective and promising.
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Figure 1: Comparison of REWAF and AEWAF on
mushrooms.

Secondly, Figure (2) shows the performance of the

RGF and AGF algorithms on mushrooms with var-
ied ratios of queries. AEWAF outperforms REWAF
with all the ratios of queries, which again verifies the
proposed active strategies are effective and promising.
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Figure 2: Comparison of RGF and AGF on mushroom-
s.

Finally, Figure (3) and (4) shows the comparisons of
REWAF and AEWAF, RGF and AGF on all the re-
maining datasets, respectively, where similar observa-
tions can be found from the results.

5 Conclusion

This paper addressed a new problem of active learn-
ing with expert advice for online sequential prediction
tasks. We proposed two novel strategies for active
learning with expert advice by extending two exist-
ing forecasting algorithms in an online active learn-
ing setting. We analyze the theoretical regret bounds
for the proposed algorithms, which guarantee the pro-
posed algorithms satisfy the important Hannan con-
sistency. We have conducted an extensive set of ex-
periments to evaluate the efficacy of the algorithms.
Promising empirical results validate the effectiveness
of our technique.

Despite the encouraging results, some limitations and
open challenges of the current work remain. One is-
sue is about the settings of the learning rate η and
tolerance parameter δ, which were fixed manually in
our experiments. It would be more attractive if one is
able to design a self-tuned strategy for the active learn-
ing task. Further, the current regret bounds may be
further improved, e.g., by adopting different loss func-
tions or other strategies. Another future work may
be exploring the principles of semi-supervised learning
for improving active learning with expert advice [15].
These issues can be further explored in the future
work.
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Figure 3: Comparison of regret rates with respect to varied ratios of queries.
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Figure 4: Comparison of regret rates with respect to varied ratios of queries.
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Bennett-type Generalization Bounds: Large-deviation Case and
Faster Rate of Convergence
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Abstract

In this paper, we present the Bennett-type
generalization bounds of the learning pro-
cess for i.i.d. samples, and then show
that the generalization bounds have a faster
rate of convergence than the traditional re-
sults. In particular, we first develop two
types of Bennett-type deviation inequality
for the i.i.d. learning process: one pro-
vides the generalization bounds based on the
uniform entropy number; the other leads
to the bounds based on the Rademacher
complexity. We then adopt a new method
to obtain the alternative expressions of the
Bennett-type generalization bounds, which
imply that the bounds have a faster rate
o(N−

1
2 ) of convergence than the traditional

results O(N−
1
2 ). Additionally, we find that

the rate of the bounds will become faster in
the large-deviation case, which refers to a sit-
uation where the empirical risk is far away
from (at least not close to) the expected risk.
Finally, we analyze the asymptotical conver-
gence of the learning process and compare
our analysis with the existing results.

1 Introduction

In learning theory, one of the major concerns is to
obtain the generalization bounds of the learning pro-
cess for i.i.d. samples, which measure the probability
that a function obtained in the i.i.d. learning process
has a sufficiently small error [Vapnik, 1998, Bousquet
et al., 2004]. Generalization bounds have been widely
used to study many topics of learning theory, e.g., the
consistency of ERM-based learning processes [Vapnik,
1998], the asymptotic convergence of empirical process
[Van der Vaart and Wellner, 1996] and the learnability
of learning models [Blumer et al., 1989].

Deviation (or concentration) inequalities play an es-
sential role in obtaining generalization bounds. There
are many popular deviation and concentration in-
equalities, e.g., Hoeffding’s inequality, McDiarmid’s
inequality, Bennett’s inequality, Bernstein’s inequal-
ity and Talagrand’s inequality. Among them, Hoeffd-
ing’s inequality and McDiarmid’s inequality have been
intensively used to obtain the generalization bounds
based on the covering number (or uniform entropy
number) and the Rademacher complexity, respectively
[Mendelson, 2003, Van der Vaart and Wellner, 1996].
To obtain the generalization bounds based on the VC
dimension, Vapnik [1998] applied some classical in-
equalities, for example, Chernoff’s inequality and Ho-
effding’s inequality, but also developed specific concen-
tration inequalities. Bartlett et al. [2005] presented
generalization bounds based on the local Rademacher
complexity by using Talagrand’s inequality. Addition-
ally, there are also other works to study the general-
ization bound in statistical learning theory [Ben-David
et al., 2010, Mohri and Rostamizadeh, 2010]. However,
to our best knowledge, there is little theoretical inves-
tigation into the generalization bounds derived from
Bennett’s inequality.

