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Abstract

In this paper we present a new approach
for tightening upper bounds on the parti-
tion function. Our upper bounds are based
on fractional covering bounds on the entropy
function, and result in a concave program
to compute these bounds and a convex pro-
gram to tighten them. To solve these pro-
grams effectively for general region graphs
we utilize the entropy barrier method, thus
decomposing the original programs by their
dual programs and solve them with dual
block optimization scheme. The entropy bar-
rier method provides an elegant framework
to generalize the message-passing scheme to
high-order region graph, as well as to solve
the block dual steps in closed-form. This is
a key for computational relevancy for large
problems with thousands of regions.

1 Introduction

A large set of reasoning problems can be framed as a
set of dependency relations among possible structures.
These dependencies, usually expressed by a graph, de-
fine a joint probability function which drives an infer-
ence engine over those structures [18]. Such graph-
ical models, also known as Markov Random Fields
(MRFs), are found in a wide variety of fields and ap-
plications, including object detection [5], stereo vision
[30], parsing [19], or protein design [29], as well as
other broad disciplines which include artificial intelli-
gence, signal processing and statistical physics.

The inference problem in MRFs involves assessing
the likelihood of possible structures, whether objects,
parsers, or molecular structures. The structures are
specified by assignments of random variables, whose
scores are described in a concise manner by interac-
tions over small subsets of variables. In a fully proba-

bilistic treatment, all possible alternative assignments
are considered. However, this requires summing over
the assignments with their respective weights – eval-
uating the partition function. The partition function
has a special role which goes beyond that of assign-
ing a probability to the alternative assignments. In
addition it plays a fundamental role in various con-
texts including approximate inference [26], maximum-
likelihood parameter estimation [20] and large devi-
ation bounds [4]. Computing the partition function
requires summing over the assignments with their re-
spective weights, thus it is a #P hard problem (i.e.,
efficient weighted counting is unlikely achievable) [31].
Instead there is much focus on finding approximate
solutions and bounds [34].

In this paper we propose an iteration of concave and
convex programs, each using a primal-dual iterative
scheme, to compute increasingly tight upper bounds
on the partition function that are based on fractional
covering bounds on the entropy [6, 23]. Our work is
distinct on a couple of fronts: we handle general re-
gion graphical models, unlike previous attempts that
focus on particular graphs like bipartite forms (outer
and inner regions) or on limited size factors (like pair-
wise). Secondly, our method is based on achieving
a message-passing constellation between nodes of the
region graph thereby utilizing the local structure of
the problem. A message-passing framework, or more
generally the dual decomposition framework, is key
for computational relevancy for large problems which
contain scores of thousands of regions where the fac-
tors are defined on a relatively small number of vari-
ables (e.g., when variables correspond to a large grid
of points).

We begin by introducing the notation and the frac-
tional covering upper bounds of interest. We subse-
quently present a message-passing algorithm to com-
pute the upper bound, using dual decomposition. We
also introduce a new approach to tighten the fractional
covering upper bounds based on the entropy barrier



function and dual block optimization, and demon-
strate the effectiveness of the approach.

2 Notations, Problem Setup and
Background

Let x = (x1, ..., xn) be the realizations of n discrete
random variables where the range of the i′th random
variable is {1, ..., ni}, i.e., xi ∈ {1, ..., ni}. We consider
a joint distribution p(x1, ..., xn) and assume that it fac-
tors into a product of non-negative functions ψr(xr),
known as potentials. Usually, the potentials are de-
fined over a small subset of indexes r ⊂ {1, ..., n},
called regions:

p(x1, ..., xn) =
1

Z

∏
r∈R

ψr(xr)

where for singletons, i.e. |r| = 1, the functions ψr(xr)
represent ”local evidence” or prior data on the states of
xi, and for |r| > 1 the potential functions describe the
interactions of their variables xr ⊂ {x1, ..., xn}, and Z
is the normalization constant, also called the partition
function. For convenience, we adopt the additive form
by setting φr(xr) = lnψr(xr) thereby having the joint
probability take the form of a Gibbs distribution:

p(x1, , xn) = e
∑

r∈R φr(xr)−lnZ

For example, p(x1, x2, x3) ∝ exp(φ2(x2) +
φ123(x1, x2, x3) + φ23(x2, x3)) has three factors
with regions R = {2}, {1, 2, 3}, {2, 3}. The factor-
ization structure above defines a hypergraph whose
nodes represent the n random variables, and the
regions r ∈ R correspond to its hyperedges. A
convenient way to represent this hypergraph is by
a region graph. A region graph is a directed graph
whose nodes represent the regions and its direct edges
correspond to the inclusion relation, i.e., a directed
edge from node r to s is possible only if s ⊂ r. We
adopt the terminology where P (r) and C(r) stand for
all nodes that are parents and children of the node
r, respectively. Also, we define Ri to be the set of
regions which contains the variable i.

