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Preface

This volume contains all papers that were accepted for the 29th Conference on Uncertainty in Artificial Intelli-
gence (UAI), held in Bellevue, Washington, USA, from July 12 to 14th 2013. 233 papers were submitted to the
conference and each was peer-reviewed by 3 or more reviewers. From the 233 papers, a total of 73 papers were
accepted, 26 for oral presentation and 47 for poster presentation, for an acceptance rate of 31%. We are very
grateful to the senior program committee and program committee members for their diligence in generating over
700 reviews for the 233 submitted papers.

In addition to the presentation of technical papers, the following invited speakers were also scheduled to
give keynote talks at UAT 2013: Tom Mitchell (Carnegie Mellon University), Ralf Herbrich (Amazon), and Josh
Tenenbaum (MIT).

A day of UAI 2013 tutorials was organized by tutorials chair David Sontag, on topics such as Computational
Advertising and Causality (Leon Bottou), Large-Scale Distributed Learning with GraphLab (Carlos Guestrin),
Statistical Methods in Genomics (Lior Pachter), and Polynomial Methods in Learning and Statistics (Ankur
Moitra). UAI 2013 also featured a day of workshops, organized by workshops chair John Mark Agosta, on
topics such as Approaches to Causal Structure Learning, Big Data meet Complex Models, New Challenges in
E-Commerice Recommendations, and Models for Spatial, Temporal, and Network Data.

Ann Nicholson and Padhraic Smyth (Program Co-Chairs)
Nando De Freitas and Max Chickering (General Co-Chairs)
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Abstract

We present a comprehensive study of the
use of generative modeling approaches for
Multiple-Instance Learning (MIL) problems.
In MIL a learner receives training instances
grouped together into bags with labels for
the bags only (which might not be correct
for the comprised instances). Our work was
motivated by the task of facilitating the di-
agnosis of neuromuscular disorders using sets
of motor unit potential trains (MUPTSs) de-
tected within a muscle which can be cast as a
MIL problem. Our approach leads to a state-
of-the-art solution to the problem of muscle
classification. By introducing and analyzing
generative models for MIL in a general frame-
work and examining a variety of model struc-
tures and components, our work also serves
as a methodological guide to modelling MIL
tasks. We evaluate our proposed methods
both on MUPT datasets and on the MUSK1
dataset, one of the most widely used bench-
marks for MIL.

1 Introduction

In Multiple-Instance Learning (MIL), training in-
stances are grouped together in bags which have la-
bels. FEach instance in a bag has a label that may
be different from that of the bag, but instance labels
are not observed; only the label of the bag is available
for learning. The MIL framework was first introduced
by Dietterich et al. [1997] for a problem in a medical
(pharmaceutical) domain. Their task was to predict
the binding properties of molecules, which depend on
the shape of the molecule. However, a molecule can
take on several shapes. Thus, each molecule is repre-
sented as a bag of instances, where each instance rep-
resents a shape the molecule can take on. If none of

Benn Smith*

Daniel Stashuki{ Daniel J. Lizotte}
*Department of Neurology
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the possible shapes enable binding, the bag (molecule)
gets a negative label. But as soon as one shape allows
for binding, the bag is labeled positive. The MUSK
dataset from this problem has remained one of the
most widely used benchmark datasets for MIL tasks.

Following the introduction of the framework, various
problems have been expressed as MIL. MIL approaches
have, for example, been employed for content-based
image retrieval [Maron and Ratan, 1998, Zhang et al.,
2002], text classification [Settles et al., 2007, Andrews
et al., 2002b], protein identification [Tao et al., 2004],
music information retrieval [Mandel and Ellis, 2008]
and activity recognition [Stikic and Schiele, 2009]. In
medical domains, prediction problems often naturally
occur as MIL tasks. Omne example is the original
MUSK prediction task; Dundar et al. [2008] also show
that learning problems for computer-aided detection
applications can often be considered as MIL problems.

Our work was motivated by an application which uses
quantitative analysis of clinically detected electromyo-
graphic (EMG) signals to assist with the diagnosis of
certain neuromuscular disorders. The diagnosis of a
neuromuscular disorder often requires the characteri-
zation of several individual muscles. A muscle charac-
terization, in turn, is based on characterizing a sam-
pling of its motor units (MUs). A motor unit potential
train (MUPT) created by a MU and extracted from
a needle-detected EMG signal can be used to obtain
a characterization of the MU (see Section 2 for de-
tails). The classification of a muscle based on the set of
MUPTS representing a sampling of its MUs can there-
fore be formulated as a MIL problem wherein each
muscle is a bag and each MU of a muscle is an instance
of that bag. We propose that generative modeling
approaches—models that describe the full joint dis-
tribution of the data—are useful and effective for data
that naturally occurs in MIL form, such as muscle clas-
sification based on a set of MUPTs. Predicting with
a generative model is particularly suitable for medical
domains for several reasons: Generative models allow



for expert domain knowledge to be incorporated in an
intuitive way, which leads to good inductive bias in
the modeling assumptions. As we will demonstrate, a
model with good inductive bias (elicited from experts
in biomedicine) can result in highly accurate predic-
tions even on the basis of a relatively small training set.
Most importantly, they yield not only a classification
tool, but a simulation tool for the problem domain. In
our setting, such a simulator provides a stepping stone
toward a more sophisticated system that not only helps
with the diagnosis of neuromuscular disorders but also
provides a measure of their severity.

Our contributions are two-fold: First, we provide a
state-of-the-art solution to the problem of muscle clas-
sification. We show that modeling the muscle as a
two-stage generative model (according to the way its
MUPTS are actually generated) significantly improves
classification accuracy over previous strategies for this
task both at the instance and bag level [Adel et al.,
2012]. Second, we introduce a general framework and
provide intuition and guidelines for applying genera-
tive models to MIL problems. Generative models have
only recently been successfully applied to MIL tasks
[Yang et al., 2009, Foulds and Smyth, 2011]; these can
be viewed as special cases of our framework. We com-
pare different possible model structures for MIL gen-
erative models both conceptually and experimentally,
and we discuss the impact of their differing conditional
independence structures and parametric modeling as-
sumptions. We suggest several possible implementa-
tions for these structures and validate the proposed
methods both on the MUPT and MUSK data. Be-
cause we examine a variety of model structures and
components (not just those appropriate for muscle
classification) our work also serves as a methodolog-
ical guide to modelling MIL tasks.

2  Muscle Classification using QEMG

Quantitative electromyography (QEMG) is a method
used to help diagnose neuromuscular disorders by
quantitatively analyzing EMG signals detected dur-
ing a slight to moderate level, voluntary muscle con-
traction using an inserted needle electrode. A mus-
cle is comprised of several MUs which are repeatedly
activated during muscle contraction. A motor unit
consists of a group of muscle fibers and the o motor
neuron that activates those fibers. The voltage sig-
nal detected by an electrode created by the activation
of the fibers of a motor unit is called a motor unit
potential (MUP). The train of MUPs created by the
repeated activity of a MU is called a MUPT. Each
EMG signal is thus a compound signal that represents
the sum of the MUPTs of all active motor units. For
analysis purposes, an EMG signal is decomposed into
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Figure 1: MUPT extraction via EMG Signal Decom-
position. Derived from Basmajian and Luca [1985].

its constituent MUPTSs using a state-of-the-art pat-
tern recognition based decomposition system (see also
the work of Adel et al. [2012] and Farkas et al. [2010]
for more details). Figure 1 illustrates this MUPT ex-
traction process. Usually, 4 to 6 EMG signals, each
detected with the needle at a distinct location in the
muscle, are recorded and decomposed to obtain a rep-
resentative set of MUPTSs of sufficient size (15-25).

Muscles are classified as either mormal, myopathic
or neurogenic based on clinical expertise. Initially,
MUPTSs are labeled normal, myopathic or neurogenic
on the basis of being detected in a normal, myopathic
or neurogenic muscle. For normal muscles, this is
largely correct as it is unlikely that a motor unit of
a normal muscle would generate a disordered (myo-
pathic or neurogenic) MUPT. However, passing on the
muscle label to each MUPT is not accurate for dis-
ordered muscles: myopathic and neurogenic muscles
commonly have some normal MUs, and thus produce
some normal MUPTSs. Thus, labelling all MUPTSs in
a disordered muscle as disordered is incorrect.

Classifying a muscle as normal, myopathic or neuro-
genic can be posed as a MIL problem in a straight-
forward manner: In this task, a bag corresponds to
the muscle that produces the MUPT instances, with
each instance representing a sampled MU within that
muscle. The features of an instance correspond to the
features used to represent the MUPT of the MU. The
instances of a normal bag are all normal, while neuro-
genic and myopathic bags might contain both normal
and neurogenic or myopathic instances, respectively.
It is exceedingly unlikely that a neurogenic (resp. my-
opathic) disordered muscle contains/generates a myo-
pathic (resp. neurogenic) MU/MUPT. While it is pos-
sible for a domain expert to manually classify indi-
vidual MUPTSs, this task is time-consuming. Clinical
experts therefore typically provide only the diagnosis



for the whole muscle, which gives the bag label. Thus
a learner must learn how to classify new MUPTSs and
muscles from a training set providing only muscle la-
bels.

The machine learning techniques implemented in this
work are known as quantitative EMG techniques. The
main goal of quantitative EMG techniques is to extract
suitable information from detected EMG signals and
then interpret this information to assist with the di-
agnosis of their respective muscles. It is also desirable
that quantitative EMG analysis provides a measure
related to the severity of the predicted disorder [Pino,
2008]. Two muscles can both be myopathic, but one
may be mildly myopathic while the other is severely
myopathic; it is hypothesized that severe cases are in-
dicated by increased numbers of MUPTSs from within
their class as well as that some of the MUPTs may
be outliers within their class. By identifying when an
instance is atypical within its class label, in future our
generative model may be used for estimating the sever-
ity of muscular disorders. Our ultimate goal is to build
a clinical decision support system that assists with the
diagnosis of muscles (both in terms of classification and
assessment of severity) by inspecting sets of MUPTs
extracted from EMG signals.

3 Related work

The last decade and a half has seen the development
of a large body of work on MIL, both in terms of theo-
retical analysis and the development of practical algo-
rithms for various application areas as we mentioned
in the introduction.

Dietterich et al. [1997] suggest several algorithms for
learning axis-aligned rectangles for the original MIL
problem on the MUSK data. Maron and Lozano-Pérez
[1998] introduced the diverse density (DD) algorithm,
a paradigm for MIL that, similar to the axis-aligned
rectangle learning approach, assumes that there is a
specific region of positive instances to be identified
in the feature space. The algorithm has been further
developed to EM-DD by Zhang and Goldman [2001].
This is one of the most successful approaches for MIL
and we discuss how it relates to our framework in Sec-
tion 4.2. Wang and Zucker [2000] adapted Nearest
Neighbor learning to MIL. Several studies present ker-
nels to use Support Vector Machines on MIL problems
[Gértner et al., 2002, Andrews et al., 2002a, Tao et al.,
2004], or adaptations of boosting [Andrews and Hof-
mann, 2003, Xu and Frank, 2004, Viola et al., 2005]
and, more recently, incorporate methods from semi-
supervised or active learning into the MIL setting
[Rahmani and Goldman, 2006, Zhou and Xu, 2007,
Settles et al., 2007]. The original bag labeling rule

(where the label of the bag is the logical OR of its in-
stances as in the MUSK data) has been modified and
generalized to apply to other areas (Foulds and Frank
[2010] provide an overview).

Long and Tan [1998] analyze the original problem
of learning axis-aligned rectangles from MIL data in
the Probably Approximately Correct (PAC) learning
framework. This set-up assumes independence of the
instances that occur together in a bag and the goal
is to learn a low-error instance level classifier. Blum
and Kalai [1998] show that this framework is equiv-
alent to PAC-learning with one-sided noise, a prob-
lem that has recently been analyzed in Simon [2012].
However, in most MIL problems, it is not appropri-
ate to assume that instances occurring together in a
bag are conditionally independent and the goal is to
learn a bag-level classifier rather than an instance-level
classifier. Sabato et al. [2010] provides a comprehen-
sive study with upper and lower bounds on the sample
complexity of the bag-level learning problem without
the independence assumption. Diochnos et al. [2012]
tighten some of those lower bounds.

Generative model approaches have only rather recently
been introduced to the MIL setting [de Freitas and
Kiick, 2005, Yang et al., 2009, Foulds and Smyth,
2011]. The former two studies suggest more complex
model structures for modifications of the MIL prob-
lem. The work of Foulds and Smyth [2011] fits into
our framework with specific choices for the model com-
ponents. We discuss the modeling choices that were
made in Foulds and Smyth [2011] and Yang et al.
[2009] in the context of our framework below.

4 Generative Models for MIL

We denote random variables in upper case, and their
realizations in lower case. Let ¢ be the number of possi-
ble bag/instance labels. Let B € {1,2,...,¢} represent
a bag’s label, and let I; € {1,2,...,t} represent the
label of the jth instance belonging to the bag. The
number of instances in the bag is denoted by m; we
refer to the m instance labels together as the vector
I. Let F ; € RP be the p-dimensional feature vector
belonging to the jth instance. We index elements of
a vector with a square-bracketed subscript, so ﬁj[k] is
the kth element of the observed feature vector of the
jth instance in a bag. In our models, marginal and
conditional distributions involving only I; and F ;j are
the same for all j, so we refer to a “generic” instance
label as I and a “generic” feature vector as F.

Most MIL work to date considers binary labels, i.e.
t = 2. In our muscle classification problem ¢ = 3,
since a bag or instance can be either normal (B = 1),
myopathic (B = 2), or neurogenic (B = 3). Fur-



Figure 2: The BIF Model Structure. Parameters for
P(I;|B) and for P(F}|I;) are tied across j.

thermore, in our problem, a bag may only generate
a compatible instance label: We call the value of a sin-
gle instance label ¢; compatible with a bag label b iff
ij € {1} U {b}. We call a joint labelling 7 = iy, ..., %m
feasible iff Ib(Vj,i; € {1} U {b}).

We begin by discussing possible Bayes net structures
for our MIL model in Section 4.1. We then discuss pos-
sible modelling choices for marginal and conditional
distributions in Section 4.2.

4.1 Model Structures

The main inductive bias that we retain from the orig-
inal MIL formulation is the assumption that the bag
label is conditionally independent of the feature vec-
tors given their corresponding instance labels. This is
implied by the assumption that the feature distribu-
tion of normal instances in a normal bag should be the
same as the feature distribution of normal instances in
an abnormal bag. This restricts us to three possible
Bayes net structures presented below, two of which
we will use as candidate structures for our generative
model. For completeness, we also discuss a fourth
structure that does not satisfy the conditional inde-
pendence assumption. We name the structures based
on the partial order in which the variables appear in
the graph. Alpaydin [2010] gives a concise overview of
directed graphical models; Koller and Friedman [2009)
give a comprehensive treatment.

4.1.1 BIF: B

This structure best represents the generative process
underlying our MUPT data. Under this structure, the
bag (muscle) generates its m instances (MUPTS) in-
dependently given its label. Each instance in turn
generates its own feature vector given its label, but
independent of the bag label and independent of the
other instances and features in the bag. The struc-
ture of this model is given concisely by the plate dia-

gram B for which we give the expanded

version in Figure 2. The other model structures we
consider are the same except for the directions of the
edges. We will see that the choice of the edge direc-
tions has important consequences.

For this structure, we must learn P(B) from observed
data, and learn P(I|B) and P(F|I) using a hidden
variable method like EM. Constraints on P(I|B) are
simple to encode; to ensure that a bag can never gener-
ate an incompatible instance, we can restrict the values
in the conditional probability table of I|B by requiring
P(I =B ="5b)=0foralli¢ {1} U {b}. It follows
that sets of instance labels drawn from this model are
always compatible with the bag label. Furthermore,
we can easily impose a Dirichlet prior on the propor-
tion of instance labels that match the bag label while
obeying these constraints. Since we have continuous
features, P(F|I) is modeled using density estimation.

The main departure this model makes from other prob-
abilistic models for MIL is that it assumes that the bag
label is the cause of the instance label, rather than the
other way around. Under this model, it is possible
for a non-normal bag to produce all normal instances,
which is disallowed in other MIL models. However,
for our system, this is entirely appropriate; it is pos-
sible (though unlikely) for a muscle with a myopathic
or neurogenic disorder to produce all normal MUPTs.
Among existing models, that of Yang et al. [2009] is
most similar to BIF.

4.1.2 FIB: B

FIB represents another way of expressing an MIL
model where the instances generate the bag label. Un-
der this structure, the feature vectors are drawn from
some P(ﬁ), they then generate the instance labels,
which in turn determine the bag label. The probabil-
ity P(I \ﬁ ) can be expressed using any discriminative
learner, which is attractive, though we still must use a
hidden variable method like EM for training because
the instance labels are not observed. In order to make
the model fully generative we must also model P(F)
using density estimation. In previous work, for exam-
ple, EM-DD, this model structure is used (though not
made explicit) since if the model does not need to be
generative (i.e. if we will always condition on F) then
density estimation is not required at all. We will show
in Section 4.2 that the well-known EM-DD MIL algo-
rithm [Han et al., 2007] can be implemented using this
model structure.

Note that B has all m instances as parents, and m
can vary from muscle to muscle, so we must express

P(B|I) to allow different sized joint labellings; this is
discussed in Section 4.2. Unfortunately, in our 3-class



setting, this structure suffers from an important draw-
back: it offers no way of prohibiting infeasible instance
label assignments, i.e. assignments where for example
Iy =2 and I, = 3. In order to have a fully consistent
generative FIB model, therefore, we must add an ad-
ditional possible bag “label” b = 0 that has positive
probability given infeasible labelings. This does not
reflect the generative process of the MUPT data, but
we can still use this model structure and condition on
the event B # 0 where necessary. Foulds and Smyth
[2011] note that prior knowledge about the frequency
of instance labels given bag labels is difficult to incor-
porate with a directed edge from I to B.

4.1.3 IBF: B

Under this structure, the instances are generated in-
dependently according to some P(I), and they sub-
sequently generate both the bag label and the fea-
ture vectors. This model structure is essentially the
“Multi-Instance Mixture Model” of Foulds and Smyth
[2011]. As in the FIB model, we have m directed edges
from the I; to B, which causes the same drawbacks
described in the FIB model but does not give us the
additional flexibility of using a discriminative learner
for the instance labels. Therefore, we will not consider
this structure for our generative model. Foulds and
Smyth [2011] observe that the EM-DD algorithm can
be expressed using this structure given an appropriate
model of P(F|I) and a “discriminative learning objec-
tive”; this is equivalent to our FIB structure described
above.

4.1.4 Alternative model BFI: B

This model attempts to combine two attractive prop-

erties: The ability to use a discriminative model
P(I|F), and the ability to easily assign values for
P(I|B). Unfortunately, in this model, B and F are

dependent given I, which we know to be untrue in our
problem. In this model, normal instances where B = 1
may have a different feature distribution from normal
instances where B = 2. Since we count on being able
to generalize from normal instances in normal bags to
normal instances in abnormal bags, this model is not
appropriate. Note that the BFI model is essentially
a clustering model with [ as the cluster label and B
acting simply as an additional feature along with F.

4.2 Model Components

Choosing the model structure determines the condi-
tional independence properties of our model but does
not specify a form for the various distributions. We
discuss some possibilities for components of the model
that have different assumptions and inductive biases.

4.2.1 P(B) and P(I|B) for the BIF Structure

Since B and I take on a small number of discrete val-
ues, a tabular representation is appropriate. As noted
earlier, one can impose restrictions on possible values
of I|B by clamping appropriate values in the condi-
tional probability table.

4.2.2 P(F|I) for the BIF Structure

Because we assume a continuous feature space, P(F|I)
can be modeled using any density estimation method.
We discuss some well-known possibilities here.

Multivariate Gaussian One simple choice for
P(F|I = i) is a multivariate Gaussian distribution
with mean p; and covariance ¥; for ¢ € {1,...,t}. De-
pending on the availability of data and desired mod-
elling assumptions, one can restrict 3; to be diagonal.

Gaussian Copula with KDE Marginals A draw-
back of the multivariate Gaussian approach is that
much real-world data is not in fact Gaussian. Since we
want our generative model to be as realistic as possi-
ble, we propose a copula-based model that is practical
to estimate and can fit the observed data more closely.

Sklar’s theorem [1959] implies that any multivari-
ate density g with marginal densities g1, g2, ..., gp and
marginal cumulative distribution functions (CDFs)
G1,G?s,...,Gp can be expressed in the form

—

9(f) = g1(fi) - 92(fiz) - - 9 (i)

(G (f))s Ga(fiag)s s Gy (fip)) (1)

where ¢ is a copula density that captures the de-
pendence structure of the feature vector F =
(Fyy - F[p]) If the elements of F' are independent,
then c = 1.

Because they are all one-dimensional, the marginals
can be estimated well using Kernel Density Estimation
(KDE) Alpaydin [2010] even with a modest amount of
data, giving g and Gy, for k = 1...p. This allows our
model to capture non-Gaussian aspects of the data,
such as relatively heavy or light tails, skewness, or even
multi-modality, thus making it more realistic.

The copula model allows us to achieve more high-
fidelity marginals without resorting to an unreal-
istic independence assumption: we can still cap-
ture pairwise dependencies in the data by assum-
ing a parametric form for ¢ and estimating the
necessary parameters. We will assume a Gaussian
copula, whose_’ parameter is_’the covariance matrix
of (71(G1(F)), @ (Ga(Fz)), s @7 HGH(Fp))))
where &~ is the inverse of the standard normal CDF.



This can be gstimated by t}_}e empirical covariance
of (®7HG1(F))), @~ (G2(Fz)), .., 0 H(Gp(Fp)))
over the observed ﬂI = ¢ in the data. (We estimate
a separate copula model for each possible value of 1.)
Other, more flexible copula models are possible; we
have elected to use the Gaussian copula for simplicity.

Kernel Density Estimation Kernel Density Esti-
mation (KDE) is a non-parametric method that es-
timates a probability density or distribution function
by summing up kernel functions placed at every ob-
served data point. We use the most common form
of KDE, which uses a Gaussian kernel. To choose
the kernel width, we employ the mazimum smoothing
principle [Terrell, 1990] as a simple but effective choice;
other more fine-tuned choices are possible. The advan-
tage of KDE is that it is capable of modeling complex
marginals and complex dependencies among the vari-
ables of interest, but it does not always work well in
moderate to high dimensions.

4.2.3 P(F) for the FIB Structure

In principle, any of the density estimators proposed
for P(F|I) could be used here; however, the marginal

P(F) is likely to be multi-modal, so the copula or KDE
models may be more appropriate.

4.2.4 P(I|F) for the FIB Structure

Since I has a discrete domain, any -classification
method that supplies class probabilities can be used
to model P(I|F). We examine four such methods.

Logistic Regression This well-known model as-
— 3 3T g

sumes P(I = i|F) o exp”0 i’ j < ¢ Note that

the maximum likelihood estimate of 8 is not unique if

the data are linearly separable.

Support Vector Machines Although the classic
SVM formulation [Cortes and Vapnik, 1995] does
not provide conditional class probabilities, subsequent
work [Huang et al., 2006, Chang and Lin, 2011] has
added this capability. It has the added advantage that
in the event of feature separability, we get a large-
margin classifier whereas logistic regression would fail
to converge. Furthermore, kernelized SVMs allow us to
easily create non-linear separators in a feature space.

K Nearest Neighbours If the decision boundary
between instance labels is believed to be complex and
if we have sufficient data, a non-parametric model may
be warranted. K nearest neighbours uses the empiri-
cal distribution of the instance labels of the K closest
feature vectors to f to estimate P(I|F = f).

“Diverse Density” When bag and feature labels
are binary (t = 2 where 2 is positive and 1 is negative)
we may assume P(I = 2|F) = exp(— Y7_, s[zk](ﬁk} -
Wiky)?). Here, s and o are parameters fit by maximum
likelihood. Note that this is not a gaussian distribu-
tion; its conditional distributions are Bernoulli such
that P(I = 2|F = f) ~ 1 when f is near @. We infer
that the reason for its use in the DD and EM-DD al-
gorithms comes from the assumption that the positive
instances were localized in feature space, whereas the
negative instances were assumed only to be far from
the positive ones; they were explicitly assumed not to
form a cluster of their own. Because it requires t = 2
we cannot use this model for our MUPT data, but
we can use it on the MUSK data (described later) for
comparison purposes.

4.2.5 P(B|I) for the IBF and FIB Structures

Since m varies from bag to bag, we must express
P(B|I) as a function that can take a variable num-
ber of parameters. Recall that in this setting, we must
allow for the possibility that the joint labelling of I
is not feasible; we add b = 0 to the domain of B to
capture this event. We can adhere to the standard
MIL assumptions by making P(B|I) deterministic as
follows. For feasible labelings, we set

P(B = b|Ile27 7Im) = (2)

1 if b= max; I;
0 otherwise,

and for infeasible labelings we set

1 ifb=0
0 otherwise.

5 Learning and Inference

P(B =b|I1, 1, ...

All of the components described in Section 4.2 have
associated off-the-shelf learning algorithms for com-
pletely observed data. We must learn our models
without ever observing I (though with substantial in-
formation about I provided through B), so we use
a hard-Expectation-Maximization (EM) procedure for
simultaneously learning the model parameters and in-
ferring the most likely I given the observed B and
F'. This worked well on our MUPT data; the concep-
tual groundwork we lay here could also be used with
sampling-based approaches if desired.

5.1 Learning

For learning, we use a “hard-EM” approach [Koller
and Friedman, 2009]. We assume access to a col-
lection of n bags of the form (b, f1, fa,..., fmn, )vsV €



{1,...,n} which are independent and identically dis-
tributed. Given an initial label assignment to all of
the instances in our dataset, our learning method has a
straightforward implementation; a sketch is presented
in Algorithm 1. We discuss the two main steps.

5.1.1 Parameter Estimation

BIF For the BIF model, we must estimate P(B),
P(I|B), and P(F|I). The marginal probability P(B)
is estimated from observed bag label counts only; it
does not change across iterations. Because we assume
P(I|B) is the same for all instances in all bags, we pool
all the bags together and use the aggregated counts to
estimate P(I|B). We may add “pseudo-counts” to this
estimate if a dirichlet prior is desired; in our experi-
ments we assume for each bag type that we have seen
each compatible instance label once, and each incom-
patible label zero times. To learn P(F|I), again we
may pool all of the instances together to learn ¢ den-
sity estimates P(F|I = 1), P(F|I = 2),...,P(F|I =t).

FIB For the FIB model, we must estimate P(F)
and P(I|F); we assume that P(B|I) is fixed accord-
ing to the standard MIL definition. To estimate P(ﬁ ),
we pool all feature vectors together and estimate the
necessary parameters. These are completely observed
so P(ﬁ) does not change across iterations. To learn
P(I|F), again we pool all of the instances together to
learn the conditional distribution using a supervised
learning method.

5.1.2 Label Updating

To update the labels for each bag given the learned pa-
rameters, we must find the most likely instance labels
Zgiven the observed data, that is, we must compute
argmax;P(fz iiB=bF = fi,..,E, = fi) for cach
bag.

BIF From the conditional independence structure of
the BIF model, we have

— —

? 1
x P(I =B =b)P(F, = fl,

= fll =1).
Since the labels and feature vectors for different in-
stances are independent given the bag label, we have

—

P(I =B =0)P(F, = fi,... Fy = fu|[ =7)

= [[ P, =i;1B = b)P(F;

Jj=1

f]|I = 1ij),

so to maximize the probability of the joint label as-
signment ¢, we may maximize each instance label in-

Algorithm 1 Hard EM Algorithm Sketch
for all bags do {initialize instance labels}
i b
end for
repeat
learn model components {M-step}
for all bags do {relabel instances: E-step}

i argmax; P(I = =iB= b
f17 "'7 - fm)
end for
until instance labels do not change
dependently:
m — argmax P(I; =1i;|B="0b)P ( fJ\I =1ij).

i;€{1,....,t}

FIB From the conditional independence structure of
the FIB model, we have

However, in this model, the instance labels are not
conditionally independent given the bag label and we
cannot maximize them independently. For example, if
B =2, and I, Is, ..., I,,_1 are all equal to 1, then I,
must be equal to 2 according to the MIL assumption
encoded in P(B|I). However, we can still avoid search-
ing over all t" possible label vectors. We defined in
Section 4 that if 7 is a feasible vector for B = b, then
we have P(B = bli) = 1 and therefore we have

P(B=bl))P(I =i|F = f) = H ).

We can find the best feasible i in two steps:
1. Let z[ g argmax; cyupy P = ij|Fy = f;)

2. If i* =1, set ifk*] < b for k* given by
argmax [P(Iy = b|F; = f;) [] P(I; = 1|F; = f;)].
k j#k
The vector i* is feasible and maximizes H;n:l P(I; =

ij|13j = f;) over all feasible vectors when B = b.

5.2 Inference

Once we have learned all of the model parameters,
given a new bag where only feature values f are ob-
served, we Wish to compute argmax;, P(I = i,B =

blFy = fiyes By = fm) These are the most likely
bag and mstance labels given the m feature vectors in
the new bag.



BIF In the BIF model,

argmaxP(f: i,B= b|ﬁ1 = fi,.. yEm = fin)
b
— argmax P(B = b)P(I = i|B = b)
ib _ - -

= argmax [P(B = b) argmax (P(f: i|B=0)
b 7

PRy = fiyoos B = ful = 1)) .
Therefore we can apply the instance label updating
method presented in Section 5.1 for each possible bag

label and weight them according to P(B) to find the
joint MAP assignment to b and 3.

FIB In the FIB model,

argmaxP(f: i,B= blF1 = f1,.., By = fin)
ib

Lo—
o
=
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&
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= argmax
b

Therefore we can apply the instance label updating
method presented in Section 5.1 for each possible bag
label to find the joint MAP assignment to b and 3.

6 Experiments

We now give the details of how our MUPT dataset was
constructed, and we discuss the results of the various
generative models as applied to our MUPT dataset.
We find that the BIF structured models perform very
well for several different component choices. The FIB
structured models perform less well, but still much bet-
ter than chance on both bags and instances. Based on
our results, we recommend structure and component
choices that lead to a high-fidelity generative model
of MUPT data. We also give the performance of the
models on the MUSK1 dataset [Dietterich et al., 1997].

6.1 The MUPT dataset

Recall that each detected EMG signal is a composite
signal that represents the activity of all of the MUs
that were active during a muscle contraction. After
acquiring an EMG signal, it is decomposed into its con-
stituent MUPTSs, each of which ideally represents the
electrical activity of a single, sampled MU. As such,
the MUPTSs are our instances and are the source of
our instance level features. From each MUPT, it is
common practice to compute a MUP template which
is a single MUP whose shape is representative of all

MUPs in the MUPT [Stashuk, 1999]. All but two of
the features we use are functions of this MUP tem-
plate, while the rest of the features describe aspects of
the MUPT itself. We use p = 8 features, which were
chosen by automated feature selection (both wrapper-
and filter-based) in prior work [Adel et al., 2012].

1. Number of turns is the number of positive and
negative peaks; a function of the MUP template.

2. Amplitude represents the maximum difference of
voltage between two points [Dumitru et al., 1995];
a function of the MUP template.

3. Area represents the area under the curve; a func-
tion of the MUP template.

4. Thickness refers to the ratio of area to amplitude;
a function of the MUP template.

5. Size index given by 2log(amplitude) +
a function of the MUP template.

6. Turn width is given by % Duration is the
interval from the first signal deflection from baseline
to its final return to baseline [Dumitru et al., 1995];
a function of the MUP template.

7. Firing rate MCD (mean consecutive differ-
ence) refers to the sequential change in the firing
rate of the MU over time; a function of the MUPT.

8. A-jiggle is a measure of the shape variability of
band-pass filtered MUPs (2" derivative of the sig-
nal); a function of the MUPT.

area
amplitude’

We have two MUPT datasets, one acquired from
upper-leg recordings containing 88 bags and 1534 in-
stances, and another acquired from lower-leg record-
ings with 70 bags and 1500 instances. All data
were collected under IRB approval and and were de-
identified. Prior versions of the MUPT data were used
by Adel et al. [2012]; our versions have been cleaned to
remove obvious outlier errors. For example, instances
with highly improbable feature values were removed.

6.2 Results

Table 1 shows the performance of different models on
our data. Because one of the authors [TA] manually la-
beled the instances, we can estimate both the accuracy
of each model for classifying bags and the accuracy for
classifying instances given only the features within a
new bag. Note, the manually assigned instance labels
were not used for learning or inference. The accuracy
results were computed using leave-one-bag-out cross-
validation. We also present the log likelihood of the
observed data maximized over the model parameters
and the hidden instance labels, which measures how
well the models fit the training data.

We present the results for the BIF structure using five
different density estimators for P(F'|I). We use two



Table 1: MUPT Dataset Results. To give a sense of the statistical uncertainty, we mark all accuracies that are
within the 99% Bernoulli confidence interval of the maximum observed accuracy in bold. We mark the highest
log likelihoods for the BIF and FIB structures in italics.

Upper Leg BIF: B—5 [ = F FIB: B ¢ [ < F . Non-MIL
Rnd: 0.33 1L Gauss | lLCop. [ Gauss | Cop. | KDE LR | KNN | SVM | QDA 1L QDA
Bag Acc. 0.955 | 0.955 | 0.955 | 0.955 | 0.955 || 0.728 | 0.568 | 0.250 | 0.898 0.841
Inst. Acc. | 0.984 | 0.978 | 0.983 | 0.980 | 0.983 | 0.728 | 0.674 | 0.415 | 0.978 0.850
Log lik. -36843 | -37104 | -36810 | -37066 | -34726 || -32889 | -32998 | -34382 | -32938 —
Lower Leg BIF: B—b I = F FIB: B« [« F . Non-MIL
Rnd: 0.33 || ILGauss | 1LCop. [ Gauss | Cop. | KDE LR [ KNN | SVM | QDA 1LQDA
Bag Acc. 0.986 0.971 | 0.971 | 0.957 | 0.886 0.814 0.586 0.371 0.886 0.771
Inst. Acc. | 0.946 | 0.899 | 0.931 | 0.880 | 0.859 || 0.543 | 0.571 | 0.469 | 0.915 0.781
Log lik. -38035 -38206 | -37980 | -38141 | -35999 || -84833 | -34952 | -35598 | -35128 —
Table 2: MUSK1 Dataset Results
MUSK1 BIF: B —b [ = F FIB: B ¢ [ + F Non-MIL
Rnd: 0.50 || 1L Gauss [ 1L Cop. | Gauss | Cop. | KDE LR [ KNN | SVM | QDA [ DD QDA
Bag Acc. 0.870 | 0.848 | 0.696 | 0.641 | 0.772 || 0.783 | 0.772 | 0.837 | 0.837 | 0.620 783
Log lik. -14921 | -18437 | -45815 | -51031 | -33591 || -34086 | -34120 | -34076 | -34056 | -34105

versions each of the Gaussian and copula models, one
assuming independence between elements of the fea-
ture vectors given the instance labels (e.g. a diago-
nal covariance matrix) indicated by the prefix 1L, and
one assuming pairwise correlations. The marginals of
the copula models are estimated using KDE with a
Gaussian kernel and the maximum smoothing prin-
ciple (MSP) bandwidth [Terrell, 1990]. We also give
results for a multi-dimensional KDE for P(F|I), again
with the MSP bandwidth.

We present results for the FIB structure using four
different discriminative learning models. In all cases,
P(F) was estimated using a multi-dimensional KDE
with the MSP bandwidth. The discriminative learn-
ers were Logistic Regression (LR), K-nearest neighbors
with K =7 (KNN), SVMs with a radial basis function
kernel, C' = 1 and v = 1/8, and Quadratic Discrim-
inant Analysis (QDA). The parameter K was chosen
based on past experience with the data; SVM param-
eters are defaults. In the last column, we also present
results using Quadratic Discriminant Analysis in a non
multiple-instance setting by assuming the instance la-
bels are in fact the bag labels and labelling new bags
by majority vote.

Table 2 shows results on the MUSK1 dataset, which
contains 92 bags and 476 instances. We use the same
models and add a version of the FIB model with the
“Diverse Density” (DD) model for P(I|F). Since the
data are 166-dimensional, as a pre-processing step,
we use PCA to eliminate near-collinearity; we choose
enough components to capture 90% of the variance,
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leaving us with p 76 features. Results are not
state-of-the-art—Zhang and Goldman [2001] achieve
96.8%—but moderately good; among our models the
BIF model with independent Gaussians for P(F|I)
has the highest cross-validation accuracy and log like-
lihood. No expert instance labels exist for MUSKI.

7 Conclusions

Results on the MUPT data indicate that all of our
BIF-based generative models perform better than pre-
vious state-of-the-art work by Adel et al. [2012], whose
best leave-one-bag-out bag label accuracy was 82.3%
(lower leg.) In addition, we demonstrate that we are
able to recover the instance labels with very high accu-
racy. The FIB models had worse performance on the
MUPT data but better on the MUSK1 data, suggest-
ing they may be useful for other tasks. If muscle classi-
fication accuracy is paramount, the parametric model
components (Gaussian and Copula) appear best, but
if high-fidelity simulation is paramount, then the KDE
model component is a better fit to the observed data.

We have introduced a general framework for genera-
tive models in MIL . Although MIL is a well-developed
sub-field of Machine Learning, generative model ap-
proaches had not received much attention so far. Our
results suggest that models that are well aligned with
the actual data generation in a problem domain (the
BIF structure in the case of our muscle classification
task) are an excellent choice for classification and mod-
eling purposes.
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Abstract

Sensory inference under conditions of uncer-
tainty is a major problem in both machine
learning and computational neuroscience.
An important but poorly understood aspect
of sensory processing is the role of active
sensing. Here, we present a Bayes-optimal
inference and control framework for active
sensing, C-DAC (Context-Dependent Active
Controller). Unlike previously proposed al-
gorithms that optimize abstract statistical
objectives such as information maximization
(Infomax) [Butko and Movellan, 2010] or
one-step look-ahead accuracy [Najemnik and
Geisler, 2005], our active sensing model di-
rectly minimizes a combination of behavioral
costs, such as temporal delay, response error,
and sensor repositioning cost. We simulate
these algorithms on a simple visual search
task to illustrate scenarios in which context-
sensitivity is particularly beneficial and op-
timization with respect to generic statisti-
cal objectives particularly inadequate. Mo-
tivated by the geometric properties of the C-
DAC policy, we present both parametric and
non-parametric approximations, which retain
context-sensitivity while significantly reduc-
ing computational complexity. These ap-
proximations enable us to investigate a more
complex search problem involving peripheral
vision, and we notice that the performance
advantage of C-DAC over generic statistical
policies is even more evident in this scenario.

1 Introduction

In the realm of symbolic problem solving, comput-
ers are sometimes comparable, or even better than,
typical human performance. In contrast, in sensory
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processing, especially under conditions of noise, un-
certainty, or non-stationarity, human performance is
often still the gold standard [Martin et al., 2001, Bran-
son et al., 2011]. One important tool the brain has at
its disposal is active sensing, a goal-directed, context-
sensitive control strategy that prioritizes sensing re-
sources toward the most rewarding or informative as-
pects of the environment [Yarbus, 1967]. Most theo-
retical models of sensory processing presume passive-
ness, considering only how to represent or compute
with given inputs, and not how to actively intervene
in the input collection process itself, especially with re-
spect to behavioral goals or environmental constraints.
Having a formal understanding of active sensing is not
only important for advancing neuroscientific progress
but also for engineering applications, such as develop-
ing context-sensitive, interactive artificial agents.

The most well-studied aspect of human active sensing
is saccadic eye movements, and early work suggests
that saccades are attracted to salient targets that dif-
fer from surround in one or more of feature dimensions
such as orientation, motion, luminance, and color con-
trast [Koch and Ullman, 1985, Itti and Koch, 2000].
This passive explanation does not take into account
the fact that the observations made while attending
the task can affect the fixations decisions that follow.
More recently, there has been a shift to relax this con-
straint of passiveness, and the notion of saliency has
been reframed probabilistically in terms of maximiz-
ing the informational gain (Infomax) given the spa-
tial and temporal context [Lee and Yu, 2000, Itti and
Baldi, 2006, Butko and Movellan, 2010]. Separately, in
another active formulation, it has been proposed that
saccades are chosen to maximize the greedy, one-step
look-ahead probability of finding the target (greedy
MAP), conditioned on self knowledge about visual
acuity map [Najemnik and Geisler, 2005].

While both the Infomax and Greedy MAP algorithms
brought a new level of sophistication — represent-
ing sensory processing as iterative Bayesian inference,



quantifying the knowledge gain of different saccade
choices, and incorporating knowledge about sensory
noise — they are still limited in several key respects: (1)
they optimize abstract computational quantities that
do not directly relate to behavioral goals (eg, speed
and accuracy) or task constraints (eg, cost of switch-
ing from one location to another); (2) relatedly, it is
unclear how to adapt these algorithms to varying task
goals (eg, locating someone in a crowd versus catching
a moving object); (3) there is no explicit representa-
tion of time in these algorithms, and thus no means
of trading off fixation duration or number of fixations
with search accuracy. In the rest of the paper, we refer
to Infomax and Greedy MAP as “statistical policies”,
in the sense that they optimize generic statistical ob-
jectives insensitive to behavioral objectives or contex-
tual constraints.

In contrast to the statistical policies, we propose
a Bayes-optimal inference and control framework
for active sensing, which we call C-DAC (Context-
Dependent Active Controller). Specifically, we assume
that the observer aims to optimize a context-sensitive
objective function that takes into account behavioral
costs such as temporal delay, response error, and the
cost of switching from one sensing location to another.
C-DAC uses this objective to choose when and where
to collect sensory data, based on a continually up-
dated statistically optimal (Bayesian) representation
of the sequentially collected sensory data. This frame-
work allows us to derive behaviorally optimal proce-
dures for making decisions about (1) where to acquire
sensory inputs, (2) when to move from one observa-
tion location to another, and (3) how to negotiate
the exploration-exploitation tradeoff between collect-
ing additional data and terminating the observation
process. We also compare the performance of C-DAC
and the statistical policies under different task param-
eters, and illustrate scenarios in which the latter per-
form particularly poorly. Finally, we present two ap-
proximate value iteration algorithms, based on a low-
dimensional parametric and non-parametric approxi-
mation of the value function, which retain context-
sensitivity while significantly reducing computational
complexity.

In Sec. 2, we describe in detail the C-DAC model. In
Sec. 3, we apply the model to a visual search task,
simulating scenarios where C-DAC achieves a flexi-
ble trade-off between speed, accuracy and effort de-
pending on the task demands, whereas the statistical
policies fall short — this forms experimentally testable
predictions for future investigations. We also present
approximate value-iteration algorithms, and an exten-
sion of the search problem that incorporates peripheral
vision. We conclude with a discussion of the implica-
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tions of this work, relationship to previous work, as
well as pointers to future work (Sec. 4).

2 The Model: C-DAC

We consider a scenario in which the observer must pro-
duce a response based on sequentially observed noisy
sensory inputs (e.g., identifying target location in a
search task or scene category in a classification task),
with the ability to choose where and how long to collect
the sensory inputs.

2.1 Sensory Processing: Bayesian Inference

We use a Bayesian generative model to capture the
observer’s knowledge about the statistical relationship
among hidden causes or variables and how they give
rise to noisy sensory inputs, as well as prior beliefs
of hidden variables. We assume that they use exact
Bayesian inference in the recognition model to main-
tain a statistically optimal representation of the hid-
den state of the world based on the noisy data stream.

Conditioned on the target location (s, hidden) and
the sequence of fixation locations (A := {A1,..., M},
known), the agent sequentially observes iid inputs

(x¢t:={x1,..., 2 }):
plalsi ) = [Lptedsi ) = [T fone) (1)

where fs (z:) is the likelihood function. These vari-
ables can be scalars or vectors, depending on the spe-
cific problem.

In the recognition model, repeated applications of
Bayes’ Rule can be used to compute the iterative pos-
terior distribution over the k possible target locations,
or the belief state:

P i= (P(s = 1[xi; M), Pls = Klxis Ar))
p; = P(s = ilx;; M) o plae]s = i; M) P(s = ilx;—1; A1)
= for (@)P)_y @

where pg is the prior belief over target location.

2.2 Action Selection: Bayes Risk
Minimization

The action selection component of active vision is a
stochastic control problem where the agent chooses
the sensing location and the number of data points
collected, and we assume the agent can optimize this
process dynamically based on ongoing data collection
and size of sensory data, but the exact consequence
of each action is not perfectly known ahead of time.



The goal is to find a good decision policy m, which
maps the augmented belief state (x;, A;) into an ac-
tion a € A, where A consists of a set of termination
actions, stopping and choosing a response, and a set of
continuation actions, obtaining data point from a cer-
tain observation location. The policy 7 produces for
each observation sequence (z1,...,2,...), a stopping
time 7 (number of data points observed), a sequence
of fixation choices A, := (A1,...,A;), and an eventual
target choice §.

In the Bayes risk minimization framework, the opti-
mization problem is formulated in terms of minimizing
an ezpected cost function, L, := E[I(T, A7, 0)]x,s, aver-
aged over stochasticity in the true target location s and
the data samples x. We assume that the cost incurred
on each trial takes into account temporal delay, switch
cost (cost associated with each switch in sensing loca-
tion), and response error, respectively. In accordance
with the typical Bayes risk formulation of the sequen-
tial decision problem, we assume the cost function to
be a linear combination of the relevant factors:

(3)

U(T,0;A7,8) = T + cony + 1525}

where n, is the total number of switches (n,
1 terizes the cost of tempo-
t—1 L{a1#x.}), ¢ parameterizes the cost of tempo

ral delay, cs the cost of a switch, and unit cost for

response errors is assumed (as we can always divide

¢ and ¢s by the appropriate constant to make it 1).

The expected cost is Ly := cE[7] + ¢sE[ns] + P(§ # s),

where the expectation is taken over 7, A, §, and x,.

Bellman’s dynamic programming equation [Bellman,
1952] tells us that the problem is optimized if at
each time point, the agent chooses the action asso-
ciated with the lowest expected cost (the @-factor
for that action), given his current knowledge or be-
lief state, p;. The Q-factors for the stopping actions
are straight forward: Qi(ps, A¢) := E[l(t,7)|ps, At] =
ct + csng + (1—pi). Obviously, the best stopping ac-
tion ¢ is to minimize the probability of error. Thus,
the stopping cost associated with the optimal stopping
action (i* := argmax; p}) is:

Q7 (Pe; M) == E[l(t,7%)[pr, Ad]
=ct+ csng + (17pi*)

(4)
The Q-factor associated with each continuation action
j (continue sensing in location j) is:

Ql(pr =P, At) i=c(t + 1) + cs(ne + 1jzn, )+
min E[Z(T’,5)|p0=p,)\1 = ]]

T’,(s, !

(5)

with the optimal continuation action being @ :=
min; Q{ = Q{ ". The expected cost of continuing ob-
serving in location j is equivalent to solving the orig-
inal optimization problem with the prior belief set to
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the posterior after the previous ¢ time-steps, and the
first observation location being j. Suppose we define
the value function V(p,i) as the expected cost associ-
ated with the optimal policy, given prior belief py = p
and initial observation location Ay = i:

V(pvi) = min E[Z(Ta 5)|p0:P,)\1 = Z] .

7,6, Ar

(6)

Then the value function satisfies the following recur-
sive relation:

V(p, k) = min(Q1(p, k), Q1 (P, k))
= min ((miin Q' (p, k)) ,

min (c+eslyjp,y +EV(P, j)D> (7)

where p’ is the belief state at next time-step, and the
expectation is taken over the stochasticity in the next
observation . The optimal policy effectively divides
the belief state space into a stopping region (Q* <
Q*) and a continuation region (Q* > Q*), each of
which further divided into subregions corresponding
to alternative continuation and stopping actions. Note
that the optimal decision policy is a stationary policy:
the value function depends only on the belief state and
observation location at the time the decision is to be
taken, and not on time t per se.

Bellman’s dynamic programming principle implies a
numerical algorithm for computing the optimal policy:
guess an initial setting V'(p, k) of the value function
(e.g., minimal stopping cost associated with each be-
lief state p and observation location k), then iterate
Eq. 7 until convergence, which yields the value func-
tion V(p, k) = V°°(p, k).

3 Case Study: Visual Search

In this section, we apply the active sensing model to
a simple, three location visual search task, where we
can compute the exact optimal policy (up to discretiza-
tion of the state space), and compare its performance
with the statistical policies [Butko and Movellan, 2010,
Najemnik and Geisler, 2005]. The target and distrac-
tors differ in terms of the likelihood of observations
received, when looking at them.

3.1 C-DAC Policy

For simplicity, we assume that the observations are
binary and Bernoulli distributed (iid conditioned on
target and fixation locations):

plxls = i3 A = 7) = 1y BT (1=B1) "+ 11z B5 (1—Bo) "



The difficulty of the task is determined by the discrim-
inability between target and distractor, or the differ-
ence between (1 and (y. For simplicity, we assume
that the only stopping action available is to choose
the current fixated location: §(7;A; = j) = j. To re-
duce the parameter space, we also set 85 = 1 — (3,
which is a reasonable assumption stating that the dis-
tractor and target stimuli only differ in one way (e.g.
opposing direction of motion when using random dots
stimulus with the coherence of dots kept the same).
In the following, we first present a brief description of
the greedy MAP and the infomax algorithms, before
moving on to model comparisons.

3.2 Greedy MAP Policy

The greedy MAP algorithm [Najemnik and Geisler,
2005] suggests that agents should try to maximize the
expected one-step look-ahead probability of finding the
target. Thus, the reward function is:

Rg(ptaj) = Eztﬂ [mlaxP(s = i|Xt’fEt+1, Ats >\t+1 = J)]

=Eepy [m?X(Pi+1)|$t+1v Aty1 = j]

To keep the notations consistent, we define the associ-
ated @Q-factor, cost and policy as:

Q(pt,j) = —RI(pt, J)
VI(ps,j) = mjang(pt,j)

Al = argmin QY(py, )
j

3.3 Infomax Policy

The infomaz algorithm [Butko and Movellan, 2010]
tries to maximize the information gained from each
fixation, by minimizing the expected cumulative fu-
ture entropy. Similar to [Butko and Movellan, 2010],
we can define the @Q-factors, cost and the policy as:

- Ym0

t'=t+1
Vim (pta .]) = m,in le
J

pta Pt' |17t/ At+1 *J]

(Pt,7)

A = argmin Q™" (py, )
J

where H(p) = —)_,p'logp® is Shannon’s entropy.
Note that neither the original greedy MAP nor the
infomax algorithm provide a principled answer as to
when to stop searching and respond. They need to
be augmented to stop once the maximum probability
of any location containing the target exceeds a fixed
threshold. We come back to the problem of how we
set this threshold when we present comparison results.
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3.4 Model Comparison

Before we discuss the performance of different models
in terms of “behavioral” output, we first visually il-
lustrate the decision policies (Fig. 1). The belief state
p is represented by discretizing the two-dimensional
belief state space (p',p?) with m = 201 bins in each
dimension (p? = 1 — p! — p?). Although for C-DAC
the policy also depends on the current fixation loca-
tion, we only show it for fixating the first location;
the other representations being rotationally symmet-
ric. In Fig. 1, the parameters used for the C-DAC
policy are (¢, cs, 8) = (0.1,0,0.9), and for the statisti-
cal policies, (8, thresh) = (0.9,0.8). Note that for this
simple scenario with no switch cost, the infomax policy
looks almost like the C-DAC policy — fixate the most
likely location unless there is very strong evidence that
the fixated location contains the target, in which case
the observer should stop. The greedy MAP policy,
on the other hand, looks completely different, and is
in fact ambiguous in the sense that for a large set of
belief states the policy does not give a unique next fix-
ation location. We show one instance of this seemingly
random policy, and note that there are regions where
the policy suggests to look at either location 1 or 2
or 3 (corner regions speckled with green, orange and
brown). Similarly, there are regions where the policy
suggests to look at 1 or 2 (green+orange region). In
fact, the performance of greedy MAP is so poor that
we exclude it from the model comparisons below.

C-DAC
©0)

Infomax Greedy MAP

stop

(1,0)

(0.1)

Figure 1: Decision policies — Infomax resembles C-
DAC. Blue: stop. Green: fixate location 1. Orange:
fixate location 2. Brown: fixate location 3. Environ-
ment (¢, cs, ) = (0.1,0,0.9). Threshold for infomax
and greedy MAP = 0.8

Fig. 2 shows the effects of how the C-DAC policy
changes when different parameters of the task are
changed. As seen in the figure, the stopping region ex-
pands if the cost of time increases (high ¢), intuitively
this makes sense — if each time step is costlier then the
observer should stop at a lower level of confidence, at
the expense of higher error rate. Similarly, for the case
when  is smaller (high noise), stopping with a lower
level of confidence makes sense — the value of each ad-
ditional observation depends on how noisy the data is,
the noisier the less worthwhile to continue observing,



thus leading to a lower stopping criterion. Lastly, and
arguably the most interesting case, is when there is an
additional switch cost (added c¢y); this deters the algo-
rithm from switching even when the belief in a given
location has reduced below 1/3. In fact, this is the sce-
nario where optimizing for behavioral objectives turns
out to be truly beneficial, and although infomax can
approximate the C-DAC policy when the switch cost
is 0, it cannot do so when switch cost comes in to play.

High ¢ High noise  Added ¢

Figure 2: C-DAC policy for different environments

(¢, cs,8) — high ¢ (0.2,0,0.9), high noise (0.1,0,0.7),
and added ¢, (0.1,0.1,0.9).

Next, we look at how these intuitions from the policy
plots translate to output measures in terms of accu-
racy, response delay, and number of fixations. In order
to set the stopping threshold for the infomax policy in
the most generous/optimistic setting, we first run the
C-DAC policy, and then set the threshold for infomax
so that it matches the accuracy of C-DAC !, while we
compare the other output measures. We choose two
scenarios: (1) no switch cost, (2) with switch cost. For
all simulations, the algorithm starts with uniform prior
(p = (1/3,1/3,1/3)) and initial fixation location 1,
while the true target location is uniformly distributed.
Fig. 3 shows the accuracy, number of time steps and
number of switches for both scenarios. Confirming the
intuition from the policy plots, the performance of in-
fomax and C-DAC are comparable for ¢; = 0. How-
ever, when a switch cost is added, ¢, = 0.2, we see that
although the accuracy is comparable by design, there
is small improvement in search time of C-DAC, and
a notable advantage in the number of switches. The
behavior of the infomax policy does not adapt to the
change in the behavioral cost function, thus incurring
an overall higher cost. Algorithms like infomax that
maximize abstract statistical objectives lack the inher-
ent flexibility to adapt to changing behavioral goals or
environmental constraints. Even for this simple visual
search example, Infomax does not have a principled
way of setting the stopping threshold, and we gave it
the best-scenario outcome by adopting the stopping
policy generated by C-DAC in different contexts.

!Since a binary search is required to set this matching
threshold, and the accuracy is sensitive w.r.t. this thresh-
old, we settle on an approximate accuracy match for info-
max that is comparable or lower than C-DAC.
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3.5 Approximate Control

Our model is formally a variant of POMDP (Partially
Observable Markov Decision Process), or, more specif-
ically, a Mixed Observability Markov Decision Process
(MOMDP) [Ong et al., 2010, Araya-Lépez et al., 2010],
which differs from ordinary POMDP in that part of
the state space is partly hidden (target location in our
case) and partly observable (current fixation location
in our case). In general, POMDPs are hard to solve
since the decision made at each time step depends on
all the past actions and observations, thus imposing
enormous memory requirements. This is known as the
curse of history, and is the first major hurdle towards
any practical solution. An elegant way to alleviate this
is to use belief states which serve as a sufficient statistic
for the process history, thus requiring to maintain just
a single distribution instead of the entire history. Con-
verting a POMDP to a belief-state MDP is in fact a
prevalent technique and the one we employ. However,
this leads to another computational hurdle, known as
the curse of dimensionality, since now we have a MDP
with a continuous state-space, making tabular repre-
sentation of value function infeasible. One way to work
around the problem is to discretize the belief state
space into a grid, where instead of finding the value
function at all the points in the belief state simplex,
we only do so for a finite number of grid points. The
grid approximation, that we also use, has appealing
performance guarantees which improve as the density
of the grid is increased [Lovejoy, 1991]. To evaluate
the value function at the points not in this set, we
use some sort of interpolation technique (value at the
nearest grid point, weighted average value at k-nearest
grid point, etc.). However, although grid approxima-
tion may work for small state spaces, it does not scale
well to larger, practical problems. For example, when
used for the active sensing problem with k sensing lo-
cations, a uniform grid of size n has O(kn*~1) com-
plexity.

Although there is a rich body of literature on ap-
proximate solutions of POMDP (e.g. [Powell, 2007,
Lagoudakis and Parr, 2003, Kaplow, 2010]) tackling
both general as well as application-specific approxi-
mations, most are inappropriate for dealing with the
MOMDP problem such as the one encountered here.
Furthermore, most of the POMDP approximation al-
gorithms focus on discounted rewards and/or finite-
horizon problems. Our formulation does not fall into
these categories and thus require novel approximation
schemes. We note that the Q-factors and the resulting
value function are smooth and concave, making them
amenable to low dimensional approximations. At each
step, we find a low dimensional representation of the
value function, and use that for the update step of the
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Figure 3: Comparison between C-DAC and Infomax for two environments (c,cs,8) = (0.1,0,0.8) and

(0.1,0.2,0.8). C-DAC has superior performance when c¢s > 0.

value iteration algorithm. Specifically, instead of re-
computing the value function at each grid point, here
we generate a large number of samples uniformly on
the belief state space, compute a new estimate of the
value function at those locations, and then extrapo-
late the value function to everywhere by improving its
parametric fit.

The first low-dimensional approximation we consider
is the Radial Basis Functions (RBF) representation:

1. Generate M RBFs, centered at {y; }2;, with fixed

I
o gb(p):(T(Tl)k/Qer2;2M
Generate m random points from belief space, p.
Initialize {V (p;)}, with the stopping costs.
Find minimum-norm w from: V(p) = ®(p)w.
Generate new m random belief state points (p’).
Evaluate required V values using current w.
Update V (p’) using value iteration.
Find a new w from V(p’) = ®(p’)w.
Repeat steps 5 through 8, until w converges.

© XN AN

While we adopt a Gaussian kernel function, other
constructs are possible and have been imple-
mented in our problem without significant perfor-
mance deviation (not shown), e.g. multiquadratic
(6(p) = 1+ cl[p — aall?), inverse-quadratic((p) —
(1+¢€||p — pil|>)~1), thin plate spine (¢p(p) = ||p —
wil[*In]|p — pil|), ete. [Buhmann, 2003].

The RBF approximation requires setting several pa-
rameters (number, mean, and variance of bases), which
can be impractical for large problems, when there is
little or no information available about the properties
of the true value function. We thus also implement
a nonparametric variation of the algorithm, whereby
we use Gaussian Process Regression (GPR) [Williams
and Rasmussen, 1996] to estimate the value function
(step 4, 6 and 8). In addition, we also implement GPR
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with hyperparameter learning (Automatic Relevance
Determination, ARD), thus obviating the need to pre-
set model parameters.

The approximations lead to considerable computa-
tional savings. The complexity of the RBF approxi-
mation is O(k(mM + M?)), for k sensing locations, m
random points chosen at each step, and M bases. For
the GPR approximation, the complexity is O(kN?),
where N is the number of points used for regression.
In practice, all the approximation algorithms we con-
sider converge rapidly (under 10 iterations), though we
do not have a proof that this holds for a general case.
GPR GPR-ARD

Exact RBF

444
\ A A

Figure 4: FExact vs. approximate policies shown
over n 201 bins. (A) Environment (c,cs, () =
(0.1,0,0.9). (B) (¢,cs,8) =(0.1,0.1,0.9).

4
A

‘ . y

’ |l

F

In the simulations, the RBF approximate policy uses
m = 1000 random point for each iteration, and M =
49 bases, uniformly placed in the belief simplex, with
a unit variance. The GPR approximate policy uses
a unit length scale, unit signal strength and a noise-
strength of 0.1, with N = 200 random points used
for regression. Fig. 4A shows the exact policy vs. the
learned approximate policies for different approxima-
tions when the switch cost is 0, (¢, ¢, 8) = (0.1,0,0.9).
We notice that with handcrafted bases, RBF is a good
approximation of the exact policy, whereas relaxing




the parametric form in GPR and subsequently learn-
ing the hyperparameters in GPR with ARD, leads
to a slightly poorer but more robust non-parametric
approximation. Similar observations can be made in
Fig. 4B, for the environment with added switch cost,
(¢,cs,8) = (0.1,0.1,0.9). All the results are shown
over a 201x201 grid. These faster yet robust approx-
imations motivated us to apply our model to more
complex problems. We investigate one such problem
of visual search with peripheral vision next, and show
how our model is fundamentally different from exist-
ing formulations such as infomax, even when the cost
of effort is not considered.

3.6 Visual Search with Peripheral Vision

In the very simple three-location visual search prob-
lem we considered above, we did not incorporate the
possibility of peripheral vision, or the more general
possibility that a sensor positioned in a particular lo-
cation can have distance-dependent, degraded infor-
mation about nearby locations as well. We therefore
consider a simple example with peripheral vision (see
Fig. 5B), whereby the observer can saccade to inter-
mediate locations that give reduced information about
either two (sensing locations on the edges of the tri-
angle) or three (sensing location in the center) stim-
uli. This is motivated by experimental observations
that humans not only fixate most probable target lo-
cations but sometimes also center-of-gravity locations
that are intermediate among two or more target loca-
tions [Findley, 1982, Zelinsky et al., 1997].

A B
3
1 2 OOO
® O
Figure 5: Schematics of visual search task. The

general task is to find the target (left-moving dots)
amongst distractors (right-moving dots). Not drawn
to scale. (A) Task 1: agent fixates one of the target
patches at any given time. (B) Task 2: agent fixates
one of the blue circle regions at any given time

Formally, we need an acuity map, the notion that it is
possible to gain information about stimuli peripheral
to the fixation center (fovea), such that the quality
of that information decays at greater spatial distance
away from the fovea. For example, the task of Fig. 5B
would require a continuation action space of 7 ele-
ments, L = {117 ZQ, lg, l127 l237 l137 l123}, where the first
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three actions correspond to fixating one of the three
target locations, the next three to fixating midway be-
tween two target locations, and the last to fixating
the center of all three. We parameterize the quality
of peripheral vision by augmenting the observations
to be three-dimensional, (x!, 22, 23), corresponding to
the three simultaneously viewed locations. We assume
that each x; is generated by a Bernoulli distribution
favoring 1 if it is the target, and 0 if it is not, and
its magnitude (absolute difference from 0.5) is great-
est when observer directly fixates the stimulus, and
smallest when the observer directly fixates one of the
other stimuli. We use 4 parameters to characterize the
observations (1 > 1 > (B2 > 3 > B4 >= 0.5). So,
when the agent is fixating one of the potential target
locations (I, I3 or I3), it gets an observation from the
fixated location (parameter 5, or 1 — 8; depending on
whether it is the target or a distractor), and observa-
tions from the non-fixated locations (parameter 84 or
1 — B4 depending on whether they are a target or a
distractor). Similarly, for the midway locations (I12,
los or l13), the observations are received for the clos-
est locations (parameter B or 1 — By depending on
whether they are a target or a distractor), and from
the farther off location (parameter 84 or 1 — 4 de-
pending on whether it is the target or a distractor).
Lastly, for the center location (l123), the observations
are made for all three locations (parameter 53 or 1— 33
depending on whether they are a target or a distrac-
tor). Furthermore, since the agent can now look at
locations that cannot be target, we relax the assump-
tion that the agent must look at a particular location
before choosing it, allowing the agent to stop at any
location and declare the target.

3.7 Model Comparison

We first present the policies, and, similar to our dis-
cussion of simple visual search task, we only show the
C-DAC policy looking at the first location (I1) (the
other fixation-dependent policies are rotationally sym-
metric). It is evident from Fig. 6 that now the C-DAC
policy differs from the infomax policy even when no
switch cost is considered, thus pointing to a more fun-
damental difference between the two. Note that for the
parameters used here, C-DAC never chooses to look at
the center l123, but it does so for other parameter set-
tings (not shown). Infomax, however, never even looks
at the actual potential locations, favoring only midway
locations before declaring the target location.

For performance comparison in terms of behavioral
output, we again investigate two scenarios: (1) no
switch cost, (2) with switch cost. The threshold for
infomax is set so that the accuracies are matched to
facilitate fair comparison. For all simulations, the al-



Infomax C-DAC (¢;=0) C-DAC (cs = 0.005)

Figure 6: Decision policies. Azure: stop and choose
location ;. Blue: stop and choose l5. Indigo: stop
and choose 3. Green: fixate [;. Sea-green: fixate ls.
Olive: fixate l3. Red: fixate l15. Brown: fixate lo3.
Yellow: fixate l;3. Environment (¢, 51, Ba, 83, 84) =
(0.05,0.62,0.6,0.55,0.5). Threshold for infomax = 0.6

gorithm starts with uniform prior (p = (1/3,1/3,1/3))
and initial fixation at the center (location l123), while
the true target location is uniformly distributed. Fig. 7
shows the accuracy, number of time steps, and num-
ber of switches for both scenarios. Now we notice that
C-DAC outperforms infomax even when switch cost is
not considered, in contrast to the simple task without
peripheral vision (Fig. 3). Note however that C-DAC
makes more switches for ¢, = 0, which makes sense
since switches have no cost, and search time can poten-
tially be reduced by allowing more switches. However,
when we add a switch cost (¢; = 0.005), C-DAC signif-
icantly reduces number of switches, whereas infomax
lacks this adaptability to a changed environment.

4 Discussion

In this paper, we proposed a POMDP plus Bayes risk-
minimization framework for active sensing, which opti-
mizes behaviorally relevant objectives in expectation,
such as speed, accuracy, and switching efficiency. We
compared this C-DAC policy to the previously pro-
posed infomazr and greedy MAP policies. We found
that greedy MAP performs very poorly, and although
Infomax can approximate the optimal policy for some
simple environments, it lacks intrinsic context sensi-
tivity or flexibility. Specifically, for different environ-
ments, there is no principled way to set a decision
threshold for either greedy MAP or Infomax, leading
to higher costs, longer fixation durations, and larger
number of switches in problem settings when those
costs are significant. This performance difference and
the advantage of the added flexibility provided by C-
DAC becomes even more profound when we consider
a more general visual search problem with peripheral
vision. The family of approximations that we present
opens up the avenue for application of our model to
complex, real world problems.

There have been several other related active sensing
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algorithms that differ from C-DAC in their state rep-
resentation, inference, control and/or approximation
scheme. We briefly summarize some of these here. In
[Darrell and Pentland, 1996], the problem of active ges-
ture recognition is studied, by using historic state rep-
resentation and nearest neighbor Q-function approx-
imation. Sensing strategies for robots in RoboCup
competition is studied in [Kwok and Fox, 2004], which
uses states augmented with associated uncertainty and
model-free Least Square Policy Iteration (LSPI) ap-
proximation [Lagoudakis and Parr, 2003]. Context de-
pendent goals are considered in [Ji et al., 2007] and
[Naghshvar and Javidi, 2010]. The former concen-
trates on multi-sensor multi-aspect sensing using Point
Based Value Iteration (PBVI) approximation [Pineau
et al., 2006]. The latter aims to provide conditions
for reduction of an active sequential hypothesis test-
ing problem to passive hypothesis testing. A Rein-
forcement Learning paradigm where reward is not de-
pendent on information gain but on how close a sac-
cade brings the target to the optical axis has also been
proposed [Minut and Mahadevan, 2001]. Other con-
trol strategies like random search, sequential sweep-
ing search, “Drosophila-inspired” search [Chung and
Burdick, April 2007] and hierarchical POMDPs for
visual action planning [Sridharan et al., 2010] have
also been proposed. We choose infomax to compare
our C-DAC policy against because, as a human-vision
inspired model, it not only explains human fixation
behavior on a variety of tasks, but also has cutting
edge computer vision applications (e.g. the digital eye
[Butko and Movellan, 2010]).

A related problem domain, not typically studied as
POMDP or MDP, is Multi-Armed Bandits (MAB)
[Gittins, 1979]. The classical example of a MAB prob-
lem concerns with pulling levers (or playing arms) in a
set of slot machines. The person gambling is unaware
of the states and reward distribution of the levers, and
has to figure out which lever to pull next in order to
maximize the cumulative reward. Noting a correspon-
dence between the ideas of pulling arms and fixating
location, and between rewards and observations, the
MAB framework seems to describe the active sensing
problem. Concretely, given the locations fixated (arms
played) so far, and the observations (rewards) received,
how to choose which location to fixate (which arm to
play) next. However, there are certain characteristics
of the active sensing problem that make it difficult to
study in a MAB framework as yet. Firstly, the prob-
lem is an instance of restless bandits [Whittle, 1988],
where the state of an arm can change even when it is
not played. In active sensing, the belief about a lo-
cation being the target does change even when it is
not fixated. Whittles index is a simple rule that as-
signs a value to each arm in a restless setting, and the
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Figure 7: Comparison between C-DAC and Infomax on Task 2 for two environments (c, (1, Ba, B3, 84) =
(0.05,0.62,0.6,0.55,0.5), ¢s = 0 and ¢; = 0.005. C-DAC adjusts the time steps and number of switches de-
pending on the environment, taking a little longer but reducing number of switches when effort has cost.

arm with the highest value is then played. The rule
is asymptotically optimal only for a sub-class of prob-
lems (e.g. [Washburn and Schneider, 2008] and [Liu
and Zhao, 2010]), but not optimal in general. Sec-
ondly, the states of the arms in the active sensing task
are correlated (the elements of the belief-state have
to add up to 1). There is some work on correlated
arms for specific structure of correlation, like clustered
arms [Pandey et al., 2007] and Gaussian process ban-
dits [Dorard et al., 2009], but so far there is no general
strategy for handling this scenario.

Active learning is another related approach, with hy-
pothesis testing as a sub-problem that is related to
the problem of active sensing. The setting involves an
unknown true hypothesis, and an agent that can per-
form queries providing information about the under-
lying hypothesis. The task is then to determine which
query to perform next to optimally reduce the num-
ber of plausible hypothesis (version space). In active
sensing however, although the belief about a hypoth-
esis (target location) can become arbitrarily low, the
number of plausible hypothesis does not reduce. This
problem is investigated in [Golovin et al., 2010], and
a near-optimal greedy solution is proposed along with
performance guarantees. Besides the sub-optimality of
the approach, the same test cannot be performed more
than once (whereas in active sensing, one location can
be fixated more than once). The lack of this provi-
sion stems from the fact that the noisy observations
considered are actually deterministic with respect to a
hidden noise parameter. Thus, as of yet it is hard to
cast the active sensing problem in this framework.

We thus conclude that although there is a rich body of
literature on related problems, as can be seen from the
few examples we presented, our formulation is novel
(to our best knowledge) in its goals and principled ap-
proach to the problem of active sensing. In general,
the framework proposed here has the potential for not
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only applications in visual search, but a host of other
problems, ranging from active scene categorization to
active foraging. The decision policies it generates are
adaptive to the environment and sensitive to contex-
tual factors. This flexibility and robustness to differ-
ent environments makes the framework an appealing
choice for a variety of active sensing applications.
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The Bregman Variational Dual-Tree Framework
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Abstract

Graph-based methods provide a powerful
tool set for many non-parametric frameworks
in Machine Learning. In general, the mem-
ory and computational complexity of these
methods is quadratic in the number of exam-
ples in the data which makes them quickly in-
feasible for moderate to large scale datasets.
A significant effort to find more efficient so-
lutions to the problem has been made in
the literature. One of the state-of-the-art
methods that has been recently introduced
is the Variational Dual-Tree (VDT) frame-
work. Despite some of its unique features,
VDT is currently restricted only to Euclidean
spaces where the Euclidean distance quan-
tifies the similarity. In this paper, we ex-
tend the VDT framework beyond the Eu-
clidean distance to more general Bregman di-
vergences that include the Euclidean distance
as a special case. By exploiting the properties
of the general Bregman divergence, we show
how the new framework can maintain all the
pivotal features of the VDT framework and
yet significantly improve its performance in
non-Fuclidean domains. We apply the pro-
posed framework to different text categoriza-
tion problems and demonstrate its benefits
over the original VDT.

1 Introduction

Graph-based methods provide a powerful tool set for
many non-parametric frameworks in Machine Learn-
ing (ML). The common assumption behind these
methods is the datapoints can be represented as the
nodes of a graph whose edges encode some notion of
stmalarity between the datapoints. Graph-based meth-
ods have been applied to various applications in ML
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including clustering (Ng et al., 2001a; von Luxburg,
2007; Amizadeh et al., 2012b), semi-supervised learn-
ing (Zhu, 2005; Zhou et al., 2003), link-analysis (Ng
et al., 2001¢,b) and dimensionality reduction (Belkin
and Niyogi, 2002; Zhang et al., 2012).

On the algorithmic side, many of these methods in-
volve computing the random walk on the graph which
is mathematically represented by a (Markov) transi-
tion matriz over the graph. In general, the compu-
tation of such matrix takes O(N?) time and memory,
where N is the problem size. As a result, for problems
with large N, the direct computation of the transi-
tion matrix (or its variants) quickly becomes infeasi-
ble. This is indeed a big challenge for applying many
graph-based frameworks specially with the advent of
large-scale datasets in many fields in ML. To tackle
this challenge, a significant effort has been made in
the literature to develop the approximation techniques
that somehow reduce the representation of the under-
lying graph. Based on the nature of approximation,
these methods are generally categorized into node re-
duction (Kumar et al., 2009; Talwalkar et al., 2008;
Amizadeh et al., 2011), edge reduction (von Luxburg,
2007; Jebara et al., 2009; Qiao et al., 2010), Fast Gauss
Transform (Yang et al., 2003, 2005) and hierarchical
(Amizadeh et al., 2012a; Lee et al., 2011) techniques.

Recently, Amizadeh et. al (Amizadeh et al., 2012a)
have proposed a hierarchical approximation frame-
work called the Variational Dual-Tree (VDT) frame-
work for the same purpose. In particular, by com-
bining the variational approximation with hierarchical
clustering of data, VDT provides a fast and scalable
method to directly approximate the transition matrix
of the random walk. Furthermore, the hierarchical na-
ture of VDT makes it possible to have approximations
at different levels of granularity. In fact, by chang-
ing the level of approximation in VDT, one can ad-
just the trade-off between computational complexity
and approximation accuracy. One major restriction
with the VDT framework, however, is it only works



for Euclidean spaces where similarity is expressed via
the Euclidean distance. This can be problematic in
many real applications where the Euclidean distance is
not the best way to encode similarity. Unfortunately,
the extension of VDT to a general distance metric is
not straightforward, mainly because the key compu-
tational gain of VDT is achieved by relying on the
functional form of the Fuclidean distance.