1.1 Motivation

The paper is motivated by the difference between Ho-
effding’s inequality [Hoeffding, 1963] and Bennett’s in-
equality [Bennett, 1962]. It is well-known that Ho-
effding’s inequality is achieved by only exploiting the
expectation information, and Bennett’s inequality is
based on both of expectation and variance. Intuitively,
the Bennett-type generalization bounds should have a
faster rate of convergence than that of the Hoeffding-
type results. However, to our best knowledge, this
issue has not been well explored in the literature. In
this paper, we will give a theoretical argument to show
the faster rate of the Bennett-type results.
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1.2 Overview of Main Results

In this paper, we are mainly concerned with the fol-
lowing three aspects: (1) Bennett-type deviation in-
equality; (2) Bennett-type generalization bounds; (3)
rate of convergence.

By extending the classical Bennett’s inequality, we
use the martingale method to develop a Bennett-type
deviation inequality for the case of multiple random
variables and this inequality leads to the generaliza-
tion bounds based on the uniform entropy number
(UEN). Moreover, under the bounded-difference con-
dition, we present another Bennett-type deviation in-
equality that is similar to McDiarmid’s inequality. We
use this deviation inequality to further obtain the gen-
eralization bounds based on the Rademacher com-
plexity. Note that the aforementioned generalization
bounds are said to be of Bennett-type, because they
are derived from the Bennett-type deviation inequali-
ties.

In order to analyze the rate of convergence of the
bounds, one needs to obtain the alternative expres-
sions of the Bennett-type generalization bounds. Dif-
fering from the Hoeffding-type bounds [see (7)], the ex-
pression of Bennett-type bounds [see (16)] are not well-
defined and thus it is difficult to directly present the
alternative expressions of the Bennett-type bounds.1

Instead, one generally transforms the Bennett-type
bound to the Bernstain-type one and then obtains the
corresponding alternative expression showing that the
bound has the rate O(N−

1
2 ) of convergence, which is

in accordance with the classical result (8). Here, we
use a new method to obtain another alternative ex-
pression of the Bennett-type bound and show that the
Bennett-type bounds have a faster rate o(N−

1
2 ) of con-

vergence than the classical result O(N−
1
2 ). Addition-

ally, we point out that the rate of the bounds will be-
come faster as the discrepancy between the empirical
risk and the expected risk becomes larger. This situ-
ation is called as the large-deviation case [see Remark
4.3].

Note that it is well-known that the rate of the em-
pirical Rademacher complexity is up to O(N−

1
2 ) [see

(10)], and thus it seems to be a contradiction that the

Bennett-type bounds have a faster rate o(N−
1
2 )) [see

Remark 5.1]. An explanation to the contradiction is
given to support the theoretical findings on the faster
rate of convergence.

1The reason is that it is difficult to directly obtain the
analytical expression of the inverse function of Γ(x) = x−
(x+ 1) ln(x+ 1).

1.3 Organization of the Paper

The rest of this paper is organized as follows. Section 2
formalizes the main issues of this paper and briefs the
classical results. In Section 3, we present two Bennett-
type deviation inequalities for the case of multiple ran-
dom variables. Section 4 provides the generalization
bounds and a new upper bound of the Rademacher
complexity is presented in Section 5. In Section 6, we
analyze the asymptotic convergence of the i.i.d. learn-
ing process and the last section concludes the paper.
The proofs of the main results are given in the long
version of this paper.2

2 Preliminaries

In this section, we first introduce some notations to for-
malize the proposed research of this paper, and then
present the definitions of the covering number, the uni-
form entropy number and the Rademacher complex-
ity. Moreover, we also brief the classical results of
the Heoffding-type generalization bounds of the i.i.d.
learning process.

2.1 Problem Setup

Let X ⊂ RI and Y ⊂ RJ be an input space and
its corresponding output space, respectively. Denote
Z := X × Y ⊂ RI × RJ with K = I + J . Let G ⊂ YX
be a function class with the domain X and the range
Y. Given a loss function ` : Y2 → R, it is expected
to find a function g∗ ∈ G : X → Y that minimizes the
expected risk over G

E(` ◦ g) :=

∫
`(g(x),y)dP(z), g ∈ G, (1)

where P(z) stands for the distribution of z = (x,y).

Generally, the distribution P(z) is unknown and thus
the target function g∗ cannot be directly obtained by
minimizing (1). Instead, we can apply the empirical
risk minimization (ERM) principle to handle this issue
[Vapnik, 1998]. Given a function class G and a set of
i.i.d. samples ZN1 := {zn}Nn=1 drawn from Z, we define
the empirical risk of g ∈ G as

EN (` ◦ g) :=
1

N

N∑

n=1

`(g(xn),yn), (2)

which is considered as an approximation to the ex-
pected risk (1). Let gN ∈ G be the function that mini-
mizes the empirical risk (2) over G and deem gN as an
estimate to g∗ with respect to ZN1 .

