
Bounded Approximate Symbolic Dynamic Programming
for Hybrid MDPs

Luis Gustavo Rocha Vianna
University of Sao Paulo

Sao Paulo, Brazil
ludygrv@ime.usp.br

Scott Sanner
NICTA & ANU

Canberra, Australia
ssanner@nicta.com.au

Leliane Nunes de Barros
University of Sao Paulo

Sao Paulo, Brazil
leliane@ime.usp.br

Abstract

Recent advances in symbolic dynamic pro-
gramming (SDP) combined with the ex-
tended algebraic decision diagram (XADD)
data structure have provided exact solutions
for mixed discrete and continuous (hybrid)
MDPs with piecewise linear dynamics and
continuous actions. Since XADD-based ex-
act solutions may grow intractably large for
many problems, we propose a bounded er-
ror compression technique for XADDs that
involves the solution of a constrained bilin-
ear saddle point problem. Fortuitously, we
show that given the special structure of this
problem, it can be expressed as a bilevel lin-
ear programming problem and solved to op-
timality in finite time via constraint gener-
ation, despite having an infinite set of con-
straints. This solution permits the use of
efficient linear program solvers for XADD
compression and enables a novel class of
bounded approximate SDP algorithms for
hybrid MDPs that empirically offers order-of-
magnitude speedups over the exact solution
in exchange for a small approximation error.

1 Introduction

Many real-world sequential-decision making problems
involving resources, time, or spatial configurations nat-
urally use continuous variables in both their state and
action representation and can be modeled as Hybrid
Markov Decision Processes (HMDPs). While HMDPs
have been studied extensively in the AI literature [4; 7;
10; 9; 11; 12], only recently have symbolic dynamic pro-
gramming (SDP) [14; 17] techniques been introduced
to enable the exact solution of multivariate HMDPs
with continuous actions and arbitrary piecewise linear
dynamics and rewards.

(a)

x

f(x)

x

g(x)

0 5

4

0 5

4

x < 1

x < 2

x < 3

x < 4

1 2 3 2.75

x < 3

1 + 0.67x 3.8 – 0.27x

(b)

2.5

Figure 1: (a) A function f(x) for x ∈ [0, 5] and its
XADD representation (solid branch is true, dotted branch
is false); (b) A compressed XADD approximation g(x) of
f(x). While these simple XADDs are trees, XADDs are
more generally directed acyclic graphs as we show later.

What has proved crucial in this SDP solution of piece-
wise linear HMDPs is the use of the XADD data struc-
ture representation of functions like the simple exam-
ples shown in Figure 1(a,b) that allows the HMDP
value function to be represented compactly and SDP
operations to be computed efficiently. In brief, an
XADD is simply an extension of the algebraic deci-
sion diagram (ADD) [1] to continuous variables where
decisions may be boolean variable tests or inequalities
of continuous expressions and leaves may be contin-
uous expressions; XADDs are evaluated from root to
leaf like decision trees. Following the SDP work of [17]

for HMDPs with continuous actions that we extend,
we restrict XADDs to have linear decisions and leaves.

While XADDs have enabled SDP solutions to HMDPs
that would not be otherwise possible with more näıve
representations of piecewise functions, XADDs still
have limitations — for some problems the HMDP solu-
tion (represented by a value function) simply has many
distinct pieces and does not admit a more compact ex-
act XADD representation, e.g, Figure 1(a). However,

motivated by previous approximation work in discrete
factored MDPs using ADD approximation [16], we
pose the question of whether there exists a method for
compressing an XADD in exchange for some bounded
approximation error. As a hint of the solution, we note
that Figure 1(a) can be approximated by 1(b) which
is more compact and induces relatively small error.

But how do we find such a compressed XADD? In the
simpler case of ADDs [16], this approximation process
was straightforward: leaves with nearby constant val-
ues are averaged and merged, leading to bottom-up
compaction of the ADD. In the XADD, if we wish
to take a similar approach, we see that the problem
is more complex since it is not clear (1) which leaves
to merge, or (2) how to find the best approximation
of these leaves that minimizes the error over the con-
strained, continuous space where each leaf is valid. In-
deed, as Figure 1(a,b) demonstrates, the answer is not
given simply by averaging leaves since the average of
constant leaves in (a) could never produce the linear
function in the leaves of (b). Hence, we wish to answer
questions (1) and (2) to produce a bounded and low-
error approximation over the entire continuous func-
tion domain as given in Figure 1(b).

To answer these questions, we propose a bounded er-
ror compression technique for linear XADDs that in-
volves the solution of a constrained bilinear saddle
point problem. Fortuitously, we show that given the
special structure of this problem, it can be expressed
as a bilevel linear programming problem. While the
second-level optimization problem in this bilevel pro-
gram implicitly represents an infinite number of con-
straints, we show that a constraint generation ap-
proach for this second stage allows the first stage to
terminate at optimality after generating only a finite
number of constraints. This solution permits the use of
efficient linear program solvers for XADD compression
and enables a novel class of bounded approximate SDP
algorithms for hybrid MDPs. Empirically we demon-
strate that this approach to XADD compression offers
order-of-magnitude speedups over the exact solution in
exchange for a small approximation error, thus vastly
expanding the range of HMDPs for which solutions
with strong error guarantees are possible.

2 Extended Algebraic Decision
Diagrams (XADDs)

We begin with a brief introduction to the extended
algebraic decision diagram (XADD), then in Section 3
we contribute approximation techniques for XADDs.
In Section 4, we will show how this approximation can
be used in a bounded approximate symbolic dynamic
programming algorithm for hybrid MDPs.

x>0

y>x

0.5*x0.2*x - 0.5*y

f(x, y) =

{
φ1 : f1
φ2 : f2

φ1 = θ11 ∨ θ12
θ11 = x<0

θ12 = x>0 ∧ x<−y

f1 =
x

2

φ2 = θ21

θ21 = x>0 ∧ y>x

f2 =
x

5
−
y

2

Figure 2: Example of piecewise linear function in case and
XADD form: (top left) plot of function f(x, y); (top right)
XADD representing f(x, y); (bottom) case semantics for
f(x, y) demonstrating notation used in this work.

2.1 Case Semantics of XADDs

An XADD is a function represented by a directed
acyclic graph having a fixed ordering of decision tests
from root to leaf. For example, Figure 2(top left)
shows the plot of a piecewise function and 2(top right)
its XADD representation. Underlying this XADD is a
simple piecewise linear function that we can represent
semantically in case form. Specifically, given a do-
main of boolean and continuous variables (bT ,xT) =
(b1, . . . , bn, x1, . . . , xm), where bi ∈ {0, 1} (1 ≤ i ≤ n)
and xj ∈ [xmin

j , xmax
j] (1 ≤ j ≤ m) for xmin

j , xmax
j ∈ R

and xmax
j > xmin

j , a case statement representing an
XADD with linear decisions and leaf expressions takes
the following piecewise linear form

f(b,x) =


φ1(b,x) : f1(x)
...