Inference is closely coupled with the ability to evaluate
the logarithm of the partition function lnZ. From a
variational perspective, there is a relationship between
the (minus) Gibbs-Helmholtz free-energy and lnZ:

lnZ = max
p(x) ≥ 0,∑
x p(x) = 1

{∑
r∈R

∑
xr

p(xr)φr(xr) +H(p)
}

(1)

where p(xr) =
∑
x\xr

p(x) is the marginal probability

and H(p) = −
∑
x p(x) ln p(x) is the entropy of the

distribution. However, the complexity of the varia-
tional representation is unwieldy because both the en-
tropy and the simplex constraint require an evaluation

over all possible states of the system x = (x1, ..., xn),
which is exponential in n. Instead one looks for an ap-
proximation or bounds. An upper bound is designed
with a tractable approximation of the free-energy by
(i) upper bounding the entropy term H(p) by a com-
bination of local entropies over marginal probabilities
p(xr), and (ii) by outer bounding the probability sim-
plex constraints by the so called ”local consistency”
constraints.

An upper bound on the entropy function H(p) pro-
ceeds by replacing the entropy by the fractional cov-
ering entropy bounds [6, 23]. These upper bounds are
defined as sum of local entropies over the marginal
probabilities H(p(xr)) = −

∑
xr
p(xr) ln p(xr):

H(p) ≤
∑
r∈R

crH(p(xr))

These upper bounds hold whenever cr ≥ 0 and for ev-
ery i = 1, ..., n there holds

∑
r∈Ri

cr = 1, where Ri
is the set of all regions that contain i. The second
step in obtaining an efficient upper bound is replacing
the marginal distributions p(xr) by ”beliefs” br(xr).
The beliefs form ”pseudo distributions” in the sense
that the beliefs might not necessarily arise as marginal
probabilities of some distribution p(x1, ..., xn). To
maintain local consistency between beliefs which share
the same variables, we define the local consistency poly-
tope L(G) for the region graph G, as follows:

L(G) =

{br}r∈R :

∑
xs\xr

bs(xs) = br(xr) ∀r, s ∈ P (r)

br ≥ 0,
∑
xr
br(xr) = 1 ∀r ∈ R

For example, assume R consists of the three fac-
tors {1}, {1, 2}, {1, 3} then the consistency con-
straints on the beliefs b1(x1), b1,2(x1, x2), b1,3(x1, x3)
enforce their distribution constraints and marginal-
ization constraints

∑
x3
b1,3(x1, x3) = b1(x1) and∑

x2
b1,2(x1, x2) = b1(x1).

Taken together, the upper bound on the log-partition
is defined as follows:

lnZ ≤ max
br(xr)∈L(G)

{∑
r,xr

br(xr)φr(xr) +
∑
r

crH(br)
}

(2)

Thus we introduce a family of upper bounds for the
partition function, for the set of fractional covering
numbers cr. The computational complexity of these
upper bounds is no longer exponential in n, but lin-
ear in the number of the regions and the number of
assignments in each region.



Computing the fractional covering upper bound: Given potential functions φr(xr), and nonnegative
covering numbers cr. Set cp,r = cp/(cr +

∑
p′∈P (r) cp′). for every initial values of messages λc→p(xc):

1. For t = 1, 2, ...

(a) For r ∈ R do:

∀xr,∀p ∈ P (r) µp→r(xr) = cp log
( ∑
xp\xr

exp
(

(φp(xp) +
∑

c∈C(p)\r

λc→p(xc)−
∑

p′∈P (p)

λp→p′(xp))
/
cp

))
∀xr,∀p ∈ P (r) λr→p(xr) = cp,r

(
φr(xr) +

∑
c∈C(r)

λc→r(xc) +
∑

p′∈P (r)

µp′→r(xr)
)
− µp→r(xr)

2. Output:

(beliefs) ∀r ∈ R cr 6= 0 : b∗r(xr) ∝ exp
(

(φr(xr) +
∑

c∈C(r)

λc→r(xc)−
∑

p∈P (r)

λr→p(xr))
/
cr

)
∀r ∈ R cr = 0 : support(b∗r) ⊂ argmaxxr

{φr(xr) +
∑

c∈C(r)

λc→r(xc)−
∑

p∈P (r)

λr→p(xr)}

(bound)
∑
r,xr

b∗r(xr)φr(xr) +
∑
r

crH(b∗r)

Figure 1: The fractional covering upper bound appears in equation (2). The support of the beliefs are their
non-zero entries, and when cr = 0 it corresponds to the max-beliefs. When considering bipartite region graphs,
this algorithm reduces to many of the previous message-passing algorithms, see Section 6.

