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Abstract

A determinantal point process (DPP) is a random
process useful for modeling the combinatorial
problem of subset selection. In particular, DPPs
encourage a random subset Y to contain a diverse
set of items selected from a base set Y . For ex-
ample, we might use a DPP to display a set of
news headlines that are relevant to a user’s inter-
ests while covering a variety of topics. Suppose,
however, that we are asked to sequentially se-
lect multiple diverse sets of items, for example,
displaying new headlines day-by-day. We might
want these sets to be diverse not just individually
but also through time, offering headlines today
that are unlike the ones shown yesterday. In this
paper, we construct a Markov DPP (M-DPP) that
models a sequence of random sets {Y t}. The
proposed M-DPP defines a stationary process that
maintains DPP margins. Crucially, the induced
union process Zt ≡ Y t∪Y t−1 is also marginally
DPP-distributed. Jointly, these properties imply
that the sequence of random sets are encouraged
to be diverse both at a given time step as well as
across time steps. We describe an exact, efficient
sampling procedure, and a method for incremen-
tally learning a quality measure over items in the
base set Y based on external preferences. We
apply the M-DPP to the task of sequentially dis-
playing diverse and relevant news articles to a
user with topic preferences.

1 INTRODUCTION

Consider the combinatorial problem of subset selection. Bi-
nary Markov random fields are commonly applied in this
setting, and in the case of positive correlations, yield subsets
that favor similar items. However, in many applications
there is naturally a sense of repulsion. For example, re-
pulsive processes arise in nature—trees tend to grow in
the least occupied space (Neeff et al., 2005), and ant hill

locations are likewise over-dispersed relative to uniform
placement (Bernstein and Gobbel, 1979). Likewise, many
practical tasks can be posed in terms of diverse subset selec-
tion. For example, one might want to select a set of frames
from a movie that are representative of its content. Clearly,
diversity is preferable to avoid redundancy; likewise, each
frame should be of high quality. A motivating example we
consider throughout the paper is the task of selecting a di-
verse yet relevant set of news headlines to display to a user.
One could imagine employing binary Markov random fields
with negative correlations, but such models often involve
notoriously intractable inference problems.

Determinantal point processes (DPPs), which arise in ran-
dom matrix theory (Mehta and Gaudin, 1960; Ginibre, 1965)
and quantum physics (Macchi, 1975), are a class of repul-
sive processes and are natural models for subset selection
problems where diversity is preferred. DPPs define the
probability of a subset in terms of the determinant of a
kernel submatrix, and with an appropriate definition of the
kernel matrix they can be interpreted as inherently balanc-
ing quality and diversity. DPPs are appealing in practice
since they offer interpretability and tractable algorithms for
exact inference. For example, one can compute marginal
and conditional probabilities and perform exact sampling.
DPPs have recently been employed for human pose estima-
tion, search diversification, and document summarization
(Kulesza and Taskar, 2010, 2011a,b).

In this paper, our focus is instead on modeling diverse se-
quences of subsets. For example, in displaying news head-
lines from day to day, one aims to select articles that are
relevant and diverse on any given day. Additionally, it is
desirable to select articles that are diverse relative to those
previously shown. We construct a Markov DPP (M-DPP)
for a sequence of random sets {Y t}. The proposed M-DPP
defines a stationary process that maintains DPP margins,
implying that Y t is encouraged to be diverse at time t. Cru-
cially, the induced union process Zt ≡ Y t ∪ Y t−1 is also
marginally DPP-distributed. Since this property implies the
diversity of Zt, in addition to the individual diversity of
Y t and Y t−1, we conclude that Y t is diverse from Y t−1.
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Figure 1: A set of points on a line (y axis) drawn from
a DPP independently over time (left) and from a M-DPP
(right). While DPP points are diverse only within time steps
(columns), M-DPP points are also diverse across time steps.

For an illustration of the improved overall diversity when
sampling from a M-DPP rather than independent sequential
sampling from a DPP, see Fig. 1.