In this paper, our goal is to extend the VDT frame-
work to use a general class of divergences called Breg-
man divergences (Banerjee et al., 2005). We propose
this new method as the Bregman Variational Dual Tree
(BVDT) framework. Bregman divergences cover a di-
verse set of divergences and distances which can all
be reformulated in a unified functional form. They
have been used in many ML paradigms including clus-
tering (Banerjee et al., 2005), matrix approximation
(Dhillon and Sra, 2005; Banerjee et al., 2004), nearest
neighbor retrieval (Cayton, 2008) and search (Zhang
et al., 2009). From the applied side, some famous
distances and divergences such as Euclidean distance,
KL-Divergence and Logistic Loss are in fact the in-
stances of Bregman divergences. By extending the
VDT framework to Bregman divergences, one can use
it with any instance of Bregman divergences depend-
ing on the application and therefore it becomes acces-
sible to a large class of applications where similarity is
expressed via non-Euclidean measures.

The crucial aspect of using Bregman divergences for
the VDT framework is it does not cost us any extra
order of computations; it still has the same compu-
tational and memory complexity order as the original
VDT. In particular, we show that by exploiting the
functional form of the general Bregman divergence,
one can design a similar mechanism as in VDT to
significantly cut unnecessary distance computations.
This is a very important property because the motiva-
tion to develop variational dual-trees in the first place
was to tackle large-scale problems.

One nice feature of the VDT framework is its prob-
abilistic interpretation. In fact, the whole framework
is derived from the data likelihood. We show that by
using the natural correspondence between the Breg-
man divergences and the exponential families, we can
reconstruct the same probabilistic interpretation for
the BVDT framework which induces a more general
modeling perspective for the problems we consider.
The benefit of such probabilistic view is not restricted
only to the theoretical aspects; as we show by a walk-
through example, one can utilize the probabilistic view
of our model to derive appropriate Bregman diver-
gences for those domains where the choice of a good
Bregman divergence is not apparent. In particular, in
this paper, we use this construction procedure to de-
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rive a proper Bregman divergence for frequency data
(specifically text data in our experiments). By apply-
ing the BVDT framework equipped with the derived
divergence on various text datasets, we show the clear
advantage of our framework over the original VDT
framework in terms of the approximation accuracy,
while preserving the same computational complexity.
Finally, we show that the original VDT framework is
in fact a special case of the BVDT framework.

2 Euclidean Variational Dual-Trees

To prepare the reader for the proposed Bregman diver-
gence extension to the VDT framework, we will in this
section briefly review the basic elements of VDT. In-
terested readers may refer to (Amizadeh et al., 2012a)
for further details.

2.1 Motivation

Let D = {x1,2a,...,2N} be a set of i.i.d. datapoints
in X C RY. The similarity graph G = (D, D x D, W)
is defined as a complete graph whose nodes are the

elements of D and the matrix W = [w;j]nyxn rep-
resents the edge weights of the graph. A weight
wij = k(zi,zj50) = exp(—|z; — z;]|*/20?) is de-

fined by the similarity between nodes x; and z;. The
closer z; and z; are in terms of the Euclidean distance
|lz; — ||, the higher the similarity weight w;; will
be. The bandwidth parameter o is a design parameter
that scales the similarities in the graph. By abstract-
ing the input space into a graph, the similarity graph
essentially captures the geometry of the data.

Once the similarity graph is constructed, one can de-
fine a random walk on it. The transition probability
distributions are in this case given by the transition
matrix P = [p;j]nxn, where p;; = wij/zk# W, 1S
the probability of jumping from node z; to node z;.
Note that the elements in each row of IP sum up to 1 so
that each row is a proper probability distribution. The
transition matrix is the fundamental quantity used by
many graph-based Machine Learning frameworks, as
mentioned already in Section 1.

In terms of computational resources, it takes O(N?)
CPU and memory to construct and maintain the tran-
sition matrix, which can be problematic when the
number of datapoints, N, becomes large. This is,
in fact, quite typical in many real-world datasets and
therefore leaves us with a serious computational chal-
lenge in using many graph-based frameworks. To
overcome this challenge, the key idea is to some-
how reduce the representation of P. The Varia-
tional Dual-Tree (VDT) framework provides a non-
parametric methodology to approximate and represent



P in O(N'®log N). One big advantage of this frame-
work to its counterparts is that it directly computes
the transition matrix without computing the interme-
diate similarity matrix W. Another advantage of VDT
is that given a distance computation of O(1) between
any two datapoints, the overall computational com-
plexity of VDT does not depend on the dimensionality
d of the input space.

2.2 Variational Dual-Tree Partitioning

The main idea behind the computational reduction by
the VDT framework is to partition the transition ma-
trix IP into blocks, where each block ties the individual
transition probabilities in that block into a single num-
ber (or parameter). The number of different elements
in P is in this way reduced from N? to |B|, the num-
ber of blocks. In the VDT framework, a cluster tree
hierarchy of the data lets us define blocks of different
sizes according to nodes at different granularity levels
in the tree. In this way, the number of blocks |B| can
be as small as O(N) (Amizadeh et al., 2012a).

More specifically, let 7 be a binary tree that repre-
sents a hierarchical clustering of data. Given T, a
valid block partition B defines a mutually exclusive
and exhaustive partition of P into blocks (or sub-
matrices) (A4, B) € B, where A and B are two non-
overlapping subtrees in 7. That is, A cannot be a
subtree of B or vice versa. A valid block partition B
relates to a similarity graph as follows. If A and B
are two non-overlapping datapoint clusters, then the
block (A, B) € B represents the transition probabili-
ties from datapoints in node A to datapoints in node
B with only one parameter, which is denoted by gap.
That is, Vz; € A,xz; € B,p;; = qap; we call this a
block constraint. Valid block partitions are not unique;
in fact, any further refinement of a valid partition re-
sults in a new valid partition with increased number
of blocks. In the coarsest partition, each subtree in T
is blocked with its sibling, resulting in the minimum
number of blocks |B| = 2(N — 1). The coarsest parti-
tion embodies the approximation of IP at the coarsest
level. On the other hand, in the finest partition, each
leaf in T is blocked with all the other leaves resulting
in the maximum number of blocks |B| = N(N — 1);
this partition exactly represents P with no approxima-
tion. The other valid partitions vary between these
two extremes. In this setup, a finer partition has bet-
ter approximation accuracy at the cost of increased
computational complexity and vice versa. Figure 1
borrowed from (Amizadeh et al., 2012a) shows an ex-
ample of a block partitioning with its corresponding
cluster tree.

Given a block partitioning B of P, one needs to com-
pute the parameter set @ = {qap | (A,B) € B} as
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Figure 1: A block partition that, for example, enforces
the block constraint p13 = pi1a = p23 = pos for the
block (A,B) = (1—2,3—4) (where a—0b denotes a
through b).

the final step to complete the approximation of P. For
this purpose, the VDT framework maximizes the vari-
ational lower bound on the log-likelihood of data with
the set Q as the variational parameters. In this frame-
work, the likelihood of data is modeled by the non-
parametric kernel density estimate. In particular, a
Gaussian kernel is placed on each datapoint in the in-
put space such that each datapoint x; plays two roles:
(I) a datapoint where we want to compute the likeli-
hood at, and (II) the center of a Gaussian kernel. We
denote datapoint x; as m; when it is regarded as a
kernel center. Using this notation, the likelihood of
dataset D is computed as:

p(D) = Hp(xi) = H Zp(mj)p(xi | m;),

i g

(1)

where p(x;|m;) is the Gaussian density at x; cen-
tered at my; that is, p(x;|m;) exp(—||z; —
m;|%/20%)(2r0?)=%2, and p(m;) = 1/(N — 1) is the
uniform mixture weight. Using Bayes rule, we observe
that the posterior p(m; | ;) is equal to the transition
probability p;;. The lower-bound on the log-likelihood
is then computed as:

logp(D) =) log

L5y (i | my)

i g
p(m)p(x; | m;
ALy
i Y

= logp(D) — ZDKL (¢i-llpi.) = D), (2)

where ¢;;’s are the variational parameters approximat-
ing pi;’s and DKL(qi.HpZ:) is the KL-divergence be-
tween two distributions ¢;. and p;.. With only the
sum-to-one constraints Vi : Ej 2ilij = 1, the opti-
mization in Eq. (2) returns g;; = p;;; that is, there is
no approximation! However, by adding the block con-
straints from the block partition 53, one can rewrite Eq.
(2) in terms of the block parameters in Q. Let us first



reformulate the sum-to-one constraints in accordance
with the block partition as follows:

> (AB)eB() Bl -qap =1forallz; €D (3)

where, B(z;) £ {(A, B) € B| z; € A}. In this case,

1
(D) = sy} Z qaB - Dap
(A,B)eB
- Z |A||B| - qaplogqan, (4)
(A,B)eB
where

¢ =—Nlog ((2m)¥2c*(N — 1))

Dap= Y > lai—myl?

r;,€Am;EB

(5)

(Thiesson and Kim, 2012) has proposed an O(|B|)-time
algorithm to maximize Eq. (4) under the constraints
in Eq. (3).

A very crucial element of the VDT framework is the
way that Eq. (5) is computed; the direct computation
of the double-sum for D4p of all blocks would send
us back to an O(N?)-time algorithm! Fortunately,
this can be avoided thanks to the Euclidean distance,
where D g can be written as:

Dap = |A|S2(B) + |B|S2(A) — 251 (A)"S1(B), (6)

where, S1(A) = Y c 2 and S3(A4) = Y 427w are
the statistics of subtree A. These statistics can be
incrementally computed and stored while the cluster
tree is being built; an O(N) computation. Using these
statistics, Dap is computed in O(1). The crux of
the reformulation in Eq. (6) is the de-coupling of the
mutual interactions between two clusters A and B so
that the sum of mutual interactions can be computed
using the sufficient statistics pre-calculated indepen-
dently for each cluster.

Once the parameters Q are computed, we have the
block approximation of P which we denote by Q.
(Amizadeh et al., 2012a) has proposed an O(|B|)-time
algorithm to compute the matrix-vector multiplication
Qu for an arbitrary vector v. We will use this algo-
rithm for label propagation in Eq. (29) in Section 4.2.

2.3 Anchor Tree Construction

So far, we assumed the cluster hierarchy tree T is
given. In reality, however, one needs to efficiently build
such a hierarchy from data as the first step of the VDT
framework. (Amizadeh et al., 2012a) has used the an-
chor construction method (Moore, 2000) for this pur-
pose. Compared to the classical O(N?)-time agglom-
erative clustering algorithm, the construction time for
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this tree is O(N'? log N) for a relatively balanced data
set (see Amizadeh et al. (2012a), Appendix). The con-
struction starts with an anchor growing phase that for
the N data points gradually grows a set of VN an-
chors A. Each anchor A € A has a pivot datapoint A,
and maintains a list of individual member datapoints
Ay sorted by decreasing order of distance to the pivot
lz; — Apll, x; € Apr. The distance to the first data-
point in the list therefore defines a covering radius A,
for the anchor, where ||z; — A,|| < A, for all x; € Ay,.

The anchor growing phase constructs a first anchor by
choosing a random datapoint as pivot and assigning
all datapoints as members of that anchor. A new an-
chor A™¢" is now added to a current set of anchors
in three steps until /N anchors are found: first, its
pivot element is chosen as the datapoint with largest
distance to the pivot(s) of the current anchor(s):

max

A" = ar
p ga:iGAM,AE.A

[z — Apl- (7
Second, the new anchor now iterates through the mem-
ber elements of current anchors and “steals” the dat-
apoints with [lz; — A7 < [|z; — Ap||. Because the
list of elements in an anchor is sorted with respect to
|lz; — Apll, a significant computational gain is achieved
by not evaluating the remaining datapoints in the list
once we discover that for the i-th datapoint in the list
|z — Apll < dinr, where

dinr = [| A" = Apl[/2, (®)

This guarantees that the elements with index j > i
in the list are closer to their original anchor’s pivot
and cannot be stolen by the new anchor. When a new
anchor is done stealing datapoints from older anchors,
its list of elements is finally sorted.

Once the v/N anchors are created, the anchor tree con-
struction now proceeds to anchor agglomeration phase
that assigns anchors as leaf nodes and then iteratively
merges two nodes that create a parent node with the
smallest covering radius. This agglomerative bottom-
up process continues until a hierarchical binary tree
is constructed over the v/N initial anchors. With an
Euclidean distance metric, the covering parent for two
nodes A and B can be readily computed as the node
C with pivot and radius

CP
C,

(IA[- Ap + B[ - By)/(|Al + |BI)
(Ar + B, + HBP - Ap||)/2

(9)
(10)

Finally, recall that the leaves (i.e. the initial anchors)
in this newly constructed tree contain v/N datapoints
on average each. The whole construction algorithm is
now recursively called for each anchor leaf to grow it
into a subtree. The recursion ends when the leaves of
the tree contain only one datapoint each.



3 Bregman Variational Dual-Trees

The Euclidean VDT framework has been shown to be a
practical choice for large-scale applications. However,
its inherent assumption that the underlying distance
metric in the input space should be the Euclidean
distance is somewhat restrictive. In many real-world
problems, the Euclidean distance is simply not the best
way to quantify the similarity between datapoints.

On the other hand, the VDT framework does not seem
to depend on the choice of distance metric, which
makes it very tempting to replace the Euclidean dis-
tance in the formulation of the VDT framework with
a general distance metric. However, there is one prob-
lem: the de-coupling in Eq. (6) was achieved only
because of the Euclidean distance special form which
is not the case for a general distance metric. Unfor-
tunately, we cannot compromise on this de-coupling
simply because, without it, the overall complexity of
the framework is back to O(N?). One solution is to use
some approximation technique similar to Fast Gauss
Transform techniques (Yang et al., 2005) to approxi-
mately de-couple a general distance metric. Although,
this may work well for some special cases, in general,
the computational burden of such approximation can
be prohibitive; besides, we will have a new source of
approximation error.

So, if we cannot extend VDT for general distance met-
ric, is there any sub-class of metrics or divergences
which we can safely use to extend the VDT frame-
work? The answer is yes, the family of Bregman di-
vergences is a qualified candidate. This family con-
tains a diverse set of divergences which also include the
Euclidean distance. By definition, the Bregman diver-
gence has a de-coupled form which makes it perfect for
our purpose. From the applied side, Bregman diver-
gences cover some very practical divergences and met-
rics such as Euclidean distance, KL-Divergence and
Logistic Loss that are widely used in many engineer-
ing and scientific applications. Furthermore, the nat-
ural correspondence of Bregman divergences with the
exponential families provides a neat probabilistic in-
terpretation for our framework.

3.1 Bregman Divergence and The
Exponential Families

Before illustrating the Bregman Variational Dual-Tree
(BVDT) framework, we briefly review the Bregman
divergence, its important properties and its connection
to the exponential families. Interested readers may
refer to (Banerjee et al., 2005) for further details.

Let X C R? be a convex set in R?, 7i(X) denote the
relative interior of X', and ¢ : X — R be a strictly con-
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vex function differentiable on 7i(X’), then the Bregman
divergence dg : X x 1i(X) > [0, 00) is defined as:

dg(z,y) £ ¢(x) — (y) — (x —y)" Vo(y)

where, V¢(y) is the gradient of ¢(-) evaluated at y. For
different choices of ¢(-), we will get different Bregman
divergences. Table 1 lists some famous Bregman diver-
gences along with their corresponding ¢(-) functions.
It is important to note that the general Bregman di-
vergence is not a distance metric: it is not symmetric,
nor does it satisfy the triangular inequality. However,
we have Vo € X,y € ri(X) : dg(z,y) > 0,dy(y,y) = 0.

Let S = {x1,...,2,} C X and X be a random variable
that takes values from S with uniform distribution';
the Bregman information of the random variable X
for the Bregman divergence dg(-,-) is defined as:

Zd¢ {EZ,

(12)
The optimal s that minimizes Eq. (12) is called the
Bregman representative of X and is equal to:

1 — R
n;w po(13)

That is, the Bregman representative of X is always
equal to the sample mean of S independent of the Breg-
man divergence dy(-,-).

(11)

I4(X) min E[ds(X,s)] = min

sETi(X) seEri(X) N

arg Semﬂl(r/;y)E[dMX s)| = E[X

The probability density function p(z), defined on set
Z, belongs to an exponential family if there exists a
mapping g : Z — X C R? that can be used to re-
parameterize p(z) as:

p(z) = p(x;0) = exp(07x — 1(0))po(x)

where x = g(z) is the natural statistics vector, 6 is the
natural parameter vector and ¥ () is the log-partition
function. Eq. (14) is called the canonical form of p. If
0 takes values from parameter space ©, Eq. (14) de-
fines the family F,, = {p(x;0) | € O} parameterized
by 6. If © is an open set and we have that Ac € R?
st. cTg(z) = 0,Vz € Z, then family F is called a
regular exponential family. (Banerjee et al., 2005) has
shown that any probability density function p(x;6) of
a regular exponential family with the canonical form
of Eq. (14) can be uniquely expressed as:

p(x;0) = exp(—dy(z, p)) exp(p(z))po(z)

where ¢(-) is the conjugate function of the log-partition
function ¥(-), dy(-,-) is the Bregman divergence de-
fined w.r.t. function ¢(-), and p is the mean param-
eter. The mean parameter vector p and the natural

(14)

(15)

!The results hold for any distribution on S.



parameter vector 6 are connected through:

p=Vy(0), 0=Ve(u)

Moreover, (Banerjee et al., 2005) (Theorem 6) has
shown there is a bijection between the regular expo-
nential families and the regular Bregman divergences.
The last column in Table 1 shows the corresponding
exponential family of each Bregman divergence. Us-
ing Eq. (13), one can also show that, given the finite
sample § = {z1,...,2,}, the maximum-likelihood es-
timate of the mean parameter fi for any regular expo-
nential family Fy is always equal to the sample mean
of S regardless of Fy.

(16)

3.2 Bregman Variational Approximation

Having described the basic concepts of Bregman di-
vergences, we are now ready to nail down the BVDT
framework. Let & = {z1,22,...,28y} C Z be a fi-
nite sample from the convex set Z which is not nec-
essarily an FEuclidean space. We are interested to ap-
proximate the transition matrix P on the similarity
graph of & where we know the Euclidean distance is
not necessarily the best way to encode similarity. To
do so, we assume S is sampled according to an un-
known mixture density model p*(z) with K compo-
nents from the regular exponential family F. That
is, there exists the mapping g : Z — X C R% such that
p*(z) can be re-parametrized in the canonical form as

P (@) = 5K p(6:) exp(67z — (6:))po(x) 2

Furthermore, let D = g(S) = {z1,22,..., 28} C X be
the natural statistics of sample S s.t. z; = g(z;). Then
we model the likelihood of D using the kernel density
estimation:

p(D) =D plm))p(zi | m;)

(17)
i=1 j#i
N
=TI D_ p(m)) exp(=dy (i, my)) exp(¢(a))po(x:)
i=1 j#i

Where, we assume the kernel component p(z; | m;)
belongs to the regular exponential family F,, such that
it can be uniquely re-parameterized using Eq. (15).
Given a block partitioning B on P, we follow the similar
steps in Eq. (2)-(5) to derive the block-partitioned
variational lower-bound on p(D):

(D) = c— Z qaB - Dap
(A,B)eB
— Y |AllBl - qaplogqas, (18)
(A,B)eB

2For some exponential families such as Gaussian and
Multinomial, the mapping g(-) is identity.
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where

N
c=—Nlog(N —1)+ Z (¢(x:) + log po(x:))
Dap = dslzim). (19)

r;€Am;EB

Now we can maximize ¢(D) subject to the constraints
in Eq. (3) to find the approximation Q of P using the
same O(|B|)-time algorithm in the VDT framework.

The crucial aspect of the BVDT framework is D 4p in
Eq. (19) is de-coupled into statistics of the subtrees A
and B using the definition of the Bregman divergence:

Dap = |B|S1(A)+|A[(S2(B)~S1(B)) — S3(A) " S4(B)

(20)
where,
Si(A) = d(x), So(A) =) 2"Ve(x)
T€EA TEA
Ss(4) = w, Si(A) =D Vé(z) (21)
T€A r€EA

are the statistics of subtree A. These statistics can be
incrementally computed and stored while the cluster
tree is being built (in overall O(N) time) such that at
the optimization time, D 4p is computed in O(1).

Finally, by setting ¢(x) = ||z||?/20? and doing the al-
gebra, the BVDT framework reduces to the Euclidean
VDT framework; that is, the Euclidean VDT frame-
work is a special case of the BVDT framework.

3.3 Bregman Anchor Trees

Recall that the approximation in the Euclidean VDT
framework is based on the cluster hierarchy 7T of the
data which is built using the anchor tree method with
the Euclidean distance. For the BVDT framework, we
can no longer use this algorithm because the Euclidean
distance no longer reflects the similarity in the input
space. For this reason, one needs to develop an an-
chor tree construction algorithm for general Bregman
divergences. This generalization is not straightforward
as a general Bregman divergence is neither symmetric
nor does it hold the triangle inequality. In particular,
we need to address two major challenges.

First, due to the asymmetry of a general Bregman di-
vergence, the merging criterion in the anchor agglom-
eration phase is no longer meaningful. For this pur-
pose, we have used the criterion suggested in the recent
work by (Telgarsky and Dasgupta, 2012). In particu-
lar, at each agglomeration step, anchors A and B with
the minimum merging cost are picked to merge into



Name X &(x) dy(x,y) Exponential Family
Logistic Loss (0,1) zlogx z log (g) +(1—2x)log (%) 1D Bernoulli
Itakura-Saito Dist. Ryt —logz —1 % — log (%) -1 1D Exponential
Relative Entropy Zy zlogr —x z log (5) -4y 1D Poisson
Euclidean Dist. R? lz||? /207 llz — yl* /207 Spherical Gaussian
Mahalonobis Dist. R? TY (x—y) TSz —y) Multivariate Gaussian
KL-Divergence d-simplex Z‘;:l z(j) log z(j) Z?zl z(7) log (%) -

- int. d-simplex Z?zl z(7) log (#) 27:1 z(7) log (%) Multinomial

Table 1: Famous Bregman divergences along with their corresponding ¢(-) function, its domain and the corresponding

exponential family distribution

the parent anchor C. The cost for merging a pair of
anchors A and B is defined as:

A(A, B) = [A] - dg(Ap, Cp) + |B| - dy(By, Cp) - (22)

where |A| is the number of elements in the anchor A,
and C,, is the parent anchor’s pivot which is given by
Eq. (9). (Telgarsky and Dasgupta, 2012) has shown
that the merging cost in Eq. (22) can be interpreted
as the difference of cluster unnormalized Bregman in-
formations before and after merging.

Second, as shown before, using the halfway Euclidean
distance as the stealing threshold (Eq. (8)) in the
anchor construction phase significantly cuts the un-
necessary computations. This threshold, however, is
meaningless for a general Bregman divergence simply
because a general Bregman divergence is not a metric.
Therefore, we need to develop an equivalent threshold
for Bregman divergences to achieve a similar computa-
tional gain in constructing Bregman anchor trees. The
following proposition addresses this problem:

Preposition 1. Let A" and A™" denote the cur-

rent and the newly created anchors, respectively, where
A" s stealing datapoints from AT . Define

1 . .
dinr = 5 min [%(Zb AP 4 dg(y, Agew)} (23)
Then for all x € A" such that dd)(a:,Ag“”) < dinr,
we will have dg(z, Ag"™) < dg(x, Ape); that is, x
cannot be stolen from A" by Ap”. Furthermore,
the minimizer of Eq. (23) is equal to:

v = o (Totagr) + votapm) )| e

The proof is easily derived by contradiction. Note that
for the special case of Euclidean distance where ¢(x) =
|lz||?/202, Eq. (23) reduces to Eq. (8).

4 Experiments

In order to apply the BVDT framework to a real prob-
lem, all one needs to know are the appropriate Breg-
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man divergence and its corresponding ¢(-) function in
the input space; knowing the corresponding exponen-
tial family that has generated the data is not neces-
sary. However, in many problems, the choice of the
appropriate Bregman divergence is not clear; instead,
we know that the underlying data generation process
belongs to or can be accurately modeled with expo-
nential families. In such cases, one can systematically
derive the appropriate Bregman divergence from the
data distribution. In this section, we use this proce-
dure to derive an appropriate Bregman divergence for
the frequency data.

4.1 Modeling Frequency Data

Given a set of d events {e; }?:1, the frequency dataset
D consists of N feature vectors where the j-th ele-
ment of the i-th vector, x;(j), represents the number
of times that event e; happens in the i-th case for all
j € {1,...,d}. The length of each vector is defined
as the total number of events happened in that case,
ie. L; = ijl z;(j). For example, in text analy-
sis, events can represent all the terms that appeared
in a text corpus, while the data cases represent the
documents. The frequency dataset in this case is the
famous bag-of-words. We adopt the term-document
analogy for the rest of this section.

If the lengths of all documents were equal, one could
model the document generation process with a mix-
ture of multinomials, where each mixture component
had different term generation probabilities while shar-
ing the same length parameter (Banerjee et al., 2005).
However, having the same length is not the case for
many real datasets. To address this issue, we pro-
pose a mixture model for data generation whose k-th
component (k € [1..K]) is modeled by the following
generative model:

Pr (5 ag, Ag) = p( | Ly ag)p(L; Ax,) (25)

where, the length of a document, L, has a poisson
distribution p(L; Ax) with mean length Ax and given
L, document = has a multinomial distribution p(z |




L; o) with the term probabilities a, = [ozk(j)]?zl.
By doing the algebra, pg(z; oy, A\r) can be written in

the form of Eq. (14), where we have:

O = [Oe(D)=1 = [log(Man ()],
d d -1
6(00) = Y exp(0u(i).mle) = ( [L200))  (20)

That is, our generative model also belongs to an ex-
ponential family. By deriving the conjugate function
of 1(-), we get the ¢(-) function and its corresponding
Bregman divergence as:

M=

o(x)

z(j)log z(j) — > x(j)

=1 j=1

2ty tos (Z01) o)+ 9] 29

(27)

~
Il

IR

dg(x,y) =

j=1

The divergence in Eq. (28) is called the Generalized
I-Divergence (GID) which is a generalization of KL-
Divergence (Dhillon and Sra, 2005). As a result, to
work with frequency data (in particular text data in
our experiments), we customize the BVDT framework
to use GID as its Bregman divergence. It should be
noted that GID is not the only non-Euclidean sim-
ilarity measure between documents, other techniques
such as co-citation (Singliar and Hauskrecht, 2006) has
been used before.

4.2 Experimental Setup

To evaluate the BVDT framework, we use it for a
semi-supervised learning (SSL) task on various text
datasets. (Amizadeh et al., 2012a) has experimentally
shown the VDT framework can be well scaled to large-
scale problems. Our framework has exactly the same
order of complexity as VDT. Therefore, due to the
space limit, we focus our evaluation only on the accu-
racy of SSL for text data. In particular, we show that
while enjoying the same computational speed-up as
the Euclidean VDT framework, the BVDT framework
equipped with GID significantly improves the quality
of learning over the VDT framework for text data.

For the SSL task, we want to propagate the labels from
a small set of labeled examples to the rest of unlabeled
examples over the similarity graph built over the ex-
amples. To do so, we use the following iterative prop-
agation scheme (Zhou et al., 2003):

Yy aMy® + (1 — )y (29)

where y® € RV¥*! is the vector of labels at time ¢,
M € R¥*¥ ig the transition matrix P (or its approx-
imation Q), y° is the vector of initial partial label-
ing and « € [0,1] is the mixing coefficient. For all of
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our experiments, we iterate through this process 300
times with @ = 0.01. Upon completion of propagation,
we compute the classification accuracy over the unla-
beled data w.r.t. the held-out true labels. Note that
this process is for binary classification problems; for
problems with multiple classes, we perform one-vs-all
scheme for each class and take the maximum.

We have compared four methods for computing ma-
trix M: (a) Euclidean VDT, (b) BVDT equipped with
GID, (c) Exact method with Euclidean distance and
(d) Exact method with GID. For Exact methods, the
transition matrix P is exactly computed using the di-
rect method. Due to memory limitations on our single
machine, we could apply Exact methods only for the
smaller datasets. For variational methods, we have
used the coarsest level of approximation for the tran-
sition matrix; that is, P is approximated with only
2(N — 1) number of parameters (or blocks).

We have applied these methods on five text datasets
represented as bag-of-words used before in (Greene
and Cunningham, 2006; Deng et al., 2011; Maas et al.,
2011; Lang, 1995). Table 2 illustrates the details.

Dataset N d C
BBC-Sport News Articles 737 4613 5
BBC News Articles 2225 9636 5
20 Newsgroup 11269 | 61188 | 20
NSF Research Abstracts 16405 | 18674 | 10
Large Movie Reviews 50000 | 89527 | 2

Table 2: Datasets used: N = number of documents, d =
number of terms, C' = number of classes

4.3 Results

Figures 2(A-E) show the classification accuracy vs. the
percentage of labeled data for the datasets. The plots
show the average of 5 trials with 95% confidence inter-
vals. Although, none of the actual datasets is gener-
ated by the generative model proposed in Eq. (25), the
BVDT with GID method consistently and significantly
outperforms the Euclidean VDT. In particular, these
results show that (a) the Generalized I-Divergence de-
rived from the proposed generative model for text data
captures the document similarity much better than the
Euclidean distance does, and (b) the BVDT frame-
work provides a straightforward mechanism to extend
the variational dual-tree method beyond the Euclidean
distance to use Bregman divergences such as GID.

We have also applied the Exact methods to the two
smallest datasets. Not surprisingly, the Exact method
with GID has the best performance compared to other
methods. However, the Exact method with a wrong
distance metric (the Euclidean distance in this case)
can do even worse than the VDT method with Eu-
clidean distance, as observed for the second BBC
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Figure 2: The accuracy curves vs. labeled data % for (A) BBC Sport News (B) BBC News (C) 20 Newsgroup (D) NSF
Research Abstracts (E) Large Movie Reviews. (F) The computational complexity of four methods vs. the dataset size

dataset. We conjecture the existence of block regu-
larization in the VDT framework compensates for the
improper distance to some degree in this case.

Finally, we note the computational complexity of the
aforementioned methods vs. the dataset size (i.e. the
number of documents) shown in Figure 2(F). Both X
an Y axes in this plot are in log-scale. As the plot
shows while Euclidean VDT and BVDT have the same
order complexity, they both are orders of magnitude
faster than the Exact methods. In other words, while
significantly improving on learning accuracy, BVDT
still enjoys the same computational benefits as VDT.

5 Conclusions

In this paper, we proposed the Bregman Variational
Dual-Tree framework which is the generalization of the
recently developed Euclidean Variational Dual-Tree
method to Bregman divergences. The key advantage
of the BVDT framework is it covers a large class of dis-
tances and divergences and therefore makes the vari-
ational dual-trees accessible to many non-Euclidean
large-scale datasets. The crucial aspect of our general-
ization to Bregman divergences is, unlike generalizing
VDT to a general distance metric, it comes with no
extra computational cost; that is, its computational
order can still be kept the same as that of the VDT
framework. This is very important to the development
of whole framework since the variational dual-trees
were originally developed to tackle large-scale prob-
lems. To achieve this, we utilized the functional form
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of the general Bregman divergence to design a bottom-
up mechanism to cut unnecessary distance computa-
tions similar to that of the Euclidean VDT framework.

Furthermore, by exploiting the connection between the
Bregman divergences and the exponential families, we
provided a probabilistic view of our model. By a walk-
through example, we showed that this probabilistic
view can be used to derive the appropriate Bregman
divergence for those domains where the best choice of
distance in not apparent at the first glance. This exam-
ple provides us with a powerful construction procedure
to develop the appropriate Bregman divergence for a
given problem. Specifically, we used this procedure to
derive the Generalized I-Divergence for the frequency
data. We showed that by incorporating GID in the
BVDT framework, our model significantly improved
the accuracy of learning for semi-supervised learning
on various text datasets, while maintaining the same
order of complexity as the original VDT framework.
It should be emphasized that although we used the
BVDT framework with one type of Bregman diver-
gence, the proposed model is general and can be cus-
tomized with any Bregman divergence.
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Abstract

Graphical models for structured domains are
powerful tools, but the computational com-
plexities of combinatorial prediction spaces
can force restrictions on models, or re-
quire approximate inference in order to be
tractable. Instead of working in a combina-
torial space, we use hinge-loss Markov ran-
dom fields (HL-MRFSs), an expressive class
of graphical models with log-concave density
functions over continuous variables, which
can represent confidences in discrete predic-
tions. This paper demonstrates that HL-
MRFs are general tools for fast and accu-
rate structured prediction. We introduce the
first inference algorithm that is both scalable
and applicable to the full class of HL-MRF's,
and show how to train HL-MRF's with several
learning algorithms. Our experiments show
that HL-MRFs match or surpass the predic-
tive performance of state-of-the-art methods,
including discrete models, in four application
domains.

1 INTRODUCTION

The study of probabilistic modeling in structured
and relational domains primarily focuses on predict-
ing discrete variables [12, 19, 24]. However, except
for some isolated cases, the combinatorial nature of
discrete, structured prediction spaces requires conces-
sions: most notably, for inference algorithms to be
tractable, they must be relaxed or approximate (e.g.,
[19, 22, 25]), or the model’s structure must be re-
stricted (e.g., [2, 8]). Broecheler et al. [6] introduced
a class of models for continuous variables that has the
potential to combine fast and exact inference with the
expressivity of discrete graphical models, but this po-
tential has not been well explored. Now called hinge-
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loss Markov random fields (HL-MRFs) [3], these mod-
els are analogous to discrete Markov random fields,
except that random variables are continuous valued
in the unit interval [0,1], and potentials are linear or
squared hinge-loss functions.

In this work, we demonstrate that HL-MRFs are
powerful tools for structured prediction by producing
state-of-the-art performance in a number of domains.
We are the first to leverage some of the most pow-
erful features of HL-MRFSs, such as squared poten-
tials, which we show produce better results on mul-
tiple tasks. We show that HL-MRF's are well-suited to
structured prediction for the following reasons. They
are expressive, interpretable, and easily defined using
the modeling language probabilistic soft logic (PSL)
[6, 13]. Further, continuous variables are useful both
for modeling continuous data as well as for expressing
confidences in discrete predictions. Confidences are
desirable for the same reason that practitioners often
prefer marginal probabilities to the single most prob-
able discrete prediction. Finally, HL-MRF's have log-
concave density functions, so finding an exact most
probable explanation (MPE) for a given input is a
convex optimization, and therefore exactly solvable in
polynomial time.

Our specific contributions include the following. First,
we introduce a new, fast algorithm for MPE inference
in HL-MRFs, which is the first to be both scalable
and applicable to the full class of HL-MRFs. Sec-
ond, we show how to train HL-MRFs with several
learning algorithms. Third, we show empirically that
these advances enable HL-MRF's to tackle a diverse set
of relational and structured prediction tasks, provid-
ing state-of-the-art performance on collective classifi-
cation, social-trust prediction, collaborative filtering,
and image reconstruction. In particular, we show that
HL-MRFs can outperform their discrete counterparts,
as well as other leading methods.



1.1 RELATED WORK

Probabilistic soft logic (PSL) [6, 13] is a declarative
language for defining templated HL-MRFs. Its de-
velopment was partially motivated by the need for
rich models of continuous similarity values, for use
in tasks such as entity resolution, collective classifi-
cation, and ontology alignment. PSL is in a family of
systems for defining templated, relational probabilistic
models that includes, for instance, Markov logic net-
works [19], relational dependency networks [17], and
relational Markov networks [23]. In our experiments,
we compare against Markov logic networks, which use
a first-order syntax similar to PSL’s to build discrete
probabilistic models.

MPE inference algorithms for HL-MRFs solve a con-
strained, convex optimization. A standard approach
for general, constrained, convex optimization is to use
an interior-point method, which Broecheler et al. [6]
use. While theoretically efficient, the practical run-
ning time of interior-point optimizers quickly becomes
cumbersome for large problems. For discrete graph-
ical models, recent advances use consensus optimiza-
tion to obtain fast, approximate MPE inference algo-
rithms [5, 15, 16]. Bach et al. [3] recently developed
an analogous algorithm for exact MPE inference in
HL-MRFs that produced a significant improvement in
running time over interior-point methods, though it
was limited to pairwise potentials and constraints, and
cost considerably more computation to optimize over
squared potentials.

The learning methods we adapt for HL-MRF's are stan-
dard approaches for learning parameters of probabilis-
tic models. In particular, our adaptations are anal-
ogous to previous learning algorithms for relational
and structured models using approximate maximum-
likelihood or maximum-pseudolikelihood estimation
[6, 14, 17, 19] and large-margin estimation [11, 12, 24].

2 HINGE-LOSS MARKOV
RANDOM FIELDS

Hinge-loss Markov random fields (HL-MRFs) are a
general class of conditional, continuous probabilistic
models [3]. HL-MRFs are log-linear models whose fea-
tures are hinge-loss functions of the variable states.
Through constructions based on soft logic, hinge-loss
potentials can be used to model generalizations of log-
ical conjunction and implication. HL-MRFs can be
defined using the modeling language probabilistic soft
logic (PSL) [6, 13], making these powerful models in-
terpretable, flexible, and expressive. In this section, we
formally present constrained hinge-loss energy func-
tions, HL-MRFs, and briefly review PSL.
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Definition 1. Let Y = (Y1,...,Y,) be a vector of
n wvariables and X = (X1,...,Xn) a vector of n’
variables with joint domain D = [0,1]"*"". Let ¢ =
(P1,- -, Pm) be m continuous potentials of the form

¢; (Y, X) = [max {¢;(Y,X),0}]"

where £; is a linear function of Y and X and p; €
{1,2}. Let C = (C4,...,C}) be linear constraint func-
tions associated with index sets denoting equality con-
straints £ and inequality constraints T, which define
the feasible set

= Cr(Y
D= {Y,XED’ ClY,
For Y,X € D, given a vector of nonnegative free
parameters, i.e., weights, A = (A1,...,Am), a con-
strained hinge-loss energy function fy is defined as

AY,X) =) Nei(Y, X) .

j=1

Definition 2. A hinge-loss Markov random field P
over random variables Y and conditioned on random

variables X is a probability density defined as follows:
if Y, X ¢ D, then P(Y|X)=0; if Y,X €D, then

P(Y|X) =

Z()\) exXp [_fA(Y7 X)] )

where Z(X) = [y exp [—fr(Y, X)].

Thus, MPE inference is equivalent to finding the min-
imizer of the convex energy fi.

The potentials and weights can be grouped together
into templates, which can be used to define general
classes of HL-MRF's that are parameterized by the in-
put data. Let 7 = (t1,...,ts) denote a vector of tem-
plates with associated weights A = (Ag,...,A;). We
partition the potentials by their associated templates
and let @4(Y,X) =3, ¢;(Y,X) forallt; € T. In
the HL-MRF, the weight of the j’th hinge-loss poten-
tial is set to the weight of the template from which it
was derived, i.e., \; = Ay, for each j € ¢,.

Probabilistic soft logic [6, 13] provides a natural in-
terface to represent hinge-loss potential templates us-
ing logical rules. In particular, a logical conjunc-
tion of Boolean variables X A Y can be general-
ized to continuous variables using the hinge function
max{X +Y —1,0}, which is known as the Lukasiewicz
t-norm. Disjunction X VY is relaxed to min{ X +Y, 1},
and negation =X to 1 — X. PSL allows modelers to
design rules that, given data, ground out substitutions
for logical terms. The groundings of a template define
hinge-loss potentials that share the same weight and



have the form one minus the truth value of the ground
rule. We defer to Broecheler et al. [6] and Kimmig
et al. [13] for details on PSL.

To further demonstrate this templating, consider the
task of predicting who trusts whom in a social network.
Let the network contain three individuals: A, B, and
C. We can design an HL-MRF to include potentials
that encode the belief that trust is transitive (which
is a rule we use in our experiments). Let the variable
Y4, represent how much A trusts B, and similarly so
for Yp,c and Y4 . Then the potential

(Y, X) = [max{Yap+Ysc—Yac—1,0}

is equivalent to one minus the truth value of
the Boolean formula Y4 p A Ypc — Yac when
Ya5,.Yec,Yac € {0,1}. When they are allowed to
take on their full range [0, 1], the potential is a convex
relaxation of the implication. An HL-MRF with this
potential function assigns higher probability to vari-
able states that satisfy the logical implication above,
which can occur to varying degrees in the continuous
domain. Given a social network with more than these
three individuals, PSL can ground out possible sub-
stitutions for the roles of A, B, and C to generate
potential functions for each substitution, thus defining
the full, ground HL-MRF.

HL-MRFs support a few additional components useful
for modeling. The constraints in Definition 1 allow the
encoding of functional modeling requirements, which
is useful, e.g., when variables correspond to mutually
exclusive labels, and thus should sum to one. The
exponent parameter p; allows flexibility in the shape
of the hinge, affecting the sharpness of the penalty for
violating the logical implication. Setting p; to 1 penal-
izes violation linearly with the amount the implication
is unsatisfied, while setting p; to 2 penalizes small vi-
olations much less. In effect, some linear potentials
overrule others, while the influences of squared poten-
tials are averaged together.

3 MPE INFERENCE

MPE inference for HL-MRF's requires finding a feasible
assignment that minimizes fy. Performing MPE infer-
ence quickly is crucial, especially because weight learn-
ing often requires performing inference many times
with different weights (as we discuss in Section 4).
Here, HL-MRFs have a distinct advantage over gen-
eral discrete models, since minimizing fy is a convex
optimization rather than a combinatorial one. In this
section, we detail a new, faster MPE inference algo-
rithm for HL-MRFs.

Bach et al. [3] showed how to minimize f) with
a consensus-optimization algorithm, based on the
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alternating-direction method of multipliers (ADMM)
[5]. The algorithm works by creating local copies of the
variables in each potential and constraint, constrain-
ing them to be equal to the original variables, and re-
laxing those equality constraints to make independent
subproblems. By solving the subproblems repeatedly
and averaging the results, the algorithm reaches a con-
sensus on the best values of the original variables, also
called the consensus variables. This procedure is guar-
anteed to converge to the global minimizer of fy. See
[3] and [5] for more details on consensus optimization
and ADMM.

This previous consensus-optimization approach to
MPE inference works well for linear potentials with at
most two unobserved variables, and empirical evidence
suggests it scales linearly with the size of the problem
[3]. However, it is restricted to pairwise potentials and
constraints, and requires an interior-point method as
a subroutine to solve subproblems induced by squared
potentials. Because of the embedded interior-point
method, its running time can increase roughly 100-fold
with squared potentials [3].

We improve the algorithm of Bach et al. [3] by refor-
mulating the optimization to enforce Y € [0,1]™ only
on the consensus variables, not the local copies. This
form of consensus optimization is described in greater
detail by Boyd et al. [5]. The result is that, in our algo-
rithm, the potentials and constraints are not restricted
to a certain number of unknowns, and the subproblems
can all be solved quickly using simple linear algebra.

Algorithm 1 gives pseudocode for our new algorithm.
It starts by initializing local copies of the variables that
appear in each potential and constraint, along with
a corresponding Lagrange multiplier for each copy.
Then, until convergence, it iteratively updates La-
grange multipliers and solves suproblems induced by
the HL-MRF’s potentials and constraints. If the sub-
problem is induced by a potential, it sets the local vari-
able copies to a balance between the minimizer of the
potential and the emerging consensus. Eventually the
Lagrange multipliers will enforce agreement between
the local copies and the consensus. If instead the sub-
problem is induced by a constraint in the HL-MRF,
the algorithm projects the consensus variables’ current
values to that constraint’s feasible region. The con-
sensus variables are updated at each iteration based
on the values of their local copies and corresponding
Lagrange multipliers, and clipped to [0,1].

We take the same basic approach as Bach et al. [3] to
solve the subproblems. We first try to find a minimizer
on either side of the hinge (where ¢;(Y,X) is either
positive or negative) before projecting onto the plane
defined by ¢;(Y,X) = 0. Without the constraints on



Algorithm 1 MPE Inference for HL-MRF's
Input: HL-MRF(Y, X, ¢,\,C,E,7), p >0

Initialize y; as copies of the variables Y ; that appear
ing;,j=1,...,m

Initialize yj4.,, as copies of the variables Y,
that appear in Cy, k=1,...,r

Initialize Lagrange multipliers o; corresponding to
variable copies y;, i =1,...,m+1r

while not converged do

for j=1,...,mdo
aj < a;+p(y; —Y;)
yi < Y;—a;/p
if ¢;(y;,X) > 0 then
Al v X
Vi | +5llys = Y5+ Sail3
if /;(y;,X) <0 then
y;j = Projg,_o(Y;)
end if
end if
end for

for k=1,...,r do
Qym < Qhrm + P(Yitm — Yitm)

Yitm ¢ Projo, (Yetm)
end for

y; < argmin

fori=1,...,ndo

1 o
}/i < Teopies(Y;)[ Zchcopies(Yi) (yc + 7)
Clip Y; to [0,1]
end for

end while

the local variable copies, finding these minimizers and
projections is much simpler. Solving for the constraint
subproblems is now also simpler, requiring just a pro-
jection onto a hyperplane or a halfspace.

Our algorithm retains all of the benefits of the original
MPE inference algorithm while removing all restric-
tions on the numbers of unknowns in the potentials
and constraints, making MPE inference fast with both
linear and squared potentials. Another advantage of
consensus optimization for MPE inference is that it is
easy to warm start. Warm starting provides signifi-
cant efficiency gains when inference is repeated on the
same HL-MRF with small changes in the weights, as
often occurs during weight learning.

4 WEIGHT LEARNING

In this section, we present three weight learning meth-
ods for HL-MRFs, each with a different objective func-
tion, two of which are new for learning HL-MRFs.
The first method, introduced by Broecheler et al. [6],
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performs approximate maximum-likelihood estimation
using MPE inference to approximate the gradient of
the log-likelihood. The second method maximizes the
pseudolikelihood. The third method finds a large-
margin solution, preferring weights that discriminate
the ground truth from other states. We describe below
how to apply these learning strategies to HL-MRFs.

4.1 MAXIMUM-LIKELTHOOD
ESTIMATION

The canonical approach for learning parameters A is
to maximize the log-likelihood of training data. The
partial derivative of the log-likelihood with respect to
a parameter A, is

0log p(Y|X)
0A,

Ea [(I)q(va)] - (I)q(va) )

where E, is the expectation under the distribution de-
fined by A. The voted perceptron algorithm [7] opti-
mizes A by taking steps of fixed length in the direc-
tion of the gradient, then averaging the points after
all steps. Any step that is outside the feasible region
is projected back before continuing. For a smoother
ascent, it is often helpful to divide the ¢g-th component
of the gradient by the number of groundings |¢,| of the
¢’th template [14], which we do in our experiments.
Computing the expectation is intractable, so we use
a common approximation: the values of the potential
functions at the most probable setting of Y with the
current parameters [6].

4.2 MAXIMUM-PSEUDOLIKELIHOOD
ESTIMATION

Since exact maximum likelihood estimation is in-
tractable in general, we can instead perform
maximum-pseudolikelihood estimation (MPLE) [4],
which maximizes the likelihood of each variable condi-
tioned on all other variables, i.e.,

PHYX) =[] P (RIMB(r)
i=1
- 1;[1 Zowyy) O ALY X))
Ny ST,

f;(YHY?X) = Z )‘j(bj ({YZ UY\i}7X) :
j:i€¢j
Here, ¢ € ¢; means that Y; is involved in ¢;, and

MB(Y;) denotes the Markov blanket of Y;—that is,
the set of variables that co-occur with Y; in any po-



tential function. The partial derivative of the log-
pseudolikelihood with respect to Ay is

n

dlog P*(Y|X
LDV g
=1

oA, Z b; (Y, X)

JEtG €D,

— ®,;(Y,X).

Computing the pseudolikelihood gradient does not re-
quire inference and takes time linear in the size of
Y. However, the integral in the above expectation
does not readily admit a closed-form antiderivative,
so we approximate the expectation. When a variable
in unconstrained, the domain of integration is a one-
dimensional interval on the real number line, so Monte
Carlo integration quickly converges to an accurate es-
timate of the expectation.

We can also apply MPLE when the constraints are not
too interdependent. For example, for linear equality
constraints over disjoint groups of variables (e.g., vari-
able sets that must sum to 1.0), we can block-sample
the constrained variables by sampling uniformly from
a simplex. These types of constraints are often used
to represent mutual exclusivity of classification labels.
We can compute accurate estimates quickly because
these blocks are typically low-dimensional.

4.3 LARGE-MARGIN ESTIMATION

A different approach to learning drops the probabilistic
interpretation of the model and views HL-MRF infer-
ence as a prediction function. Large-margin estima-
tion (LME) shifts the goal of learning from producing
accurate probabilistic models to instead producing ac-
curate MPE predictions. The learning task is then to
find the weights A that provide high-accuracy struc-
tured predictions. We describe in this section a large-
margin method based on the cutting-plane approach
for structural support vector machines (SVMs) [12].

The intuition behind large-margin structured predic-
tion is that the ground-truth state should have energy
lower than any alternate state by a large margin. In
our setting, the output space is continuous, so we pa-
rameterize this margin criterion with a continuous loss
function. For any valid output state Y, a large-margin
solution should satisfy:

HAY,X) < (Y, X) - L(Y,Y),VY,
where the decomposable loss function L(Y,Y) =
S, L(Y;,Y;) measures the disagreement between a
state Y and the training label state Y. We define
L as the ¢, distance. Since we do not expect all prob-
lems to be perfectly separable, we relax this constraint
with a penalized slack £&. We obtain a convex learning
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objective for a large-margin solution

D T
min - SIA[7+C¢
st. AT((Y,X) - ®(Y,X)) < —L(Y,Y) + £, VY,

where ®(Y,X) (P1(Y,X),...,P,(Y,X)). This
formulation is analogous to the margin-rescaling ap-
proach by Joachims et al. [12]. Though such a struc-
tured objective is natural and intuitive, its number
of constraints is the cardinality of the output space,
which here is infinite. Following their approach, we
optimize subject to the infinite constraint set using
a cutting-plane algorithm: we greedily grow a set K
of constraints by iteratively adding the worst-violated
constrain given by a separation oracle, then updating
A subject to the current constraints. The goal of the
cutting-plane approach is to efficiently find the set of
active constraints at the solution for the full objec-
tive, without having to enumerate the infinite inactive
constraints. The worst-violated constraint is

argmin AT (Y, X) — L(Y,Y).
Y

The separation oracle performs loss-augmented in-
ference by adding additional loss-augmenting poten-
tials to the HL-MRF. For ground truth in {0,1},
these loss-augmenting potentials are also examples of
hinge-losses, and thus adding them simply creates an
augmented HL-MRF. The worst-violated constraint
is then computed as standard inference on the loss-
augmented HL-MRF. However, ground-truth variables
in the interior (0, 1) cause any distance-based loss to be
concave, which require the separation oracle to solve
a non-convex objective. For interior ground truth val-
ues, we use the difference of convexr functions algo-
rithm [1] to find a local optimum. Since the concave
portion of the loss-augmented inference objective piv-
ots around the ground truth value, the subgradients
are 1 or —1, depending on whether the current value
is greater than the ground truth. We simply choose an
initial direction for interior labels by rounding, and flip
the direction of the subgradients for variables whose
solution states are not in the interval corresponding to
the subgradient direction until convergence.

Given a set K of constraints, we solve the SVM objec-
tive as in the primal form mina>o 1[|A[[2+C¢ s.t. K.
We then iteratively invoke the separation oracle to find
the worst-violated constraint. If this new constraint is
not violated, or its violation is within numerical toler-
ance, we have found the max-margin solution. Other-
wise, we add the new constraint to K, and repeat.

One fact of note is that the large-margin criterion
always requires a little slack for squared HL-MRFs.
Since the squared hinge potential is quadratic and the



loss is linear, there always exists a small enough dis-
tance from the ground truth such that an absolute (i.e.,
linear) distance is greater than the squared distance.
In these cases, the slack parameter trades off between
the peakedness of the learned quadratic energy func-
tion and the margin criterion.

5 EXPERIMENTS

To demonstrate the flexibility and effectiveness of HL-
MRFs, we test them on four diverse learning tasks:
collective classification, social-trust prediction, prefer-
ence prediction, and image reconstruction. ! Each of
these experiments represents a problem domain that
is best solved with relational learning approaches be-
cause structure is a critical component of their prob-
lems. The experiments show that HL-MRFs perform
as well as or better than state-of-the-art approaches.

For these diverse tasks, we compare against a number
of competing methods. For collective classification and
social-trust prediction, we compare HL-MRFs to dis-
crete Markov random fields (MRFs). We construct
them with Markov logic networks (MLNs) [19], which
template discrete MRF's using logical rules similarly to
PSL for HL-MRFs. We perform inference in discrete
MRFs using 2500 rounds of the sampling algorithm
MC-Sat (500 of which are burn in), and we find ap-
proximate MPE states during MLE learning using the
search algorithm MazWalkSat [19]. For collaborative
filtering, a task that is inherently continuous and non-
trivial to encode in discrete logic, we compare against
Bayesian probabilistic matriz factorization [20]. Fi-
nally, for image reconstruction, we run the same exper-
imental setup as Poon and Domingos [18] and compare
against the results they report, which include tests us-
ing sum product networks, deep belief networks, and
deep Boltzmann machines.

When appropriate, we evaluate statistical significance
using a paired t-test with rejection threshold 0.01. We
omit variance statistics to save space and only report
the average and statistical significance. We describe
the HL-MRF's used for our experiments using the PSL
rules that define them. To investigate the differences
between linear and squared potentials we use both in
our experiments. HL-MRF-L refers to a model with
all linear potentials and HL-MRF-Q to one with all
squared potentials. When training with MLE and
MPLE, we use 100 steps of voted perceptron and a
step size of 1.0 (unless otherwise noted), and for LME
we set C' = 0.1. We experimented with various set-
tings, but the scores of HL-MRFs and discrete MRF's
were not sensitive to changes.

LAll code is available at http://psl.umiacs.umd.edu.
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Table 1: Average accuracy of classification by HL-
MRFs and discrete MRFs. Scores statistically equiva-
lent to the best scoring method are typed in bold.

Citeseer Cora
HL-MRF-Q (MLE)  0.729 0.816
HL-MRF-Q (MPLE) 0.729 0.818
HL-MRF-Q (LME) 0.683 0.789
HL-MRF-L (MLE) 0.724 0.802
HL-MRF-L (MPLE) 0.729 0.808
HL-MRF-L (LME) 0.695 0.789
MRF (MLE) 0.686 0.756
MRF (MPLE) 0.715 0.797
MRF (LME) 0.687 0.783

5.1 COLLECTIVE CLASSIFICATION

When classifying documents, links between those
documents—such as hyperlinks, citations, or co-
authorship—provide extra signal beyond the local fea-
tures of individual documents. Collectively predicting
document classes with these links tends to improve
accuracy [21]. We classify documents in citation net-
works using data from the Cora and Citeseer scientific
paper repositories. The Cora data set contains 2,708
papers in seven categories, and 5,429 directed citation
links. The Citeseer data set contains 3,312 papers in
six categories, and 4,591 directed citation links.

The prediction task is, given a set of seed documents
whose labels are observed, to infer the remaining doc-
ument classes by propagating the seed information
through the network. For each of 20 runs, we split the
data sets 50/50 into training and testing partitions,
and seed half of each set. To predict discrete cate-
gories with HL-MRFs we predict the category with
the highest predicted value.

We compare HL-MRF's to discrete MRF's on this task.
We construct both using the same logical rules, which
simply encode the tendency for a class to propagate
across citations. For each category C;, we have two
separate rules for each direction of citation:

LABEL(A, C;) A CITES(A, B) = LABEL(B, C;),
LABEL(A, C;) A CiTES(B, A) = LABEL(B, C;).

Table 1 lists the results of this experiment. HL-MRFs
are the most accurate predictors on both data sets. We
also note that both variants of HL-MRFs are much
faster than discrete MRFs. See Table 3 for average
inference times on five folds.



Table 2: Average area under ROC and precision-recall
curves of social-trust prediction by HL-MRFs and dis-
crete MRF's. Scores statistically equivalent to the best
scoring method by metric are typed in bold.

ROC PR (+) P-R()
HL-MRF-Q (MLE)  0.822  0.978  0.452
HL-MRF-Q (MPLE) 0.832  0.979  0.482
HL-MRF-Q (LME)  0.814  0.976  0.462
HL-MRF-L (MLE)  0.765 0.965  0.357
HL-MRF-L (MPLE)  0.757 0.963  0.333
HL-MRF-L (LME)  0.783 0.967  0.453
MRF (MLE) 0.655 0.942  0.270
MRF (MPLE) 0.725 0.963  0.298
MRF (LME) 0.795  0.973  0.441

5.2 SOCIAL-TRUST PREDICTION

An emerging problem in the analysis of online social
networks is the task of inferring the level of trust be-
tween individuals. Predicting the strength of trust
relationships can provide useful information for viral
marketing, recommendation engines, and internet se-
curity. HL-MRF's with linear potentials have recently
been applied by Huang et al. [10] to this task, show-
ing superior results with models based on sociologi-
cal theory. We reproduce their experimental setup us-
ing their sample of the signed Epinions trust network,
in which users indicate whether they trust or distrust
other users. We perform eight-fold cross-validation. In
each fold, the prediction algorithm observes the entire
unsigned social network and all but 1/8 of the trust
ratings. We measure prediction accuracy on the held-
out 1/8. The sampled network contains 2,000 users,
with 8,675 signed links. Of these links, 7,974 are pos-
itive and only 701 are negative.

We use a model based on the social theory of struc-
tural balance, which suggests that social structures are
governed by a system that prefers triangles that are
considered balanced. Balanced triangles have an odd
number of positive trust relationships; thus, consider-
ing all possible directions of links that form a triad of
users, there are sixteen logical implications of the form

TRUSTS(A, B) A TRUSTS(B, C) = TRUSTS(A, C).

Huang et al. [10] list all sixteen of these rules, a reci-
procity rule, and a prior in their Balance-Recip model,
which we omit to save space.

Since we expect some of these structural implications
to be more or less accurate, learning weights for these
rules provides better models. Again, we use these rules
to define HL-MRF's and discrete MRFs, and we train
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Table 3: Average inference times (reported in seconds)
of single-threaded HL-MRF's and discrete MRFs.

Citeseer Cora Epinions
HL-MRF-Q 0.42 0.70 0.32
HL-MRF-L 0.46 0.50 0.28
MRF 110.96  184.32 212.36

them using various learning algorithms. We compute
three metrics: the area under the receiver operating
characteristic (ROC) curve, and the areas under the
precision-recall curves for positive trust and negative
trust. On all three metrics, HL-MRFs with squared
potentials score significantly higher. The differences
among the learning methods for squared HL-MRF's are
insignificant, but the differences among the models is
statistically significant for the ROC metric. For area
under the precision-recall curve for positive trust, dis-
crete MRFs trained with LME are statistically tied
with the best score, and both HL-MRF-L and discrete
MRFs trained with LME are statistically tied with the
best area under the precision-recall curve for negative
trust. The results are listed in Table 2.

Though the random fold splits are not the same, using
the same experimental setup, Huang et al. [10] also
scored the precision-recall area for negative trust of
standard trust prediction algorithms EigenTrust and
TidalTrust, which scored 0.131 and 0.130, respectively.
The logical models based on structural balance that
we run here are significantly more accurate, and HL-
MRFs more than discrete MRFs.

Table 3 lists average inference times on five folds of
three prediction tasks: Cora, Citeseer, and Epinions.
We implemented each method in Java. Both HL-
MRF-Q and HL-MRF-L are much faster than discrete
MRFs. This illustrates an important difference be-
tween performing structured prediction via convex in-
ference versus sampling in a discrete prediction space:
using our MPE inference algorithm is much faster.

5.3 PREFERENCE PREDICTION

Preference prediction is the task of inferring user at-
titudes (often quantified by ratings) toward a set of
items. This problem is naturally structured, since a
user’s preferences are often interdependent, as are an
item’s ratings. Collaborative filtering is the task of
predicting unknown ratings using only a subset of ob-
served ratings. Methods for this task range from sim-
ple nearest-neighbor classifiers to complex latent fac-
tor models. To illustrate the versatility of HL-MRFs,
we design a simple, interpretable collaborative filtering



Table 4: Normalized mean squared/absolute errors
(NMSE/NMAE) for preference prediction using the
Jester dataset. The lowest errors are typed in bold.

NMSE NMAE
HL-MRF-Q (MLE)  0.0554  0.1974
HL-MRF-Q (MPLE) 0.0549  0.1953
HL-MRF-Q (LME)  0.0738  0.2297
HL-MRF-L (MLE)  0.0578  0.2021
HL-MRF-L (MPLE) 0.0535  0.1885
HL-MRF-L (LME)  0.0544 0.1875
BPMF 0.0501 0.1832

model for predicting humor preferences. We test this
model on the Jester dataset, a repository of ratings
from 24,983 users on a set of 100 jokes [9]. Each joke
is rated on a scale of [—10,410], which we normalize
to [0,1]. We sample a random 2,000 users from the
set of those who rated all 100 jokes, which we then
split into 1,000 train and 1,000 test users. From each
train and test matrix, we sample a random 50% to use
as the observed features X; the remaining ratings are
treated as the variables Y.

Our HL-MRF model uses an item-item similarity rule:

SIMRATE(J1, J2) A LIKES(U, J1) = LIKES(U, J3)

where Jp,Jy are jokes and U is a user; the pred-
icate LIKES indicates the degree of preference (i.e.,
rating value); and SIMRATE measures the mean-
adjusted cosine similarity between the observed rat-
ings of two jokes. We also include rules to enforce that
Likes(U, J) concentrates around the observed average
rating of user U and item J, and the global average.

We compare our HL-MRF model to a current state-
of-the-art latent factors model, Bayesian probabilis-
tic matriz factorization (BPMF) [20]. BPMF is a
fully Bayesian treatment and, as such, is considered
“parameter-free”; the only parameter that must be
specified is the rank of the decomposition.For our ex-
periments, we use Xiong et al.’s code [2010]. Since
BPMF does not train a model, we allow BPMF to use
all of the training matrix during the prediction phase.

Table 4 lists the normalized mean squared er-
ror (NMSE) and normalized mean absolute error
(NMAE), averaged over 10 random splits. Though
BPMF produces the best scores, the improvement over
HL-MRF-L (LME) is not significant in NMAE.
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5.4 IMAGE RECONSTRUCTION

Digital image reconstruction requires models that un-
derstand how pixels relate to each other, such that
when some pixels are unobserved, the model can in-
fer their values from parts of the image that are ob-
served. We construct pixel-grid HL-MRFs for image
reconstruction. We test these models using the exper-
imental setup of Poon and Domingos [18]: we recon-
struct images from the Olivetti face data set and the
Caltech101 face category. The Olivetti data set con-
tains 400 images, 64 pixels wide and tall, and the Cal-
tech101 face category contains 435 examples of faces,
which we crop to the center 64 by 64 patch, as was
done by Poon and Domingos [18]. Following their ex-
perimental setup, we hold out the last fifty images and
predict either the left half of the image or the bottom
half.

The HL-MRFs in this experiment are much more com-
plex than the ones in our other experiments because
we allow each pixel to have its own weight for the fol-
lowing rules, which encode agreement or disagreement
between neighboring pixels:

BRrIGHT(P;;,I) A NORTH(P;;, @
BRIGHT(P;;,I) A NORTH(P;;, Q)
—BRIGHT(P;;,I) A NORTH(P;;, Q
—BRIGHT(P;;, ) A NORTH(P;;, Q

= BRIGHT(Q, I),
= —BRIGHT(Q, I),
= BRIGHT(Q, I),
= —-BRIGHT(Q, I),

— — — —

where BRIGHT(P;;, I) is the normalized brightness of
pixel P;; in image I, and NORTH(P;;, ()) indicates that
@ is the north neighbor of F;;. We similarly include
analogous rules for the south, east, and west neighbors,
as well as the pixels mirrored across the horizontal and
vertical axes. This setup results in up to 24 rules per
pixel, which, in a 64 by 64 image, produces 80,896
weighted potential templates.

We train these HL-MRFs using MPE-approximate
maximum likelihood with a 5.0 step size on the first
200 images of each data set and test on the last fifty.
For training, we maximize the data log-likelihood of
uniformly random held-out pixels for each training
image, allowing for generalization throughout the im-
age. Table 5 lists our results and others reported by
Poon and Domingos [18]. HL-MRFs produce the best
mean squared error on the left- and bottom-half set-
tings for the Caltech101 set and the left-half setting in
the Olivetti set. Only sum product networks produce
lower error on the Olivetti bottom-half faces. Some
reconstructed faces are displayed in Figure 1, where
the shallow, pixel-based HL-MRF's produce compara-
bly convincing images to sum-product networks, es-
pecially in the left-half setting, where HL-MRF can
learn which pixels are likely to mimic their horizontal
mirror. While neither method is particularly good at



Table 5: Mean squared errors per pixel for image reconstruction. HL-MRFs produce the most accurate recon-
structions on the Caltech101 and the left-half Olivetti faces, and only sum-product networks produce better
reconstructions on Olivetti bottom-half faces. Scores for other methods are taken from Poon and Domingos [18].

HL-MRF-Q (MLE) SPN DBM DBN PCA NN
Caltech-Left 1741 1815 2998 4960 2851 2327
Caltech-Bottom 1910 1924 2656 3447 1944 2575
Olivetti-Left 927 942 1866 2386 1076 1527
Olivetti-Bottom 1226 918 2401 1931 1265 1793

Figure 1: Example results on image reconstruction of Caltech101 (left) and Olivetti (right) faces. From left
to right in each column: (1) true face, left side predictions by (2) HL-MRFs and (3) SPNs, and bottom half
predictions by (4) HL-MRFs and (5) SPNs. SPN reconstructions are downloaded from Poon and Domingos [18].

reconstructing the bottom half of faces, the qualitative
difference between the deep SPN and the shallow HL-
MRF reconstructions is that SPNs seem to hallucinate
different faces, often with some artifacts, while HL-
MRFs predict blurry shapes roughly the same pixel
intensity as the observed, top half of the face. The
tendency to better match pixel intensity helps HL-
MRFs score better quantitatively on the Caltech101
faces, where the lighting conditions are more varied.

Training and predicting with these HL-MRF's takes lit-
tle time. In our experiments, training each model takes
about 45 minutes on a 12-core machine, while predict-
ing takes under a second per image. While Poon and
Domingos [18] report faster training with SPNs, both
HL-MRFs and SPNs clearly belong to a class of faster
models when compared to DBNs and DBMs, which
can take days to train on modern hardware.

6 CONCLUSION

We have shown that HL-MRFs are a flexible and inter-
pretable class of models, capable of modeling a wide
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variety of domains. HL-MRFs admit fast, convex in-
ference. The MPE inference algorithm we introduce
is applicable to the full class of HL-MRFs. With this
fast, general algorithm, we are the first to show results
using quadratic HL-MRFs on real-world data. In our
experiments, HL-MRFs match or exceed the predic-
tive performance of state-of-the-art methods on four
diverse tasks. The natural mapping between hinge-
loss potentials and logic rules makes HL-MRFs easy
to define and interpret.
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Abstract

Joint sparsity regularization in multi-task learn-
ing has attracted much attention in recent years.
The traditional convex formulation employs the
group Lasso relaxation to achieve joint sparsity
across tasks. Although this approach leads to a
simple convex formulation, it suffers from sev-
eral issues due to the looseness of the relax-
ation. To remedy this problem, we view jointly
sparse multi-task learning as a specialized ran-
dom effects model, and derive a convex relax-
ation approach that involves two steps. The first
step learns the covariance matrix of the coef-
ficients using a convex formulation which we
refer to as sparse covariance coding; the sec-
ond step solves a ridge regression problem with
a sparse quadratic regularizer based on the co-
variance matrix obtained in the first step. It is
shown that this approach produces an asymptot-
ically optimal quadratic regularizer in the mul-
titask learning setting when the number of tasks
approaches infinity. Experimental results demon-
strate that the convex formulation obtained via
the proposed model significantly outperforms
group Lasso (and related multi-stage formula-
tions).

1 Introduction

Modern high-dimensional data sets, typically with more
parameters to estimate than the number of samples avail-
able, have triggered a flurry of research based on structured
sparse models, both on the statistical and computational as-
pects. The initial problem considered in this setting was
to estimate a sparse vector under a linear model (or the
Lasso problem). Recently, several approaches have been
proposed for estimating a sparse vector under additional
constraints, for e.g., group sparsity- where certain groups
of coefficients are jointly zero or non-zero. Another closely
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related problem is that of multi-task learning or simultane-
ous sparse approximation, which are special cases of the
group sparse formulation. A de-facto procedure for dealing
with joint sparsity regularization is the group-Lasso estima-
tor [16], which is based on a (2, 1)-mixed norm convex re-
laxation to the non-convex (2, 0)-mixed norm formulation.

However, as we shall argue in this paper, group-Lasso suf-
fers from several drawbacks due to the looseness of the re-
laxation; cf., [12, 9]. We propose a general method for
multi-task learning in high-dimensions based on a joint
sparsity random effects model. The standard approach for
dealing with random effects requires estimating covariance
information. Similarly, our estimation procedure involves
two-steps: a convex covariance estimation step followed by
the standard ridge-regression. The first step corresponds
to estimating the covariance of the coefficients under ad-
ditional constraints that promote sparsity. The intuition is
that to deal with group sparsity (even if we are interested
in estimating the coefficients) it is better to first estimate
covariance information, and then plug in the covariance
estimate for estimating the coefficients. With a particu-
lar sparse diagonal structure for the covariance matrix the
model becomes similar to group-lasso, and the advantage
of the proposed estimation approach over group-lasso for-
mulation will be clarified in this setting.

Related work: Traditional estimation approaches for ran-
dom effects model involve two-steps: first estimate the un-
derlying covariance matrix, and then estimate the coeffi-
cients based on the covariance matrix. However, the tra-
ditional covariance estimation procedures are non-convex
such as the popular method of restricted maximum likeli-
hood (REML) and such models are typically studied in the
low-dimensional setting [10].

From a Bayesian perspective, a hierarchical model for si-
multaneous sparse approximation is proposed in [15] based
on a straightforward extension of automatic relevance de-
termination. Under that setting, the tasks share a common
hyper-prior that is estimated from the data by integrating
out the actual parameter. The resulting marginal likelihood
is maximized for the hyper-prior parameters; this proce-



dure is called as type-II maximum likelihood in the liter-
ature. The non-Bayesian counterpart is called random ef-
fects model in classical statistics, and the resulting estima-
tor is referred to as REML. The disadvantage of this ap-
proach is that it makes the resulting optimization problem
non-convex and difficult to solve efficiently, as mentioned
before. In addition, the problem becomes harder to analyze
and provide convincing statistical and computational guar-
antees, while Lasso-related formulations are well studied
and favorable statistical and computational properties could
be established.

More recently, the problem of joint sparsity regularization
has been studied under various settings (multi-task learn-
ing [2, 1], group lasso [16], and simultaneous sparse ap-
proximation [14, 15]) in the past years. In [1], the authors
develop a convex framework for multi-task learning based
on the (2, 1)-mixed norm formulation. Conditions for spar-
sity oracle inequalities and variable selection properties for
a similar formulation are derived in [13], showing the ad-
vantage of joint estimation of tasks that share common sup-
port is statistically efficient. But the formulation has sev-
eral drawbacks due to the looseness of its convex relaxation
[12, 9]. The issue of bias that is inherent in the group lasso
formulation was discussed in [12]. By defining a measure
of sparsity level of the target signal under the group setting,
the authors mention that the standard formulation of group
lasso exhibits a bias that cannot be removed by simple re-
formulation of group lasso. In order to deal with this is-
sue, recently [9] proposed the use of a non-convex regular-
izer and provided a numerical algorithm based on solving
a sequence of convex relaxation problems. The method is
based on a straightforward extension of a similar approach
developed for the Lasso setting (cf., [17]), to the joint spar-
sity situation. Note that adaptive group-Lasso is a special
case of [9]. In this paper, we propose a simple two-step pro-
cedure, to overcome the drawbacks of the standard group-
Lasso relaxation. Compared to [9], the proposed approach
is entirely convex and hence attains the global solution.

The current paper has two theoretical contributions. First,
under a multi-task random effects model, we obtain an
expected prediction error bound that relates the predic-
tive performance to the accuracy of covariance estimation;
by adapting high dimensional sparse covariance estimation
procedures such as [8, 4], we can obtain consistent estimate
of covariance matrix which leads to asymptotically optimal
performance. Second, it is shown that under our random
effects model, group Lasso in general does not accurately
estimate the covariance matrix and thus is not optimal un-
der the model considered. Experiments show that this ap-
proach provides improved performance compared to group
Lasso (and the multi-stage versions) on simulated and real
datasets.
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2 Joint Sparsity Random Effects Model and
Group Lasso

We consider joint sparsity regularization problems under
multi-task learning. In multi-task learning, we consider m
linear regression problems tasks £ =1,...,m

y = xO50 4 O (1)

We assume that each y©) is an n) dimensional vector,
each X is an n(® x d dimensional matrix, each 3
is the target coefficient vector for task ¢ in d dimension.
For simplicity, we also assume that €(*) is an n(©) dimen-
sional iid zero-mean Gaussian noise vector with variance
o G(Z) ~ ]\7(07 O'QIn(z) Xn(z)).

The joint sparsity model in multi-task learning assumes that
all 3 share similar supports: supp(5¥)) C F for some
common sparsity pattern F', where supp(3) = {j : 8; #
0}. The convex relaxation formulation for this model is
given by group Lasso

m d
1 2
; 2,0 — x© <e)H A
min ZzHy g, +A

=1 j=

[

@)
where 3 = {ﬂ(z)}ézl,...,m-

We observe that the multi-task group Lasso formulation (2)
is equivalent to ming ., F'(58,w), where F(3, w)

with A = oy/m, where 3 = {8}y, . and w
{wj}j=1,....a- With fixed hyper parameter w, we note that

(2) is a special case of
i —— _|ly® _ x@©pg© z (OYTO—150)
mﬁmZZUQ Hy X8 H2+2Z(ﬁ ) @B,
=1 =1
4

where (2 is a hyper parameter covariance matrix shared
among the tasks. This general method employs a common
quadratic regularizer that is shared by all the tasks. The
group Lasso formulation (2) assumes a specific form of di-
agonal covariance matrix 2 = diag({w;}).

Equation (4) suggests the following random effects model
for joint sparsity regularization, where the coefficient vec-
tors 5() are random vectors generated independently for
each task ¢; however they share the same covariance matrix
Q: FE BOAOT = Q. Given the coefficient vector 3, we
then generate y® based on (4). Note that we assume that
2 may contain zero-diagonal elements. If Q;; = 0, then

the corresponding 3 ]@ = (0 for all £. Therefore we call this



model joint sparsity random effects model for multi-task
learning.

3 Joint Sparsity via Covariance Estimation

Under the proposed joint sparsity random effects model,
it can be shown (see Section 4) that the optimal quadratic
optimizer (8(9) T~ 3() in (2) is obtained at the true co-

variance 2 = (2. This observation suggests the following
estimation procedure involving two steps:

e Step 1: Estimate the joint covariance matrix €2 as hy-
per parameter. In particular, this paper suggests the
following method as discussed in Section 3.1: Q2 =

)

(&)
where || - || denotes the matrix Frobenius norm, S
is the set of symmetric positive semi-definite matri-
ces, and R(Q?) is an appropriately defined regularizer
function (specified in Section 3.1).