3 Computing High-Order Upper
Bounds

In the following we develop an efficient message-
passing method to compute the region based upper
bounds and their optimal beliefs br(xr), for fixed value
of covering numbers cr, as described in equation (2).
These upper bounds depend on the non-negative frac-
tional covering numbers, therefore correspond to max-
imizing a concave function subject to convex con-
straints. Such concave programs can be solved by
minimizing their dual convex programs. Neverthe-
less, there are potentially many different convex dual
programs, depending on the set of constraints, or La-
grange multipliers, one aims at satisfying. We realize
that the probability simplex constraints for br(xr) are
easier to satisfy, therefore we derive a dual program
which ignores these constraints. For this purpose we
use the entropy function as a barrier function over the
probability simplex.

Theorem 1. Define the entropy as a barrier function
over the probability simplex,

H(br) =

{
−
∑
xr
br(xr) log br(xr) if br ∈ ∆

−∞ otherwise

where br ∈ ∆ if br(xr) ≥ 0 and
∑
xr
br(xr) = 1. The

fractional covering numbers in equation (2) are non-
negative, thus the bound is a concave function and its

dual function takes the form

D(λ) =
∑
r

cr log
(∑
xr

exp(φ̂r(xr)/cr)
)

where

φ̂r(xr) = φr(xr) +
∑

c∈C(r)

λc→r(xc)−
∑

p∈P (r)

λr→p(xr)

In particular, strong duality holds and the primal op-
timal solution can be derived from the dual optimal
solution

br(xr) ∝ exp
(
φ̂r(xr)

/
cr

)
Whenever cr = 0 the corresponding primal optimal so-
lution br(xr) corresponds to the max-beliefs, i.e., prob-
ability distributions over the maximal arguments of
φ̂r(xr).

Proof: Since we use the entropy as a barrier function
over the probability simplex we only need to apply
Lagrange multipliers λr→p(xr) for the marginalization
constraints br(xr) =

∑
xp\xr

bp(xp) for every region

r ∈ R, every assignment xr and every parent p ∈ P (r).
Therefore the Lagrangian takes the form

L(br, λc→p) =
∑
r,xr

br(xr)φr(xr) +
∑
r

crH(br)

+
∑

r, xr, p∈P (r)

λr→p(xr)
( ∑
xp\xr

bp(xp)− br(xr)
)



The dual function is recovered by maximizing the be-
liefs br(xr) in the Lagrangian. Thus

D(λ) =
∑
r

max
br
{
∑
xr

br(xr)φ̂r(xr) + crH(br)}

=
∑
r

cr max
br
{
∑
xr

br(xr)(φ̂r(xr)/cr) +H(br)}

The maximization over the beliefs in the Lagrangian
is done while satisfying the probability simplex con-
straint as they are encoded in the domain of the en-
tropy function. The result follows from the duality
between the entropy barrier function over the proba-
bility simplex and the log-partition function, c.f. equa-
tion (1). Strong duality holds using Theorem 6.2.5 in
[1]. The primal optimal solution is derived from the
dual optimal solution as the primal arguments that
maximize the Lagrangian.

The theorem above uses the conjugate duality between
the entropy barrier function, weighted by the non-
negative number cr, and the weighted extension of
the log-partition. The weighted log-partition is called
the soft-max function and it is used as a smooth ap-
proximation for the max function whenever cr → 0.
In particular, when cr = 0 the soft-max function re-
duces to the max-function, and Theorem 1 demon-
strates the known conjugate duality between the in-
dicator function over the probability simplex and the
max-function.

One of the most important properties of the dual func-
tion is that it decomposes the constraints set, a fea-
ture that is typically called dual decomposition. In
Theorem 1 every dual variable λc→p(xc) represents a
marginalization constraint

∑
xp\xc

bp(xp) = bc(xc) in
the primal. Therefore optimizing a single dual variable
amounts to solving the primal problem with a single
constraint. Therefore, the dual coordinate descent al-
gorithm decomposes the primal problem complexity
to smaller sub-problems, while the dual function en-
codes the consistency between the sub-problems solu-
tions. Moreover, since the marginalization constraints
encode the graphical model, performing block coor-
dinate descent results in sending messages along the
edges of the region graph, thus we are able to cope
with large-scale and high-order graphical models.