In the aforementioned i.i.d. learning process, we are
mainly interested in the following two types of quan-
tities:

2https://sites.google.com/site/czhang1015/
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• E(` ◦ gN )−EN (` ◦ gN ), which corresponds to the
estimation of the expected risk from an empirical
quantity;

• E(` ◦ gN ) − E(` ◦ g∗), which corresponds to the
performance of the ERM-based algorithm.

Recalling (1) and (2), since

EN (` ◦ g∗)− EN (` ◦ gN ) ≥ 0,

we have

E(` ◦ gN ) =E(` ◦ gN )− E(` ◦ g∗) + E(` ◦ g∗)
≤EN (` ◦ g∗)− EN (` ◦ gN ) + E(` ◦ gN )

− E(` ◦ g∗) + E(` ◦ g∗)
≤2 sup

g∈G

∣∣E(` ◦ g)− EN (` ◦ g)
∣∣+ E(` ◦ g∗),

and thus

0 ≤ E(` ◦ gN )− E(` ◦ g∗) ≤ 2 sup
g∈G

∣∣E(` ◦ g)− EN (` ◦ g)
∣∣,

with

E(` ◦ gN )− EN (` ◦ gN ) ≤ sup
g∈G

∣∣E(` ◦ g)− EN (` ◦ g)
∣∣.

This shows that the asymptotic behaviors of the afore-
mentioned two quantities, when the sample number N
goes to infinity, can both be described by the supre-
mum

sup
g∈G

∣∣E(` ◦ g)− EN (` ◦ g)
∣∣, (3)

which is the so-called generalization bound of the i.i.d.
learning process.

For convenience, we define the loss function class

F := {z 7→ `(g(x),y) : g ∈ G},
and call F as the function class in the rest of this
paper. By (1) and (2), given a sample set ZN1 drawn
from Z, we briefly denote for any f ∈ F ,

Ef :=

∫
f(z)dP(z); ENf :=

1

N

N∑

n=1

f(zn).

Thus, we rewrite the generalization bound (3) as

sup
f∈F

∣∣Ef − ENf
∣∣.

2.2 Complexity Measures of Function Classes

Generally, the generalization bound of a certain learn-
ing process is achieved by incorporating the complexity
measure of the function class, e.g., the covering num-
ber, the VC dimensions and the Rademacher complex-
ity. This paper is mainly concerned with the covering
number, the uniform entropy number (UEN) and the
Rademacher complexity.

2.2.1 Covering Number and Uniform
Entropy Number (UEN)

The following is the definition of the covering number
and we refer to Mendelson [2003] for details.

Definition 2.1 Let F be a function class and d be a
metric on F . For any ξ > 0, the covering number of
F at radius ξ with respect to the metric d, denoted by
N (F , ξ, d) is the minimum size of a cover of radius ξ.

For clarity of presentation, we give a useful notation
for the following discussion. Given a sample set ZN1 :=

{zn}Nn=1 drawn from Z, we denote Z′N1 := {z′n}Nn=1

as the ghost-sample set drawn from Z such that the
ghost sample z′n has the same distribution as zn for
any 1 ≤ n ≤ N . Denote Z2N

1 := {ZN1 ,Z′N1 }. Setting
the metric d as the `p(Z

2N
1 ) (p > 0) norm, we then

obtain the covering number N
(
F , ξ, `p(Z2N

1 )
)
.

The uniform entropy number (UEN) is a variant of the
covering number and we refer to Mendelson [2003] for
details as well. By setting the metric `p(Z

N
1 ) (p > 0),

the UEN is defined as follows:

lnNp(F , ξ,N) := sup
Z2N

1

lnN
(
F , ξ, `p(ZN1 )

)
. (4)

2.2.2 Rademacher Complexity

The Rademacher complexity is one of the most fre-
quently used complexity measures of function classes
and we refer to Bousquet et al. [2004] for details.

Definition 2.2 Let F be a function class and
{zn}Nn=1 be a sample set drawn from Z. Denote
{σn}Nn=1 as a set of random variables independently
taking either value of {−1, 1} with equal probability.
The Rademacher complexity of F is defined as

R(F) := E sup
f∈F

{
1

N

N∑

n=1

σnf(zn)

}
(5)

with its empirical version

RN (F) := Eσ sup
f∈F

{
1

N

N∑

n=1

σnf(zn)

}
, (6)

where E stands for the expectation taken with respect
to all random variables {zn}Nn=1 and {σn}Nn=1, and Eσ
stands for the expectation only taken with respect to
random variables {σn}Nn=1.