1 2
argmeln [2 ;1 Hy Y XWax + R(QY)

e Step 2: Compute each B separately given the esti-
mated €2 using:

N N —1
3O — (XM)TXM) T mfl) XOT4O ()
where £ =1,...,m.

Note that the estimation method proposed in step 1 holds
for a general class of covariance matrices. Meaningful es-
timates of the covariance matrix could be obtained even
when the generative model assumption is violated. If the
dimension d and sample size n per task are fixed, it can be
shown relatively easily using classical asymptotic statistics
that when m — oo, we can reliably estimate the true co-
variance  using (5), i.e., @ — Q. Therefore the method
is asymptotically optimal as m — oo. On the other hand,
the group Lasso formulation (3) produces sub-optimal es-
timate of w;, as we shall see in Section 4.2. We would like
to point out that in cases when the matrix () is not invert-
ible (for example, as in the sparse diagonal case as we see
next) we replace the inverse with pseudo-inverse. For ease
of presentation, we use the inverse throughout the presen-
tation, though it should be clear from the context.

3.1 Sparse Covariance Coding Models

In our two step procedure, the covariance estimation of
step 1 is more complex compared to step 2, which involves
only the solutions of ridge regression problems. As men-
tioned above, if we employ a full covariance estimation
model, then the estimation procedure proposed in this work
is asymptotically optimal when m — co. However, since
modern asymptotics are often concerned with the scenario
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when d > n, computing a d x d full matrix €} becomes
impossible without further structure on 2. In this section,
we assume that € is diagonal, which is consistent with the
group Lasso model.

This section explains how to estimate () using our gen-
erative model, which implies that O ~ N (0,9), and
y(z) = X(E)B(Z) + E(Z) with 6([) ~ N(O,szn(z)Xn(z)).
Taking expectation of y©y(©T with respect to € and 5,
we obtain E5<z)75y(£)y(£)—r = X(Z)QX(Z)T + 0'2]"(2) xn(0) -
This suggests the following estimator of ): O=

m
2

’
F

where || - || 7 is the matrix Frobenius norm. This is equiva-
lent to

R 1 2
_ o 0, (OT _ x(© (Z)TH

m

+ Mr <Q Z XWTX(@)

(=1

(N

with A = ¢2. Similar ideas for estimating covariance by
this approach appeared in [8, 5]. We may treat the last term
as regularizer of €2, and in such sense a more general form
is to consider () =

arg min
8 0es ’

1 & 2
= Z Hy(ayww _ X<e>QX<e>THF +R(Q)
=1

where R(€2) is a general regularizer function of €. Note
that the dimension d can be large, and thus special struc-
ture is needed to regularize €. In particular, to be consis-
tent with group Lasso, we impose the diagonal covariance
constraint {2 = diag({w; }), and then encourage sparsity as
follows: () =

. m 1 )
arg min > S ly 0T - X Odiag({u; XT3
I="1 =1

+A Z wj.
J
®)

This formulation leads to sparse estimation of w;, which
we call sparse covariance coding (scc). Note that the
above optimization problem is convex and hence the solu-
tion could be computed efficiently. This formulation is con-
sistent with the group Lasso regularization which also as-
sumes diagonal covariance implicitly as in (2). It should be
noted that if the diagonals of >_,~ | X (0T X ) have iden-
tical values, then up to a rescaling of A, (8) is equivalent
to (7) with  restricted to be a diagonal matrix. In the ex-
periments conducted on real world data sets, there was no
significant difference between the two regularization terms
(see Table 4 ), when both formulations are restricted to di-
agonal 2.



3.2 Other Covariance Coding Models

We now demonstrate the generality of the proposed ap-
proach for multi-task learning. Note that in addition to the
sparse covariance coding method (8) that assumes a diago-
nal form of 2 plus sparsity constraint, some other structures
may be explored. One method that has been suggested for
covariance estimation in [4] is the following formulation:

Q= argminz [yPyOT — XxOQx®)32,

Qes =1
A e D02
k m

where S denotes the set of symmetric positive semi-definite
matrices S. This approach selects a set of features, and then
models a full covariance matrix within the selected set of
features. Although the feature selection is achieved with a
group Lasso penalty, unlike this work, [4] didn’t study the
possibility of using covariance estimation to do joint fea-
ture selection (which is the main purpose of this work), but
rather studied covariance estimation as a separate problem.

€))

The partial full covariance model in (9) has complexity in
between that of the full covariance model and the sparse di-
agonal covariance model (sparse covariance coding) which
we promote in this paper, at least for the purpose of joint
feature selection. The latter has the smallest complexity,
and thus more effective for high dimensional problems that
tend to cause over-fitting.

Another model with complexity in between of sparse diag-
onal covariance and full covariance model is to model the
covariance matrix 2 as the sum of a sparse diagonal com-
ponent plus a low-rank component. This is similar in spirit
to the more general sparse+low-rank matrix decomposition
formulation recently appeared in the literature [7, 6, 11].
However since the sparse matrix is diagonal, identifiability
holds trivially (as described in the appendix) and hence one
could in principal, recover both the diagonal and the low-
rank objects individually which preserves the advantages of
the diagonal formulation and the richness of low-rank for-
mulation. The model assumption is 2 = Qg + 7, where
Qs is the diagonal matrix and €}, is the low-rank matrix.
The estimation procedure now becomes the following opti-
mization problem (and the rest follows) [Q 5,0 ] =

m

1
> Sl OT - XO@s + )X O |17

L =1
+ )\1HQSHvec(1) + )\QHQL”*v

arg min
Q5,0

subject to the condition that {2g is a non-negative diagonal
matrix, and Q7 € S, where || - [|vec(1) is the element-wise
L1 norm and || - ||« corresponds to trace-norm.
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4 Theoretical Analysis

In this section we do a theoretical analysis of the pro-
posed method. Specifically, we first derive upper and lower
bounds for prediction error for the joint sparsity random
effects model and show the optimality of the proposed ap-
proach. Informally, the notion of optimality considered is
as follows: what is the ‘optimal shared quadratic regular-
izer’, when m and d goes to infinity and when solutions for
each task can be written as individual ridge regression solu-
tions with a shared quadratic regularizer (note that this in-
cludes group-Lasso method). Next, we demonstrate with a
simple example (i.e., considering the low-dimensional set-
ting) the drawback of the standard group-Lasso relaxation.
In a way, this example also serves as a motivation for the
approach proposed in this work and provides concrete in-
tuition.

We consider a simplified analysis with Q replaced by Q0
in Step 2 so that Q(©) does not depend on (*):

3O — (X(mX(a +)\Q(€)—1)_1X(€)Ty(€). (10)

For example, this can be achieved by replacing Step 1 with
OO —

1 2
in | = (k) ()T _ y (k) (KT
argglelg 22”34 y XWOxX HFJrR(Q)
k#L
(11)

Obviously when m is large, we have QO ~ Q. Therefore
the analysis can be slightly modified to the original formu-
lation, with an extra error term of O(1/m) that vanishes
when m — oo. Nevertheless, the independence of QO
and y(©) simplifies the argument and makes the essence of
our analysis much easier to understand.

4.1 Prediction Error

This section derives an expected prediction error bound for
the coefficient vector B () in (10) in terms of the accuracy
of the covariance matrix estimation Q2(). We consider the
fixed design scenario, where the design matrices X (©) are
fixed and € and 5 are random.

Theorem 4.1. Assume that \ > o2. For each task {, given
QO that is independent of yO), the expected prediction er-
ror with B©) in (10) is bounded as

a2 ) < A< )\2w(£),

where A E ||X(Z)B(£) — XOpO|3 —
_ _ _ o2
HX(K)Ql/2 (91/22(4)91/2 + AI) 1/2HF and the ex-

pectation is with respect to the random effects B©) and



noise €9, and X = XOT X and
W® = | x© (Q(@Eu) n M)’l (OO — Q)(x(©)1/2

_ —1/2
(=O)72mO)172 4 A1) 2.

The bound shows that the prediction performance of (10)
depends on the accuracy of estimating 2. In partic-

ular, if Q¥ = Q, then the optimal prediction error
of ‘ X@OQL/2 ((_21/2)((€)TX(€)QU2 + )\1)71/2‘)2 can be
F
achieved. A simplified upper bound is E || X3¢ —
2
X002 < HXu)Ql/z @200V A1) 2|+
F
ATHEO@QO — Q)17

This means that if the covariance estimation is
consistent; that is, if Q® converges to 2, then
our method achieves the optimal prediction error

B B A B 2
HX(e)Ql/z (Q/250Q12 4 AT) 1/2HF for all tasks.

The consistency of Q0 has been studied in the literature,
for example by [4] under high dimensional sparsity as-
sumptions. Such results can be immediately applied with
Theorem 4.1 to obtain optimality of the proposed approach.
Specifically, we consider the case of diagonal covariance
matrix, where the sparsity in € is defined as the number of
non-zero diagonal entries, i.e., s = |{i : ;; # 0}|. Fol-
lowing [4], we consider the case X0 = X e Rxd g =
1,...,m. Let X ; denote the sub matrix of X obtained by
removing the columns of X whose indices are not in the set
J. We also assume that the diagonals of X " X have iden-
tical values so that (8) is equivalent to (7) up to a scaling of
A

Let pmin(A) and pmax(A) for a matrix A denote the small-
est and largest eigenvalue of A respectively. We introduce
two quantities [4] that impose certain assumptions on the
matrix X.

Definition 1. For 0 < t < d, define pmin(t)

infjc 1, ay Pmin (X ] X ).
[JI<t

Definition 2. The mutual coherence of the columns X;,t =
1,...,d of X is defined as (X) = max{| X, X;|,t #
s 1 < t,t' <d}andlet X2, = max{||X;|3,1 <t <

dJ.

We now state the following theorem establishing the con-
sistency of covariance estimation (given by Eq 11) in the
high-dimensional setting. The proof essentially follows the
same argument for Theorem 8 in [4], by noticing the equiv-
alence between (8) and (7), which implies consistency.

Theorem 4.2. Assume that Q is diagonal, and 0(X) <
Pmin(8)%/4pmax (X T X)s. Assume n is fixed and the num-
ber of tasks and dimensionality m,d — oo such that
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Vslnd/m — 0. Then the covariance estimator of (11),
with appropriately chosen X and R(Y) defined by (8), con-
verges to §):

1X(Q — QX T|[F —p 0. (12)
The following corollary, which is an immediate conse-
quence of Theorem 4.1 and 4.2, establishes the asymptotic
optimality (for prediction) of the proposed approach under
the sparse diagonal matrix setting and R(£2) defined as in
(8). Similar result could be derived for other regularizers

for R(€2).

Corollary 1. Under the assumption of Theorem 4.1 and
4.2, the two-step approach defined by (11) and (10), with
R(Q) defined by (8) is asymptotically optimal for predic-
tion, for each task {:

E|XpY - X513
2

_ _ _ ~1/2
- HXQU2 (Ql/QXTXQl/Q + AI) —p 0.

F

Note that the asymptotics considered above, reveals the ad-
vantage of multi-task learning under the joint sparsity as-
sumption: with a fixed number of samples per each task,
as the dimensions of the samples and number of tasks tend
to infinity (obeying the condition given in theorem 4.2) the
proposed two-step procedure is asymptotically optimal for
prediction. Although for simplicity, we state the optimality
result for (11) and (10), the same result holds for the two-
step procedure given by (5) and (6), because QW of (1 1)
and €2 of (5) differ only by a factor of O(1/m) which con-
verges to zero under the asymptotics considered. Finally,
we would like to remark that the mutual coherence assump-
tion made in Theorem 4.2 could be relaxed to milder con-
ditions (based on restricted eigenvalue type assumptions) -
we leave it as future work.

4.2 Drawback of Group Lasso

In general, group Lasso does not lead to optimal perfor-
mance due to looseness of the single step convex relax-
ation. [12, 9]. This section presents a simple but concrete
example to illustrate the phenomenon and shows how
is under-estimated in the group-Lasso formulation. Com-
bined with the previous section, we have a complete theo-
retical justification of the superiority of our approach over
group Lasso, which we will also demonstrate in the empir-
ical study.

For this purpose, we only need to consider the following
relatively simple illustration (in the low-dimensional set-
ting). We consider the case when all design matrices equal
identity: X() = I for ¢ = 1,...,m. This formulation is
similar to Normal means models, a popular model in the
statistics literature. It is instructive to consider this model
because of its closed form solution. It helps in deriving
useful insights that further help for a better understanding



of more general cases. We are interested in the asymptotic
behavior when m — oo (with n(© and d fixed), which
simplifies the analysis, but nevertheless reveals the prob-
lems associated with the standard group Lasso formulation.
Moreover, it should be mentioned that although the two-
step procedure is motivated from a generative model, the
analysis presented in this section does not need to assume
that each 8 is truly generated from such a model.

Proposition 1. Suppose that n'Y = d and X©) = T for
{=1,...,m, and m — oo. The sparse covariance es-
timate corresponding to the formulation defined by (8) is
consistent.

Proof. The sparse covariance coding formulation (8) is
equivalent to (with the intention of setting A = ¢2): 25¢¢ =

. m . 2
argming,, >0 >0, 5 [y 9y 07 — diag({w; D[, +
Amp ;wj.  The closed form solution is given by

@8 = max (0, m~! Z;"Zl(y§z))2 - )x) forj=1,...,d.
Since m~* E;’;l(y@)Q — Eg (BJ@))2 +0?asm — oo,
the variance W — Egw) ([3]([))2 with A = o2, Therefore
w; is consistent. O

Note that by plugging-in the estimate of variance into (6)
with the same A (with A = ¢2), we obtain
A

<0,1— — ) (13)
m~! ZZ:](yj )?

An immediate consequence of Proposition 1 is that the
estimate define in (13) is asymptotically optimal for any
method using a quadratic regularizer shared by all the tasks.

3(0) ©

0 _
;0 =Y, max

A similar analysis of group Lasso formulation would re-
veal its drawback. Consider the group Lasso formulation
defined in (3). Under similar settings, the formulation can
be written as [3, 9] =

m 2 d 1 m
~ o _ <e>H 1 (0)y2
arg min + A :
e [o -0 2% 5 3

=1
d
+mej.
j=1

The closed form solution for the above formulation is
given by d}fl = max <0, \//\m—1 Zzl(yj(-e)ﬁ — A), for

7 = 1,...,d, and the corresponding coefficient estimate

is B(-Z) O max (O,l — VA ), for ¢ =

J J Jm S 0)?
1,...,mandj=1,...,d.
The solution for d}? ! implies that it is not possible to pick
a fixed A such that the group Lasso formulation gives con-
sistent estimate of w;. Since from (3), it is evident that
group Lasso can also be regarded as a method that uses a
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quadratic regularizer shared by all the tasks, we know that
the solution obtained for the corresponding co-efficient es-
timate is asymptotically sub-optimal. In fact, the covari-
ance estimate oDJg-l is significantly smaller than the correct
estimate w;“ . This under-estimate of w; in group Lasso
implies a corresponding under-estimate of () obtained
via group Lasso, when compared to (13). This under-
estimation is the underlying theoretical reason why the pro-
posed two-step procedure is superior to group Lasso for
learning with joint sparsity. This claim is also confirmed
by our empirical studies.

S Experiments

We demonstrate the advantage of the proposed two-step
procedure through (i) multi-task learning experiments on
synthetic and real-world data sets and (ii) sparse covariance
coding based image classification.

5.1 Multi-task learning

We first report illustrative experiments conducted on syn-
thetic data sets with the proposed models. They are com-
pared with the standard group-lasso formulation. The ex-
perimental set up is as follows: the number of tasks m =
30, d = 256, and n* = 150. The data matrix consists of
entries from standard Gaussian N(0,1). To generate the
sparse co-efficients, we first generate a random Gaussian
vector in d dimensions and set to zero d — k of the co-
efficients to account for sparsity. The cardinality of the set
of non-zero coefficients is varied as £ = 50, 70,90 and
the noise variance was 0.1. The results reported are aver-
ages over 100 random runs. We compare against standard
group lasso, MSMTFL [9] (note that this is a non-convex
approach, solved by sequence of convex relaxations) and
another natural procedure (GLS-LS) where one uses group
lasso for feature selection and with the selected features,
one does least squares regression to estimate the coeffi-
cients. A precise theoretical comparison to MSMTFL pro-
cedure is left as future work.

Tables 2 shows the coefficient estimation error when the
samples are such that they share 80% as common basis (and
the rest 20% is selected randomly from the remaining basis)
and when the samples share the same indices of non-zero
coefficients (and the actual values vary for each signals).
We note that in both cases, the model with diagonal covari-
ance assumption and partial full covariance (Equation 9)
outperforms the standard group lasso formulation, with the
diagonal assumption performing better because of good es-
timates. The diagonal+low-rank formulation slightly out-
performs the other models as it preserves the advantages
of the diagonal model, while at the same time allows for
additional modeling capability through the low-rank part,
through proper selection of regularization parameters by



cross-validation.

Support selection: While the above experiment sheds light
on co-efficient estimation error, we performed another ex-
periment to examine the selection properties of the pro-
posed approach. Table 1 shows the hamming distance be-
tween selected basis and the actual basis using the different
models. Note that Hamming distance is a desired metric
for practical applications where exact recovery of the sup-
port set is not possible due to low signal-to-noise ratio. The
indices with non-zero entry along the diagonal in the model
with diagonal covariance assumption correspond to the se-
lected basis. Similarly, indices with non-zero columns (or
rows by symmetry) correspond to the selected basis in the
partial full covariance model. The advantage of the diag-
onal assumption for joint feature selection is clearly seen
from the table. This superiority in the feature selection
process also explains the better performance achieved for
coefficient estimation. A rigorous theoretical study of the
feature selection properties is left as future work.

Correlated data: We next study the effect of correlated
data set on the proposed approach. We generated correlated
Gaussian random variables (corresponding to the size of
the data matrix) in order to fill the matrix X for each task.
The correlation co-efficient was fixed at 0.5. We worked
with fully overlapped support set. Other problem parame-
ters were retained. We compared the estimation accuracy
of the proposed approach with different settings with group
lasso and its variants. The results are summarized in Ta-
ble 3. Note that the proposed approach performs much
better than the group-Lasso based counterparts. Precisely
characterizing this improvement theoretically would be in-
teresting.

Next, the proposed approach was tested on three standard
multi-task regression datasets (computer, school and sar-
cos datasets) and compared with the standard approach for
multi-task learning: mixed (2, 1)-norms or group lasso (2).
A description of the datasets is given below:

Computer data set: This dataset consists of a survey
among 180 people (corresponding to tasks). Each rated
the likelihood of purchasing one of 20 different comput-
ers. The input consists 13 different computer characteris-
tics, while the output corresponds to ratings. Following [1],
we used the first 8 examples per task for training and the
last 4 examples per task for testing.

School data set: This dataset is from the London Educa-
tion Authority and consists of the exam scores of 15362
students from 139 schools (corresponding to tasks). The in-
put consists 4 school-based and 3 student-based attributes,
along with the year. The categorical features are replaced
with binary features. We use 75% of the data set for train-
ing and the rest for testing.

48

Sarcos data set: The dataset! has 44,484 train samples and
4449 test samples. The task is to map a 21-dimensional in-
put space (corresponding to characteristics of robotic arm)
to the the output corresponding to seven torque measure-
ment (tasks) to predict the inverse dynamics.

We report the average (accross tasks) root mean square er-
ror on the test data set in Table 4. Note that the proposed
two-step approach performs better than the group lasso ap-
proach on all the data sets. The data sets correspond to
cases with varied data size and number of tasks. Observe
that even with a small training data (computer data set),
performance of both our approach is better than the group-
lasso approach.

5.2 SCC based Image Classification

In this section, we present a novel application of the
proposed approach for obtaining sparse codes for gender
recognition in CMU Multi-pie data set. The database con-
tains 337 subjects (235 male and 102 female) across si-
multaneous variations in pose, expression, and illumina-
tion. The advantages of jointly coding the extracted lo-
cal descriptors of an image with respect to a given dictio-
nary for the purpose of classification has been highlighted
in [3]. They propose a method based on mixed (2, 1)-norm
to jointly find a sparse representation of an image based
on local descriptors of that image. Following a similar ex-
perimental setup, we use the proposed sparse covariance
coding approach for attaining the same goal.

Each image is of size 30 x 40, size of patches is 8 x 8§,
and number of overlapping patches per image is 64. Lo-
cal descriptors for each images are extracted in the form of
overlapping patches and a dictionary is learned based on
the obtained patches by sparse coding. With the learnt dic-
tionary, the local descriptors of each image is jointly sparse
coded via the diagonal covariance matrix assumption and
the codes thus obtained are used or classification. This ap-
proach is compared with the group sparse coding based ap-
proach. Linear SVM is used in the final step for classifica-
tion. Note that the purpose of the experiment is not learning
adictionary. Table 5 shows the test set and train set error for
the classifier thus obtained. Note that the proposed sparse
covariance coding based approach outperforms the group
sparse coding based approach for gender classification due
to its better quality estimates.

Group sparse coding | Sparse cov. coding

Train error 6.67 £+ 1.34% 5.56 £+ 1.62%

Test error 7.48 + 1.54% 6.32 + 1.12%

Table 5: Face image classification based on gender: Test
and Train set error rates for sparse covariance coding and
group sparse coding (both with a fixed dictionary).

"http://www.gaussianprocess.org/gpml/
data/



Method 80% shared basis Completely shared basis
k=50 | k=70 | k=90 | k=50 | k=70 | k=90
Standard group lasso 0.18 | 022 | 0.27 | 0.11 | O.16 0.22
MSMTFL 0.15 | 0.18 | 0.20 | 0.07 | 0.08 0.17
Partial full covariance 0.17 | 0.20 | 0.23 | 0.07 | 0.11 0.16
Sparse diagonal covariance | 0.13 | 0.16 | 0.20 | 0.05 | 0.09 0.14

Table 1: Support selection: Hamming distance between true non-zero indices and estimated non-zero indices by the

indicated method for all signals.

Method k=50 k=70 k=90
standard group Lasso 0.1541 £ 0.0045 | 0.1919 +£0.0092 | 0.2404 £ 0.0124
GLS-LS 0.1498 £ 0.0032 | 0.1901 £ 0.0034 | 0.2383 £ 0.0342

Partial full covariance

0.1239 £ 0.0063

0.1542 £ 0.0131

0.1992 £ 0.0143

Sparse Diagonal covariance

0.1022 £ 0.0054

0.1393 £ 0.0088

0.1701 £ 0.0104

MSMTFL

0.1276 £ 0.0075

0.1564 £+ 0.0153

0.1987 £ 0.0201

Diag+Low-rank covariance

0.1031 £ 0.0042

0.1212 £ 0.0122

0.1532 £ 0.0173

Standard group Lasso

0.1032 £ 0.0086

0.1574 £ 0.0151

0.1733 £ 0.0190

GLS-LS

0.1010 £ 0.0045

0.1532 £ 0.0134

0.1698 £ 0.0430

Partial full covariance

0.0735 £ 0.0078

0.1131 £ 0.0148

0.1576 £ 0.0201

Sparse Diagonal covariance

0.0447 £ 0.0071

0.0828 £ 0.0165

0.1184 £ 0.0198

MSMTFL

0.0643 £ 0.0093

0.0832 £ 0.0200

0.1457 £ 0.0223

Diag+low-rank Covariance

0.0452 £ 0.0084

0.0786 £+ 0.0136

0.1012 £ 0.0161

Table 2: Coefficient estimation: Normalized L, distance between true coefficients and estimated coefficients by the indi-
cated method. First 5 rows correspond to 80% shared basis and the last 5 rows correspond to fully shared basis.

6 Discussion and Future work

We proposed a two-step estimation procedure based on a
specialized random effects model for dealing with joint
sparsity regularization and demonstrated its advantage over
the group-Lasso formulation. The proposed approach high-
lights the fact that enforcing interesting structure on covari-
ance of the coefficients is better for obtaining joint sparsity
in the coefficients. We leave a theoretical comparison to
the MSMTFL procedure, precisely quantifying the statisti-
cal improvement provided by the proposed approach (note
that MSMTFL being a non-convex procedure does not at-
tain the global optimal solution [9]) as future work. Future
work also includes (i) relaxing the assumptions made in
the theoretical analysis, (ii) exploring more complex mod-
els like imposing group-mean structure on the parameters
for additional flexibility, (iii) other additive decomposition
of the covariance matrix with complementary regularizers
and (iv) using locally-smoothed covariance estimates for
time-varying joint sparsity.

A Identifiability of additive structure

The issue of identifiability (which is necessary subse-
quently for consistency and recovery guarantees) arises
when we deal with additive decomposition of the covari-
ance matrix. Here, we discuss about the conditions under
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which the model is identifiable, i.e., there exist an unique
decomposition of the covariance matrix as the summation
of the sparse diagonal matrix and low-rank matrix. We fol-
low the discussion used in [11]. Let Q = Q, + Qf, denote
the decomposition where 2, denotes the sparse diagonal
matrix and {27, a low-rank matrix. Intuitively, identifiability
holds if the sparse matrix is not low-rank (i.e., the support
is sufficiently spread out) and the low-rank matrix is not too
sparse (i.e., the singular vectors are away from co-ordinate
axis). A formal argument is made based on the above intu-
ition. We defined the following quantities (following [11])
below that measures the non-zero entries in any row or col-
umn of {2, and sparseness of the singular vectors of {2 :

o = max{||sign(s)[l1-1, [[sign(2s) [ co—o0 }
and
B=1UU"lsc + IVVTlso + 1Ull2500 |V ll2—5 00

where U, V € R%*" are the left and right orthonormal sin-

gular vectors corresponding to non-zero singular values of
def

Qp and [Mllp—q = {|Mv]lg : v € R™, [0, < 1}

Note that, for a diagonal matrix, ||sign(€2s)|l1—1
|Isign(€2s)||co—oo = 1. Itis proved in [11] that if o5 < 1,
then the matrices are identifiable, i.e, the sparse plus low-
rank decomposition is unique. Therefore we only need to



Method

k=50

k=70

k=90

Group Lasso

0.2012 £ 0.0033

0.2655 £ 0.0132

0.3252 £ 0.0323

GLS-LS

0.2090 £ 0.0098

0.2702 £ 0.0042

0.3304 = 0.0333

Partial full covariance

0.1706 £ 0.0064

0.2376 £ 0.0224

0.2701 £ 0.0323

Sparse diagonal covariance

0.1634 £ 0.0022

0.2112 £ 0.0073

0.2601 £ 0.0231

MSMTFL

0.1786 £ 0.0023

0.2323 £ 0.0434

0.2776 £ 0.0223

Diag+Low-rank covariance

0.1531 £ 0.0042

0.2002 £ 0.0236

0.2544 £ 0.0145

Table 3: Coefficient estimation: Normalized L, distance between true coefficients and estimated coefficients by the indi-

cated method with correlated input data.

Data set Group lasso MSMTFL Sparse diagonal Covariances | Corr. Sparse diag (Eq.7)
Computer | 1.542 £0.043 | 1.334 £+ 0.031 1.223 £ 0.033 1.209 £ 0.054

School 2.202 +£0.038 | 2.033 £0.241 1.987 £ 0.040 2.012 £0.073

Sarcos 9.221 £0.051 | 9.113 £0.145 8.983 £ 0.043 9.002 £ 0.032

Table 4: Multi-task learning: Average (across task) MSE error on the test data set.

require 5 < 1 for identifiability, which is a rather weak
assumption, satisfied by most low-rank matrices with suffi-
cient spread of the support.

B Proof of Theorem 4.1

For notational simplicity, we remove the superscripts (£) in
the following derivation (e.g., denote X ) by X, 3(¥) by
and so on). We have the following decomposition

E|X3 - XBl3

=B X (XX +20 ) X (XB+e) - B)|:

=E||X(XTX + 2071 A1
+EX(XTX + 2070 X Te|]

N[ X (XTX + 207 D) 7TO00 (X TX 40071~
XT] + o[ X(XTX + 2017
XTX(XTX+20 ) X7

<trA[X(QXTX + A1) T (A + QX T XQ)

(XTXQ+ A1) XT]

=MA+B+C)

where with AQ = Q — Q, we have A = tr [X (QXTX +

A)TTAOXTXAQ(XTXO  + AI)T'XT] and

B = 2u[X(QXTX + M) TOXTXAQXTXO +

A) T X T and C = tr[X (QXTX + A1) (QXTXQ +

Q) (XTXQ + )\I)leT]. We can further expand C' as

1
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C =tr[X(QXTX + A1) (X TXQ +AQ)
(XTXQ+A) X
—tr[X(QXTX + M) TTAQX TX (QXTX + A1)
(QXTXQ+A0)(XTXQ+ A1) X T]
—tr[XQ(XTXQ+ A1) XT] — e[ X (QXTX + A1)~
AQXTXQ(XTXQ+ M) ' XT]
=tr[XQ(XTXQ+ )X - B/2.
Therefore we have
B+C—tr[XQXTXQ+ )X T]
=B/2 — r[XQ(XTXQ+ M) ' XTXAQ
(XTXQ+AL) ' XT]
=B/2 - tr[X(QXTX + AI) QX T XAQ
(XTXQ+ )X
= —tr[X(QXTX + M) AQXT X
(QXTX + A1) QX TXAQXTXQ+ A1) XT].
Putting all together, we have
A+B+C—u[XQXTXQ+ M) XT]
—tr[ X (QXTX + A1) TAQ(I - XTX(QXTX + A1)~
OXTXAQXTXO+A) ' XT]
“Mr[X(QXTX + AN T AQ(XTXQ + AT
XTXAQXTXQ+ M) ' XT].
This proves the upper bound. Similarly, the lower bound

follows from the fact that E || X3 — X 3|2 > o2(A+ B +
C).
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Abstract

The best current methods for exactly com-
puting the number of satisfying assignments,
or the satisfying probability, of Boolean for-
mulas can be seen, either directly or indi-
rectly, as building decision-DNNF' (decision
decomposable negation normal form) repre-
sentations of the input Boolean formulas.
Decision-DNNFs are a special case of d-
DNNF's where d stands for deterministic. We
show that any decision-DNNF can be con-
verted into an equivalent FBDD (free binary
decision diagram) — also known as a read-
once branching program (ROBP or 1-BP) —
with only a quasipolynomial increase in rep-
resentation size in general, and with only
a polynomial increase in size in the special
case of monotone k-DNF formulas. Lever-
aging known exponential lower bounds for
FBDDs, we then obtain similar exponen-
tial lower bounds for decision-DNNFs which
provide lower bounds for the recent algo-
rithms. We also separate the power of
decision-DNNF's from d-DNNF's and a gener-
alization of decision-DNNFs known as AND-
FBDDs. Finally we show how these imply
exponential lower bounds for natural prob-
lems associated with probabilistic databases.

1 Introduction

Model counting is the problem of computing the num-
ber, #F, of satisfying assignments of a Boolean for-
mula F. While model counting is hard for #P, there
have been major advances in practical algorithms that
compute exact model counts for many relatively com-
plex formulas and, using similar techniques, that com-

This work was partially supported by NSF IIS-
1115188, 11S-0915054, and CCF-1217099.
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pute the probability that Boolean formulas are satis-
fied, given independent probabilities for their literals.

Modern exact model counting algorithms use a va-
riety of techniques (see [Gomes et al., 2009] for a
survey). Many are based on extensions of back-
tracking search using the DPLL family of algo-
rithms [Davis and Putnam, 1960, Davis et al., 1962]
that were originally designed for satisfiability search.
In the context of model counting (and related prob-
lems of exact Bayesian inference) extensions in-
clude caching the results of solved sub-problems
[Majercik and Littman, 1998], dynamically decom-
posing residual formulas into components (Rel-
sat [Bayardo et al., 2000]) and caching their counts
([Bacchus et al., 2003]), and applying dynamic com-
ponent caching together with conflict-directed clause
learning (CDCL) to further prune the search (Cachet
[Sang et al., 2004] and sharpSAT [Thurley, 2006]).

The other major approach, known as knowledge
compilation, is to convert the input formula into
a representation of the Boolean function that the
formula defines and from which the model count
can be computed efficiently in the size of the
representation [Darwiche, 2001la, Darwiche, 2001b,
Huang and Darwiche, 2007, Muise et al., 2012].
Efficiency for knowledge compilation depends
both on the size of the representation and the
time required to construct it. As noted by (c2d
[Huang and Darwiche, 2007] based on component
caching) and (Dsharp [Muise et al., 2012] based
on sharpSAT), the traces of all the DPLL-based
methods yield knowledge compilation algorithms
that can produce what are known as decision-
DNNF' representations [Huang and Darwiche, 2005,

Huang and Darwiche, 2007], a syntactic subclass
of d-DNNF representations [Darwiche, 2001b,
Darwiche and Marquis, 2002]. Indeed, all the
methods for exact model counting surveyed

in [Gomes et al., 2009] (and all others of which
we are aware) can be converted to knowledge com-



pilation algorithms that produce decision-DNNF
representations, without any significant increase in
their running time.

In this paper we prove exponential lower bounds on
the size of decision-DNNF's for natural classes of for-
mulas. Therefore our results immediately imply ex-
ponential lower bounds for all modern exact model
counting algorithms. These bounds are unconditional
— they do not depend on any unproved complexity-
theoretic assumptions. These bounds apply to very
simple classes of Boolean formulas, which occur fre-
quently both in uncertainty reasoning, and in proba-
bilistic inference. We also show that our lower bounds
extend to the evaluation of the properties of a large
class of database queries, which have been studied in
the context of probabilistic databases.

We derive our exponential lower bounds by showing
how to translate any decision-DNNF to an equiva-
lent FBDD, a less powerful representation for Boolean
functions. Our translation increases the size by at
most a quasipolynomial, and by at most a polyno-
mial in the special case when the Boolean function
computed has a monotone k-DNF formula. The lower
bounds follow from well-established exponential lower
bounds for FBDDs. This translation from decision-
DNNF's to FBDDs is of independent interest: it is sim-
ple, and efficient, in the sense that it can be computed
in time linear in the size of the output FBDD.

It is interesting to note that with formula caching,
but without dynamic component caching, the trace ex-
tensions of DPLL-based searches yield FBDDs rather
than decision-DNNF's. Hence, the difference between
FBDDs and decision-DNNFs is precisely the ability
of the latter to take advantage of decompositions into
connected components of subformulas of the formula
being represented. Our conversion shows that these
connected component decompositions can only provide
quasipolynomial improvements in efficiency, or only a
polynomial improvement in the case of monotone k-
DNF formulas.

Representations Though closely related, FBDDs
and decision-DNNF's originate in completely different
approaches for representing (or computing) Boolean
functions. FBDDs are special kinds of binary deci-
sion diagrams [Akers, 1978], also known as branching
programs [Masek, 1976]. These represent a function
using a directed acyclic graph with decision nodes,
each of which queries a Boolean variable represent-
ing an input bit and has 2 out-edges, one labeled 0
and the other 1; it has a single source node, and has
sink nodes labeled by output values; the value of the
function on an assignment of the Boolean variables
is the label of the sink node reached. Free binary
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decision diagrams (FBDDs), also known as read-once
branching programs (ROBPs), have the property that
each input variable is queried at most once on each
source-sink path!. There are many variants and ex-
tensions of these decision-based representations; for
an extensive discussion of their theory see the mono-
graph [Wegener, 2000]. These include nondeterminis-
tic extensions of FBDDs called OR-FBDDs, as well
as their corresponding co-nondeterministic extensions
called AND-FBDDs, which have additional internal
AND nodes through which any input can pass — the
output value is 1 for an input iff every consistent
source-sink path leads to a sink labeled 1.

Decision-DNNF's originate in the desire to find re-
stricted forms of Boolean circuits that have better
properties for knowledge representation. Negation
normal form (NNF) circuits are those that have un-
bounded fan-in AND and OR nodes (gates) with all
negations pushed to the input level using De Morgan’s
laws. Darwiche [Darwiche, 2001a] introduced decom-
posable negation normal form (DNNF) which restricts
NNF by requiring that the sub-circuits leading into
each AND gate are defined on disjoint sets of vari-
ables. He also introduced d-DNNF's [Darwiche, 2001a,
Darwiche and Marquis, 2002] which have the further
restriction that DNNFs are deterministic, i.e., the
sub-circuits leading into each OR gate never simul-
taneously evaluate to 1; d-DNNFs have the advan-
tage of probabilistic polynomial-time equivalence test-
ing [Huang and Darwiche, 2007]. Most subsequent
work has used these d-DNNFs. An easy way of en-
suring determinism is to have a single variable x
that evaluates to 1 on one branch and 0 on the
other, so d-DNNFs can be produced by the subcircuit
(x A A) V (mz A B), which is equivalent to having de-
cision nodes as above; moreover, the decomposability
ensures that x does not appear in either A or B. d-
DNNFs in which all OR nodes are of this form are
called decision-DNNFs [Huang and Darwiche, 2005,
Huang and Darwiche, 2007]. Virtually all algorith-
mic methods that use d-DNNFs, including those used
in exact model counting and Bayesian inference, ac-
tually ensure determinism by using decision-DNNF's.
Decision-DNNF's have the further advantage of being
syntactically checkable; by comparison, given a general
DNNF, it is not easy to check whether it satisfies the
semantic restriction of being a d-DNNF.

'The term free contrasts with ordered binary decision
diagrams (OBDDs) [Bryant, 1986] in which each root-leaf
path must query the variables in the same order. For each
variable order, minimized OBDDs are canonical represen-
tations for Boolean functions, making them extremely use-
ful for a vast number of applications. Unfortunately, OB-
DDs are often also simply referred to as BDDs, which leads
to confusion with the original general model.



* Quasi-polynomial increase (general formula)
* Polynomial increase (monotone k-DNF)

Figure 1: A summary of our contributions (see Section 3).
Here, one representation is contained in another if and only
if the first can be (locally) translated into the second with
at most a polynomial increase in size.

It is immediate that one can get a completely equiva-
lent representation to the above definition by using a
decision node on z in place of each OR of ANDs involv-
ing z, and in place of each leaf variable or its negation;
the decomposability property ensures that no root-
leaf path in the circuit queries the same variable more
than once. Clearly these form a special subclass of the
AND-FBDDs discussed above, in which each AND is
required to have the decomposability property that the
different branches below each AND node query disjoint
sets of variables. Though formally there are insignif-
icant syntactic differences between the definitions, we
will use the term decision-DNNF's to refer to these de-
composable AND-FBDDs.

Two other consequences of our simulation of decision-
DNNFs by FBDDs are provable exponential separa-
tions between the representational power of decision-
DNNFs and that of either d-DNNFs or AND-FBDDs.
There are two functions, involving simple tests on the
rows and columns of Boolean matrices, that require
exponential size FBDDs but have linear size represen-
tations as AND-FBDDs and d-DNNF's respectively (cf.
Thms 10.3.8, 10.4.7. in [Wegener, 2000]); our sim-
ulation shows that these lower bounds carry over to
decision-DNNF's, yielding the claimed separations. A
comparison of these representations in terms of their
succinctness as well as a summary of our contributions
in this paper are given in Figure 12.

Probabilistic Databases These databases an-
notate each tuple with a probability of being
true [Suciu et al., 2011]. Query evaluation on proba-
bilistic databases reduces to the problem of computing
the probability of a positive, k-DNF Boolean formula,
where the number of Boolean variables in each term
is bounded by k, which is fixed by the query, while
the size of the formula grows polynomially in the size
of the database. Our results immediately imply that,

2Tt is open whether the region is empty if no black
square is shown (also indicated by dotted borders).
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when applied to such formulas, decision-DNNFs are
only polynomially more concise than FBDDs. By com-
bining this with previously known results, we describe
a class of queries such that any query in this class gen-
erates Boolean formulas requiring decision-DNNFs of
exponential size, thus implying that none of the recent
evaluation algorithms that either explicitly or implic-
itly yield decision-DNNFs can compute these queries
efficiently. Although the exponential lower bounds we
derive for decision-DNNFs are not the first — there are
a small number of exponential lower bounds known
even for unrestricted AND-FBDDs [Wegener, 2000],
which therefore also apply for decision-DNNF's — none
of these apply to the kinds of simple structured prop-
erties that show up in probabilistic databases that we
are able to analyze.

Compilation As noted above, the size of the decision-
DNNF required is not the only source of complex-
ity in exact model counting. The other source is
the search or compilation process itself — the time
required to produce a decision-DNNF from an in-
put Boolean formula which may greatly exceed the
size of the representation. A particularly striking
case where this is an issue is that of an unsatisfiable
Boolean formula for which the function evaluates to
the constant 0 and hence the decision-DNNF is of
size 1. Determining this fact may take exponential
time. Indeed, DPLL with caching and conflict-directed
clause learning is a special case of resolution theorem
proving [Beame et al., 2004]. There are large num-
bers of unsatisfiable formulas for which exponential
lower bounds are known for every resolution refuta-
tion (see, e.g., [Ben-Sasson and Wigderson, 2001]) and
hence this compilation process must be exponential for
such formulas?. The same issues can arise in ruling out
parts of the space of assignments for satisfiable formu-
las. However, we do not know of any lower bounds
for this excess compilation time that directly apply to
the kinds of simple highly satisfiable instances that we
discuss in this paper.

The rest of the paper is organized as follows. In
Section 2 we review FBDDs and decision-DNNF's.
Section 3 presents our two main results: a general
transformation of a decision-DNNF into an equivalent
FBDD, with only a quasipolynomial increase in size
in general, and only a polynomial increase in size for
monotone k-DNF formulas. We prove these results in
Section 4 and Section 5. In Section 6 we discuss the im-
plications of this transformation for evaluating queries
in probabilistic databases. We conclude in Section 7.

3DPLL with formula caching, but not clause learning,
can be simulated by even simpler regular resolution, though
in general it is not quite as powerful as regular resolu-
tion [Beame et al., 2010].



2 FBDDs and Decision-DNNF's

FBDDs. An FBDD is a rooted directed acyclic graph
(DAG) F, with two kinds of nodes: decision nodes,
each labeled by a Boolean variable X and two outgoing
edges labeled 0 and 1, and sink nodes labeled 0 and
1. Every path from the root to some leaf node may
test a Boolean variable X at most once. The size of
the FBDD is the number of its nodes. We denote the
sub-DAG of F rooted at an internal node u by F,
which computes a Boolean function ®,; F computes
®,. where r is the root. For a node u labeled X with 0-
and 1-children ug and uq, ®,, = (-X)®,,vVX®,,. The
probability of ®,. can be computed in linear time in the
size of the FBDD using a simple dynamic program:
Pr[0,] = (1 - p(X)) Pr[0,,] + p(X) Pr(0,].

Decision-DNNF's As noted in the introduction, we
choose to define decision-DNNFs as a sub-class of
AND-FBDDs. An AND-FBDD [Wegener, 2000] is an
FBDD with an additional kind of nodes, called AND-
nodes; the function associated to an AND-node u with
children wy, ..., u, is &, = &, A.. . AP, . A decision-
DNNF, D, is an AND-FBDD satisfying the additional
restriction that for any AND-node u and distinct chil-
dren u;,u; of u, the sub-DAGS D, and D,; do not

mention any common Boolean variable X.

For the rest of the paper we make two assumptions
about decision-DNNFs. First, every AND-node has
exactly 2 children, and as a consequence every inter-
nal node u has exactly two children vy, vs, called the
left and right child respectively; second, that every
1-sink node has at most one incoming edge. Both as-
sumptions are easily enforced by at most a quadratic
increase in the number of nodes in the decision-DNNF.

3 Main Results

In this section we state our two main results and show
several applications. We first need some notation. For
each node u of a decision-DNNF D, let M, be the
number of AND-nodes in the subgraph D,. If u is
an AND-node, then we have M,, = 1+ M,, + M,,,
because, by definition, the two DAGs D,, and D,,
are disjoint; we will always assume that M,, < M,,
(otherwise we swap the two children of the AND-node
u), and this implies that M, > 2M,,, + 1. We classify
the edges of the decision-DNNF into three categories:
(u,v) is a light edge if u is an AND-node and v its first
child; (u,v) is a heavy edge if u is an AND-node and v
is a its second child; and (u,v) is a neutral edge if u is
a decision node. We always have M, > M,, while for
a light edge we have M, > 2M, + 1.

Let D be a decision-DNNF, N the total number of
nodes in D, M the number of AND-nodes, and L the
maximum number of light edges on any path from the
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root node to some leaf node. Our first main result is:

Theorem 3.1. For any decision-DNNF D there exists
an equivalent FBDD F computing the same formula as
D, with at most NM" nodes. Moreover, given D, F
can be constructed in time O(NMT).

We give the proof in Section 4. We next show that the
bound NM¥ is quasipolynomial in N.

Corollary 3.2. For any decision-DNNF D with N
n0d652there ezists an equivalent FBDD F with at most
N2°g" N nodes.

Proof. Consider any path in D with L light edges,
(u1,v1), (uz,v2),...,(ur,vy). We have M,,, > 2M,, +
1 and M,, > M, , for all i, and we also have M >
M, and M,, > 0, which implies M > 2F —1 (by in-
duction on L). Therefore, 2¢ < M 4+ 1 < N (because
D has at least one node that is not an AND-node), and
NME = NoLleeM < N2log” N proving the claim. O

Our second main result concerns monotone k-DNF
Boolean formulas, which have applications to proba-
bilistic databases, as we explain in Section 6. We show
that in this case any decision-DNNF can be converted
into an equivalent FBDD with only a polynomial in-
crease in size. This results from the following lemma,
whose proof we give in Section 5:

Lemma 3.3. If a decision-DNNF D computes a
monotone k-DNF Boolean formula then every path in
D has at most k —1 AND-nodes.

Therefore, L < k — 1, and Theorem 3.1 implies:

Theorem 3.4. For any decision-DNNF D with N
nodes that computes a monotone k-DNF Boolean for-
mula then there exists an equivalent FBDD F with at
most N* nodes.

We give now several applications of our main results.

Lower Bounds for DPLL-based Algorithm
We give an explicit Boolean formula on which
every DPLL-based algorithm whose trace is a
decision-DNNF takes exponential time. We use
the following formula introduced by Bollig and
Wegener [Bollig and Wegener, 1998].  For any set
E C [n] x [n] define ¥ = V ;cpXiYj, where
Xi,..., X, Y1,....Y, are Boolean variables. Let n =
p? where p is a prime number; then each number
0 < i < n can be uniquely written as ¢ = a + bp
where 0 < a,b < p. Define E,, = {(i+1,j+1) |
i=a+bp,j=c+dp,c=(a+bd) mod p}. Then:
Theorem 3.5. [Bollig and Wegener, 1998, Th.3.1]
Any FBDD for U has 2*V™ nodes.

Consider the formula ®, = Vlgi,jgn X.Z;;Y;. Any

FBDD for ®,, has size 22(vV™) because it can be con-
verted into an FBDD for Vg, by setting Z;; = 1 or



Z;; = 0, depending on whether (¢,7) is in E,, or not.
Both Vg, and ®,, are monotone, and 2-DNF and 3-
DNF respectively, therefore, by Theorem 3.4:

Corollary 3.6. Any decision-DNNF for either ¥
or ®,, has 22(v1) podes.

In particular, any DPLL-based algorithm whose trace
is a decision-DNNF will take exponential time on the
formulas Vg, and ®,,.

Separating decision-DNNFs from AND-
FBDDs We show that decision-DNNFs are
strictly weaker than AND-FBDDs.  Define ¥
= Njer, (Xi VYj), the CNF expression that is
the dual of Wg, . Since ¥, is a CNF formula, it
admits an AND-FBDD with at most n? nodes (since
|En| < n?). On the other hand, we show that any
decision-DNNF must have 9(2”1/4) nodes. Indeed,
Theorem 3.5 implies that any FBDD for \I/’En has

29%v7) nodes. Consider some decision-DNNF D for
W%, having N nodes. By Corollary 3.2 we obtain an

FBDD F of size 21°8° N+108 N which must be 22(vV);
thus log? N = Q(y/n), hence log N = Q(n'/*), and N

= 29("1/4). We have shown:

Corollary 3.7. Decision-DNNFs are exponentially
less concise than AND-FBDDs.

Separating decision-DINNF's from d-DNNF's De-
fine I';, on the matrix of variables X;; for i,j € [n]
by T'n(X) = fu(X) V gno(X) where f, is 1 if and
only if the parity of all the variables is even and the
matrix has an all-1 row and g, is 1 if and only if
the parity of all the variables is odd and the matrix
has an all-1 column. Wegener showed (cf. Theorem
10.4.7. in [Wegener, 2000]) that any FBDD for T',, has
22(") nodes (therefore, every decision-DNNF requires
20(n'/?) nodes). T',, can also be computed by an O(n?)
size d-DNNF, because both f,, and g,, can be computed
by O(n?) size OBDDs, and f,, A g, = false. Hence:

Corollary 3.8. Decision-DNNFs are exponentially
less concise than d-DNNFs.

4 Decision-DNNF to FBDD

In this section we prove Theorem 3.1 by describing
a construction to convert a decision-DNNF D to an
FBDD F.

4.1 Main Ideas

To construct F we must remove all AND-nodes in D
and replace them with decision nodes. An AND node
has two children, v1,vs; we need to replace this node
with an FBDD for the expression ®,, A ®,,. Assume
that u is the only AND-node in D; then both D,,
and D,, are already FBDDs, and Figure 2(a): stack
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Figure 2: (a) Basic construction for converting a decision-
DNNF into an FBDD (b) where it fails.

D,, over D,,, and redirect all 1-sink nodes in D,,
to the root of D,,. Clearly this computes the same
AND function; moreover it is a correct FBDD because
Dy, , Dy, do not have any common variable. If this con-
struction worked in general, then the entire decision-
DNNF would be converted into an FBDD of exactly
the same size.

But, in general, this simple idea fails, as can be seen on
the simple decision-DNNF in Figure 2(b) (it computes
(=X)YZ Vv XYU). To compute the first AND node
we need to stack D,, over D,,, and to compute the
second AND node we need to stack D,, over D,,,: this
creates a conflict for redirecting the 1-sink node in D,,
to vy or to v3*. To get around that, we use two ideas.
The first idea is to make copies of some subgraphs. For
example if we make two copies of D,,, call them D,,
and D, , then we can compute the first AND-node
by stacking D,, over D,,, and compute the second
AND-node by stacking D), over D,, and the conflict
is resolved. The second idea is to reorder the children
of the AND-nodes to limit the exponential blowup due
to copying. We present the details next.

4.2 The Construction of F

Fix the decision-DNNF D. Let u denote a node in D
and P denote a path from the root to u. Let s(P)
be the set of light edges on the path P, and let S(u)
consist of the sets s(P) for all paths from the root to
u, formally:

s(P) ={(v,w) | (v,w) is a light edge in P}
S(u) ={s(P) | P is a path from the root to u}

We consider the light edges in a set s = s(P) ordered
by their occurrences in P (from the root to ). This
order is independent of P: if s = s(P) = s(P’) then
the light edges occur in the same order on the paths
P and P’ (since D is acyclic).

We will convert D into an FBDD F with no-op nodes,
unlabeled nodes having only one outgoing edge. Any

4In this particular example one could stack D,, and D,
over D,, and avoid the conflict; but, in general, Dy,, Dy,
may have conflicts with other subgraphs.



FBDD with no-op nodes is easily transformed into
a standard FBDD by removing the no-op nodes and
redirecting all incoming edges to its unique child.

We define F formally. Its nodes are pairs (u, s) where
u is a node in D and s € S(u). The root node is
(root(D), D). The edges in F are of three types:
Type 1:  For each light edge e = (u,v) in D and
every s € S(u), add the edge ((u, s), (v,sU{e})) to F,
Type 2: For every neutral edge (u,v) in D and every
s € S(u) add the edge ((u,s), (v, s)) to F,

Type 3: For every heavy edge (u, vs), let e = (u, vq)
be the corresponding light sibling edge. Then, for
every s € S(u), add all edges of the form ((w,s U
{e}), (v2, 8)), where w is a 1-sink node in D,,, vy is
the heavy child of u, sU {e} € S(w), and s € S(va).

Finally, we label every node v’ = (u, s) in F, as follows:
(1) If w is a decision node in D that tests the variable
X, then v is a decision node in F testing the same
variable X, (2) If u is an AND-node, then v’ is a no-
op node, (3) If u is a O-sink node, then v’ is a O-sink
node, (4) If u is a 1-sink node, then: if s = () then o’
is a 1-sink node, otherwise it is a no-op node.

This completes our description of F. The intuition
behind it is that, for every AND node, we make a fresh
copy of its left child. To illustrate this, suppose D has
a single AND-node u with two children vy, vo, and let
e = (u,v1) be the light edge. Suppose there is a second,
neutral edge into v1, say (z,v1). Then F contains two
copies of the subgraph D,,, one with nodes labeled
(w, {e}), and the other with nodes labeled (w, ). Any
1-sink node in the first copy becomes a no-op node
in F and is connected to vq, similarly to Figure 2(a);
the same 1-sink node in the second copy remain 1-sink
nodes. This copying process is repeated in D,,.

4.3 Proof of Theorem 3.1

Theorem 3.1 follows from the following three lemmas:
Lemma 4.1. F has at most NML nodes.
Lemma 4.2. F is a correct FBDD with no-op nodes.

Lemma 4.3. F computes the same function as D.

Proof of Lemma 4.1. The nodes of F have the form
(u,s). There are N possible choices for the node wu,
and at most M* possible choices for the set s, because
|s| < L (since every path has < L light edges), and M
is the number of light edges. O

Proof of Lemma 4.2. We need to prove three proper-
ties of F: that F is a DAG, that every path in F reads
each variable only once, and that all its nodes are la-
beled consistently with the number of their children
(e.g., a no-op has one child). The first two properties
follow from the following claim:

o7

Cramm: If u is a decision node in D labeled with a
variable X, and there exists a non-trivial path (with
at least one edge) between the nodes (u,s) (v,s’) in
F, then the variable X does not occur in D,,.

Indeed, the claim implies that F is acyclic, because any
cycle in F implies a non-trivial path from some node
(u, s) to itself, and obviously X € D,, contradicting
the claim. It also implies that every path in F is read-
once: if a path tests a variable X twice, once at (u, s)
and once at (uq,s1), then X € D,,, contradicting the
claim. It remains to prove the claim.

Suppose to the contrary that there exists a node (u, s)
such that u is labeled with X and there exists a path
from (u,s) to (v,s’) in F such that X occurs in D,.
Choose v such that D, is maximal; i.e., there is no
path from (u,s) to some (v',s”) such that D, C D,
(in the latter case replace v with v’: we still have that
X occurs in D,). Consider the last edge on the path
from (u,s) to (v,s') in F:

(u,8),..., (w,s"), (v,8) (1)
Observe that (w, v) is not an edge in D since D, is max-
imal and since (u,v) is not an edge in D by the read-
once property of D; therefore, the edge from (w, s”) to
(v,8’) is of Type 3. Thus, there exists an AND-node
z with children vy, v, and our last edge is of the form
(w,s"U{e}), (v,s'), where e = (z,v1) the light edge of
z. We claim that e € s; i.e., it is not present at the be-
ginning of the path in (1). If e € s then, since s € S(u),
we have u, which queries X, in D,,. Together with the
assumption that some node in D, queries X, we see
that descendants of the two children vy, v of AND-node
z query the same variable, contradicting the fact that
D is a decision-DNNF. This proves e € s. On the other
hand, e € s”. Now consider the first node on the path
in (1) where e is introduced. It can only be an edge of
the form (z, s1), (v1, s1U{e}). But now we have a path
from (u, s) to (z,s1) with X € D, D D,, contradicting
the maximality of v. This proves the claim.

Finally, we show that all nodes in F are consistently
labeled, i.e. they have the correct arity. To prove this,
we only need to show that every no-op node has a
single child. There are two cases: the node is (u, s)
where u is an AND node in D (for a Type 1 edge), in
which case its single child is (v1,s U {(u,v1)}); or the
node is (w, s) where w is a 1-sink node and s # () (for
a Type 3 edge). In that case, let e = (z,v) be the last
edge in s: more precisely, if P is any path such that
s = s(P), then e is the last light edge on P. (This e
is well defined: if s = s(P) = s(P’) then P and P’
have the same sets of light edges, and therefore must
traverse them in the same order since D is a DAG.)
Let v’ be the right child of z; then the only edge from
(w, s) goes to (v, s — {e}). O



Next we prove Lemma 4.3, which completes the proof
of Theorem 3.1. To prove this we will use the proper-
ties that (a) the value of the function computed by an
FBDD on an input assignment is the value of the sink
reached on the unique path from the root followed by
the input, and (b) the value of the function computed
by a decision-DNNF is the logical AND of all of the
sink values reachable from the root on that assignment.

Proof of Lemma 4.3. Let ®p and @ be the Boolean
formulas computed by D and F respectively. We show
that for any assignment 6 to the Boolean variables,
Oplf] = 0 iff @£[A] = 0. For the “if” direction, sup-
pose that @[] = 0. Let P be the unique root-sink
path in F consistent with #, which must reach a 0-sink
by assumption. We will show that there exists a path
P’ in D from the root to a 0-sink that is consistent
with 6. This suffices to prove that ®p[f] = 0. First,
notice that if P does not contain edges of Type 3, then
it automatically also translates into a path leading to
a 0-sink in D and the claim holds. Otherwise, consider
an edge of Type 3 from (w, sU{e}) to (ve, s) such that
(i) there exists an AND-node w with children vy, vs,
(ii) w is a descendant of vy, and (iii) e = (u, v1). Since
the edge e must have been introduced along the path,
P contains an edge of the form (u,s’), (vy,s" U {e}).
Remove the fragment of P between (u,s’) and (ve, s):
this is also a path in D to a 0-sink (using the original
heavy-edge (u, v2)), with one less edge of Type 3, and
the claim follows by induction.

For the “only if” part, suppose that ®p[f] = 0 and
P’ is a path in D from the root to a 0-sink node; as a
warm-up, if P’ has no heavy edges then it translates
immediately into a path in F to a 0O-sink. In general,
we proceed as follows. Consider all paths in D that
are consistent with 6 and lead to a 0-sink node. Order
them lexicographically as follows: P| < P if, for some
k > 1, P{ and P} agree on the first k — 1 steps, and at
step k Py follows the light edge (u, v1), while Py follows
the heavy edge (u,vy) of some AND-node u. Let P’
be a minimal path under this order. We translate it
into a path P in F iteratively, starting from the root r.
Suppose we have translated the fragment r — u of P’
into a path P in F: (r,0) — (u,s). Consider the next
edge (u,v) in P’: if it is a light edge e or a neutral edge,
we simply extend P with (v,sU {e}) or (v, s) respec-
tively. If (u,v) is a heavy edge, let (u,v1) be its light
sibling, and let s; = sU {e}. By the minimality of P’,
®,,[0] =1 (otherwise we could find a consistent path
to a 0-sink in D,,, ). We claim that there exists a 1-sink
node w in D,, s.t. the path P" in F(,, ,,) defined by 6
leads from (v1,s1) to (w, s1): the claim completes the
proof of the lemma, because we simply extend P with:
(u,s), (v1,s1), P”, (w,s1), (v,s), where the last edge
is an edge of Type 3, (w,s U {e}), (v, s), completing
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Block0l '/ Block 10 Block11

Figure 3: The decision-DNNF D(p), p = 3, in Section 4.4.
The (red and blue) bold dotted arrows denote two paths
from the root to u = Xoo,m. The white boxes at the lowest
level denote decision nodes to 0- and 1-sinks.

our iterative construction of P.

To prove the claim, we apply our decision-DNNF-to-
FBDD translation to D,,, and let 77 denote the result-
ing FBDD; by construction, any edge (2/,s'), (2”,s")
in F7 corresponds to an edge (', Usy), (27,8 Us1)
in F. If ®f, is the function computed by Fi, then
we have already shown that for any 6, &£, [0] = 0 =
®p, [0] = 0: for our particular ¢ we have ®p, [0] =
®,,[0] = 1, hence @z [0] = 1. Therefore, the path
defined by 6 in F; goes from the root (v, ) to some
node (w, ), where w is a 1-sink node in D; the corre-
sponding path in F,, s, goes from (v1,s1) to (w, s1),
proving the claim. O

4.4 A Tight Example

We conclude this section by showing that our analy-
sis cannot be tightened to a polynomial bound® Fix
M > 0, and let m = M'/2. For each number p > 0,
the decision-DNNF D,, given in Figure 3 (for p = 3)
consists of m = 2P — 1 blocks of size m, organized into
p levels (0 to p — 1). Each block has 2 children to the
next level.

A block is identified by w € {0,1}*, where |w| < p—1.
Thus, w = 011 means “left-right-right” and w = €
means the root block. Each block w has m + 1 AND-
nodes, m Boolean variables (X, ;, where 1 < i < m),
and m entry points at these m variables. The left
(resp. right) child of the i-th AND-node in block w
points to Xy0,; (resp. Xy1,i), where 1 <4 < m; The
left and the right children of the (m+ 1)-st AND node
in block w points to the (m+1)-st AND node of blocks
w0 and w1 respectively. Clearly, the total number of
AND-nodes in the decision-DNNF is M = m(m + 1).

To obtain a lower bound on the size of the FBDD given
by our conversion algorithm, we count the total num-

5This only applies to our construction. It does not sep-
arate FBDDs from decision-DNNFs, since a smaller equiv-
alent FBDD may exist for this decision-DNNF.



ber of copies (u,s) created for the node u = Xgo.0,m
(i.e., the last decision node in the left-most block at
the lowest level), where s € S(u) is the set of light
edges on a path from the root to u. For any path
P from the root to u, let a; < m be the number of
consecutive decision nodes followed by P at the j-
th level, for 0 < j < p — 1; P must take the left
(light) branch of the corresponding AND-node at each
level 5 < m — 1. Note that Z?;é aj = m — 1, any
choice of a;’s satisfying this corresponds to a valid
path P to u, and distinct choices correspond to differ-
ent sets of light edges. Therefore, |S(u)| is the number
of different choices of a; which is (mfpl P ) > (7:) >
(m/p)P = 2p(logm—logp) — 9Q(log? m) _ 99(log” M) gipce
p=0O(logm) and M =m(m + 1).

5 Monotone k-DNFs

We prove Lemma 3.3 in this section. Fix a decision-
DNNF D computing a monotone k-DNF Boolean func-
tion ®; w.l.o.g. we assume that D is non-redundant:
each child of each AND-node in D computes a non-
constant function.

Proposition 5.1. V node u € D, ®,, is monotone.

Proof. The statement is true for the root node u. Sup-
pose that ®, is monotone at some node u. If u is a
decision node testing the variable X and with children
vg, V1, then both ®,, = ®,[X = 0] and ¢, = ¢,[X =
1] are monotone. If u is an AND-node with children
U1, g then @, = ®,, A ®,, where ®,,,, ®,, have dis-
joint sets of variables, hence they are themselves mono-
tone. The proposition follows by induction. O

In the case of a monotone function ®, a prime impli-
cant is a minimal set of variables whose conjunction
implies ® and a minimal DNF for ® has one term for
each of its prime implicants; hence, ® can be written
as k-DNF iff k is the size of its largest prime implicant.
If 0 is a partial assignment, then ®[f] is a &’-DNF for
some k' < k. Let A, be the largest number of AND-
nodes on any path from the node u to some leaf. The
following proposition proves Lemma 3.3:

Lemma 5.2. For every node u with A, > 1, if ®,, is
a monotone k-DNF, then k > A, + 1.

Proof. The following claim, which we prove by induc-
tion on |A4,|, suffices to show the lemma: for every
node u with A, > 1, there exists a partial assignment
0 such that ®,[0] is a Boolean formula that is the con-
junction of > A, + 1 variables.

Observe that it suffices to prove the claim when w is an
AND-node, since for any v’ with A, > 1 that is not an
AND-node, there is some AND-node u reachable from
u’ only via decision nodes (and hence with A, = A,,/)
and we can obtain the partial assignment 6 for u’ by
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adding the partial assignment o determined by the
path from u’ to u to the partial assignment 6 for wu.

If u is an AND-node with children vy, vs, then ®, =
®,, N ®,, where ®,,,®P,, do not share any variables.
Consider a path starting at u that has A, AND-nodes
and assume w.l.o.g. that it takes the first branch, to
vy: thus, A, = A,, +1. If A,, = 0 then, since D is
non-redundant, ®,, is non-constant, so there is partial
assignment 6y such that I; = ®,,[f] is a conjunction
of size > 1 = A,, +1. If A,;, > 1, by the induction
hypothesis, there exists a partial assignment 6; such
that Iy = ®,,[0:1] is a conjunction of size > A,, +
1. Since D is non-redundant, ®,, is non-constant, so
there exists a partial assignment 6> such that I, =
®,,[02] is a conjunction of size > 1. Taking § = 6; U
and using the disjointness of the variables in ®,, and
®,,, we get that ®,[0] = I A Iy is a conjunction of
size > (Ay, + 1)+ 1= A, + 1, proving the claim. 0O

6 Lower Bounds in Probabilistic
Databases

We now show an important application of our main
result to probabilistic databases. While in knowledge
compilation there exists a single complexity parame-
ter, which is the size of the input formula, in databases
there are two parameters: the database query, and the
database instance. For example, the query may be ex-
pressed in a query language, like SQL, and is usually
very small (e.g. few lines), while the database instance
is very large (e.g. billions of tuples). We are interested
here in data complexity [Vardi, 1982], where the query
is fixed, and the complexity parameter is the size of
the database instance. We use Theorem 3.4 to prove
an exponential lower bound for the query evaluation
problem for every query that is non-hierarchical.

We first briefly review the key concepts in
probabilistic databases, and refer the reader to
[Abiteboul et al., 1995, Suciu et al., 2011] for details.

A relational vocabulary consists of k relation names,
Ri,...,R;, where each R; has an arity a; >
0. A (deterministic) database instance is D =
(A,RP,....RP), were A is a set of constants called
the domain, and for each i, RP C A%. Let n = |A| be
the size of the domain of the database instance.

A Boolean query is a function @ that takes as in-
put a database instance D and returns an output
Q(D) € {false,true}. A Boolean conjunctive query
(CQ) is given by an expression of the form @ =
Jzy...3xe(PL A ... A Py,), where each Py is a posi-
tive relational atom of the form R;(zy,,...,7p, ), with
z; either a variable € {x1,...,7,} or a constant. A
Boolean Union of Conjunctive Queries (UCQ) is given
by an expression Q = Q1 V...V Q,, where each Q); is a



- Friend F
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Ann asthma | X1 Ann Joe Z11 name
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Lineage expression <I>g =X1Z11Y1V X1Z12Y2 V XoZ92Ys

Figure 4: A database instance, query, and lineage

Boolean conjunctive query. We assume all queries to
be minimized (i.e. they do not have redundant atoms,
see [Abiteboul et al., 1995]).

Given an instance D and query expression @,
the lineage @8 is a Boolean formula obtained by
grounding the atoms in @ with tuples in D; it
is similar to grounding in knowledge representa-
tion [Domingos and Lowd, 2009]. Formally, each tu-
ple t in the database D is associated with unique
Boolean variable X;, and the lineage is defined in-
ductively on the structure of @Q: (1) <I>g = Xy, if
Q is the ground tuple ¢, (2) ®5 o, = P50, A5, (3)
q)gl\/Qz = (I)(gl \ ®D2a and (4) (I)EIDa:Q = \/aEA (I)S[a/a:]
The lineage is always a monotone k-DNF of size O(n?),
where n is the domain size and k, £ are the largest num-
ber of atoms, and the largest number of variables in
any conjunctive query @; of Q.

In a probabilistic database [Suciu et al., 2011], every
tuple ¢ in the database instance is uncertain, and the
Boolean variable X; indicates whether ¢ is present or
not. The probability P(X; = true) is known for ev-
ery tuple ¢, and is stored in the database as a sepa-
rate attribute of the tuple. The goal in probabilistic
databases is: given a query @ and an input database
D, compute the probability of its lineage, P(®g).

Example 6.1. The following example is adapted
from  [Jha et al., 2010], on a wocabulary with
three relations Patient (name, diseases),
Friend(namel, name2), Smoker(name) (see Fig-
ure 4). Each tuple is associated with a Boolean
variable (X1,Xs etc).  The Boolean conjunctive
query @ (as well as the lineage @8 for database D)
returns true if the database instance contains an
asthma patient who has a smoker friend. Qur goal
s to compute P(@S), given the probabilities of each
Boolean variable, when @ is fized and D is variable.

Lemma 6.2. Let h be the conjunctive query
JxdyR(x) A S(x,y) AT (y). Then any decision-DNNF
for the Boolean formula <I>}’L3 has size 2%V where n
1s the size of the domain of D.

Proof. For any n, let D be the database instance RP =
[n], SP = [n] x [n], TP = [n]. Then the lineage ® is
exactly the formula ®,, of Corollary 3.6, up to variable
renaming, and the claim follows. O
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Fix a conjunctive query ¢ = 3z1 ... JxyPL A ... A Py,.
For each variable z;, let at(z;) denote the set of atoms
P; that contain the variable x;.

Definition 6.3. [Suciu et al., 2011] The query q is
called hierarchical if for any two distinct variables
x;, x5, one of the following holds: at(xz;) C at(x;), or
at(xz;) 2 at(xj), or at(z;) Nat(x;) = 0. A Boolean
Union of Conjunctive Queries Q = q1 V ...V qg is
called hierarchical if every q; is hierarchical fori € [k].

For example, the query h in Lemma 6.2 is non-
hierarchical, because at(x) = {R, S}, at(y) = {S,T},
while the query 3z.3y.R(z) A S(x,y) is hierarchical. Tt
is known that, for a non-hierarchical UCQ @, comput-
ing the probability of the Boolean formulas @8 is #P-
hard [Suciu et al., 2011]. In the full paper we prove:

Theorem 6.4. Consider any Boolean Union of Con-
Jjunctive Queries Q. If Q is non-hierarchical, then the
size of the decision-DNNF for the Boolean functions
@8 is 220V where n is the size of the domain of D.

The query @ in Example 6.1 is non-hierarchical: at(x)
= {Patient,Friend} and at(y) = {Friend, Smoker}.
Therefore, any decision-DNNF computing @ has
size 292(Vn), For another example, consider the
following non-hierarchical query that returns true iff
the database contains a triangle of friends:

¢’ = 3x3yI=(F(z,y) AF(y,2) AF(z,2))
Tts lineage is A,, = \/i’j’k:Ln ZijZikZyi. By Theo-
rem 6.4, any decision-DNNF for A, has size 22(vV7),

7 Conclusions and Open Problems

We have proved that any decision-DNNF can be effi-
ciently converted into an equivalent FBDD that is at
most quasipolynomially larger, and at most polynomi-
ally larger in the case of k-DNF formulas. As a conse-
quence, known lower bounds for FBDDs imply lower
bounds for decision-DNNFs and thus (a) exponential
separations of the representational power of decision-
DNNFs from that of both d-DNNFs and AND-FBDDs
and (b) lower bounds on the running time of any al-
gorithm that, either explicitly or implicitly, produces
a decision-DNNF, including the current generation of
exact model counting algorithms.

Some natural questions arise: Is there a polynomial
simulation of decision-DNNFs by FBDDs for the gen-
eral case? In particular, is there a polynomial-size
FBDD for the example Section 4.47 Is there some
other, more powerful syntactic subclass of d-DNNFs
that is useful for exact model counting? What can
be said about the limits of approzimate model count-
ing [Gomes et al., 2009]?
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Abstract

Reasoning about degrees of belief in uncertain dy-
namic worlds is fundamental to many applications,
such as robotics and planning, where actions mod-
ify state properties and sensors provide measurements,
both of which are prone to noise. With the exception
of limited cases such as Gaussian processes over lin-
ear phenomena, belief state evolution can be complex
and hard to reason with in a general way. This pa-
per proposes a framework with new results that allows
the reduction of subjective probabilities after sensing
and acting, both in discrete and continuous domains,
to questions about the initial state only. We build
on an expressive probabilistic first-order logical ac-
count by Bacchus, Halpern and Levesque, resulting in
a methodology that, in principle, can be coupled with
a variety of existing inference solutions.

1 INTRODUCTION

Reasoning about degrees of belief in uncertain dynamic
worlds is fundamental to many applications, such as
robotics and planning, where actions modify state prop-
erties and sensors provide measurements, both of which
are prone to noise. However, there seem to be two dis-
parate paradigms to address this concern, both of which
have their limitations. At one extreme, there are logi-
cal formalisms, such as the situation calculus (McCarthy
and Hayes, 1969; Reiter, 2001), which allows us to ex-
press strict uncertainty, and exploits regularities in the ef-
fects actions have on propositions to describe physical laws
compactly. Probabilistic sensor fusion, however, has re-
ceived less attention here. At the other extreme, revising
beliefs after noisy observations over rich error profiles is ef-
fortlessly addressed using probabilistic techniques such as
Kalman filtering and Dynamic Bayesian Networks (Dean
and Kanazawa, 1989; Dean and Wellman, 1991). How-
ever, in these frameworks, a complete specification of the

“We thank the reviewers for very helpful comments. Finan-
cial support from the Natural Science and Engineering Research
Council of Canada made this research possible.
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dependencies between variables is taken as given, making it
difficult to deal with other forms of incomplete knowledge
as well as complex actions that shift dependencies between
variables in nontrivial ways.

An influential but nevertheless simple proposal by Bac-
chus, Halpern and Levesque (1999), BHL henceforth, was
among the first to merge these broad areas in a general way.
Their specification is widely applicable because it is not
constrained to particular structural assumptions. In a nut-
shell, they extend the situation calculus language with a
provision for specifying the degrees of belief in formulas in
the initial state, closely fashioned after intuitions on incor-
porating probability in modal logics (Halpern, 1990; Fagin
and Halpern, 1994). This then allows incomplete and par-
tial specifications, which might be compatible with one or
very many initial distributions and sets of independence as-
sumptions, with beliefs following at a corresponding level
of specificity. Moreover, together with a rich action theory,
the model not only exhibits Bayesian conditioning (Pearl,
1988) (which, then, captures special cases such as Kalman
filtering), but also allows flexibility in the ways dependen-
cies and distributions may change over actions.

What is left open, however, is the following computational
concern: how do we effectively reason about degrees of
belief in the framework? That is, while changing degrees
of belief do indeed emerge as logical entailments of the
given action theory, no procedure is given for computing
these entailments. On closer examination, in fact, this is a
two-part question:

(i) How do we effectively reason about beliefs in a par-
ticular state?

(i) How do we effectively reason about belief state evolu-
tion and belief change?

In the simplest case, part (i) puts aside acting and sensing,
and considers reasoning about the initial state only, which
is then the classical problem of (first-order) probabilistic
inference. We do not attempt to do a full survey here, but
this has received a lot of attention, often under reasonable
assumptions such as the ability to factorize domains (Poole,
2003; Gogate and Domingos, 2010).