Theorem 2. Block coordinate descent on the dual in
Theorem 1 takes the form: For every region r ∈ R

∀xr,∀p ∈ P (r)

µp→r(xr) = cp log
( ∑
xp\xr

exp(φp,r(xp)/cp)
)

λr→p(xr) = cp,r

(
φr(xr) +

∑
c∈C(r)

λc→r(xc) +
∑

p′∈P (r)

µp′→r(xr)
)

−µp→r(xr)

where cp,r = cp/(cr +
∑
p′∈P (r) cp′) and φp,r(xp) =

φp(xp)+
∑
c∈C(p)\r λc→p(xc)−

∑
p′∈P (p) λp→p′(xp). If

a region covering number in the dual objective equals
zero, i.e., cr = 0, then the block coordinate descent
update rules for this region hold for every non-negative
cr.

Proof: The gradient equals to

∂D

∂λr→p(xr)
=
∑
xp\xr

bp(xp)− br(xr)

where the probability distributions br(xr), bp(xp) are

proportional to exp(φ̂(xr)/cr) and exp(φ̂(xp)/cp) re-

spectively while φ̂ is defined in Theorem 1. Whenever
cr or cp are zero, their respective (sub)gradients are
their max-beliefs or equivalently probability distribu-
tions over their maximal arguments of φ̂, c.f., Danskin
theorem [1].

The optimal dual variables are those for which
∂D/∂λr→p(xr) = 0, i.e., the corresponding beliefs
agree on their marginal probabilities. When set-
ting µp→r(xr) as above, the marginalization of bp(xp)
equals∑

xp\xr

bp(xp) ∝ exp
(

(µp→r(xr) + λr→p(xr))/cp

)
Therefore, by taking the logarithm, the gradient van-
ishes whenever the beliefs numerators agree up to an
additive constant

µp→r(xr) + λr→p(xr)

cp
=
φ′r(xr)−

∑
p∈P (r) λr→p(xr)

cr
(3)

where φ′r(xr) = φr(xr) +
∑
c∈C(r) λc→r(xc). Multiply-

ing both sides by crcp and summing both sides with
respect to p′ ∈ P (r) we are able to obtain∑
p′∈P (r)

λr→p′(xr) = cp,r

(
φ′r(xr) +

∑
p′∈P (r)

µp′→r(xr))
)

Plugin it into equation (3) results in the desired block
dual descent update rule, i.e., λr→p(xr) for which the
partial derivatives vanish.

For convenience, the explicit update rules also appear
in Fig. 1. The above theorem provides a closed-form
solution for block coordinate descent on the dual ob-
jective. Since the dual values are always lower bounded
by the primal values, this algorithm is guaranteed to
converge. However, the dual objective is not strictly
convex therefore, a-priori, coordinate descent might
not converge to the optimal solution [27]. Neverthe-
less, our proof technique demonstrates the dual-primal
relation of dual coordinate descent, as throughout its
runtime it generates a sequence of primal variables,



namely the beliefs, which agree on their marginal prob-
abilities. In the following we describe the conditions
for which we can recover the primal optimal and dual
optimal solutions.

Theorem 3. The dual block descent algorithm in The-
orem 2 is guaranteed to converge whenever cr are non-
negative. Moreover, if cr > 0 the dual block descent
algorithm converges to the dual optimal value, and the
beliefs br(xr) that are generated throughout the algo-
rithm runtime converge to the primal optimal solution
; whenever its dual sequence is bounded every of its
limit points is an optimal dual solution.

Proof: See supplementary material.

The above theorem does not constrain the dual vari-
ables, namely the messages. Specifically, although the
dual value is guaranteed to converge to the optimum,
the messages are not guaranteed to be bounded. This
may happen since the dual function is not strictly con-
vex, and the messages can be updated along an un-
bounded plateau that does not reduce the dual objec-
tive. The above result can be extended to guarantee
optimality even if cr > 0 only for the maximal regions,
i.e., regions that are not contained by other regions.
However, this result is mathematically involved as it
does not correspond anymore to Bregman divergences
and it is beyond the scope of this work.

The algorithm in Theorem 2 has an important mean-
ing even when the primal function is not concave.
In this case we lose all convergence guarantees, but
the algorithm represents the Lagrangian saddle points.
Therefore, whenever the algorithm converges it reaches
a local maximum of the primal program.

Theorem 4. Assume the program in equation (2) has
mixed numbers cr ≷ 0. Then this program is not con-
cave and the algorithm in Theorem 2 is not guaranteed
to converge, but whenever it converges it reaches a sta-
tionary point for this program.