2.3 Classical Hoeffding-type Generalization
Bounds

Next, we summarize some classical results of the gen-
eralization bounds. Note that the following bounds are
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said to be of Hoeffding-type, because they are derived
from (or strongly related to) Hoeffding’s inequality and
Hoeffding’s lemma [Hoeffding, 1963].

First, based on the covering number, one can use Ho-
effding’s inequality (or Hoeffding’s lemma) to obtain
the following generalization bound w.r.t. a function
class F with the range [a, b] [see Mendelson, 2003, The-

orem 2.3]: for any N ≥ 8(b−a)2

ξ2 ,

Pr

{
sup
f∈F

∣∣Ef − ENf
∣∣ > ξ

}

≤8EN
(
F , ξ/8, `1(Z2N

1 )
)

exp

{
− Nξ2

32(b− a)2

}
, (7)

which is one of the most frequently used generalization
results in statistical learning theory. Because of its
well-defined expression, we can directly obtain its al-

ternative expression: for any N ≥ 8(b−a)2

ξ2 , with prob-
ability at least 1− ε,

sup
f∈F

∣∣ENf − Ef
∣∣ (8)

≤O



(

ln EN
(
F , ξ/8, `1(Z2N

1 )
)
− ln(ε/8)

N

) 1
2


 .

Following the alternative expression (8), it is observed
that the generalization bound supf∈F

∣∣ENf −Ef
∣∣ has

a convergence rate of O(N−
1
2 ).

On the other hand, McDiarmid’s inequality can pro-
vide the following generalization bound based on the
Rademacher complexity [see Bousquet et al., 2004,
Theorem 5]: for any ε > 0 and f ∈ F , with proba-
bility at least 1− ε,

Ef ≤ ENf + 2R(F) + (b− a)

(
ln(1/ε)

N

) 1
2

≤ ENf + 2RN (F) + 3(b− a)

(
ln(2/ε)

2N

) 1
2

, (9)

which is also of Hoeffding-type, because McDiarmid’s
inequality is actually derived from Hoeffiding’s lemma
under the condition that f has the bounded-differences
property [see Bousquet et al., 2004, Theorem 6]. Fur-
thermore, it is followed from Sudakov minoration for
Rademacher processes3 [Talagrand, 1994b,a, Lata la,
1997] and Massart’s finite class lemma (Dudley’s en-
tropy integral)4 [Mendelson, 2003, Van der Vaart and

3See http://www.cs.berkeley.edu/ bartlett/courses/281b-
sp08/19.pdf

4See http://ttic.uchicago.edu/∼karthik/dudley.pdf

Wellner, 1996] that:

c

lnN
sup
α>0

α

√
lnN (F , ξ, `2(ZN1 ))

N
≤ RN (F) (10)

≤ inf
ε>0

{
4ε+ 12

∫ ∞

ε

√
lnN (F , ξ, `2(ZN1 ))

N
dξ

}
,

which shows the lower and the upper bounds of the
empirical Rademacher complexity RN (F). The com-
bination of (9) and (10) implies that the rate of con-

vergence of supf∈F
∣∣ENf − Ef

∣∣ is up to O(N−
1
2 ) as

well.

3 Bennett-type Deviation Inequalities

By extending the classical Bennett’s inequality [Ben-
nett, 1962] to the case of multiple random variables,
this section will present two Bennett-type deviation
inequalities for the i.i.d. learning process. We also re-
fer to Bousquet [2002] for the application of Bennett’s
inequality in the empirical process.

Theorem 3.1 Let f be a function with the range [a, b]
and ZN1 = {zn}Nn=1 be a set of i.i.d. samples drawn
from Z. Define a function F : RKN → R as

F
(
ZN1
)

:=

N∑

n=1

f(zn). (11)

Then, we have for any 0 < ξ < N(b− a),

Pr
{∣∣E{F} − F (ZN1 )

∣∣ > ξ
}
≤ 2eNΓ( ξ

N(b−a) ), (12)

where
Γ(x) := x− (1 + x) ln(1 + x). (13)

The proof of this result is processed by the martingale
method. Compared to the classical Bennett’s inequal-
ity, this result is valid for the case of multiple random
variables and provides the convenience to obtain the
generalization bound of the i.i.d. learning process. Es-
pecially, the two inequalities will coincide, if there is
only one random variable.