...

φk(b,x) : fk(x)

. (1)

Here the fi are linear expressions over x and the φi are
logical formulae defined over the domain (bT ,xT) that
can include arbitrary logical (∧,∨,¬) combinations of
(i) boolean variables and (ii) linear inequalities over x.

In the XADD example of Figure 2, every leaf repre-
sents a case value fi and every path from root to leaf
represents a conjunction of decision constraints. The
disjunction of all path constraints leading to leaf fi cor-
responds to a case partition 〈φi(b,x) : fi(x)〉. Clearly,
all case partitions derived from an XADD must be mu-
tually disjoint and exhaustive of the domain (bT ,xT),
hence XADDs represent well-defined functions.

Since φi can be written in disjunctive normal form
(DNF), i.e., φi ≡

∨ni

j=0 θij where θij represents a con-
junction of linear constraints over x and a (partial)
truth assignment to b corresponding to the jth path
from the XADD root to leaf fi, we observe that every
θij contains a bounded convex linear polytope (x is

finitely bounded in all dimensions as initially defined).
We formally define the set of all convex linear poly-
topes contained in φi as C(φi) = {Polytope(θij)}j ,
where Polytope extracts the subset of linear con-
straints from θij . Figure 2(top left) illustrates the
different polytopes in the XADD of 2(top right) with
corresponding case notation in 2(bottom).

2.2 XADD Operations

XADDs are important not only because they com-
pactly represent piecewise functions that arise in the
forthcoming solution of hybrid MDPs, but also be-
cause operations on XADDs can efficiently exploit
their structure. XADDs extend algebraic decision di-
agrams (ADDs) [1] and thus inherit most unary and
binary ADD operations such as addition ⊕ and mul-
tiplication ⊗. While the addition of two linear piece-
wise functions represented by XADDs remains linear,
in general their product may not (i.e., the values may
be quadratic); however, for the purposes of symbolic
dynamic programming later, we remark that we only
ever need to multiply piecewise constant functions by
piecewise linear functions represented as XADDs, thus
yielding a piecewise linear result.

Some XADD operations do require extensions over the
ADD, e.g., the binary max operation represented here
in case form:

max

({
φ1 :f1
φ2 :f2

,

{
ψ1 :g1
ψ2 :g2

)
=



φ1 ∧ ψ1 ∧ f1 > g1 : f1
φ1 ∧ ψ1 ∧ f1 ≤ g1 : g1
φ1 ∧ ψ2 ∧ f1 > g2 : f1
φ1 ∧ ψ2 ∧ f1 ≤ g2 : g2

...
...

While the max of two linear piecewise functions repre-
sented as XADDs remains in linear case form, we note
that unlike ADDs which prohibit continuous variables
x and only have a fixed set of boolean decision tests b,
an XADD may need to create new decision tests for the
linear inequalities {f1 > g1, f1 > g2, f2 > g1, f2 > g2}
over x as a result of operations like max.

Additional XADD operations such as symbolic sub-
stitution, continuous (action) parameter maximiza-
tion, and integration required for the solution of
hybrid MDPs have all been defined previously [14;
17] and we refer the reader to those works for details.

3 Bounded XADD Approximation

In this section, we present the main novel contribu-
tion of our paper for approximating XADDs within a
fixed error bound. Since the point of XADD approxi-
mation is to shrink its size, we refer to our method of
approximation as XADD Compression (XADDComp).

-1 0 1 2 3 4 x

f(x)
x>0

x>3

0.04.0 3.0 1.0

x>1

x>2

2.0

(a) Original

-1 0 1 2 3 4 x

f(x)
x>0

x>3

0.04.0 1.5+0.5*x
(Error = 0.5)

1.0

x>1

(b) Step1

-1 0 1 2 3 4 x

f(x)
x>0

x>3

0.04.0
1.0+0.667*x

(Error = 0.667)

(c) Step2

Figure 3: Successive pair merging XADD compression for
a simple 1D example. At each step two nodes are chosen for
merging, the best approximating hyperplane is determined
according to Section 3.2, and if the accumulated error is
within required bounds, the leaves are merged and internal
XADD structure simplified to remove unneeded decisions.

Following previous work on ADD compression [16],
we note that decision diagrams should be compressed
from the bottom up — merging leaves causes simplifi-
cations to ripple upwards through a decision diagram
removing vacuous decisions and shrinking the decision
diagram. For example, after merging leaves in Fig-
ure 1(a), we note that the only remaining decision in
1(b) is x < 3. Hence, we focus on a leaf merging ap-
proach to XADDComp, which poses two questions: (1)
what leaves do we merge? And (2) how do we find
the best approximation of merged leaves? We answer
these two questions in the following subsections.

3.1 Successive Leaf Merging

Since it would be combinatorially prohibitive to exam-
ine all possible leaf merges in an XADD, our XADDComp
approximation approach in Algorithm 1 uses a system-
atic search strategy of successive pairwise merging of
leaves. The idea is simple and is illustrated in Figure 3.
The bounded error property is guaranteed by accumu-

Algorithm 1: XADDComp(XADD X, ε) −→ (X̂, ε̂)

ε̂← 0 // The max amount of error used so far1

X̂ ← X // The approximated XADD2

Open := {Li} = {〈φi, fi〉} ∈ X̂// cases in X̂3

while Open 6= ∅ do4

L1 := Open.pop()5

for L2 ∈ Open do6

// Merge and track accumulated error7

(f∗, ε̃) :=PairLeafApp(L1, L2)// Sec 3.28

f∗.error := ε̃+ max(f1.error , f2.error)9

// Keep merge if within error bounds10

if f∗.error < ε then11

ε̂ := max(ε̂, f∗.error)12

Open.remove(L2)13

// Replace leaves in X̂ and simplify14

X̂.f1 := f∗, X̂.f2 := f∗15

L1 :=〈φ1∨ φ2, f
∗〉// Keep merging L116

return (X̂, ε̂)// Comp. XADD and error used17

lating the amount of error ”used” in every merged leaf
and avoiding any merges that exceed a maximum error
threshold ε. However, we have not yet defined how to
find the lowest error approximation of a pair of leaves
in PairLeafApp, which we provide next.

3.2 Pairwise Leaf Approximation

In pairwise leaf merging, we must address the following
fundamental problem: given two XADD leaves rep-
resented by their case partitions L1 = 〈f1, φ1〉 and
L2 = 〈f2, φ2〉, our goal is to determine the best linear
case approximation of L1 and L2. As it must represent
L1 and L2, the solution must be defined in both regions
and is therefore of the form L∗ = 〈f∗, φ1 ∨ φ2〉. Since
we restrict to linear XADDs, then f1 = c1

T (xT , 1)T ,
f2 = c2

T (xT , 1)T and f∗ = c∗T (xT , 1)T (assuming
c1, c2, c

∗ ∈ Rm+1 where x ∈ Rm). Thus, our task
reduces to one of finding the optimal weight vector
c∗ which minimizes approximation error given by the
following bilinear saddle point optimization problem:

min
c∗

max
i∈{1,2}

max
x∈C(φi)

∣∣∣∣ ciT [x1
]

︸ ︷︷ ︸
fi

− c∗T
[
x
1

]
︸ ︷︷ ︸

f∗

∣∣∣∣ (2)

This is bilinear due to the inner product of c∗ with x.