Our specific construction of the M-DPP yields an exact
sampling procedure that can be performed in polynomial
time. Additionally, we explore a method for incrementally
learning the quality of each item in the base set Y based
on externally provided preferences. In particular, a decom-
position of the DPP kernel matrix has an interpretation as
defining the quality of each item and pairwise similarities
between items. Our incremental learning procedure assumes
a well-defined similarity metric and aims to learn features
of items that a user deems as preferable. These features are
used to define the quality scores for each item. The M-DPP
aids in the exploration of items of interest to the user by
providing sequentially diverse results.

We study the empirical behavior of the M-DPP on a news
task where the goal is to display diverse and high quality
articles. Compared to choosing articles based on quality
alone or to sampling from an independent DPP at each time
step, we show that the M-DPP produces articles that are
significantly more diverse across time steps without large
sacrifices in quality. Furthermore, within a time step the
M-DPP chooses articles with diversity comparable to that
of the independent DPP; this is a direct result of the fact
that the M-DPP maintains DPP margins. We also consider
learning the quality function over time from the feedback
of a user with topic preferences. In this setting, the M-DPP
returns high quality results that are preferred by the user
while simultaneously exploring the topic space more quickly
than baseline methods, leading to improved coverage.

2 DETERMINANTAL POINT
PROCESSES

A random point process P on a discrete base set Y =
{1, . . . , N} is a probability measure on the set 2Y of all
subsets of Y . Let K be a semidefinite matrix with rows
and columns indexed by the elements of Y . P is called a
determinantal point process (DPP) if there exists K � I
(all eigenvalues less than or equal to 1) such that if Y is a

random set drawn according to P , then for every A ⊆ Y:

P(Y ⊇ A) = det(KA) . (1)

Here, KA ≡ [KA]i,j∈A denotes the submatrix of K in-
dexed by elements in A, and we adopt the convention that
det(K∅) = 1. We will refer to K as the marginal kernel. If
we think of Kij as measuring the similarity between items i
and j, then

P(Y ⊇ {i, j}) = KiiKjj −K2
ij (2)

implies that Y is unlikely to contain both i and j when they
are very similar; that is, a DPP can be seen as modeling a
collection of diverse items from the base set Y .

DPPs can alternatively be constructed via L-ensembles
(Borodin and Rains, 2005). An L-ensemble is a probability
measure on 2Y defined via a positive semidefinite matrix L
indexed by elements of Y:

PL(Y = A) =
det(LA)

det(L+ I)
, (3)

where I is theN×N identity matrix. It can be shown that an
L-ensemble is a DPP with marginal kernelK = L(I+L)−1.
Conversely, a DPP with marginal kernel K has L-ensemble
kernel L = K(I −K)−1 (when the inverse exists).

An intuitive way to think of the L-ensemble kernel L is as a
Gram matrix (Kulesza and Taskar, 2010):

Lij = qiφ
>
i φjqj , (4)

interpreting qi ∈ R+ as representing the intrinsic quality
of an item i, and φi, φj ∈ Rn as unit length feature vec-
tors representing the similarity between items i and j with
φ>i φj ∈ [−1, 1]. Under this framework, we can model qual-
ity and similarity separately to encourage the DPP to choose
high quality items that are dissimilar to each other. This is
very useful in many applications. For example, in response
to a search query we can provide a very relevant (i.e. high
quality) but diverse (i.e. dissimilar) list of results.

Conditional DPPs For any A,B ⊆ Y with A ∩ B = ∅,
it is straightforward to show that

PL(Y = A ∪B|Y ⊇ A) = det(LA∪B)

det(L+ IY\A)
, (5)

where IY\A is a matrix with ones on the diagonal entries
indexed by the elements of Y \A and zeros elsewhere.

This conditional distribution is itself a DPP over the ele-
ments of Y \ A (Borodin and Rains, 2005). In particular,
suppose Y is DPP-distributed with L-ensemble kernel L,
and condition on the fact that Y ⊇ A. Then the set Y \A
is DPP-distributed with marginal and L-ensemble kernels

KA =
[
I − (L+ IY\A)

−1]
Y\A (6)

LA =
([

(L+ IY\A)
−1]
Y\A

)−1
− I . (7)



Here, [·]Y\A denotes the submatrix of the argument indexed
by elements in Y \ A. Thus, DPPs as a class are closed
under most natural conditioning operations.