This paper is about part (ii). Addressing this concern has
a critical bearing on the assumptions made about the do-
main for tractability purposes. For example, if the initial
state supports a decomposed representation of the distribu-
tion, can we expect the same after actions? In the exception
of very limited cases such as Kalman filtering that harness
the conjugate property of Gaussian processes, the situation
is discouraging. In fact, even in the slightly more general
case of Dynamic Bayesian Networks, which are in essence
atomic propositions, if one were to assume that state vari-
ables are independent at time 0, they can become fully cor-
related after a few steps (Dean and Kanazawa, 1988; Boyen
and Koller, 1998; Hajishirzi and Amir, 2010). Dealing with
complex actions, incomplete specifications and mixed rep-
resentations, therefore, is significantly more involved.

In this paper, we propose a new alternative to infer de-
grees of belief in the presence of a rich theory of actions,
closely related to goal regression (Waldinger, 1977; Reiter,
2001). The procedure is general, not requiring (but allow-
ing) structural constraints about the domain, nor imposing
(but allowing) limitations to the family of actions. Regres-
sion derives a mathematical formula, using term and for-
mula substitution only, that relates belief after a sequence
of actions and observations, even when they are noisy, to
beliefs about the initial state. That is, among other things, if
the initial state supports efficient factorizations, regression
will maintain this advantage no matter how actions affect
the dependencies between state variables over time. Going
further, the formalism will work seamlessly with discrete
probability distributions, probability densities, and perhaps
most significantly, with difficult combinations of the two.
(See Example 9.3 in Section 4 below.)

To see a simple example of what goal regression does,
imagine a robot facing a wall and at a certain distance h
to it, as in Figure 1. The robot might initially believe A to
be drawn from a uniform distribution on [2, 12]. Assume
the robot moves away by 2 units and is now interested in
the belief about 2 < 5. Regression would tell the robot that
this is equivalent to its initial beliefs about 4 < 3 which
here would lead to a value of .1. To see a nontrivial exam-
ple, imagine now the robot is also equipped with a sonar
unit aimed at the wall, that adds Gaussian noise with mean
u and variance o>, After moving away by 2 units, if the
sonar were now to provide a reading of 8, then regression
would derive that belief about 4 < 5 is equivalent to

1 3
—f A X N6 - x; 1, 0%) dx.
Y J2

where vy is the normalization factor. Essentially, the poste-
rior belief about 4 < 5 is reformulated as the product of the
prior belief about 2 < 3 and the likelihood of /2 < 3 given an
observation of 6. (That is, observing 8 after moving away
by 2 units is related here to observing 6 initially.)

We believe the broader contributions of this line of work are
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Figure 1: Robot moving towards a wall.

two-fold. On the one hand, as we show later, simple cases
of belief state evolution, as applicable to conjugate distri-
butions for example, are special cases of regression’s back-
ward chaining procedure. Thus, regression could serve as a
formal basis to study probabilistic belief change wrt limited
forms of actions. On the other hand, our contribution can
be viewed as a methodology for combining actions with re-
cent advances in probabilistic inference, because reasoning
about actions reduces to reasoning about the initial state.

We now describe the structure of the paper. Before mov-
ing on, we note that although the original BHL account is
only suitable for discrete domains (as they assume values
are taken from countable sets), in a companion paper (Belle
and Levesque, 2013a) we show that the account can be gen-
eralized to domains with both discrete and continuous vari-
ables with minimal additions. In the preliminaries section,
we cover the situation calculus, recap BHL and go over the
essentials of its continuous extension. We then present re-
gression for discrete domains, followed by regression for
general domains. We end with related and future work.
For this version of the paper, we allow noisy sensors but
assume deterministic (noise-free) physical actions. Noisy
actions are left for an extended version.

2 BACKGROUND

The language L of the situation calculus (Reiter, 2001) is
a many-sorted dialect of predicate calculus, with sorts for
physical actions, sensing actions, situations and objects
(including the set of reals R as a subsort). A situation repre-
sents a history as a sequence of actions. A set of initial sit-
uations correspond to the ways the world might be initially.
Successor situations are the result of doing actions, where
the term do(a, s) denotes the unique situation obtained on
doing a in s. The term do(a, s), where « is the sequence
lai,...,a,], abbreviates do(a,,do(...,do(ay,s)...)). For
example, do([grasp(o1), repair(oy)], s) represents the situa-
tion obtained after grasping and repairing object o0, starting
from s. Initial situations are those without a predecessor:

Init(s) = =3a, s’. s = do(a, §').

‘We let the constant Sy denote the actual initial situation, and
we use the variable ¢ to range over initial situations only. £
also includes functions whose values vary from situation to
situation, called fluents, whose last argument is a situation.

We follow two notational conventions. We often suppress
the situation argument in a formula ¢, or use a distinguished



variable now. Either way, ¢[f] is used to denote the formula
with that variable replaced by ¢, e.g. both (f < 12)[s] and
(f(now) < 12)[s] mean f(s) < 12. We also use conditional
if-then-else expressions in formulas throughout. We write
f =1Ir¢ Tuen t; ELSE f, to mean [pA f = 1]V [-dAf = 1].
In case quantifiers appear inside the if-condition, we take
some liberties with notation and the scope of variables in
that we write f = IF dx. ¢ THEN #; ELSE #, to mean Jx [¢ A

f=ulVI(f=n)A-3x ]

Basic action theory

Following (Reiter, 2001), we model dynamic domains in
L by means of a basic action theory D, which consists
of domain-independent foundational axioms, unique name
axioms for actions (see (Reiter, 2001)), and (1) axioms Dy
that describe what is true in the initial states, including
So:! (2) precondition axioms? of the form Poss(A(%), s) =
T4 (X, s) describing executability conditions using a special
fluent Poss; and (3) successor state axioms of the following
form stipulating how fluents change:

f(do(a,s)) =u=37[a=A1) Au=e(Z,s)] V...
Azila = Aw(z2) A u = ex(, )1 V
A —3zia = A A u = f(s).

(1)
where ¢;(}, s) is any expression whose only free variables
are Z; and s. For example, consider the action fwd(z) of
moving precisely z units towards or away from the wall,
but the motion stops when the wall is reached:

h(do(a, s)) = u = Jz[a = fwd(z) A u = max(0, h(s) — )] V
—3z[a = fwd(2)] A u = h(s).
2
This sentence states that fwd(z) is the only action affect-
ing fluent 4, in effect incorporating a solution to the frame
problem (Reiter, 2001). Given an action theory, an agent
reasons about actions by means of entailments of 9.3

Likelihood and belief

The BHL model of belief builds on a treatment of knowl-
edge in L (Scherl and Levesque, 2003). Here we present a
simpler variant based on two distinguished fluents / and p.

The term I(a, s) is intended to denote the likelihood of ac-
tion a in situation s. For example, suppose sonar(z) is the
action of reading the value z from a sonar that measures the
distance to the wall, 7. We might assume that this action is
characterized by a simple discrete error model (continuous

'Note that Dy can include any (classical) first-order sentence
about Sy, such as 4(Sy) > 12 and f1(So) #2 V f£r(Sp) = 5.

ZFree variables in any of these axioms should be understood
as universally quantified from the outside.

3Entailments are wrt standard Tarskian models, but we will
also assume that models assign the usual interpretations to =, <,
>, 0,1, +, X, /,— e, and ¥’ (exponentials).
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error models are considered later):

l(sonar(z),s) = Ir |h(s) —z| <1 Tuex 1/3 Erse 0
3)
which stipulates that the difference between a reading of
z and the true value £ is either {0, —1, 1} with probability
1/3, assuming that  and z take integer values. In general,
the action theory P is assumed to contain for each sensor
sense;(¥) that measures a fluent f, an axiom of the form:

[(sense; (%), s) = Erri(%, f(s)),

where Erri(u;,uy) is some expression with only two free
variables u; and u,, both numeric.* (Noise-free physical
actions are given a likelihood of 1.)

Next, the p fluent determines a (subjective) probability dis-
tribution on situations. The term p(s’, s) denotes the relative
weight accorded to situation s” when the agent happens to
be in situation s, as in modal probability logics (Fagin and
Halpern, 1994). Now, the task of the modeler is to specify
the initial properties of p as part of Dy using ¢ and Sy, e.g.:
p,So)= Ir h(t) €{2,...,11} Tuen .1 Etse 0 (4)
says that 4 is drawn from a uniform distribution. The fol-
lowing nonnegative constraint is also included in Dy:
Vi, 5. p(s,0) =0 A (p(s,0) > 0D Init(s)) (P1)

Then, by means of a remarkably simple successor state ax-
iom for p, (P2) below, the formal specification is complete.

p(s’,do(a, 5)) =
Ir As”.s" =do(a,s”) A Poss(a, s”)
THEN p(s”,s) X l(a, s”)
Eise 0O

(P2)

In particular, the degree of belief in a formula ¢ can be
accounted for in terms of an abbreviation:’

1 ,
Bel(¢,s) = — Z p(s’,s)
{s":8lsT}

(B)

where vy, the normalization factor, is understood throughout
as the same expression as the numerator but with ¢ replaced
by true, e.g. here y is ). p(s’, s). So, as in probability log-
ics, belief is simply the total weight of worlds satisfying ¢.
But the novelty here is that in a dynamical setting, belief
change via (B) is identical to Bayesian conditioning:

4This captures the idea that the error model of a sensor mea-
suring f depends only on the true value of f, and is independent
of other factors. In a sense this follows the Bayesian model that
conditioning on a random variable f is the same as conditioning
on the event of observing f. But this is not required in general in
the BHL scheme, an issue we ignore for this paper.

>Summations can be expressed as logical terms. See BHL.



Proposition 1:  Suppose D includes (P1), (P2) and the
likelihood axiom for a sensor sense(z) measuring f. Then
D E Bel(f = t,do(sense(z), Sp)) =
Bel(f =1,Sp) - Err(z,1)
Y Bel(f = x,S0) - Err(z, x)

Essentially, if the robot’s sensors are informative, in the
sense of returning values closer to the true value, beliefs
are strengthened over time.

From sums to integrals

While the definition of belief in BHL has many desirable
properties, it is defined in terms of a summation over situ-
ations, and therefore precludes fluents whose values range
over the reals. The continuous analogue of (B) then re-
quires integrating over some suitable space of values.

As it turns out, a suitable space can be found. First, as-
sume that there are n fluents fi,..., f, in £, and that these
take no arguments other than the situation argument.® Next,
suppose that that there is exactly one initial situation for ev-
ery possible value of these fluents (Levesque et al., 1998):

V& A £ = x] A Vol A £ =fW)>e=01 ()
Under these assumptions, it can be shown that the summa-
tion over all situations in (B) can be recast as a summation
over all possible initial values xy, ..., x, for the fluents:

1 . ,

Bel(g.9) =~ D P $,5) (B)

where P(X, ¢, s) is the (unnormalized) weight accorded to
the successor of an initial world where f; equals x;:

P(X, ¢, do(a, Sp)) =
Ir di. A fi(0) = x; A pldo(a, 0)]
Tuen p(do(a,t), do(a, Sp))
Eise 0

for any action sequence . In a nutshell, because every sit-
uation has an initial situation as an ancestor, and because
there is a bijection between initial situations and possible
fluent values, it is sufficient to sum over fluent values to ob-
tain the belief even for non-initial situations. Note that un-
like (B), this one expects the final situation term do(a, S)
mentioning what actions and observations took place to be
explicitly specified, but that is just what one expects when
the agent reasons about its belief after acting and sensing.

The generalization to the continuous case then proceeds as
follows. First, we observe that some (though possibly not
all) fluents will be real-valued, and that p(s’, s) will now
be a measure of density not weight. For example, if & is
real-valued, we might have the following analogue to (4):

p,So) =Ir 2 < h(t) <12 Tuen .1 Eise 0 5

®Tt might be desirable to have fluents take arguments other than
the situation. See (Belle and Levesque, 2013a) for discussions.
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which says that the true initial value of % is drawn from a
uniform distribution on [2,12]. Similarly, the P term above
now measures (unnormalized) density rather than weight.

Now suppose fluents are partitioned into two groups: the
first k take their values xi,...,x; from R, while the rest
take their values yj.1, ..., y, from countable domains, then
the degree of belief in ¢ is an abbreviation for:

1
Bel(g.s) = - f D PE-5.6.9) (B*)

That is, the belief in ¢ is obtained by ranging over all pos-
sible fluent values, and integrating’ and summing the den-
sities of successor situations where ¢ holds.’

To summarize the formalization, a basic action theory D
henceforth is assumed to additionally include: (a) (P1) and
(D as part of Dy; (b) (P2) as part of D’s successor state
axioms, and (c¢) sensor likelihood axioms.

3 REGRESSION FOR DISCRETE
DOMAINS

‘We now investigate a computational mechanism for reason-
ing about beliefs after a trajectory. In this section, we focus
on discrete domains, where a weight-based notion of be-
lief would be appropriate. Domains with both discrete and
continuous variables are reserved for the next section.

Formally, given a basic action theory D, a sequence of ac-
tions @, we might want to determine whether a formula ¢
holds after executing « starting from Sy:

D [ ¢ldo(a, So)] (6)

which is called projection (Reiter, 2001). When it comes to
beliefs, and in particular how that changes after acting and
sensing, we might be interested in calculating the degrees
of belief in ¢ after @: find a real number 7 such that

D E Bel(¢, do(a, So)) = n. 7

The obvious method for answering (6) is to translate both
P and ¢ into a predicate logic formula. This approach,
however, presents a serious computational problem be-
cause belief formulas expand into a large number of sen-
tences using (P2), resulting in an enormous search space
with initial and successor situations. The other issue with

7Like in BHL, where summations are captured as logical terms
using second-order quantification, we can use logical formulas to
capture a variety of sorts of integrals. See (Belle and Levesque,
2013a). We will henceforth simply suppose that for any term ¢ and
variable x, fx t is a term which evaluates (in the standard calculus
sense) to the integral of 7 between [—oo, co].

8We are assuming here that the density function is (Riemann)
integrable. If it is not or if y = O then belief is clearly not defined,
nor should it be.



this approach is that sums (and integrals in the continuous
case) reduce to complicated second-order formulas.

We now introduce a regression procedure to simplify both
(6) and (7) to queries about Bel(¢, Sy), over arithmetic ex-
pressions, for which standard probabilistic reasoning meth-
ods can be applied. For this purpose, in the sequel, Bel is
treated as a special syntactic operator rather than as an ab-
breviation for other formulas. To see a simple example of
the procedure, imagine the robot is interested in the proba-
bility of =7, given (4), after reading 5 from a sonar:

Bel(h = 7, do(sonar(5), Sy)) )

If we are to take the sonar’s model to be (3), then (8) should
be 0 by Bayesian conditioning because the likelihood of the
true value being 7 given an observation of 5 is 0. Regres-
sion would reduce the term (8) to one over initial priors:

Z Err(5,x)x Bellh=xAh=1,5))  (9)

Ve

where Err is the error model from (3). By the condition
inside Bel, the only valid value for x is 7 for which the
prioris .1 but Err(5,7) is 0. Thus, (8) = (9) = 0. In general,
regression is a recursive procedure that works iteratively
over a sequence of actions discarding one action at a time,
and it can be utilized to measure any logical property about
the variables, e.g. 2 - h < 12, h/fuel < mileage, etc.

Formally, regression operates at two levels. (Note that this
differs slightly from (Reiter, 2001; Scherl and Levesque,
2003).) At the formula level,” we introduce an opera-
tor R for regressing formulas, which over equality literals
sends the individual terms to an operator 7~ for regress-
ing terms. The fundamental objective of these operators is
eliminate do symbols. The end result, then, is to transform
any expression whose situation term is a successor of Sy,
say do([a1,a»], Sp), to one about S, only, at which point
Dy is all that is needed. As hinted earlier, these operators
treat Bel(¢, s) as though they are special sorts of terms.'?
Throughout the presentation, we assume that the inputs to
these operators do not quantify over all situations.

Definition 2: For any term ¢, we inductively define 7 [¢]:

1. Iftis situation-independent (e.g. x, 7°/%) then 7[t] = .

2. Tlgtr,....t0l = g(T[al,...., T &,
where g is any non-fluent function (e.g. X, +, N).

°For simplicity, in what follows, functional fluents in formu-
las are only allowed to occur as arguments of an equality literal.
It is easy to show that every sentence can be transformed into an
equivalent one in the required form, and the transformation is lin-
ear in the size of the original sentence, e.g. h < 9 is written as
Juth=unu<9).

Tn the context of Bel, ¢ is understood to be any situation-
suppressed formula not mentioning p, [ and Bel. If situation terms
do appear in ¢, then they may only be the distinguished variable
now.
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3. For a fluent function f, 7[f(s)] is defined inductively
(a) if s is of the form do(A(f), s’) then
TLf($)] = Tle(@; 5]
(b) else T[f()] = f(s)

where, in (a), an appropriate instance of the rhs of the
successor state axiom is used, as obtained from (1).

4. T [Bel(¢, s)] is defined inductively:

(a) if s is of the form do(a, s") and a is a physical
action, then
T [Bel(¢, s)] = T [Bel(y, s)]
where ¥ is Poss(a, now) D R[¢[do(a, now)]].
if s is of the form do(a,s’) and a is a sens-

ing action sense(z) such that I(sense(z), s)
Err(z, fi(s)) is in D then

T [Bel(¢, s)] =
1
- E ,x) X T [Bel(y, s
yz rr(z, x;) X T[Bel(ys, s')]

(b)

where i is Poss(a,now) > ¢ A fi(now) = x;, and
v is the normalization factor and is the same ex-
pression as the numerator but ¢ replaced by true.

(c) else T [Bel(¢, s)] = Bel(¢, s).

Definition 3: For any formula ¢, we define R[¢] induc-
tively:

1. Rt = 6] = (T[] = Tt2])

2. RIGt,....t)]=G(T[ul,.... T[]

where G is any non-fluent predicate (e.g. =, <).

3. R[Poss(A(, s)] = R4 5)],

where an appropriate instance of the rhs of the pre-
condition axiom replaces the atom (see Section 2).

When ¢ is a formula, R[-y] = -R[y],
RVxy] = VR[], R[Axy] = AxR[Y].

5. When ¢, and ¥, are formulas,
Rly1 A2l = Ryl A RIYal,
Ry V 2] = Ryl Vv Riyal.

This completes the definition of 7 and R. We now go over
the justifications for the items, starting with the operator
7. Initem 1, non-fluents simply do not change after ac-
tions. In item 2, 7 operates over sums and products in a
modular manner. In item 3, provided there are remaining
do symbols, the physics of the domain determines what the
conditions must have been in the previous situation for the
current value to hold. In item 4, if there is a remainder
physical action, part (a) says that belief in ¢ after actions is
simply the prior belief about the regression of ¢, contingent
on action executability. Part (b) says that the belief about



¢ after observing z for the true value of f; is the prior be-
lief for all possible values x; for f; that agree with ¢, times
the likelihood of f; being x; given z. The appropriateness
of parts (a) and (b) depend on the fact that physical actions
do not have any sensing aspect, while sensing actions do
not change the world. Part (c) simply says that 7 stops
when no do symbols appear in s. We proceed now with the
justifications for R. Over equality atoms, R separates the
terms of the equality and sends them to 7. Likewise, over
non-fluent predicates. When Poss is encountered, precon-
ditions take its place. Finally, R simplifies over connectives
in a straightforward way. The main result for R regarding
projection is:

Theorem 4: Suppose D is any action theory, ¢ any
situation-suppressed formula and « any action sequence:

D k ¢ldo(a,So)] iff Do U Duna = Rlldo(a, So)]]

where D, is the unique name assumption and
Rlpldo(a, Sp)]] mentions only a single situation term, Sy.

Here, D, is only needed to simplify action terms (Reiter,
2001) e.g. from fwd(4) = fwd(z), Dyn, infers z = 4. Now
when our goal is to explicitly compute the degrees of belief
in the sense of (7), we have the following property for 7:

Theorem 5: Let D be as above, ¢ any situation-suppressed
formula and a any sequence of actions. Then:

D E Bel(¢,do(a, Sy)) = T [Bel(¢, do(a, Sp))]
where T [Bel(¢, do(a, Sy))] is a term about Sy only.

Theorem 5 essentially shows how belief about trajectories
is computable using beliefs about Sy only. Note that, since
the result of 7~ is a term about Sy, no sentence outside of
D — Dy is needed. We now illustrate regression with ex-
amples. Using Theorem 5, we reduce beliefs after actions
to initial ones. At the final step, standard probabilistic rea-
soning is applied to obtain the end values.

Example 6: Let D contain the union of (2), (3) and (4)."!
Then the following equality expressions are entailed by D:

1. Bellh=10V h=11,5p) = .2
Bel(h <9,5¢) = .8
Terms about Sy are unaffected by 7. So this amounts
to inferring probabilities using Dy.
2. Bel(h = 11, do(fwd(1), So))
=T [ Bel(h = 11,do(fwd(1), Sp)) ]
=T [ Bel( RI(h = 11)[do(fwd(1), now)]] , So) ] 1)

nitial beliefs can also be specified for D, using Bel, e.g. (4)
can be replaced in Dy with Bel(h = u,Sy) = .1 foru e {2,...,11}.

= T [Bel( T [h(do(fwd(1), now))] = T[11],S0)] (i)

= T [Bel(max(0,h — 1) = 11, S,)] (iii)
= Bel(max(0,h — 1) = 11, Sy) (iv)
=0

First, since action preconditions are all true, Poss is
ignored everywhere. We underline to emphasize the
expressions undergoing transformations. We begin al-
ways by applying 7~ to the main term, in this case get-
ting (i), by means of 7 s item 4(a). Next, R’s item 1
is applied in (ii). While 7[11] = 11 by 7 s item 1, for
T [h(do(fwd(1), now))] we use item 3 and (2) to get:

7 [max(0, A(now) — 1)] = max(0, h(now) — 1)

which is substituted in (ii) to give (iii). Finally, 7s
item 4(c) yields (iv), which is a belief term about S.
Now the only valid value for £ in (iv) is 12, but for
h = 12 the robot has a belief of O initially.

3. Bel(h < 5, do(sonar(5),Sy))
_1 3 Err(s.x) x T(Belth = x Ah<5.50] ()

_! Z Err(5,x) X Bel(h = x A h < 5, 50) (ii)

1 (1
= - ( —-Bellh=4ANh<5,8))
y\3
1
+ 3 -Bellh=5Ah<5,8)) (iii)

1
+§.Bel(h=6/\hSS,So))

_1 (l -Bel(h = 4,Sp) + 1 -Bel(h = 5,50)) (iv)
y\3 3
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=2/3

where Err(5, x) is the model from (3). First, 7 ’s item
4(b) yields (i), and then item 4(c) yields (ii). Since
Err(5, x) is non-zero only for x € {4, 5, 6}, (ii) is sim-
plified to (iii) and (iv) resulting in 1/15 - 1/y. We cal-
culate y as follows:

= Err(5, x) X T [Bel(h = x A true, Sy)] i)
x€{2,...,11}
= Z Err(5, x) X Bel(h = x, So) (ii")
x€{2,...,11}
= 3/30.

4 REGRESSION FOR GENERAL
DOMAINS

We now generalize regression for domains with discrete
and continuous variables, for which a density-based notion



of belief is appropriate. The main issue is that when formu-
lating posterior beliefs after sensing, something like Defini-
tion 2’s item 4(b) will not work. This is because over con-
tinuous spaces the belief about any individual point is O.
Therefore, we will be unpacking belief in terms of the
density function, ie. in terms of P. These P(X, ¢, s) terms,
which will now also be treated as special sorts of syntac-
tic terms, are separately regressed. (Of course, the regres-
sion of weight-based belief can be approached on similar
lines.) Recall that P(X, ¢, So) is simply the density of an
initial world (where f; = x;) satisfying ¢. Formally, term
regression 7 is defined as follows:

Definition 7: For any term ¢, we inductively define:

1, 2 and 3 as before.
4. TIP(X, ¢, s)] is defined inductively:

(a) if s is of the form do(a, s’) and a is a physical

action then
TP, ¢, 5)] = T[P(X, ¢, s)]
where ¥ is Poss(a, now) D R[¢[do(a, now)]].

(b) if s is of the form do(a,s’) and a is a sens-
ing action sense(z) such that [(sense(z),s) =
Err(z, fi(s)) is in D, then:

TP, ¢, )] = Err(z, x;) X T [P(X, ¢, 5)]
where ¥ is Poss(a,now) D ¢ A fi(now) = x;.
(c) else T[P(%, ¢, )] = P(X, ¢, ).

1
5. TUBel.) = = [ 3] TIPE- 5.0

R is defined as before. We have the following property:

Theorem 8: Let D be any action theory, ¢ any situation-
suppressed formula and a any action sequence. Then

D [ Bel(¢,do(a, Sp)) = T [Bel(¢p, do(a, Sp))]

where T [Bel(¢, do(a, Sy))] is a term about Sy only.
Similarly, the analogue of Theorem 4 holds as well.

Example 9: Consider the following continuous variant of
the robot example. Imagine a continuous uniform distribu-
tion for the true value of A, as provided by (5). Suppose the
sonar has the following error profile:

l(sonar(z),s) = Irz>0
THen N(z — h(s);0,4) (10)
ELse 0

which says the difference between a nonnegative reading
and the true value is normally distributed with mean 0 and
variance 4. (A mean of 0 implies there is no systematic
bias.) Now, let D be any action theory that includes (2), (5)
and (10). Then the following equalities are entailed by D:

1. Bellh=3V h=4,5)) =0,
Bel(4 <h<6,5)=.2

7~ does not change terms about Sy. Here, for example,
the second belief term equals [ .1dx = .2.

2. Bel(h > 11,do(fwd(1), Sp))

- % f T1 PGk 2 11, do(fwd(1). S0)) | 0
xeR
1
= —f TP(x,R[¥], So)] (ii)
Y JxeR —
where i is (h > 11)[do(fwd(1), now)]
! f TIP(x, max(0, /2 — 1) > 11,S0)] (iii)
Y JxeR
_! f P(x, max(0,/ — 1) > 11, Sp) (iv)
Y JxeR
1 p(,So) if . h(t) = x A h() = 12
_1 f _ )
Y Jxer |0 otherwise
1 {.1 if x € [2,12] and x > 12 ,
= = f . (vi)
Y Jxer |0 otherwise
1 {.1 ifx=12 3
== f . (vit)
Y Jxer |0 otherwise
=0

We use 7 ’s item 5 to get (i), after which item 4(a) is
applied. On doing R in (ii), along the lines of Example
6.2, we obtain (iii). 7 ’s item 4(c) then yields (iv),
and stops. In the steps following (iv), we show how P
expands in terms of p, and how the space of situations
resolves into a mathematical expression, yielding 0.2

3. Bel(h = 0,do(fwd(4), Sy))
_ % f TLP(x, RI(h = O)[do(fwd(@), now)]1, So)] (i)
xeR

1
= - f T [P(x,max(0,h—4) =0,S5y)] (i)
Y JxeR
1 1 ifxe[2,12]and x <4
== . (iii)
Y Jxer |0 otherwise

=.2

By means of (2), after moving forward by 4 units the
belief about 4 is characterized by a mixed distribution
because & = 0 is accorded a .2 weight (i.e. from all
points where & € [2,4] initially), while & € (0, 8] are
associated with a density of .1. Here, 7 s item 5 and
4(a) are triggered, and the removal of 7 using 4(c) is
not shown. The end result is that the density function
is integrated for 2 < x < 4 leading to .2. (yis 1.)

12Given certain assumptions, it is possible to further reduce
logical expressions involving fluents to a mathematical expression
using only those variables that appear in the integral. We expand
on this in a longer version of the paper.



. Bel(h = 4, do(fwd(—4), do(fwd(4), Sy)))

:%f TP(x,Ju.h=uA
4= max(0,u + 4), do(fidd), So)] Q)

1
=- f TP(x, Ju. u = max(0,h —4) A
Y JxeR

4 = max(0,u + 4), So)] (ii)

1f {.1 ifxe[2,12], x< 4

_ 2 ] (iii)
Y Jxer |0 otherwise

=.2

We noted above that the point 4 = 4 gets a .2 weight
on executing fwd(4), after which it obtains a & value of
0. The weight is retained on reversing by 4 units, with
the point now obtaining a & value of 4. The derivation
invokes two applications of 7 ’s item 4(a). We skip the
intermediate R steps. (y evaluates to 1.)

. Bel(h = 4,do(fwd(4), do(fwd(—4), So)))

1
= - f TP(x, Ju. u = max(0,h +4) A
Y JxeR

4 = max(0, u — 4), So)] 1)
=0

Had the robot moved away first, no “collapsing” of
points takes place, i remains a continuous distribution
and no point is accorded a non-zero weight. 7 steps
are skipped but they are symmetric to the one above,
e.g. compare (i) here and (ii) above. But then the den-
sity function is non-zero only for the individual i = 4.

. Bel(4 < h < 6,do(sonar(5),Sy))
1
-1 f NG = 20,4 x TTPCx, 6, S0)]
Y JxeR
where yish=xA4<h<6

lf dA-NG-x0,4) ifxe[2,12], x€[4,6]
YJxer |0 otherwise
~ 41

We obtain (i) after 7 ’s item 5 and then 4(b) for sensing
actions. That is, belief about & € [4, 6] is sharpened
after observing 5. Basically, we are integrating a func-
tion that is 0 everywhere except when 4 < x < 6 where
itis.1 X N(5 — x;0,4), normalized over 2 < x < 12.

®

. Bel(4 < h < 6, do(sonar(5), do(sonar(5), Sp))

- % f NG = x0.4) X TIPGU) ()
where 5 = do(sonar(5), So), wish=x A4 < h < 6
= % ﬁER[N(S - x;0, 4)]2 X T[P(x, ¥, S0)] (i)

~ .52

As expected, two successive observations of 5 sharp-
ens belief further. Derivations (i) and (ii) follow from

69

0.3
do(sonar(5), do(sonar(5), So))

0.2

do(sonar(5), So)

25 5 75 125

Figure 2: Belief density change for & at S (in blue), after sensing
5 (in green) and after sensing 5 twice (in red).

7’s item 5, and two successive applications of item
4(b). Thus, we are to integrate .1 X [N'(5—x; 0, 4)]* be-
tween [4, 6] and normalize over [2, 12]. These chang-
ing densities are plotted in Figure 2.

S TWO SPECIAL CASES

Regression is a general property for computing properties
about posteriors in terms of priors after actions. It is there-
fore possible to explore limited cases, which might be ap-
propriate for some applications. We present two such cases.

Conjugate distributions

Certain types of systems, such as Gaussian processes, ad-
mit an effective propagation model. The same advantages
can be observed in our framework. We illustrate this us-
ing an example. Assume a fluent f, and suppose Dy is the
union of (I), (P1) and the following specification:

P, So) = N(f(0); 1, 1)

which stipulates that the true value of f is believed to be
normally distributed. Assume the following sensor in D:

I(sense(z), s) = N(z — f(5); 2, 02°)

Then it is easy to show that estimating posteriors yields a
product of Gaussians (that is also a Gaussian process (Box
and Tiao, 1973)), which is inferred by 7:'3

T [Bel(b < f < ¢,do(sense(z),Sy))] =
L NOs o) - Nz = x i, 02)dx

Distribution transformations

Certain actions affect priors in a characteristically simple
manner, and regression would account for these changes
as an appropriate function of the initial belief state. We
illustrate two instances using Example 9. First, consider an

13This corresponds to a simple case of Kalman filtering (Dean
and Wellman, 1991), where the sensed value is static. In the com-
plete framework with noisy effectors, we would obtain a model
where distinct actions may condition priors in distinct ways.



action grasp(z) that grabs object z. Because the action of
grasping does not affect & by way of (2), we get:

T [Bel(h < b,do(grasp(obj5), Sy))] = Bel(h < b, Sy)

So no changes to 4’s density are required. Second, consider
ground actions with the property that two distinct values of
f do not become the same after that action, e.g., for initial
states this means:

Vi, /. f() # f() O f(do(a,v) # f(do(a,))  (EQ)

Think of fwd(—4) that agrees with this, but fiwd(4) need not.
We can show that such actions “shift” priors:

T [Bel(h < b, do(fwd(—n), Sp))] = Bel(h < b —n, Sy)

Intuitively, the probability of & being in the interval [, c],
irrespective of the distribution family, is the same as the
probability of i € [b+n, c + n] after fwd(—n). Thus, regres-
sion derives the initial interval given the current one.'*

6 RELATED WORK

Perhaps the most popular models to treat sensor fusion in-
clude variants of Kalman filtering (Fox et al., 2003; Thrun
et al., 2005), where priors and likelihoods are assumed to
be Gaussian. We already pointed out some instances of
Kalman filtering in our example. Where we differ is that
backward chaining is possible even when: (a) no assump-
tions about the nature of distributions, nor about how dis-
tributions and dependencies change need to be made, (b)
the framework is embedded in a rich theory of actions, and
(c) arbitrary forms of incomplete knowledge are allowed,
including strict uncertainty."> Domain-specific dependen-
cies, then, may be exploited as appropriate.

There have been, of course, other attempts to extend the
situation calculus to reason about probabilistic belief, such
as (Poole, 1998). See BHL for a discussion on the differ-
ences to that work. On a related note, there are numerous
approaches that combine logic and probability. In partic-
ular, we mention dynamic logic proposals (Van Benthem
et al., 2009), planning languages (Younes and Littman,
2004; Sanner, 2011; Kushmerick et al., 1995), and first-
order frameworks based on the situation calculus and close
relatives (Thielscher, 2001). For discussions on these and
non-dynamic proposals such as Markov logics (Richardson
and Domingos, 2006), see (Belle and Levesque, 2013a,b).

14 Although fwd shifts the distribution linearly, in general, pro-
vided something like (EQ) is true, actions may also result in non-
linear changes to state variables, which would nonlinearly change
the mean of the distribution. Nevertheless, similar features would
be observed. See the longer version of the paper for more details.

SMoreover, the BHL model is compatible with a wide vari-
ety of formalisms such as (Fagin and Halpern, 1994; Halpern and
Tuttle, 1993; Halpern, 1990). See BHL for discussions.
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There is one other thread of related work, that of sym-
bolic dynamic programming (Boutilier et al., 2000, 2001)
which also has recent continuous extensions (Sanner et al.,
2011). While regression is used in this literature as well,
the concerns are very different: they focus on policy gen-
eration, while ours is strictly about belief change. Conse-
quently, the regression in that literature is adapted from the
regression for the non-epistemic situation calculus (Reiter,
2001). Ours, on the other hand, continues in the tradition
of the epistemic situation calculus (Scherl and Levesque,
2003) by extending those intuitions to probabilistic belief
and noisy sensing. In this regard, our account allows the
modeler to explicitly reason about beliefs in the language,
which would prove useful in formalizing the achievability
of plans (Levesque, 1996), among other things. The idea of
regression is not new and lies at the heart of many planning
systems (Fritz and Mcllraith, 2007). For STRIPS actions,
regression has at most linear complexity in the length of
the action sequence (Reiter, 2001). For other studies, see
(Van Ditmarsch et al., 2007; Rintanen, 2008).

7 CONCLUSIONS

Planning and robotic applications have to deal with numer-
ous sources of complexity regarding action and change.
Consequently, irrespective of the decompositions and fac-
torizations that are justifiable initially, belief state evolu-
tion is known to invalidate these efforts even over simple
temporal phenomena. In this paper, we obtain a general
methodology to relate beliefs after acting and sensing to
initial beliefs. We investigated the methodology in an exist-
ing model by BHL, and a continuous extension to it, mak-
ing the technique applicable to discrete domains as well as
general ones. We demonstrated regression using an exam-
ple where actions affect priors in nonstandard ways, such as
transforming a continuous distribution to a mixed one. In
general, regression does not insist on (but allows) restric-
tions to actions, that is, no assumptions need to be made
about how actions affect variables and their dependencies
over time. Moreover, at the specification level, we do not
assume (but allow) structurally constrained initial states.

There are many avenues for future work. Extending au-
tomated regression solutions (Reiter, 2001) to subjective
probabilities is ongoing work. Moreover, given the promis-
ing advances made in the area of relational probabilistic in-
ference, we believe regression suggests natural ways to ap-
ply those developments with actions. This line of research
would allow us to address effective belief propagation for
numerous planning problems that require both logical and
probabilistic representations. On another front, note that
after applying the reductions, one may also use approxi-
mate inference methods. Perhaps then, regression can serve
as a computational framework to study approximate belief
propagation, on the one hand, and using approximate infer-
ence at the initial state after goal regression, on the other.
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Abstract

This paper proposes a “probabilistic” exten-
sion of conditional preference networks as a
way to compactly represent a probability dis-
tributions over preference orderings. It stud-
ies the probabilistic counterparts of the main
reasoning tasks, namely dominance testing
and optimisation from the algorithmical and
complexity viewpoints. Efficient algorithms
for tree-structured probabilistic CP-nets are
given. As a by-product we obtain a linear-
time algorithm for dominance testing in stan-
dard, tree-structured CP-nets.

1 Introduction

Modelling preferences has been an active research
topic in Artificial Intelligence for more than fifteen
years. In recent years, several formalisms have been
proposed that are rich enough to describe complex
preferences of a user in a compact way, by e.g. Rao
and Georgeff [1991], Gonzales et al. [2008], Boutilier
et al. [2001, 2004]. Ordinal preferences, where alter-
natives, or outcomes, are ranked without the use of
numerical functions, are usually easier to obtain, and
are the topic of this paper.

In many contexts, the preferences of the user are ill-
known, e.g. because they depend on the value of
non controllable state variable, or because the system
has no information about the user — her preferences
may then be extrapolated from information gathered
for previous customers. This is typically the case in
anonymous recommendation systems, where several
users with similar preferences can be grouped into a
single model — that can then be finely tuned to fit one
particular user. In this paper, we propose to use a
probability distribution over preference models to rep-
resent ill known preferences. Specifically, we propose
to extend conditional preference networks (CP-nets,
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one of the most popular ordinal preference represen-
tation formalisms [Boutilier et al., 2004]) by attaching
probabilities to the local preference rules.

Probabilistic CP-nets are evoked for preference elicita-
tion in by de Amo et al. [2012]. However, the authors
do not give a precise semantics to their CP-nets, nor
do they study their computational properties. A more
general form of Probabilistic CP-net is also described
by Cornelio [2012], who prove that the problem of find-
ing the most probably optimal outcome is similar to
an optimisation problem in a Bayesian network.

In the present paper, we detail the Probabilistic CP
model, and especially its semantics, and provide effi-
cient algorithms to solve the corresponding dominance
and optimisation problems. After a brief presentation
of CP-nets (Section 2), we present Probabilistic CP-
nets, their semantics and explain how they can be used
in several practical settings (Section 3). In Section 4,
we give efficient algorithms and complexity results for
dominance testing. In Section 5, we turn to the opti-
misation task and prove that it can be performed in
linear time when some restriction is put on the struc-
ture of the PCP-net. Section 6 concludes the paper.

2 Background

We consider combinatorial objects defined over a set
of n variables V. Variables are denoted by uppercase
letters A, B, X,Y,.... X denotes the domain of a vari-
able X. More generally, for a set of variables U CV
, U denotes the Cartesian product of their domains.
Elements of V are called objects or outcomes, denoted
by 0,0, .... Elements of U for some U CV are denoted
by u,v’,.... Given two sets of variables U CV CV and
veYV, we write v[U] for the restriction of v to the vari-
ables in U.

In this paper we essentially consider variables with a
Boolean domain. We consistently write = and = for
the two values in the domain of X.



Preference Relations We assume that individual
preferences can be represented by an order (reflex-
ive, antisymmetric and transitive) over the set of all
outcomes V. A convenient way to specify such or-
ders over outcomes in a multi-attribute domain is
by means of local preference rules: each rule en-
ables one to compare outcomes that have some spe-
cific values for some attributes. Conditional preference
networks [Boutilier et al., 2004] enable direct compar-
isons between outcomes that differ in the value of one
variable only (called swap pairs of outcomes). Such a
rule has the form (X, u:>), with X €V, ueU for some
UCV — {X}, and > a total order on X. According
to (X, u:>), for every pair of outcomes o, 0’ such that
olU]=0'[U]=uand o[V—(UU{X })]| =0 [V-(UU{X})],
o is preferred to o’ if and only if o[X]>o[X']. Intu-
itively, the rule (X, u:>) can be read: “Whenever u is
the case, outcomes are ordered as their values for X
are ordered by >, everything else being equal”.

Example 1. Assuming a set of binary variables V=
{X1,..., X4}, the rule (x3,To:23>T3) entails that o=
T1Tox3x4 1S preferred to o' =x1ToT3xy. On the other
hand, it tells nothing about the preference between o
and o' =T1ToT3xy (everything else is not equal), nor
between x1xox3xy and x1xeTszxy (it does not apply).

Considering the transitive closure of the relation over
swap pairs, the set of all outcomes can be (partially)
ordered by a set R of such rules using the notion of flip.
An R-worsening flip is an ordered swap pair (o,0’)
for which there is a rule r=(X,u:>)€R satisfying:
olU]=0[U]=u, o[V \ (UU{X})]=0[V\ (UU{X})],
and o[X]>0'[X]. A sequence of outcomes o1, ..., 0 is
an R-worsening sequence if for 1 <i<k—1, (0;,0;41) is
an R-worsening flip. We write oo’ whenever there
is an R-worsening sequence from o to o’. By construc-
tion, the relation =g precisely captures the transitive
closure of the relation induced by R on swap pairs.
We say that the set of rules R is consistent if >p is
irreflexive, and inconsistent otherwise.

Conditional Preference Networks With a con-
ditional preference network (CP-net), one can specify
preferential dependencies between variables by means
of a directed graph G=(V, E): an edge (X,Y) indi-
cates that the preference over the domain of Y may
depend on the values of X. Given such a graph and a
vertex X €V, we write pa(X) for the set of parents of
X in (V,E): pa(X)={YeV|(Y,X)eE}.

Definition 1 (CP-net). A (deterministic) CP-net N
over a set of variables V is defined by a directed graph
(V,E), and by a conditional preference table for each
vertex / variable X €V, written CPT(X). The table
CPT(X) gives a local preference rule (X, u:>) for each
combination of values u€pa(X) for the parents of X.
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S
CP-Table A

a>a
- - J

CP-Table B

Y
CP-Table C

a:c>c

a:c>c
- - J

Figure 1: A deterministic CP-net

The graph G is called the structure of N.

When X is clear from the context, we write w:> in-
stead of (X, u:>) for a conditional rule. For instance,
given a CP-net and a binary variable B with a single
parent A, we write a:b>b for the rule (B, a:b>b). We
also write >% y for the total order over X specified by
a CP-net N for some variable X and some assignment
uepa(X). Finally, if no ambiguity can arise, we use
the same notation for a CP-net and its set of local
preference rules. In particular, we write o>y o’ to in-
dicate that there is a worsening sequence from o to o’
using the rules of N. When this is the case, we also
say that N entails o~0'.

For complexity analysis, we write |N| for the size of
N, defined to be the number of symbols needed to
write all rules, where writing a rule (X, u:>) is con-
sidered to require |U| 4 | X| symbols. We also use spe-
cific classes of CP-nets, defined by restrictions on their
structure G. For instance, the class of acyclic (resp.
tree-structured) CP-nets is the class of CP-nets whose
structure is an acyclic graph (resp. a forest).

A CP-net N is said to be inconsistent if the set of rules
of N is inconsistent, and consistent otherwise. It is
known [Boutilier et al., 2004] that all acyclic CP-nets
are consistent, but the converse is not true in general.

Example 2. Figure 1 shows a CP-net over three vari-
ables A, B,C. This CP-net is consistent (it is acyclic),
and it entails abc-abc, as can be seen from the wors-
ening sequence abc = abc - abc, which uses the first rule
in CPT(B), then the rule on A.

Given a (consistent) CP-net N the two main reason-
ing problems are dominance and optimisation. Dom-
inance is the problem of deciding whether N entails
o0 for two given outcomes o,0’, and optimisation
consists in computing the “best” outcomes according
to N; that is, the outcomes which are undominated
under >p. For acyclic CP-nets, optimisation is fea-
sible in linear time, and there is always a unique op-
timal outcome. Contrastingly, testing dominance is
PSPACE-complete for unrestricted CP-nets, NP-hard
for acyclic ones, and quadratic for tree-structured
ones [Goldsmith et al., 2005].



3 Probabilistic CP-Nets

When the preferences of the user are ill-known, typi-
cally because they depend on the value of non control-
lable state variables, or because the system has few in-
formation about the user, we would like to be able to
answer questions like “What is the probability that o is
preferred to o’ by some unknown agent?”. Probabilistic
CP-nets enable to compactly represent a probability
distribution over CP-nets and answer such queries. A
typical application is recommendation, where the pref-
erences of the current (anonymous) user are extrapo-
lated from profiles or from information gathered from
previous customers in order to estimate how likely it
is that a new customer makes a given choice.

Definition 2 (PCP-net). A probabilistic conditional
preference network A, or PCP-net, over a set of vari-
ables V, is defined by a directed graph G=(V, E) and,
for each vertex / variable X €V, a probabilistic condi-
tional preference table, written PCPT(X). The PCP-
table on X gives, for each assignment u€pa(X), a
probability distribution over the set of the total orders
on X. We write pi; x for this distribution. We also
call G the structure of NV.

In particular, when all variables are binary, a PCP-
table on X gives for each assignment u € pa(X) a prob-
ability distribution on the set of two orders {z >z, Z >
x}! . For brevity, we write u:z>Z (p) for the distri-
bution which assigns probability p to u:x>Z and 1—p
to u:x >z, as in Figure 2.

Taken as a whole, a PCP-net N is not intended to
represent a preference relation. Rather, it represents
a probability distribution over a set of (deterministic)
CP-nets, namely, those which are compatible with A/

Definition 3 (compatibility, probability). A (deter-
ministic) CP-net N is said to be compatible with a
PCP-net N, or to be N'-compatible, if it has the same
structure as N'. In this case we write NocN. If N is
N -compatible, we define the probability of N accord-

ing to N by px(N) =TI xev,uepacx) P x (>N x)-
It easily comes that pas is a probability distribution
over the set of deterministic A/'-compatible CP-nets.

Example 3. Figure 2 shows a PCP-net N over vari-

ables X,Y,Z, T, U, V. The first rule on Y, for in-
stance, says that there is a .2 probability that a de-

!The situation might become less simple when the size
of the domains increases: the PCP-table on X gives for
each assignment u € pa(X) a probability distribution on the

possible orders on X. Allthrough there are |X|! potential
orders, only a few may receive a significant probability and
shall explicity appear in the PCP table; the remaining mass
of probabilty is then assumed to be shared by the other,
less significant, preference orders.
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x>z (.1)

z|ly>y (.2)

zly>y (.3)

e y|z>z (.5)
y|z>z (5)

a e y|t>t (2)
glt>t (1)

t ju>u (1)

(v) P lusa (8)
ulv>v (\7)

@ alv>v (.6)

Figure 2: A probabilistic CP-net

terministic CP-net drawn at random contains the rule
x:y>7y; otherwise (i.e. with probability 1—0.2) it con-
tains the opposite rule x:y>vy. Independently, there is
a .3 probability that it contains T:y>y. In particular,
there is a .2 x .3=.06 probability that it contains both
and hence, that y is unconditionally preferred to 7.

The deterministic, N -compatible CP-net with the
negated value of each wvariable always preferred has
probability p=(1—.1)x (1—.2) x---x (1—-.7) x (1—.6).

Observe that when N contains cycles, pys may be
nonzero for some inconsistent CP-nets, which seems
undesirable. Moreover , while deciding whether a
given (cyclic) CP-net is consistent is a PSPACE-hard
problem [Goldsmith et al., 2005], the task is tractable
in the acyclic case. Therefore, the remainder of the
paper considers acyclic structures only.

Motivation Our motivation for studying PCP-nets
stems from several different applicative settings. In the
first one, the preference of the current (anonymous)
user are unknown but the system has at its disposal
the preferences of each of m individuals (e.g., past cus-
tomers), and for each one the preferences are given by
a (deterministic) CP-net N; over some common struc-
ture G. Then the probabilistic CP-net N over the
graph G defined by pj; v (>)=#{i[(X,u:>)EN;}/m
(proportion of N;’s which contains this rule, indepen-
dently from other rules) provides a compact summary
of the set of all individual preferences.

Such aggregation obviously induces a certain approxi-
mation of the distribution of preferences in the popu-
lation. Namely, the probability of a given CP-net NV as
computed from the PCP-net N (Definition 3) is in gen-
eral different from the proportion of individuals which
indeed have the preferences encoded by IN. Precisely,
the construction amounts to approximate the distri-
bution of preference relations as an independent one,
considering each rule as a random variable. This may



look like a crude approximation; still, as shown below,
it is sound and complete for some restricted queries.
Moreover, we discuss in Section 6 how PCP-nets can
be extended to richer representations of distributions.

A close setting in which PCP-nets may prove useful
is the one where a system interacts with a lot of in-
dividuals, but each one gives only a few preferences.
For instance, in a recommender system, assume that
each customer implicitly gives a preference of the form
u:x>T, by choosing one of two objects in a swap pair.
This is the case when, say, a customer chooses the
colour for a car in a context of interactive configura-
tion [Gelle and Weigel, 1996]: she implicitly expresses
a preference of the form w:xz>Z, where U is the set
of variables that have already been assigned and x is
the chosen colour. Individual (deterministic) rules are
thus obtained from different customers and, in the ab-
sence of other information, it clearly makes sense to
aggregate these rules independently from each other.

A third applicative context is one in which only one
person or agent expresses her preferences, but some
noise must be taken into account, due to the elic-
itation process, or possibly from the person’s pref-
erences themselves (e.g., “for dinner, with pasta
bolognese I most often prefer having parmiggiano”).
Assuming independent noise on each rule, PCP-
nets are well suited for representing such preferences
(through a rule like: dinner Abolognese : parmiggiano >
—parmiggiano(.9) for the above example).

In all these settings, a PCP-net comes with a structure,
which constrains the dependencies among variables.
In case several CP-nets are aggregated into a PCP-
net, it is natural to build the latter with the union
of all individual graphs as its own structure. Indeed,
an individual CP-net with structure (V, E) can always
be seen as one over (V, E’), for any superset E’ of E.
In the remainder of this paper we will mainly focus
on tree-structured (P)CP-nets. While this is a clear
restriction on expressivity, as we will see even such
networks raise nontrivial computational problems.

Reasoning Tasks Since a PCP-net represents a
probability distribution on a set of deterministic CP-
nets, the most natural queries are the following.

Definition 4 (probability of dominance). Given a
PCP-net N and two outcomes 0,0, the probability of
o0, written pnr(0>=0'), is defined to be the probabil-
ity mass of N -compatible CP-nets which entail 0>=0':

D

NocN,0-pno0'

pn(o-0')= pn(N)

Clearly enough, the probability of o>o' given N is
precisely the probability, when drawing a CP-net at
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random according to pas, of obtaining one which en-
tails o>0’. In the remainder of the paper, we will
essentially study how to compute such probability.

The second query is the probabilistic counterpart of
optimisation in deterministic CP-nets.

Definition 5 (probability of being optimal). Given an
acyclic PCP-net N and an outcome o, the probability
for o to be optimal, written ppr(0), is defined to be the
probability mass of N -compatible CP-nets which have
o as their optimal outcome 2.

Interestingly, despite the important approximation in-
duced when summarising a population of CP-nets
into a single PCP-net, some reasoning tasks can be
performed exactly with the approximation (PCP-net)
only. So let N be an acyclic PCP-net built from the
rulewise aggregation of individual CP-nets.

Proposition 1. Let N be an acyclic PCP-net and
{0,0'} a swap pair of outcomes, differing only on the
value of X. The probability par(0>0") is precisely the
proportion of individual CP-nets which entail o=0'.

Proof. This follows from the fact that for acyclic
G, a deterministic CP-net N entails o>o if
and only if it contains the rule o[pa(X)]:0[X]>
o[X] [Koriche and Zanuttini, 2009, Lemma 1]. O

Another interesting property is the preserva-
tion of local Condorcet winners [Xia et al., 2008,
Li et al., 2011], also called "hypercubewise Condorcet
winners” by Conitzer et al. [2011]: they are the
outcomes o which are preferred by at least one half of
the individual CP-nets to all o’ that differ from o in
the value of one variable only. Proposition 1 proves
that the hypercubewise Condorcet winners are the
outcomes that dominate each of their neighbors in the
aggregated PCP-net with a probability of at least 0.5.

Moreover, let us insist that PCP-nets may serve other
purposes than preference aggregation, as, for instance,
modelling ill-known preferences of a single user, and
that in such settings no approximation occurs.

4 Complexity of Dominance Testing

We now study the complexity of the dominance prob-
lem, namely, of computing the probability of o> o'
given a PCP-net V. We restrict our attention to tree-
structured CP-nets, that is, to the case when G is
acyclic and assigns at most one parent to each vari-
able. This arguably cannot capture all interesting de-
pendency structures among variables, but as we will
see this is already a nontrivial setting.

2Under our assumption of acyclicity, each CP-net is
guaranteed to have a unique optimal outcome, hence the
soundness of the definition.



We first give a generic construction, and use it for de-
riving a fixed-parameter tractability result, with the
number of variables over which o, o’ differ as the pa-
rameter. Then as a by-product, we derive an interest-
ing result for deterministic CP-nets, namely, an O(n)
algorithm for dominance testing. Finally, we show that
with slightly more general structures, computing the
probability of dominance is #P-hard.

4.1 Construction

The cornerstone of our results is a characterisation of
all deterministic CP-nets for which there exists a wors-
ening sequence from o to o', given a tree structure G.
The characterisation is given as a propositional for-
mula for each leaf X, written worsen®° (X), over vari-
ables of the form y:z>Z, §:2>Z, etc., with Y the
parent of X in G. An assignment of, say, y:x>Z to
T, means that the corresponding CP-net contains the
rule; a complete assignment to all variables thus de-
fines a deterministic CP-net with structure G.

Precisely, fix a forest G=(V,E) and two outcomes
0,0'. For each variable X with no parent in G, we in-
troduce the propositional variable >z, and we write
Z > for its negation (because > is total, > Z is true
iff > is false) . Similarly, for each variable X with
pa(X)={Y}, and y° € {y,y}, we introduce the propo-
sitional variables y:x>Z and y:x>Z and we write
y:Z>x and §:Z > for their respective negations.

Boutilier et al. [2004, Appendix A] show that a wors-
ening sequence may include up to ©(n) changes of
the value of some variable, even with binary tree-
structured CP-nets. We exploit it by reasoning on the
number of changes of each variable.

Precisely, the formula changeZ’ol (X) means that there
is a worsening sequence in which X alternates value at
least k times, starting from its value in o and ending
with its value in o/. For instance, change; " (X)
means that there is a worsening sequence in which X
successively takes values x,Z,z,Z (at least 4 values
and 3 alternations). Formula changeZ"’/ (X) is defined
inductively in Table 1, where Y denotes the parent
of X. We give the formulas for the case where o[X]=
x,0[Y] =y, the other cases can be obtained by symetry.
Then worsen®® (X) is defined as follows:

. worsenO’OI(X):changeg“’/(X) if o[ X]=0"[X];

e worsen®® (X)=cha nge‘l)’ol (X) otherwise.
Example 4. Consider again the PCP-net depicted in
Figure 2, and let o=zyztuv,o’ =Tyztuv. The corre-
sponding formulas are given in Table 2.

In the following, we write o[> X| for o restricted to the
variables which are ascendants of X in G (X included).
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Proposition 2. There is a worsening sequence from
o[> X] to o[> X] in which X changes value at least k

times if and only if N is a model of changeZ’ol (X).

Proof. The proof goes by induction on the definition
of the formula. For lack of space, we omit the proof
for the base cases.

For the inductive step, we give a proof only for
Rule 1 (Case o[X]=0'[X]=z,0[Y]=0[Y]=y). The
other rules are proved in exactly the same manner.
So assume first that IV satisfies the formula in Rule 1.
Then by IH there is a worsening sequence

WY, W2y, - - -, WEY, Wk+1Y

in which all w;’s are assignments to the proper ascen-
dants of Y and wyy (resp. wgt1y) is o[>Y] (resp.
o'[>Y]). If moreover N satisfies the first disjunct
(y:x>Z A y:Z>x), since the value of X has no in-
fluence on the preference over the values of Y we can
build the sequence

WYL, WYL, WYL, WY, . .., WELYT, WYL, Wk+1YT

which is a worsening sequence from o[> X] to o[> X]
where X changes value k times, as desired. Similarly,
if N satisfies the second disjunct, we can build the fol-
lowing sequence, where X also changes value k times.

WYL, WYL, WYX, . .. ,WELYL, WYL, Wk+1YT, We+1YL

Conversely, we show that if there is a sequence as in
the claim, then IV satisfies the formula in Rule 1. Let

WL, WaZ, ... ,WET, W1

be a sequence from o[>X] to o'[>X] in which z
changes value at least k>2 times. There must be two
opposite rules on X, for otherwise X cannot change
value back and forth. Hence the disjunction in the def-
inition of changeZ’O/(X) is satisfied. Moreover, these
rules must fire alternatively at least k times overall,
hence Y must take at least k different values in the se-
quence wi,ws,...,wWk+1, that is, change value at least
k—1 times. But since it starts and ends with the same
value y and k£ — 1 is odd, in fact it must change at least
k times. Hence by IH, N must satisfy changeZ’Ol(Y).
O

Proposition 3. There is a worsening sequence from
o to o if and only if N satisfies the formula
Ay worsen®® (X), where X ranges over all leaves in
the tree structure of N.

Proof. Proposition 2 shows the claim if G is reduced
to a chain. For the more general setting, consider two
branches with a common part above X (included), and



Base cases (Pa(X)=0 or k<1)
Pa(X)‘o70’ ‘k ‘changeﬁ’o (X)
0 o[ X]=0[X] 0 [T
0 o[ X]=0'[X] >0|L
0 ol X]=xz,0[X]== 0 |change]’ (X)
0 ol X]=z,d[X]=z 1 |z>z
0 o[ X]==z,d[X]=2 >1|L
{Y} |o|X]=0[X] 0 |changey’ (Y)
{Y} |o|X]#£0[X] 0 |change]” (X)
{Y}  |o[X]=0'[X] 1 |changey” (X)
{Y}  |o[X]=z,0[X]=7,0Y]=0[Y]=y |1 |(y:x>ZAchange;® (Y)) V (§:2>ZAchanges” (Y))
{Y} |oX]=wz,0[X]=%,0Y]|=y,d[Y]=9|1 |(y:z>zVy:x>T) A change]’ (V)
Inductive step (Pa(X)#0 and k>1)
Rule |k [o[X],0'[X],0[Y],0'[Y]|change]® (X)
0 odd |z, z, indifferent, indiff. changeZ’i;(X)
1 even |x,T,y,y (y:x>xZAy:2>2)V(y:Z>TAG:2>T)) A changeZ’o,(Y)
2 even |z, x,y, (y:x>zAg:2>xAchange)? (V) V (y:Z>xAg:x>TAchangey, (V)
3 even | z, T, indifferent, indiff. changeZ’i;(X)
4 odd |z,7Z,y,y (y:a:>§7/\g:§:>x/\change2f;(Y)) v (y:jt>J;/\gj:x>£/\change2f1(Y)
5 odd |z, Z,y, 7 (y:x>xA\g:z>2)V(y:T>xA\y:2>T)) A change)’ (V)
Table 1: Inductive definition of the formula changeZ’ol (X)
worsen®®’ (V) = worsen®® (U)
worsen®? (U) = (t:u>uA changeg’ol (T)) V (t:u>u A changeg’ol (7))
changeo’o,(T) = worsen®® (V)
changez’ol(T) = ((y:t>tAG:t>t)V (y:t>t AG:t>E)) A changeg’O’(Y)
worsen®? (Z) = (y:z>ZA changeg’o/(Y)) V (g:2>Z A changeg’o/(Y))
worsen®® (Y) = changeg’o/ (V)
changeg"ol (Y) = worsen”® (X)
changeg’ol(Y) = (x:y>§/\£:g>y/\change‘l”ol(X)) v (x:g>y/\;E:y>gj/\change§’°/(X)
change‘l”ol (X) = x>z
changeg’ol (X) = L

Table 2: Formulas for the example of Figure 2 with o=zyztuv, o’ = Tyztuv

write X,), Z for the set of variables above X (in-
cluded), in the left subtree below X, and in the right
subtree below X, respectively.

Clearly, if there is a worsening sequence from o to o,
then N must satisfy the formula for both branches (by
Proposition 2). For the converse, if N satisfies both
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formulas, by Proposition 2 again there is a worsening
sequence from the outcome o[>Y]=0[X]o[}] to o'[>
Y]=0'[X]0'[Y], and one from o[X]o[Z] to o'[X]d[Z].
By construction of the formula worsen®? (-), there is
one of these sequences in which the values of the vari-
ables above X change most, say, the one for ). Then
since ) and Z are independent of each other, all flips



over Z can also be performed in this sequence and in-
terleaved with those over ). In this manner we get a
worsening sequence from o to o, as desired.

The proof for a generic forest is obtained by applying
this reasoning inductively on the set of branches. [

4.2 Efficient Dominance Testing

From Propositions 2-3 we first derive a fized-parameter
tractable (FPT) algorithm for dominance testing in
tree-structured PCP-nets. Recall that a FPT algo-
rithm is one with running time O(f(k).n¢), where
n is the size of the input, c¢ is a constant, f is a
computable function, and k is some measure of the
input size, called the parameter and assumed to be
small [Flum and Grohe, 2006]. The running time of
such an algorithm is essentially a polynomial modulo
a factor which may be exponential (or more) in the
value of the parameter.

As a parameter for the dominance problem in PCP-
nets, we take the number of variables which have a
different value in o and o’. This makes sense in prac-
tice since typically, in applications, one does not have
to compare objects which are completely different from
each other. For instance, in recommender systems a
recommendation is likely to take place once the cus-
tomer has fixed a number of features of the product
which she wants to buy (e.g., “I want a recent Blues
album, cheaper than such price, etc.”).

Definition 6. The parameterized dominance
problem for tree-structured PCP-nets, written
p-Tree-PDominance, is defined by:

Input: a tree-structured PCP-net N, o, o'
Parameter: k=|{XeV|o[X]#[X]}|
Output: the probability of o0 according to N

Theorem 1. The problem p-Tree-Dominance is
fized-parameter tractable. Preciselyé it admits an al-
gorithm with running time in O(22% n).

Proof. TFor each leaf variable X in the tree of N/,
the algorithm first unrolls the formula worsen®® (X).
Each time if finds two different recursive calls (e.g., on
k—1 and k+1 in the second rule), it splits the formula
into two parts. By construction the algorithm ends up
with

‘pX:{@{(? 905(’ R 90';)5)(}'

The ¢ are mutually inconsistent, since the recursive
calls in each rule are conditioned on mutually incon-
sistent formulas about the current node. Moreover, by
Proposition 2, a CP-net N o<\ satisfies o[> X|=0'[>
X] if and only if it satisfies one of these formulas.

Now define ® to be the set of formulas

(I’:{SDXI A QX2 NN pXE | X aleaf,goX"GCI)Xi}
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that is, the “cartesian products” of the ®X’s (over all
leaves). By construction, the conjunctions in ® are
mutually inconsistent, and a CP-net N N satisfies
o0 if and only if it satisfies one of them (Propo-
sition 3). It follows that the probability sought for
can be computed in time O(|®| . n): the weight of
each conjunction of & can be obtained by multiply-
ing the probabilities of the corresponding rules in N,
in time O(n), and by mutual inconsistency the result
is obtained by summing up over the elements of ®.
Observe that some elements of ® may be inconsistent
formulas, but this can be detected efficiently since by
construction they are conjunctions of literals.

To complete the proof we only need to bound the size
of ®. First consider ®X for some variable X: by con-
struction, |®X| is 2¢, where £ is the number of rules
used which result in two different recursive calls. This
is the case for the second and third rules of Table 1
only, that is, when exactly one of X,Y has a different
value in o and o’. It follows ¢ <2k, hence |®X| <92k

for all X and finally, |®| < (2%F)* =22+ as claimed. O

4.3 The Deterministic Case

As an interesting by-product, we now derive a
linear-time algorithm for dominance testing in tree-
structured deterministic CP-nets. This improves on
the quadratic running time of the TreeDT algorithm
of Boutilier et al. [2004], and may seem odd since the
smallest worsening sequence may be of quadratic size.
This is actually not contradictory: our result says that
it is possible to decide whether this sequence exists,
without explicitly constructing it.

Theorem 2. The dominance problem for tree-
structured (deterministic) CP-nets on n variables can
be solved in linear time O(n).

Proof. The algorithm® simply consists of decid-
ing whether N satisfies the formula A y worsen®® (X)),
where X ranges over all leaves in the structure of N.
This can be done efficiently because for all four gen-
eral rules, N necessarily satisfies at most one of the
two disjuncts and hence, only one recursive call is in-
volved at each step. The only point to be checked
is that the algorithm can avoid considering the same
variable several times along different branches.

To do so, the algorithm wunrolls the formulas
worsen®:’ (X) in parallel. Each time two branches
meet at a node X, this must be through recursive calls
fired by the children of X. By construction, these calls

3This proof is a direct application of our PCP-algorithm
to the deterministic case; but the query may be addressed
by more dedicated and simpler (linear) algorithms. We
thank an anonymous reviewer for pointing this to us.



are all of the form cha ngeZ’iO/(X ), and by construction
and Proposition 3, all of them must be satisfied.

Recall that changeZ’iO/ (X) reads “X changes value at
least k; times”. Then the algorithm simply needs to
replace all recursive calls by a unique one, namely,
(X). In the end each variable is visited
O

’
0,0

changemaxi(ki)
once, and the algorithm is indeed linear-time.

Interestingly, a top-down algorithm is also possible:
starting from the root nodes in the structure of N, in-
ductively computes for each node X the greatest value
k such that NV satisfies the formula changeZ’ol (X). This
algorithm allows us to derive the following result about
incomplete deterministic CP-nets.

Say that a deterministic CP-net N is incomplete with a
given structure if it comes with a graph G but for some
variables X and assignments u to their parents, N con-
tains neither the rule u:x>Z nor the opposite rule w:
Z>xz. Incomplete CP-nets arise naturally in the pro-
cess of elicitation [Koriche and Zanuttini, 2009], and
more generally when a user is indifferent to some ob-
jects (for instance: “I have no preferred colour for mo-
torbikes, since I don’t like motorbikes at all”). Then a
completion of N is a (complete, deterministic) CP-net
with structure G and containing the rules of N.

Theorem 3. The problem of deciding whether there is
at least one completion of a given, incomplete CP-net
N with a given tree structure, which entails 0>0o’ for
given 0,0, can be solved in linear time O(n).

Proof. As evoked above, proceed top-down in the tree,
by computing for each node X the greatest k for which
there is a completion of N satisfying cha ngeZ’O/ (X). To
do so, complete all missing rules in a greedy manner.
For instance, if the current node Y and its child X
are in the setting of Inductive Step 2 of Table 1, and
N contains no rule over X, choose the rules in the
first disjunct to add in the completion of N. In this
manner, from the value k for Y we get k + 1 for X.

Obviously (because changeZ’ol (X) reads “at least k
times”), the greater the value k at each node, the more
chances there are that the current completion indeed
entails o> o', hence the algorithm is correct. (|

4.4 Hardness Result

We conclude this section by giving a hardness result,
which sheds light on the difficulty of testing dominance
in PCP-nets with a more general structure than a tree.

Theorem 4. The problem of computing py(0=0),
given a PCP-net N' and two outcomes o and o, is
#P-hard. This holds even if the structure is acyclic,
the longest path has length 3, each node has at most
one outgoing edge and at most 4 parents.
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p(Zyl >Zy, ) =1

p(ZYp >2yp):1

@ @ 2y, :P(Yp>1p)=0.5
ﬁ Zy, :P(Yp>Tp) =0

2y, :p(y1>71)=0.5
Zy, :p(y1>91)=0

y1...Yp:p(x>7)=0.5
g1...gp:p(x>z)=1
otherwise:p(z>7)=0

Figure 3: Reduction scheme

Proof. We give a reduction from #Monotone (2-4u)
Bipartite CNF, which is #P-complete [Vadhan, 2002].

Let X and Y be two disjoint sets of variables. A mono-
tone (2-4u)-bipartite CNF is a conjunction of clauses
of the form X VY, with X €eX and Y €), such that
no variable appears more than 4 times in the formula.
Given such a formula ¢, we build a PCP-net A/ over
V=X UY U Z, where Z contains one fresh variable,
written Zy, for each Y € ). The variables of Z have no
parent, each Y €) has a single parent Zy, and each
X e X has for parents the Y’s such that the clause
X VY appears in ¢ (there are at most 4 of them). This
structure and the probability of each rule are given in
Figure 3, where we show the portion of the PCP-net
that corresponds to clauses X VYi, ..., X VY.

Now consider the two outcomes o, o’ defined by o[ X]=
x,0' | X]=7 for every X € X, o[Y]=0'[Y]=y for every
Y ey, and o[Z]=z,0'[Z]=Z for every Z € Z. We show
that par(0>0') is exactly the proportion of interpreta-
tions of V in which ¢ is true.

Let I be an interpretation of X U Y, and define the
deterministic CP-net N;oc A as follows:

(1) for every Z € Z, N; contains z > Z; and

(2) for every YeY: (a) Ny contains zy :g§ >y, and
(b) if I(Y)=T then N; contains zy :y >, otherwise
it contains the opposite rule

(3) for every X e X: (a) Ny contains g ...gp: x> T,
(b) if I(X)=T then Ny contains y; ...y,:2>Z, other-
wise it contains the opposite rule, and (c) for all other
assignments v to pa(X), Ny contains u:Z > z.

We show that N; entails o>0 if and only if
I satisfies . Clearly, we can reason on sets
{X,Y1,...,Y,, Zy,,..., Zy,} independently. So as-
sume first that I satisfies (X VY1) A--- A (X VY)).

If I satisfies X, then I entails o> o’ using the worsening
flips 2y, > Zy,,..., 2y, >Zy, and y1 ...y,:x>T (which
can be performed in any order). Otherwise, I must
satisfy Y1 A---AY,, hence I entails o> o’ using the flips
2y, (Y1 > Y1y - - -5 2Y, 1 Yp > Yp, then the flip g1 ... gp:x >
7, then the flips 2y, > 2y, , ..., 2y, > Zv,, and finally the



flips 2y, ty1 > w1, -5 2y, 1 Up > Yp-

The converse is shown similarly, and finally we have
that N entails 0> 0’ if and only if I satisfies ¢. Now
by construction, each N; built in this manner has a
probability 1/2™ according to N. Hence the probabil-
ity with which A entails 0> 0’ is m/2™ if and only if
¢ has m models, which completes the reduction. [

5 Complexity of Optimisation

We now show that optimisation with tree-structured
PCP-nets is both computationally easy and simple.
The first result even holds for the much more general
class of acyclic PCP-nets.

Proposition 4. The probability for a given outcome
o to be optimal for a given acyclic PCP-net N can be
computed in linear time O(n).

Proof. In the spirit of the “forward sweeping” proce-
dure of Boutilier et al. [2004], it can be easily shown
that o is optimal for a deterministic CP-net N oc N\ if
and only if N contains (1) the rule o[X]>6[X] for all
root nodes X, and (2) the rule o[pa(X)]:0[X]>0[X]
for all other nodes X. It follows that the probability
sought for is the product of the probabilities of all these
rules, which can clearly be computed in time O(n). O

Proposition 5. The outcome with the mazimal proba-
bility of being optimal for a given, tree-structured PCP-
net N can be computed in linear time O(n).

Proof. The algorithm is a simple dynamic pro-
gramming algorithm, operating bottom-up in the tree.
First, given a leaf node X with parent Y, the algorithm
determines the optimal assignment to X given Y =y,
by taking the highest probability between rules y:x >
and y:T >z, and similarly for Y =g.

Now in the general case, given a variable Y with parent
Z and children X7, ..., X, the algorithm first consid-
ers the value z for Z, and given this value searches for
the most probable assignment to Y, X;,..., X and
their descendants. This can be done efficiently by
comparing (1) py X py1 X -+ X pyk, where p, is the
probability of the rule z:y>g and p,; (i=1,...,k) is
the previously computed probability of the best as-
signment to X; and its descendants given Y =y, and
(2) pg X pg1 X - - - X pgi. Then the algorithm computes
in a similar manner the probability of the most proba-
ble assignment given Z =2, and based on this decides
on the value y or § for each of z,z. Clearly, when
all variables have been examined, the algorithm has
computed the desired outcome. O
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6 Conclusion

We proposed a “probabilistic” extension of conditional
preference networks (CP-nets) for representing the
preferences of a group of individuals over a set of com-
binatorial objects, or for representing ill-known prefer-
ences. We studied the probabilistic counterparts of the
main reasoning tasks for CP-nets, namely dominance
testing and optimisation, from the algorithmical and
complexity viewpoints. We gave efficient algorithms
for tree-structured probabilistic CP-nets, and as a by-
product we obtained a linear-time algorithm for dom-
inance testing in standard, tree-structured CP-nets.

As studied here, the expressiveness of our formalism
is limited in two aspects. First, assuming a common,
tree-like structure is unrealistic in some applicative set-
tings. As future work, we plan to extend our results,
in particular using a notion inspired from treewidth.
The second limitation is due to the fact that the prob-
ability distribution on deterministic CP-nets which is
represented by a probabilistic CP-net, is by definition
an independent one (with rules as random variables).
So as to allow PCP-net to model more realistic distri-
butions, we plan to extend the representation by sepa-
rating the probability distribution from the structure.
An obvious choice is to use a Bayesian networks over
the rules induced by the structure as random variables.
Even with simple networks, this would allow, for in-
stance, to represent fact such as: 3/4 of those individ-
uals who prefer = to T given y also prefer z to z given
t,u. While one could fear a jump in complexity, it is
worth noticing that our main result for tree-structured
CP-nets goes through, in the sense that with such rep-
resentation, computing the probability of o> 0o’ would
amount to estimate the probability of 22k” Jeterminis-
tic CP-nets, that is, to call an oracle for inference only
a small number of times. This leaves hope that the
framework can be extended to richer representations
while preserving the low complexity of certain tasks.
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Abstract

Boosting is known to be sensitive to label
noise. We studied two approaches to improve
AdaBoost’s robustness against labelling er-
rors. One is to employ a label-noise robust
classifier as a base learner, while the other
is to modify the AdaBoost algorithm to be
more robust. Empirical evaluation shows
that a committee of robust classifiers, al-
though converges faster than non label-noise
aware AdaBoost, is still susceptible to label
noise. However, pairing it with the new ro-
bust Boosting algorithm we propose here re-
sults in a more resilient algorithm under mis-

labelling.