To better understand the structure of this bilinear sad-
dle point problem, we refer to Figure 4, which shows
on the left, two functions f1 and f2 and the respec-
tive single polytope regions C(φ1) and C(φ2) where
f1 and f2 are respectively valid. On the right, we
show a proposed approximating hyperplane f within

Figure 4: Illustration of the pairwise leaf approximation
problem: (left) the original linear leaf functions f1 and
f2 in their respective (single) polytope regions φ1 and φ2;
(right) a linear approximation f overlaid on f1 and f2 in
their regions showing errors at the polytope vertices.

the regions C(φ1) and C(φ2). Clearly we want to
choose the f∗ = f that minimizes the absolute dif-
ference between f and f1, f2 within their respective
polytopes. On account of this perspective and recall-
ing that C(φi) = {Polytope(θij)}j , we can rewrite (2)
as the following bi-level linear optimization problem:1

min
c∗,ε

ε (3)

s.t. ε ≥

max
x

∣∣∣∣ciT[x1
]
− c∗T

[
x
1

]∣∣∣∣
s.t. x ∈ Polytope(θij)

 ;∀i ∈ {1,2},∀θij

While it may seem we have made little progress with
this rewrite of (2) — this still appears to be a diffi-
cult optimization problem, we can make an important
insight that allows us to remove the second stage of op-
timization altogether. While implicitly it appears that
the second stage would correspond to an infinite num-
ber of constraints — one for each x ∈ Polytope(θij),
we return to Figure 4. Since each of f , f1, and f2 are
all linear and C(φ1), C(φ2) represent (unions of) linear
convex polytopes, we know that the maximum differ-
ence between f and f1, f2 must occur at the vertices
of the respective polytope regions. Thus, denoting xk

ij

(k ∈ {1 . . . Nij}) as a vertex of the linear convex poly-
tope defined by θij , we can obtain a linear program
version of (2) with a finite number of constraints at
the vertices xk

ij of all polytopes:

min
c∗,ε

ε (4)

s.t. ε ≥
∣∣∣∣ciT[xk

ij

1

]
− c∗T

[
xk
ij

1

]∣∣∣∣ ; ∀i ∈ {1,2},∀θij ,∀k ∈ {1 . . . Nij}
1To obtain a true bi-level linear program, we need two

separate second stage constraints to encode that ε is larger
than each side of the absolute value (the argument of the
absolute value and its negation), but this is a straightfor-
ward absolute value expansion in a linear program that we
will consider implicit to avoid notational clutter.

Algorithm 2: PairLeafApp(L1, L2) −→ (c∗, ε)

c∗ := 0 // Arbitrarily initialize c∗1

ε∗ :=∞ // Initialize to invalid error2

C := ∅ // Start with an empty constraint set3

// Generate max error vertex constraints for c∗4

for i ∈ {1, 2}, θij ∈ C(φi) do5

6
xk
ij+

:= arg max
x

(
ci
T

[
x
1

]
− c∗T

[
x
1

])
s.t. x ∈ Polytope(θij)

xk
ij−

:= arg max
x

(
c∗T

[
x
1

]
− ci

T

[
x
1

])
s.t. x ∈ Polytope(θij)

C := C ∪ {ε>ci
T (xk

ij

T

+
, 1)T−c∗T (xk

ij

T

+
, 1)T }

C := C ∪ {ε>c∗T (xk
ij

T

−
, 1)T−ciT (xk

ij

T

−
, 1)T }7

// Re-solve LP with augmented constraint set8

(c∗, ε∗new) := arg minc∗,ε ε subject to C9

if ε∗new 6= ε∗ then10

ε∗ := ε∗new , go to line 411

return (c∗, ε∗)// Best hyperplane and error12

Unfortunately, the drawback of this single linear pro-
gramming approach is that for Mij linear constraints
in Polytope(θij), the number of vertices of the polytope
may be exponential, i.e., Nij = O(expMij).

However, we make one final crucial insight: while we
may have an exponential number of constraints in (4),
we have a very efficient way to evaluate for a fixed solu-
tion c∗, the single point xk

ij in each Polytope(θij) with
max error — this is exactly what the second stage lin-
ear program in (3) provides. Hence, this suggests an
efficient constraint generation approach to solving (4)
that we outline in Algorithm 2. Beginning with an
empty constraint set, we iteratively add in constraints
for the polytope vertices xk

ij that yield maximal er-
ror for the current best solution c∗ (one constraint for
each side of the absolute value). Then we re-solve for
(c∗, ε∗) to see if the error has gotten worse; if not,
we have reached optimality since c∗ satisfies all con-
straints (vertices xk

ij not having constraints in C had
provably equal or smaller error than those in C) and
adding in all constraints could not reduce ε∗ further.

We conclude our discussion of PairLeafApp in Algo-
rithm 2 with a key observation: it will always termi-
nate in finite time with the optimal solution, since at
least two constraints are generated on every iteration
and there are only a finite number of possible polytope
vertices xk

ij for which to generate constraints. We later
demonstrate that PairLeafApp runs very efficiently in
practice indicating that it is generating only a small
subset of the possible exponential set of constraints.

4 Bounded Approximate Symbolic
Dynamic Programming

Having shown how to efficiently approximate XADDs
in Section 3, we switch to the main application fo-
cus of this work: finding bounded approximate solu-
tions for Hybrid MDPs (HMDPs). Specifically, in this
section, we build on the Symbolic Dynamic Program-
ming (SDP) [14; 17] framework for HMDPs that uses
the XADD data structure to maintain a compact rep-
resentation of the value function, extending it to al-
low next-state dependent rewards and synchronic arcs
in its transition function. In this work, we augment
SDP with a bounded value approximation step that we
will subsequently show permits the solution of HMDPs
with strong error guarantees that cannot be efficiently
solved exactly. We begin by formalizing an HMDP.

4.1 Hybrid Markov Decision Processes
(HMDPs)

In HMDPs, states are represented by variable assign-
ments. We assume a vector of variables (bT ,xT) =
(b1, . . . , bn, x1, . . . , xm), where each bi ∈ {0, 1} (1 ≤
i ≤ n) is boolean and each xj ∈ R (1 ≤ j ≤ m) is con-
tinuous. We also assume a finite set of p parametrized
actions A = {a1(y1), . . . , ap(yp)}, where yk ∈ R|yk|

(1 ≤ k ≤ p) denote continuous parameters for respec-
tive action ak (often we drop the subscript, e.g., a(y)).