In selecting a diverse collection of elements in Y , a DPP
jointly models both the size of a set and its content. In some
applications, the goal is to select (diverse) sets of a fixed size.
In order to achieve this goal, we can instead consider a fixed-
size determinantal point processes, or kDPP (Kulesza and
Taskar, 2011a), which gives a distribution over all random
subsets Y ⊆ Y with fixed cardinality k. The L-ensemble
construction of a kDPP, denoted PkL, gives probabilities

PkL(Y = A) =
det(LA)∑
|B|=k det(LB)

(8)

for all setsAwith cardinality k and any positive semidefinite
kernel L. Kulesza and Taskar (2011a) developed efficient
algorithms to normalize, sample and marginalize kDPPs
using properties of elementary symmetric polynomials.

3 MARKOV DETERMINANTAL POINT
PROCESSES (M-DPPS)

In certain applications, such as in the task of displaying
news headlines, our goal is not only to generate a diverse
collection of items at one time point, but also to generate
collections of items at subsequent time points that are both
highly relevant and dissimilar to the previous collection. To
address these goals, we introduce the Markov determinantal
point process (M-DPP), which emphasizes both marginal
and conditional diversity of selected items. Harnessing the
quality and similarity interpretation of the DPP in (4), the
M-DPP provides a dynamic way of selecting high quality
and diverse collections of items as a temporal process.

We constructively define a first-order, discrete-time autore-
gressive point process on Y by specifying a Markov transi-
tion distribution (and initial distribution). Throughout, we
use the notation {Y t}, Y t ⊆ Y , to represent a sequence
of sets following a M-DPP. We consider two such construc-
tions: one based on marginal kernels, and the other on
L-ensembles. Both yield equivalent stationary processes
with DPP margins. Additionally, and quite intuitively, the
induced union process {Zt ≡ Y t ∪ Y t−1} has DPP mar-
gins with a closely related kernel. Combining these two
properties, we conclude that the constructed M-DPPs yield
a sequence of sets {Y t} that are diverse at any time t and
across time steps t, t− 1.

Marginal construction. DefineP(Y 1 ⊇ A) = det(KA)
and

P(Y t ⊇ B|Y t−1 ⊇ A) =
det(KA∪B)

det(KA)
, (9)

where K ≺ 1
2I and A ∩ B = ∅. Throughout, we adopt

the implicit constraint that Y t ∩ Y t−1 = ∅. We have

immediately the joint probability

P(Y 2 ⊇ B,Y 1 ⊇ A) = det(KA∪B) , (10)

and therefore

P(Y 2 ⊇ B) = P(Y 2 ⊇ B,Y 1 ⊇ ∅) = det(KB) . (11)

Inductively, the process is stationary and marginally DPP.

Finally, we have the union of consecutive sets:

P(Zt ≡ Y t ∪ Y t−1 ⊇ C)

=
∑
A⊆C

P(Y t ⊇ C \A,Y t−1 ⊇ A) =
∑
A⊆C

det(KC)

= 2|C| det(KC) = det((2K)C) . (12)

That is, Zt is marginally distributed as a DPP with marginal
kernel 2K. Since a randomly sampled subset of a DPP-
distributed set also follows a DPP, marginally we can imag-
ine this process as sampling Zt and then splitting its ele-
ments randomly into two sets, Y t−1 and Y t.

L-ensemble construction. The above is appealingly sim-
ple, but the marginal form of the conditional in (9) is not
particularly conducive to a sequential sampling process. In-
stead, we can rewrite everything as L-ensembles. Assume
that at the first time step P(Y 1 = Y1) =

det(LY1
)

det(L+I) and
define the transition distribution as

P(Y t = Yt|Y t−1 = Yt−1) =
det(MYt∪Yt−1)

det(M + IY\Yt−1
)
, (13)

for M = L(I − L)−1. Note that the transition distribution
is essentially a conditional DPP with L-ensemble kernel M
(Eq. (5)). M is well-defined as long as L ≺ I , which is
equivalent to K ≺ 1

2I , as in the marginal construction.

Now we have the joint probability

P(Y 2 = Y2,Y 1 = Y1) =
det(MY1∪Y2)

det(M + IY\Y1
)

det(LY1)

det(L+ I)
.