1 Introduction

It is well known to practitioners that boosting is sen-
sitive to label noise. The issue stems directly from
the fundamental concept of boosting in that the ef-
fort is directed towards classifying the difficult sam-
ples. In fact, the complexity of the traditional boost-
ing is very high, so much so that for a dataset with any
configuration of its labels, it is possible to draw a de-
cision boundary with zero training error. This seems
to be a good approach to the classification problem
if the difficult samples are not mislabelled samples in
the first place. In reality however, there are no firm
guarantees about the correctness of the class labels
provided with the training set. In many applications,
such as e.g. crowdsourcing data, and certain biomedi-
cal data, perfect training labels are almost impossible
to obtain. A seemingly straightforward way to control
boosting’s complexity is by means of regularisation.
However, regularisation alone might not be enough to
solve this issue — as pointed out in Long & Servedio
(2010), random misclassification defeats all boosters
that optimise a convex objective. Yet, rather curi-
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ously, almost all of the existing robust boosters are still
optimising a convex exponential loss. These boosters
include the LogitBoost by Friedman et al. (1998) that
optimises the binary log-loss, the Gentle-AdaBoost by
Friedman et al. (1998) that is more stable because of a
more conservative update step; the Modest-AdaBoost
by Vezhnevets & Vezhnevets (2005) which penalises
the ensemble when it makes a correct prediction on
previously correctly predicted instances; the BB al-
gorithm by Krieger et al. (2001) in which bagging is
combined with boosting to average out the adverse ef-
fect of noisy labelled data. There is also a heuristic
approach by Karmaker & Kwek (2006) where too dif-
ficult samples, i.e., those with very high weights, are
removed from the training set according to a prede-
fined threshold.

Motivated by the finding of Long and Servedio, Freund
(2009) proposed a more robust boosting algorithm
which optimises a non-convex potential function in-
stead of the traditional exponential loss function. The
general idea is to incorporate an early stopping as well
as a mechanism to give up if the instance is to far away
on the wrong side of the decision boundary. It shows
promising results but unfortunately the boosting pro-
cess becomes more complicated in that it also intro-
duces a free parameter that has to be tuned. Freund
suggests using cross-validation to tune the parameter
however we can not rely on the cross-validation if our
labels are noisy, unless we have a trusted validation
set with correct labels.

Inspired by the work of Long and Servedio and Freund,
we propose a different modification to AdaBoost for
tackling label noise. We engineer our objective to be a
combination of two complementary loss functions. Our
new objective is somewhat related to those employed
in the cost-sensitive boosting literature. However, in
cost sensitive literature the cost associated with each
instance is assumed to be given or known prior to the
learning, and there is no label noise involved. By con-
trast, the primary task in robust boosting is to learn



the mislabelling probabilities (which could be seen to
be analogous to costs).

Recent  developments on  label-noise  robust
classifiers such as the robust Fisher Dis-
criminant by  Lawrence & Scholkopf — (2001);
Bouveyron & Girard (2009), the robust Logis-
tic Regression by Bootkrajang & Kaban (2012);
Raykar et al. (2010), the robust Gaussian Process by
Hernéndez-Lobato et al. (2011) or the robust Nearest
Neighbours by Barandela & Gasca (2000) suggest
a new possibility to improve the existing booster
without making any adjustment to the boosting
algorithm by employing a robust classifier as a base
learner. To the best of our knowledge, there are no
attempts in the literature to pursue this direction and
this is our starting point in this work.

To summarise, we investigate the solution to boost-
ing in the presence of random misclassification noise
at two different levels. At the lower level we study
the robust committee where robust classifiers are com-
bined and boosted using existing AdaBoost algorithm.
At the higher level, we propose a new robust boosting
algorithm that we call ‘rBoost’ where the objective
function is a convex combination of two exponential
losses. The coefficients of the combination represent
uncertainty in the observed labels. The new boosting
algorithm is closely related to AdaBoost and requires
a relatively minor modification to the existing algo-
rithm. Moreover our new objective is non-convex and
exhibits robustness to labelling errors.

The paper is organised as follows. Section 2 reviews
recent literature in label-noise robust classifiers and in-
troduces the robust classifier that will be used through-
out the paper. Section 3 presents the rBoost algo-
rithm. Section 4 reports experimental results, and
Section 6 draws conclusions of the study.

2 A robust base learner

In recent years many classifiers have been introduced
to tackle the problem of learning in the presence of
label noise. To date, there are a number of classifiers
developed specifically for dealing with label noise: ro-
bust logistic regression, robust fisher discriminant, ro-
bust Gaussian Process or robust Nearest Neighbours.
All of these can potentially be used as a base classifier,
and it is then interesting to see how would such clas-
sifiers behave collectively in an ensemble. One way to
construct a robust classifier is through a probabilistic
latent variable model. Under the model, a robust clas-
sifier attempts to learn a posterior probability of the
true labels via the likelihood of the observed labels.

We will deal with random label flipping noise, that

is we assume the noise is independent of the spe-
cific features of individual data points, and flips the
latent true label y € {0,1} from class k to class j
into the observed label § € {0,1}, with probability
wjk = p(y = kly = j). We define the likelihood of
the observed label § of a point x; given the current
parameter setting as the following:

1
Pik = p(§ = klx, 0, {ij};,kzo) = ijkp(y = jlx;,0)
j=0
(1)
that is, a linear combination of the ‘true’ class posteri-
ors. From this assumption the modified log-likelihood
is given by

L0, {wir}; k=o) (4 = k) log(P)  (2)

i=1 k=0

where 1(-) is 1 if its argument is true and 0 otherwise,
and n is the number of training points. Note that any
probabilistic classifier yielding class posterior proba-
bility will fit the framework and can be converted into
a robust classifier using the technique shown.

For the sake of concreteness we will employ logistic
regression with parameter § = 3 in our study. We call
the model ‘robust Logistic Regression’ (rLR), in which
the likelihood of § = 1 is defined as:

P! = wi10(87 %) + wo (1 — 0(B7x,)) (3)

Here, 3 is the weight vector orthogonal to the deci-
sion boundary and it determines the orientation of the
separating plane and o(a) = 1/(14+exp(—a)) is the sig-
moid function. Learning the robust logistic regression
model involves estimating 3 and well as w;;. We fol-
low the steps in Bootkrajang & Kabdn (2012) where
the conjugate gradient method is used to optimise 3.
The gradient of the log-likelihood w.r.t the weight vec-
tor is, VgL(6, {wjk};,kzo) =

zn: [(?%(M}: wo1) n (1- @i)(géo - woo))

i=1 i

a(B7x:)(1 - 0(B"x;)) % Xi] (4)

The following multiplicative updates are then used to
estimate wj:

_ gio _ g11 (5)
g0+ 911’ gio + 911
goo go1
= 0y = ()
goo + go1 goo + go1



where

3 The Robust Boosting

Suppose we have a training set with corrupted labels
D = {(x,9:)}}~, where x; € R™ and g; € {+1,—1}.
Let a base hypothesis be a decision function i : x — g.
Under the boosting framework, a final hypothesis is a
linear combination of the base hypotheses and it takes
the following additive form:

T
H(z) = 3" ach(x) (5)

In boosting, the 0/1 misclassification loss incurred by
the final hypothesis is measured by the exponential
loss:

n
> 1@ = e ") L1 (G =~ (9)
i=1

This forms a boosting objective that has to be op-
timised. However, in the situation where labels are
contaminated the loss in eq.(9) is not ideal, for obvi-
ous reasons. Instead, we form a new objective that
explicitly takes into account uncertainties in labels:

(g = 1){7006_11(’”) + ’Y016H(xi)}

i=1

n

+1(gi = —1){7116H(xi) + 710€7H(Xi)} (10)

Here, v = p(§ = kly = j) are probabilistic factors
representing uncertainties in labels. Intuitively, the
loss is weighed up or down depending on the gamma
parameters ;. For example, vp; = 0.3 and 19 = 0
indicates the situation where labels in the negative
class (or class 0) are all correct — because no flip-
ping from positive to negative occurred — but labels
in the positive class are contaminated. Accordingly,
the new loss accounts for this by adjusting the loss for
the positive class (class 1) to: 0.7 x e H + 0.3 * efl.
This is a hyperbolic cosine with the two tails adjusted
and it represents the modified loss associated with the
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positive class. The shapes of such modified loss func-
tions are depicted in Figure 1. From the figure we see
that the classification that is ‘too correct’ will be pe-
nalised, hence reducing the overfitting problem. Mean-
while the loss of the negative class (class 0), which is
el + 0xe H = ef| reduces to traditional boosting.
It may be interesting to note that a similar shape of
the loss can also be obtained by truncating the Tay-
lor expansion of the exponential function to some fi-
nite degree. This could also be used to implement the
same idea, although it would not have the transparent
formulation given above.

60
—-exp(x)
wr0.9%*exp(x)+0.1*exp(—x)
===0.7*exp(x)+0.3*exp(—x)

40r

z

20r

—03 -2 -1 0

Figure 1: Various setups of the I and their associated
loss shape.

3.1 Adding a new base learner h(-)

Consider the case § = 1, and define dgg = e H®),
dor = eH() Likewise, when y = —1 define dy; =
e dio = e H®) to be an unnormalised distribution
of the data (x, 7). It can be shown that at the iteration
t of boosting, minimising the loss in eq.(10) w.r.t the
new h:(x) is equivalent to minimising the following
(the derivation details are given in the Appendix):

h,a i=1
n
+e ¢ Z {]l(yz = 1)’(1)00 =+ ]l(yl = —1)’(1)11}
i=1
+e* Z {]l(gjZ = 1)w01 + ]l(y2 = —1)’[1)10}
i—1
(11)
where
Wi — (woo — wor), if i =+1. (12)
' (w11 —wyo), ifg; =—1.
and
Wik = Yjk * djk (13)

From this, it is immediate to see that in order to min-
imise the loss we have to seek for h;(x) that minimises
the misclassification error e, = Y i | w;1(g; # h(x;)).



This step is identical to the traditional AdaBoost ex-
cept that the misclassification error of the current clas-
sifier is measured against different weighting factors
which take into account the uncertainty of the ob-
served noisy label as indicated by ~y;;. Note that the
expression is fully compatible with the traditional Ad-
aBoost such that the rBoost reduces to the original
AdaBoost when 791 = 0 and 719 = 0. We emphasise
that the weights in the rBoost need not be normalised.
In fact in the original AdaBoost the normalisation sim-
ply facilitates the algebra in deriving a closed-form up-
date for ay.

3.2 Updating oy

Now in our case, to get the update for a; we take
derivative of eq.(11) w.r.t oy, equate it to zero:

n

2 cosh(a) {wz]]-(h(xl) # ﬂz)}

=1

{1 = Dwoo + 1 =

<.

M-

— €

—l)wn}

1

+ e

.

{n(gi = Dwor + 1(§; = —1)w10} )

(14)

Now, this equation cannot be solved in closed form.
We resort to numerical optimisation to solve for the
at. Note the term which gets multiplied by 2 cosh(«)
is nothing but our error ¢; defined earlier.

i=1

3.3 Updating the sample weights

Next, to derive the update for the weight vectors, re-
call that we define wj, = ije*-’“H(xi). It follows, for
example, that the update for wyg can be written as:

Wkl = e Ti(H-+ah)
— ~ope TH . g Tiah
— ’Yoodt e (21(h(xi)#g:)—1)
— 'YOOdt 2(1]1(h(x7);£1)
o< ’)’OOdBo . eza]l(h(xi)#l) (15)

where we used the rewriting: —gh = 21(h(x) # §) —
and since e”* are shared among all wj, it does not
affect the optimisation. Similarly for the rest of the
weight vectors we get:

wé—li-l — ’}/Oldt 204]1(h(x1);£ 1) (16)
w1~1|>1 — ’Y11dt . 2a1(h(xi)7§—1) (17)
wé—li- —’Y10dt 2a]l(h(x1);£1) (18)

One way to implement this is to keep the distribution
dji separately and multiply it by v, to get a new wjy,
in each iteration.

3.4 Updating v;i

Finally, as mentioned earlier, we would also like to es-
timate the label flipping coefficients, ~y;;. We could
take derivative of the loss incurred by the current en-
semble, eq.(10), w.r.t each gamma and try to solve
this direcly. This did not yield satisfactory results
in our experience, most likely because the loss lacks
probabilistic semantics. The workaround is to con-
vert the output of boosting i.e. H into a probability.
There are three popular approaches to do that: 1) Lo-
gistic calibration p(y = 1|z, H) = 1/(1 + exp(—H))
Friedman et al. (1998), 2) Platt’s calibration p(y =
ljz, H) = 1/(1 + exp(AH + B)) where A and B need
to be learnt Platt (1999), and 3) Isotronic regression
Robertson (1988). Niculescu-Mizil & Caruana (2005)
empirically shows that Platt’s technique and Isotronic
regression are superior to a simple logistic transform.
In addition, Platt’s method has a slight advantage over
IsoReg on small sample size. Hence, in this study, we
will employ Platt’s method to get calibrated posterior
probabilities.

By converting H to p(y = 1|x, H), we can estimate the
gamma from the following binomial log-loss, or cross-
entropy. Using the notation P(x) = p(y = 1|z, H) and
P(x) =1 — P(x), this is:

_Z]l

+1(y; =

1) log {fynp(xl) + 701P(x1)}

—1)log {’Yoop(xi) +'710P(Xi)} (19)

Following the Lagrangian method which imposes oo+
Y01 = 1 and 711 +7v10 = 1, similarly to the technique in
the latent variable model (outlined in Section 2), the
multiplicative updates for v, are found to be:

gio g11

10=—"" 1= 20

7 g10 + 911 R g10 + 911 (20)
goo go1i

Yoo = —"——"—5 Yo1= — 21

goo + go1’ goo + go1 (21)

where

(g =B

Y11 B +v01 5

= —_— 22
900 = %0; (’Ylop + Y00 P; (22)

Our method is summarised in Algorithm 1.



As mentioned in the introduction, our rBoost algo-
rithm has some analogies with cost-sensitive boosting
Fan & Stolfo (1999); Masnadi-Shirazi & Vasconcelos
(2011). One major difference is that the weighting fac-
tors in our case are outside of the exponential, whereas
they are inside the exp in the mentioned works. In
Fan & Stolfo (1999) the author did briefly discuss the
possibility of having the weighting factors outside of
the exponential, however their update of the weight is
different from ours. Besides, the goal of cost-sensitive
methods is different from ours. In cost-sensitive frame-
work the cost is assumed to be known or given by the
expert, and there is no implication of labelling errors.

Algorithm 1 rBoost

Input: data {x,7}", boosting round T

Initialize wjr = ;&

fort=1to T do
(1)hy = argmaxg eq.(2) weighted by w;.
(2)Calculate the error w.r.t w; defined in eq.(12)

e =D wil(gs # he(x:))

(3)Optimise oy numerically using the gradient in
eq.(14)
(4)Update wj according to eq.(15)—(18).
(5)Calculate p(y = 1|x, H) using Platt’s method.
(6)Update ~; using eq.(20)-(21).

end for

Output the final classifier sign(ZLl aihy).

4 Empirical Evaluation

This section will investigate the performance of our
robust boosting methods in practice. In addition,
our new rBoost algorithm will be compared to the
standard AdaBoost, GentleAdaBoost and Modest Ad-
aBoost.

4.1 Methodology

We will study 4 configurations of base-learner and
booster pairs: 1) LR + AdaBoost, 2) rLR + AdaBoost,
3) LR + rBoost and 4) rLR + rBoost. These four
combinations will shed light on whether 1) a robust
committee is robust against label errors?, 2) the new
rBoost can counteract the bad effects of label noise?
and finally 3) What can we get from pairing them to-
gether? We set our baseline to be the GentleAdaBoost
and ModestAdaBoost where the base learner is a de-
cision tree with maximum node splits of 2. For LR to
serve as a weak learner, we employ random subsam-
pling to create diversity in the ensemble. Further, we
create two types of training sets by artificially injecting
symmetric and asymmetric label noise at rate 10%, as
well as at rate 30% into the training data. We train
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Table 1: Characteristic of the dataset used.

Data set # of pos. samp. # of neg. samp. dim.
Banana 2375(45%) 2924(55%) 2
Diabetes 268(35%) 500(65%) 8
Heart 120(44%) 150(56%) 13
Image 1188(57%) 898(43%) 18
Titanic 14(58%) 10(42%) 3
Twonorm 3703(50%) 3697(50%) 20
Waveform 1647(33%) 3353(67%) 21

on the corrupted training set and validate the perfor-
mance of the ensemble on a clean test set. We report
the average and standard deviation of the misclassifi-
cation rates from 10 independent random repetitions
of 150 rounds of boosting each.

4.2 Datasets

We select seven UCI machine learning datasets
Frank & Asuncion (2010) namely Banana, Diabetes,
Heart, Image, Twonorm and Waveform to use to eval-
uate the proposed boosting combinations. We use 80%
of the dataset for training and 20% for testing pur-
pose. The characteristics of the datasets used are sum-
marised in Table 1.

4.3 Results

We first investigate the behaviour of the robust clas-
sifiers as weak learners within the original AdaBoost
algorithm. From the leftmost column of Tables 2-5,
we see that when a robust classifier is used as a base
learner the generalisation error of the ensemble is al-
ready lower in comparison to the original non-robust
AdaBoost in 4 out of 7 datasets. The finding is con-
sistent across all noise levels. It is very interesting
to observe this because even though the base classi-
fier is robust, it is still under the control of the orig-
inal AdaBoost. Namely, the boosting will still guide
the classifiers to focus on the more difficult parts of
the dataset (which of course are likely to contain the
points whose labels are wrong). Why is then this com-
mittee of robust classifiers more accurate? Lower error
can come from two different sources: Either the robust
committee is indeed robust against labelling errors, or
it simply converges faster. To check this we run both
configurations for more rounds to see the dynamics
of the ensemble. Plotted in Figure 2 are the training
and test errors of AdaBoost using the robust classifiers
(rLR) as well as using the traditional classifiers (LR)
on selected datasets. Superimposed for reference are
ModestAdaBoost and rLR + rBoost.

It turns out that the robust committee converges
much quicker than the non-robust committee. How-



ever when boosted long enough we are starting to see
that their classification performances become very sim-
ilar. This answers our first research question. The
robust classifiers as weak learners introduce what is
understood to be a ‘good diversity’ in the ensemble,
and drives the ensemble to convergence much quicker
than the non-robust committee. Unfortunately how-
ever, the robustness of the base learner is not enough
to withstand the effect of labelling errors.
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Figure 2: Test error(left) and traing error(right) for
‘Banana’,‘Diabetes’, Twonorm’,*Waveform’ datasets.
The x-axis indicates boosting rounds while the y-axis
shows classification errors.

Now we see that having rLR as a base learner alone is
not enough to counteract the bad effect of mislabelling.
We investigate further if we can pair rLR which has a
fast convergence rate with our new rBoost algorithm.

Before proceeding, we need to establish that rBoost
is superior to original AdaBoost when there is label
noise. To this end, we consider two combinations:
1) AdaBoost+LR and 2)rBoost + LR in Tables 2-5.
From the tables we see that rBoost+LR performs com-
parably to its non-robust booster counterpart when
the noise rate is relatively low, and in the case of
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symmetric label case (i.e. the easy cases in terms of
label noise). However when the noise is asymmet-
ric and more severe (Table 5), rBoost significantly
outperforms the original AdaBoost in all the cases
tested. This answers our second research question.
That is, rBoost significantly improves over the orig-
inal AdaBoost in terms of classification performance
especially in higher label contamination rate condi-
tions and in asymmetric label noise conditions (i.e. the
difficult cases).

Next, we equip our rBoost method with the robust
base classifiers that enjoy fast convergence to obtain
our final robust boosting algorithm. These results are
shown in the fourth column of Table 5. The superior
performance of this approach is most apparent, and we
also give an illustrative example of the working of our
rBoost on the ‘Banana’ dataset in Figure 3. We see
that the original AdaBoost generated a patchy decision
boundary as a result of label noise, while our rBoost
returned a smoother and more appropriate decision
boundary.

Further, we validate our approach for estimating the
flip probabilities 7,5 using the multiplicative updates
given in eq.(20) and eq.(21). Disappointingly, we see
that the results (5th and 6th column of Tables 2-5) are
not as good as the ideal setting where the v, are fixed
to the true value (rBoost-Fixed gamma). However,
and more interestingly, we observe that the quality of
the estimated gammas depends highly on the quality
of the calibrated probability used in the update. As-
suming that we have a trusted validation set that we
can use to obtain a more accurate calibrated proba-
bility, we ask how well can we estimate the gammas?
We hold out a small subset of the dataset, where all of
the labels are clean. This will be our trusted valida-
tion set, and we took this set as tiny as 20 points only.
We feed this small trusted dataset into the Platt’s cal-
ibration method. We carried out this experiment on
Banana, Image and Twonorm. The classification error
from 10 repeated runs of our rBoost algorithm with the
use of the trusted validation set as a source for cali-
brating the probability is 15.74+0.23% on ‘Banana’ at
30% asymmetric noise, compared to 23.83% without.
This is taken from the sixth column of Table 5. On
Image at 30% asymmetric noise the error is as low as
7.6140.19% and on Twonorm it is 9.73+0.31%. In-
triguingly, a tiny trusted set of 20 points is able to
improve the situation even for the Image data, where
the training set size is as large as 1300 (80% of total
number of samples in Image). Thus we can conclude
that the trusted validation set approach may be seen
as a technique to effectively and efficiently incorpo-
rate extra knowledge about the labels into the rBoost
algorithm. We should note, this differs from simply in-



cluding the trusted samples into the training set, since
the latter would simply make a slight reduction of the
noise rate. Of course, the larger the trusted valida-
tion set for calibration, the better probability calibra-
tion we can expect, and consequently this should lead
to more accurate estimates of the gammas (v,1), and
hence to better classification performance.

Figure 3: Comparison of the decision boundaries ob-
tained from AdaBoost(left) and rBoost(right) in noise-
free case(top) and 30% asymmetric noise case(bottom)
on banana dataset.

5 Discussion

We have assumed throughout the study that the la-
bel noise is random and it occurs independently from
the input sample. Worth mentioning that there exist
other types of noise such as a non-random label noise,
malicious or adverserial noise, which may require a
different treatment. The random noise treated here is
simpler and more generic as it does not require spe-
cial knowledge about the noise process. By contrast,
modelling a non-random noise requires us to encode
domain expertise into the formulation, and as a conse-
quence it will yield a model specific to the application.
Interestingly, despite its simplicity, the random noise
model finds its use even in the cases where the random
assumption does not perfectly hold true, as it microar-
ray anaylsis (Bootkrajang & Kabédn (2013)). In the
context of boosting, there is an attempt to tackle non-
random noise in Takenouchi et al. (2008) where both
binary and multi-class problems are investigated.

6 Conclusion

We presented a robust boosting algorithm based on the
famous AdaBoost algorithm, which we called rBoost.
The rBoost has some advantageous properties, namely
its objective is non-convex, hence more robust, and it

88

incorporates label noise parameters that can be es-
timated efficiently using the proposed multiplicative
update rules. The new algorithm is also appealing
since it requires a minor modification to the existing
AdaBoost algorithm. We further demonstrated that
the label noise parameters can be more accurately es-
timated by using a trusted validation set for Platt’s
calibration algorithm as a form of extra information.
It shows good result close to the rBoost with label
noise parameters fixed to the true values. In addition,
we have empirically shown that simply employing a ro-
bust classifier as a base learner in the AdaBoost does
not help alleviating the bad effect of label noise. How-
ever, rather interestingly, its effect is to speed up the
boosting process. This could be advantageous in cases
of low noise. An intriguing future direction are the
theoretical analysis of our proposed rBoost and exten-
sions to multi-class problems.
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Appendix

This section shows derivation details of the rBoost algo-
rithm. The loss of the rBoost is defined as:

L(H) =) (g = 1){%0@"{("” + vo1eH(x'i)}

i=1
F1(f = _1){7116}[@(1‘) + ,yloe—H(xi)} (23)

Here, ~y;1 are again probabilistic factors representing un-
certainty in labels. We write out the form of H(x;) for the
next round of AdaBoost. Minimising this loss of eq. (23)
in a step-wise manner is then equivalent to minimising the
following:

arg min
h,a

n
(Z 1 = 1){7006—(H<xn+ah<xi>> + 7016H(x»+c«h<xi>}

i=1

1 = _1){7116H(xi)+ah(xi) i me—(H(xiHah(xi))})
(24)
=arg minz {1(?}2 = 1),70067H(x7:)67ah(xi) (25)
h,a i—1
+ 1(Fi = 1)yore™ ) 00) (26)
+1(g; = _1),}/116H(xi)eah(xi) (27)
+1(g: = —1)’7106_H<xi)6_ah(xi)} (28)



Table 2: Average classification errors and their standard deviations for AdaBoost and rBoost at 10% symmetric
noise. Boldface font shows the result which is statistically significant as tested with Wilcoxon ranksum test at

the 5% level.

Dataset AdaBoost rBoost-Fixed gamma rBoost Gentle Modest
LR rLR LR rLR LR rLR Boost Boost
Banana 18.53+£1.0  13.13+1.1 | 17.53£1.8  12.94£0.9 | 17.44+1.8 12.96+0.9 | 16.09£1.6 | 21.87+3.4
Diabetes 24.00£2.7  25.80£2.3 | 24.10+1.7  25.63+1.5 | 23.87£1.9 25.204+2.4 | 27.40+2.0 | 24.33£1.9
Heart 21.20+4.4  21.60£3.1 | 22.404£3.9  20.30+3.5 | 22.10£4.8 20.90£4.4 | 23.60+3.1 | 22.40+£3.5
Image 14.61+1.3 4.08%+1.0 15.294+1.5 4.494+0.8 13.51£1.4 4.12+0.8 4.43+0.7 | 15.91+3.1
Titanic 22.76+£1.3  22.32+1.1 | 22.97+1.4  22.37+1.1 | 22.76£1.2  22.37£1.4 | 22.30£1.7 | 23.28%+1.4
Twonorm | 5.7840.8 4.301+0.8 5.754+0.7 4.4240.9 5.72+1.0 4.41+0.7 9.65+1.0 7.214+0.5
Waveform | 16.67+£1.5 13.40+0.7 | 16.43+0.7 14.65+0.8 | 16.12+1.2 13.47+0.6 | 14.98+0.8 | 14.77£1.5
All 17.65+1.8 14.95+1.5 | 17.78+t1.6 14.97+1.3 | 17.36+1.9 14.78+1.6 | 16.92+1.5 | 18.54+2.2

Table 3: Average classification errors and their standard deviations for AdaBoost and rBoost at 30% symmetric

noise.
Dataset AdaBoost rBoost-Fixed gamma rBoost Gentle Modest
LR rLR LR rLR LR rLR Boost Boost
Banana 18.7143.1  14.73+3.0 | 18.14+1.7  14.47+2.1 | 18.05+1.6  14.94+2.7 | 20.62+1.6 | 24.69+2.5
Diabetes 25.37+£2.3  27.47+1.9 | 24.9042.3  29.57+2.4 | 25.23+£2.7 28.57+2.3 | 30.60+2.9 | 26.67+2.3
Heart 22.10+5.7  21.504£4.0 | 22.70+4.0 22.60+6.5 | 22.90+4.9  21.90+4.3 | 30.00+5.5 | 24.80+3.7
Image 14.67+1.4 6.94+1.0 15.234+1.0 6.67+1.0 14.3040.9 6.524+0.9 7.51+1.0 | 20.10+4.4
Titanic 23.12+1.6  23.01+£1.8 | 23.27+1.5  22.92+1.4 | 23.09+1.4 23.114+1.8 | 22.80+1.9 | 23.41+1.3
Twonorm | 8.53%1.1 6.67+0.9 8.77+1.0 6.87+1.3 8.63+1.0 6.60+1.1 16.06+2.0 | 8.84+0.9
Waveform | 21.02+2.1  16.88+1.8 | 20.80+2.4  18.16+2.0 | 20.41£2.2  16.96+1.6 | 20.26+2.2 | 15.57+0.9
All 19.074+2.5 16.74+2.1 | 19.11+1.9 17.32+2.4 | 18.944+2.1 16.94+2.1 | 21.12+2.4 | 20.58+2.3
Now consider each term in the sum. i Z 1(j; = 1)7016H(x1‘)ea (30)
@5)= > LG =1)yoe e = .
hlx:)=d: (27) = (ea - eia) Zﬂ(ﬂz‘ = —1)1(h(x:) # Gi)ye
+ Y L= Lyooe TOVe =
ilh(x;)#Fi

= Z (1 - i) # z}i))ﬂ(gi = 1)ypoe~H ) g
+ 3 1@ = oo T
i|h(x3)#Yi

B Z 1§ = DU(A(x:) # Gi)yooe e

=1

'7006 H(xi)e—a

+ 51 = DL(AGx) # Go)yooe 10D
i=1

= (ea - e_a) Z 1(g: = D1 (h(x:) # ﬂi)ﬁooe_H(xi)
—H(xi)e—a (29)

Using similar substitution and grouping, we also have the
following;:

(26) = ( ) Z]l h(x:) # Gi)yore™ )
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+ i 1(gi = — 1)y e (31)
(28) = (7 =) S0 = ~DA(A(x) # Gi)yoe ")
+ Z 1(j

Summing all four expressions we have the objective:

1)y10e” Hx)e™ (32)

ar%min(ea —e %) Z {l(z}i = Dyooe” D1 (h(x:) # i)
« i=1
1 =~y V1 (h(x) £ 51) }

Z{ﬂ

)Y {1 = e 10 £ 70

Dyooe H&0 4 1(3 1)7116H<xi)}

+1(5 = —1)y0e” TV L(R(x:) # Qi)}

+et D {]l(ﬂi = D01 41 = -
i=1



Table 4: Average classification errors and their standard deviations for AdaBoost and rBoost at 10% asymmetric

noise.
Dataset AdaBoost rBoost-Fixed gamma rBoost Gentle Modest
LR rLR LR rLR LR rLR Boost Boost
Banana 17.85£2.7 13.54+£1.3 16.78+1.7 12.55£1.1 17.81+2.4 13.65£1.2 16.81£1.5 | 22.27+2.8
Diabetes 24.70+£1.6  25.67x1.6 | 24.27£1.7  25.57%+1.5 | 24.23+1.6  25.97£1.7 | 27.804+2.1 | 24.93+1.6
Heart 21.70+4.4  21.504£3.9 | 21.60£3.7  22.20£2.9 | 21.30+3.7  21.10£2.7 | 26.10£3.2 | 21.70+4.2
Image 15.88+1.0 4.52+1.0 15.20+1.6 4.06+0.9 15.15+1.5 4.40+£1.2 4.45+0.7 | 24.12+1.9
Titanic 22.87+1.3  23.06+1.3 | 22.65+1.3  22.23£1.1 23.584+1.6  22.444+1.0 | 22.83£1.5 | 23.63£1.5
Twonorm 7.02+1.6 5.21+1.1 6.16+1.4 4.51+0.8 6.56+1.4 5.34+1.1 9.194+1.0 7.71+1.2
Waveform | 18.10£1.3 14.48+1.1 17.83£1.2 16.23£1.5 17.71£1.2 14.54+1.4 16.52£1.0 | 14.19+0.7
All 18.30+£1.9 15.42+1.6 | 17.78+1.7 15.33+1.4 | 18.04£1.9 15.34+1.5 | 17.67£1.6 | 19.79£1.9

Table 5: Average classification errors and their standard deviations for AdaBoost and rBoost at 30% asymmetric

noise.
Dataset AdaBoost rBoost-Fixed gamma rBoost Gentle Modest
arase LR rLR LR rLR LR rLR Boost Boost
Banana 31.45+5.2  23.534+4.7 | 27.31+£4.5 14.27+1.0 | 32.39+3.9 23.83+4.1 | 25.384+2.7 | 33.04£6.8
Diabetes 32.204+2.1 33.434+3.9 | 29.474+3.0 30.20+2.6 | 32.80+3.3 33.27+3.1 | 38.37+3.6 | 32.07+3.5
Heart 27.60+5.5 27.3046.8 | 23.00£4.3 24.30+3.8 | 28.20+6.3 28.00£6.9 | 32.00£7.2 | 29.60£11.7
Image 22.4841.6 10.70+0.9 | 16.96£1.8 5.47 £1.0 | 20.53+£1.6 9.82 £1.5 | 11.944+1.1 26.44+1.3
Titanic 32.60+£8.4 31.2148.7 | 23.88+£1.8 22.14+1.5 | 33.17+£9.3 30.73+8.7 | 32.944+9.0 | 33.49+£13.7
Twonorm | 16.024+2.4 12.07£2.0 | 8.89 £1.5 6.51 £1.3 | 14.68+2.3 12.19£2.0 | 17.85%+1.8 16.62+3.1
Waveform | 28.834+2.8 23.43£2.5 | 24.27+2.1 19.954+1.6 | 28.394+3.1 23.02+2.5 | 27.31£2.5 | 21.104+2.2
All 27.3143.9  23.09+4.2 | 21.96£2.7 17.54+1.8 | 27.16+4.2 22.97+4.1 | 26.544+3.9 | 27.474+6.0
= arg min 2 sinh(a) X
h,a
> {It(gi = DA(h(x:) # §:)lyooe T — 7016H(xi)]}
i=1
+ 2sinh(a)x
> {]l(ﬂi = —D1(h(x:) # §i) e ™) — 7106_H(xi)]}
i=1
+ e_a Z {]1(2}2 = 1)’}/00€_H(xi) + ]l(gz = —1)"}/116H(xi)}
i=1
+e” Z {l(ﬂi = 1)701€H(xi> +1(y; = *1)71067H<xi>}
1=1
(34)
Define woo = ~yooe B, woy = yo1eFD, wy; =
y11e7®) and wip = yi0e” ™) | we simplify the objec-
tive into.
arg min 2sinh(« w1 (h(x; Ui
gn ()E{ (hxi) # 5) }

+e “ Z {Mﬂi = Dwoo + 1(¢:
i=1

+e” Z {]l(ﬂz = Dwor + 1(:

where

i=1

(w11 — wio),

W — {(woo — wo1),

if 7
if ;

+1.
=-1.

—1)w11}

—1)w10} (35)

(36)
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Hilbert Space Embeddings of Predictive State Representations
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Abstract

Predictive State Representations (PSRs) are
an expressive class of models for controlled
stochastic processes. PSRs represent state
as a set of predictions of future observable
events. Because PSRs are defined entirely
in terms of observable data, statistically con-
sistent estimates of PSR parameters can be
learned efficiently by manipulating moments
of observed training data. Most learning al-
gorithms for PSRs have assumed that actions
and observations are finite with low cardinal-
ity. In this paper, we generalize PSRs to in-
finite sets of observations and actions, using
the recent concept of Hilbert space embed-
dings of distributions. The essence is to rep-
resent the state as one or more nonparamet-
ric conditional embedding operators in a Re-
producing Kernel Hilbert Space (RKHS) and
leverage recent work in kernel methods to es-
timate, predict, and update the representa-
tion. We show that these Hilbert space em-
beddings of PSRs are able to gracefully han-
dle continuous actions and observations, and
that our learned models outperform compet-
ing system identification algorithms on sev-
eral prediction benchmarks.

1 INTRODUCTION

Many problems in machine learning and artificial intel-
ligence involve discrete-time partially observable non-
linear dynamical systems. If the observations are
discrete, then Hidden Markov Models (HMMs) [1]
or, in the control setting, Input-Output HMMs (10-
HMMs) [2], can be used to represent belief as a discrete
distribution over latent states. Predictive State Repre-
sentations (PSRs) [3] are generalizations of I0-HMMs
that have attracted interest because they can have
greater representational capacity for a fixed model di-
mension. In contrast to latent-variable representa-
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tions like HMMs, PSRs represent the state of a dy-
namical system by tracking occurrence probabilities
of future observable events (called tests) conditioned
on past observable events (called histories). One of
the prime motivations for modeling dynamical systems
with PSRs was that, because tests and histories are
observable quantities, learning PSRs should be easier
than learning IO-HMMs by heuristics like Expectation
Maximization (EM), which suffer from bad local op-
tima and slow convergence rates.

For example, Boots et al. [4] proposed a spectral algo-
rithm for learning PSRs with discrete observations and
actions. At its core, the algorithm performs a singular
value decomposition of a matrix of joint probabilities
of tests and partitions of histories (the moments men-
tioned above), and then uses linear algebra to recover
parameters that allow predicting, simulating, and fil-
tering in the modeled system. As hinted above, the
algorithm is statistically consistent, and does not need
to resort to local search—an important benefit com-
pared to typical heuristics (like EM) for learning latent
variable representations.

Despite their positive properties, many algorithms for
PSRs are restricted to discrete observations and ac-
tions with only moderate cardinality. For continuous
actions and observations, and for actions and observa-
tions with large cardinalities, learning algorithms for
PSRs often run into trouble: we cannot hope to see
each action or observation more than a small num-
ber of times, so we cannot gather enough data to es-
timate the PSR parameters accurately without addi-
tional assumptions. Previous approaches attempt to
learn continuous PSRs by leveraging kernel density es-
timation [4] or modeling PSR distributions with expo-
nential families [5, 6]; each of these methods must con-
tend with drawbacks such as slow rates of statistical
convergence and difficult numerical integration.

In this paper, we fully generalize PSRs to continu-
ous observations and actions using a recent concept
called Hilbert space embeddings of distributions [7, §].



The essence of our method is to represent distributions
of tests, histories, observations, and actions as points
in (possibly) infinite-dimensional reproducing kernel
Hilbert spaces. During filtering we update these em-
bedded distributions using a kernel version of Bayes’
rule [9]. The advantage of this approach is that embed-
ded distributions can be estimated accurately without
having to contend with problems such as density esti-
mation and numerical integration. Depending on the
kernel, the model can be parametric or nonparamet-
ric. We focus on the nonparametric case: we leverage
the “kernel trick” to represent the state and required
operators implicitly and maintain a state vector with
length proportional to the size of the training dataset.

1.1 RELATED WORK

Our approach is similar to recent work that applies
kernel methods to dynamical system modeling and re-
inforcement learning, which we summarize here. Song
et al. [10] proposed a nonparametric approach to learn-
ing HMM representations in RKHSs. The resulting
dynamical system model, called Hilbert Space Embed-
dings of Hidden Markov Models (HSE-HMMs), proved
to be more accurate compared to competing models
on several experimental benchmarks [10, 11]. Despite
these successes, HSE-HMMs have two major limita-
tions: first, the update rule for the HMM relies on den-
sity estimation instead of Bayesian inference in Hilbert
space, which results in an awkward model with poor
theoretical guarantees. Second, the model lacks the ca-
pacity to reason about actions, which limits the scope
of the algorithm. Our model can be viewed as an ex-
tension of HSE-HMMs that adds inputs and updates
state using a kernelized version of Bayes’ rule.

Griinewélder et al. [12] proposed a nonparametric ap-
proach to learning transition dynamics in Markov de-
cision processes (MDPs) by representing the stochas-
tic transitions as conditional distributions in RKHS.
This work was extended to POMDPs by Nishiyama et
al. [13]. Like the approach we propose here, the result-
ing Hilbert space embedding of POMDPs represents
distributions over the states, observations, and actions
as embeddings in RKHS and uses kernel Bayes’ rule to
update these distribution embeddings. Critically, the
algorithm requires training data that includes labels
for the true latent states. This is a serious limitation:
it precludes learning dynamical systems directly from
sensory data. By contrast, our algorithm only requires
access to an unlabeled sequence of actions and obser-
vations, and learns the more expressive PSR model,
which includes POMDPs as a special case.

2 PSRS

A PSR represents the state of a controlled stochas-
tic process as a set of predictions of observable ex-
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periments or tests that can be performed in the
system. Specifically, a test of length N is an or-
dered sequence of future action-observations pairs 7 =
ai,01,...ayN,0n that can be selected and observed at
any time t. Likewise, a history is an ordered sequence
of actions and observations h = ay,01,...,ar,0M
that have been selected and observed prior to t.

A test 7; is executed at time t if we intervene [14]
to select the sequence of actions specified by the test
A ..,an. It is said to succeed at time ¢ if it is
executed and the sequence of observations in the test
rd ..,on matches the observations generated
by the system. The prediction for test ¢ at time ¢ is
the probability of the test succeeding given a history
h: and given that we execute it:!

= aq, -

= 01,-

P [Tl—O,TfA | ht]

A
T P [ | h]

P [Ti(?t | i,t7ht] = (1)

The key idea behind a PSR is that if we know the
expected outcomes of executing all possible tests, then
we know everything there is to know about the state
of a dynamical system [16]. In practice we will work
with the predictions of some set of tests; therefore, let
T = {r;} be a set of d tests. We write

d
s(he) = (P[5 | 7 hel) iy (2)
for the prediction vector of success probabilities for the
tests 7, € T given a history hs.

Knowing the success probabilities of some tests may
allow us to compute the success probabilities of other
tests. That is, given a test 7; and a prediction vector
s(ht), there may exist a prediction function f; such
that P [7° | 774, hi] = fr(s(ht)). In this case, we say
s(hy) is a sufficient statistic for P [7° | 74, hy]. A core
set of tests is a set whose prediction vector s(h;) is a
sufficient statistic for the predictions of all tests 7; at
time ¢. Therefore, s(h;) is a state for our PSR: i.e., at
each time step t we can remember s(h;) instead hy.

Formally, a PSR is a tuple (O, A, T,F,s,). O is the
set, of possible observations and A is the set of possible
actions. 7 is a core set of tests. F is the set of pre-
diction functions f;, for all tests 7; (which must exist
since T is a core set), and so = s(ho) is the initial
prediction vector after seeing the empty history hyg.

In this paper we restrict ourselves to linear PSRs, in
which all prediction functions are linear: f, (s(h¢))

'For simplicity, we assume that all probabilities involv-
ing actions refer to our PSR as controlled by an arbitrary
blind or open-loop policy [15] (also called ezogenous in-
puts). In this case, conditioning on do(az, . .., anr) is equiv-
alent to conditioning on observing ai, ..., aar, which allows
us to avoid some complex notation and derivations.



[ s(hy) for some vector f,, € RI71. Note that the re-
striction to linear prediction functions is only a restric-
tion to linear relationships between conditional proba-
bilities of tests; linear PSRs can still represent systems
with nonlinear dynamics.

2.1 FILTERING WITH BAYES’ RULE

After taking action a and seeing observation o, we can
update the state s(h;) to the state s(hiy1) by Bayes’
rule. The key idea is that the set of functions F allows
us to predict any test from our core set of tests.

The state update proceeds as follows: first, we predict
the success of any core test 7; prepended by an action
a and an observation o, which we call aot;, as a linear
function of our core test predictions s(h;):
P[Ti(i+1,0t:0 | T£+1,at:a, ht] = f;— s(he)

OoT;

3)

Second, we predict the likelihood of any observation o
given that we select action a (i.e., the test ao):

Plos =0 as =a,h] = faTos(ht) (4)

After executing action a and seeing observation o,
Equations 3 and 4 allow us to find the prediction for
a core test 7; from s(h;) using Bayes’ Rule:

Si(ht+1) =P |:7'§1+1 | Tﬁ+1,at = a,0¢ = 0, ht]
_ P[r5 100
P [Ot

_ f(-zrons(ht)

Jos(ht)

This recursive application of Bayes’ rule to a belief
state is called a Bayes filter.

3 HILBERT SPACE EMBEDDINGS

The key idea in this paper is to represent (possibly con-
tinuous) distributions of tests, histories, observations,
and actions nonparametrically as points in (possibly
infinite dimensional) Hilbert spaces. During filtering
these points are updated entirely in Hilbert space, mir-
roring the finite-dimensional updates, using a kernel
version of Bayes’ rule.

:0|T{f}5+1,at:a,ht]

o ay = a, hy]

()

3.1 MEAN MAPS
Let F be a reproducing kernel Hilbert space (RKHS)

associated with kernel Kx (z,z’) def (X (2), 9 (.Z‘/)>]__
for x € X. Let P be the set of probability distributions
on X, and X be a random variable with distribution
P € P. Following Smola et al. [7], we define the mean
map (or the embedding) of P € P into RKHS F to be

def [¢X(X)]

px =K
A characteristic RKHS is one for which the mean map
is injective: that is, each distribution P has a unique
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embedding [8]. This property holds for many com-
monly used kernels, e.g., the Gaussian and Laplace
kernels when X = R<.

Given i.7.d. observations x;, t = 1...T, an estimate of
the mean map is straightforward:

~  def
nx =

1 1
o @) =515 (©)
t=1

where TX &' (X (21),...,¢X(x7)) is the linear oper-
ator which maps the tth unit vector of R” to ¢ (2).

Below, we’ll sometimes need to embed a joint distribu-
tion P[X,Y]. It is natural to embed P[X, Y] into a ten-
sor product RKHS: let Ky (y,y’) = <¢Y(y),¢y(y’)>g
be a kernel on Y with associated RKHS G. Then we
write pxy for the mean map of P[X, Y] under the ker-
nel Kxy((z,y), («',y")) def Kx(x,2")Ky(y,y') for the
tensor product RKHS F ® G.

3.2 COVARIANCE OPERATORS

The covariance operator is a generalization of the co-
variance matrix. Given a joint distribution P[X,Y]
over two variables X on X and Y on ), the uncen-
tered covariance operator Cxy is the linear operator
which satisfies [17]

(f.Cxyvg)r =Exy [f(X)g9(Y)] VfeF,geg (7)

Both pxy and Cxy represent the distribution P [ X, Y].
One is defined as an element of F ®§G, and the other as
a linear operator from G to F, but they are isomorphic
under the standard identification of these spaces [9], so
we abuse notation and write uxy = Cxy-

Given T i.i.d. pairs of observations (z,y;), de-
fine TX (6% (z1),...,6%(zr)) and TV
((by(yl), ceey qSY(yT)). Write T* for the adjoint of Y.
Analogous to (6), we can estimate

5 1 .
Cxy = 1Y

3.3 CONDITIONAL OPERATORS

Based on covariance operators, Song et al. [18] de-
fine a linear operator Wy |x : F + G that allows
us to compute conditional expectations E [¢¥ (V) | 2]
in RKHSs. Given some smoothness assumptions [18],
this conditional embedding operator is

def -1
Wy|X = CYXCXX

(8)

(9)
and for all g € G we have
Elg(Y) | 2] = (9. Wy x¢™ (2))g

Given T i.i.d. pairs (x4, y;) from P[X, Y], we can esti-
mate Wy |x by kernel ridge regression [18, 19]:

Wy x = (1/T)YY ((1/T)1%)}



where the regularized pseudoinverse T; is given by
T§ = T*(YY*+ )~ L. (The regularization parameter
A helps to avoid overfitting and to ensure invertibility,
and thus that the resulting operator is well defined.)
Equivalently,

Wyix = YV (Gx x + ATI) =X

. def
where the Gram matrix Gx x =

entry Kx(x;,2;).

YX*TX has (4, j)th

3.4 KERNEL BAYES’ RULE

We are now in a position to define the kernel mean
map implementation of Bayes’ rule (called the Kernel
Bayes’ Rule, or KBR). In particular, we want the ker-
nel analog of P[X |y, 2] PX,y|z]/Ply|z. In
deriving the kernel realization of this rule we need
the kernel mean representation of a conditional joint
probability P[X,Y | z]. Given Hilbert spaces F, G,
and H corresponding to the random variables X, Y,
and Z respectively, P[X,Y | z] can be represented as
a mean map [ixy|s ) (6% (X)® @Y (Y) | 2] or the
corresponding operator Cxy|,. Under some assump-
tions [9], and with a similar abuse of notation as be-
fore, this operator satisfies:

Cxy|: = BXy]= o Cixy)zCry0(2) (10)

Here the operator C(xy)z represents the covariance of
the random variable (X,Y’) with the random variable
Z. (We can view (10) as applying a conditional embed-
ding operator Wxy |z to an observation z.) We now
define KBR in terms of conditional covariance opera-
tors [9]:

(11)
To map the KBR to the ordinary Bayes’ rule above,
fxX|y,- 15 the embedding of P[X |y, z2]; Cxy|; is the
embedding of P[X,Y | z]; and the action of C;}1,|Z¢(y)
corresponds to substituting Y = y into P[X,Y | z] and
dividing by Py | z].

HX|y,z = CXY\ZC;;‘Z(b(y)

To use KBR in practice, we need to estimate the
operators on the RKHS of (11) from data. Given
T i.i.d. triples (¢, ys, 2¢) from P[X,Y, Z], write T =
(0¥ (@1), ., 0% (ar)), TV = (" (y1).-.., 0" (ur)),
and TZ = (¢%(z1),...,¢%(2r)). We can now es-
timate the covariance operators éxy|z and (?yy|z

via Equation 10; applying KBR, we get CAX‘y,Z =

~ ~ -1

Cxvylz (ny‘z + AI) ®Y (y). We express this process
with Gram matrices, using a ridge parameter A that
goes to zero at an appropriate rate with 7' [9]:

A, = diag((Gz.z + ATI) 'Y 9% (2))  (12)
Wxiye = YX(A.Gyy + ATDH ALY (13)
x|y, = WXlY,Z¢Y(y) (14)
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where Gy y A yY*YY has (2,7)th entry Ky (yi,Y;),

and Gz, z F Y2 Y2 has (i, j)th entry Kz(z;, ;). The
diagonal elements of A, weight the samples, encoding

the conditioning information from z.

4 RKHS EMBEDDINGS OF PSRS

We are now ready to apply Hilbert space embeddings
to PSRs. For now we ignore the question of learning,
and simply suppose that we are given representations
of the RKHS operators described below. In Section 4.1
we show how predictive states can be represented as
mean embeddings. In Section 4.2 we generalize the
notion of a core set of tests and define the Hilbert
space embedding of PSRs. Finally, in Section 4.3 we
show how to perform filtering in our embedded PSR
with Kernel Bayes’ Rule. We return to learning in
Section 5.

4.1 PREDICTIVE STATE EMBEDDINGS

We begin by defining kernels on length-N sequences
of test observations 79, test actions 7, and his-
tories h: KTo(TO,T’O) def <¢TO(TO),¢TO(T'O))}-,

Kra(rA, 7)€ (g7 (4,67 (7*))g, and

Ky (b)) & (¢™ (h),¢™ (1)) ,.. Define also the
mean maps
prazan E [T () © 7" (14) © 9" ()| (15)

pro ran@ E 677 (1) @ 7" () @ 6™ (1y)] (16)

which correspond to operators Cra jag and
Cro 744 We now take our PSR state to be the
conditional embedding operator which predicts test
observations from test actions:
-1

S(hi) = Wroiran, =CroranCra zay, (A7)
where CTQTA\ht = CTQTA,’HC;[)I’H(bH (ht) and C'TA7TA|ht
= Cra 74 4Cs;'5,6™(hy). This definition is analogous
to the finite-dimensional case, in which the PSR state

is a conditional probability table instead of a condi-
tional embedding operator.?

Given characteristic RKHSs, the operator S(hy)
uniquely encodes the predictive densities of future ob-
servation sequences given that we take future action
sequences. This is an expressive representation: we
can model near-arbitrary continuous-valued distribu-
tions, limited only by the existence of the conditional

2In contrast to discrete PSRs, we typically consider the
entire set of length-N tests at once; this change makes
notation simpler, and is no loss of generality since the em-
bedding includes the information needed to predict any
individual test of length up to N. (Computationally, we
always work with sample-based representations, so the size
of our set of tests doesn’t matter.)



embedding operator Wyo|ra p,, (and therefore the as-
sumptions in Section 3.3).

4.2 CORE TESTS AND HSE-PSRS

As defined above, the embedding S(h:) lets us com-
pute predictions for a special set of tests, namely
length-N futures. As with discrete PSRs, knowing the
predictions for some tests may allow us to compute
the predictions for other tests. For example, given
the embedding S(h;) and another set of tests T, there
may exist a function F7 such the predictions for 7
can be computed as Wro|ra ,, = Fr(S(ht)). In this
case, S(hy) is a sufficient statistic for T. Here, as with
discrete PSRs, we focus on prediction functions that
are linear operators; however, this assumption is mild
compared to the finite case, since linear operators on
infinite-dimensional RKHSs are very expressive.

A core set of tests is defined similarly to the discrete
PSR case (Section 2): a core set is one whose embed-
ding S(h¢) is a linearly sufficient statistic for the pre-
diction of distribution embeddings of any finite length.
Therefore, S(h;) is a state for an embedded PSR: at
each time step ¢ we remember the embedding of test
predictions S(h) instead of hy.

Formally, a Hilbert space embedding of a PSR
(HSE-PSR) is a tuple (Ko (0,0"), Ka(a,a’), N, F,S,).
Ko(o,0') is a characteristic kernel on observations and
K (a,d’) is a characteristic kernel on actions. N is a
positive integer such that the set of length-N tests is
core. F is the set of linear operators for predicting
embeddings of any-length test predictions from the
length-N embedding (which must exist since length-
N tests are a core set), and So = S(ho) is the initial
prediction for our core tests given the null history hg.

4.3 UPDATING STATE WITH KERNEL
BAYES’ RULE

Given an action a and an observation o, the HSE-PSR,
state update is computed using the kernel versions of
conditioning and Bayes rule given in Section 3. As in
Section 2, the key idea is that the set of functions F
allows us to predict the embedding of the predictive
distribution of any sequence of observations from the
embedding of our core set of tests S(hy).

The first step in updating the state is finding the em-
bedding of tests of length N + 1. By our assumptions,
a linear operator F 407 exists which accomplishes this:

Wror oirar an, = FaorS(h) (18)

The second step is finding the embedding of observa-
tion likelihoods at time ¢ given actions. By our as-
sumptions, we can do so with an operator F 40:

Wo,01ah, = FaoS(hi) (19)
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With the two embeddings Wror ojrar 45, and
Wo,014,h,» we can update the state given a new action
and observation. First, when we choose an action ay,
we compute the conditional embeddings:

Co,0\hia; = 10,00 = Wo,014,n, 0" (ar) (20)

A
Wroroi 4 na, = Wroroirar an, a9 (a)  (21)

Here, x4 specifies that we are thinking of
WTO/O\TA/,A,ht as a tensor with 4 modes, one for each

of T, O, T4, A, and contracting along the mode A
corresponding to the current action. Finally, when we
receive the observation o;, we calculate the next state
by KBR:
S(h‘t"rl) = W'To/ |T'A/ Jhe a0

_ -1 o

= WTO/,O|TA/,ht,at X0 CO,OVH,CHQS (Ot) (22)
Here, xo specifies that we are thinking of
WTO’,OlTA’,ht,a,, as a tensor with 3 modes and con-
tracting along the mode corresponding to the current
observation.

5 LEARNING HSE-PSRS

If the RKHS embeddings are finite and low-
dimensional, then the learning algorithm and state
update are straightforward: we estimate the condi-
tional embedding operators directly, learn the func-
tions Fqo7 and F 4o by linear regression, and update
our state with Bayes’ rule via Egs. 18-22. See, for
example [4] or [20]. However, if the RKHS is infinite,
e.g., if we use Gaussian RBF kernels, then it is not pos-
sible to store or manipulate HSE-PSR state directly.
In Sections 5.1-5.3, we show how learn a HSE-PSR in
potentially-infinite RKHSs by leveraging the “kernel
trick” and Gram matrices to represent all of the re-
quired operators implicitly. Section 5.1 describes how
to represent HSE-PSR states as vectors of weights on
sample histories; Section 5.2 describes how to learn the
operators needed for updating states; and Section 5.3
describes how to update the state weights recursively
using these operators.

5.1 A GRAM MATRIX FORMULATION
5.1.1 The HSE-PSR State

We begin by describing how to represent the HSE-PSR
state in Eq. 17 as a weighted combination of training
data samples. Given T i.i.d. tuples {(7°, 774, ht)}le
generated by a stochastic process controlled by a blind
policy, we denote:?

3To get independent samples, we’d need to reset our
process between samples, or run it long enough that it
mixes. In practice we can use dependent samples (as we’d
get from a single long trace) at the cost of reducing the
convergence rate in proportion to the mixing time. We
can also use dependent samples in Sec. 5.1.2 due to our
careful choice of which operators to estimate.



77 = (677 ()T 60F)) (29)

T = (67 )0 ) (24)
TH = (¢™(h1),..., 0" (k1)) (25)
and define Gram matrices:
Graga="T"xT" (26)
Gy =T YH (27)

We can then calculate an estimate of the state at time
t in our training sample (Eq. 17) using Egs. 12 and 13
from the kernel Bayes’ rule derivation:
an, = (G + AT 10 % (hy) (28)
An, = diag (an,) (29)

-~

S(he) = YT (Ap, Grara + XTI AL, YT (30)

We will use these training set state estimates below to
help learn state update operators for our HSE-PSR.

5.1.2 Vectorized States

The state update operators treat states as vectors
(e.g., mapping a current state to an expected future
state). The state in Eq. 30 is written as an operator,
so to put it in the more-convenient vector form, we
want to do the infinite-dimensional equivalent of re-
shaping a matrix to a vector. To see how, we can look
at the example of the covariance operator Cro raj,
and its equivalent mean map vector firora,,:

o~ O A*
Croram, =Y Ay, XT

A~ O A
= 'UJTOTA“H = (TT *TT )Otht (31)

where « is the Khatri-Rao (column-wise tensor) prod-
uct. The last line is analogous to Eq. 6: each column
of Y77 « YT is a single feature vector ¢7° () ®
¢TA (/1) in the joint RKHS for test observations and
test actions; multiplying by ay, gives a weighted aver-
age of these feature vectors.

Similarly, the HSE-PSR state can be written:

~

S(he) = 5TO7TA\htC77‘i17T.A‘ht
= YT (Ap, Graga + ATT) 1A, YT
= (Y77 (A, Graga + AT % YT Yy, (32)

We can collect all the estimated HSE-PSR states, from

all the histories in our training data, into one operator
YT,

~ ~

Wrogame =TT 7" = (8().....8(hr)) (33)

We need several similar operators which represent lists
of vectorized conditional embedding operators. Write:

(67°() 0™ (0 R) ()
T = (67 (0T ) (39)

1O = (¢°(01),...,9%(or)) (36)
T4 = (¢4 (a1), ..., ¢ (ar)) (37)

(Our convention is that primes indicate tests shifted
forward in time by one step.) Now we can
compute lists of: expected next HSE-PSR states
Wror7ar p,.; embeddings of length-1 predictive dis-
tributions Wo|4,n,.,-; embeddings of length-1 predic-
tive distributions Wo 0|4,h,..; and finally extended
tests Wror oj747 A p,.- Vectorized, these become:

— TTol\TA/

Wro7ar .y (38)
Wolane = L (39)
Wo,014,hr = 1O (40)
Wror oprar apy = YT OTA - (41)

Each of these operators is computed analogously to
Egs. 32 and 33 above. The expanded columns of
Eqgs. 40 and 41 are of particular importance for future
derivations:

YOO = YOO (N, Gaa + ATT)  An, T (42)

Y7OTHA T (N G g+ AT A, T
(43)

Finally, the finite-dimensional product of any two lists
of vectorized states is a Gram matrix. In particular, we

need G 7 and G 7, Gram matrices corresponding

to HSE-PSR states and time-shifted HSE-PSR states:
Gr o =TT T (44)
Gy = YTy TONT (45)

5.2 LEARNING THE UPDATE RULE

The above derivation shows how to get a state esti-
mate by embedding an entire history; for a dynamical
system model, though, we want to avoid remember-
ing the entire history, and instead recursively update
the state of the HSE-PSR given new actions and ob-
servations. We are now in a position to do so. We
first show how to learn a feasible HSE-PSR state that
we can use to initialize filtering (Section 5.2.1), and
then show how to learn the prediction operators (Sec-
tion 5.2.2). Finally, we show how to perform filtering
with KBR (Section 5.3).

5.2.1 Estimating a Feasible State

If our data consists of a single long trajectory, we can-
not estimate the initial state Sy, since we only see the
null history once. So, instead, we will estimate an ar-
bitrary feasible state S, which is enough information
to enable prediction after an initial tracking phase if



we assume that our process mixes. If we have multi-
ple trajectories, a straightforward modification of (46)
will allow us to estimate Sy as well.

In particular, we take S, to be the RKHS representa-
tion of the stationary distribution of core test predic-
tions given the blind policy that we used to collect the
data. We estimate S, as the empirical average of state

estimates: 17\/\7—@|7-A7h* = TTO|TAah* where
Ly (46)
ap, = =
he = i

5.2.2 Estimating the Prediction Operators

The linear prediction operators F 4o and F o7 from
Egs. 18 and 19 are the critical parameters of the HSE-
PSR used to update state. In particular, we note that
F a0 is a linear mapping from Wyo|ra p,, to Wo an,
and Faor is a linear mapping from Wro|ray, to
Wro 0|74, 4,h,- S0, we estimate these prediction op-
erators by kernel ridge regression:

-~ oA\ T
Fao =100 (x0T (47)
Faor =177 (17T |

These operators are (possibly) infinite-dimensional, so
we never actually build them; instead, we show how to
use Gram matrices to apply these operators implicitly.

5.3 GRAM MATRIX STATE UPDATES

We now apply kernel Bayes’ rule to update state
given a new action and observation, i.e., to implement
Egs. 18-22 via Gram matrices. We start from the cur-
rent weight vector oy, which represents our current
state S(hy) = YT 1T q,.

Predicting forward in time means applying Egs. 47
and 48 to state. We do this in several steps. First we
apply the regularized pseudoinverse in Eqs. 47 and 48,
which can be written in terms of Gram matrices:

(TTO|TA)T _ TTO\TA* (TTO‘TATTO‘TA* n ATI)_I

AT
= (Gr AT YT (49)

Applying Eq. 49 to the state TTOl‘TA/ozt results in
by = (G + NI YTOT4 7y TN,
= (Gr7 + AT 'Grray (50)

Here the weight vector &; allows us to predict the ex-
tended tests at time ¢ conditioned on actions and ob-
servations up to time t — 1. That is, from Eqgs. 47, 48
and 50 we can write the estimates of Egs. 18 and 19:

FaoS(h) = T4,

FaorS(hy) =TT 0T A,
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And, from Egs. 42 and 43 we see that
T
TOMay =3 " [6u], YOO (An, Gaa + ATI) " AR X7 (51)
=1
TTO',O\TA',Adt
r o/ Al
= faa], YT T (AR, Gaa + AT T A, T (52)
i=1
After choosing action a;, we can condition the em-
bedded tests by right-multiplying Egs. 51 and 52 by
#*(a;). We do this by first collecting the common part
of Egs. 51 and 52 into a new weight vector of:
T

of = " (A, (An, Gaa+ATT) " A, T4 64 (ar) (53)
=1

The estimated conditional embeddings (Egs. 20-21)

are therefore: 0.0
— bl a
=T""af

_ T oI T a
=7 T a

Co,0\hs,a:
Wro! o174 hy.a,

Or, given a diagonal matrix with the weights af along
the diagonal, Ay = diag(af), the estimated conditional
embeddings can be written:

~ O AanO*
Co.0lh a0 = T AYY

W TO|TA papO*
WTO/7O|T‘A/7ht~,at =T AT

Given a new observation o;, we apply KBR (Eq. 22):
al® = (A'Go.0 + ATT) AT 6% (0,)  (56)

Finally, given the coeflicients af°, the HSE-PSR state
at time ¢ 4 1 is:

~ — T@/ TA/
S(ht) = WTOI|TA/JH+1 =T | a?O (57)
This completes the state update. The nonparametric
state at time t + 1 is represented by the weight vector
apr1 = af®. We can continue to recursively filter on
actions and observations by repeating Eqs. 50-57.

6 PREDICTIONS

In the previous sections we have shown how to main-
tain the HSE-PSR state by implicitly tracking the
operator Wyo|7a. However, the goal of modeling a
stochastic process is usually to make predictions, i.e.,
reason about properties of future observations. We
can do so via mean embeddings: for example, given
the state after some history h, Wyo|7a p, we can fill
in a sequence of test actions to find the mean embed-
ding of the distribution over test observations:

A
HTOha1.m = WT@\TA,thT (a1:p1) (58)
As is typical with mean embeddings, we can now pre-

dict the expected value of any function f in our RKHS:
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Figure 1: Synthetic data prediction performance. (A)
Mean Squared Error for prediction with different esti-
mated models. Each model was evaluated 1000 times;
see text for details. (B) Example of the HSE-HMM’s
predicted observations given a sequence of 100 control
inputs. As expected, the prediction is very accurate
at the current time-step but degrades over time.

Elf(o1:m) | hyarn] = (fs 70 0y (59)

The range of predictions we can make therefore de-
pends on our RKHS. For example, write m;;(01.a7) for
the function which extracts the i¢th coordinate of the
jth future observation. If these coordinate projections
are in our RKHS, we can compute E[(0;); | h,a1.0m]
as the inner product of pro\p 4,,,, With m;;. (Coordi-
nate projection functions are present, for example, in
the RKHS for a polynomial kernel, or in the RKHS
for a Gaussian kernel on any compact subset of a real
vector space.) Or, if our RKHS contains an indicator
function for a region A, we can predict the probability
that the future observations fall in A.

Sometimes the desired function is absent from our
RKHS. In this case, we can learn an approximation
from our training data by kernel linear regression. This
approximation has a particularly simple and pleasing
form: we compute fs = f(0s.s+a—1) at each training
time point s, collect these fs into a single vector f, and
predict E[f(o1.a7) | h,a1.0] = f T an, where ay is the
vector of weights representing our state after history
h. In the experiments in Section 7 below, we use this
trick to evaluate the expected next observation.

7 EXPERIMENTS

7.1 SYNTHETIC DATA

First we tested our algorithm on a benchmark syn-

thetic nonlinear dynamical system [21, 22]:

@1(t) = @2(t) — 0.1cos (z1(t)) (5aa(t) — 423 () + x‘;’(t))
—0.5cos (z1(t)) u(t

io(t) = — 6521 (t) + 5027 (

y(t) = z1(t)
The output is y; the policy for the control input u
is zero-order hold white noise, uniformly distributed

)

— 1525 (t) — x2(t) — 100u(t),

~—

between —0.5 and 0.5. We collected a single trajectory
of 1600 observations and actions at 20Hz, and split it
into 500 training and 1200 test data points.

For each model, discussed below, we filtered for 1000
different extents t; = 101,...,1100, then predicted the
system output a further ¢, steps in the future, for to =
1,...,100. We averaged the squared prediction error
over all ¢1; results are plotted in Figure 1(A).

We trained a HSE-PSR using the algorithm described
in Section 5 with Gaussian RBF kernels and tests and
histories consisting of 10 consecutive actions and ob-
servations. The bandwidth parameter of the Gaussian
RBF kernels is set with the “median trick.” For com-
parison, we learned several additional models with pa-
rameters set to maximize each model’s performance:
a 5-dimensional nonlinear model using a kernelized
version of linear system identification (K-LDS) [22],
a 5-dimensional linear dynamical system (LDS) us-
ing a stabilized version of spectral subspace identifi-
cation [23, 24] with Hankel matrices of 10 time steps;
and a 50-state input-output HMM (I0-HMM) trained
via EM [2], with observations and actions discretized
into 100 bins. We also compared to simple baselines:
the mean observation and the previous observation.
The results (Figure 1(A)) demonstrate that the HSE-
PSR algorithm meets or exceeds the performance of
the competing models.

7.2 SLOT CAR

The second experiment was to model inertial measure-
ments from a slot car (1:32 scale) racing around a
track. Figure 2(A) shows the car and attached 6-axis
IMU (an Intel Inertiadot), as well as the 14m track.
(Song et al. [20, 10] used a similar dataset.) We col-
lected the estimated 3D acceleration and angles of the
car (observations) from the IMU as well as the ve-
locity of the car (the control input) at 10Hz for 2500
steps. We split our data into 500 training and 2000
test data points. The control policy was designed to
maximize speed—it is not blind, but our learning al-
gorithm works well despite this fact.

For each model, we performed filtering for 1000 dif-
ferent extents t; = 501,...,1500, then predicted an
IMU reading a further to steps in the future, for
to = 1,...,500, using the given control signal. We
averaged the squared prediction error over all ¢1; re-
sults are plotted in Figure 2(B).

The models are: an HSE-PSR with Gaussian RBF ker-
nels on tests and histories consisting of 150 consecutive
actions and observations; a 40-dimensional nonlinear
model trained by K-LDS with the same settings as
our HSE-PSR; a stablized 40-dimensional LDS with
Hankel matrices of 150 time steps; and a 50-state 10-
HMM, with observations and actions discretized into
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Figure 2: Slot car experiment. (A) The slot car plat-
form: the car and IMU (top) and the racetrack (bot-
tom). (B) Mean Squared Error for prediction with
different estimated models. Each model was evaluated
1000 times; see text for details.

200 bins. We again included mean and previous obser-
vation as baselines.* In general, the dynamical systems
designed for continuous observations and controls per-
formed well, but the HSE-PSR consistently yields the
lowest RMSE.

7.3 ARM END-EFFECTOR PREDICTION

In the final experiment we look at the problem of pre-
dicting the 3-d position of the end-effector of a simu-
lated Barrett WAM robot arm observed by a depth-
camera. Figure 3(A) shows example depth images.

We collected 1000 successive observations of the arm
motor babbling. The data set consisted of depth maps
and the 3D position of the end-effector along with the
joint angles of the robot arm (which we treat as the
control signal). The goal was to learn a nonlinear dy-
namical model of the depth images and 3D locations
in response to the joint angles, both to remove noise
and to account for hysteresis in the reported angles.
After filtering on the joint angles and depth images,
we predict current and future 3D locations of the end-
effector. We used the first 500 data points as training
data, and held out the last 500 data points for testing
the learned models.

For each model described below, we performed filter-
ing for 400 different extents t; = 51,...,450 based
on the depth camera data and the joint angles, then
predicted the end effector position a further ¢y steps
in the future, for to = 1,2...,50 using just the inputs.
The squared error of the predicted end-effector posi-
tion was recorded, and averaged over all of the extents
t1 to obtain the means plotted in Figure 2(B).

We trained a HSE-PSR with Gaussian RBF kernels
and tests and histories consisting of 5 consecutive ac-

4Like a stopped clock, the previous observation (the
green dotted line) is a good predictor every 130 steps or so
as the car returns to a similar configuration on the track.
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Figure 3: Robot end-effector prediction. (A) Observa-
tions consisted 640x480 pixel depth images of a robot
arm. (B) Mean Squared Error (in cm) for end-effector
prediction with different learned models. Each model
was evaluated 400 times; see text for details.

tions and observations. For comparison, we learned
a 100-dimensional nonlinear model using K-LDS with
the same settings as our HSE-PSR, a stabilized 100-
dimensional LDS with Hankel matrices of 5 time steps;
and a 100-state discrete IO-HMM where observations
and actions were discretized into 100 values. This is a
very challenging problem and most of the approaches
had difficulty making good predictions. For example,
the K-LDS learning algorithm generated an unstable
model and the stabilized LDS had poor predictive ac-
curacy. The HSE-PSR yields significantly lower mean
prediction error compared to the alternatives.

8 CONCLUSION

In this paper we attack the problem of learning a con-
trolled stochastic process directly from sequences of ac-
tions and observations. We propose a novel and highly
expressive model: Hilbert space embeddings of predic-
tive state representations. This model extends discrete
linear PSRs to large and continuous-valued dynamical
systems. With the proper choice of kernel, HSE-PSRs
can represent near-arbitrary continuous and discrete-
valued stochastic processes.

HSE-PSRs also admit a powerful learning algorithm.
As with ordinary PSRs, the parameters of the model
can be written entirely in terms of predictive distribu-
tions of observable events. (This is in stark contrast
to latent variable models, which have unobservable pa-
rameters that are usually estimated by heuristics such
as EM.) Unlike previous work on continuous-valued
PSRs, we do not assume that predictive distributions
conform to particular parametric families. Instead, we
define the HSE-PSR state as the nonparametric em-
bedding of a conditional probability operator in a char-
acteristic RKHS, and use recent theory developed for
RKHS embeddings of distributions to derive sample-
based learning and filtering algorithms.
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Scoring and Searching over Bayesian Networks with Causal and
Associative Priors

Giorgos Borboudakis
Comp. Sci. Dept., University of Crete
Institute of Computer Science, FORTH

Abstract

A significant theoretical advantage of search-
and-score methods for learning Bayesian Net-
works is that they can accept informative
prior beliefs for each possible network, thus
complementing the data. In this paper,
a method is presented for assigning priors
based on beliefs on the presence or absence of
certain paths in the true network. Such be-
liefs correspond to knowledge about the pos-
sible causal and associative relations between
pairs of variables. This type of knowledge
naturally arises from prior experimental and
observational data, among others. In addi-
tion, a novel search-operator is proposed to
take advantage of such prior knowledge. Ex-
periments show that, using path beliefs im-
proves the learning of the skeleton, as well as
the edge directions in the network.

1 INTRODUCTION

One theoretical advantage of the search-and-score ap-
proach to learning Bayesian Networks [Cooper and
Herskovits, 1992] versus the constraint-based approach
[Spirtes et al., 2000] is that the former naturally ac-
cepts priors for each network. Since the number of pos-
sible networks is exponential to the number of nodes,
in a practical setting one has to assign priors in an
implicit way. In this paper, we consider prior beliefs
on the possible paths between variable pairs. Such
paths directly correspond to causal or associative
relations. The joint beliefs on the paths is then em-
ployed to assign a prior on each network.

Causal knowledge naturally derives from prior exper-
imental data while associative knowledge stems from
observational data. For example, consider a dataset D
measuring the average amount of exercise per week E,
calcium in diet C', occurrence of osteoporosis by 60yrs
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O and smoking S in a cohort of women. A Bayesian
Network could be induced by any appropriate learning
method. However, if a prior experimental study showed
that increasing the amount of exercise reduces the oc-
currence of the disease, then the knowledge belief that
[E causes (that is, causally affects) O] with probability
p should be incorporated during learning. Similarly, if
a prior cohort study (observational study) has shown
that smoking correlates with reduced exercising, then
knowledge [S and E are associated] with probability p’
should also be included. The belief strengths p and p’
depend on several factors, such as the statistical power
of the study. Notice that the fact [E causes O] does
not correspond to the presence of the edge £ — O in
the network: the edge implies a direct causal relation
(in some context of modeled variables) while [E causes
O] does not depend on the context.

Path beliefs are inherently dependent. For exam-
ple, if one believes with certainty that [X causes Y]
and [Y causes Z], then one has to believe that [X
causes Z] to be consistent. Therefore, one should
consider the joint distribution of the input path be-
liefs, instead of the marginal distributions separately.
However, it is very unlikely that the complete joint
distribution is available. Instead, one could use
the marginal distributions to infer a joint distribu-
tion. However, there are several technical difficul-
ties to consider. For example, assume we are given
P(X causes Y) = 0.8 and P(Y causes Z) = 0.8 and
wish to compute P(X causes Y,Y causes Z). On one
hand, there may be several choices for the joint given
the same marginal beliefs. In the above scenario we
can infer P(X causes Y,Y causes Z) € [0.6,1]. On
the other hand, the beliefs maybe incoherent [Hansen
et al., 2000], that is, not extendable to a joint distri-
bution that satisfies the probability axioms.

We present a method that computes a joint distribu-
tion of the path beliefs such that: if the path beliefs
are coherent the joint is the closest to uninformative
priors; if they are incoherent the joint is chosen to be



coherent and induces path probabilities that are close
to the input beliefs. Once the joint is computed, it
can be employed to efficiently compute the prior of a
network. Furthermore, to take advantage of the prior
knowledge, we introduce a novel search-operator.

In simulated proof-of-concept experiments we show
that the new scoring method can indeed take advan-
tage of prior knowledge. When provided with causal
knowledge, it is able to better learn the orientations of
the edges and the causal relations. Informative priors
can also facilitate learning the skeleton of the network.
Finally, we show that the proposed search-operator
significantly improves the quality of the learned model.