An HMDP model also requires the following: (i) a
joint state transition model P (b′,x′|b,x, a,y), which
specifies the probability of the next state (b′,x′) con-
ditioned on a subset of the previous and next state and
action a(y); (ii) a reward function R(b,x, a,y, b′,x′),
which specifies the immediate reward obtained by tak-
ing action a(y) in state (b,x) and reaching state
(b′,x′); and (iii) a discount factor γ, 0 ≤ γ ≤ 1.

A policy π specifies the action a(y) = π(b,x) to take
in each state (b,x). Our goal is to find an optimal
sequence of finite horizon-dependent policies Π∗ =
(π∗,1, . . . , π∗,H) that maximizes the expected sum of
discounted rewards over a horizon h ∈ H;H ≥ 0:

V Π∗(b,x) = EΠ∗

[
H∑
h=0

γh · rh
∣∣∣(b0,x0)

]
. (5)

Here rh is the reward obtained at horizon h following
Π∗ where we assume starting state (b0,x0) at h = 0.

HMDPs as defined above are naturally factored [3]

in terms of state variables (b,x); as such, transition
structure can be exploited in the form of a dynamic
Bayes net (DBN) [6] where the conditional probabili-
ties P (b′i| · · ·) and P (x′j | · · ·) for each next state vari-
able can condition on the action, current and next

Algorithm 3: BASDP(HMDP, H, ε) −→ (V h, π∗,h)

begin1

V 0 := 0, h := 02

while h < H do3

h := h+ 14

foreach a ∈ A do5

Qha(y) := Regress(V h−1, a,y)6

Qha :=maxy Q
h
a(y) // Parameter max7

V h :=maxa Q
h
a // Max all Qa8

π∗,h := arg max(a,y) Q
h
a(y)9

V h = XADDComp(V h, ε)10

if V h = V h−1 then11

break // Stop if early convergence12

return (V h, π∗,h)13

end14

state. We allow synchronic arcs (variables that condi-
tion on each other in the same time slice) between any
pair of variables, binary b or continuous x so long as
they do not lead to cyclic dependencies in the DBN —
this leads to a natural topologically sorted variable or-
dering that prevents any variable from conditioning on
a later variable in the ordering. From these assump-
tions, we factorize the joint transition model as

P (b′,x′|b,x, a,y) =

n+m∏
k=1

P (v′k|b,x,v′<k, a,y)

where v′<k = (v′1, . . . , v
′
k−1), 1 ≤ k ≤ n+m.

The conditional probability functions P (b′i =
v′ki |b,x,v

′
<ki

, a,y) for binary variables bi (1 ≤ i ≤ n)
can condition on state and action variables. For the
continuous variables xj (1 ≤ j ≤ m), we represent the
CPFs P (x′j = v′kj |b,x,v

′
<kj

, a,y) with piecewise linear

equations (PLEs) satisfying three properties: (i) PLEs
can only condition on the action, current state, and
previous state variables, (ii) PLEs are deterministic
meaning that to be represented by probabilities they
must be encoded using Dirac δ[·] functions and (iii)
PLEs are piecewise linear, where the piecewise con-
ditions may be arbitrary logical combinations of the
binary variables and linear inequalities over the con-
tinuous variables. Numerous examples of PLEs will be
presented in the empirical results in Section 5.

While it is clear that our restrictions do not permit
general stochastic continuous transition noise (e.g.,
Gaussian noise), they do permit discrete noise in the
sense that P (x′j = v′kj |b,x,v

′
<kj

, a,y) may condition

on b′, which are stochastically sampled according to
their CPFs. We note that this representation effec-
tively allows modeling of continuous variable transi-

Algorithm 4: Regress(V, a,y) −→ Q

begin1

Q = Prime(V) // Rename all symbolic2

//variables bi → b′i and all xi → x′i
Q := R(b,x, a,y, b′,x′)⊕ (γ ·Q)3

// Any var order with child before parent4

foreach v′k in Q do5

if v′k = x′j then6

//Continuous marginal integration7

Q :=
∫
Q⊗ P (x′j |b,x,v′<k, a,y) dx′j8

if v′k = b′i then9

// Discrete marginal summation10

Q :=
[
Q⊗ P (b′i|b,x,v′<k, a,y)

]
|b′i=111

⊕
[
Q⊗ P (b′i|b,x,v′<k, a,y)

]
|b′i=0

return Q12

end13

tions as a mixture of δ functions, which has been used
frequently in previous exact continuous state MDP so-
lutions [7; 12].

We allow the reward function R(b,x, a,y, b′,x′) to be
a general piecewise linear function (boolean or linear
conditions and linear values) such as

R(b,x, a,y, b′,x′) =

{
b ∧ x1 ≤ x2+1 : 1− x′1 + 2x′2
¬b ∨ x1 > x2+1 : 3y + 2x2

The above transition and reward constraints ensure
that all derived functions in the solution of these
HMDPs will remain piecewise linear, which is essen-
tial for efficient linear XADD representation [14] and
for the XADD approximation techniques proposed in
Section 3.

4.2 Solution Methods

The algorithm we use for solving HMDPs is an ap-
proximate version of the continuous state and action
generalization of value iteration [2], which is a dynamic
programming algorithm for constructing optimal poli-
cies. It proceeds by constructing a series of h-stage-
to-go optimal value functions V h(b,x). Initializing
V 0(b,x) = 0, we define the quality Qha(b,x,y) of tak-
ing action a(y) in state (b,x) and acting so as to obtain
V h−1(b,x) thereafter as the following:

Qh
a(b,x,y) =

∑
b′

∫
x′

[
n+m∏
k=1

P (v′k|b,x,v′<k, a,y)· (6)

(
R(b,x, a,y, b′,x′) + γV h−1(b′,x′)

)]
dx′

Given Qha(b,x) for each a ∈ A, we can proceed to de-
fine the h-stage-to-go value function as the maximizing

action parameter values y for the best action a in each
state (b,x) as follows:

V h(b,x) = max
a∈A

max
y∈R|y|

{
Qha(b,x,y)

}
(7)

If the horizon H is finite, then the optimal value
function is obtained by computing V H(b,x) and
the optimal horizon-dependent policy π∗,h at each
stage h can be easily determined via π∗,h(b,x) =
arg max(a,y)Q

h
a(b,x,y). If the horizon H = ∞ and

the optimal policy has finitely bounded value, then
value iteration can terminate at horizon h if V h =
V h−1; then V∞ = V h and π∗,∞ = π∗,h.