Proof: See Supplementary material.

The saddle point theorem does not consider programs
for which the covering numbers can be zero, since in
these cases we cannot uniquely restrict the beliefs.
Nevertheless, this theorem applies to many impor-
tant cases, such as the Bethe entropy and the tree
reweighed entropies. In these cases, the negative coef-
ficients for variables ci = 1−

∑
α⊃i cα, where α are the

non-singleton regions, play an important role. Specif-
ically, the Bethe entropy provides an exact character-
ization for the entropy function over tree models, and
the tree-reweighted entropy provides tighter bounds
than the fractional covering bounds when restricting
the fractional coverings to pairwise entropies. Unfor-
tunately, the message-passing algorithm is not guaran-

teed to converge in these cases but the theorem above
proves that when it converges it reaches a (local) max-
imum of the model.

4 Tightening High-Order Upper
Bounds

Up to this point, the fractional covering numbers cr
were held fixed, while we computed the upper bound
for the partition function that is described in equation
(2). We now consider how to find the optimal covering
numbers which minimize the upper bound, while as-
suming we are able to compute the upper bound and
its optimal arguments efficiently as described in Fig.
1. First we state some of the properties of these up-
per bounds as a function of their fractional covering
numbers:

Theorem 5. (Danskin Theorem) Denote the log-
partition upper bound by

U(c) = max
br(xr)∈L(G)

{∑
r,xr

br(xr)φr(xr) +
∑
r

crH(br)
}

Assume cr ≥ 0 and that the maximal regions cover-
ing numbers are positive. Then U(c) is a convex and
differentiable function, and its partial derivatives are

∂U

∂cr
= H(b∗r)

where

b∗r(xr) = argmax
br(xr)∈L(G)

{∑
r,xr

br(xr)φr(xr) +
∑
r

crH(br)
}

Proof: This is a special case of Danskin theorem, since
L(G) is a compact set. [1]

To find the minimal upper bound on the partition
function we need to minimize a convex and differen-
tiable function over the convex set of fractional cover-
ing.

min
cr≥0,

∑
r∈Ri

cr=1
U(c)

Minimizing a convex function over a convex set is typ-
ically done using the conditional gradient method, for
which one finds a direction of descent while respect-
ing the fractional covering constraints [2]. Finding the
direction of descent amounts to solving the linear pro-
gram

d = argmin
cr≥0,

∑
r∈Ri

cr=1

∑
r

crH(b∗r) (4)

The direction of descent is always attained, since
it is the minimal argument of a continuous func-
tion over a compact set. However, when considering



Tightening the fractional covering upper bound: Given functions φi(ri). For every initial values of λi(r):

1. For t = 1, 2, ...

(a) For r ∈ R do:

∀i ∈ r λi(r) = ε log
(∑
ri 6=r

exp
(

(φi(ri) + λi(ri)
/
ε
))
− φi(r)

additively normalize λi(r) such that
∑
i∈r

λi(r) = 0

2. Output: ∀i, set qi(ri) ∝ exp
(

(φi(ri) + λi(ri))
/
ε
)

and ∀r set cr = qi(r), for any of i ∈ r.

Figure 2: The dual decomposition algorithm for recovering the direction of descent, described in equation (4).
This algorithm can be seen as message-passing by reformulating the indexes λi(r) ↔ λi→r. This demonstrates
the differences between our two algorithms. The similarity between the two algorithms is a consequence of the
block dual steps and the use of the entropy barrier method.

large-scale problems, this linear program cannot be
efficiently solved using standard linear programming
solvers. For example, the simplex algorithms or inte-
rior point methods typically involve inverting the con-
straints matrix, an operation that cannot be done effi-
ciently when dealing with graphical models that con-
sist of millions of regions.

In this section we develop a new type of efficient lin-
ear programming solver for finding the minimal up-
per bound. Importantly, we cannot use the message-
passing solvers in Section 3 to minimize these upper
bounds, since the objective as well as the constraint
sets in equation (4) are significantly different. How-
ever, we are able to construct efficient solvers while
using the entropy barrier function in a similar manner.
This emphasizes the computational importance of the
entropy barrier function, since it results in closed-form
update rules which turn to be crucial for large-scale
linear programs.