There are several other methods that make use of prior
knowledge when learning a network (see [Angelopou-
los and Cussens, 2008] for a review). For example, us-
ing knowledge regarding the parameters of the network
[Niculescu et al., 2006], a causal total order of the vari-
ables [Cooper and Herskovits, 1992], the presence or
absence of directed edges in the network [Meek, 1995]
possibly with beliefs assigned to them [Buntine, 1991,
Robert and Arno, 2000], or a prior network, used to
assign prior probabilities to each network based on the
distance from this network [Heckerman et al., 1995]. In
general, it can be argued that the type of knowledge
the existing methods can incorporate during learning
is not in a form that can be easily acquired. As a
result, uniform - and thus uninformative - priors are
commonly used when learning Bayesian Networks from
data. The problem of incorporating informative priors
while learning is listed in the list of open problems in
a recent causality editorial [Spirtes, 2010].

There also is prior work that specifically considers path
constraints or beliefs. The methods in [Borboudakis
et al., 2011, Borboudakis and Tsamardinos, 2012]
assume one first learns a Markov-Equivalence class
of Bayesian Networks or Maximal Ancestral Graphs
[Spirtes et al., 2000] (a generalization of Bayesian Net-
works that admits hidden variables) from data and
then, path constraints are imposed on the graph. In
contrast, in this work the network is learned with the
help of the prior knowledge. In [O’Donnell et al., 2006]
a method is presented for incorporating beliefs on
paths, but relies on computationally expensive Markov
Chain Monte Carlo (MCMC) simulations. However,
neither the latter, nor any other method dealing with
prior knowledge deals with the issues of dependent and
possibly incoherent beliefs.

2 BACKGROUND

We assume the reader’s familiarity with Bayesian Net-
works [Pearl, 2000, Neapolitan, 2003] and learning al-
gorithms and just briefly review the basic concepts.
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Let V be a set of k random variables {V;}F ;.
A Bayesian Network (BN) over V is a pair
B ={(Gy,Py), where Gy is a Directed Acyclic
Graph (DAG) representing conditional independen-
cies between variables V, and Py is the joint proba-
bility distribution (j.p.d.) of V. The graph and dis-
tribution must be connected by the equation Py, =
[T1P(Vi|Pag(V;)), where Pag(V;) are the parents of V;
in G. The above equation is equivalent to what is called
the Markov Condition. When the network is fixed
in a context we drop the indexes V), G from the equa-
tions. The skeleton of a BN G is the undirected graph
which can be constructed by ignoring the orientations
of G. A triple of vertices (X,Y, Z) is called a collider
inG,if X Y « Zisin G. A collider (X,Y,Z) is
unshielded if X and Z are not adjacent in G. Two
BNs are called Markov equivalent if: (a) they have
the same skeleton, and (b) they have the same set of
unshielded colliders. A Partially Directed Acyclic
Graph (PDAG) (also known as essential graph) is a
graph representing a set of Markov equivalent BNs. It
has the same skeleton as all BN representatives and
an edge is directed if and only if it is invariant in all
BN representatives. A directed path from X to Y
is denoted as X = Y. We denote as X < Y the
case where X and Y share a common ancestor in G,
but neither X is an ancestor of Y nor the reverse. A
d-connecting path (given the empty set) between X
and Y exists if either X =Y, X <Y, or X & Y.
The absence of a d-connecting path between X and
Y is denoted as X < Y. In the rest of the paper,
we assume the Faithfulness Condition [Spirtes et al.,
2000] that (together with the Markov Condition) im-
plies that there is a d-connecting path between X and
Y, if and only if the two nodes are statistically associ-
ated (dependent).

Let D be a complete multinomial dataset over vari-
ables V. The probability of a network G over V is
P(G|D) «x P(D|G) - P(G). The score of a network
is often obtained by taking the logarithm of P(G|D),
and equals Sc(G|D) = S¢(D|G) + Sc¢(G) . Bayesian
scoring methods such as K2 [Cooper and Herskovits,
1992] and BDe, BDeu, [Heckerman et al., 1995] try to
approximate the log-likelihood based on different as-
sumptions. When priors are uniform, the term Sc¢(G)
can be ignored during maximization. In our setting
however, this term may become important.

3 REPRESENTING PATH BELIEFS

For any pair X,Y € V we may have a prior belief
on the possible paths connecting the two nodes in the
network. It is important that we devise cases for such
paths that are mutually exclusive and allow the rep-
resentation of common types of causal and associa-



tive knowledge. This is possible as follows: we define
the path variables r; ; taking values in the domain
{=, <, ©, %} with the semantics V; = V;, V; <V},
Vi & V;, and V; 4 V; respectively. When the specific
nodes V;, V; we refer to are not important we will use
a single index: r;. Each variable r; ; has a probability
distribution II,, ; = (7=, 7T, e, Te) over each pos-
sible value. The input to our method is a set of path
beliefs K = (R, II), where R is a set of path variables
and IT the set of probability distributions associated
with them. An example is shown in Table la(Top) ex-
pressing the belief that most likely there is a directed
path from X to Y and from Y to Z.

The possible paths between nodes dictate their possi-
ble causal and associative relations. When the BN is
interpreted causally, then X = Y is equivalent to [X
causes Y]. In addition, as discussed in the previous
sectiont: X = Y or X <« Y or X & Y is equiva-
lent to [X is associated with Y]. Thus, a distribu-
tion I, , = (7=, T, T, Te) corresponds to beliefs
about the causal and associative relations.

In practice, it is useful to allow the user to spec-
ify prior beliefs directly on the events [X does (not)
cause Y] and [X is (not) associated with Y] from
which the distribution II,,, can be derived, than the
opposite. This is not difficult: for example given
P(X causes Y) = m— the mass of probability 1 — 7—
has to be distributed in a reasonable way to the other
three values. However, we avoid this belief represen-
tation to simplify the presentation of the method.

4 SCORING PATH BELIEFS

In this section, we derive a score for DAG G given data
D and n path beliefs in K. An important requirement
for the computation of the score is knowledge of a joint
distribution J = P(rq,...,r,|II) = P(RJ|II) such that
its marginals correspond to the distributions in II. We
assume J is already computed; the following sections
describe the details of this computation. The j.p.d. J
stemming from K in Table la is shown in Table 1b.

We denote with C' (configuration) a given joint instan-
tiation of values to path variables R = (rq,...7,), and
define Jo = P(R = C|II). It is important to notice
that for each graph G the configuration C is uniquely
determined. For example, in the j.p.d. of Table 1b, if
inagraph G X =Y, Y = Z and X = Z hold, then
r = (). Thus, it makes sense to denote with Cg the
joint instantiation of variables R in graph G.

Let G be a DAG and D a dataset over the same vari-
ables. We now compute the probability P(G|D, J):

P(D|G,J)-P(G|J) P(D|G)-P(G|J)

PEDD==""50 = P9
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The second equation stems from the fact that given
the graph G the data D are independent of J (J does
not provide any additional information about the data
once the graph is known). The factor P(D|J) is a
normalizing constant that does not need be computed
when we maximize the above equation over different
graphs. In Section 2 we mention several approxima-
tions for computing the factor P(D|G). We now focus
on the prior P(G|J):

P(G|J) =P(G,CglJ) = P(G|J,Cg) - P(Cg|J) =
P(G|Cg) - P(Cg|J) = P(G|Cq) - Jeg

The first equation holds because Cg is a function of G.
The factor P(G|C¢) is our prior on a graph G given
that a specific configuration holds. Given no other
preference or knowledge we assign the same prior to
all graphs with the same configuration. Let Ng be
the number of DAGs over nodes V sharing the same
configuration C. Then P(G|Cq) = 1/N¢,, and so:

1%Gu)=i%? and sqau):mg<£f> (1)
G G

The overall score of a graph is then defined as:

Se(G|D, J) = Se(D|G) + Se(G|J) (2)

The score Sc¢(G|D, J) has two desirable properties:

1. Markov-Equivalent graphs that satisfy the
same path-beliefs obtain the same score.
The last term in the equation above is the
same for graphs sharing the same configuration.
The first term is the same for Markov-equivalent
graphs provided one employs an appropriate scor-
ing function, such as the BDe score [Heckerman
et al., 1995].

2. For uninformative prior beliefs, all graphs
are equiprobable a priori, that is, P(G|J) =
1/N, where N is the number of graphs over nodes
V. With uninformative beliefs we expect to en-
counter a given configuration with probability
equal to the proportion of the graphs satisfying

the configuration, i.e,. Jo = % In that case,
P(G|J) = He . NLC = + and we end up with

uniform priors as we would expect.

While Eq. 1 follows the above two properties, we point
out to the fact that the factor 1/N¢, may seem to pro-
vide counter-intuitive results at a first glance. The rea-
son is that, everything else being equal, higher priors
will tend to be assigned to graphs in “small” configu-
rations, that is, consistent with only a few graphs. If
this is not desirable then one can drop the 1/N¢ fac-
tor. However, if this score is used in place of Eq. 1
then Property 2 above is not satisfied any more.



Table 1: (a) (Top Part) Path beliefs K for three pairs of nodes. The beliefs are incoherent: P(X = Y) = 0.8
and P(Y = Z) = 0.9 imply that P(X = Z) € [0.7,1]. (a) (Bottom Part) Induced coherent beliefs K’ stemming
from K by solving the problem in Eq. 6. (b) A part of the j.p.d. J computed by solving Eq. 6 with input K'.
The number of DAGs with 5 nodes for each configurations N¢ is also shown. Notice that Co and C3 have both
zero counts and zero probability, because they are invalid.

(a) (b)

K M= T T T rxy | v,z | X,z Jo Nc
rx,y(r1) 0.8 0.132 | 0.028 | 0.04 = = = 0.6443 2800
ry,z(r2) 0.9 0.066 | 0.014 | 0.02 = = = 0 0
rx,z(r3) 0.6 0.264 | 0.056 | 0.08 = = & 0 0

K’ Te MTe Te T e
rx,y(r1) | 0.764 | 0.159 | 0.032 | 0.045 Cuo hid = = 4.55- 10~ 1045
ry,z(r2) | 0.879 | 0.082 | 0.016 | 0.023 E SRR ..
rx,z(rs) | 0.646 | 0.231 | 0.051 | 0.073 Céa s & & 2.78-107° | 309

5 COMPUTING THE NUMBER OF
DAGS N,

The number N of DAGs over nodes V has been solved
in closed-form [Robinson, 1973]. However, to the best
of our knowledge, there is no closed-form for the num-
ber N of DAGs that satisfy certain path-constraints.
When the number of nodes is small (up to 5-6) one can
enumerate all DAGs and compute each N¢ by count-
ing. The number of possible DAGs however, grows
exponentially to the number of nodes and complete
enumeration is not an option. In this case, we esti-
mate these counts by sampling a number S of DAGs
uniformly at random. Specifically, we implemented the
recent method in [Kuipers and Moffa, 2013] that, un-
like prior work [Melancon et al., 2000], avoids the use
of expensive MCMC methods. N¢ can be estimated
as N-S¢/S, where S¢ is the number of sampled DAGs
that conform to configuration C.

When the number of configurations c is large or No /N
is small, one may never sample any graph consistent
with ', resulting in zero estimates. This may happen
even for small sets of path variables, as ¢ grows ex-
ponentially with the number of path variables n. To
avoid zero estimates, one can apply the Laplace correc-
tion: NC = %itll N, where [ is an arbitrary parameter.
We suggest [ to be close to zero. Later on we will refer
to this method as FULL;.

In order to get a good estimate of N¢ using FULL,,
one may have to sample a huge number of DAGs. To
improve upon this we developed another method to
approximate N¢. This method is based on the obser-
vation that, often, certain subsets of path variables are
“almost independent”. We exploit this to factorize the
uninformative prior distribution U of each configura-
tion, denoted with Ug for configuration C. Ng can
then be computed as Ugx - V.
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5.1 FACTORING THE UNINFORMATIVE
PRIOR DISTRIBUTION U

To give an intuitive understanding of the main idea,
consider the following scenario: we are given two path
variables, rxy and rw,z. Notice that they do not
have any nodes in common. Assume that we fix the
value of ryw,z. Depending on that value, some values
of rx,y will become more or less likely. For example,
if W < Z holds, the values X = Y, X < Y and
X & Y become less likely since W & Z restricts the
graph to contain fewer edges, effectively reducing the
possibility to form paths between X and Y. On the
other hand, X < Y becomes more likely. To put it for-
mally, Uxoyviwez < Ux=y, Uxeviwez < Uxey,
Uxoviwez < Uxey and Uxaywez > Uxey.
However, we claim that if the number of nodes V is
sufficiently large, the difference is negligible, or for-
mally that U, |ry, = Urx ., that is, they are “al-
most independent”. We illustrate this with a simple
example. Assume that V = {X,Y, W, Z}. In this case
it is clear that any value of 7y, z heavily constrains the
graph, since it only contains 4 nodes. If however we
keep adding nodes to V, more and more possibilities
are created to satisfy any value of rx y.

Next we show an example with dependent path vari-
ables. We are given the path variables rx y and 7y z.
Notice that Y appears in both path variables. Now
consider the configurations C; = {X = Y)Y = Z}
and Cy = {X = Y,Y «< Z}. Note that the prior
probability of a directed path between any two nodes is
equal for any pair of nodes. Assuming U can be factor-
ized, Uy zix>y = Uy=z, and Uy —z|xoy = Uy =z
hold. Because Uy—z = Uy <z holds, Uy_ z|xoy =
Uy «z/x=y follows. However, given X = Y, Y = Z
becomes less likely since there are no DAGs with
Z = X (acyclicity), which is not the case for Y < Z.
For example, for V = {X,Y, Z} there are only 2 DAGs



with configuration Cy, but 4 DAGs with configuration
(5. Thus U cannot be factorized in this case.

Those scenarios only give a rough and intuitive un-
derstanding of the basic idea. In the next subsection
we will provide experimental results to support our
claims. Before doing so, we will generalize the basic
ideas to any set of path beliefs.

Definition 1. Let R be a set of path variables. We de-
note with Vg the set of all nodes appearing in any vari-
able in R. The constraint graph G = (Vg, ER) of
R is an undirected graph, where Er = {X =Y}, , er-
Definition 2. Let R be a set of path variables and P
a partition of R. Let Vg, denote the set of all nodes
appearing in any variable in the i-th part of P, P,.
P is called an independent partition if VP;,P; €
P.i# 5, VNV, = 0.

Since the parts of an independent partition do not have
any nodes in common, the configuration of a part does
not directly influence any other part; they do however
have an indirect influence through other nodes of the
graph which, as we will see, is negligible. On the other
hand, path variables of the same part do directly affect
each other (see dependent case above).

The independent partition of a set of path variables
R can be computed as follows: (a) construct the con-
straint graph Gr of R and, (b) find the connected
components of Gg. It is easy to see that the connected
components of Gg are an independent partition of R.

It remains to show how to compute U for given set of
path variables R and set of nodes V. First we sample
S DAGs over V uniformly at random. Then we find
an independent partition P of R. Ug is factorized as
Uc =11, Uc,, where C; and U¢, denote the configura-
tion and the prior distribution of the i-th part P; of P
respectively. Ug, is estimated as S¢, /S, where S¢, is
the number of sampled DAGs that conform to configu-
ration C; in P;. Finally, NC = N -Ug. Again, we rec-
ommend a Laplace correction. Then, Ne=N %
We will refer to this method as FACT;.

5.2 EXPERIMENTAL VALIDATION

The first experiment is to determine how FACT; ap-
proximates FULL;, as the number of nodes |V| in-
creases. We denote with UpacT, and Ururr, the esti-
mation of U by the methods FACT,; and FULL;.

Setup: The number of nodes is varied between 10 and
35, with a step-size of 1. We used three sets of path
variables: Ry = {ri2,734}, Ro = {r1,2,72.3, 74,5, 75,6},
and R3 = {7‘1,2, 72,3,73,4,75,6,76,7, 7"7,8}~ The number
of independent partitions is 2 and each paritition con-
sists of 1,2 and 3 path beliefs for Ry, Ry and R3 respec-
tively. The number of valid configurations c is 16, 256
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and 1681 for Ry, Ry and Rj3 respectively. The number
of sampled DACs S was set to 10°, sufficiently large
for FULL; to approximate U well. The Laplace cor-
rection parameter [ was set to 0, since no correction is
necessary in this case. We used the KL-divergence to
measure the distance between two probability distribu-
tions, with Upuyrr, representing the true distribution.

Results: The results are shown in Figure la. As
claimed, for a fixed set of path beliefs, UpacT, ap-
proaches Upyrr, (which should be close to U in this
experiment, as S is large relative to ¢) as the number
of nodes increases. Similar results are expected with
more and larger independent partitions.

In the second experiment we show that if S is rela-
tively small compared to ¢, FACT; provides a better
approximation of U than FULL;. This is important
because sampling a large number of DAGs costs time
and memory, essentially setting an upper limit to S
which, if ¢ is relatively large, will result in a poor ap-
proximation of U by FULL;. To show this, one has
to know the exact distribution U. However, as this is
computationally infeasible for large numbers of nodes,
we ran the experiment only for small |V|.

Setup: The number of nodes is |V| = {4,5,6}, and
the number of DAGs is 543, 29281 and 3781503 re-
spectively. Because |V| is small, we used only two path
variables R = {r12,734}. For each V we sampled be-
tween 100 and 10000 DAGs, with a step-size of 100.
This was done to simulate the case where no access
to the complete set of DAGs is given. The Laplace
correction constant [ was set to 1. For each |V| and S
we measured the KL-divergence between Upyrr, and
U, as well as between Upact, and U. The experiment
was repeated 1000 times and averages are reported.

Results: The results are shown in Figures 1b to 1d.
When S is small, FACT; provides a better approxima-
tion of U than FULL;. The reason this works is that,
if R is partitioned into multiple sets, each containing
a relatively small number of path variables, their dis-
tributions are easier to approximate.

6 COMPUTING THE J.P.D. J

In this section, we show how to compute the joint
probability distribution J. We denote with m ; the
probability that ry takes value j € {=, <, & @&}
Tr; = P(rp = j). The unknown quantities are Jo for
each configuration C'in J. Let C ; = {C, s.t. ry = j},
that is, the set of configurations where variable r; ob-
tains value j. For each k and j we obtain the following

constraints:
mi= Y, Jo
CeCy,j

®3)
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Figure 1: (a) KL-divergence between FULLq and FACT, with S = 10 for different sets of path variables. The
distance between FACT( and the true distribution, approximated by FACT, decreases as the number of nodes
increases. (b,c,d) KL-divergence between the true distribution and the approximation methods, as the number
of samples S increases. For small S FACT; provides a better approximation of the true distribution than FULL;.

In other words, the marginals of the j.p.d. should equal
our input path beliefs. Recall that path beliefs are
not independent in general. Thus, it is important to
consider the following constraints, stemming from the
path semantics of the variables R:

Jo =0, when C is invalid (4)

A configuration is invalid if it cannot be satisfied by
any DAG over V, for example, it contains directed cy-
cles. The algorithm to detect invalid configurations
is discussed in Section 6.5. To complete the problem
specification we impose that:

Y Je=1 and Jo>0 (5)
C

If constraints in Eqs. 3, 4, 5 can be satisfied then a
j-p-d. adhering to the probability axioms can be found
such that the prior marginal beliefs hold. In this case,
by definition, K is coherent, otherwise it is incoherent.

6.1 THE CASE OF COHERENT BELIEFS

The system of equations contains 4n constraints from
Eq. 3, 1 constraint from Eq. 5 and ¢ = O(4"™) un-
knowns. For most typical problems, 4n + 1 < ¢ and
so the system may have infinite solutions. We argue
that one should choose a solution j.p.d. J as close
to the uninformative one as possible. Any other dis-
tribution may introduce bias towards certain configu-
rations, even if the prior knowledge does not suggest
preference over those configurations. In other words,
if the uninformative j.p.d. U is a coherent extension of
the path beliefs, there is no reason to prefer any other
solution over it. A natural, information-theoretic ap-
proach is to select a j.p.d. J that minimizes the KL-
divergence from U. The problem is formulated as:

. - I
n}]mDKL(J |U) = ;Jk -In U s.t. Egs. 3,5 (6)
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This optimization problem can be solved accurately
and efficiently with the Iterative Scaling procedure
[Darroch and Ratcliff, 1972, Csiszar, 1975], a general-
ization of the Iterative Proportional Fitting Procedure
(IPFP) [Deming and Stephan, 1940].

6.2 DEALING WITH INCOHERENT
BELIEFS

In the case of incoherent beliefs there is no j.p.d. that
can equal the marginal input beliefs. Instead of re-
questing coherent beliefs or ignoring the incoherency,
we seek for joints with marginals as close as possible
to the user’s input beliefs. To solve this problem, we
implemented the method proposed in [Vomlel, 2004],
called GEMA. GEMA is an extension of IPFP which
converges even with incoherent beliefs. In order to
solve the problem it allows the marginals to change by
a small amount, which is measured with the so-called
I-aggregate criteria. Although GEMA tends to mini-
mize this criteria, no guarantee about its convergence
to a global or local minima is provided. We conducted
some anecdotal experiments and GEMA seems to pro-
duce reasonable results.

Table 1b contains the j.p.d. J stemming from K of
Table 1la(Top) computed by GEMA. For comparison
with the input beliefs K, Table la(Bottom) contains
the marginal beliefs K’ implied by GEMA. The val-
ues in Table 1a(Top) and Table la(Bottom) are close,
with the latter one representing coherent beliefs. Fig-
ure 2 shows two DAGs with different configurations
obtaining different prior scores.

6.3 FACTORING THE J.P.D. J

The cost of solving Eq. 6 is dominated by the number
of variables ¢, which can be as high as 4™. In practice,
the optimization problem can not be solved efficiently
(or at all, due to memory limitations) with more than



(a)

(b)

Figure 2: We assume the path beliefs K in Table 1la and the corresponding .J in Table 1b. (a) The configuration
C; ={X =YY = Z X = Z} holds in the graph. For p; = 0.6443 we obtain the score Sc(Gy|J) =
log(0.6443) — 1og(2800) = —8.3769. (b) The configuration Cyg = {X @ Y,Y = Z, X = Z} holds in the graph.
For pyg = 4.55 - 10~ we obtain the score Sc(Ga|J) = log(4.55 - 107%) — log(1045) = —14.6471. As expected, G4
has a higher prior than G2 since X = Y is given a higher probability than X < Y in Table la.

10-12 path beliefs. It is obvious that, even in the best
case, one would need at least (c) time and memory,
if the output of the procedure is the full j.p.d. over c.

One natural way to improve upon this is to factorize J.
Unfortunately, in general, it seems that it is not pos-
sible without loss of information. However, as stated
in [Vomlel, 2004], if the uninformative joint distribu-
tion U factorizes with respect to some sets of variables,
then the result of IPFP also factorizes with respect to
the same sets of variables, that is, if H{Ri}le, RiCR
st. U =[]g, Ur, then J =[], Jg,. Thus, if we use
FACT), instead of FULL; to compute U, we can usu-
ally compute J significantly faster and for larger sets
of path beliefs, that is, instead of a total limit of 10-
12 path beliefs, each part of the independent partition
used in FACT; has a limit of 10-12 path beliefs.

6.4 ADJUSTING MISLEADING PRIORS

In practice, it may be the case that some priors are
misleading, that is, the correct value of a path variable
r has a lower probability than any other value of r. It is
not always possible to detect those cases; however, it is
possible to do so when the path beliefs are dependent,
and the majority of them gives preference to the cor-
rect relation. We illustrate this with a simple example.
Assume that the correct relation between two variables
X and YV is X = Y, and that an expert suggests that
P(X =Y) =0.1. Now assume that we have path be-
liefs that P(X = V) = P(V = Y) = 0.9. They are in-
coherent: by the probability axioms, P(X = Y) > 0.8
follows. Our method will implicitly consider this and
will increase P(X = Y) while reducing P(X = V)
and P(V = Y). The effect will be even higher if
more path beliefs suggest that P(X = Y) is high.
For example, if P(X = Y) = 0.1 and we have 4 such
pairs of path beliefs P(X = V;) = P(V; = Y) = 0.9,
our method will assign P(X = Y) = 0.632 and
P(X = V) = P(V; =Y) = 0.814 Vi. We see that,
although P(X = Y') was low initially, it was given a
high probability by our method because the other be-
liefs supported X = Y. Thus, considering dependent
beliefs and dealing with incoherence may identify and
adjust misleading beliefs.
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6.5 INVALID CONFIGURATIONS

Let C be a configuration of path variables R. C' is
invalid if Irxy € R, st (a) rxy = “ = 7 and
rxy = “ < 7 is implied by C (acyclicity), or (b)
rxy = “ & 7 and rxy € {=,<} is implied by C
(definition of “ < 7), or (¢) rxy = “< 7 and rxy €
{=,<, <} is implied by C (definition of “ < 7).

These conditions are sufficient to identify invalid con-
figurations, but not necessary. The simplest example
is a dataset with two variables X and Y: the config-
uration rxy = “ < 7 is invalid as there is no other
variable to serve as a common ancestor. Yet, the above
cases will not identify it as such. However, when the
number of variables in the data is large relative to the
number of path variables (specifically if [V| > [Vr|+n
holds)!, these conditions are also necessary. From now
on we assume that the number of nodes in V is suffi-
ciently large.

7 SEARCH AND OPERATORS

In this paper we will use the Greedy Search method,
searching in the space of DAGs. The method starts
from a given initial DAG Gy (usually chosen to be
the empty DAG) and performs a hill-climbing search,
considering all DAGs resulting by a edge-insertion,
edge-removal or edge-reversal operation.

7.1 EXTENDING GREEDY SEARCH

Greedy Search can be trivially extended to addition-
ally consider the prior score S¢(G|J) of a DAG G. To
do this, it first has to determine the configuration Cg
of G, which can be computed in time O(|V] - n) given
the transitive closure of G (stored as an adjacency ma-
trix). The transitive closure of a DAG can be com-
puted in time O(|V|2 4 |V| - |E|); run a DFS for each
node and keep track of all visited nodes. There are
faster and more complex algorithms [Simon, 1988], but
the trivial method is usually faster for smaller graphs
(we used the trivial method in our implementation).

IThere are cases where a smaller number of variables is
sufficient, but we did not further investigate it.



A problem is that, at each step of the search, the tran-
sitive closure has to be computed for all DAGs result-
ing by one of the search operators, whose number is
O(|V]?). The total cost is then O(|[V[* + |[V]3 - |E| +
|[V'|3-n), which is a significant computational overhead.
A straight-forward optimization is to dynamically up-
date the closure after each edge insertion or removal.
Various methods exist [Demetrescu and Italiano, 2008]
trading off the time it takes to update the closure and
querying for reachability. Assuming unit query time, a
O(|V|?) update time is optimal [Demetrescu and Ital-
iano, 2008]. Using this method, the time-complexity
can be reduced to O(|[V|* + [V]3 - n).

7.2 SWAP-EQUIVALENT OPERATOR

To take advantage of the extra information provided
by the path beliefs, one may have to use additional
search-operators. That is because the standard opera-
tors make only small local improvements, without con-
sidering the global information provided by the path
beliefs. Thus, an operator is desirable which is able to
simultaneously make multiple adjustments in order to
also change the configuration of the path variables.

We propose the swap-equivalent-operator. The
idea is simple: at each step, after the application of
a standard operator, we allow the algorithm to swap
to a Markov equivalent DAG with the highest path be-
lief score Sc(G|J) increase. If the data score Sc(G|D)
has the score-equivalence property (e.g. BDe), the re-
sulting DAG has the same data score but may have a
higher prior score. This DAG can be computed with a
simple modification of an algorithm presented in [Bor-
boudakis and Tsamardinos, 2012]. Due to space limi-
tations, the algorithm will not be described here.

8 EXPERIMENTAL RESULTS

Employing Causal Knowledge. We consider the
graph X — Y — Z. We use the path belief P(X =
Z) = 0.9 and distribute the remaining 0.1 mass of
probability to the remaining values of ryxz propor-
tional to the values that correspond to a uniform prior.
We repeat the following experiment 10000 times: (a)
we randomly select the number of states for each vari-
able to be either 3 or 4, (b) we sample the cpts for
each variable from the gamma distribution T'(k,6),
with shape parameter & set to 0.5 and scale param-
eter 6 set to 1, (¢) we sample a dataset of size 200,
(d) we increase the samples of the dataset provided
to the scoring method from 10 to 200 with step size
of 10, (e) we identify the highest scoring network out
of all 25 possible DAGs using informative and unin-
formative priors and the BDeu score with Equivalent
Sample Size (ESS) set to 1.
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Results: Figure 3a plots the percentage of the time
the PDAG X — Y — Z of the true network was found
exactly, with and without informative priors. First no-
tice, that when the true PDAG is found, the edges are
also always oriented correctly since the true network
has a higher prior than any other Markov-equivalent
graph. Perhaps more surprising though, notice that
the informative priors also improve the learning of the
skeleton. The belief X = Z tends to add a path from
X to Z. The associations X —Y and Y — Z are always
higher than or equal to the association between X — Z
[Cover and Thomas, 2006]. Thus, it is the correct path
X —Y — Z that tends to be induced, rather than any
other network with a path X = Z.

Employing Associative Knowledge. We run a
similar proof-of-concept experiment where the true
network is a single collider X — Y <+ Z. We use the
same settings as before for three cases: correct associa-
tive priors P(X < Z) = 0.9, uniform priors, and incor-
rect associative priors P(X associated with Z) = 0.9.

Results: The results are shown in Figure 3b. As ex-
pected, correct prior beliefs clearly improve the chances
of identifying the true PDAG; the effect is exactly the
opposite when misleading, incorrect beliefs are provided
to the algorithm. Of course, asymptotically any non-
zero priors play no role.

Learning Larger Networks. To generate path be-
liefs we use three parameters: the number of indepen-
dent components nc, the number of nodes appearing in
an independent component cs, and whether we want
them to be coherent or incoherent. Path variables
were generated as follows: for given c¢s and nc, we ran-
domly pick nc non-overlapping sets, each containing cs
nodes of the network, and consider all possible pairs
between them as path variables, resulting in a total of
nc-cs-(cs—1)/2 path variables. This is done in order to
be able to consider large sets of path variables. Then,
we randomly assign a probability p € [0.5,0.99] to the
true value of each path variable, and split the remain-
ing 1 — p mass probability in an uninformative way to
the remaining values. This process is repeated for each
independent component until it is coherent or incoher-
ent, depending on the input parameter. To estimate
U we sampled S = 10 DAGs and [ was set to the ma-
chine epsilon. We used the ALARM [Beinlich et al.,
1989] and the INSURANCE [Binder et al., 1997] net-
works to evaluate our methods. We employed Greedy
Search with the BDeu metric and ESS=1. We run
the method starting from the empty graph with unin-
formative and informative priors, as well as with and
without the swap-equivalent-operator in the case of in-
formative priors. Finally, we compute the Structural
Hamming Distance [Tsamardinos et al., 2006] from the
PDAG of the true network. We used the PDAG to
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Figure 3: (a) Learning the orientations and the skeleton is facilitated by causal prior knowledge. (b) Learning
the graph is facilitated by correct associative prior knowledge and hindered by incorrect priors. (c-d) Learning
the ALARM and INSURANCE networks. The average Structural Hamming Distance (SHD) is shown with
increasing sample size, for component size (cs) 4 and number of components (nc) set to 3, and incoherent beliefs.
Using path beliefs, especially combined with the swap-equivalent operator, produces better networks on average.

avoid introducing an unfair advantage for our meth-
ods; all methods may find Markov equivalent DAGs,
but the ones using path beliefs may find more correctly
oriented edges. The sample size was varied within
{100, 200, 500, 1000, 2000, 5000, 10000}. The path be-
lief parameters were varied within {1, 2, 3,4, 5} and for
nc and c¢s respectively, for both the coherent and inco-
herent cases. The experiment was repeated 100 times,
for randomly sampled datasets and path beliefs, with
all combinations of input parameters.

Results: Due to space limitations we report only the
results for incoherent path beliefs, with nc = 3 and
sc = 4 (18 beliefs). The results were similar for both,
coherent and incoherent priors. Also, with smaller
(larger) nc and sc, the difference between the uninfor-
mative and informative methods was smaller (larger).

The results are shown in Figures 3c and 3d. In all
cases, the SHD is smaller with the informative priors
than with uninformative priors. For the ALARM net-
work, notice that the SHD difference between the unin-
formative method and the informative method without
the operator decreases as sample size increases. The
reason is that, as sample size increases, the data score
becomes more important and the prior score tends to
be ignored; it usually is considered only close to local
maxima, where only small improvements in the data
score can be made. If however the swap-equivalent op-
erator is used, this does not happen, as it tries to main-
tain a high prior score during the whole search. Fi-
nally, notice the counter-intuitive behavior of increas-
ing SHD with increasing sample size in Figure 3d for
10K samples. Anecdotal experiments suggest that the
value of the ESS parameter is the reason for that be-
havior. However, when the swap-equivalent operator
is used, this phenomenon is almost nonexistent.
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9 CONCLUSIONS

We present a method for computing informative pri-
ors given a set of causal and associative beliefs on
pairs of variables, as well as a novel search-operator
to take advantage of them. The priors can then be
employed by any search-and-score learning algorithm.
The method, for the first time, addresses the issues of
incoherent and possibly dependent priors. Providing
correct priors about pairwise causal or associative re-
lations improves learning both in terms of identifying
the orientation of the edges (for causal priors), but also
in terms of identifying the skeleton of the network.

There are numerous issues to still address regarding
both the method and the general problem. The al-
gorithm has exponential worst-case time complexity,
thus more efficient algorithms are desirable. Closed-
form solutions for computing the number of graphs
given path constraints are also desirable. Finally, in-
cluding other types of prior knowledge, as well as in-
corporating the strength of the causal effects or associ-
ations and other prior knowledge characteristics is an
interesting future direction to pursue.
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Abstract

We give a new consistent scoring function for
structure learning of Bayesian networks. In
contrast to traditional approaches to score-
based structure learning, such as BDeu or
MDL, the complexity penalty that we pro-
pose is data-dependent and is given by the
probability that a conditional independence
test correctly shows that an edge cannot ex-
ist. What really distinguishes this new scor-
ing function from earlier work is that it has
the property of becoming computationally
easier to maximize as the amount of data in-
creases. We prove a polynomial sample com-
plexity result, showing that maximizing this
score is guaranteed to correctly learn a struc-
ture with no false edges and a distribution
close to the generating distribution, when-
ever there exists a Bayesian network which is
a perfect map for the data generating distri-
bution. Although the new score can be used
with any search algorithm, we give empirical
results showing that it is particularly effec-
tive when used together with a linear pro-
gramming relaxation approach to Bayesian
network structure learning.

1 Introduction

We consider a fundamental problem in statistics and
machine learning: how can one automatically extract
structure from data? Mathematically this problem can
be formalized as that of learning the structure of a
Bayesian network with discrete variables. Bayesian
networks refer to a compact factorization of a mul-
tivariate probability distribution, one-to-one with an

*Current Affiliation: Search & Algorithms, Shutter-
stock Inc., New York
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acyclic graph structure, in which the conditional prob-
ability distribution of each random variable depends
only on the values of its parent variables. One ap-
plication of Bayesian network structure learning is for
the discovery of protein regulatory networks from gene
expression or flow cytometry data (Sachs et al. , 2005).

Existing approaches to structure learning follow two
basic methodologies: they either search over struc-
tures that maximize the likelihood of the observed data
(score-based methods), or they test for conditional in-
dependencies and use these to constrain the space of
possible structures. The former approach leads to ex-
tremely difficult combinatorial optimization problems,
as the space of all possible Bayesian networks is expo-
nentially large, and no efficient algorithms are known
for maximizing the scores. The latter approach gives
fast algorithms but often leads to poor structure re-
covery because the outcomes of the independence tests
can be inconsistent, due to sample size problems and
violations of assumptions.

We formulate a new objective function for structure
learning from complete data which obtains the best of
both worlds: it is a score-based method, based pre-
dominantly on the likelihood, but it also makes use of
conditional independence information. In particular,
the new objective has a “sparsity boost” corresponding
to the log-probability that a conditional independence
test correctly shows that an edge cannot exist. We
show empirically that this new objective substantially
outperforms the previous state-of-the-art methods for
structure learning. In particular, on synthetic distri-
butions we find that it learns the true network struc-
ture with less than half the data and one tenth the
computation.

The contributions of this paper are the introduction
of this new scoring function, a proof of its consistency
(we show polynomial sample complexity), and a care-
fully designed importance sampling algorithm for ef-
ficiently computing the confidence scores used in the
objective. For both the proof of sample complexity and



the importance sampling algorithm, we develop several
new results in information theory, constructing precise
mappings between a parametrization of distributions
on two variables and mutual information, and charac-
terizing the rate of convergence of various quantities
relating to mutual information. We expect that many
of the techniques that we developed will be broadly
useful beyond Bayesian network structure learning.

2 Background

This paper considers the problem of learning Bayesian
network structure from complete data (no hid-
den variables or unobserved factors). Let X
(X1,Xs,...,X,) be a collection of random variables.
For reasons that we explain in the next section, our
results are restricted to the case when the variables
X, are binary, ie. Val(X;) = {0,1}. Formally, a
Bayesian network over X is specified by a pair (G, P),
where G = (V, E) is a directed acyclic graph (DAG)
satisfying the following conditions: the nodes V' cor-
respond to the variables X; € X and E is such that
every variable is conditionally independent of its non-
descendants given its parents. The joint distribution
can then be shown to factorize as P(z1,...,z,) =
[Licy P(Xi = 2 | Xpas) = Tpa(i)), Where Pa(i) de-
notes the parent set of variable X; in the DAG G, and
ZTpa(s) refers to an assignment to the parents.

A Bayesian network G is called an independence map
(I-map) for a distribution P if all the (conditional)
independence relationships implied by G are present
in P. Going one step further, G is called a perfect
map for P if it is an independence map and the con-
ditional independence relationships implied by G are
the only ones present in P. By wy (or in some con-
texts, Yy ) we denote a sequence of observations of the
random variables X, generated i.i.d. from an unknown
Bayesian network (G, P), where G is a perfect map
for P. The problem that we study is that of learn-
ing the Bayesian network structure and distribution
(G, P) from the samples wy.

The simplest case of learning BN structure is when we
have two random variables, which we will call X 4 and
Xp. There are only two nonequivalent BN structures:

Go: Xa Xp (“disconnected”),
G1: X4 — Xp (“connected”).

The structure learning problem in this case is to re-
turn, based on wy, a decision X4 1L Xp (Gp) or
Xa A Xp (G1). In other words, in this case, the
structure learning problem is strictly equivalent to one
case of hypothesis testing, a well-studied and classic
problem in statistics, specifically testing the hypothe-
sis of whether X 4 and Xp are independent.
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In the case of three or more variables, the equivalence
no longer holds in any strict sense. Constraint-based
approaches use the results of conditional independence
tests to infer the model structure. These methods solve
the structure learning problem sequentially by first
learning the undirected skeleton of the graph, Skel(G),
and then orienting the edges to obtain a DAG. Assum-
ing that G is a perfect map for P, if A is conditionally
independent of B then we can conclude that neither
A — B nor B — A can be in G. It can be shown that
either A’s parents or B’s parents will be a separat-
ing set proving their conditional independence (there
may be others). Thus, if we make the key assump-
tion that each variable has at most a fixed number of
parents d, then this can yield a polynomial time al-
gorithm for structure learning (Spirtes et al. , 2001;
Pearl & Verma, 1991). However, this approach has
a number of drawbacks: difficulty setting thresholds,
propagation of errors, and inconsistencies.

Let p = p(wn, A, B | s) denote the empirical distribu-
tion of A and B conditioned on an assignment S = s
for S C V\{A4, B}, and marginalized over all of the
other variables. The mutual information statistic,

aEVal(A%;EVaI(B)

is a measure of the conditional independence of A and
B conditioned on S = s. Given infinite data, two
variables are independent if and only if their mutual
information is zero. However, with finite data, mutual
information is biased away from zero (Paninski, 2003).
As a result, it can be very difficult to distinguish be-
tween independence and dependence.

MI(p)

b, 019
ptotos (5

An alternative approach is to construct a scoring func-
tion which assigns a value to every possible structure,
and then to find the structure which maximizes the
score (Lam & Bacchus, 1994; Heckerman et al. , 1995).
Perhaps the most popular score is the BIC (Bayesian
Information Criterion) score:

Sy (wn; G) = LL(wN|G) =91 (N) - |G]. (1)

Here, LL(wn|G) is the log-likelihood of the data
given G, |G| is the number of parameters of G, and
¥1(N) is a weighting function with the property that
P1(N) — oo and 91 (N)/N — 0 as N — oco. When
Y1(N) = log’T'N, the score, now called MDL, can be
theoretically justified in terms of Bayesian probabil-
ity. Intuitively, we can explain the BIC/MDL score
as a log-likelihood regularized by a complexity penalty
to keep fully connected models (with the most pa-
rameters) from always winning. Finding the struc-
ture which maximizes the score is known to be NP-
hard (Chickering, 1996; Chickering et al. , 2004; Das-
gupta, 1999). Heuristic algorithms have been proposed



for maximizing this score, such as greedy hill-climbing
(Chickering, 2002; Friedman et al. , 1999) and, more
recently, by formulating the structure learning prob-
lem as an integer linear program and solving using
branch-and-cut (Cussens, 2011; Jaakkola et al. , 2010).

The running time of solving the integer linear pro-
grams dramatically increases as the amount of data
used for learning increases (see, e.g., Fig 4). This is
counter-intuitive: more data should make the learning
problem easier, not harder. The core problem is that
as the amount of data increases, the likelihood term
grows in magnitude whereas the complexity penalty
shrinks. This is necessary to prove that these scoring
functions are consistent, i.e. that in the limit of infi-
nite data the structure which maximizes the score in
fact is the true structure. As a consequence, however,
the score becomes very flat near the optimum with a
large number of local maxima, making the optimiza-
tion problem extremely difficult to solve.

3 SparsityBoost: A New Score for
Structure Learning

We design a new scoring function for structure learning
that is both consistent and easy to solve regardless of
the amount of data that is available for learning. The
key property that we want our new scoring function
to have is that as the amount of data increases, opti-
mization becomes easier, not harder. When little data
is available, it should reduce to the existing scoring
functions.

Our approach is to add, to the BIC score, new terms
derived from statistical independence tests. Before in-
troducing the new score we provide some background
on hypothesis testing. Let P denote the simplex of
(joint) probability distributions over a pair of random
variables, and let Py denote the subset of product dis-
tributions: Py = {q € P | MI(q) = 0}. For q ¢ Py,
the magnitude of M I(q) provides a measure of how far
q is from the set of product distributions. For n > 0, we
define P, := {q | MI(q) > n}. The testing procedure
has wy as input, null hypothesis Hy (independence)
for p € Py, and alternative hypothesis H; for p € P,,.
The Type I error ap is defined as the probability of
the test rejecting a true Hy, the Type II error By is
defined as the probability of the test falsely accepting
Hy, and the power is defined as 1 — Sy

The theory of Neyman-Pearson hypothesis testing for
composite hypotheses tells us how to construct a hy-
pothesis test of maximal power for any ay (Hoeffd-
ing, 1965; Dembo & Zeitouni, 2009). In our set-
ting, the test corresponds to computing MI(wy) :
MI(p(wy)) and deciding on H; if the test statistic ex-

114

ceeds a threshold v. Let Sy(v) denote the Type II
error of the Neyman-Pearson test with threshold ~.

We propose using in our score the Type II error of the
test with threshold MI(wy),

B (MI(wn)) = Pry,epn {MI(Yyn) < MI(wy)},

where p" is the M-projection of p(wy) onto P, that is,
with H(-]|-) denoting the Kullback-Leibler divergence,
(2)

p" := argmin H(p(wn)|p)-
PEP,

AI} intuitive explanation for the Type II error is that
Bf\/ (7) is the probability of obtaining a test statis-
tic MI(Yy), Yy ~ p", that is more extreme, in the
wrong direction of independence, than the observed
test statistic v. On the one hand, if wy ~ pg € Po,
then with high probability the power of the test with
threshold MI(wy) approaches 1 and ﬂ%l (MI(wn))
approaches 0, exponentially fast as N — oo; on the
other hand, if wy ~ p1 € P, where ¢ > 7, then
with high probability the power approaches 0 and
ﬁg,n (MI(wn)) approaches 1, as N — co.

Now we can state our new score for structure learning
and explain its remaining features:

Siotn.a (W, G) = LL(@N|G) = ¥1(N) - |G| + a(N)
> |85 (MI(p(wn, A, Bls)))

(A,B)¢G

max min —In
SeSa,B(G) seval(S)

The first line is the BIC score. In the second line
12 (N) is a weighting function such that o (N)/N — 0
as N — oo: 92(N) := 1 in the experiments. Each
term in the sum is called a sparsity boost. The sum
contains one sparsity boost for each noneristent edge
(A,B) ¢ G. If A 1L B|(S = s), then the sparsity boost
is ©(N) as N — oo, and if A L B|(S = s), then it
is O(1), and further, in that case the sparsity boost
becomes insignificant compared to the LL term (since
Ua(N)/N = 0).

Second, the sets Sa,p(G), called separating sets, are
certain subsets of the power set of V' — {4, B}, which
provide certificates for statistical recovery of G. More
precisely, we have (A, B) ¢ G, if and only if there is a
witness S € Sa p(G) such that A 1L B|S. The most
common ways of defining S4 p(G) are as follows:

Sa.B(G) (3)
Sa,5(G) (4)

The family of assignments (A, B,G) — Sa,g(G) for
all (A, B) ranging over distinct pairs of vertices and G
over some family G of DAGs, constitutes a collection
of separating sets, denoted by S.

{S cVA\{A, B} | [S] < d},
{Pac(A)\B, Pag(B)\A}.



In order for A 1L BJS to hold, we must have A Il B|s,
for every joint assignment s € Val(S). This is the
reason for taking the minimum over s € Val(S) of
the possible sparsity boosts. The existence of just one
S € S4.5(G) such that A 1l B|S suffices to rule out
(A, B) as an edge in G. This is the reason for taking
the maximum over S € S4 p(G). The sparsity boost is
O(1) for an (A, B) € G, and O(N) for an (A, B) ¢ G.

It remains to explain how to compute Bﬁ; (7) in the im-
plementation of the score Sy 4, 4,. According to the
definition (2), p" is data-dependent, and this makes it
impractical to compute ﬁfvn (MI(wn)) quickly enough
for use in our algorithm. We make an approximation
by fixing p" to be a single “reference” distribution, with
uniform marginals and satisfying MI(p") = 7. In the
case when Val(X;) = {0, 1}, there are two such distri-
butions. Namely, let p° denote the uniform distribu-
tion, and let

) ©

Consider the
function MI(p°(t)) for t € (0,%). On this inter-
val MI(p°(t)) is positive, increasing, and has range
(O7 MI (po (i))) Thus for each 7 in the range, there is
a unique parameter value ¢} such that MI(p®(t})) =

1. By symmetry, we also have MI(p®(—t;}))) = n; fix

P = (). (6)

We compute tﬁ by a binary search in the interval
(O7 %); by (5) and (6) this suffices to compute p”, and
has to be done only once during the algorithm’s setup.

+t
-1

11
4’ 4

pO(t) = forallt e <

Ll
Ll

+1

Clearly, p°(t) has uniform marginals.

Having computed p”, we can compute [3]’17 (7) for many
values of N,~, and store them in a table. During the
learning phase, we evaluate ﬁﬁ: (MI(wy)) by interpo-
lation. We explain more details in Sec. 5.

Related work. Our new score is similar to other “hy-
brid” algorithms that use both conditional indepen-
dence tests and score-based search for structure learn-
ing, notably Fast 2010’s Greedy Relaxation algorithm
(RELAX) and Tsamardinos et al. 2006’s Max-Min Hill-
Climbing (MMHC) algorithm. The MMHC algorithm
has two stages, first using independence tests to con-
struct a skeleton of the Bayesian network, and then
performing a greedy search over orientations of the
edges using the BDeu score. The RELAX algorithm
starts by performing conditional independence tests to
learn constraints, followed by edge orientation to pro-
duce an initial model. After the first model has been
identified, RELAX uses a local greedy search over pos-
sible relaxations of the constraints, at each step choos-
ing the single constraint which, if relaxed, leads to the
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largest improvement in the score. Both of these al-
gorithms separate the constraint- and score-based ap-
proaches into two distinct steps, in contrast to our
approach which directly incorporates the conditional
independence tests as a term in the score itself.

The only other work that we are aware of that has
studied the incorporation of reliability of independence
tests in score-based structure search is de Campos
(2006). Their objective function is very different from
ours, comparing the empirical mutual information to
its expected value assuming independence (using the
x? distribution). In contrast to de Campos’s MIT
score, the SparsityBoost score is consistent, provably
able to recover the true structure.

Importance of using Type II error. To our knowl-
edge, all previous approaches for Bayesian network
structure learning use the Type I error oy in assessing
the reliability of an independence test, which is asymp-
totically given by the x2 distribution. A relatively high
threshold needs to be specified in order to prevent the
false rejection of independence and to correct for multi-
ple hypothesis testing. One of our key contributions is
to show how to use By, the Type Il error. Minimizing
the Type II error is essential because we want to err on
the side of caution, only having a large sparsity boost
if we are sure that the corresponding edge does not ex-
ist. Type I errors, on the other hand, can be corrected
by the part of the objective corresponding to the BIC
score. If we had instead used the Type I error prob-
ability within our score, it would have corresponded
to a dependence boost rather than independence, and
would be fooled if we failed to find a good separating
set (e.g., for computational reasons).

4 Polynomial Sample Complexity of
the SparsityBoost Score

4.1 Statement of Main Results

In this section, we prove the consistency of the Spar-
sityBoost score. In order to state our main results, we
need to define certain additional parameters. First,
there is a (small) positive integer, d, which bounds the
in-degree of all vertices in GG. The family of BNs on n
vertices satisfying this condition is called G%.

Second, we formalize the notion of the

minimal edge strength € in G. Define

Sa(Gh) = J San(G).

Gegd

Recall that the witness sets in S provide certificates
for statistical recovery of G. We quantify the edge
strength of (A, B) € G with respect to Sa p(G%), i.e.



the amount of dependence even after conditioning, by

€((A,B), Sa.5(") = doin o max MI(p(4, Bls))

Then, let € = ¢(G) = min 4 p)ec e((A, B), SA7B(gd)).

Next, we need the notion of an error tolerance { >
0, which in turn follows from a notion of a G’ € G¢
being (-far from the true network (G,P). For any
G’ € G4, define the probability distribution pgs p over
X to be the distribution which factors according to G’
and minimizes the KL-divergence from P, i.e.

H(P||Q).

argmin
Q:G’ is an I-map for Q

PP =

We call H(P|pe/,p) the divergence of P from
G',and if H(P|per p) > ¢ we say that G’ is (-far
from (G, P). In Theorem 1(a) we set an error tol-
erance of {,which is to say that we specify that our

learning algorithm should rule out all G’ which are
¢-far from (G, P).

Finally, we need m, the (maximum) inverse probability
of an assignment to a separating set. More precisely,
for any A,B € V2, A # B, and S € Sy 5(G?), let
mp(S) := maxsevai(s)[P(S = s)] 1. Then let

mp(S). (7)

m=mp(G,G%,S) = max max
(A,B)EG S€S4,p(G%)
For all (A, B) ¢ G, there will be at least one witness
S € Sa,5(G) such that A 1L B|S. Let

Sp((A,B),G) = argmin mp(S).

SESA,B(G) : AJ.LB‘S
Finally, let

mp(G,S) = (A%%éGmP(SP((A’B)’G))' (8)
Theorem 1 Suppose that (G, P) € G is a Bayesian
network of n binary random variables and G is a per-
fect map for P. Set Sp p(G) ={S C V\{A4,B} | |5] <
d}. Assume that (G,P) € G% has minimal edge
strength € > 0, and minimal assignment probabilities
m, as defined in (7) and mp(G,S), as defined in (8).
Fiz n = Xe for A € (0,1), an error probability § > 0,
and a tolerance ¢ > 0. Let S, denote our score Sy 1, v,
for 1 (N) := klog(N) and ¢o(N) = 1. Let wy be a
sequence of observations sampled i.i.d. from P.

(a) There is a function N(e,m,n;0,(;n, k) in

2
o} (max (logiﬂ’ Z—z) log ;)
as €,(,0 — 0%, n,m — oo, such that for all N >
N(e,m,n;0,(;n, k), with probability 1—4, we have
Sn(G wn) > Sy(G',wn),
for all G' € G¢ which are -far from G.
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(b) Then there is a function N(e,m,mp,n;d;n,K) in
2

~ log(n)m n2m3% 1
0 (ma (M55 5 s

as €,6 — 07, n,m,mp — oo, such that for all
N > N(e,m,mp,n;0;n, k), with probability 1 -4,
we have

S,,(G,wN) > SW(G/,WN),
for all G’ € G4 such that Skel(G") Z Skel(G).

In order to explain the significance of this result, it
is helpful to relate it to three representative sample
complexity results in the literature: Hoffgen (1993),
Friedman & Yakhini (1996), Zuk et al. (2006). The
result of Zuk et al. differs from the other two and
from our result because it only gives conditions for the
(BIC) score of G to beat that of an individual compet-
ing network G/, not a family, such as G¢. The main
difference between Hoffgen and Friedman & Yakhini
is that, like our result, Hoffgen assumes that the com-
peting network lies in G¢ and achieves a sample com-
plexity that is polynomial in n = card(V'), while Fried-
man & Yakhini puts no restriction on the in-degree of
competing networks, and obtains complexity that is
exponential in n. Our result and Zuk et al. differ
from both Hoffgen and Friedman & Yakhini in that
we provide guarantees for learning the correct DAG
structure G (or at least a G without false edges), not
just a distribution P’ which is (-close to P. For this
reason, only our paper and Zuk et al. need to define
a minimal edge strength as a parameter, whereas for
Hoffgen and Friedman & Yakhini the main parameter
is the error tolerance (, which they call e.

4.2 Overview of Proofs

The proof of Theorem 1 consists of showing that for
all sufficiently large N we can find a (probable) lower

bound on the score difference,
S,(Gwn) — Sy(G' wy), G,G'€G% wn ~G. (9)

The score difference breaks down into a sum of the
following terms:

(a) The difference of log-likelihood  terms,
LL(G,wy) — LL(G",wy).
(b) The difference of complexity penalties,

rlog(N)(|G'] = |G]).

(¢) For each distinct pair of vertices A, B € V such
that neither G nor G’ has (A, B) as an edge, the
difference of the sparsity boosts in the objective
functions of G' and G’, for that nonexistent edge.



(d) For each true edge (A, B) € G missing from G,
the negative of the sparsity boost for (4, B) ¢ G'.

(e) For each false edge (A, B) ¢ G present in G', the
(positive) sparsity boost for (A, B) ¢ G.

With the choice of S in the Theorem, S4 p(G’') =
Sa p(G) for all A,B € V2, which implies that (c) is
exactly 0. Furthermore, (b) is clearly O(log N) for
G, G’ € G4, while both (a) and (e) will turn out to be
O(N®) for a > 0, so that (b) has only minor impact
on the sample complexity.

So we will focus on how to estimate (a), (d), and
(e). Conceptually, estimating each of these terms calls
for the same type of result: a concentration lemma
stating how quickly the empirical LL(-,wpn) (for (a)),
respectively MI(wy, A, B|s) (for (d) and (e)) con-
verges to the “ideal” counterpart LL)(-, P), respec-
tively MI(P, A, B|s). In fact, both of the latter consist
of a polynomial in n number of terms (which is where
we use the hypothesis G € G%) of the form plogp for
parameters p of certain Bernoulli random variables.

Proposition 1 Let p € (0,1) be given and X(p)
the Bernoulli random variable with parameter p. Let
€,0 > 0 be given. For Yy ~ p, denote the empirical
parameter py, by pn. Then there is a function

as €,0 — 0T with the property that for N > N(€,4),

1

)

N(€,6)€O<(i

(10)

Pr(|pylogpy — plogp| <€) > 1 — 0.

Proposition 1 improves slightly on Lemma 1 in Héffgen
(1993), by replacing O(-) with O(-) in (10).

A key feature of Proposition 1, for obtaining our con-
centration results for LL and M1 is that (10) is in-
dependent of the Bernoulli parameter p. From the
concentration result for LL, we can show that (a) is
with high probability positive and larger than N(/3,
for all G’ which are (-far from G and for sufficiently
large N. From the concentration result for M [ we can
show that a sparsity boost from a true edge is bounded
above by a constant for sufficiently large N (linear in
m). So the negative contribution of (d) is bounded.
These bounds suffice to prove Theorem 1(a).

In the proof of Theorem 1(b), from the concentra-
tion result for LL, we can show that (a) is with high
probability larger than a constant times —n+/log(n)N.
Furthermore, a sparsity boost from a false edge is
Q(T(n)N), where the speed I'(n) of the linear growth
is on the order of n? as n — 0F. To show the latter,
we first apply Proposition 1, given a witness, to prove
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that MI(wy, A, Bls) is (likely) less than 7/2. Second,
using a Chernoff bound, we show that — log ﬂﬁ; (7) is
Q(n?N) for 7 less than 1/2. So, with high probability
the positive contribution of (e) eventually overwhelms
any negative contribution of (a).

The techniques derived from the Chernoff bound yield
a version of Theorem 1(b) with an exponent of 4 on
the € in the denominator of the term n?m%/e2. To
improve the exponent to 2, we need a strengthened
result on the linear growth of a sparsity boost from a
false edge, in which the speed I'(n) is on the order of
only 7 instead of 72, as n — 0F.

We have to use a new method derived from Sanov’s
Theorem instead of Chernoff’s Bound. To our knowl-
edge, the way we use Sanov’s Theorem to study the
concentration of mutual information is a novel contri-
bution to information theory. For all of the following
we are assuming that Val(X;) = {0,1} for all X; € V
so that P is the space of probability distributions over
the alphabet {0,1}2. We have already, in (5), given
a parameterization of the path of distributions of uni-
form marginals in P. We now generalize (5) and the
associated parameterization by defining

_ |paopBot+t paippo—1
PaopB1 —t paipBa+1

P(PA,0:PB 0 ) : (11)
where pa1 :=1—pao and pp1 := 1 — ppo. When
(pao,pB,o) ranges over [0,1]% and ¢ over (tmin,tmax)
(an interval depending on pa o, pp,o), (11) parameter-
izes the whole space P.

Since the ¢ parameter is a measure of how far p is from
Py, it is not surprising that we can derive formulas
relating t to v/MI. In order to carry this out, we
consider the function MI(p(pa,o,PB,0,t)) as a function
of t and carefully study the Taylor series expansion of
this function around the basepoint ¢t = 0.

The reason for preferring the t parameter to M1 itself
is that by means of Sanov’s Theorem and Pinsker’s In-
equality, we obtain a very general result which bounds
—log 8% () from below by N times the squared Loo-
distance of p" from a distribution ¢”. More specifically,
defining the complement of P, by

Ay ={peP|MI(p) <~}, (12)

the distribution ¢” is defined as the I-projection of
p" onto A,. We would like to relate |[p”7 — ¢"|oc to
|MI(p")—MI(q")| = |n—-y|, and the t-parameters act
as an effective intermediary, because it is easy to show
that [|p" — ¢"||c is on the order of |t;7 —tF|, where ¢
is the t-parameter of ¢7. Applying the relation of the
preceding paragraph between ¢ and M1, we obtain
a bound, from below, of —log Bﬁ: (7) by something on

the order of (/1 — /7)?N.



5 Computation of 3 values

Exact computation. Here we give an exact for-
mula for 8% (v) using the Method of Types (Cover
& Thomas, 2006, Chapter 11). Denoting the entries of

p" € P by (po,0,Po,1,P1,0,P1,1), we have

1 E

Y~ 4,7=0

Bp [MI(Yn) <4,
where T; ;(Yn) is the number of observations of (3, j)
in the sampled sequence Yy of length N. Consider
the set Ty of length-4 vectors of nonnegative integers
(To,0,T0,1,T1,0,T1,1) summing to N. Every T € Ty
corresponds one-to-one with a distribution pr € P
(obtained by dividing every entry in T by N). Let
|T'| denote the number of sequences Yy corresponding
to type T. Then it is not difficult to see that |T| is
given by a multinomial coefficient and that

1
= > 171 I] piy1a, (or),

TeTN 1,j=0

(13)

where 1,4 is the characteristic function of A, (see

Eq. 12). We can use (13) to exactly compute 5%" ),
but because of the summation over 7Ty the running
time of this algorithm is O(N?3), which will not scale
to the range of N we need for our experiments.

Monte Carlo computatlon In place of exact cal-
culation, we estimate 6” by means of Monte Carlo
integration, using importance sampling of the domain
to reduce the variance. In order to implement this, we
first observe that (13) is essentially a Riemann sum for
a definite integral, so that we may replace the summa-
tion with an integral. Second, the integrand we ini-
tially obtain in this manner has numerous discontinu-
ities, because of the |T'| factor. It makes the next steps
easier to implement if we replace |T'| with a (slightly
larger) continuous approximation (Csiszar & Korner,
2011, p. 39). We finally obtain the following integral

which approximates ﬁi," (7) given in (13):

( )(IX—l)/2/P

For the Monte Carlo integration we use an importance
sampling scheme based on the following idea: the in-
tegrand is largest when H(g||p") is small and ¢ € A,
and so it should be strongly concentrated around ¢~
(the I-projection of p” onto A,). We have an un-
proven conjecture, supported by numerical evidence,
that ¢7 = p7 := po(tj{‘) (the unproven part of this is
that ¢” has uniform marginals) for 7 less than approx-
imately 0.1109. The importance sampling algorithm
samples points p € P i.i.d., favoring points near p”.

N

N ~NH(q|lp") “7 7
o H a7 1a,(q)dg.

4,7=0
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We use the parameterization (11) of P and sample the
parameters pa o,pp,0 & t independently according to
Gaussian distributions. For the selection of the two
marginals, we use identical Gaussians centered at %
and becoming more concentrated (exponentially fast)
around their mean as N — oo. For the ¢ parame-
ter, we use use a third Gaussian centered at t,Jyr. For
each (N, ~y) we determine the concentration of the third
Gaussian by sampling the integrand along the path
p(3.%,t), in the segment (0,3).

Since we cannot possibly tabulate 6]1”\; (wy) for ev-
ery empirical sequence that might arise, we tabulate
B% () for N, in a strategically chosen grid of values,
and during the learning phase we interpolate or extrap-
olate (as the need arises) from these tabulated values.
We interpolate/extrapolate — In Bﬁ;} (7) linearly in the
statistics N and H(p?||p"). Sanov’s Theorem gives
heuristic support to this procedure, but ultimately our
justification for this procedure rests on the empirical
results presented in Section 6 below.

6 Experimental Results

Computing the confidence measure. In Figure 1
we present several empirical results that help to justify
our methods for calculating S%; ( ), our new measure
of the reliability of an independence test. First, in (a),
we show that using the method of summing over types
to calculate Bﬁ; (7) has a running time which is O(N*?),
whereas the Monte Carlo method explained in Section
51is O(1) as N — oo. Thus, although it is feasible
to pre-compute BN( ) for small values of N, exact
calculation is impractical for N much larger than 200.

As for the accuracy of the Monte Carlo estimation,
the table in Figure 2 shows that for very small N, e.g.
N < 50, some multiplicative errors for our method of
~ 30% are observed, but by the time we reach N =
100, the errors are consistently < 10%. Figure 1(b)
shows that, for N = 200, the Monte Carlo estimate
has a consistently small error over the range of .

The nlinear interpolation procedure for obtaining
1n6§’\€7 (MI(wy)) from the pre-computed tables of
In 8% (y) receives heuristic support from Sanov’s The-
orem; it receives empirical support from Figure 1(c)
(resp. (d)), which shows that the dependence of
In ﬂﬁ,ﬂ (v) on N (resp., H(p"||p")), assuming all other
inputs are fixed, is roughly linear.

Sample Complexity. In this section we study the
accuracy of our learning algorithm as a function of
the amount of data we provide it. We compare our
algorithm to two baselines: BIC and Max-Min Hill-
Climbing. BIC is equivalent to our score without
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Figure 1: Computation of 61‘(,”. All results shown are for n = 0.01. (a) Running time of the exact algorithm to compute

,ijvn grows cubically in N, but for Monte Carlo approximation remains constant (results shown for v = 0.005 and 0.001
combined). (b) Monte Carlo estimate of ﬁﬁ,n () for fixed n, N = 200. (c) Exponential decay of ,Bﬁ,” (7) in N for fixed ~.
(d) Exponential decay of ﬂﬁ,ﬁ (7) as a function of KL-divergence H(p”||p"), as ~ is varied, for large N = 9000.

v
N 0.001 0.005 N 0.001  0.005
20 [ 12.20% [ 29.15% 70 [ 1.03% [ 3.59%
30 [ 24.65% | 1.18% 80 [ 9.06% | 4.13%
40 [ 39.77% | 7.07% 90 [ 0.77% | 4.05%
50 [ 2.45% 4.88% 100 | 1.01% | 0.03%
60 | 3.52% 0.30% 110 [ 2.27% | 3.01%

Figure 2 Multiplicative error of Monte Carlo approxima-
tion, |/6’?,l — 5le |/Bﬁ,’, for n = 0.01 as N,~ vary.

the sparsity boost terms. MMHC is state-of-the-art
in terms of both speed and quality of recovery, and
has been shown to outperform most other constraint-
based approaches (Tsamardinos et al. , 2006). As we
discussed earlier, MMHC is also a hybrid algorithm,
using both conditional independence tests and score-
based search. We use the implementation of MMHC
provided by the authors as part of Causal Explorer 1.4
(Aliferis et al. , 2003), with the default parameters.

We use an integer linear program to exactly solve
for the Bayesian network that maximizes the BIC or
SparsityBoost scores (Jaakkola et al. , 2010; Cussens,
2011). To solve the ILP, we use Cussens’ GOB-
NILP 1.2 software together with SCIP 3.0 (Achter-
berg, 2009). Conveniently, since the sparsity boost
terms in our objective can be subsumed into the par-
ent set scores, we can use these off-the-shelf Bayesian
network solvers without any modification.

The data that we use for learning is sampled from
synthetic distributions based on the Alarm network
structure (Beinlich et al. , 1989). The Alarm net-
work has 37 variables, 46 edges, and a maximum
in-degree of 4. In our synthetic distributions, ev-
ery variable has only two states, and its conditional
probability distribution is given loy a logistic function,
P(Xi = 1| xXpagp)) = 1/(1 + e7%rar=4). We sam-

!Threshold for x? test of .05 and Dirichlet hyperparam-
eters equal to 10. Varying these did not improve results.
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Figure 3: Comparison of the sample complexity of
MMHC, BIC, and our new SparsityBoost objective. Each
point is the average of the SHD of the learned network from
truth for 10 synthetic distributions.

pled 10 different distributions, with parameters drawn
according to 0;; ~ U[—.5,.5] + 1N(0,1) for j € Pa(s)
and u; ~ i./\/'((), 1). For each value of N, a new set
of N samples were drawn from the corresponding syn-
thetic distribution. The results shown are the average
for each of these 10 synthetic distributions.

We use Sa,p(G) from Eq. 3 with d = 2, enumerating
over all separating sets of size at most two. Larger
separating sets are less useful because they lead to
a smaller ¢, less data, and more computation to cre-
ate the objective. In the Alarm network, for every
(A, B) ¢ G there is a separating set S such that |.S| < 2
and A 1 B|S. Regardless, if a separating set for an
inexistent edge cannot be found, our score simply re-
duces to the BIC score, so no harm is done.

Our results are shown in Figure 3. We measure the
quality of structure recovery using the Structural Ham-
ming Distance (SHD) between the partially directed
acyclic graphs (PDAG) representing the equivalence
classes of the true and learned networks (Tsamardi-
nos et al. , 2006). The SHD is defined as the number
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Figure 4: Total running time to learn a Bayesian net-
work from data for BIC, SparsityBoost, and MMHC. We
maximize the BIC and SparsityBoost scores by solving an
integer linear program to optimality.

of edge additions, deletions, or reversals to make the
two PDAGs match. The plots for SparsityBoost with
n = 0.005 and n = 0.02 (not shown) are nearly iden-
tical to that of n = 0.01. SparsityBoost consistently
learns better structures than MMHC or BIC, and often
perfectly recovers the networks after only 1600 sam-
ples. SparsityBoost obtains a smaller average error
with 3000 samples than BIC does with 6000, repre-
senting a more than 50% reduction in the number of
samples needed for learning. We also found that the
SparsityBoost results had substantially less variance
than either BIC or MMHC.

Our theoretical results only guarantee exact recovery
when 1 < e. For each of the synthetic distributions
we computed €(A, B) for all of the edges (4, B) in the
true structure (see Sec. 4.1 for definition). The mini-
mum of these, that is to say €, ranged from .000028 to
.0047, which is in fact smaller than the largest value of
7 considered in our experiments (.005). Despite this,
we obtained excellent empirical results for Sparsity-
Boost with n € {.005,.01,.02}. This may be partially
explained by the average value of €(A, B) being .062.
Even when we push 7 to be as high as .04, Sparsity-
Boost converges to an average SHD of at most 3 (see
Fig. 3). Thus, our new objective appears to be partic-
ularly robust to choosing the wrong value of 7.

Running Time. We show the running time of our
new objective compared to BIC in Figure 4. The fig-
ure shows the total time, which includes both the time
to compute the score of all parent sets and the time to
solve the ILP to optimality. These results confirm our
hypothesis that the new score would be substantially
easier to optimize. We found that the linear program-
ming relaxation for SparsityBoost (with n = 0.01) was
tight on nearly all instances: branch-and-bound did
not need to be performed. Once the SparsityBoost
objective has been computed, the ILP is solved within
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6 seconds in every single instance.

The timing experiments reported in this section were
performed on a single core of a 2.66 Ghz Intel Core
i7 processor with 4 GB of memory. MMHC’s average
running time was less than 8 seconds for all sample
sizes. MMHC is significantly faster because it quickly
prunes edges that cannot exist and in its second step
uses a greedy (rather than exact) optimization algo-
rithm for score-based search.

7 Discussion

Our approach maintains the advantages of other score-
based approaches to structure learning, such as the
ability to find the K-best Bayesian networks and ease
of introducing additional constraints (e.g., from inter-
ventional data). In order to optimize our score, virtu-
ally any optimization procedure can be used. Since the
ILP is easy to solve, this suggests that greedy structure
search may also be able to easily find the best-scoring
Bayesian network under the SparsityBoost score.

One subject for future investigations is to generalize
and sharpen our results in various ways. Using a simi-
lar construction for p”, we believe it should be possible
to extend our score and proof of consistency to non-
binary variables. We also believe it will be possible to
eliminate the dependence of N (e, m,mp,n;d,(;n, k) in
both parts of Theorem 1 on the parameter m, leaving
only the dependence on rp in part (b), which is in
some cases much smaller than m.

Another issue to be explored as a future line of investi-
gation is the choice of p” in our measure of reliability,
ﬂ’li; (7). The overall motivation for 65{7 (7y) is to capture
the probability of Type II error of a statistical test with
independent distributions Py as the null hypothesis Hy
and all distributions P, as the alternative hypothesis
H;. The choice of uniform marginals for p” represents
an expedient choice, providing an objective function
that is manageable to implement and compute, yet
still has a reasonable theoretical and empirical sam-
ple complexity. Better results might be obtained by
setting the marginals of p” to approximate those of
p(wn). More generally, one can contemplate incorpo-
rating various other statistically derived probabilities
into the objective function.

This leads to the broader point that objective func-
tions, and the optimization of them over discrete
spaces of structures, are ubiquitous throughout com-
puter science and statistics. Our work suggests a new
paradigm for incorporating information from “classi-
cal” hypothesis tests into the objective functions used
for machine learning. This new paradigm provides
both computational and statistical efficiency.
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Abstract

Transferring knowledge across a sequence of
reinforcement-learning tasks is challenging, and
has a number of important applications. Though
there is encouraging empirical evidence that
transfer can improve performance in subsequent
reinforcement-learning tasks, there has been very
little theoretical analysis. In this paper, we intro-
duce a new multi-task algorithm for a sequence
of reinforcement-learning tasks when each task is
sampled independently from (an unknown) dis-
tribution over a finite set of Markov decision pro-
cesses whose parameters are initially unknown.
For this setting, we prove under certain assump-
tions that the per-task sample complexity of ex-
ploration is reduced significantly due to trans-
fer compared to standard single-task algorithms.
Our multi-task algorithm also has the desired
characteristic that it is guaranteed not to exhibit
negative transfer: in the worst case its per-task
sample complexity is comparable to the corre-
sponding single-task algorithm.

1 INTRODUCTION

A dream of artificial intelligence is to have lifelong learn-
ing agents that learn from prior experience to improve their
performance on future tasks. Our interest in the present
paper is in how to transfer knowledge and improve perfor-
mance across a sequence of reinforcement-learning [Sut-
ton and Barto, 1998] problems, where each task itself in-
volves sequential decision making under uncertainty in an
unknown environment. We assume that each task is drawn
from a finite set of Markov decision processes with identi-
cal state and action spaces, but different reward and/or tran-
sition model parameters; however, the MDP parameters are
initially unknown and the MDP identity of each new task
is also unknown. This model is sufficiently rich to capture
important applications like tutoring systems that teach a se-
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ries of students whose initially unknown learning dynam-
ics can be captured by a small set of types (such as hon-
ors, standard and remedial), marketing systems that may
characterize a customer into a finite set of types and use
that to adaptively provide targeted advertising over time,
and medical decision support systems that seek to provide
good care to patients suffering from the same condition for
whom the best treatment strategy may be characterized by
a discrete hidden latent variable that captures the patient’s
physiology.

Although there is encouraging empirical evidence that
transferring information across tasks can improve rein-
forcement learning performance (see Taylor and Stone
[2009] for a recent survey), there has been almost no theo-
retical work to justify or quantify the benefits. This is high-
lighted as one of the key limitations of the existing research
by Taylor and Stone [2009], and there have been only a
few papers since then that provide any theoretical analy-
sis [Lazaric and Restelli, 2011, Mann and Choe, 2012].
In particular, we are aware of no work that seeks to for-
mally analyze how transferred knowledge can accelerate
reinforcement learning in a multi-task settings.

In contrast, there has been a substantial amount of inter-
est over the last decade on Probably Approximately Cor-
rect (PAC) reinforcement learning in the single-task setting
(e.g. [Kearns and Singh, 2002, Brafman and Tennenholtz,
2002]). This line of work formally quantifies the worst-
case learning speed of a reinforcement-learning algorithm,
defined as the number of steps in which the agent may fail
to follow an e-optimal policy.

In this paper, we introduce a new algorithm for multi-task
reinforcement learning, and prove under certain assump-
tions that the per-task sample complexity is significantly
reduced due to transfer compared to the single-task sam-
ple complexity. Furthermore, unlike most prior multi-task
or transfer reinforcement learning algorithms, our proposed
algorithm is guaranteed to avoid negative transfer: the de-
crease in performance that can arise when misleading in-
formation is transferred from a source to target task.