(14)

Using the fact that det(M + IY\Y1
)/det(M + I) =

det(LY1),

P(Y 2 = Y2,Y 1 = Y1) =
1

det(L+ I)

det(MY1∪Y2)

det(M + I)
.

(15)

Therefore, marginally,

P(Y 2 = Y2) =
∑
Y1⊆Y

1

det(L+ I)

det(MY1∪Y2)

det(M + I)

=
∑

(Y1∪Y2)⊇Y2

1

det(L+ I)

det(MY1∪Y2
)

det(M + I)

=
det(M + IY\Y2

)

det(L+ I) det(M + I)
=

det(LY2
)

det(L+ I)
.

(16)



Here, we used
∑
B⊇A det(MB) = det(M + IY\A), which

is immediately derived from (5). By induction, we conclude

P(Y t = Yt) =
det(LYt

)

det(L+ I)
. (17)

Thus, our construction yields a stationary process with Y t

marginally distributed as a DPP with L-ensemble kernel L.

One can likewise analyze the margin of the induced union
process {Zt ≡ Y t ∪ Y t−1}:

P(Zt ≡ Y t ∪ Y t−1 = C)

=
∑
A⊆C

P(Y t = C \A,Y t−1 = A)

=
∑
A⊆C

1

det(L+ I)

det(MC)

det(M + I)

=
2|C|

det(L+ I)

det(MC)

det(M + I)
(18)

=
1

det(L+ I)

det((2M)C)

det(M + I)
. (19)

Noting that

det(M + I) det(L+ I) = det((M + I)(L+ I))

= det((M + I)(I − (M + I)−1 + I))

= det(2M + 2I − I) = det(2M + I) , (20)

we conclude

P(Zt ≡ Y t ∪ Y t−1 = C) =
det((2M)C)

det(2M + I)
. (21)

We have shown that Zt is marginally distributed as a DPP
with L-ensemble kernel 2M . The corresponding marginal
kernel is

2M(2M + I)−1 = 2L(I − L)−1
[
(L+ I)(I − L)−1

]−1
= 2L(L+ I)−1 = 2K . (22)

Thus, we have reproduced the same characterization of Zt

as in (12) for the marginal kernel construction.

To summarize the marginal properties of the M-DPP, using
the notation Y ∼ L,K to denote that Y is from a DPP with
L-ensemble kernel L and marginal kernel K, we have:

Y t ∼ L,K (23)

Zt ∼ 2L(I − L)−1, 2K . (24)

3.1 COMMENTS ON THE M-DPP

While we have shown that the M-DPP subsets are diverse
at subsequent time steps, this does not necessarily imply
diversity at longer intervals. In fact, it is possible for real-
izations to have oscillations, where groups of high-quality
items recur every two (or more) time steps. However, this

is not necessarily a problem in practice for several reasons.
First, the M-DPP construction straightfowardly extends to
higher order models with longer memory, if desired. Sec-
ond, it is possible to show that the M-DPP does not harm
long-term diversity relative to independent sampling from
a DPP. If we make a separate copy of each item at each
time step, then the M-DPP can be seen as a large DPP on
item/time pairs (i, t). Denoting the marginal kernel by K̂,
the Markov property implies that K̂(i,t)(j,u) is only nonzero
when |t−u| ≤ 1. The probability of item i appearing at any
set of time steps, given by the appropriate determinant of K̂,
can only be reduced by the off-diagonal entries compared
to independent DPP samples at each time step. Thus, the
M-DPP can only make global repetition less likely. Finally,
in our experiments (Sec. 5) we report results that suggest
that M-DPP oscillations do not arise in the task we study.

3.2 MARKOV kDPPS

One can also construct a Markov kDPP (M-kDPP). Al-
though we define a stationary process, our construction
does not yield Y t marginally kDPP. Instead, the M-kDPP
simply ensures that Zt ≡ Y t ∪ Y t−1 follows a 2kDPP.
Since Zt is encouraged to be diverse, the subsets Y t and
Y t−1 will likewise be diverse despite not following a kDPP
themselves.