The constraints of the linear program in equation (4)
restrict the covering numbers (cr)r∈Ri

to the proba-
bility simplex. In order to use dual decomposition
effectively, we need to decouple these simplex con-
straints, such that they restrict separate distributions.
Therefore we inflate the covering numbers cr to non-
overlapping probability distribution qi(ri) for every
i = 1, ..., n, while enforcing these distributions to
agree, namely qi(r) = qr for every i ∈ r. One can
verify that these constraints are equivalent to the con-
straints over cr in equation (4). Thus we reformulate
the linear program in equation (4) as

argmin
∀i qi is probability
∀i ∈ r qi(r) = qr

∑
i,ri

qi(ri)
(
H(b∗ri)/|ri|

)

For computational efficiency we solve the above linear
program by dual block ascent. Unfortunately, dual
coordinate ascent may be sub-optimal when the dual
program is not smooth, or equivalently the primal pro-
gram is not strictly convex. Therefore we use the
entropy barrier method to make the primal program
strictly convex, which results in a smooth dual pro-
gram. The following theorem shows that using the
barrier method does not affect the quality of the solu-
tion.

Theorem 6. Let φi(ri) = H(b∗ri)/|ri| and consider
the linear program for finding the direction of descent

min
∀i qi is probability
∀i ∈ r qi(r) = qr

∑
i,ri

qi(ri)φi(ri)

Then the primal-dual programs

(primal)

min
∀i qi is probability
∀i ∈ r qi(r) = qr

∑
i,ri

qi(ri)φi(ri)− ε
∑
i

H(qi)

(dual)

max∑
i∈r λi(r)=0

ε
∑
i

log
(∑

ri

exp
(

(φi(ri) + λi(ri))
/
ε
))

are δ−approximations of the original linear program,
where δ =

∑
i ε log |ri|

Proof: The entropy H(qi) is a non-negative measure,
thus the primal program lower bounds the original lin-
ear program. The bound holds since H(qi) ≤ log |ri|.
The dual program is also a δ−approximation since
strong duality holds.

Having a smooth dual program which relates to a
strictly convex primal program, we can perform dual



block ascent to reach their optimum. Using the en-
tropy barrier function enables us to derive a closed-
form update rules.

Theorem 7. Consider the primal and dual programs
in Theorem 6. Then the block dual ascent takes the
form

∀r, ∀i ∈ r

λi(r) = ε log
(∑
ri 6=r

exp
(

(φi(ri) + λi(ri)
/
ε
))
− φi(r)

additively normalize λi(r) such that
∑
i∈r

λi(r) = 0

Also, block dual ascent is guaranteed to converge to the
dual optimum, the probabilities qi(ri) that are gener-
ated throughout the algorithm runtime converge to the
primal optimal point and whenever the dual sequence
is bounded it is guaranteed to converge to an optimal
dual solution.

Proof: See supplementary material.

For convenience, the algorithm appears in its explicit
form in Fig. 2. The above block dual ascent algo-
rithm can be seen as message-passing, where messages
are sent between regions and variables, λi(r)↔ λi→r.
This demonstrates the differences between our two al-
gorithms, where the first sends two types of real-valued
vectors λc→p(xc), µp→c(xc) along the edges of the re-
gions graph, and the second sends a real number λi→r
between variables and regions. The similarity between
the two algorithms is a consequence of the block dual
steps and the entropy barrier function.

5 Empirical Evaluation

In our experiments we first compared our message-
passing algorithm for computing the fractional cover-
ing upper bound in equation (2) with the current state-
of-the-art solver [12]. We compared these algorithms
on the grid shape spin glass model. A spin glass model
consists of n spins x1, ..., xn ∈ {−1, 1}, whose local po-
tentials are φi(xi) = θixi and its pairwise potentials
are φi,j(xi, xj) = θi,jxixj . The field parameters θi
were chosen uniformly at random from [−0.05, 0.05]
and the coupling parameters θi,j were chosen uni-
formly at random from [−1, 1]. We used the same
covering numbers for all edges and squares in the grid,
setting ci,j = ci,j,k,l = 1/9 and ci = 1 −

∑
r∈Ri\i cr.

Therefore we satisfy the covering number constraints,
cr ≥ 0 and

∑
r∈Ri

cr = 1. Our algorithm described
in Fig. 1 used a region graph which connects squares
to pairs and pairs to singletons, namely the Hesse di-
agram. [12] use a bipartite inner-outer region graph,
for which all outer regions, i.e., squares, are connected
to all inner regions, i.e., pairs and singletons. We used
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Figure 3: Comparing our message-passing algorithm
for computing the fractional covering upper bound in
Section 3 with [12]. Comparison is for 5 × 5,...,
100×100 grid shape spin glass models, with singletons,
pairs and squares regions. Our approach can utilize in-
termediate size message, between pairs and singletons,
while [12] use the inner-outer region graph, thus send-
ing square based messages in every iteration.

the same Matlab code, on a single core of Intel I5 with
8GB RAM, for both algorithm as our algorithm can
be applied to bipartite region graphs as well. We com-
pared both methods on 5×5 ,..., 100×100 grids and the
stopping criteria was a primal-dual gap of 10−4. Fig.
3 shows that passing messages over the Hesse-diagram
is better than working over the bipartite inner-outer
region graph, and the gap between these methods is
significant for large graphical models. We attribute
this behavior to the fact that on the Hesse diagram
we can pass many messages between pairs and sin-
gletons, while using time consuming square messages
only when they are needed. In contrast [12] use square
messages in every message-passing iteration.