2 PRELIMINARIES

This paper focuses on discrete-time, finite Markov decision
processes (MDPs) defined as a tuple (S, A, P, R, ), where
S is the finite state space, A the finite action space, P is
the transition probability function, R the reward function,
and v € (0,1) the discount factor. The reward function
is bounded and without loss of generality takes values in
[0, 1]. For convenience, we also use S and A to denote the
cardinality of the state and action spaces, respectively.

A deterministic policy m : S — A defines what action to
take in a given state. Its value function, V™ (s), is defined as
the expected total discounted reward received by executing
7 starting from state s € S. Similarly, the state—action
value function, Q7 (s, a), is defined as the expected total
discounted reward received by taking action a in state s
and following 7 thereafter. It is known [Puterman, 1994]
that there exist optimal value functions satisfying: V* =
max,; V™ and @* = max, Q™; furthermore, the greedy
policy with respective to * is optimal.

Typically, a reinforcement-learning (RL) [Sutton and
Barto, 1998] agent does not know the transition probabil-
ity and reward functions, and aims to optimize its policy
via interaction with the MDP. The main objective of RL
is to approximate an optimal policy with as few interac-
tions as possible. One formal framework for analyzing the
speed of learning in RL, which we adopt here, is the sample
complexity of exploration [Kakade, 2003], or sample com-
plexity for short. Fix parameters ¢ > 0 and § > 0. An
RL algorithm A can be viewed as a nonstationary policy
whose value functions can be defined similarly to station-
ary policies 7 above. At any timestep h, we compare the
policy value to the optimal policy value in the current state
sp. If V*(sp,) — VA% > ¢, then A is not near-optimal in
timestep h, and a mistake happens. If, with probability at
least 1 — 9, the total number of mistakes made by an algo-
rithm is at most (e, d), then C is called the sample com-
plexity of exploration. RL algorithms with a polynomial
sample complexity is called PAC-MDP. Further details and
related works are found in the survey of Strehl et al. [2009].

In this paper, we consider multi-task RL across a series of
T reinforcement-learning tasks, each run for H steps. We
assume each task is sampled from a set M of C MDPs,
which share the same state and action spaces, and discount
factor, but have different reward and/or transition dynam-
ics. Finally, we denote by V.« an upper bound of the
value function. Note that Viyax < 1/(1 — ), but can be
much smaller than this upper bound in many problems.

3 PAC-MDP MULTI-TASK RL

We are interested in exploring whether it is possible to re-
duce sample complexity when the agent faces a sequences
of tasks drawn i.i.d. from a distribution, and if so, how this

Algorithm 1 Multi-task RL Algorithm

0: Input: 77, C.

1: fort=1,2,...,71 do

2:  Receives an unknown MDP M, € M

3:  Run E3in M, for H steps to get counts o(s, a, s’ t)

4: end for

5: Combine counts into ¢ < C groups where
o(s,a, s, c) is the counts for the c-th group.

6: fort =Ty +1,...,Tdo

7:  Receive unknown M; € M.

8:  Run Finite-Model-RL on M;

9:  if MDP group of task M, is identified then
10: Incorporate state—action visitation counts from

M; to the group.

11:  endif
12: end for

benefit can be achieved by an algorithm.

Prior work suggests that higher performance is achievable
when there is some known structure about the RL MDP pa-
rameters. In particular, past research has shown that when a
task is drawn from a known distribution over a known finite
set MDPs, the problem can be cast as a partially observable
MDP planning problem, and solved to yield the Bayes op-
timal solution if the set cardinality is small [Poupart et al.,
2006, Brunskill, 2012]. Although the past work did not
examine the sample complexity of this setting, it does sug-
gest the possibility of significant improvements when this
structure can be leveraged.

Encouraged by this work, we introduce a two-phase multi-
task RL algorithm. Since at the beginning the agent does
not know the model parameters, it does single-task learn-
ing, and uses the observed transitions and rewards to esti-
mate the parameters of the set of underlying MDPs at the
end of phase one. In the second phase, the agent uses these
learned models to “accelerate” learning in each new task.
We will shortly provide details about both phases of this
algorithm, whose performance is formally analyzed in the
next section. Before doing so, we also note that our multi-
task RL algorithm is designed to minimize or eliminate the
potential of negative transfer: tasks where the algorithm
performs much worse than a single-task RL algorithm.

Compared to Bayesian approaches, our algorithm develop-
ment is motivated and guided by sample-complexity anal-
ysis. In addition to the guard against negative transfer, our
approach is robust, as guaranteed by the theory; this benefit
can be shown empirically even in a toy example.

In the following discussion, for clarity we first present a
slightly simplified version of our approach (Algorithm 1),
before discussing a few additional details in Section 3.3 that
involve subtle technicalities required in the analysis.



Algorithm 2 Finite-Model-RL

Algorithm 3 Check-Known

0: Input: S, A, o, é‘, m, &, €.
Initialize the version space: C « {1,...,C}.
V1§i<j§é: Cij<—0,Aij<—0,
Vs, a : o(s,a) < 0 (Initialize counts in current task)
KNOWN < Check-Known(S, A, ¢,0,C, 0, m)
Use E? algorithm to compute an explore-or-exploit
policy and the corresponding value function.
Initialize start state s
7: forh=1,...,H do
Take action a, receive reward r, and transition to the
next state s’
9: forallceCdo
10: Predict the model dynamics by empirical means:
O < (p(s1]s,a,¢),...,p(s1g/|s,a,c),7c)
11: Compute the ¢>-confidence interval of éc (by, say,
Lemma 5); denote the confidence interval by 66..
12:  end for
13:  Encode the transition (s, a,r, s’) by a vector (where
I is the indicator function)
z+— I1=¢)1I2=¢5),...1(S|=¢),r)

SDoREwde

@

*®

14: foralli,j € C such thati < j and ‘él- —éjH >
8 max.cc 06, do
. 2
15: cij<—cij+i‘9i—0j’
R 2 R 2
16: AZ]%AUﬁ*‘aZ*Z — ijz
17: if Cij > g then
18: C+C\{c}wherec=1iif A;; >0andc=j
otherwise.
19: end if
20:  end for

21:  KNOWN < Check-Known(S, A,¢€,0,C,0,m)

22:  If KNOWN has changed, use E? to re-compute the
policy.

23: end for

3.1 PHASE ONE

In the first phase, 7} tasks are drawn i.i.d. from the underly-
ing unknown distribution. On each task, the agent follows
the single-task algorithm E?3 [Kearns and Singh, 2002]. All
observed transitions and rewards are stored for each task.

At the end of the first phase, this data is clustered to identify
a set of at most C' MDPs. To do this, the transition and re-
ward parameters are estimated by the empirical means for
each task, and tasks whose parameters differ by no more
than a fixed threshold are clustered together. After this clus-
tering completes, all the observed transitions and rewards
for all tasks in the same cluster are merged to yield a single
set of data. Our analysis below shows that, under certain
assumptions, tasks corresponding to the same MDP will be
grouped correctly.

0: Input: S, A, ¢,0,C, 0, m.
1: for (s,a) € S x Ado
2:  if AllMDPs in C have e-close (in £5-norm) estimates
of the transition and reward functions at (s, a) then
KNOWN(s, a) + true
else if o(s,a) > m then
KNOWN(s, a) < true
else
KNOWN(s, a) + false
end if
end for

R A A

3.2 PHASE TWO

At the start of phase two, the agent now has access to a
set of (at most) C' MDPs which approximate the true set of
MDP models from which each new task is sampled. The
key insight is that the agent can use these candidate mod-
els to identify the model of the current task, and then act
according to the policy of identified model, and that this
process of model identification is generally faster than stan-
dard exploration needed in single-task learning.

To accomplish this, we introduce a new single-task RL al-
gorithm, Finite-Model-RL (Algorithm 2), that draws upon
but extends the noisy-union algorithm of Li et al. [2011].
One critical distinction is that our approach can be used to
compare models that themselves do not have perfect esti-
mates of their own parameters, and do so in way that allows
us to eliminate models that are sufficiently unlikely to have
generated the observed data.

Like many single-task PAC-MDP RL algorithms, Finite-
Model-RL partitions all state—action pairs into known and
unknown, where a known state—action pair is one for which
we have an e-accurate estimate of its parameters. Follow-
ing E?, Finite-Model-RL maintains two MDP models for
the present task. In the exploration MDP, the algorithm as-
signs unity rewards to unknown states and zero rewards to
others. This MDP will be useful for computing a policy
to explore unknown states. The other MDP, called the ex-
ploitation MDP, is identical to the underlying MDP except
for unknown states, where rewards are all zero and state
transitions are self-loops. This MDP is used to exploit ex-
isting knowledge about the current MDP in order to follow
a reward-maximization policy.

Similar to E3, our algorithm prioritizes exploration over ex-
ploitation: if the optimal value function of the current state
in the exploration MDP is above a threshold, the estimated
exploration MDP’s optimal policy is followed; otherwise,
the estimated exploitation MDP’s optimal policy is used.
In addition, Finite-Model-RL tracks which of the possible
set of C' MDP models could be the underlying MDP of the
current task. It eliminates a model when there is sufficient



evidence in the observed transitions that it is not the true
model (see lines 14-21 in Algorithm 2). We do this by
tracking the difference in the sum of the /5 error between
the current task’s observed (s, a, s’, ) transitions and the
transitions predicted given each of the C MDP models ob-
tained at the end of phase 1.

A particular state—action pair becomes known when either
there are sufficient observations from the current task that
the parameters of that state—action pair can be accurately
estimated (as in single-task PAC-MDP RL), or if the re-
maining possible MDP models have e-close estimates of
the state—action pair’s parameter in question. If the MDP
of the current task is identified (only a single model re-
mains possible in the set), then all the observed data counts
from that MDP can be merged with the current task ob-
served data counts. This frequently causes all state—action
pairs to become immediately known, and then the algo-
rithm switches to exploitation for the remainder of the task.
At the end of each task, the underlying MDP will be iden-
tified with high probability, and the observed counts from
the current task will be added to the counts for that MDP.

Since the base algorithm in Finite-Model-RL is very much
like E3, we preserve the standard single-task sample-
complexity guarantee. Thus, negative transfer is avoided
in any single task in phase 2, ! compared to single-task E>.

Across tasks, the observations accumulate and the C MDP
models will eventually have e-accurate estimates of all
state—action parameters. Once this occurs, when facing a
new task, as soon as the agent identifies the task model out
of the C' candidates, all state—action pairs become known.
We will shortly see that the sample complexity for this
identification to occur can be much smaller than standard
single-task sample complexity bounds.

3.3 ADDITIONAL ALGORITHM DETAILS

We now describe a few additional algorithmic details that
have been avoided on purpose to make the main ideas clear.
In our analysis later, as well as in some practical situations,
these technical details are important.

The key additional detail is that the E® algorithm is run
with two different knownness threshold parameters at dif-
ferent stages of the multi-task algorithm: this parameter
specifies the accuracy on the parameter estimates required
for a state—action pair to be considered known in standard
E3. Usually, this parameter is set to O(V.2,. /(€2(1 —7)?))
so that once a state—action is known, its dynamics can be
estimated sufficiently accurately. However, in multi-task
RL, we also need to identify task identity in order to facili-
tate knowledge transfer to benefit future task.

This observation motivates the use of two different values

'Up to log factors, as shown in Section 4.

125

for this parameter. At the beginning of a task, one may
want to use a relatively small value just to do a more bal-
anced random walk in the whole state space, with the pri-
mary goal to identify the present task by visiting “informa-
tive” states. Here, a state is informative if two MDP mod-
els have a sufficient disagreement in its reward or transi-
tion dynamics; formal details are given in the next section.
Only after the identity is known does the algorithm switch
to a larger value, on the order of O(V.2, /(e2(1 — 7)?)),
to learn a near-optimal policy. If, on the other hand, the
learner chooses the large value as specified in single-task
PAC-MDP algorithms, it is possible that the learner does
not visit informative states often enough by the end of a
task to know its identity, and the samples collected cannot
be transferred to benefit solving future tasks.

More precisely, in phase 1, we first execute E3 with known-
ness threshold O(I'~2), where I, to be defined in the
next section, measures the model discrepancy between
two MDPs in M, and is in general much larger than
€. Once E® has finished its exploration phase (meaning
all state—action pairs have O(I')-accurate parameter esti-
mates), we switch to running E? with the regular thresh-
old of O(V2,./(€%(1 — v)?)). Since E® performs all ex-
ploration before commencing exploitation, and € < I', the
sample complexity of the resulting method stays the same
as initially running E® with an input € parameter. This en-
sures that we maintain the single-task sample-complexity
guarantees, but also that we gain enough samples of each
state—action pair so as to reliably cluster the tasks at the end
of phase 1. With the same approach in phase 2, we can en-
sure that the task will be identified (with high probability).?

Finally, we note that information can also be transferred
to the current task through tighter optimistic bounds on the
value function that shrink as models are eliminated. Briefly,
in phase 2, we can compute an upper bound Q; of the state—
action values of the i € C' MDPs that also accounts for
any uncertainty in the model parameters. At each step, the
value of each unknown state—action pair (s, a) can then be
set to max;ec Q;(s,a). Since this modification does not
seem to impact the worst-case sample complexity, for clar-
ity we did not include it in the description of Algorithm 2,
although it may lead to practical improvement.

4 ANALYSIS

This section provides an analysis of our multi-task RL al-
gorithm. As mentioned in Section 3.3, two values are used
to define the knownness threshold in E3. Due to space lim-
itation, some of the proof details are left to a full version.

To simplify exposition, we use §; to denote MDP i’s dy-

Note that in phase 2, once the MDP identity of the present
task is known, the knownness threshold can switch to the larger
value, without having to wait until all state—actions visitation
counts reach the O(I"~2) threshold.



namics including reward and transitions: the model dy-
namics in state—action (s,a) is denoted as an (S + 1)-
dimensional vector 0;(:|s,a), where the first S compo-
nents are the transition probabilities to corresponding next
states, and the last component the average reward. The
model difference between two MDPs, M and M, in state—
action (s, a) is defined as ||6;(-|s,a) — 0;(:|s, a)||, the £2-
difference between their transition probabilities and reward
in that state—action. Furthermore, we let N be an upper
bound on the number of next states in the transition models
in all MDPs in M; while N can be as large as 9, it can
often be much smaller in many realistic problems.

We make the following assumptions in the analysis:

1. Tasks in M are drawn from an unknown multinomial
distribution, and each task has at least p,;, > 0 task-
prior probability;

There is a known upper bound C on C' = | M|, the
number of MDPs in our multi-task RL setting;

There is a known gap I' of model difference in M;
that is, for all M;, M; € M, there exists some (s, a)
such that [|0;(-|s, a) — 0;(-|s,a)|| > T.

There is a known diameter D, such that for every
MDP in M, any state s’ is reachable from any state
s in at most D steps on average;

5. All tasks are run for H = 2 (DSA

log %) steps;

The first assumption essentially ignores extremely rare
MDPs. While it is possible to adapt our results to avoid
the assumption of p,i,, we keep it mostly for the sake of
simplicity of the exposition. The second assumption says
there are not too many different underlying MDPs. In prac-
tice, one may choose C' to balance flexibility and complex-
ity of multi-task learning. The third assumption says two
distinct MDPs in M must differ by a sufficient amount in
their model parameters; otherwise, there would be little
need to distinguish them in practice. The fourth assump-
tion about the diameter, introduced by Jaksch et al. [2010],
is the major assumption we need in this work. Basically,
it ensures that on average every state can be reached from
other states sufficiently fast. Consequently, it is possible to
quickly identify the underlying MDP of a task.

Our main result is the following theorem: the overall sam-
ple complexity in solving 7" tasks is substantially smaller
than solving them individually without transfer.

Theorem 1 Given any € and 6, run Algorithm 1 for T
tasks, each for H = () (DSA log 5) steps. Then, the algo-

rithm will follow an e-optimal policy on all but O ( S Vinax )

)
steps, with probability at least 1 — §, where

~ = NV2,.C  DC?
— T T — T, max
¢=0(ng+ 06+ -1 (525 + 55 ).
and ¢ = O (%) , with probability at least 1 — §.
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In particular, in phase 2, our Algorithm 1 has a sample com-
plexity that is independent of the size of the state and ac-
tion spaces, trading this for a dependence on the number of
models C and diameter D. In contrast, applying single-task
learning without transfer in 7" tasks can lead to an overall
sample complexity of O(T'¢;) = O(TNSA). Since we ex-
pect C' < SA, this yields a significant improvement over
single-task reinforcement learners (as long as D is not too
large), whose sample complexity has at least a linear de-
pendence on the size of the state—action space [Strehl et al.,
2006b, Szita and Szepesvari, 2010], and some have a poly-
nomial dependence on the size of the state and/or action
spaces. We expect this reduction in sample complexity to
also lead to improved empirical performance, and verify
this in an experiment later.

A few lemmas are needed to prove the main theorem.

Lemma 1 Ifwe set Ty = pmm In C'/6, then with probabil-
ity 1 — 6, all MDPs will be encountered in phase 1.

Proof. In the T samples in phase 1, the probability that
every MDP is seen at least once is no smaller than 1 —
C(1 — puin) ™. Setting this lower bound to 1 — §, solving
for T, and using the inequality In(1 — z) < —z, we get

Ty = 51— 1In § is sufficient. [
Lemma 2 If all tasks are run for H = 0 (DI:S;A) steps,

then with probability 1 — 0, the following hold:

1. Every state—action in every task receives at least

QT ~21InT/6) samples from that task;

The tasks encountered in phase 1 will be grouped cor-

rectly with all other tasks corresponding to the same

(hidden) MDP;

3. Each task in phase 2 will be identified correctly and
its counts added to the correct MDP.

2.

Proof. Assumption 4 ensures that any state is reachable
from any other state within 2D steps with probability at
least 0.5, by Markov’s inequality. Chernoff’s inequality,
combined with a union bound over all T tasks and all SA
state—action pairs, implies that with probability at least 1 —
8, all state—actions can be visited Q(I'~2 In %) times as
long as sufficiently large H.

The second statement is proved by Hoeffding’s inequality.
After phase 1 each task will have at least Q(T'~21InT'/6)
samples for each state—action with high probability. In
order to accurately merge tasks into groups implicitly as-
sociated with the same underlying MDP, we note that by
assumption, any two different MDPs must have dynamics
that differ by at least I in at least one state—action. In order
to detect such a difference, it is sufficient to estimate the
models of each state—action to an ¢s-accuracy of I'/4. In
this case, the ¢y-difference between any two MDPs must
exceed I'/2 in at least one state—action pair. A similar anal-
ysis of two tasks which come from the same MDP implies



that the difference estimated mean rewards can be at most
I'/2 for all state—actions. This implies that tasks can be
clustered into groups corresponding to all tasks from the
same MDP by combining tasks whose reward models dif-
fer by no more than I' /2 across all state—action pairs. This
is ensured by Hoeffding’s inequality with a union bound,
resulting in the sample size of 2 (F*Q In %).

The third part requires that each tasks’s MDP identity can
be correctly identified with high probability in phase 2,
which can be proved similarly to the second part. (I

The next lemma shows, on average, each state transition
contains information to distinguish the true MDP model
from others. Let 6; and 6, be two (S +1)-dimensional vec-
tors, representing two MDP models for some state—action
(s,a). Let 61 and 65 be their estimates that have confidence
radius 66, and §6-, respectively; that is, H91 - él H < 660,
and similar for 6. For a transition (s, a,r,s’), define the
square loss of estimated model 6; by

> 01+ (0i(s) =12 +(0:(S+1)—r)?.

1<7<S,7#s’

06;) =

Lemma 3 [f 0, is the true model for generating the transi-
tion (s,a,r,s'), then

B, [0(02) — £00)] = |61 — s (|61 — ]| - 2 10641)
Proof. Written out explicitly, the left-hand side becomes

S (600) (1= 02 — (1 - B10)?)

+ (1= 61()(B:0)° — 02(1)%))
+E; g, [(r—62(S + 1)) = (r—61(S+ 1))2] .
Some algebra simplifies the above as:

S+1

> (07) = 0:(0) (201(7) () ~ ()
= SZH (él("—) - é2(7)) (él(T) — é2(7)261(’r) — 2@1(7'))
— |6 - é2H2 4 2(0, — 09,0, — 0,)
a2 o .
> (6= 6o — 2|61 - | |or -
o - -210m1)

where the first inequality is due to Cauchy inequality, and
the second to the condition in the lemma. ]

We are going to apply a generic PAC-MDP theorem of
Strehl et al. [2006a] to analyze the sample complexity
of our algorithm. As usual, define a state—action to be
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known if its reward estimate is within ©(e(1 — 7)) ac-
curacy, and its next-state transition probability estimate is
within O(e(1 — 7)/Vinax) in terms of total variation. The
next lemma bounds the number of visits to unknown state—
actions in the entire second phase.

Lemma 4 The total number of visits to unknown state—
actions in the the second phase is

- ((T—Tl)DC2 c(T-T). C )

2

max

X (1=

Proof. (sketch) As explained earlier, Algorithm 2 starts
with model identification, and then switches to single-task
E3. The first term in the bound corresponds to the model
identification step. Note that, for a set of C' models, there
are at most C-choose-2, namely O(C?), many informa-
tive states to fully identify a model. Therefore, our al-
gorithm only needs to reach these informative states be-
fore figuring out the true model. Similar to the proof of
Lemma 2 (part 1), each such state can be visited ©(I'~2)
times in O(DI'~2) steps. So, O(DI'~2C?) steps suffice to
visit all these informative states sufficiently often.

The rest of the proof (for the second and third terms) con-
sists of two parts. The first assumes the underlying MDP
identity is known at the beginning of each task. In our algo-
rithm, however, the MDP identity is unknown until all but
one model is eliminated. Then, the second part shows such
a delay of MDP identification is insignificant with respect
to the number of visits to unknown state—actions.

We begin with the assumption that the underlying MDP
identity is given at the beginning of each task. Although
the algorithm knows which MDP it is in in the current task,
it still follows the same logic in the pseudocode for model
elimination and identification. The only advantage it has
is to “boost” its history with samples of previous tasks of
the same MDP right after the task begins, rather than at
the end of the task. This is like single-task learning by
“concatenating” tasks of the same MDP into one big task.

In this scenario, an unknown state—action (s, a) implies at
least one of the following must be true. The first is when
the number of samples of (s,a) in some model has not
exceeded the known threshold (;/(SA). For this case,
since the samples of (s,a) for the same MDP accumu-
lates over tasks, there can be at most /(S A) visits to un-
known (s, a) pairs for a single MDP model, and a total of
C(,/(SA) visits to unknown (s, a) across all C' models. In
the other case, at least two models in M has a sufficient
difference in their estimates of the model parameters for
(s,a). Using Lemma 3, one can calculate the expected dif-
ference in square loss between the true model and a wrong
model. Following similar steps as in [Li et al., 2011],3
we can see the squared difference on average is at least

3The noisy union algorithm of [Li et al., 2011] is based on



m ax

O(e2(1—7)2/( N)), and afterO( o
its to such state—actions, all models but the true one will be
eliminated, with probability at least 1 — ==. Using a union
bound over all tasks in phase 2, we have that with proba-
bility at least 1 — 4, the same statement holds for all tasks
in phase 2. Details will be given in a full version.

V2

max CT)

In vis-

The first part of the proof is now completed, showing that
when the task identity is given at the beginning of a task,
the total number of visits to unknown state—actions is at
most O (Wi CTT0) 1y € C(S)

€2(1—v)?

We now handle the need for MDP identification, which pre-
vents samples in the present task to contribute to the cor-
responding model until the underlying MDP is identified.
Consider any state—action pair (s, a), and a fixed task in
phase 2. At the beginning of the task, the algorithm has
access to C' models, the i-th of which has accumulated U;
samples for (s, a). After the task, the true MDP (say, model
1, without loss of generality) is identified, whose sample
count for (s, a) becomes U; + Uy + Uy, where Uy is the
number of visits to (s,a) in the present task. For other
models ¢ > 1, U/ + U,.

Consider three situations regarding the sample sizes U
and U;. In the first case, U1 < U{ < (s/(SA), so
our multi-task RL algorithm behaves identically no mat-
ter whether the samples contribute to the true model esti-
mation immediately or at the end of the task, since (s, a)
will remain unknown in either situation. In the second
case, (;/(SA) < Uy < Uj, so (s,a) is already know
at the beginning of the task, and additional samples for
(s,a) does not change the algorithm, or increase the num-
ber of visits to unknown state—actions. In the last case, we
have U; < (;/(SA) < Uj. Recall that our algorithm
declares a state—action to be known if it has been visited
¢s/(SA) times in a single task, so Uy < (;/(SA). Hence,
Ul =U1+Uy < 2¢5/(SA). Applying this inequality to all
state—actions and all MDPs, we conclude that the number
of visits to unknown states is at most 2C'(s.

Part II above shows the delay in sample accumulation can
only cause up to a constant factor increase in the number
of visits to unknown state—actions. The lemma follows im-
mediately from the conclusion of part I. (]

We are now fully equipped to prove the main result:

Proof. (of Theorem 1) We will use the generic PAC-MDP
theorem of Strehl et al. [2006a] by verifying the three
needed conditions hold. Although the theorem of [Strehl
et al., 2006a] is stated for single-task RL, the proof works
without essential changes in multi-task RL.

The first condition holds since the value function is opti-

scalar predictions and observations, while we are dealing with
(S + 1)-dimensional vectors. The only substantial change to their
proof is to replace the application of Hoeffding’s inequality with
its vector-valued extensions, such as Lemma 5 in the appendix.
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Figure 1: Gridworld domain

mistic with high probability, by construction of the known-
state MDPs when running E? in the tasks.

The second condition also holds. Whenever a state—
action becomes known, its reward estimate is within e(1 —
) accuracy, and the transition estimate is within e(1 —
v)/ (Vmaxx/ﬁ ) accuracy measured by ¢ error. Using the
inequality ||v]|, |v]|, V/d, where d is the dimension
of vector v, we know the transition estimate is within
€(1 — ) /Viax accuracy measured by total variation. The
simulation lemma (see, e.g., [Strehl et al., 2006a]) then im-
plies the accuracy condition holds.

What remains to be shown is that the third condition holds;
namely, we will find a bound on the total number of times
an unknown state—action pair is visited, across all 7" tasks.
E3 is executed on each task in phase 1. Prior analysis
for Rmax and MBIE (see e.g. [Kakade, 2003, Strehl and
Littman, 2008]) applies similarly to E3, implying that the
number of visits to unknown state—action pairs on a sin-
gle MDP at most (SANv2 ) From Lemma 1, after 71}

€2(1—7)2
tasks, all tasks in C have been encountered with probability
at least 1 — 9. Therefore, with probability at least 1 — ¢,
the total number of visits to unknown state—action pairs in
phase 1 is at most (77 .

In Phase 2, Algorithm 1 runs E? in individual tasks
but transfers samples from one task to another of the
same underlying MDP. We have shown in Lemma 4

the number of visits to unknowg state—actions is at
T—-T1)DC NV2 T-T
most O(( Flz) =16 (7)2 1) ] %4—6’(3).
Hence, the total number of visits to unknown
state—actions during all T tasks is at most
2 NV2 C
o) (CSTl (T —T) (DF—C + S g )+c¢s)

The theorem follows immediately by the PAC-MDP
theorem of [Strehl et al., 2006a]. O

S EXPERIMENTS

Although the main contribution of our paper is to provide
the first theoretical justification for online multi-task RI,
we also provide numerical evidence showing the empirical
benefit of our proposed approach over single-task learning
as well as a state-of-the-art multi-task algorithm.



There are C' = 3 possible MDPs, each with the same 5 x 5
state space as shown in the gridworld layout of Figure 5.
The start state is always the center state (s13). There are 4
actions that succeed in generally moving the agent in the
intended cardinal direction with probability 0.85, going in
the other directions (unless there is a wall) with probability
0.05 each. Three of the corners (s5, s21, S25) exhibit differ-
ent dynamics: the agent stays in the state with probability
0.95, or otherwise transitions back to the start state. The
three MDPs differ only in their reward models. The reward
for each state is drawn from a binomial model. Intuitively,
in each MDP, one of the corners provides a high reward,
two others provide low reward, and there is one additional
state whose medium reward can help distinguish the MDPs.
More precisely, In MDP 1, so; has a binomial parameter of
0.99, s¢ has a parameter of 0.6, s5 and so5 have a param-
eter of 0, and all other states have a parameter of 0.1. In
MDP 2, s5 has a binomial parameter of 0.99, s, has a pa-
rameter of 0.6, so1 and S5 have a parameter of 0, and all
other states have a parameter of 0.1. In MDP 3 s95 has a
binomial parameter of 0.99, s; has a parameter of 0.6, s2;
and so5 have a parameter of 0, and all other states have a
parameter of 0.1. A new task is sampled from one of these
three MDPs with equal probability.

We compare our proposed approach to the most closely re-
lated approach we are aware of, Wilson et al. [2007]’s algo-
rithm on hierarchical multi-task learning (HMTL). Wilson
et al. learn a Bayesian mixture model over a set of MDP
classes as the agent acts in a series of MDPs, and use prior
to transfer knowledge to a new task sampled from one of
those classes. When acting in a new MDP, their approach
does not explicitly balance exploration and exploitation; in-
stead, it selects the current maximum a posterior (MAP) es-
timate of the model parameters, computes a policy for this
model, and uses this policy for a fixed number of steps, be-
fore re-computing the MAP model. Wilson et al. did not
provide formal performance guarantees for their approach,
but they did achieve promising results on both a simulated
domain and a real-time strategy game with HMTL. When
applying their approach to our setting, we limit the hierar-
chy to one level, ensuring that tasks are directly sampled
from a mixture of MDPs. We also provide their algorithm
with an upper bound on the number of MDPs, though their
algorithm is capable to learning this directly.

In both our algorithm and HMTL there are several param-
eters to be set. For HMTL we set the interval between
recomputing the MAP model parameters at 10 steps: this
was chosen after informal experimentation suggested this
improved performance compared to longer intervals. In
our approach we set the threshold for a parameter to be
known at m = 5. The number of tasks in phase 1 was
set to [31n(3/0.05)] = 13, matching the required length
specified by Lemma 1. We ran each task for a horizon of
H = 3000 steps, and performed multi-task reinforcement
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learning across 150 tasks per round. We then repeated this
process for 20 rounds.

Figure 5 displays the cumulative per-task reward for each
method, averaged across 20 rounds. As expected, our ap-
proach performs worse during phase 1, before it has ob-
tained a good estimate of each of the 3 MDPs. In phase
2, our approach performs well, successfully leveraging its
knowledge of the models to quickly determine the new
task’s MDP identity, and then act optimally for that MDP
for the remainder of the task. Since phase 1 of our al-
gorithm runs single-task £3, we can see that transferring
knowledge enables our approach to perform substantially
better than single-task E2 (p < 10~* in a Mann-Whitney
U test comparing the first task performance to the last).

HMTL does quite well even at the start, because the al-
gorithm directly exploits the current estimated parameters,
and once the agent bumps into a good state, the algorithm
can leverage that information for the remainder of the task.
However, HMTL does not significantly improve beyond its
original performance, and performs similarly across the en-
tire length of a multi-task round. We hypothesize that this
is because in each task, this approach is not explicitly per-
forming exploration, and therefore may only get good esti-
mates of the parameters of some of the state—action pairs.
This means it can be harder to learn a good estimate of
the mixture model over the MDPs. Indeed, when we ex-
amine the multi-task posterior learned by HMTL, we find
that the resulting MDPs appear to be mixtures of the true
set of MDPs. We compare the total reward obtained in a
single round (of all 150 tasks in both phases) of the two ap-
proaches, and our approach achieved significantly higher
total reward (p = 0.03 in a Mann-Whitney U test).

These results provide empirical evidence that our algo-
rithm both achieves significantly better sample-complexity
results than prior single-task algorithms as well as a state-



of-the-art multi-task algorithm, and these gains can indeed
translate to improved empirical performance.

6 RELATED WORK

Our setting most closely matches that of Wilson et al.
[2007]; however, they consider a more general two-level
hierarchical model where tasks are sampled from a class
distribution, and there is a mixture over classes. The au-
thors update a Bayesian prior over the hierarchical model
parameters after finishing acting in each task using MCMC,
and use and update a local version of this prior during each
single-task by sampling an MDP from this prior, following
the model’s optimal policy for a fixed number of steps, up-
dating the prior, and repeating. Though the authors demon-
strate promising empirical learning improvements due to
transfer, unlike our work, no formal analysis is provided.

Other work studies the related problem of transfer RL.
For example, Lazaric and Restelli [2011] provide value-
function approximation error bounds of the target task in
a batch setting, as opposed to our online setting where the
agent has to balance exploration and exploitation. Their
bounds quantify the error potentially introduced by trans-
ferring source-task samples to an unrelated target task as
well as the reduction in error due to increasing the num-
ber of samples from the source. Sorg and Singh [2009]
prove bounds on transferring the state—action values from
a source MDP to a target MDP, where both MDP models
are known and there exists a soft homomorphism between
the two state spaces. If the target MDP model is unknown,
the authors present a promising heuristic approach without
performance guarantees. More recently, Mann and Choe
[2012] introduce an algorithm that uses a slight modifica-
tion of a source task’s optimal value as an optimistic ini-
tial value for a subset of the target task’s state—action pairs,
given a mapping between the tasks that ensures the associ-
ated value functions have similar values. The authors pro-
vide characteristics of this mapping that will improve sam-
ple complexity of their algorithm. While interesting, no al-
gorithm was given that could meet these conditions, and no
sample-complexity bounds were provided. Perhaps most
similar to us is Mehta et al. [2008], who consider sample
complexity for transfer learning across semi-MDPs with
identical (S, A) and transition models, and a distribution
of reward weight vectors. The authors provide a bound on
the number of tasks needed until they will be able to imme-
diately identify a close-to-optimal policy for a future task.
Compared to our work: (1) the authors only use transferred
information to initialize the value function in the new task,
(2) their algorithm can produce negative transfer, and more
significantly, (3) the authors assume that the model of each
new semi-MDP is completely specified.

The model-elimination idea in our Algorithm 2 is related
to several previous work on single-task RL. The most rel-
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evant is probably the (more special) noisy union algorithm
of Li et al. [2011] and its application to Met-Rmax [Diuk
et al., 2009]. Here, the noisy union algorithm is general-
ized so that model elimination is possible even before a
state—action becomes fully known. Similar ideas are also
found in the Parameter Elimination algorithm [Dyagilev
et al., 2008], which uses Wald’s Sequential Probability Ra-
tio Test (SPRT) to eliminate models, as opposed to the sim-
pler square loss metric we use here. Finally, Lattimore et al.
[2013] employ model elimination in their Maximum Ex-
ploration algorithm that works in general reinforcement-
learning problems beyond MDPs.

7 CONCLUSIONS

In this paper, we analyze the sample complexity of explo-
ration for a multi-task reinforcement-learning algorithm,
and show substantial advantage compared to single-task
learning. In contrast to the majority of the literature, this
work is theoretically grounded, using tools in the PAC-
MDP framework. Furthermore, we also show the possi-
bility of avoiding negative transfer in multi-task RL.

These promising results suggest several interesting direc-
tions for future research. One of them is to relax some of
the assumptions and to develop more broadly applicable al-
gorithms. Second, we intend to test the proposed algorithm
in benchmark problems and investigate its empirical advan-
tage compared to single-task RL, as well as its robustness
with respect to parameters like C. Third, it is interesting
to extend the current results beyond finite MDPs, possi-
bly relying on function approximation or compact model
representations like dynamic Bayes networks [Dean and
Kanazawa, 1989]. Finally, our algorithm makes use only
of the learned MDP parameters, not of the task distribution
over M. Although our own attempt has not yet identified
theoretical benefits from such information, we suspect at
the least that it will be empirically beneficial.

A A CONCENTRATION INEQUALITY

The following result extends Hoeffding’s inequality from
real-valued random variables to vector-valued random vari-
ables. The tail probability upper bound here is only a con-
stant factor worse than that of Hoeffding’s.

Lemma 5 (Hayes [2005]) For vector-valued martingale,
Pr(| X,|| >a) < 2exp <2 - %), or equivalently,

).

2
ne

Pr (| 5] = ©) < 2exp (2 75
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Abstract

Using the theory of group action, we first in-
troduce the concept of the automorphism group
of an exponential family or a graphical model,
thus formalizing the general notion of symme-
try of a probabilistic model. This automorphism
group provides a precise mathematical frame-
work for lifted inference in the general exponen-
tial family. Its group action partitions the set
of random variables and feature functions into
equivalent classes (called orbits) having identical
marginals and expectations. Then the inference
problem is effectively reduced to that of com-
puting marginals or expectations for each class,
thus avoiding the need to deal with each individ-
ual variable or feature. We demonstrate the use-
fulness of this general framework in lifting two
classes of variational approximation for maxi-
mum a posteriori (MAP) inference: local linear
programming (LP) relaxation and local LP re-
laxation with cycle constraints; the latter yields
the first lifted variational inference algorithm that
operates on a bound tighter than the local con-
straints.

1 Introduction

Classical approaches to probabilistic inference—an area
now reasonably well understood—have traditionally ex-
ploited low tree-width and sparsity of the graphical model
for efficient exact and approximate inference. A more re-
cent approach known as lifted inference [4, 16, 7, 8] has
demonstrated the possibility to perform very efficient in-
ference in highly-connected, but symmetric models, such as
those arising in the context of relational (first-order) prob-
abilistic models.

Symmetry is the essential element of lifted inference.
But currently, no formally defined notion of symmetry of
a probabilistic model exists, and thus no formal account of
what “exploiting symmetry” means in lifted inference has
been defined. As a result, most previous work has derived
lifted versions of existing propositional algorithms from a
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procedural perspective: for models that exhibit symme-
tries, propositional inference algorithms tend to perform
the same computations several times, and their lifted coun-
terparts are designed to perform these operation once. This
approach severely limits the theoretical understanding of
the nature of lifted inference. In practice, this approach
also limits the class of inference algorithms that we can
lift. For example, many ground inference updates (e.g.,
asynchronous belief propagation, max-product linear pro-
gramming (MPLP) [5]) are made in a sequence that breaks
the symmetry of the original model. Likewise, with the
advance in modern optimization, many algorithms rely on
off-the-shelf solvers in their inner loop, and lifting these
solvers is not practical.

In this work, we propose an alternative approach: rather
than lifting inference algorithms, we lift their variational
formulations, the optimization problems that variational in-
ference algorithms seek to solve. These lifted formulations
can then be tackled with the usual optimization toolbox
(off-the-shelf solvers, cutting plane algorithms, dual block
coordinate descent updates etc.). If the original model ex-
hibits symmetry, then the lifted formulations will generally
be more compact than their propositional counterparts, and
hence their optimization is likely to be more efficient. This
declarative approach to lifting gives rise to a new class of
algorithms, including the first lifted variational algorithm
that operates on a bound tighter than the local constraints.

This paper is divided into three parts: In the first part,
we show how to find a lifting partition: sets of random
variables and feature functions that have identical expecta-
tions. We present a formal account of symmetry in graph-
ical models through automorphism groups of exponential
families. When there is parameter-tying, the automorphism
group leads to a subgroup, termed the lifting group, which
also captures symmetry in the parameters. By linking the
lifting group to the well-known subject of graph auto-
morphisms [10, 6], we can leverage off-the-shelf tools to
find lifting partitions as orbits of the lifting group. Fur-
ther, by connecting the lifting group to renaming permuta-
tions of logical constants in Markov Logic Network (MLN)
[14], we find lifting partitions without unrolling the MLN.
In work done concurrently and independently from ours,



Niepert [12, 13] presented similar ideas for exploiting or-
bits of permutation groups in lifting Markov Chain Monte
Carlo (MCMC) algorithms. Though the ideas are similar,
unique to our contribution is the rigorously defined auto-
morphism group of a general exponential family that en-
ables formal proofs of all subsequent results.

In the second part, we are given a lifting partition, and we
use it to collapse the variational variables and constraint
set. In particular, we investigate two popular variational
relaxations of MAP inference. The first one is based on the
local polytope, and the second one is based on a tightening
of the local polytope with cycle constraints. For the latter,
we also develop a lifted separation oracle to find violated
constraints in the reduced yet still exponential lifted cycle
polytope.

In the third part, we evaluate the novel algorithms that our
framework gives rise to. Using an off-the-shelf LP solver,
we show that for models with symmetry, lifted MAP in the
local polytope is more efficient than propositional MAP.
Likewise, for models with symmetry and repulsion, the
lifted cycle polytope yields more accurate results than its
local counterpart, and requires less runtime than the propo-
sitional version. Finally, we show the effectiveness of the
renaming approach to finding lifting partitions. Although
the proofs are non-trivial, due to space restrictions, they
are omitted but can be found in [3].

2 Background on Groups and Graph
Automorphisms

A partition A = {A1 ... Ay} of aset V is a set of disjoint
nonempty subsets of V' whose union is V. Each element
A, is called a cell; |A| is thus the number of cells or the
size of the partition. A partition A defines an equivalence

relation & on V/ by letting u & v iff u and v are in the same
cell. A partition A is finer than A if every cell of A is a
subset of some cell of A.

We now briefly review the important concepts in group
theory and graph automorphisms [6]. A mathematical
group (G, -) is a non-empty set G containing an identity
element, denoted by 1, and a binary operation - which is
associative and closed in G. The group identity satisfies
Vg€ G,1-g=g-1= g, and every element of G is invert-
ible, i.e., 3¢~ such that g - g=' = g=' - g = 1. A group
containing 1 as its only element is called a trivial group. A
subgroup of G is a subset of G that forms a group with the
same binary operation as G. We write G; < G5 when G4
is a subgroup' of Go.

A permutation of a set V' is a bijective mapping from
V to itself. Two permutations can be composed together
via the usual composition of two mappings. Any set of
permutations (on V') that contains the identity permutation
and is closed under composition and taking inverse thus
forms a group. The set of all permutations of V' is called
the symmetric group S(V'). The symmetric group S,, is the

"We use the notation G1 = G2 to mean G is isomorphic to a
subgroup of Ga.
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set of all permutations of {1,2,...,n}. For a permutation
m € Sy, w(4) is the image of ¢ under 7. For each vector
x € X", the vector z permuted by 7, denoted by x7, is
(Tr(1) -+ Tr(n)); foraset A C X", the set A permuted by
m, denoted by A™ is {a7|x € A}.

A subgroup G of S(V') induces the following equivalence
relation on V: v ~ o' iff there exists ¢ € G such that
g(v) = v’ (the fact that ~ is an equivalence relation follows
from the definition of a group). G therefore induces a parti-
tion on V, called the orbit partition, denoted by Orbg (V).
The orbit of an element v € V is the set of elements in V'
equivalent to v: orbg(v) = {v' € V| v’ ~ v}.

A group G can induce an orbit partition on any set U as
long as members of G can be viewed as (not necessarily
distinct) permutations of U. In this case, there is a group
homomorphism from G to a subgroup of S(U), and the
group G is said to act on the set U. A subgroup G; < G
will also act on U and induces a finer orbit partition. Given
a set element u € U and a group element g € G, if g(u) =
u then g is said to stabilize u. If Vg € G, g(u) = u, then
the group G is said to stabilize wu.

Group action is a powerful concept since it allows the
same group G to act (hence induce orbit partitions) on
many different sets. For example, S,, acts on the set of
n-dimension vectors X" via the action 7(z) = ™. S,, also
acts on the set of n-vertex graphs in the following way. Ev-
ery permutation 7 € S,, transforms a graph & to its isomor-
phic variant & (i.e., {4, j} is an edge in & iff {m (i), 7(j)}
is an edge in ®). Hence, it can be viewed as a bijection
(permutation) on the set of n-vertex graphs. If 7(®) = &
then 7 stabilizes & and is called an automorphism of the
graph &. The set of all automorphisms of & forms a group
named the automorphism group of &, denoted by A(®)
(see Figure 1). It is clear that A(®) is a subgroup of S,,.
The cardinality of A(®) indicates the level of symmetry
in &. If A(®) is the trivial group then & is asymmetric;
if A(&) = S, then & either is fully connected or has no
edges. This concept of graph automorphism directly gen-
eralizes to graphs with additional structures such as direc-
tions, colors, etc.

If we now ask what elements of & are indistinguish-
able up to symmetry, the automorphism group A(®) can
give us the precise answer. For example, if v/ can be ob-
tained from a node v via some permutation 7 in A(®),
then these two nodes are indistinguishable and must have
the same the graph properties (e.g., degree, averaged dis-
tance to other nodes, etc.). A(®) thus partitions the set
of nodes V' into the node-orbits Orby ) (V') where each
node orbit is a set of vertices equivalent to one another
up to some node relabeling. Furthermore, A(®) also acts
on the set of graph edges E of & by letting w({u,v}) =
{m(u), 7(v)} and this action partitions F into a set of edge-
orbits Orby ) (£). Similarly, we can also obtain the set of

arc-orbits Orby (e (E)
Computing the automorphism group of a graph is as dif-
ficult as determining whether two graphs are isomorphic, a
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Figure 1: Graphs and their automorphism groups: (a) A(K5) =
Ss; (b) A(Kax3) = Sa X Sg; (c) this graph can be rotated or
flipped, yielding the automorphism dihedral group Ds; and (d)
this is known as the Frucht’s graph, a regular but asymmetric
graph. Blue and red colors in (a)-(c) denote different node orbits.

problem that is known to be in NP, but for which it is un-
known whether it has a polynomial time algorithm or is NP-
complete. In practice, efficient computer programs, such as
nauty? [10], exist for computing automorphism groups of
graphs.

3 Symmetry of the Exponential Family
3.1 Exponential Family and Graphical Model

Consider an exponential family over n random variables
(x;)icy where V = {1...n}, z; € X with density func-
tion

F(z]0) = h(z) exp ((®(x),0) — A(0))

where h is the base density, ®(z) = (¢;(x))jez. T =
{1,2,...,m} is an m-dimensional feature vector, § € R™
is the natural parameter, and A(6) the log-partition func-
tion. Let © = {6 |A() < oo} be the set of natural param-
eters, M = {u € R™ | Ip, u = E, ()} the set of realiz-
able mean parameters, A* : M — R the convex dual of A,
and m : © — M the mean parameter mapping that maps
0 — m(f) = E¢p®(z). Note that m(0) = ri M is the
relative interior of M. For more details, see [19].

Often, a feature function ¢; depends only on a subset
of the variables in V. In this case we will write ¢; more
compactly in factorized form as ¢;(z) = f;(zi; ... ziy)
where the indices 4; are distinct, 7; < 42... < ig, and
f; cannot be reduced further, i.e., it must depend on all of
its arguments. To keep track of variable indices of argu-
ments of f;, we let scope(f;) denote its set of arguments,
n;(k) = iy the k-th argument and |7;| its number of ar-
guments. Factored forms of features can be encoded as a
hypergraph G [F] of F (called the graph structure or graph-
ical model of F) with nodes V, and hyperedges (clusters)
{C|3i, scope(f;) = C}. For models with pairwise features,
G is a standard graph.

For discrete random variables (i.e., X is finite), we of-
ten want to work with the overcomplete family F° that
we now describe for the case with pairwise features. The
set of overcomplete features Z° are indicator functions
on the nodes and edges of the graphical model G of
Fo 2., () = I{x, =t},t € X for each node u €
V(G); and ¢f{’u:t7v:t,}(x) =I{z, =t,x, =t'},t,t' € X
for each edge {u,v} € E(G). The set of overcom-
plete realizable mean parameters M is also called the
marginal polytope because the overcomplete mean param-

http:/fes.anu.edu.au/people/bdm/nauty/
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eter corresponds to node and edge marginal probabili-
ties. Given a parameter 6, the transformation of F(z|0)
to its overcomplete representation is done by letting 0° be
the corresponding parameter in the overcomplete family:

0% = 2ist scope(ts)={uy Li(t)0; and gassumin.gz.t < v)
eiu:t,v:t’} = is.t. scope(f;)={u,v} fi (t’t )91 Verlfylng that
FO(x|0°) = F(x|0) is straightforward.

3.2 Automorphism Group of an Exponential Family

We define the symmetry of an exponential family F as the
group of transformations that preserve F (hence preserve
h and ®). The kind of transformation used will be a pair of
permutations (7, y) where m permutes the set of variables
and y permutes the feature vector.

Definition 1. An automorphism of the exponential family
F is a pair of permutations (,~) where 7 € S,,, v € S,

such that for all vectors z: h(z™) = h(z) and 7 (27) =
®(x) (or equivalently, (z™) = ®7(x)).

Showing that the set of all automorphisms of F, denoted
by A[F], forms a subgroup of S,, X S, is straightforward.
This group acts on Z by the permuting action of 7, and
on V by the permuting action of 7. In the remainder of
this paper, h is always a symmetric function (e.g., h = 1);
therefore, the condition ~(z™) = h(x) automatically holds.
Example 1. Let V = {1...4} and & = {f; ... {5} where
fl(l‘l,l‘g) = 31‘1(1 — 132), fg(xl,xg) .%‘1(1 — 1‘3),
fg(afg, 333) = T2T3, f4(l‘2, $4) = 1‘4(1 — .1‘2), f5(l‘3, 334) =
24(1 —23). Thenw = (1 & 4)(2 & 3),v = (1 <
5) (2 ¢ 4) form an automorphism of F, since &7 (z™)
(¢5(£L’4 . Zl), ¢4(ZL’4 . 1’1), ey ¢1(iL’4 . 1’1))
(f5(z2, 21), fa(z3, 21), f3 (23, 22), f2 (24, w2), F1 (24, 23)) =

(.’L‘l(l — 1‘2), 1‘1(1 — l‘g), 3o, .%‘4(1 — 1‘2), 134(1 — 1‘3)):
fb(xl ‘e JU4).

An automorphism as defined above preserves a number
of key characteristics of the exponential family F (such as
its natural parameter space, its mean parameter space, and
its log-partition function), as shown in the following theo-
rem.

Theorem 1. If (7,7) € A[F] then

1. m € A(G[F)]),i.e. mis an automorphism of the graph-
ical model graph G[F].

2. ©Y = O and A(07) = A(f) forall § € ©.

3. F(z™|07) = F(z|f) forallz € X™, 0 € O.

4. m7(0) = m(#7) forall 6 € O©.
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We now consider a parameter-tying setting where some
components of # are the same. Formally, a parti-
tion A of Z is called the parameter-tying partition iff

A
j~3 =10, = 0]-/.
{r ER™|r; =ryifj 2 j/}. For any set S C R™, let

. MY = Mand A*(u7) = A*(u) forall p € M.
Parameter Tying and the Lifting Group

Let R denote the subspace



Sa denote the set intersection S N RX. Parameter ty-
ing is equivalent to restricting the natural parameter 6 to
the set Oa. This is also equivalent to working with a
different exponential family with |A| aggregating features

(Z JEA ¢j) . While this family has fewer parameters, it

is not obvious how it would help inference; moreover, in
working directly with the aggregation features, the struc-
ture of the original family is lost. Our goal is to study how
parameter-tying, coupled with the symmetry of the family
JF, can lead to more efficient inference.

The automorphism group A[F] preserves the family of

distributions JF; however, this group does not take any spe-
cific parameter 6 into account. Of special interest is the
set of automorphisms that also preserve ¢ for every tied
parameter § € Oa. We will now formalize this con-
cept. Given a partition A, a permutation A on Z is con-
sistent with A iff A\ permutes only among elements of the
same cell of A. Clearly, for all § € Oa, 6* = 6. If
G is a group acting on Z, we let Ga denote the set of
group elements whose actions are consistent with A, that is
Ga = {g € GVu e Z, g(u) R u} It is straightforward
to verify that G is a subgroup of G.
Definition 2. (Lifting Group) The lifting group corre-
sponding to the parameter-tying partition A is A (F), the
subgroup of A[F] whose member’s action is consistent
with A.

The lifting group Aa (F) thus stabilizes not just the fam-
ily F, but also every parameter § € ©a. Furthermore,
features in the same orbit induced by the lifting group must
have the same expectation (a consequence of theorem 1,
part4). As we shall see in the later section, the lifting group
AA(F) and its induced orbit partitions on the set of vari-
ables and features play a central role in our lifted variational
inference framework.

4 Detecting Symmetries in Exponential
Families

We now discuss the computation of the lifting group
A (F) and its orbit partitions. In practice, computing and
working with a subgroup of the lifting group suffice.

4.1 Detecting Symmetries via Graph Automorphisms

Our first approach is to construct a suitable graph whose
automorphism group is guaranteed to be a subgroup of
AA(F), and thus any tool and algorithm for computing
graph automorphism can be applied. The constructed graph
resembles a factor graph representation of 7. However, we
also use colors of factor nodes to mark feature functions
that are both identical and in the same cell of A, and col-
ors of edges to encode symmetry of the feature functions
themselves.

Definition 3. The colored factor graph induced by F and
A, denoted by &a[F] is a bipartite graph with nodes
V(®) = {z1...2,} U{f;...f;,} and edges E(B) =
=z, fi} |1 €Z, k=1...|n;]}. Variable nodes are
assigned the same color which is different from the col-
ors of factor nodes. Factor nodes f; and f; have the same
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Figure 2: Graph construction for computing the lifting group and
its orbits: (a) original graphical model of example 1; (b) con-
structed colored factor graphs, assuming all parameters are the
same (arrows represent first arguments of the asymmetric factors);
and (c) lifted graphical model with nodes representing node or-
bits and edges representing edge orbits of the original graphical
model.

coloriff f; = f; and i 2 7. If the function f; is symmetric,
then all edges adjacent to f; have the same color; otherwise,
they are colored according to the argument number of f;,
i.e., {,, (). f; } is assigned the k-th color.

Figure 2 shows the construction of the colored factor
graph for the exponential family in example 1 where we
have assumed that all the parameters are the same.
Theorem 2. The automorphism group A[&a] of Sa[F] is
a subgroup of Aa(F), i.e, A[Ga] < Aa[F].

Finding the automorphism group A[Ba] of the graph
& A [F] therefore yields a procedure to compute a subgroup
of Aa[F]. Nauty, for example, directly implements opera-
tions of computing the automorphism group of a graph and
extracting the induced node orbits and edge orbits.

4.2 Symmetries of Markov Logic Networks

Markov Logic Network (MLN) [14] is a first-order prob-
abilistic model that defines an exponential family on ran-
dom structures (i.e., random graphs, hypergraphs, or more
generally random Herbrand models of the first-order lan-
guage). In this case, a subgroup of the lifting group can be
obtained via the symmetry of the unobserved constants in
the domain without the need to consider the ground graph-
ical model.

An MLN is prescribed by a list of weighted formulas
Fy ... Fi (consisting of a set of predicates, logical vari-
ables, constants, and a weight vector w) and a logical do-
main D = {a;...ajp| }. Let Dy be the set of objects appear-
ing as constants in these formulas, then D, = D\Dj is the
set of objects in D that do not appear in these formulas. Let
Gr be the set of all ground predicates p(a; . ..ag)’s. Given
a substitution s, F;[s] denotes the result of applying the
substitution s to F; and is a grounding of F; if it does not
contain any free logical variables. The set of all ground-
ings of F; is GrF;, and let GrFF = GrF; U ... U GrFg.
Let w be a truth assignment to all the ground predicates
in Gr and w; be the weight of the formula F;. The MLN
corresponds to an exponential family F,;rny where Gr is
the variable index set and each grounding Fj[s| € GrF;
is a feature function ¢p,[5(w) = I(w F Fj[s]) with the
associated parameter 0, ;) = w;. Since all the ground fea-
tures of the formula F; have the same parameter w;, the
MLN also induces the parameter-tying partition Ay, n =

Hor s (W)} - APres) (W)}



Let a renaming permutation r be a permutation over D

that fixes every object in Dy (i.e., r only permutes ob-
jects in D,). Thus, the set of all such renaming permu-
tations is a group G"¢ isomorphic to the symmetric group
S(D..). Consider the following action of G™ on Gr : 7, :
play...ae) — p(r(ar)...r(ag)), and the action on GrF
Y ¢ Fy[s] — Fi[r(s)] where r(s = (x1/a1,...,xx/ax)) =
(z1/r(a1),...,xx/r(ax)). Intuitively, 7, and -, rename
the constants in each ground predicate p(a;j ...ay) and
ground formula F;[s] according to the renaming permuta-
tion r. The following is a consequence of Lemma 1 from
Bui et al. [2].
Theorem 3. For every renaming permutation r, (7., V) €
A[Fnn]. Further, the renaming group G is isomor-
phic to a subgroup of the MLN’s lifting group: G"¢ =<
AAMLN [}—MLN]'

Orbit partitions induced by G"¢ on the set of pred-
icate groundings can be derived directly from the
first-order representation of an MLN without consid-
ering its ground graphical model. The size of this
orbit partition depends only on the number of ob-
served constants |D,|, and does not depend on ac-
tual domain size |D|. For example, if ¢(.,.) is a
2-ary predicate and there is one observed constant a,
then we obtain the following partition of the ground-
ings of ¢: {q(a,a)}, {q(z,z)|x # a}, {¢(a,2)|z # a},
{a(z,a)|lz # a}, {q(z,y)|lx #y,x # a,y # a}. Similar
partitions on the set of factors and variable clusters can also
be obtained with complexity polynomial in |D,| and inde-
pendent of |D)|.

5 Lifted Variational Inference Framework

We now discuss the principle of how to exploit the sym-
metry of the exponential family graphical model for lifted
variational inference. In the general variational inference
framework [19], marginal inference is viewed as a means
to compute the mean parameter ¢ = m(#) given a natural
parameter 6 by solving the optimization problem

sup (0, 1) — A*(1).
pneM

(D

For discrete models, the variational problem is more con-
veniently posed using the overcomplete parameterization,
for marginal and MAP inference

sup (%, 0%) — A% (p°) 2)
ueeMe
max In F(z]0) = sup (p°,0°) + const. (3)

reXmn ueeMe

We first focus on lifting the main variational problem in (1)
and leave discussions of the other problems to subsection
5.3.

5.1 Lifting Partition

Consider the parameter-tying scenario where § € © A for a
given partition A on the feature set Z. With this restriction,
the mean parameter by definition must lie inside m(Gx),

136

Objective function

Symmetrized
subspace

o
o>
\;{i\@é Relaxed Polytope
P gipdl Polytope
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so in theory, the domain of the variational optimization
problems can be restricted to m(© ). The main difficulty
here lies in how to characterize m(©a).

We first make a rather intuitive observation: for general
convex optimization problems with symmetric objective
functions and constraints, the optimal solutions are trapped
in a lower-dimensional symmetrized subspace (see Figure
5.1). This is formalized in lemma 1, whose proof makes
use of the orbit-stabilizer theorem, an elementary result in
group theory.

Definition 4. (Lifting partition) Consider the convex op-
timization infxcs J(x) where S C R™ is a convex set
and J is a convex function. A partition ¢ of {1...m}
is a lifting partition for the aforementioned problem iff
infoes J(z) = infies, J(z) (ie., the constraint set .S
can be restricted to S, = S NRY).

Lemma 1. Let Gacton I = {1...m}, so that every g €
G corresponds to some permutation on {1...m}. If S9 =
S and J(x9) = J(z) for every g € G (i.e., G stabilizes
both S and J) then the induced orbit partition Orbg (1) is
a lifting partition for inf,cs J(x).

The second key observation is that all the above vari-
ational problems inherit the same symmetries of the
parameter-tying exponential family, as captured in the lift-
ing group Aa[F]. Therefore, the lifting group will play the
role of G in lemma 1 in lifting all of our variational prob-
lems.

Returning to (1), our general principle of lifted varia-
tional inference is captured in the following therem.
Theorem 4. Let p = ¢(A) = Orby, (7)(Z). Then for all
0 € O, @ is a lifting partition for (1), i.e.

sup (0, ) — A"(p) = sup (0, p) — A™ (1)
neM HEM,

“

Sktech of proof. From theorem 1, A[F] stabilizes M and
A*; further, its subgroup A (F) stabilizes every parameter
6 € ©a. Thus, the lifting group A (F) stabilizes both the
constraint set and the objective function of (1). Invoking
lemma 1, the induced orbit partition on Z therefore yields
a lifting partition.

In (4), we call the LHS the ground formulation of the
variational problem, and the RHS the /ifted formulation.
Let £ = || be the number of cells of ¢, the liffed mean
parameter space M, then effectively lies inside an /-
dimensional subspace where ¢ < m. This forms the core of
our principle of lifted variational inference: to perform op-
timization over the lower dimensional (and hopefully eas-
ier) constraint set M, instead of M.



Remark. Because (1) has a unique solution ;1 = m(6), the-
orem 4 implies that m(©a) C M,,. Further, the theorem
also holds if we replace Aa (F) with one of its subgroups
G: since g = Orbg(Z) is finer than ¢, it is obvious that
g 1s also a lifting partition. However, the smaller is the
group G, the finer is the lifting partition g, and the less
symmetry can be exploited. In the extreme, G can be the
trivial group, g is the discrete partition putting each ele-
ment of 7 in its own cell, and M, = M, which corre-
sponds to no lifting.

5.2 Characterization of M,

We now give a characterization of the lifted mean pa-
rameter space M, in the case of discrete random
variables.  Note that M is the convex hull M
conv {®(z)|z € X™} which is a polytope in R™, and
A[F] acts on the set of configurations X™ by the permuting
action of 7 which maps = — x™ for x € A'™.

Theorem 5. Let O = Orby,7)(X") be the set of X-
configuration orbits. For each orbit C € O, let ®(C) =
ﬁ > _zec () be the feature-centroid of all the configura-
tions in C. Then M)y = conv {®(C)|C € O}.

Thus, the lifted polytope M, can have at most |O| ex-
treme points. The number of configuration orbits |O] can
be much smaller than the total number of configurations
|X|™ when the model is highly symmetric. For example,
for a fully connected graphical model with identical pair-
wise and unary potentials and X = {0, 1} then every per-
mutation 7 € S, is part of an automorphism; thus, every
configuration with the same number of 1’s belongs to the
same orbit, and hence |O] = n + 1. In general, however,
|O] often is still exponential in n. We discuss approxima-
tions of M, in Section 6.

A representation of the lifted polytope M., by a set of
constraints in RI¥! can be directly obtained from the con-
straints of the polytope M. First, we enforce the constraint
p € RY: foreach cell p; (j = 1,...,[¢|) of ¢, let fi; be
the common value of the variables 1;, i € ¢;. Let p be the
orbit mapping function that maps each element i € 7 to the
corresponding cell p(i) = j that contains ¢. Next, substi-
tuting 41; by fi,(;) in the constraints of M, we obtain a set
of constraints in z (in vector form, we substitute p by D
where D;; = 1if 7 € ¢; and 0 otherwise). In doing this,
some constraints will become identical and thus redundant.
In general, the number of non-redundant constraints can
still be exponential.

5.3 Overcomplete Variational Problems

We now state analogous results in lifting the overcomplete
variational problems (2) and (3) when X is finite. To sim-
plify notation, we only present the case where features are
unary or pairwise. As before, the lifting group A [F] will
be used to induce a lifting partition. However, we need to
define the action of this group on the set of overcomplete
features Z°.

For each automorphism (7,7) € A[F], v gives us the
permutation on Z. In order to obtain a permutation on Z°,
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we will need to use w. By theorem 1, 7 is an automor-
phism of the graphical model graph G. Since overcomplete
features naturally correspond to nodes and edges of G, 7 in-
duces a natural bijection on Z° that maps v:t — m(v):t and
{ut,vt'} — {m(u):t,7(v):t'}. Define ¢° = @°(A) =
Orby ,[7](Z°) to be the orbits of Aa[F] acting on the set
of overcomplete features. Then

Theorem 6. For all 0 € O, ¢° is a lifting partition for
the variational problems (2) and (3).

Thus, the optimization domain can be restricted to M¢,.
which we term the lifted marginal polytope. The cells of ©°
are intimately connected to the node, edge and arc orbits of
the graph G induced by A [F]. We now list all the cells of
©° in the case where X = {0, 1}: each node orbit v corre-
sponds to 2 cells {v : tjv € v},t € {0,1}; each edge orbit
e corresponds to 2 cells {{u:t,v:t}|{u,v} €e},t €
{0,1}; and each arc orbit a corresponds to the cell
{{u:0,v:1}|(u,v) € a}. The orbit mapping function p
maps each element of Z° to its orbit as follows: p(v:it) =
vit, p({ut,vit}) = {wo}kt, p({u:0,v:1}) = (@,v):01
where T represents the node-orbit of v, {w, v} represents
the edge-orbit of {u, v} and (u, v) represents the arc-orbit
of (u,v).

The total number of cells of ¢? is 2|V |+2| E|+| A| where
|V|,|E| and | A| are the number of node, edge and arc orbits
of G (note that |A| < 2|E|). Therefore, in working with
M., the big-O order of the number of variables is reduced
from the number of nodes and edges in G to the number of
node and edge orbits.

For MAP inference, (3) is equivalent to the lifted prob-
lem sup,,o¢ M2, (0°, 1u°). A single ground MAP solution
@ leads to an entire configuration orbit C = orby . 7)(%)
of MAP solutions. The feature-centroid fi° = ®°(C)
0] 2zec ®°() then lies inside Mg, and is the cor-
responding lifted MAP solution. Furthermore, [, =
ﬁ > ev 90, (2) is the fraction of the ground variables
in 2 assigned the value ¢, and similarly for pairwise fea-
tures. Note that from the learning (parameter estimation)
point of view, the lifted MAP solution is more useful than
any single MAP solution alone.

6 Lifted Approximate MAP Inference

Approximate convex variational inference typically works
with a tractable convex approximation of M and a tractable
convex approximation of the negative entropy function A*.
In this paper we consider only lifted outer bounds of M?°
(and thus restrict ourselves to the discrete case). We leave
the problem of handling approximations of A* to future
work. Our focus is the LP relaxation of the MAP inference
problem (3) and its lifted formulation.

To find an approximate lifted solution, since any outer
bound OUTER D M? yields an outer bound OUTER 0
of Mg, we can always relax the lifted problem and re-
place M. by OUTER,.. But is the relaxed lifted problem
on OUTER . equivalent to the relaxed ground problem on
OUTER? This depends on whether ¢ is a lifting partition
for the relaxed ground problem.



Theorem 7. Ifthe set OUTER = OUTER(G) depends only
on the graphical model structure G of F, then V0 € Oa,
©° is a lifting partition for the relaxed MAP problem

sup (0, %) = (0°, 1)
11° EOUTER

sup
11© EOUTER 4o

The most often used outer bound of M? is the local
marginal polytope LOCAL(G) [19], which enforces con-
sistency for marginals on nodes and between nodes and
edges of G. [17, 18] used CYCLE(G), which is a tighter
bound that also enforces consistency of edge marginals
on the same cycle of G. The Sherali-Adams hierarchy?
[15] provides a sequence of outer bounds of M?, starting
from LOCAL(G) and progressively tightening it to the ex-
act marginal polytope M?. All of these outer bounds de-
pend only on the structure of the graphical model G, and
thus the corresponding relaxed MAP problems admit ¢°
as a lifting partition. Note that with the exception when
OUTER = LOCAL, equitable partitions [6] of G such as
those used in [11] are not lifting partitions for the approxi-
mate variational problem in theorem 7.4

7 Lifted MAP Inference on the Local
Polytope

We now focus on lifted approximate MAP inference us-
ing the local marginal polytope LOCAL. From this point
on, we also restrict ourselves to models where the fea-
tures are pairwise or unary, and the variables are binary
X=(01)h _ »

We first aim to give an explicit characterization of the
constraints of the lifted local polytope LOCAL,.. The lo-

cal polytope LOCAL(G) is defined as the set of locally con-
sistent pseudo-marginals.

Tv:0 + To:1l = 1 Yov (S V(g)
T{u:0,v:0} + T{u:0,v:1} = Tu:0

T{u:0,v:0} + T{v:0,u:1} = Tv:0 V{u, U} S E(g)
T{u:1,v:1} + T{u:0,0:1} = Tw:l

T{u:1,v:1} + T{v:0,u:1} = Tu:l

Substituting 7; by the corresponding 7,;y where p() is
given in subsection 5.3, and by noting that constraints
generated by {u,v} in the same edge orbits are redun-
dant, we obtain the constraints for the lifted local polytope
LOCAL,o as follows.

Tv:0 + Tvil = 1
Te:00 + T(w;5):01
Te:00 + T(wm):01
Te:11 + ?(T,'L)):Ol
Te:11 + T(wm):01 =

V node orbit v
7_-17,10
To:0 V edge orbit e with
Ts:1 {u,v} arepresentative of e
7_-17,:1

Rl
v

3A note about terminology: Following the tradition in lifted
inference, this paper uses the term [ift to refer to the exploitation
of symmetry for avoiding doing inference on the ground model.
It is unfortunate that the term /ift has also been used in the con-
text of coming up with better bounds for the marginal polytopes.
There, lift (as in lift-and-project) means to move to a higher di-
mensional space where constraints can be more easily expressed
with auxiliary variables.

*As a counter example, consider a graphical model whose
structure is the Frucht graph (Fig. 1(d)). Since this is a regular
graph, LOCAL approximation yields identical constraints for ev-
ery node. However, the nodes on this graph participate in cycles
of different length, hence are subject to different cycle constraints.
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Thus, the number of constraints needed to describe the
lifted local polytope LOCAL 0 is O(|V |+ |E|). Similar to
the ground problem, these constraints can be derived from
a graph representation of the node and edge orbits. Define
the lifted graph G to be a graph whose nodes are the set
of node orbits V of G. For each edge orbit e with a rep-
resentative {u, v} € e, there is a corresponding edge on G
that connects the two node orbits @ and v. Note that unlike
G, the lifted graph G in general is not a simple graph and
can contain self-loops and multi-edges between two nodes.
Figure 2(a) and (c) show the ground graphical model G and
the lifted graph G for the example 1.

Next consider the linear objective function (6, 7). Sub-
stituting 7; by the corresponding 7,;), we can rewrite the
objective function in terms of T as <§ , 7"> where the coeffi-
cients @ are defined on nodes and edges of the lifted graph
G as follows. For each node orbit v, 0y, = Z”,ev 00, =
|0]69., where ¢ € {0,1} and v is any representative mem-
ber of v. For each edge orbit e with a representative
{U,U} € e, Ot T Z{u’,v’}Ee ef{)u’:t,v’:t} = |e|9?u:t,v:t}
where ¢ € {07 1}’ G(Ta”):(n = Z(M,?/)G(W) ef{)u’:o,v’:l} =
|(w,0)[607,,.0.,:1)- Note that typically the two arc-orbits
(u,v) and (7, ) are not the same, in which case |(w, v)| =
|(v;w)| = |e|. However, in the case (@,v) = (7, w), then
(@) = |(v;w)] = 2le].

We have shown that the lifted formulation for MAP infer-
ence on the local polytope can be described in terms of the
lifted variables 7 and the lifted parameters 0. These lifted
variables and parameters are associated with the orbits of
the ground graphical model. Thus, the derived lifted for-
mulation can also be read out directly from the lifted graph
G. In fact, the derived lifted formulation is the local relaxed
MAP problem of the lifted graphical model G. Therefore,
any algorithm for solving the local relaxed MAP problem
on G can also be used to solve the derived lifted formu-
lation on G. For example, performing coordinate descent
in the dual formulation [5] of the lifted local LP yields the
lifted MPLP. Note that MPLP is an asynchronous message
passing algorithms that cannot be lifted by grouping iden-
tical messages.

8 Beyond Local Polytope: Lifted MAP
Inference with Cycle Inequalities

We now discuss lifting the MAP relaxation on CYCLE(G),
a bound obtained by tightening LOCAL(G) with an addi-
tional set of linear constraints that hold on cycles of the
graphical model structure G, called cycle constraints [17].
These constraints mean the number of cuts (transitions
from O to 1 or vice versa) in any configuration on a cy-
cle of G must be even. Cycle constraints can be expressed
as linear constraints as follows. For every cycle C (set of
edges that form a cycle in G) and every odd-sized subset

FCC
>

Z nocut({u,v}, ) +
{u,v}eF {u,v}EC\F

cut({u,v},7) > 1

&)



where nOCUt({uav}a’r) = T{u:0,v:0} + T{u:1,0:1} and
CUt({ua ’U}, T) = T{u:O,v:l} + T{U:O,u:1}~

Theorem 7 guarantees that MAP inference on CYCLE
can be lifted by restricting the feasible domain to
CYCLE,., which we term the lifted cycle polytope. Sub-
stituting the original variables 7 by the lifted variables T,
we obtain the lifted cycle constraints in terms of 7

Z nocut({w, v}, 7) + Z

cut({w; v}, 7) > 1

{u,v}eF {u,v}eC\F

(6)
where nocut({w,v},7) = Tgwy00 + T(mwpn and
cut({w,0},7) = T(ww):01 + Twm):01 Where (@, v) and

(v,w) are the arc-orbits corresponding to the node-orbit

(w0},

8.1 Lifted Cycle Constraints on All Cycles Passing
Through a Fixed Node

It is not possible to extract all lifted cycle constraints just
by examining the lifted graphical model G since there could
be cycles in G that do not correspond to any cycles in G.
However, we can characterize all constraints on all cycles
passing through a fix node 7 in G.

Let Cyc[i] be the set of (ground) cycle constraints gen-
erated from all cycles passing through 7. A cycle is sim-
ple if it does not intersect with itself or contain repeated
edges; [17] considers only simple cycles, but we will also
consider any cycle, including non-simple cycles in Cyc[].
Adding non-simple cycles to the mix does not change the
story since constraints on non-simple cycles of G are redun-
dant. We now give a precise characterization of Cyc|[i], the
set of lifted cycle constraints obtained by lifting all cycle
constraints in Cyc[i] via the transformation from (5) to (6).

The lifted graph fixing 4, G[i] is defined as follows. Let
AA[F,i] be the subgroup of Aa[F] that fixes i, that is
7(i) = i. The set of nodes of G[i] is the set of node or-
bits V[i] of G induced by Aa[F,1i], and the set of edges is
the set of edge orbits E[i] of G. Each edge orbit connects
to the orbits of the two adjacent nodes (which could form
just one node orbit). Since i is fixed, {¢} is a node orbit,
and hence is a node on G[i]. Note that G[i] in general is not
a simple graph: it can have multi-edges and loops.
Theorem 8. Let C be a cycle (not necessarily simple) in
G[i] that passes through the node {i}. For any odd-sized
Fcc

Z nocut(e, T) + Z cut(e,7) > 1

eclF ecC\F

(7

is a constraint in Cyc[i]. Further, all constraints in Cycli]
can be expressed this way.

8.2 Separation of Lifted Cycle Constraints

While the number of cycle constraints may be reduced sig-
nificantly in the lifted space, it may still be computationally
expensive to list all of them. To address this issue, we fol-
low [17] and employ a cutting plane approach in which we
find and add only the most violated lifted cycle constraint
in each iteration (separation operation).

139

For finding the most violated lifted cycle constraint, we
propose a lifted version of the method presented by [17],
which performs the separation by iterating over the nodes
of the graph G and for each node ¢ finds the most violated
cycle constraint from all cycles passing through ¢. The-
orem 8 suggests that all lifted cycle constraints in Cyc]i]
can be separated by mirroring G[i] and performing a short-
est path search from {7} to its mirrored node, similar to the
way separation is performed on ground cycle constraints
[17].