Moreover, recalling the classical McDiarmid’s inequal-
ity [see Bousquet et al., 2004, Theorem 6], it is actually
derived from Hoeffiding’s lemma under the condition
that f has the bounded-differences property. Thus,
McDiarmid’s inequality has a similar expression to
that of Hoeffding’s inequality and the two inequalities
coincide if there is only one random variable. Similarly,
we obtain another Bennett-type deviation inequality
under the bounded-difference condition:

Theorem 3.2 Let z1, · · · , zN be N independent ran-
dom variables taking values from Z. Assume that
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there exists a positive constant such that the function
H : ZN → R satisfies the bounded-difference condi-
tion: for any 1 ≤ n ≤ N ,

sup
z1,··· ,zN ,z′n

∣∣∣H
(
z1, · · · , zn, · · · , zN

)

−H
(
z1, · · · , z′n, · · · , zN

)∣∣∣ ≤ c. (14)

Then, we have for any ξ > 0

Pr
{
H
(
z1, · · · , zn, · · · , zN

)
(15)

− EH(z1, · · · , zn, · · · , zN ) ≥ ξ
}
≤ exp

{
NΓ

(
ξ

Nc

)}
,

where Γ(x) is defined in (13).

The inequality (15) is an extension of the classical Ben-
nett’s inequality and the two results will coincide if
there is only one random variable as well.

Subsequently, we will use the above two deviation in-
equalities to obtain the generalization bounds based
on the uniform entropy number and the Rademacher
complexity, respectively.

4 Bennett-type Generalization
Bounds

In this section, we will show the Bennett-type gener-
alization bounds of the i.i.d learning process. The de-
rived bounds are based on the uniform entropy number
(UEN) and the Rademacher complexity, respectively.
Note that since the presented bounds (16), (18) and
(23) are derived from the Bennett-type deviation in-
equalities, they are said to be of Bennett-type as well.

4.1 UEN-based Generalization Bounds

By using the deviation inequality (12) and the sym-
metrization inequality [see Bousquet et al., 2004,
Lemma 2], we can obtain a Bennett-type generaliza-
tion bound based on the uniform entropy number:

Theorem 4.1 Assume that F is a function class with
the range [a, b]. Let ZN1 and Z′N1 be drawn from Z and

denote Z2N
1 := {ZN1 ,Z′N1 }. Then, given any 0 < ξ ≤

(b− a), we have for any N ≥ 8(b−a)2

ξ2 ,

Pr

{
sup
f∈F

∣∣Ef − ENf
∣∣ > ξ

}
(16)

≤8N1 (F , ξ/8, 2N) exp

{
NΓ

(
ξ

8(b− a)

)}
.

This theorem implies that the probability of the event
that the generalization bound supf∈F

∣∣Ef − ENf | is

larger than any ξ > 0 can be bounded by the right-
hand side of (16). We can find that the expression of
the bound is similar to that of Bennett’s inequality.

Different from the aforementioned Hoeffding-type re-
sult (7) and its alternative expression (8), it is difficult
to directly achieve the alternative expression of the
Bennett-type bound (16), because it is difficult to ob-
tain the analytical expression of the inverse function of
Γ(x) = x−(x+1) ln(x+1). Instead, one generally uses

the term −x2

2+(2x/3) to approximate the function Γ(x)

and then get the so-called Bernstein’s inequality.5 In
the same way, we can obtain the following alternative
expression of the Bennett-type result (16):

sup
f∈F

∣∣ENf − Ef
∣∣ (17)

≤4(b− a)
(

lnN1(F , ξ/8, 2N)− ln(ε/8)
)

3N

+
(b− a)

√
2
(

lnN1(F , ξ/8, 2N)− ln(ε/8)
)

√
N

,

which implies that the rate of convergence of the
Bennett-type bound is also up to O

(
N−

1
2

)
. It is in ac-

cordance with the rate of the aforementioned classical
results (8). For convenience, the alternative expression
is said to be of Bernstein-type if no confusion arises.

4.2 Bennett-type Alternative Expression and
Faster Rate of Convergence

Recalling the process of obtaining Hoeffding’s inequal-
ity and Bennett’s inequality, the former is achieved by
using the information of expectation, while the lat-
ter needs to consider the information of both expecta-
tion and variance. Intuitively, the Bennett-type result
(16) should have a faster rate of convergence than that
of the Hoeffding-type result (7). From this point of
view, we introduce a new method to obtain another
alternative expression of the Bennett-type result (16)
and show that the rate of the generalization bound
supf∈F

∣∣ENf − Ef
∣∣ can reach o

(
N−

1
2

)
, when N goes

to infinity:

Theorem 4.2 Follow the notations and conditions of
Theorem 4.1. Then, given any 0 < ξ ≤ (b − a) and

for any N ≥ 8(b−a)2

ξ2 , we have with probability at least
1− ε,

sup
f∈F

∣∣ENf − Ef
∣∣ ≤ (18)

8(b− a)

(
lnN1 (F , ξ/8, 2N)− ln(ε/8)

β1N

) 1
γ

.