4.3 Bounded Approximate SDP (BASDP)

We will now define BASDP, our bounded approxi-
mate HMDP symbolic dynamic programming algo-
rithm. BASDP is provided in Algorithm 3 along with
a regression subroutine in Algorithm 4; BASDP is a
modified version of SDP [17] to support the HMDP
model with next-state dependent reward function and
synchronic arcs as defined previously along with the
crucial addition of line 10, which uses the XADDComp

compression method described in Section 3. Error
is cumulative over each horizon, so for example, the
maximum possible error incurred in an undiscounted
BASDP solution is Hε. All functions are represented
as XADDs, and we note that all of the XADD op-
erations involved, namely addition ⊕, multiplication
⊗, integration of Dirac δ functions, marginalization
of boolean variables

∑
bi

, continuous parameter max-
imization maxy and discrete maximization maxa, are
defined for XADDs as given by [14; 17]. For most
of these operations the execution time scales super-
linearly with the number of partitions in the XADD,
which can be greatly reduced by the XADDComp com-
pression algorithm. We empirically demonstrate the
benefits of approximation in the next section.

5 Empirical Results

In this section we wish to compare the scalability of
exact SDP (calling BASDP in Algorithm 4 with ε = 0)
vs. various levels of approximation error ε > 0 to
determine the trade-offs between time and space vs.
approximation error. To do this, we evaluated BASDP
on three different domains — Mars Rover1D, Mars
Rover2Dand Inventory Control— detailed next.

Mars Rover1D: A unidimensional continuous Mars
Rover domain motivated by Bresina et al [5] used in
order to visualize the value function and the effects of
varying levels of approximation. The position of the
rover is represented by a single continuous variable x
and the goal of the rover is to take pictures at specific
positions. There is only one action move(ax), where

 74

 76

 78

 80

 82

 84

 86

 88

 90

 92

 94

 96

-100 -50 0 50 100

V
al

u
e

x

V6 : roverLinear1d2

eps = 0.000
eps = 0.020
eps = 0.040
eps = 0.060
eps = 0.080

Figure 5: Value function at iteration 6 for
Mars Rover1D, showing how different levels of ap-
proximation error (eps) lead to different compressions.

ax is the movement distance. In the description of
the problem for the instance shown below, there are
two picture points and taking pictures is recorded in
two boolean variables (tp1 and tp2). The dynamics for
deterministic action move(ax) are as follows:

tp′1 =

{
tp1 ∨ (x > 40 ∧ x < 60) : 1.0

else : 0.0

tp′2 =

{
tp2 ∨ (x > −60 ∧ x < −40) : 1.0

else : 0.0

x′ = x+ ax

R = R1 +R2 − 0.1 ∗ |ax|

R1 =


(tp′1) ∧ (¬tp1) ∧ (x > 50) : 40− 0.2 ∗ (x− 50)

(tp′1) ∧ (¬tp1) ∧ (x < 50) : 40− 0.2 ∗ (50− x)

(tp′1) ∧ (tp1) : 1.1

else : −2

R2 =


(tp′2) ∧ (¬tp2) ∧ (x > −50) : 60− 0.2 ∗ (−x+ 50)

(tp′2) ∧ (¬tp2) ∧ (x < −50) : 60− 0.2 ∗ (x+ 50)

(tp′2) ∧ (tp2) : 1.2

else : −1

In Figure 5, we plot different value functions obtained
by compressing with different levels — we note that
in general larger ε results in a looser fit, but there are
exceptions, owing to the greedy nature of successive
pairwise merging for XADDs described in Section 3.

Mars Rover2D: In this multivariate version of a
Mars Rover domain the rover is expected to fol-
low a path. The position is represented by a pair of
continuous variables (x, y). There is only one action,
move(ax, ay), where |ax| < 10 and |ay| < 10. The new
position is given by (x′, y′) = (x+ ax, y+ ay). The re-
ward increases with x and decreases with the absolute
value of y, that is:

R =


(x>y + 25) ∧ (x>−y + 25) ∧ (y>0) : −10 + x− y
(x>y + 25) ∧ (x>−y + 25) ∧ (y<0) : −10 + x+ y

else : −1

In Figure 6, we can clearly see the effect of compres-
sion. In the 3D plots, a much simpler surface is ob-
tained for the 5% error compression, and correspond-
ingly, in the diagrams, the number of nodes is greatly
reduced, which enables a much faster computation of
XADD operations and the bounded error solution.

Inventory Control: In an inventory problem [15],
we assume n continuous resources that can be bought
and sold. There are n order-i actions for each resource,
1 ≤ i ≤ n. The maximum amount of each resource
that is sold on one iteration depends on a stochastic
demand variable d that is true with 60% probability.
The reward is equal to the sum of the resources sold
in this iteration.The resource x′i for action order-i is
given by:

x′i =


(d′) ∧ (xi > 150) : xi + 200− 150

(d′) ∧ (xi < 150) : 200

(¬d′) ∧ (xi > 50) : xi + 200− 50

(¬d′) ∧ (xi < 50) : 200

and for other resources x′j , 1 ≤ j ≤ n, j 6= i:

x′j =


(d′) ∧ (xj > 150) : xj − 150

(d′) ∧ (xj < 150) : 0

(¬d′) ∧ (xj > 50) : xj − 50

(¬d′) ∧ (xj < 50) : 0

Figure 7 shows the time, space, and actual error of the
BASDP solutions vs. the exact solution for one Mars
Rover2D domain and one Inventory Control do-
main. In the space plots (left), we note how the ap-
proximation compresses the XADD significantly, even
for small ε. We witness approximately 10× savings in
time over the exact solution even for small ε and when
we examine the actual error (right) of the BASDP so-
lutions (compared to the exact solution), we see that
it tends to be less than 1

3 of the BASDP error bound.

6 Related Work

Boyan and Littman [4] presented the first exact solu-
tion for 1D continuous HMDPs with discrete actions,
linear reward and piecewise dynamics while Feng et
al [7] generalized this solution for a subset of mul-
tivariate HMDPs where all piecewise functions had
to have rectilinear piece boundaries (i.e., general lin-
ear inequalities like x + y > 0 where disallowed) and
actions were discrete. Li and Littman [10] extended
Feng et al’s model to the case of bounded approxima-
tion using rectilinear piecewise constant functions that
could not produce the low-error linear approximations
in Figures 1(a,b) or 3. In addition, all of these methods
could only provide (approximately) optimal solutions
for a rectilinear subset of discrete action HMDPs in
comparison to our more general setting of continuous
action HMDPs with linear piecewise dynamics and re-
wards building on the work of Zamani et al [17].

An alternative bounded error HMDP solution is the
phase-type approximation of Marecki et al [11] which
can arbitrarily approximate 1D continuous MDP so-
lutions but which does not extend to multivariate set-
tings or continuous actions. In an approximate linear
programming approach using basis functions, Kveton
et al [9; 8] explore bounded approximations and learn-
able basis functions for HMDPs but cannot provide a
priori guarantees on the maximum allowed error in a
solution as we can in our BASDP framework. Munos
and Moore [13] take a variable resolution discretiza-
tion approach to refining value functions and policies,
but these methods are based on rectilinear partitioned
kd-trees which can consume prohibitive amounts of
space to approximate the simple oblique piecewise lin-
ear function of Figure 2, represented exactly as a four
node XADD.