To find the most violated lifted cycle constraint, we could
first find the most violated lifted cycle constraint C; in
Cycli] for each node 4, and then take the most violated con-
straints over all C;. However, note that if ¢ and ¢’ are in
the same node orbit, then Cyc[i] = Cyc[i’]. Hence, we can
perform separation using the following algorithm:

1. For each node orbit € V, choose a representative
1 € ¥ and find its most violated lifted cycle constraint
Cy € Cycli] using a shortest path algorithm on the
mirror graph of G[i].

2. Return the most violated constraint over all C5.

Notice that both G[i] and its mirror graph have to be cal-
culated only once per graph. In each separation iteration
we can reuse these structures, provided that we adapt the
edge weights in the mirror graph according to the current
marginals.

9 Experiments

First, we evaluate methods for detecting symmetries de-
scribed in Section 4 on the “Friends & Smokers” MLN’
[16]. The first method (nauty) grounds the MLN then finds
a lifting partition. The second (renaming) does not require
grounding, but uses the renaming group to find a lifting par-
tition. Table 1 presents the results for varying domain sizes
where for a random 10% of all people it is known whether
they smoke or not. Although nauty finds a more compact
lifted graph, it takes significantly more time than using the
renaming group. For this reason, our subsequent experi-
ment only makes use of the renaming group and orbits.®
Figure 4 shows the run time performance of MAP infer-
ence using local and cycle LP formulations (both ground
and lifted algorithms use the off-the-shelf Gurobi LP
solver). For cutting plane, we use the in-out variant [1]
with parameter « = 0.99 to improve convergence. All
lifted variants are several order-of-magnitude faster than
their ground counterparts. We also find that for this par-
ticular MLN, all solutions found by the local LP formu-
lation immediately satisfy all the cycle constraints. Closer
examination reveals that this MLN prescribes attractive po-
tentials on the pairs (Smoke(x), Smoke(y)), thus MAP

>The ground graphical model of this MLN has tree-width
equals to the domain size.

%Independent result reported in [13] seems to suggest better
performance can be obtained using SAUCY, a more modern tool
for finding graph automorphism.



Table 1: Symmetries detection on the Friends & Smokers MLN
with 10% known people. * means the process did not finish within
a day.

10 20 50 100 200 1000
Nauty #Orbits 12 23 25 27 * *
Time(s) | .49 177 17279 | 9680.48 * *
Renaming #Orbits 12 23 80 255 905 | 20505
Time(s) | .08 .09 221 4 .84 2.19

assignments to unknown smokers are either all true or all
false.

Next, we conduct experiments with the following
“Lovers & Smokers” MLN.

100 Male(xz) < —~Female(z)

2 Male(xz) A Smokes(x)

2 Female(z) AN ~Smokes(x)
0.5 z # y A Male(z) A Female(y) A Loves(z,y)
0.5 z # y A Loves(z,y) = (Smokes(z) < Smokes(y))

—100 z #y Ay # 2z Az # x A Loves(z,y) A Loves(y, z) A Loves(z, z)

Note that this model is much more difficult because the last
formula has a repulsive potential and is fully transitive. As
far as we know, to date, no exact lifted inference algorithms
can handle transitive clauses in polynomial time.

The first experiment assumes no evidence, a situation
commonly encountered during the inference step [9] of any
perceptron-style generative parameter learning method. As
before, we compare local and cycle LP formulations, both
ground and lifted while varying the domain size of the
MLN. Figure 5(a) shows the lifted variants achieve con-
stant running time regardless of the actual domain size, and
are significantly more efficient than their ground counter-
parts as the domain size increase. Figure 5(b) illustrates
how the objective value changes over cutting plane iter-
ations (and hence time), for domain size = 5. Both the
local polytope (ground and lifted) approaches have no cut-
ting plane iterations, and hence are represented as single
points. We use Integer Linear Programming (ILP) to com-
pute a reference point of the lowest possible optimal ob-
jective value. Notice all methods are based on outer/upper
bounds on the variational objective, and hence are decreas-
ing over time. First, we can observe that the CYCLE
methods converge to a solution substantially better than the
LOCAL methods. However, although lifted CYCLE con-
verges quickly, the ground CYCLE algorithm converges
very slowly.

The second experiment varies the number of observed
constants with random soft evidence while fixing the do-
main size to 100. Because ground methods do not scale
to this size, we only compare lifted LOCAL and lifted
CYCLE. Figure 6 shows both the running time and the
obtained objective value. Observe that lifted CYCLE sig-
nificantly improves the MAP objective value but at a signif-
icant computational cost when the number of observed con-
stants increases. We note that with soft evidence, the lifted
model essentially becomes a ground model which contains
a large number of cycles induced by the transitive clause in
the model.
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Figure 5: (Best viewed in color) “Lovers & Smokers” MLN with-
out evidence. The local and cycle methods did not finish within a
day for larger domain sizes.
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Figure 6: “Lovers & Smokers” MLN with random soft evidence,
domain size = 100.
10 Conclusion

We presented a new general framework for lifted vari-
ational inference by introducing and studying a precise
mathematical definition of symmetry of graphical models
via the construction of their automorphism groups. Using
the device of automorphism groups, orbits of random vari-
ables are obtained, and lifted variational inference materi-
alizes as performing the corresponding convex variational
optimization problem in the space of per-orbit random vari-
ables. Our framework enables lifting a large class of ap-
proximate variational MAP inference algorithms, including
the first lifted algorithm for MAP inference with cycle con-
straints. We presented experimental results demonstrating
the clear benefits of the lifted over the ground formulations.
Future extension includes how to handle approximations of
the convex upper-bounds of negative entropy function A*,
which would enable lifting the full class of approximate

convex variational marginal inference.
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POMDPs under Probabilistic Semantics
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Abstract

We consider partially observable Markov
decision processes (POMDPs) with limit-
average payoff, where a reward value in the
interval [0,1] is associated to every transi-
tion, and the payoff of an infinite path is
the long-run average of the rewards. We con-
sider two types of path constraints: (i) quan-
titative constraint defines the set of paths
where the payoff is at least a given thresh-
old A\; € (0,1]; and (ii) qualitative constraint
which is a special case of quantitative con-
straint with A; = 1. We consider the compu-
tation of the almost-sure winning set, where
the controller needs to ensure that the path
constraint is satisfied with probability 1. Our
main results for qualitative path constraint
are as follows: (i) the problem of deciding
the existence of a finite-memory controller is
EXPTIME-complete; and (ii) the problem of
deciding the existence of an infinite-memory
controller is undecidable. For quantitative
path constraint we show that the problem
of deciding the existence of a finite-memory
controller is undecidable.

1 Introduction

Partially observable Markov decision processes
(POMDPs). Markov decision processes (MDPs) are
standard models for probabilistic systems that ex-
hibit both probabilistic and nondeterministic behav-
ior [10]. MDPs have been used to model and solve
control problems for stochastic systems [7, 23]: nonde-
terminism represents the freedom of the controller to
choose a control action, while the probabilistic com-
ponent of the behavior describes the system response

to control actions. In perfect-observation (or perfect-
information) MDPs (PIMDPs) the controller can ob-
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serve the current state of the system to choose the next
control actions, whereas in partially observable MDPs
(POMDPs) the state space is partitioned according
to observations that the controller can observe, i.e.,
given the current state, the controller can only view
the observation of the state (the partition the state
belongs to), but not the precise state [20]. POMDPs
provide the appropriate model to study a wide va-
riety of applications such as in computational biol-
ogy [5], speech processing [19], image processing [4],
robot planning [13, 11], reinforcement learning [12],
to name a few. POMDPs also subsume many other
powerful computational models such as probabilistic
finite automata (PFA) [24, 21] (since probabilistic fi-
nite automata (aka blind POMDPs) are a special case
of POMDPs with a single observation).

Limit-average payoff. A payoff function maps every
infinite path (infinite sequence of state action pairs)
of a POMDP to a real value. The most well-studied
payoff in the setting of POMDPs is the limit-average
payoff where every state action pair is assigned a real-
valued reward in the interval [0,1] and the payoff of
an infinite path is the long-run average of the rewards
on the path [7, 23]. POMDPs with limit-average pay-
off provide the theoretical framework to study many
important problems of practical relevance, including
probabilistic planning and several stochastic optimiza-
tion problems [11, 2, 16, 17, 27].

Expectation vs probabilistic semantics. Tradi-
tionally, MDPs with limit-average payoff have been
studied with the expectation semantics, where the goal
of the controller is to maximize the expected limit-
average payoff. The expected payoff value can be %
when with probability % the payoff is 1, and with
remaining probability the payoff is 0. In many ap-
plications of system analysis (such as robot planning
and control) the relevant question is the probability
measure of the paths that satisfy certain criteria, e.g.,
whether the probability measure of the paths such that
the limit-average payoff is 1 (or the payoff is at least



1

5) is at least a given threshold (e.g., see [1, 13]). We
classify the path constraints for limit-average payoff
as follows: (1) quantitative constraint that defines the
set of paths with limit-average payoff at least A{, for
a threshold Ay € (0,1]; and (2) qualitative constraint
is the special case of quantitative constraint that de-
fines the set of paths with limit-average payoff 1 (i.e.,
the special case with A\; = 1). We refer to the prob-
lem where the controller must satisfy a path constraint
with a probability threshold Ay € (0, 1] as the proba-
bilistic semantics. An important special case of prob-
abilistic semantics is the almost-sure semantics, where
the probability threshold is 1. The almost-sure seman-
tics is of great importance because there are many ap-
plications where the requirement is to know whether
the correct behavior arises with probability 1. For in-
stance, when analyzing a randomized embedded sched-
uler, the relevant question is whether every thread pro-
gresses with probability 1. Even in settings where it
suffices to satisfy certain specifications with probabil-
ity A2 < 1, the correct choice of A\g is a challenging
problem, due to the simplifications introduced during
modeling. For example, in the analysis of randomized
distributed algorithms it is quite common to require
correctness with probability 1 (e.g., [22, 26]). Besides
its importance in practical applications, almost-sure
convergence, is a fundamental concept in probability
theory, and provide stronger convergence guarantee
than convergence in expectation [6].

Previous results. There are several deep undecid-
ability results established for the special case of proba-
bilistic finite automata (PFA) (that immediately imply
undecidability for POMDPs). The basic undecidabil-
ity results are for PFA over finite words: The empti-
ness problem for PFA under probabilistic semantics is
undecidable over finite words [24, 21, 3]; and it was
shown in [16] that even the following approximation
version is undecidable: for any fixed 0 < € < %, given
a probabilistic automaton and the guarantee that ei-
ther (a) there is a word accepted with probability at
least 1 —¢; or (ii) all words are accepted with probabil-
ity at most ¢; decide whether it is case (i) or case (ii).
The almost-sure problem for probabilistic automata
over finite words reduces to the non-emptiness ques-
tion of universal automata over finite words and is
PSPACE-complete. However, another related decision
question whether for every € > 0 there is a word that
is accepted with probability at least 1 — e (called the
value 1 problem) is undecidable for probabilistic au-
tomata over finite words [8]. Also observe that all
undecidability results for probabilistic automata over
finite words carry over to POMDPs where the con-
troller is restricted to finite-memory strategies. The
importance of finite-memory strategies in applications
has been established in [9, 14, 18].
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Table 1: Complexity: New results are in bold fonts
\ \

Almost-sure semantics ‘ Prob. semantics ‘

‘ ‘ Fin. mem. ‘ Inf. mem. ‘ Fin./Inf. mem. ‘
PFA PSPACE-c PSPACE-c Undec.
POMDP Qual. Constr. | EXPTIME-c Undec. Undec.
POMDP Quan. Constr. Undec. Undec. Undec.

Our contributions. Since under the general proba-
bilistic semantics, the decision problems are undecid-
able even for PFA, we consider POMDPs with limit-
average payoff under the almost-sure semantics. We
present a complete picture of decidability as well as
optimal complexity.

(Almost-sure winning for qualitative constraint). We
first consider limit-average payoff with qualitative
constraint under almost-sure semantics. We show
that belief-based strategies are not sufficient (where
a belief-based strategy is based on the subset con-
struction that remembers the possible set of current
states): we show that there exist POMDPs with limit-
average payoff with qualitative constraint where finite-
memory almost-sure winning strategy exists but there
exists no belief-based almost-sure winning strategy.
Our counter-example shows that standard techniques
based on subset construction (to construct an expo-
nential size PIMDP) are not adequate to solve the
problem. We then show one of our main result that
given a POMDP with |S]| states and |A| actions, if
there is a finite-memory almost-sure winning strategy
to satisfy the limit-average payoff with qualitative con-
straint, then there is an almost-sure winning strategy
that uses at most 23151+l memory. Our exponen-
tial memory upper bound is asymptotically optimal,
as even for PFA over finite words, exponential memory
is required for almost-sure winning (follows from the
fact that the shortest witness word for non-emptiness
of universal finite automata is at least exponential).
We then show that the problem of deciding the exis-
tence of a finite-memory almost-sure winning strategy
for limit-average payoff with qualitative constraint is
EXPTIME-complete for POMDPs. In contrast to our
result for finite-memory strategies, we show that de-
ciding the existence of an infinite-memory almost-sure
winning strategy for limit-average payoff with qualita-
tive constraint is undecidable for POMDPs.

(Almost-sure winning with quantitative constraint). In
contrast to our decidability result under finite-memory
strategies for qualitative constraint, we show that the
almost-sure winning problem for limit-average payoff
with quantitative constraint is undecidable even for
finite-memory strategies for POMDPs.

In summary we establish the precise decidability fron-



tier for POMDPs with limit-average payoff under
probabilistic semantics (see Table 1). For practical
purposes, the most prominent question is the prob-
lem of finite-memory strategies, and for finite-memory
strategies we establish decidability with EXPTIME-
complete complexity for the important special case of
qualitative constraint under almost-sure semantics.

2 Definitions

We present the definitions of POMDPs, strategies, ob-
jectives, and other basic notions required for our re-
sults. We follow standard notations from [23, 15].

Notations. Given a finite set X, we denote by P(X)
the set of subsets of X, i.e., P(X) is the power set of
X. A probability distribution f on X is a function
f+ X — [0,1] such that >\ f(z) = 1, and we
denote by D(X) the set of all probability distributions
on X. For f € D(X) we denote by Supp(f) = {z €
X | f(z) > 0} the support of f.

Definition 1 (POMDP). A Partially Observable
Markov Decision Process (POMDP) is a tuple G =
(S, A,8,0,v,s0) where: (i) S is a finite set of states;
(ii) A is a finite alphabet of actions; (i1) 6 : S x A —
D(S) is a probabilistic transition function that given
a state s and an action a € A gives the probability
distribution over the successor states, i.e., 0(s,a)(s)
denotes the transition probability from s to s’ given
action a; (i) O is a finite set of observations; (v) v :
S — O is an observation function that maps every
state to an observation; and (vi) so is the initial state.

Given s,s" € S and a € A, we also write d(s'|s, a) for
0(s,a)(s’). A state s is absorbing if for all actions a
we have d(s,a)(s) = 1 (i.e., s is never left from s).
For an observation o, we denote by v~ (o) = {s €
S | v(s) = o} the set of states with observation o.
For a set U C S of states and O C O of observations
we denote y(U) = {o € O | Is € U. y(s) = o} and
77H0) =U,eo v '(0)

Plays

and Dbelief-updates. A play (or a
path) in a POMDP is an infinite sequence
(s0, a0, 81,01, S2,a9,...) of states and actions such
that for all ¢ > 0 we have &(s;,a;)(si+1) > 0.
We write Q for the set of all plays. For a fi-
nite prefix w = (sg,ao, $1,01,--.,5,) we denote by
fY(w) (7(80% a077(51)a ag, ... 77(877.)) the observa-
tion and action sequence associated with w. For a
finite sequence p (00, a0,01,a1,...,0,) of obser-
vations and actions, the belief B(p) after the pre-
fix p is the set of states in which a finite prefix of
a play can be after the sequence p of observations
and actions, i.e., B(p) = {s, = Last(w) | w =
(s0, a0, 51,01, ...,8,),w is a prefix of a play, and for
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all 0 < i < n.~(s;) = 0;}. The belief-updates associ-
ated with finite-prefixes are as follows: for prefixes w
and w’ = w-a-s the belief update is defined inductively

BO(w)) = (Usyenuy Supp(a(s1,)) 177 (1(5)).

Strategies. A strategy (or a policy) is a recipe
to extend prefixes of plays and is a function o
(S-A)*-S — D(A) that given a finite history
(i.e., a finite prefix of a play) selects a probabil-
ity distribution over the actions. Since we consider
POMDPs, strategies are observation-based, i.e., for all
histories w = (89, ap, 81,01, .-,0pn—1,5,) and w' =
(shy a0, 8ty a1, ... an_1,8,) such that for all 0 < i <n
we have v(s;) = y(s;) (i.e., y(w) = y(w')), we must
have o(w) = o(w’). In other words, if the obser-
vation sequence is the same, then the strategy can-
not distinguish between the prefixes and must play
the same. We now present an equivalent definition of
observation-based strategies such that the memory of
the strategy is explicitly specified, and will be required
to present finite-memory strategies.

Definition 2 (Strategies with memory and
finite-memory strategies). A strategy with mem-
ory is a tuple o = (0, opn, M, mg) where:(i) (Memory
set). M is a denumerable set (finite or infinite) of
memory elements (or memory states). (ii) (Action
selection function). The function o, : M — D(A) is
the action selection function that given the current
memory state gives the probability distribution over
actions. (iii) (Memory update function). The func-
tion o, : M x O x A — D(M) is the memory update
function that given the current memory state, the
current observation and action, updates the memory
state probabilistically. (iv) (Initial memory). The
memory state mg € M 1s the initial memory state.
A strategy is a finite-memory strategy if the set M
of memory elements is finite. A strategy is pure (or
deterministic) if the memory update function and
the action selection function are deterministic, i.e.,
ouw: MXxXOxXxA— M and o, : M — A. A strategy is
memoryless (or stationary) if it is independent of the
history but depends only on the current observation,
and can be represented as a function o : O — D(A).

Objectives. An objective in a POMDP G is a measur-
able set ¢ C Q of plays. We first define limit-average
payoff (aka mean-payoff) function. Given a POMDP
we consider a reward function r : S x A — [0,1]
that maps every state action pair to a real-valued re-
ward in the interval [0,1]. The LimAvg payoff func-
tion maps every play to a real-valued reward that
is the long-run average of the rewards of the play.
Formally, given a play p = (so,ao, s1,0a1,82,4az,...)
we have LimAvg(r, p) = liminf, oo 2 - 30 r(s;,a;).
When the reward function r is clear from the context,



we drop it for simplicity. For a reward function r, we
consider two types of limit-average payoff constraints:
(i) Qualitative constraint. The qualitative constraint
limit-average objective LimAvg_; defines the set of
paths such that the limit-average payoff is 1; i.e.,
LimAvg_, = {p | LimAvg(p) = 1}. (ii) Quantitative
constraints. Given a threshold A\; € (0,1), the quan-
titative constraint limit-average objective LimAvg. ),
defines the set of paths such that the limit-average
payoff is strictly greater than Aq; i.e., LimAvg., =

{p| LimAvg(p) > A1}

Probabilistic and almost-sure winning. Given a
POMDP, an objective ¢, and a class C of strategies, we
say that: (i) a strategy o € C is almost-sure winning
if P7(p) = 1; (ii) a strategy o € C is probabilistic
winning, for a threshold A2 € (0,1), if P7(p) > 2.
Theorem 1 (Results for PFA (probabilistic automata
over finite words) [21]). The following assertions hold
for the class C of all infinite-memory as well as finite-
memory strategies: (1) the probabilistic winning prob-
lem is undecidable for PFA; and (2) the almost-sure
winning problem is PSPACE-complete for PFA.

Since PFA are a special case of POMDPs, the undecid-
ability of the probabilistic winning problem for PFA
implies the undecidability of the probabilistic win-
ning problem for POMDPs with both qualitative and
quantitative constraint limit-average objectives. The
almost-sure winning problem is PSPACE-complete for
PFAs, and we study the complexity of the almost-sure
winning problem for POMDPs with both qualitative
and quantitative constraint limit-average objectives,
under infinite-memory and finite-memory strategies.

Basic properties of Markov Chains. Since our
proofs will use results of Markov chains, we start with
some basic results related to Markov chains.

Markov chains and recurrent classes. A Markov chain
G = (S, 6) consists of a finite set S of states and a prob-
abilistic transition function & : S — D(S). Given the
Markov chain, we consider the directed graph (S, E)
where E = {(3,5') | (3 | 3) > 0}. A recurrent class
C C S of the Markov chain is a bottom strongly con-
nected component (scc) in the graph (S, E) (a bottom
scc is an scc with no edges out of the scc). We denote
by Rec(G) the set of recurrent classes of the Markov
chain, i.e., Rec(G) = {C | C is a recurrent class}.
Given a state 3 and a set U of states, we say that
U is reachable from 3 if there is a path from 3 to some
state in U in the graph (S, F). Given a state 5 of the
Markov chain we denote by Rec(G)(3) C Rec(G) the
subset of the recurrent classes reachable from 5 in G.
A state is recurrent if it belongs to a recurrent class.
The following standard properties of reachability and

the recurrent classes will be used in our proofs:
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e Property 1. (a) For a set T C S, if for all states
5 € S there is a path to T (i.e., for all states there
is a positive probability to reach T), then from
all states the set T is reached with probability 1.
(b) For all states 3, if the Markov chain starts at 3,
then the set f.: Uzerec(@)(s) C s reached with
probability 1, i.e., the set of recurrent classes is
reached with probability 1.

Property 2. For a recurrent class C, for all states
5 € C, if the Markov chain starts at 5, then for
all states £ € C the state t is visited infinitely
often with probability 1, and is visited with posi-
tive average frequency (i.e., positive limit-average
frequency) with probability 1.

Lemma 1 is a consequence of the above properties.

Lemma 1. Let G = (S,0) be a Markov chain with a
reward function r: S — [0,1], and 3 € S a state of the
Markov chain. The state S is almost-sure winning for
the objective LimAvg_, iff for all recurrent classes C €
Rec(G)(3) and for all states 51 € C we have r(31) = 1.

Markov chains under finite memory strategies. We
now define Markov chains obtained by fixing a finite-
memory strategy in a POMDP G. A finite-memory
strategy o = (04, 0n, M, mp) induces a Markov chain
(S x M,d,), denoted G|, with the probabilistic tran-
sition function d, : Sx M — D(Sx M): given s,s € S
and m,m’ € M, the transition 50((8’,m’) | (s,m)) is
the probability to go from state (s, m) to state (s’,m’)
in one step under the strategy o. The probability
of transition can be decomposed as follows: (i) First
an action a € A is sampled according to the dis-
tribution o, (m); (ii) then the next state s’ is sam-
pled according to the distribution d(s,a); and (iii) fi-
nally the new memory m’ is sampled according to the
distribution o, (m,~y(s'),a) (i.e., the new memory is
sampled according o, given the old memory, new ob-
servation and the action). More formally, we have:
5o (') | (5,m)) = Yoeq on(m)(a) - (s, a)(s’) -

ou(m,y(s"),a)(m’).

3 Finite-memory strategies with
Qualitative Constraint

In this section we show the following three results
for finite-memory strategies: (i) in POMDPs with
LimAvg_, objectives belief-based strategies are not
sufficient for almost-sure winning; (ii) an exponential
upper bound on the memory required by an almost-
sure winning strategy for LimAvg_; objectives; and
(iii) the decision problem is EXPTIME-complete.

Belief is not sufficient. We now show with an ex-
ample that there exist POMDPs with LimAvg_; ob-
jectives, where finite-memory randomized almost-sure



winning strategies exist, but there exists no belief-
based randomized almost-sure winning strategy (a
belief-based strategy only uses memory that relies on
the subset construction where the subset denotes the
possible current states called belief). We will present
the counter-example even for POMDPs with restricted
reward function r assigning only Boolean rewards 0
and 1 to the states (does not depend on the action).

Example 1. We consider a POMDP with state space
{50, X, X", Y,Y', Z, Z'} and action set {a,b}, and let
U={X,X"Y,Y',Z Z'}. From the initial state sy all
the other states are reached with uniform probability in
one-step, i.e., foralls' e U ={X, X"\ Y)Y, Z,Z'} we
have §(so,a)(s') = 0(s0,b)(s'") = &. The transitions
from the other states are shown in Figure 1. All states
in U have the same observation. The reward function
r assigns the reward 1 to states X, X', Z, 7' and 0 to
states Y and Y'. The belief initially after one-step is
the set U = {X, X")Y,)Y', Z, Z'} since from sg all of
them are reached with positive probability. The belief
1s always the set U since every state has an input edge
for every action, i.e., if the current belief is U (the
set of states that the POMDP is currently in with pos-
itive probability is U ), then irrespective of whether a
or b is chosen all states of U are reached with positive
probability and thus the belief is again U. There are
three belief-based strategies: (i) o1 that plays always a;
(i) o2 that plays always b; or (iii) o3 that plays both
a and b with positive probability. The Markov chains
Gls and Gl,, are also shown in Figure 1, and the
graph of G |4, is the same as the POMDP G (with
edge labels removed). For all the three strategies, the
Markov chains contain the whole set U as the reachable
recurrent class, and it follows by Lemma 1 that none
of the belief-based strategies 01,09 or o3 are almost-
sure winning for the LimAvg_, objective. The strategy
o4 that plays action a and b alternately gives rise to a
Markov chain where the recurrent classes do not inter-
sect with' Y orY’, and is a finite-memory almost-sure
winning strategy for the LimAvg_, objective. ]

3.1 Strategy complexity

For the rest of the subsection we fix a finite-memory
almost-sure winning strategy o = (o, 0y, M, mg) on
the POMDP G (S, A,0,0,7,sp) with a reward
function r for the objective LimAvg_;. Our goal is
to construct an almost-sure winning strategy for the
LimAvg_, objective with memory size at most Mem™
23151 2141 We start with a few definitions associated
with strategy o. For m € M:

e The function RecFun,(m) : S — {0,1} is such
that RecFun,(m)(s) is 1 iff the state (s,m) is re-
current in the Markov chain GT, and 0 otherwise.

e The function AWFun,(m) : S — {0,1} is such
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POMDP G

Rec: {X,X"\Y,Y', Z, 7'}

Rec: {X,X"\Y,Y',Z,Z"}
Figure 1: Belief is not sufficient

that AWFun,(m)(s) is 1 iff the state (s,m) is
almost-sure winning for the LimAvg_, objective
in the Markov chain G|, and 0 otherwise.

e We also consider Act,(m) = Supp(c,(m)) that
for every memory element gives the support of the
probability distribution over actions played at m.

Remark 1. Let (s’,m') be reachable from (s,m) in
G l,. If the state (s,m) is almost-sure winning for
the LimAvg_, objective, then the state (s',m') is also
almost-sure winning for the LimAvg_, objective.

Collapsed graph of o. Given the strategy o we
define the notion of a collapsed graph CoGr(o)
(V,E). The states of the graph are elements from
the set V' = {(Y, AWFun,(m), RecFun,(m), Act,(m)) |
Y C Sandm € M} and the initial state is
({so}, AWFun,(mg), RecFun,(mg), Acty(mp)).  The
edges in E are labeled by actions in A. In-
tuitively, the action labeled edges of the graph
depict the updates of the belief and the func-
tions upon a particular action. Formally, there
is an edge (Y, AWFun,(m), RecFun,(m), Acty(m)) >
(Y, AWFun,(m'), RecFun,(m'), Act,(m')) in the col-
lapsed graph CoGr(o) iff there exists an observa-
tion 0o € O such that (i) the action a € Act,(m);
(ii) the set Y’ is non-empty and it is the belief up-
date from Y, under action a and the observation o,
Le, Y =U,cy Supp(d(s,a)) Ny~ 1(0); and (iii) m’ €
Supp(oy(m,0,a)). Note that the number of states in
the graph is bounded by |V| < 2351 . 2l = Mem*.

We now define the collapsed strategy for o. Intuitively
we collapse memory elements of o whenever they agree
on all the RecFun, AWFun, and Act functions. The
collapsed strategy plays uniformly all the actions from
the set given by Act in the collapsed state.

Collapsed strategy. We now construct the collapsed
strategy o' = (01,00, M',m{) of o based on the col-
lapsed graph CoGr(c) = (V, E). We will refer to this

construction by ¢’ = CoSt(o).

e The memory set M’ are the vertices of the col-
lapsed graph CoGr(o) = (V,E), i.e.,, M' =V =



{(Y, AWFun,(m), RecFun,(m), Act,(m)) | Y
S and m € M}. Note that |M'| < Mem™.
The  initial  memory is  my
({so}, AWFun,(mg), RecFun,(mg), Acty(mo)).
The next action function given a memory
(Y,W,R,A) € M’ is the uniform distribution
over the set of actions {a | (Y, W', R, A") €
M’ and (Y,W,R,A) % (YW R,A) € E},
where E are the edges of the collapsed graph.
The memory update function
ol (Y,W,R,A),0,a) given a memory ele-
ment (Y, W,R,A) € M', a € A, and 0 € O
is the wuniform distribution over the set
of states {(Y,W',R,A") | (Y,W,R,A) %
Y/ W' R, A) € Eand Y C~v1(0)}.

N

Random variable notation. For all n > 0 we
write X,,, Yy, W,,, R,., A, L,, for the random variables
that correspond to the projection of the n*" state
of the Markov chain G [, on the S component, the
belief P(S) component, the AWFun, component, the
RecFun, component, the Act, component, and the n'"
action, respectively.

Run of the Markov chain G [,. A run of the
Markov chain G|, is an infinite sequence

(Xo, Yo, Wo, Ro, Ao) L (X1, Y1, Wi, Ry, Ay) ...

each finite

such that prefix of the run is
generated with positive probability on the
Markov chain, ie., for all i > 0, we have
(i) Li € Supp(o,(Yi, Wi, Ri, Ai)); (i) Xiy1 €

Supp(é(Xi,Li)); and (111) (}/i-i-lv Wis1, Rit1, Ai+1) S
Supp(a;((Yi, Wi7 Ri; AZ), V(Xi—i-l)v Lz)) In the follow-
ing lemma we establish important properties of the
Markov chain G|, that are essential for our proof.

Lemma 2. Let (Xo, Yo, Wo, Ro, Ao) g
(X1, Y1, Wi, Ry, Ay) L be a run of the Markov
chain G |,, then the following assertions hold

for all i > 0: 1. X;41 € Supp(0(X;, L;)) N Yigq;
2. (Yi, Wi, Ri, Ay) = (Yigr, Wigr, Riy1, i) s
an edge in the collapsed graph CoGr(c); 3. if
WZ(X1) = 1, then WZ‘+1(X1;+1) = 1,‘ 4 Zf R,(XZ) = 1,
then Ri+1(XZ‘+1) = ].,' and 5. ’Lf Wz(Xz) =1 and

Proof. We present the proof of the fifth point, and the
other points are straight-forward. For the fifth point
consider that W;(X;) = 1 and R;(X;) = 1. Then there
exists a memory m € M such that (i) AWFun,(m)
W;, and (ii) RecFun,(m) = R;. Moreover, the state
(Xi,m) is a recurrent (since R;(X;) = 1) and almost-
sure winning state (since W;(X;) = 1) in the Markov
chain G [,. As L; € Act,(m) it follows that L; €

147

Supp(o,(m)), i.e., the action L; is played with pos-
itive probability in state X; given memory m, and
(X;,m) is in an almost-sure winning recurrent class.
By Lemma 1 it follows that the reward r(X;, L;) must
be 1. The desired result follows. O

We now introduce the final notion of a collapsed-
recurrent state that is required to complete the proof.
A state (X,Y, W, R, A) of the Markov chain G [,/ is
collapsed-recurrent, if for all memory elements m € M
that were merged to the memory element (Y, W, R, A),
the state (X, m) of the Markov chain G [, is recur-
rent. It will turn out that every recurrent state of the
Markov chain GJ, is also collapsed-recurrent.

Definition 3. A state (X,Y,W, R, A) of the Markov
chain G|, is called collapsed-recurrent iff R(X) = 1.

Note that due to point 4 of Lemma 2 all the states
reachable from a collapsed-recurrent state are also
collapsed-recurrent. In the following lemma we show
that the set of collapsed-recurrent states is reached
with probability 1; and the key fact we show is that
from every state in G, a collapsed-recurrent state is
reached with positive probability, and then use Prop-
erty 1 (a) of Markov chains to establish the lemma.

Lemma 3. With probability 1 a run of the Markov
chain G, reaches a collapsed-recurrent state.

Lemma 4. The collapsed strateqy o' is a finite-
memory almost-sure winning strateqy for the
LimAvg_, objective on the POMDP G with the
reward function r.

Proof. The initial state of the Markov chain G [,
is ({so}, AWFun, (myg), RecFun, (mg), Act, (mg)) and as
the strategy o is an almost-sure winning strategy we
have that AWFun,(mg)(so) = 1. It follows from the
third point of Lemma 2 that every reachable state
(X,Y,W, R, A) in the Markov chain G [, satisfies
that W(X) = 1. From the initial state a collapsed-
recurrent state is reached with probability 1. It follows
that all the recurrent states in the Markov chain G[,-
are also collapsed-recurrent states. As in all reach-
able states (X,Y, W, R, A) we have W(X) = 1, by the
fifth point of Lemma 2 it follows that every action
L played in a collapsed-recurrent state (X,Y, W, R, A)
satisfies that the reward r(X, L) = 1. As this true for
every reachable recurrent class, the fact that the col-
lapsed strategy is an almost-sure winning strategy for
LimAvg_, objective follows from Lemma 1. O

Theorem 2 (Strategy complexity). The follow-
ing assertions hold: (1) If there exists a finite-
memory almost-sure winning strategy in the POMDP
G = (S, A,0,0,7,s0) with reward function r for the
LimAvg_, objective, then there exists a finite-memory



almost-sure winning strategy with memory size at
most 23 1SIHIAL(2) Finite-memory almost-sure win-
ning strategies for LimAvg_, objectives in POMDPs
in general require exponential memory and belief-based
strategies are mot sufficient.

Proof. The first point follows from Lemma 4 and the
fact that the size of the memory set of the collapsed
strategy o’ of any finite-memory strategy o (which is
the size of the vertex set of the collapsed graph of o)
is bounded by 23/51+1Al O

3.2 Computational complexity

A naive double-exponential time algorithm would be
to enumerate all finite-memory strategies with mem-
ory bounded by 23S+l (by Theorem 2). Our
improved exponential-time algorithm consists of two
steps: (i) first it constructs a special type of a belief-
observation POMDP G from a POMDP G (and G
is exponential in G); and we show that there exists
a finite-memory almost-sure winning strategy for the
objective LimAvg_; in G iff there exists a randomized
memoryless almost-sure winning strategy in G for the
objective LimAvg_,; and (ii) then we show how to de-
termine whether there exists a randomized memoryless
almost-sure winning strategy in G for the LimAvg_,
objective in polynomial time with respect to the size
of G. For a belief-observation POMDP the current be-
lief is always the set of states with current observation.

Definition 4. A POMDP G = (S, A,3,0,7,3) is
a belief-observation POMDP iff for every finite prefiz
w = (Sp,G0,51,081,.-.,0n-1,5,) the belief associated
with the observation sequence p = (W) is the set of
states with the last observation (3,) of the observa-

tion sequence p, i.e., B(p) =7 1 (F(5,)).

Construction of the belief-observation
POMDP. Intuitively, the construction of G from G
will proceed as follows: if there exists an almost-sure
winning finite-memory strategy, then there exists an
almost-sure winning collapsed strategy with memory
bounded by 2%15I+14l This allows us to consider the
memory elements M = 25 x {0, 1}5] x {0, 1}151 x 24,
and intuitively construct the product of the memory
M with the POMDP G. The POMDP G is con-
structed such that it allows all possible ways the
collapsed strategy of a finite-memory almost-sure
winning strategy could play. The reward function 7 in
G is obtained from the reward function r in G. In the
POMDP G the belief is already included in the state
space itself of the POMDP, and the belief represents
exactly the set of states in which the POMDP can be
with positive probability. Therefore, the POMDP G is
a belief-observation POMDP. Since possible memory
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states of collapsed strategies are part of state space,
we only need to consider memoryless strategies in G.

Lemma 5. The POMDP G is a belief-observation
POMDP, such that there exists a finite-memory
almost-sure winning strategy for the LimAvg_, objec-
tive with the reward function r in the POMDP G iff
there exists a memoryless almost-sure winning strategy

Jor the LimAvg_, objective with the reward function ¥
in the POMDP G.

Almost-sure winning observations. Given a
POMDP G = (S,A,0,0,7) and an objective 1, let
Almost((¢)) denote the set of observations o € O,
such that there exists a memoryless almost-sure win-

ning strategy to ensure ¢ from every state s € 5 1(0).

Almost-sure winning for LimAvg_;, objectives.
Our goal is to compute the set Almost(LimAvg_;)
given the belief-observation POMDP G (of our con-
struction of G with product with M). Let F C S
be the set of states of G where some actions can be
played consistently with the collapsed strategy of any
finite-memory almost-sure winning strategy. Let G
denote the POMDP G restricted to F. We define
a_subset of states of the belief-observation POMDP
G that intuitively correspond to winning collapsed-
recurrent states (wcs), i.e., Syes = {(s, (Y, W, R, A)) |
W(s) = 1,R(s) = 1}. Then, we compute the set of
observations AW that can ensure to reach Swes almost-
surely in the the POMDP G. We show that the set
of observations AW is equal to the set of observa-
tions Almosta(LimAvg_;) in the POMDP G. Thus
the computation reduces to computation of almost-
sure states for reachability objectives. Finally we show
that almost-sure reachability set can be computed in
quadratic time for belief-observation POMDPs. The
quadratic time algorithm is obtained as follows: we
show almost-sure winning observations to ensure to
reach a target set T with probability 1 is the greatest
fixpoint of a set Y of observations such that playing
all actions uniformly that ensures Y is not left, ensures
to reach T almost-surely. This characterization gives
a nested iterative algorithm that is quadratic time.

Lemma 6. AW = Almostrg (LimAvg_,); ancLAVV can
be computed in quadratic time in the size of G.

The EXPTIME-completeness. In this section we
first showed that given a POMDP G with a LimAvg_,
objective we can construct an exponential size belief-
observation POMDP G and the computation of the
almost-sure winning set for LimAvg_; objectives is
reduced to the computation of the almost-sure win-
ning set for reachability objectives, which we solve in
quadratic time in G. This gives us an exponential-
time algorithm to decide (and construct if one ex-



Figure 2: PFA P to a POMDP G

ists) the existence of finite-memory almost-sure win-
ning strategies in POMDPs with LimAvg_; objectives.
The EXPTIME-hardness for almost-sure winning can
be obtained easily from the result of Reif for two-player
partial-observation games with safety objectives [25].

Theorem 3. The following assertions hold: (1) Given
a POMDP G with |S| states, |A| actions, and a
LimAvg_, objective, the ezistence (and construction
if one exists) of a finite-memory almost-sure winning
strategy can be achieved in 20USIHAD time. (2) The
decision problem of given a POMDP and a LimAvg_;
objective whether there exists a finite-memory almost-
sure winning strateqy is EXPTIME-complete.

Remark 2. We considered observation function that
assigns an observation to every state. In general the
observation function vy : S — 29\ () may assign mul-
tiple observations to a single state. In that case we
consider the set of observations as O = 29 \ () and
consider the mapping that assigns to every state an
observation from O’ and then apply our results.

4 Finite-memory strategies with
Quantitative Constraint

We will show that the problem of deciding whether
there exists a finite-memory (as well as an infinite-
memory) almost-sure winning strategy for the objec-
tive LimAvg, 1 is undecidable. We present a reduction
from the standard undecidable problem for probabilis-
tic finite automata (PFA). A PFA P = (S, A, 4, F, so)
is a special case of a POMDP G = (S, A4,4,0,7, s0)
with a single observation O = {o} such that for all
states s € S we have y(s) = o. Moreover, the PFA
proceeds for only finitely many steps, and has a set
F of desired final states. The strict emptiness prob-
lem asks for the existence of a strategy w (a finite
word over the alphabet A) such that the measure of
the runs ending in the desired final states F' is strictly
greater than 2; and the strict emptiness problem for

PFA is undecidable [21].

Reduction. Given a PFA P = (S, A4,6,F,sg) we
construct a POMDP G = (5, A",¢, 0,7, s) with a
Boolean reward function r such that there exists a word
w € A* accepted with probability strictly greater than
in P iff there exists a finite-memory almost-sure win-

2
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ning strategy in G for the objective leAvg> 1. Intu-
itively, the construction of the POMDP G is as fol-
lows: for every state s € S of P we construct a pair
of states (s,1) and (s,0) in S’ with the property that
(s,0) can only be reached with a new action $ (not in
A) played in state (s,1). The transition function ¢’
from the state (s,0) mimics the transition function 4,
ie., 0'((s,0),a)((s',1)) = d(s,a)(s’). The reward r of
(s,1) (resp. (s,0)) is 1 (resp. 0), ensuring the average
of the pair to be 5. We add a new available action
# that when played in a final state reaches a state
good € S’ with reward 1, and when played in a non-
final state reaches a state bad € S’ with reward 0, and
for states good and bad given action # the next state
is the initial state. An illustration of the construction
on an example is depicted on Figure 2. Whenever an
action is played in a state where it is not available,
the POMDP reaches a loosing absorbing state, i.e., an
absorbing state with reward 0, and for brevity we omit
transitions to the loosing absorbing state. We present
key proof ideas to establish the correctness:

(Strict emptiness implies almost-sure LimAvg., 1) Let
w € A* be a word accepted in P with probab1hty
p > % and let the length of the word be |w| =

n. We construct a pure finite-memory almost-sure
winning strategy for the objective LimAvg>1 in the

POMDP G as follows: We denote by wli] the it" ac-
tion in the word w. The finite-memory strategy we
construct is specified as an ultimately periodic word
(Sw[1]$w[2]... Sw[n]#+#)“. Observe that by the con-
struction of the POMDP G, the sequence of rewards
(that appear on the transitions) is (10)™ followed by
(i) 1 with probability p (when F' is reached), and (ii) 0
otherwise; and the whole sequence is repeated ad in-
finitum. Then using the Strong Law of Large Numbers
(SLLN) [6, Theorem 7.1, page 56] we show that with
probability 1 the objective LimAvg>% is satisfied.

(Almost-sure LimAvg. 1 implies strict emptiness).
Conversely, if there is a pure finite-memory strategy
o to ensure the objective LimAvg>% in the POMDP,
then the strategy o can be viewed as an ultimately
periodic infinite word of the form u - v*, where u,v
are finite words from A’. Note that v must contain
the subsequence ##, as otherwise the LimAvg pay-
off would be only % Similarly, before every letter
a € A in the words u, v, the strategy must necessarily
play the $ action, as otherwise the loosing absorbing
state is reached. Again using SLLN we show that from
the word v we can extract a word w that is accepted
in the PFA with probability strictly greater than %
Finally, we show that if there is randomized (possi-
bly infinite-memory strategy) to ensure the objective
LimAvg>% in the POMDP, then there is a pure finite-
memory strategy as well (the technical proof uses Fa-
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Figure 3: PFA P to a POMDP G

tou’s lemma [6]).

Theorem 4. The problem whether there exists a finite
(or infinite-memory) almost-sure winning strategy in a
POMDP for the objective LimAvg>% is undecidable.

5 Infinite-memory strategies with
Qualitative Constraint

In this section we show that the problem of deciding
the existence of infinite-memory almost-sure winning
strategies in POMDPs with LimAvg_, objectives is un-
decidable. We prove this fact by a reduction from the
value 1 problem in PFA, which is undecidable [8]. The
value 1 problem given a PFA P asks whether for every
€ > 0 there exists a finite word w such that the word
is accepted in P with probability at least 1 — ¢ (i.e.,
the limit of the acceptance probabilities is 1).

Reduction. Given a PFA P = (S, A,4, F,sp), we
construct a POMDP G’ = (5', A,§,0',/,s) with
a reward function r’, such that P satisfies the value 1
problem iff there exists an infinite-memory almost-sure
winning strategy in G’ for the objective LimAvg_;. In-
tuitively, the construction adds two additional states
good and bad. We add an edge from every state of the
PFA under a new action $, this edge leads to the state
good when played in a final state, and to the state bad
otherwise. In the states good and bad we add self-loops
under a new action #. The action $ in the states good
or bad leads back to the initial state. An example of
the construction is illustrated with Figure 3. All the
states belong to a single observation, and we will use
Boolean reward function on states. The reward for all
states except the newly added state good is 0, and the
reward for the state good is 1.

The key proof ideas for correctness are as follows:

(Value 1 implies almost-sure LimAvg_, ). If P satisfies
the value 1 problem, then there exists a sequence of fi-
nite words (w;);>1, such that each w; is accepted in P
with probability at least 1— 21% We construct an infi-
nite word wy-$-#" -wo-$-#"2 - - - where each n; € Nis
a natural number that satisfies the following condition:
let k; = w1 - 8| + 32—, (Jwj - 8| +n ) be the length
of the word sequence before #"i+1, then we must have
Z— >1-— % The construction ensures that if the state
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bad appears only finitely often with probability 1, then
LimAvg_, is ensured with probability 1. The argument
to show that bad is visited infinitely often with prob-
ability 0 is as follows. We first upper bound the prob-
ability ugy1 to visit the state bad at least k + 1 times,
given k visits to state bad. The probability w1 is at
most (14 5+ 5 +---). The above bound for w1
is obtained as follows: following the visit to bad for k&
times, the words w;, for j > k are played; and hence
the probability to reach bad decreases by % every time
the next word is played; and after k visits the probabil-
ity is always smaller than 2%% Hence the probability
to visit bad at least k+1 times, given k visits, is at most
the sum above, which is 2% Let & denote the event
that bad is visited at least k 4+ 1 times given k visits
to bad. Then we have Y, o P(&) < Y 4oq 55 < 0.
By Borel-Cantelli lemma [6, Theorem 6.1, page 47] we
have that the probability that bad is visited infinitely
often is 0.

(Almost-sure LimAvg_, implies value 1). We prove
the converse. Consider that the PFA P does not sat-
isfy the value 1 problem, i.e., there exists a constant
¢ > 0 such that for all w € A* we have that the proba-
bility that w is accepted in P is at most 1 —c < 1. We
will show that there is no almost-sure winning strat-
egy. Assume towards contradiction that there exists
an infinite-memory almost-sure winning strategy o in
the POMDP G’; and the infinite word correspond-
ing to ¢ must play infinitely many sequences of #’s
to ensure LimAvg_;. Let X; be the random variable
for the rewards for the i-th sequence of #’s. Then
we have that X; = 1 with probability at most 1 — ¢
and 0 otherwise. The expected LimAvg payoff is then
at most: E(l%ﬂi}gfizyzo X;). Since X;’s are non-
negative measurable function, by Fatou’s lemma [6,
Theorem 3.5, page 16]

< liminf[E

) ) 1 n 1 n
Blimind 3 i) < Wninf BC ) X <1-c.
It follows that E7(LimAvg) < 1 — ¢. Note that if
the strategy o was almost-sure winning for the ob-
jective LimAvg_; (i.e., P7(LimAvg_;) = 1), then the
expectation of the LimAvg payoff would also be 1 (i.e.,
E?(LimAvg) = 1). Therefore we have reached a con-
tradiction to the fact that the strategy o is almost-sure

winning for the objective LimAvg_;.

Theorem 5. The problem whether there exists an
infinite-memory almost-sure winning strategy in a
POMDP with the objective LimAvg_, is undecidable.
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Abstract

Gaussian processes (GP) are Bayesian non-
parametric models that are widely used for prob-
abilistic regression. Unfortunately, it cannot
scale well with large data nor perform real-time
predictions due to its cubic time cost in the data
size. This paper presents two parallel GP re-
gression methods that exploit low-rank covari-
ance matrix approximations for distributing the
computational load among parallel machines to
achieve time efficiency and scalability. We the-
oretically guarantee the predictive performances
of our proposed parallel GPs to be equivalent to
that of some centralized approximate GP regres-
sion methods: The computation of their central-
ized counterparts can be distributed among par-
allel machines, hence achieving greater time effi-
ciency and scalability. We analytically compare
the properties of our parallel GPs such as time,
space, and communication complexity. Empir-
ical evaluation on two real-world datasets in a
cluster of 20 computing nodes shows that our
parallel GPs are significantly more time-efficient
and scalable than their centralized counterparts
and exact/full GP while achieving predictive per-
formances comparable to full GP.

1

Gaussian processes (GP) are Bayesian non-parametric
models for performing nonlinear regression, which offer an
important advantage of providing fully probabilistic predic-
tive distributions with formal measures of the uncertainty
of the predictions. The key limitation hindering the prac-
tical use of GP for large data is the high computational
cost: It incurs cubic time and quadratic memory in the
size of the data. To reduce the computational cost, two
classes of approximate GP regression methods have been
proposed: (a) Low-rank covariance matrix approximation
methods (Quifionero-Candela and Rasmussen, 2005; Snel-
son and Ghahramani, 2005; Williams and Seeger, 2000) are
especially suitable for modeling smoothly-varying func-

Introduction

152

tions with high correlation (i.e., long length-scales) and
they utilize all the data for predictions like the exact/full
GP; and (b) localized regression methods (e.g., local GPs
(Das and Srivastava, 2010; Choudhury et al., 2002; Park
et al., 2011) and compactly supported covariance func-
tions (Furrer et al., 2006)) are capable of modeling highly-
varying functions with low correlation (i.e., short length-
scales) but they use only local data for predictions, hence
predicting poorly in input regions with sparse data. Recent
approximate GP regression methods of Snelson (2007) and
Vanhatalo and Vehtari (2008) have attempted to combine
the best of both worlds.

Despite these various efforts to scale up GP, it remains
computationally impractical for performing real-time pre-
dictions necessary in many time-critical applications and
decision support systems (e.g., ocean sensing (Cao et al.,
2013; Dolan et al., 2009; Low et al., 2007, 2011, 2012;
Podnar et al., 2010), traffic monitoring (Chen et al., 2012;
Yu et al., 2012), geographical information systems) that
need to process and analyze huge quantities of data col-
lected over short time durations (e.g., in astronomy, inter-
net traffic, meteorology, surveillance). To resolve this, the
work in this paper considers exploiting clusters of paral-
lel machines to achieve efficient and scalable predictions
in real time. Such an idea of scaling up machine learn-
ing techniques (e.g., clustering, support vector machines,
graphical models) has recently attracted widespread inter-
est in the machine learning community (Bekkerman et al.,
2011). For the case of Gaussian process regression, the
local GPs method (Das and Srivastava, 2010; Choudhury
et al., 2002) appears most straightforward to be “embar-
rassingly” parallelized but they suffer from discontinuities
in predictions on the boundaries of different local GPs. The
work of Park et al. (2011) rectifies this problem by impos-
ing continuity constraints along the boundaries in a central-
ized manner. But, its use is restricted strictly to data with
1- and 2-dimensional input features.

This paper presents two parallel GP regression methods
(Sections 3 and 4) that, in particular, exploit low-rank co-
variance matrix approximations for distributing the compu-



tational load among parallel machines to achieve time effi-
ciency and scalability. Different from the above-mentioned
parallel local GPs method, our proposed parallel GPs
do not suffer from boundary effects, work with multi-
dimensional input features, and exploit all the data for pre-
dictions but do not incur the cubic time cost of the full/exact
GP. The specific contributions of our work include:

e Theoretically guaranteeing the predictive performances
of our parallel GPs (i.e., parallel partially independent
conditional (pPIC) and parallel incomplete Cholesky
factorization (pICF)-based approximations of GP re-
gression model) to be equivalent to that of some cen-
tralized approaches to approximate GP regression (Sec-
tions 3 and 4). An important practical implication of
these results is that the computation of their centralized
counterparts can be distributed among a cluster of par-
allel machines, hence achieving greater time efficiency
and scalability. Furthermore, our parallel GPs inherit an
advantage of their centralized counterparts in providing a
parameter (i.e., size of support set for pPIC and reduced
rank for pICF-based GP) to be adjusted in order to trade
off between predictive performance and time efficiency;
Analytically comparing the properties of our parallel
GPs such as time, space, and communication complex-
ity, capability of online learning, and practical implica-
tions of the structural assumptions (Section 5);
Implementing our parallel GPs using the message pass-
ing interface (MPI) framework to run in a cluster of 20
computing nodes and empirically evaluating their pre-
dictive performances, time efficiency, scalability, and
speedups on two real-world datasets (Section 6).

2 Gaussian Process Regression

The Gaussian process (GP) can be used to perform proba-
bilistic regression as follows: Let X’ be a set representing
the input domain such that each input z € X denotes a
d-dimensional feature vector and is associated with a re-
alized output value y, (random output variable Y,) if it is
observed (unobserved). Let {Y, }.cx denote a GP, that is,
every finite subset of {Y,, },.cx follows a multivariate Gaus-
sian distribution (Rasmussen and Williams, 2006). Then,
the GP is fully specified by its prior mean 1, = E[Y,] and
covariance 0, = cov[Y,, Y,/ forall z,2’ € X.

Given that a column vector yp of realized outputs is ob-
served for some set D C X of inputs, the GP can ex-
ploit this data (D, yp) to provide predictions of the unob-
served outputs for any set /{ C X \ D of inputs and their
corresponding predictive uncertainties using the following
Gaussian posterior mean vector and covariance matrix, re-
spectively: . .
M p = by + XupXpp(yp — 1) (1
2

where p; (up) is a column vector with mean components
o forallx € U (xz € D), ¥yp (Xpp) is a covariance ma-

Sup = Suu — SupEppEou
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trix with covariance components o,.- forallz € U, 2’ € D
(z,2’ € D), and Xpy is the transpose of Yyp. The un-
certainty of predicting the unobserved outputs can be mea-
sured using the trace of Yy p (2) (i.e., sum of posterior
variances Y, p over all x € U), which is independent of
the realized outputs yp.

3 Parallel Gaussian Process Regression
using Support Set

The centralized approach to exact/full GP regression de-
scribed in Section 2, which we call the full Gaussian pro-
cess (FGP), unfortunately cannot scale well and be per-
formed in real time due to its cubic time complexity in the
size |D| of the data. In this section, we will present a class
of parallel Gaussian processes (pPITC and pPIC) that dis-
tributes the computational load among parallel machines to
achieve efficient and scalable approximate GP regression
by exploiting the notion of a support set.

The parallel partially independent training conditional
(pPITC) approximation of FGP model is adapted from our
previous work on decentralized data fusion (Chen et al.,
2012) for sampling environmental phenomena with mobile
sensors. But, the latter does not address the practical imple-
mentation issues of parallelization on a cluster of machines
nor demonstrate scalability with large data. So, we present
pPITC here under the setting of parallel machines and then
show how its shortcomings can be overcome by extend-
ing it to pPIC. The key idea of pPITC is as follows: After
distributing the data evenly among M machines (Step 1),
each machine encapsulates its local data, based on a com-
mon prior support set S C X where |S| < | D], into a local
summary that is communicated to the master! (Step 2). The
master assimilates the local summaries into a global sum-
mary (Step 3), which is then sent back to the A/ machines
to be used for predictions distributed among them (Step 4).
These steps are detailed below:

STEP 1: DISTRIBUTE DATA AMONG M MACHINES.

The data (D, yp) is partitioned evenly into M blocks, each
of which is assigned to a machine, as defined below:

Definition 1 (Local Data) The local data of machine m is
defined as a tuple (D, yp,, ) where Dy, C D, D,,, (\D; =
() and | D, | = |Ds| = |D|/M fori # m.

STEP 2: EACH MACHINE CONSTRUCTS AND SENDS LO-
CAL SUMMARY TO MASTER.

Definition 2 (Local Summary) Given a common support
set S C X known to all M machines and the local data
(D, yp,, ), the local summary of machine m is defined as
a tuple (y2, ¥'&s) where

—1
DmDm|S

U £ Spp,, 2 (yp,, — kD,,) 3)

'One of the M machines can be assigned to be the master.



“4)

|5 Iis defined in a similar manner as (2)

. A —1
ZgLB, = ZBDm EDm Do|S EDMB’

such that Xp_p
and B, B’ C X.

m

Remark. Since the local summary is independent of the
outputs ys, they need not be observed. So, the support set
S does not have to be a subset of D and can be selected
prior to data collection. Predictive performances of pPITC
and pPIC are sensitive to the selection of S. An informa-
tive support set S can be selected from domain X’ using an
iterative greedy active selection procedure (Krause et al.,
2008; Lawrence et al., 2003; Seeger and Williams, 2003)
prior to observing data. For example, the differential en-
tropy score criterion (Lawrence ef al., 2003) can be used to
greedily select an input z € X'\ S with the largest posterior
variance ¥,,|s (2) to be included in S in each iteration.

STEP 3: MASTER CONSTRUCTS AND SENDS GLOBAL
SUMMARY TO M MACHINES.

Definition 3 (Global Summary) Given a common sup-
port set S C X known to all M machines and the local
summary (Y& ,Z?S) of every machine m = 1,..., M, the
global summary is defined as a tuple (Us, Ess) where

js & Z g ©)
m=1
.. ]\/[ .
Sss = Tss+ » | N (6)
m=1

STEP 4: DISTRIBUTE PREDICTIONS AMONG M MA-
CHINES.

To predict the unobserved outputs for any set{ of inputs, U
is partitioned evenly into disjoint subsets U1, . . . , Uy to be
assigned to the respective machines 1, ..., M. So, [U,,| =
[U|/M form =1,..., M.

Definition 4 (pPITC) Given a common support set S C
X known to all M machines and the global summary
(4s+ 235), each machine m computes a predictive Gaus-
sian distribution N'(fiy,, , Su,.u,,) of the unobserved out-
puts for the set U, of inputs where

2 g, + Su,sSssis @)

Uy — Xthy, S (Eéé - iEé) Ysu,, - (8)

Hut,,
Sttt 2
Theorem 1 [Chen et al. (2012)] Let a common sup-
port set S C X be known to all M machines. Let
N (ME\T%EZI{{C\D) be the predictive Gaussian distribu-
tion computed by the centralized partially independent
training conditional (PITC) approximation of FGP model
(Quirionero-Candela and Rasmussen, 2005) where

MZI\T% 2 1y +Tup Cop +AN) " (yp — pup)  (9)
Stsip 2 Suu — Tup (Tpp + A) ™' Ty (10)
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such that

an

and A is a block-diagonal matrix constructed from the
M diagonal blocks of Ypp|s, each of which is a matrix

A —1
FBB’ = EBSZSSESB/

Yp, Dajs for m = 1,..., M where D = Um . D
Then, [y, = ,uzlleD and Euu = EELC\D

The proof of Theorem 1 is previously reported in (Chen
et al., 2012) and reproduced in Appendix A of Chen et al.
(2013) to reflect our notations.

Remark. Since PITC generalizes the Bayesian Commit-
tee Machine (BCM) of Schwaighofer and Tresp (2002),
pPITC generalizes parallel BCM (Ingram and Cornford,
2010), the latter of which assumes the support set S to be
U (Quinonero-Candela and Rasmussen, 2005). As a result,
paralle]l BCM does not scale well with large /.

Though pPITC scales very well with large data (Table 1),
it can predict poorly due to (a) loss of information caused
by summarizing the realized outputs and correlation struc-
ture of the original data; and (b) sparse coverage of U by
the support set. We propose a novel parallel Gaussian pro-
cess regression method called pPIC that combines the best
of both worlds, that is, the predictive power of FGP and
time efficiency of pPITC. pPIC is based on the following
intuition: A machine can exploit its local data to improve
the predictions of the unobserved outputs that are highly
correlated with its data. At the same time, pPIC can pre-
serve the time efficiency of pPITC by exploiting its idea of
encapsulating information into local and global summaries.

Definition 5 (pPIC) Given a common support set S C
X known to all M machines, the global summary
(iis,Yss), the local summary (y&,%%s), and the local
data (Dy,, yp,,), each machine m computes a predictive
Gaussian distribution N (ﬁ;m , i;mum) of the unobserved
outputs for the set U, of inputs where

B 2 bt + (0, sS5kis — SunsSsbig ) + i,

(12)
S+ A m —1 —1vvm
Eumumzzumum - (@umszsszsum - Eumszssxsum

m  y—1gm m
- q’umszssq)sum) = X0u,,

(13)

such that
O s = Sus + SunsSssEs — Nils (14

and @'y,  is the transpose of ¥y .
Remark 1. The predictive Gaussian mean ﬁ;;m (12) and

covariance f];;mum (13) of pPIC exploit both summary in-
formation (i.e., bracketed term) and local information (i.e.,
last term). In contrast, pPITC only exploits the global sum-
mary (see (7) and (8)).



Remark 2. To improve the predictive performance of
pPIC, D and U should be partitioned into tuples of
(Dy,U), ..., (Dar,Unr) such that the outputs yp,, and
Yy, are as highly correlated as possible form = 1,..., M.
To achieve this, we employ a simple parallelized clustering
scheme in our experiments: Each machine m randomly se-
lects a cluster center from its local data D,,, and informs
the other machines about its chosen cluster center. Then,
each input in D,,, and U,,, is simply assigned to the “near-
est” cluster center ¢ and sent to the corresponding machine
1 while being subject to the constraints of the new D; and
U; not exceeding |D|/M and |U|/M, respectively. More
sophisticated clustering schemes can be utilized at the ex-
pense of greater time and communication complexity.

Remark 3. Predictive performances of pPITC and pPIC are
improved by increasing size of S at the expense of greater
time, space, and communication complexity (Table 1).

Theorem 2 Let a common support set S C X be known
to all M machines. Let N (pijyip, Xy, p) be the predic-
tive Gaussian distribution computed by the centralized par-
tially independent conditional (PIC) approximation of FGP

model (Snelson, 2007) where

MZITD 2 iy + Tup (Tpp + A)_l (yp —pp)  (15)
Stsup 2 Suu — Tup Top + M)~ Ty (16)

and fDu is the transpose of qu such that
Typ 2 (fumm), 17

i,m=1,....,M

= 2 | Yup, ifi=m,
Tupn = { Ty,p,, otherwise. (18)

Then, [i; = “2}3|CD and 3}, = Egam.

Its proof is given in Appendix B of Chen et al. (2013).

Remark 1. The equivalence results of Theorems 1 and 2
imply that the computational load of the centralized PITC
and PIC approximations of FGP can be distributed among
M parallel machines, hence improving the time efficiency
and scalability of approximate GP regression (Table 1).

Remark 2. The equivalence results also shed some light
on the underlying properties of pPITC and pPIC based on
the structural assumptions of PITC and PIC, respectively:
pPITC assumes that Yp,,...,Yp,,, Yy, ..., Yu,, are con-
ditionally independent given Ys. In contrast, pPIC can pre-
dict the unobserved outputs Y;, better since it imposes a
less restrictive assumption of conditional independence be-
tween Yp, (i, -« -5 YDu Udar given Ys. This assumption
further supports an earlier remark just before Theorem 2 on
clustering inputs D,,, and U,,, whose corresponding outputs
are highly correlated for improving predictive performance
of pPIC. Experimental results on two real-world datasets
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(Section 6) show that pPIC achieves predictive accuracy
comparable to FGP and significantly better than pPITC,
thus justifying the practicality of such an assumption.

4 Parallel Gaussian Process Regression
using Incomplete Cholesky Factorization

In this section, we will present another parallel Gaussian
process called pICF-based GP that distributes the compu-
tational load among parallel machines to achieve efficient
and scalable approximate GP regression by exploiting in-
complete Cholesky factorization (ICF). A fundamental step
of pICF-based GP is to use ICF to approximate the covari-
ance matrix Xpp in (1) and (2) of FGP by a low-rank sym-
metric positive semidefinite matrix: Ypp ~ FTF + 021
where F' € RE*IPI denotes the upper triangular incom-
plete Cholesky factor and R < |D| is the reduced rank.
The steps of performing pICF-based GP are as follows:

STEP 1: DISTRIBUTE DATA AMONG M MACHINES.

This step is the same as that of pPITC and pPIC in Sec-
tion 3.

STEP 2: RUN PARALLEL ICF TO PRODUCE INCOMPLETE
CHOLESKY FACTOR AND DISTRIBUTE ITS STORAGE.

ICF can in fact be parallelized: Instead of using a column-
based parallel ICF (Golub and Van Loan, 1996), our pro-
posed pICF-based GP employs a row-based parallel ICF,
the latter of which incurs lower time, space, and com-
munication complexity. Interested readers are referred to
(Chang et al., 2007) for a detailed implementation of the
row-based parallel ICF, which is beyond the scope of this
paper. More importantly, it produces an upper triangular in-
complete Cholesky factor F' £ (F} - -- Fy;) and each sub-
matrix F},, € RF*IPml is stored distributedly on machine
mform=1,..., M.

STEP 3: EACH MACHINE CONSTRUCTS AND SENDS LO-
CAL SUMMARY TO MASTER.

Definition 6 (Local Summary) Given the local data
(D, yp,,) and incomplete Cholesky factor F,,, the local
summary of machine m is defined as a tuple (Y, Sons D,,)
where

Um = Fon(yp,, — pp,,) (19)
S & FnSp,u (20)
®,, 2 F,F, . 1)

STEP 4: MASTER CONSTRUCTS AND SENDS GLOBAL
SUMMARY TO M MACHINES.

Definition 7 (Global Summary) Given the local sum-
mary (Ym, Xm, Pm) of every machine m = 1,..., M, the



global summary is defined as a tuple (ij, $) where

M
GOy im (22)
m=1
. M .
PN Z Yo (23)
m=1

_oxM
suchthat ® =1+ 0,25 _ | ®

Remark. If |U| is large, the computat10n of (23) can be par-
allehzed by partitioning I: Let 3, £ (31 ... M) where
El £ F, Yp,.u; is defined in a similar way as (20) and
|Z/I|l || /M. So, in Step 3, instead of sending 3,

the master, each machine m sends 3! to machine i for

z. =1,..., M. Then each machine ¢ computes and sends
> A -1 Zm 1 2y, to every other machine to obtain
E = (2 ).

STEP 5: EACH MACHINE CONSTRUCTS AND SENDS PRE-
DICTIVE COMPONENT TO MASTER.

Definition 8 (Predictive Compqnent) Given the local
data (Dy, yp,,), a component ¥y, of the local summary,

and the global summary (ij, %), the predlcnve component
m

of machine m is defined as a tuple (117}, E{/’[u) where
iy £ 0y Sup,, (yp,, — 1p,) — 0y S (24)
S 2 0y, S, — o SN (25)

STEP 6: MASTER PERFORMS PREDICTIONS.

Definition 9 (pICF-based GP) Given the predictive com-
ponent (p7},%7%,) of every machine m = 1,..., M,
the master computes a predictive Gaussian distribution
N (g, X)) of the unobserved outputs for any set U of
inputs where

M
i E Yy I (26)
m=1
~ M ~
Suu = Suu — Y Sty - (27)

m=1

Remark. Predictive performance of pICF-based GP can be
improved by increasing rank R at the expense of greater
time, space, and communication complexity (Table 1).

Theorem 3 Let N (/,Lgilpp, E;j;lp) be the predictive Gaus-

sian distribution computed by the centralized ICF approxi-
mation of FGP model where

MIL?TD L+ Sup(FTF+02) Y yp — up)  (28)
o = Suu — YSup(FTF+ 02D 'Spy . (29)
Then, iy = /‘u\FD and Sy = E;/(ijZID
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Its proof is given in Appendix C of Chen et al. (2013).

Remark 1. The equivalence result of Theorem 3 implies
that the computational load of the centralized ICF approx-
imation of FGP can be distributed among the M parallel
machines, hence improving the time efficiency and scala-
bility of approximate GP regression (Table 1).

Remark 2. By approximating the covariance matrix Xpp
in (1) and (2) of FGP with FT F' 4 021, Yy = St is
not guaranteed to be positive semidefinite, hence rendering
such a measure of predictive uncertainty not very useful.
However, it is observed in our experiments (Section 6) that
this problem can be alleviated by choosing a sufficiently

large rank R.

5 Analytical Comparison

This section compares and contrasts the properties of the
proposed parallel GPs analytically.

5.1 Time, Space, and Communication Complexity

Table 1 analytically compares the time, space, and com-
munication complexity between pPITC, pPIC, pICF-based
GP, PITC, PIC, ICF-based GP, and FGP based on the fol-
lowing assumptions: (a) These respective methods com-
pute the predictive means (i.e., fiys (7), 1, (12), fis (26),

PITC (9), u{}fp (15), ,uILC”FD (28), and yp (1)) and their

Hu|p
corresponding predictive variances (i.e., im 8), % A* L (13),

S (27), SETC, (10), TS 1, (16), B 1, (29), and EM,D

(2) for all z € U); (b) U] < |D| and recall |S|,R <

machines for pPITC, pPIC, and pICF-based GP; and (d)
for MPI, a broadcast operation in the communication net-
work of M machines incurs O(log M) messages (Pjesivac-
Grbovic et al., 2007). The observations are as follows:

(a) Our pPITC, pPIC, and pICF-based GP improve the
scalability of their centralized counterparts (respec-
tively, PITC, PIC, and ICF-based GP) in the size | D| of
data by distributing their computational loads among
the M parallel machines.

(b) The speedups of pPITC, pPIC, and pICF-based GP
over their centralized counterparts deviate further from
ideal speedup with increasing number M of machines

due to their additional O(|S|*M) or O(R2M) time.

(c) The speedups of pPITC and pPIC grow with in-
creasing size |D| of data because, unlike the addi-
tional O(|S|)?|D|) time of PITC and PIC that in-
crease with more data, they do not have corresponding

O(|S|*|D|/M) terms.

Our pPIC incurs additional O(|D|)
O((|D|/M)log M )-sized messages over

time and
pPITC

(d



Table 1: Comparison of time, space, and communication complexity between pPITC, pPIC, pICF-based GP, PITC, PIC,
ICF-based GP, and FGP. Note that PITC, PIC, and ICF-based GP are, respectively, the centralized counterparts of pPITC,
pPIC, and pICF-based GP, as proven in Theorems 1, 2, and 3.

GP Time complexity Space complexity Communication complexity
2 MY, (121 > (IP1Y° 2
pPITC O<S| <|S|+M+ M) + <M o[ 1sI*+ (57 O(\S| 1ogM)
2 ZIAWAEAY 2 (1P’ 2, [Pl
pPIC (’)<|S| (|S|+M+ M) + (M + |D| ol |SI” + % ol [ IS]” + % log M
2 Dl Dl 2, glPl 2
pICF-based | O R | R+ M + i + RU| (| M + W O R —|—RM O((R? + R|U|) log M)
2 2
2 Dl 2, (1Dl _
PITC O<|S| |D| + |D| <M> ) ol |Ss|” + <M
2 D’ 2, (1P
PIC (@) |8| |D|—|—|D| M +M|D| ) |S| + ﬁ -
ICF-based O(R*/D| + RIU||D|) O(R|D|) -
FGP o(IpP) o(/pP) -

due to its parallelized clustering (see Remark 2 after
Definition 5).

(e) Keeping the other variables fixed, an increasing num-
ber M of machines reduces the time and space com-
plexity of pPITC and pPIC at a faster rate than pICF-
based GP while increasing size |D| of data raises the
time and space complexity of pICF-based GP at a

slower rate than pPITC and pPIC.

(f) Our pICF-based GP distributes the memory require-

ment of ICF-based GP among the M parallel machines.

(g) The communication complexity of pICF-based GP de-
pends on the number || of predictions whereas that of
pPITC and pPIC are independent of it.

5.2 Online/Incremental Learning

Supposing new data (D', yp/) becomes available, pPITC
and pPIC do not have to run Steps 1 to 4 (Section 3) on the
entire data (D|JD’,ypyp). The local and global sum-
maries of the old data (D, yp) can in fact be reused and
assimilated with that of the new data, thus saving the need
of recomputing the computationally expensive matrix in-
verses in (3) and (4) for the old data. The exact mathemati-
cal details are omitted due to lack of space. As a result, the
time complexity of pPITC and pPIC can be greatly reduced
in situations where new data is expected to stream in at reg-
ular intervals. In contrast, pICF-based GP does not seem to
share this advantage.

5.3 Structural Assumptions

The above advantage of online learning for pPITC and
pPIC results from their assumptions of conditional inde-
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pendence (see Remark 2 after Theorem 2) given the sup-
port set. With fewer machines, such an assumption is
violated less, thus potentially improving their predictive
performances. In contrast, the predictive performance of
pICF-based GP is not affected by varying the number of
machines. However, it suffers from a different problem:
Utilizing a reduced-rank matrix approximation of Xpp, its
resulting predictive covariance matrix Y, is not guaran-
teed to be positive semidefinite (see Remark 2 after The-
orem 3), thus rendering such a measure of predictive un-
certainty not very useful. It is observed in our experiments
(Section 6) that this problem can be alleviated by choosing
a sufficiently large rank R.

6 Experiments and Discussion

This section empirically evaluates the predictive perfor-
mances, time efficiency, scalability, and speedups of our
proposed parallel GPs against their centralized counterparts
and FGP on two real-world datasets: (a) The AIMPEAK
dataset of size |D| = 41850 contains traffic speeds (km/h)
along 775 road segments of an urban road network (includ-
ing highways, arterials, slip roads, etc.) during the morning
peak hours (6-10:30 a.m.) on April 20, 2011. The traffic
speeds are the outputs. The mean speed is 49.5 km/h and
the standard deviation is 21.7 km/h. Each input (i.e., road
segment) is specified by a 5-dimensional vector of features:
length, number of lanes, speed limit, direction, and time.
The time dimension comprises 54 five-minute time slots.
This spatiotemporal traffic phenomenon is modeled using a
relational GP (previously developed in (Chen et al., 2012))
whose correlation structure can exploit both the road seg-
ment features and road network topology information; (b)
The SARCOS dataset (Vijayakumar et al., 2005) of size
|D| = 48933 pertains to an inverse dynamics problem for a



seven degrees-of-freedom SARCOS robot arm. Each input
denotes a 21-dimensional vector of features: 7 joint posi-
tions, 7 joint velocities, and 7 joint accelerations. Only one
of the 7 joint torques is used as the output. The mean torque
is 13.7 and the standard deviation is 20.5.

Both datasets are modeled using GPs whose prior covari-
ance o, is defined by the squared exponential covariance
7
¢;

function?:
/ 2
(7))

%) is the i-th component of the input feature
vector x (z'), the hyperparameters 02, 02,¢1,...,{, are,
respectively, signal variance, noise variance, and length-
scales; and J,, is a Kronecker delta thatis 1 if x = 2’ and
0 otherwise. The hyperparameters are learned using ran-
domly selected data of size 10000 via maximum likelihood
estimation (Rasmussen and Williams, 2006).
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where z; (2

For each dataset, 10% of the data is randomly selected as
test data for predictions (i.e., as {f). From the remaining
data, training data of varying sizes |D| = 8000, 16000,
24000, and 32000 are randomly selected. The training data
are distributed among M machines based on the simple
parallelized cluste