In our experiments we also compared our dual decom-
position algorithm for recovering the direction of de-
scent over the fractional covering numbers in the tight-
ening procedure, as described in Fig. 2. In this experi-
ment we used the singletons, pairs and squares regions
that correspond to the grid shape graphs. We used
φi(ri) = H(b∗r)/|r|, where b∗r(xr) were the optimal be-
liefs in our previous experiments. The results in Fig. 4
show that the state-of-the-art off-the-shelf solver, the
CPLEX, is good for small scale problems but signif-
icantly worse when applied to large scale graphical
models. We note that our implementation is in Mat-
lab, which has a significant overhead when applied to
small scale problems.
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Figure 4: Comparing our dual decomposition algorithm
for recovering the direction of descent over fractional
covering numbers in Section 4 with the CPLEX algo-
rithm. Comparison is for singletons, pairs and squares
regions that correspond to 5×5,..., 100×100 grid shape
graphs.

Tightening the fractional covering upper bounds can
be applied to general region graphs. However, we can-
not compare our approach on high-order region graph,
as all previous approaches are efficient only when the
regions consist of at most pairs of indexes. There-
fore we compared our approach to tightening tree
reweighed upper bounds [32] implemented by [14]. In
our experiments we used the grid shaped spin glass
model with local field parameters θi ∈ [−0.05, 0.05]
and mixed coupling potentials θi,j ∈ [−c, c] that ranges
over c = 0, ..., 2. Our tightening algorithm used single-
tons, pairs and squares regions. The results appear in
Fig. 5 showing that going to high-order regions graphs
provides tighter upper bounds.

6 Related Work

In this work we investigate upper bounds on the par-
tition function over regions graphs. For this purpose
we use the known fractional covering upper bounds for
the entropy function [6, 23]. We applied these bound
to the partition function through conjugate duality.

Tightening upper bounds for the partition function re-
sults in two programs: A concave program for com-
puting the upper bounds and a convex program which
tightens these bounds. The field of convex (or con-
cave) optimization is large and contains many differ-
ent solvers. However, most of these solvers cannot
be applied efficiently to our problems, since they ig-
nore their structures [3, 1]. Our work differs from
these works in an important respect, as we exploit the

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

45

Coupling Strength

Er
ro

r i
n 

U
pp

er
 B

ou
nd

 

 

TRBP with tightening
Our Bound with tightening

Figure 5: Comparing tightening tree-reweighted bounds
with fractional covering bounds over grid shaped
graphs. Our approach can use covering numbers of
high-order regions therefore achieves better bounds.

structure of the problem, decomposing the constraints
through the dual program and then performing effi-
cient closed-form steps in every iteration. This block
coordinate steps in the dual enable us to efficiently
deal with large-scale problems.

Upper bounds on the partition function were exten-
sively studied in the last decade. [32] presents upper
bounds for graphical models that are based on span-
ning trees, as well as a method to tighten these bounds
using conditional gradient descent. The conditional
gradient is recovered by looking for a maximal span-
ning tree in the graphical model. The upper bound for
the graphical model is computed by a message-passing
algorithm called sum-TRBP, a method that extends to
region graphs [35]. This work differs from ours in im-
portant respects: First, the spanning tree method best
fits graph and encounters computational difficulties
when dealing with hypergraphs, or equivalently region
graphs. Working with region graphs, their conditional
gradient method looks for a spanning hypertree, which
is a NP-hard problem [17]. This problem was already
pointed out in [32] and motivates this work. Thus in
our work we suggest to use the known fractional cov-
ering upper bounds over regions graphs [6, 23], and
we compute the conditional gradient through dual de-
composition and the entropy barrier method. Second,
the sum-TRBP and its high-order extension compute
a bound that has covering numbers with mixed signs.
Thus the sum-TRBP is not guaranteed to converge.
In contrast our work considers bounds that have only
positive covering numbers, thus our bound computa-
tion is guaranteed to converge to the optimum. We



note that there are other algorithms that fix the con-
vergence of sum-TRBP, but these algorithms cannot
be applied to high-order regions graphs [9, 11].