In an orthogonal direction to the work above, Meuleau
et al [12] investigate a search-based dynamic program-
ming solution to HMDPs that is restricted to optimal-
ity over a subset of initial states. We note that this
approach admits any dynamic programming backup
and value representation and hence can be combined
with BASDP and XADDs as proposed here — an in-
teresting avenue for future work.

7 Concluding Remarks

In this work, we introduced a novel bounded approx-
imate symbolic dynamic programming (BASDP) al-
gorithm for HMDPs based on XADD approximation,
where we contributed a bounded error compression
technique for XADDs involving the solution of a con-
strained bilinear saddle point problem. After exploit-
ing a number of key insights in the structure of this
problem, we were able to show that it could be solved
to optimality in finite time via constraint generation
in a linear programming framework (despite having an
apparent infinite set of potential constraints). Empiri-
cally, this BASDP solution yielded order-of-magnitude
speedups over the exact solution in exchange for a
small approximation error, thus vastly expanding the
range of HMDPs for which bounded error approximate
solutions are possible.

Acknowledgments

NICTA is funded by the Australian Government as
represented by the Department of Broadband, Com-
munications and the Digital Economy and the Aus-
tralian Research Council through the ICT Centre of
Excellence program. This work was supported by the
Brazillian agency FAPESP (grant 2012/10861-0).

-150
-100

-50
 0

 50
 100

 150-150
-100

-50
 0

 50
 100

 150

-100
 0

 100
 200
 300
 400
 500
 600
 700
 800
 900

rover2D V6-exact

Y

X

-100
 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

(-1 + (-0.05 * y)) > 0

(-1 + (-0.04 * x)) > 0

(-1 + (-0.04 * x)) > 0

(120 + (3 * y) + (6 * x))

(109 + (5 * x) + (-1 * y))

(-1 + (0.022222 * x) + (-0.022222 * y)) > 0

(-1 + (-0.028571 * x) + (-0.028571 * y)) > 0(-1 + (-0.018182 * x) + (-0.018182 * y)) > 0

(-1 + (-0.033333 * y)) > 0

(87 + (3 * x))

(1 + (0.199997 * x)) > 0

(-1 + (0.022222 * x) + (-0.022222 * y)) > 0

(188 + (3 * y) + (4 * x))

(118 + (1 * y) + (4 * x))

(1 + (0.066667 * x)) > 0

-6

(-1 + (0.05 * y)) > 0

(1 + (0.066666 * x) + (-0.066666 * y)) > 0(98 + (4 * x))

(118 + (4 * x) + (-1 * y))

(1 + (-0.022222 * x) + (-0.022222 * y)) > 0

(1 + (-0.028571 * x)) > 0

(-1 + (-0.032258 * x) + (-0.032258 * y)) > 0

(-1 + (-0.028571 * x) + (-0.028571 * y)) > 0 (1 + (0.066666 * x) + (-0.066666 * y)) > 0

(-1 + (-0.066666 * x) + (-0.066666 * y)) > 0

(1 + (-0.028571 * x)) > 0

(-1 + (-1 * x)) > 0

(-1 + (-0.090909 * x)) > 0

(1 + (-0.200003 * x)) > 0

(1 + (0.199997 * x)) > 0

(1 + (-0.066667 * x)) > 0

(99 + (5 * x))

(66 + (2 * x))

(-1 + (-0.033333 * y)) > 0

(-1 + (-0.025 * y)) > 0 (129 + (2 * y) + (5 * x))

(-1 + (-0.05 * y)) > 0

(109 + (1 * y) + (5 * x))

(1 + (0.199997 * x)) > 0

(1 + (-0.022222 * x) + (-0.022222 * y)) > 0(1 + (-0.022222 * x) + (-0.022222 * y)) > 0

(1 + (0.018182 * x) + (-0.018182 * y)) > 0

(106 + (2 * x) + (-1 * y))

(-1 + (0.02 * y)) > 0

(-1 + (0.025 * y)) > 0

(1 + (0.066666 * x) + (-0.066666 * y)) > 0

(1 + (0.028571 * x) + (-0.028571 * y)) > 0(-1 + (0.033333 * y)) > 0

(35 + (1 * x))

(1 + (0.013334 * x) + (-0.013334 * y)) > 0

(129 + (5 * x) + (-2 * y))

(-1 + (-0.028571 * x) + (-0.028571 * y)) > 0

(-1 + (-0.025 * y)) > 0

(106 + (1 * y) + (2 * x))

(-1 + (0.1 * y)) > 0

(-1 + (0.200003 * x) + (-0.200003 * y)) > 0

(-1 + (-0.125 * y) + (0.25 * x)) > 0

(1 + (-0.04 * x)) > 0

(1 + (-0.04 * x)) > 0

(-1 + (0.05 * y)) > 0

(-1 + (-0.02 * y)) > 0(159 + (3 * y) + (5 * x))

(-1 + (-0.02 * y)) > 0

(190 + (5 * y) + (6 * x)) (240 + (6 * x) + (6 * y)) (-1 + (0.05 * y)) > 0 (1 + (0.066666 * x) + (-0.066666 * y)) > 0

(1 + (0.066666 * x) + (-0.066666 * y)) > 0

(-1 + (0.025 * y)) > 0

(1 + (-0.028571 * x)) > 0

(1 + (-0.028571 * x)) > 0

(1 + (-0.028571 * x)) > 0

(-1 + (0.02 * y)) > 0

(1 + (0.028571 * x) + (-0.028571 * y)) > 0

(-1 + (-0.028571 * x) + (-0.028571 * y)) > 0

(-1 + (-0.02 * y)) > 0

(-1 + (-0.018182 * x) + (-0.018182 * y)) > 0

(-1 + (0.025 * y)) > 0

(1 + (0.018182 * x) + (-0.018182 * y)) > 0(188 + (4 * x) + (-3 * y))

(-1 + (-0.033333 * y)) > 0

(117 + (1 * y) + (3 * x))

(-1 + (0.025 * y)) > 0(-1 + (-0.066666 * x)) > 0

(-1 + (-0.066666 * x) + (-0.066666 * y)) > 0

(-1 + (-0.1 * y)) > 0

(-1 + (-0.05 * y)) > 0 (90 + (1 * y) + (6 * x))

(-1 + (-0.033333 * y)) > 0(100 + (2 * y) + (6 * x))

(-1 + (-0.025 * y)) > 0

(150 + (4 * y) + (6 * x))

(157 + (2 * y) + (3 * x))

(100 + (6 * x) + (-2 * y))

(-1 + (0.033333 * y)) > 0

(-1 + (0.025 * y)) > 0

(159 + (5 * x) + (-3 * y))(-1 + (0.02 * y)) > 0

(-1 + (-0.025 * y)) > 0

(156 + (2 * x) + (-2 * y))