5http://ocw.mit.edu/courses/mathematics/18-465-
topics-in-statistics-statistical-learning-theory-spring-
2007/lecture-notes/l6.pdf
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where β1 ∈ (0.0075, 0.4804),

ε := 8N1

(
F , ξ/8, 2N

)
exp {NΓ (x)} ,

and 0 < γ
(
β1;x

)
≤ γ < 2 (x ∈ (0, 1/8]) with

γ(β;x) :=
ln
((

(x+ 1) ln(x+ 1)− x
)
/β
)

lnx
. (19)

Proof. Since any f ∈ F is a bounded function with
the range [a, b], the supremum supf∈F |Ef−ENf | will
not be larger than (b − a). Therefore, the quantity

ξ
8(b−a) in (16) will not be larger than 1/8. Set x =
ξ

8(b−a) with x ∈ (0, 1/8] and consider the following

equation with respect to γ > 0

Γ(x) = x− (x+ 1) ln(x+ 1) = −β1(x γ), (20)

where β1 is some positive constant. Denote the solu-
tion to the equation (20) w.r.t. γ as

γ(β1, x) :=
ln
( (x+1) ln(x+1)−x

β1

)

ln(x)
. (21)

By numerical simulation, we find that given any β1 ∈
(0.0075, 0.4804), there holds that 0 < γ(β1;x) < 2
for any x ∈ (0, 1/8] (see Fig. 1). Then, given any
x ∈ (0, 1/8] and β1 ∈ (0.0075, 0.4804), we have for any
γ̃ ∈ [γ(β1;x), 2),

x− (x+ 1) ln(x+ 1) ≤ −β1x
γ̃ < −β1x

2. (22)

By combining Theorem 4.1 and (22), we can straight-
forwardly show an upper bound of the generalization
bound sup

f∈F

∣∣ENf − Ef
∣∣: letting

ε := 8N1 (F , ξ/8, 2N) exp {NΓ (x)} ,

and with probability at least 1− ε,

sup
f∈F

∣∣ENf − Ef
∣∣

≤8(b− a)

(
lnN1(F , ξ/8, 2N)− ln(ε/8)

β1N

) 1
γ

.

where 0 < γ
(
β1;x

)
≤ γ < 2 with x ∈ (0, 1/8]. �

The above theorem shows a Bennett-type alternative
expression of the generalization bound supf∈F |ENf−
Ef |, which provides a faster rate o(N−

1
2 ) of conver-

gence than the rate O(N−
1
2 ) of the classical result (8)

and the Bernstein-type result (17). The main starting
point of this theorem is whether there exists a positive
constant β1 such that the function γ(β1;x) is smaller
than 2 for any x ∈ (0, 1/8] [see (20) and (21)], i.e.,
there holds that 0 < γ(β1;x) < 2 for any 0 < x ≤
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Figure 1: The Function Curve of γ(β1;x)

1/8. In the proof, we show that the value interval
(0.0075, 0.4804) of β1 supports Γ(x) = −β1x

γ(β1;x) <
−β1x

2 for any x ∈ (0, 1/8]. As shown Fig. 1, given
any β1 ∈ (0.0075, 0.4804), the function γ(β1;x) is
smaller than 2 w.r.t. x ∈ (0, 1/8). Meanwhile, given
any x ∈ (0, 1/8), the function γ(β1;x) is monotoni-
cally increasing w.r.t. β1 ∈ (0.0075, 0.4804). However,
the function γ(β1;x) is not monotonically decreasing
w.r.t. x ∈ (0, 1/8) for any β1 ∈ (0.0075, 0.4804).
In fact, γ(β1;x) is monotonically decreasing when
β1 ∈ (0.0075, 0.4434] and has one single minimizer
x0 ∈ (0, 1/8] of γ(β1;x) when β1 ∈ (0.4434, 0.4804)
with γ′(β1;x0) = 0.

4.3 Large-deviation Case

Subsequently, we will show that the Bennett-type
bounds can reach a faster rate of convergence in the
large-deviation case.

Remark 4.3 The word “large-deviation” means that
the discrepancy between the empirical risk and the
expected risk is large (or not small). Given any
ξ > 0, one of our major concerns is the probability
Pr
{

supf∈F
∣∣ENf − Ef

∣∣ > ξ
}

, and then we say that
the case the value of ξ approaches to (b−a) is of large-
deviation.6

Actually, the large-deviation case is referring to a sit-
uation where the empirical quantity ENf is far away
from (at least not close to) the expected risk Ef . As
shown in Fig. 1, for any β1 ∈ (0.0075, 0.4434], the
curve of γ(β1;x) is monotonically decreasing w.r.t.

6The function class F is composed of bounded functions
with the range [a, b].