Convexity provides a well established framework to ex-
tend the spanning trees upper bounds to other com-
binatorial objects. [8] describe upper bounds based
on planar decomposition. Since planarity is a prop-
erty of pairwise regions this work does not extend to
general region graphs. In contrast, our work presents
efficient bounds and tightening for high-order region
graphs. [7] provide a family of upper bounds that are
based on conditional entropy decompositions. These
upper bounds can be applied to high-order region
graphs. However, this work differs from ours in im-
portant respects: First, to compute the bound they
directly solved the primal program. Since the primal
program consists of conditional entropies, which are
not strictly concave, they used a conditional gradient
solver which is suboptimal when addressing large scale
region graphs. A subsequent work presented the corre-
sponding message-passing solver, but it was restricted
to pairwise regions [9]. In contrast, our work intro-
duces the fractional covering entropy bounds which are
strictly concave, thus providing an efficient dual de-
composition solver through message-passing over the
region graph. Second, their tightening approach con-
siders all conditional entropies sequences, thus they
are restricted to a small number of sequences. In con-
trast, our work provides an efficient dual decomposi-
tion algorithm to tighten the bound over all fractional
covering numbers. [21] introduce a new approach for
conditional entropy decomposition, which allows to
use more sequences through a mini-bucket elimination
method. However, this approach suffers from similar
drawbacks as [7] when applied to region graphs.

In Fig. 1 we present a message-passing algorithm to
compute upper bounds on the partition function in
high-order graphical models. This algorithm can be
applied to general programs, consisting of sums of lin-
ear terms and entropy terms. In the last decade many
different message-passing algorithms were devised for
similar programs. Assuming all regions intersect on
at most one variable, our algorithm has two types of
messages, λi→α(xi) and µα→i(xi), and it reduces to
the norm-product belief propagation, which includes
as special cases both sum-product and max-product,
tree-reweighted belief propagation, NMPLP and the
asynchronous splitting algorithm for different values
of ci, cα [26, 32, 33, 10, 28]. However, the main pur-
pose of our algorithm is high-order region graphs. In
this perspective, when the region graph is a bipartite
graph that contains outer-inner regions, our algorithm
reduces the parent-to-child generalized belief propa-
gation algorithm [36, 16, 13], and its convex forms

[12, 24]. These works differ from ours in an impor-
tant respect, as they consider a bipartite region graph
which is computationally demanding since it uses the
maximal regions in every iterations. In contrast, our
algorithm considers a general region graph, thus en-
ables to pass messages between intermediate size re-
gions to gain computational efficiency.

7 Conclusions and Discussion

In our work we describe methods to tighten upper
bounds on the partition function over general region
graphs. These upper bounds use the fractional cover-
ing bounds on the entropy function. We introduced
two dual decomposition algorithms, for computing the
upper bound and to minimize the upper bound. Both
algorithms use the entropy barrier function to obtain
a closed-form block dual steps that optimize their re-
spective dual programs.

To compute the upper bound we solve a concave pro-
gram, consisting of linear terms and entropy terms.
Our solver passes messages along the edges of the re-
gion graph that describe these terms. The computa-
tional complexity of this solver depends on the struc-
ture of the region graph. It turns out that there are
many different region graphs, such as the inner-outer
graph or the Hesse diagram that describe the same pro-
gram [12, 36]. Although some works reasoned about
the optimal graph, this problem is largely open [25].

Interestingly, the message-passing algorithm for com-
puting the upper bound sends partial log-partition
functions µp→c(xc) weighted by the covering num-
ber cr. In particular, when cr = 1 it sends a sum-
product based message and when cr = 0 is sends a
max-product based messages. The form of these mes-
sages is determined by the covering number, and their
primal interpretation relates to the weight cr of the
corresponding entropy function. For example, when-
ever no entropy terms are used, i.e., we use the algo-
rithm for solving linear program relaxations, we only
use max-product based operations and our algorithm
contains the max-product, max-TRBP, NMPLP and
convex max-product as special cases. In this perspec-
tive we could have used this algorithm to tighten lin-
ear program relaxations, but this problem was solved
by [29]. Surprisingly, using fractional covering upper
bounds while some of the covering numbers equal zero,
we get a mixture of sum-product and max-product
rules. This is a result of having sum of entropy and
non-entropy terms in the primal. This goes against
the common practice that mixing max-product and
sum-product rules relates to the marginal-MAP solu-
tion [18, 22, 15]. The relations and differences between
these two problems are subject to further research.
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