(-1 + (0.025 * y)) > 0

(-1 + (0.02 * y)) > 0

(148 + (4 * x) + (-2 * y))(-1 + (0.02 * y)) > 0

(1 + (0.018182 * x) + (-0.018182 * y)) > 0

(-1 + (0.025 * y)) > 0

(-1 + (-0.090909 * x)) > 0

(-1 + (0.033333 * y)) > 0

(-1 + (0.025 * y)) > 0

(-1 + (-0.02439 * x) + (-0.02439 * y)) > 0

(-1 + (-0.033333 * y)) > 0

(85 + (1 * x) + (1 * y))

(1 + (-0.200003 * x)) > 0

(-1 + (0.111111 * x)) > 0

(148 + (2 * y) + (4 * x))

(-1 + (-0.090909 * x)) > 0

(1 + (-0.066667 * x)) > 0

(-1 + (-1 * x)) > 0

(1 + (-0.200003 * x) + (-0.200003 * y)) > 0

(-1 + (-0.090909 * x)) > 0

(-1 + (-0.1 * y)) > 0

(199 + (5 * x) + (-4 * y))

(-1 + (-0.018182 * x) + (-0.018182 * y)) > 0

(-1 + (-0.02 * y)) > 0

(-1 + (-0.013334 * x) + (-0.013334 * y)) > 0

(-1 + (0.033333 * y)) > 0

(1 + (0.028571 * x) + (-0.028571 * y)) > 0

(-1 + (-0.025 * y)) > 0

(117 + (3 * x) + (-1 * y)) (207 + (3 * x) + (-3 * y))(157 + (3 * x) + (-2 * y))

(1 + (0.018182 * x) + (-0.018182 * y)) > 0

(1 + (-0.200003 * x)) > 0

(249 + (5 * x) + (5 * y)) (199 + (4 * y) + (5 * x))

(207 + (3 * x) + (3 * y))

(150 + (6 * x) + (-4 * y))

(238 + (4 * x) + (-4 * y))

(-1 + (0.033333 * y)) > 0

(-1 + (-0.02 * y)) > 0

(190 + (6 * x) + (-5 * y))

(-1 + (-0.02439 * x) + (-0.02439 * y)) > 0

(85 + (1 * x) + (-1 * y))

(-1 + (-1 * x)) > 0

(-1 + (0.200003 * x) + (-0.200003 * y)) > 0

(1 + (0.028571 * x) + (-0.028571 * y)) > 0

(-1 + (-0.1 * y)) > 0

(-1 + (-0.090909 * x) + (-0.090909 * y)) > 0

(1 + (-0.04 * x)) > 0

(-1 + (-0.05 * y)) > 0(1 + (-0.028571 * x)) > 0(-1 + (-0.066666 * x) + (-0.066666 * y)) > 0

(-1 + (-0.033333 * y)) > 0(-1 + (-0.032258 * x) + (-0.032258 * y)) > 0

(1 + (-0.04 * x)) > 0

(-1 + (0.05 * y)) > 0

(-1 + (-0.018182 * x) + (-0.018182 * y)) > 0

(-1 + (-0.02 * y)) > 0

(-1 + (-0.025 * y)) > 0 (1 + (0.028571 * x) + (-0.028571 * y)) > 0(238 + (4 * x) + (4 * y))

(-1 + (0.04 * x) + (-0.04 * y)) > 0

(-1 + (0.04 * x) + (0.04 * y)) > 0

(-1 + (0.04 * x) + (0.04 * y)) > 0

(-1 + (0.033333 * y)) > 0

(-1 + (0.025 * y)) > 0(120 + (6 * x) + (-3 * y))

(-1 + (0.05 * y)) > 0

(-1 + (-0.033333 * y)) > 0(-1 + (-0.025 * y)) > 0

(-1 + (0.02 * y)) > 0

(-1 + (-0.025 * y)) > 0

(1 * y) > 0

(-1 + (-0.02 * y)) > 0

(-1 + (0.1 * y)) > 0

(90 + (6 * x) + (-1 * y))

(156 + (2 * x) + (2 * y))

(-1 + (-0.028571 * x) + (-0.028571 * y)) > 0

(-1 + (0.02 * y)) > 0

(-1 + (0.090909 * y) + (-0.090909 * x)) > 0

(-1 + (-1 * x)) > 0

(1 + (-0.066667 * x)) > 0(1 * y) > 0

(-1 + (-0.066666 * x) + (-0.066666 * y)) > 0

(-1 + (-0.032258 * x) + (-0.032258 * y)) > 0

(-1 + (-0.05 * y)) > 0

(-1 + (-0.033333 * y)) > 0

(-1 + (-0.05 * y)) > 0

(-1 + (-0.066666 * x) + (-0.066666 * y)) > 0

(1 + (-0.142852 * x)) > 0 (-1 + (-0.090909 * x) + (-0.090909 * y)) > 0

(-1 + (-0.090909 * x)) > 0

(240 + (6 * x) + (-6 * y))

(249 + (5 * x) + (-5 * y))(-1 + (-0.090909 * x)) > 0

(-1 + (-0.047619 * x)) > 0

(-1 + (0.1 * y)) > 0

(-1 + (-1 * x)) > 0

(-1 + (0.05 * y)) > 0

(-1 + (-0.047619 * x)) > 0

(-1 + (-0.032258 * x) + (-0.032258 * y)) > 0(-1 + (-0.02439 * x) + (-0.02439 * y)) > 0

(-1 + (0.1 * y)) > 0

(-1 + (-0.033333 * y)) > 0

(-1 + (-0.025 * y)) > 0

(1 + (-0.066667 * x)) > 0

(1 + (-0.200003 * x) + (-0.200003 * y)) > 0

V^6-000

(a) Value at 6th iteration for exact SDP.

-150
-100

-50
 0

 50
 100

 150-150
-100

-50
 0

 50
 100

 150

-100
 0

 100
 200
 300
 400
 500
 600
 700
 800

rover2D V6-5%

Y

X

-100
 0
 100
 200
 300
 400
 500
 600
 700
 800

(1 + (-0.200003 * x)) > 0

(1 + (-0.02 * y)) > 0

(1 + (-0.022222 * x) + (-0.022222 * y)) > 0

(1 + (0.02 * y)) > 0

(240 + (6 * x) + (6 * y))(19.516076 + (6.00981 * x) + (-0.089725 * y))

(1 + (0.028571 * x) + (-0.028571 * y)) > 0

(1 + (-0.02 * y)) > 0

(1 + (0.014923 * x) + (-0.014934 * y)) > 0

(1 + (-0.02 * y)) > 0

(240 + (6 * x) + (-6 * y))

(63.934582 + (-0.211699 * y) + (4.527072 * x))

(1 + (-0.02 * y)) > 0

-6

(-1 + (-0.058917 * x)) > 0

(1 + (0.047264 * x) + (-0.001177 * y)) > 0

(245.808833 + (4.087527 * x) + (-4.09004 * y))