719



x ∈ (0, 1/8], and for any β1 ∈ (0.4434, 0.4804) the
function γ(β1;x) is still smaller than 2 for any x ∈
(0, 1/8]. Moreover, there holds that for any β1 ∈
(0.0075, 0.4804),

lim
x→0+

γ(β1, x) := lim
x→0+

ln
( (x+1) ln(x+1)−x

β1

)

ln(x)
= 2.

This illustrates that the rate O(N−
1
γ ) (γ(β1;x) ≤ γ) of

the Bennett-type generalization bound (18) becomes
faster as the empirical quantity ENf goes further away
from the expected risk Ef (i.e. x approaches to 1/8).
However, when ENf approaches to Ef (i.e. x goes to

0), the rate O(N−
1
γ ) will approach to O(N−

1
2 ), which

is in accordance with the classical Hoeffding-type re-
sults.

In contrast, the Hoeffding-type results consistently
provide the rate O(N−

1
2 ) regardless of the discrepancy

between ENf and Ef . Thus, the Bennett-type results
can give a more detailed description to the asymptot-
ical behavior of the learning process.

4.4 Effect of the Parameter β1

As addressed in the introduction, the main motivation
of this paper is to study whether the Bennett-type gen-
eralization bounds have a faster rate of convergence
than that of the Hoeffding-type generalization results,
because the Bennett-type results are derived from the
corporation of the expectation information and the
variance information and in contrast, the Hoeffding-
type results are only related to the expectation infor-
mation. However, the main challenge to analyze the
rate lies in obtaining the alternative expression of the
bound (16), because it is difficult to analytically ex-
press the inverse function of Γ(x). Instead, we exploit
the term −βxγ to substitute Γ(x) [see (20)] and Fig.
2 illustrates the validity of this method. In Fig. 2, the
curve e−x

2/32 and eΓ(x/8) correspond to the Hoeffding-
type bound (7) and the Bennett-type bound (16), re-
spectively. Evidently, setting β1 = 0.4804 makes the
curve e−β1(x/8)2 almost coincide with the curve eΓ(x/8).

4.5 Rademacher-complexity-based
Generalization Bounds

By using the deviation inequality (15), we can obtain
the generalization bounds based on the Rademacher
complexity:

Theorem 4.4 Assume that F is a function class con-
sisting of functions with the range [a, b]. Let ZN1 =
{zn}Nn=1 be a set of i.i.d. samples drawn from Z.
Then, for any f ∈ F , we have with probability at least
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2
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2

Figure 2: The Function Curves of eΓ(x/8), e−x
2/32 and

e−0.4804(x/8)2 .

1− ε,

Ef < ENf + 2R(F) + (b− a)

(
ln(1/ε)

β2N

) 1
γ

< ENf + 2RN (F) + 3(b− a)

(
ln(2/ε)

β2N

) 1
γ

, (23)

where β2 is taken from the interval (0.0075, 0.3863),
ε := exp

{
NΓ(x)

}
and 0 < γ

(
β2;x

)
≤ γ < 2 (x ∈

(0, 1]) with γ(β;x) defined in (19).

The above theorem presents the Bennett-type general-
ization bounds based on the Rademacher complexity.
Compared to the classical Rademacher-complexity-
based results (9), the new bounds (23) incorporate a

term O
(
N−

1
γ
)

(i.e., o
(
N−

1
2

)
because γ < 2) with a

faster rate of convergence than the term O
(
N−

1
2

)
ap-

pearing in (9), when N goes to infinity.

5 Bounds of Rademacher
Complexities

Recalling (16) and (23), it is observed that there might
be a contradiction:

Remark 5.1 The generalization bound (16) has the

faster rate o
(
N−

1
2

)
, while the magnitude of the em-

pirical Rademacher complexity has been proved to be
O
(
N−

1
2

)
as shown in the classical result (10).

In order to explain this contradiction, we should con-
sider the following two questions:

720



(Q1) whether the empirical Rademacher complex-
ity RN (F) can totally describe the behavior of
Rademacher complexity R(F);

(Q2) whether the classical results (10) are either ap-
plicable to R(F).

5.1 Answer to Question Q1

Recalling (9) and (23), the quantity (Ef−ENf) is orig-
inally bounded by the Rademacher complexity R(F),
while it is difficult to compute R(F) due to the un-
known distribution of ZN1 . Instead, by using deviation
inequalities (e.g. Hoeffding’s inequality and Bennett’s
inequality), one can further bound R(F) by using its
empirical version RN (F) as follows: with probability
as least 1− ε/2,

R(F) ≤ RN (F) + (b− a)

(
ln(2/ε)

2N

) 1
2

,

and

R(F) ≤ RN (F) + (b− a)

(
ln(2/ε)

β2N

) 1
γ

.

However, the behavior of Rademacher complexity
R(F) cannot be totally described by its empirical
version RN (F). In fact, the joint distribution of∑
σnf(zn) may not be a Rademacher process because

z is a random variable of an unknown distribution.