(-1 + (-0.091041 * x)) > 0

(245.808832 + (4.087527 * x) + (4.09004 * y))

(1 + (0.02 * y)) > 0

(1 + (0.045652 * x)) > 0 (-1 + (-0.014923 * x) + (-0.014934 * y)) > 0

(-1 + (0.04 * x) + (0.04 * y)) > 0

(1 + (-0.066667 * x)) > 0

(-1 + (0.200003 * x) + (-0.200003 * y)) > 0

(1 + (-0.200003 * x) + (-0.200003 * y)) > 0

(1 + (-0.04 * x)) > 0

(1 + (0.02 * y)) > 0

(-1 + (-0.028571 * x) + (-0.028571 * y)) > 0(1 + (0.02 * y)) > 0

(1 + (-0.200003 * x)) > 0

(-1 + (0.022222 * x) + (-0.022222 * y)) > 0

(-1 + (-0.033333 * y)) > 0

(1 + (0.047264 * x) + (-0.001177 * y)) > 0

(1 * y) > 0(1 + (-0.066667 * x)) > 0

(-1 + (0.04 * x) + (0.04 * y)) > 0

V^6-050(-1 + (0.04 * x) + (-0.04 * y)) > 0

(b) Value at 6th iteration for 5% approximate SDP.

Figure 6: Value function at iteration 6 for the Mars Rover2Ddomain; (a) Exact value function; (b) Approximate value
function with error bounded 5% per iteration; (left) 3D Plots; (right) XADD Diagrams.

 0

 200

 400

 600

 800

 1000

 1200

 1 1.5 2 2.5 3 3.5 4 4.5 5

N
o

d
es

Iteration

Nodes: inventory2

eps = 0.000
eps = 0.025
eps = 0.050
eps = 0.075
eps = 0.100

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
P

er
 I

te
ra

ti
o
n

Iteration

Time: inventory2

eps = 0.000
eps = 0.025
eps = 0.050
eps = 0.075
eps = 0.100

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1 1.5 2 2.5 3 3.5 4 4.5 5

M
ax

im
um

 R
el

at
iv

e
Er

ro
r

Iteration

MaxErr: inventory2

eps = 0.025
eps = 0.050
eps = 0.075
eps = 0.100

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7

N
o

d
es

Iteration

Nodes: rover2d

eps = 0.000
eps = 0.020
eps = 0.040
eps = 0.060
eps = 0.080

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 1 2 3 4 5 6 7

T
im

e
P

er
 I

te
ra

ti
o
n

Iteration

Time: rover2d

eps = 0.000
eps = 0.020
eps = 0.040
eps = 0.060
eps = 0.080

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016
 0.018

 1 2 3 4 5 6 7

M
ax

im
um

 R
el

at
iv

e
Er

ro
r

Iteration

MaxErr: rover2d

eps = 0.020
eps = 0.040
eps = 0.060
eps = 0.080

Figure 7: Performance plots for Mars Rover2D and Inventory Control2 with 5 different relative errors (eps): (left)
Space (number of Nodes); (middle) Time (miliseconds); (right) Maximal error as fraction of the max value.

References

[1] R. Iris Bahar, Erica Frohm, Charles Gaona, Gary
Hachtel, Enrico Macii, Abelardo Pardo, and Fabio
Somenzi. Algebraic Decision Diagrams and their
applications. In IEEE /ACM International Con-
ference on CAD, 1993.

[2] Richard E. Bellman. Dynamic Programming.
Princeton University Press, Princeton, NJ, 1957.

[3] Craig Boutilier, Thomas Dean, and Steve Hanks.
Decision-theoretic planning: Structural assump-
tions and computational leverage. JAIR, 11:1–94,
1999.

[4] Justin Boyan and Michael Littman. Exact solu-
tions to time-dependent MDPs. In Advances in
Neural Information Processing Systems NIPS-00,
pages 1026–1032, 2001.

[5] John L. Bresina, Richard Dearden, Nicolas
Meuleau, Sailesh Ramkrishnan, David E. Smith,
and Richard Washington. Planning under contin-
uous time and resource uncertainty:a challenge for
ai. In Uncertainty in Artificial Intelligence (UAI-
02), 2002.

[6] Thomas Dean and Keiji Kanazawa. A model for
reasoning about persistence and causation. Com-
putational Intelligence, 5(3):142–150, 1989.

[7] Zhengzhu Feng, Richard Dearden, Nicolas
Meuleau, and Richard Washington. Dynamic pro-
gramming for structured continuous markov deci-
sion problems. In Uncertainty in Artificial Intel-
ligence (UAI-04), pages 154–161, 2004.

[8] Branislav Kveton and Milos Hauskrecht. Learn-
ing basis functions in hybrid domains. In In Pro-
ceedings of the 21st National Conference on Ar-
tificial Intelligence (AAAI-06), pages 1161–1166,
Boston, USA, 2006.

[9] Branislav Kveton, Milos Hauskrecht, and Carlos
Guestrin. Solving factored mdps with hybrid state
and action variables. Journal Artificial Intelli-
gence Research (JAIR), 27:153–201, 2006.

[10] Lihong Li and Michael L. Littman. Lazy ap-
proximation for solving continuous finite-horizon
mdps. In National Conference on Artificial Intel-
ligence AAAI-05, pages 1175–1180, 2005.

[11] Janusz Marecki, Sven Koenig, and Milind Tambe.
A fast analytical algorithm for solving markov de-
cision processes with real-valued resources. In In-
ternational Conference on Uncertainty in Artifi-
cial Intelligence IJCAI, pages 2536–2541, 2007.

[12] Nicolas Meuleau, Emmanuel Benazera, Ronen I.
Brafman, Eric A. Hansen, and Mausam. A heuris-
tic search approach to planning with continuous
resources in stochastic domains. Journal Artificial
Intelligence Research (JAIR), 34:27–59, 2009.

[13] Andrew Moore Remi Munos. Variable resolution
discretization in optimal control. Machine Learn-
ing, 49, 2–3:291–323, 2002.

[14] Scott Sanner, Karina Valdivia Delgado, and
Leliane Nunes de Barros. Symbolic dynamic pro-
gramming for discrete and continuous state mdps.
In Proceedings of the 27th Conference on Uncer-
tainty in AI (UAI-2011), Barcelona, 2011.

[15] Herbert E Scarf. Inventory theory. Operations
Research, 50(1):186–191, 2002.

[16] Robert St-Aubin, Jesse Hoey, and Craig Boutilier.
APRICODD: Approximate policy construction
using decision diagrams. In NIPS-2000, pages
1089–1095, Denver, 2000.

[17] Zahra Zamani, Scott Sanner, and Cheng Fang.
Symbolic dynamic programming for continuous
state and action mdps. In Jörg Hoffmann and
Bart Selman, editors, AAAI. AAAI Press, 2012.