5.2 Answer to Question Q2

Recalling (10), the lower and the upper bounds of
RN (F) are respectively derived from the Sudakov mi-
noration for Rademacher processes and Massart’s fi-
nite class lemma, both of which are strongly related to
(or have the similar forms as that of) the Hoeffding-
type results.7 Thus, all Hoeffding-type conclusions
mentioned in Section 2.3 are consistent.

However, as answered above, the joint distribution of∑
σnf(zn) may not be a Rademacher process. Since

Sudakov minoration is not valid for an arbitrary pro-
cess [see Talagrand, 1994b,a, Lata la, 1997], the lower

bound of RN (F) with the rate O(N−
1
2 ) is not appli-

cable to the lower bound of R(F).

Additionally, we also need to consider the following
question: why we do not use Bennett’s inequality to
obtain the upper bound of RN (F)? In fact, in or-
der to obtain the upper bound of RN (F), one needs

7Recalling Massart’s finite class lemma, the main step

of its proof is processed by using a term eλ
2r2/2 which is

also similar to the term eλ
2r2/8 appearing in Hoeffding’s

lemma.
See http://ttic.uchicago.edu/∼tewari/lectures/lecture10.pdf

to consider the following term Eeσf(z). Since σ is a
Rademacher variable taking values from {±1} with
equivalent probability for a given sample z, there holds
that

Eeσf(z) =
ef(z) + e−f(z)

2
≤ e

(f(z))2

2 ,

which differs from the related formula (28) in Lemma
A.1 that is built in the case that the distribution of z
is unknown.

6 Asymptotical Convergence

Based on the generalization bound (16), we study the
asymptotic convergence of the i.i.d. learning process.
We also give a comparison with the existing results.

Recalling (13), it is noteworthy that there is only one
solution x = 0 to the equation Γ(x) = 0 and Γ(x)
is monotonically decreasing when x ≥ 0 [see Fig. 3].
Following Theorem 4.1, we can directly obtain the fol-
lowing result indicating that the asymptotic conver-
gence of the i.i.d. learning process is determined by
the uniform entropy number lnN1(F , ξ/8, 2N).
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Figure 3: The Function Curve of Γ(x)

Theorem 6.1 Under the notations and conditions of
Theorem 4.1, if the following condition is supported:

lim
N→+∞

lnN1(F , ξ/8, 2N)

N
< +∞, (24)

then we have for any ξ > 0,

lim
N→+∞

Pr

{
sup
f∈F

∣∣Ef − ENf
∣∣ > ξ

}
= 0. (25)
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As shown in Theorem 6.1, if the uniform entropy num-
ber lnN1(F , ξ/8, 2N) satisfies the condition (24), the
probability of the event

sup
f∈F

∣∣Ef − ENf
∣∣ > ξ

will converge to zero for any ξ > 0, when the sample
number N goes to infinity. This is in accordance with
the classical result shown in (7): the probability of
the event that supf∈F

∣∣Ef − ENf
∣∣ > ξ will converge

to zero for any ξ > 0, if the uniform entropy number
lnN1(F , ξ/8, 2N) satisfies the same condition as (24).

7 Conclusion

In this paper, we present the Bennett-type generaliza-
tion bounds and analyze the rate of convergence of the
derived bounds. In particular, we first extend the clas-
sical Bennett’s inequality to develop two Bennett-type
deviation inequalities. Based on the derived inequal-
ity, we then obtain the generalization bounds based
on the uniform entropy number and the Rademcaher
complexity, respectively.

Moreover, we show that the Bennett-type generaliza-
tion bounds have a faster rate o(N−

1
2 ) of convergence

than the rate O(N−
1
2 ) of the classical Hoeffding-type

results [see (7) and (8)]. Especially, we show that
the rate will become faster in the large-deviation case,
where the empirical risk ENf is far away from the ex-
pected risk Ef . In contrast, the Hoeffding-type results
provide the rate O(N−

1
2 ) regardless of the discrepancy

between ENf and Ef . From view of this point, the
Bennett-type results give a more detailed description
to the asymmetrical behavior of the learning process.

We give an explanation to the “contradiction” men-
tioned in Remark 5.1. As shown in Talagrand
[1994b,a], Lata la [1997], Sudakov minoration provides
a lower bound of the empirical Rademacher complex-
ity RN (F) with the rate O(N−

1
2 ) [Mendelson, 2003],

because the empirical Rademacher complexity RN (F)
actually is a special case of subgaussian process given a
sample set {zn}Nn=1. In contrast, it is difficult to spec-
ify the distribution characteristics of R(F) and thus
the classical result (10) could not be applied to bound
R(F).
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