We start by defining the margin and transition distributions:

P(Y t−1 = Yt−1) =

∑
|A|=k det(LYt−1∪A)(

2k
k

)∑
|B|=2k det(LB)

(25)

P(Y t = Yt|Y t−1 = Yt−1) =
det(LYt−1∪Yt

)∑
|A|=k det(LYt−1∪A)

,

(26)

where A and Yt are disjoint from Yt−1. Then, jointly

P(Y t = Yt,Y t−1 = Yt−1) =
det(LYt−1∪Yt

)(
2k
k

)∑
|B|=2k det(LB)

,

(27)

from which we confirm the stationarity of the process:

P(Y t = Yt) =

∑
|Yt−1|=k det(LYt∪Yt−1

)(
2k
k

)∑
|B|=2k det(LB)

. (28)

The implied union process has margins

P(Zt ≡ Y t ∪ Y t−1 = C)

=
∑

A⊆C,|A|=k

P(Y t = C \A,Y t−1 = A)

=
∑

A⊆C,|A|=k

det(LC)(
2k
k

)∑
|B|=2k det(LB)

=
det(LC)∑

|B|=2k det(LB)
, (29)

which is a 2kDPP with L-ensemble kernel L.



Algorithm 1 Sampling from a DPP
Input: L-ensemble kernel matrix L
{(vn, λn)}Nn=1 ← eigenvector/value pairs of L
J ← ∅
for n = 1, . . . , N do
J ← J ∪ {n} with prob. λn

λn+1
V ← {vn}n∈J
Y ← ∅
while |V | > 0 do

Select yi from Y with Pr(yi)= 1
|V |
∑
v∈V (v

>ei)
2

Y ← Y ∪ {yi}
V ← V⊥, an orthonormal basis for the subspace of V
orthogonal to ei

Output: Y

3.3 SAMPLING FROM M-DPPS AND M-kDPPS

In the previous subsections we showed how our construc-
tions of M-(k)DPPs lead to DPP (and DPP-like) marginals
for {Y t} and the union process {Zt}. These connections
to DPPs give us valuable intuition about the diversity in-
duced both within and across time steps. They serve another
purpose as well: since DPPs and kDPPs can be sampled
in polynomial time, we can leverage existing algorithms to
efficiently sample from M-DPPs and M-kDPPs.

Hough et al. (2006) first described the DPP sampling algo-
rithm shown in Algorithm 1. The first step is to compute
an eigendecomposition L =

∑N
n=1 λnvnv

>
n of the kernel

matrix; from this, a random subset V of the eigenvectors is
chosen by using the eigenvalues to bias a sequence of coin
flips. The algorithm then proceeds iteratively, on each itera-
tion selecting a new item yi to add to the sample and then
updating V in a manner that de-emphasizes items similar
to the one just selected. Note that ei is the ith elementary
basis vector whose elements are all zero except for a one in
position i. Algorithm 1 runs in time O(N3 +Nk3), where
N is the number of available items and k is the cardinality
of the returned sample.

To adapt this algorithm for sampling M-DPPs, we will pro-
ceed sequentially, first sampling Y 1 from the initial distri-
bution and then repeatedly selecting Y t from the transition
distribution given Y t−1. The initial distribution is a DPP
with L-ensemble kernel L and can therefore be sampled
directly using Algorithm 1. As shown in Sec. 3, the transi-
tion distribution (13) is a conditional DPP with L-ensemble
kernel M = L(L− I)−1; using (7), the L-ensemble kernel
for Y t given Y t−1 = Yt−1 can be written as

L(t) =
(
(M + IY\Yt−1

)−1Y\Yt−1

)−1
− I . (30)

Thus we can sample simply and efficiently from a M-DPP
using Algorithm 2. The runtime is O(TN3 + TNk3max),
where kmax is the maximum number of items chosen at a
single time step. Note that for constant kmax this is the same

Algorithm 2 Sampling from a Markov DPP
Input: matrix L
M ← L(L− I)−1
Y1 ← DPP-SAMPLE(L)
for t = 2, . . . , T do

L(t) ←
(
(M + IY\Yt−1

)−1Y\Yt−1

)−1
− I

Yt ← DPP-SAMPLE(L(t))
Output: {Yt}

Algorithm 3 Sampling from a kDPP
Input: L-ensemble kernel matrix L, size k
{(vn, λn)}Nn=1 ← eigenvector/value pairs of L
J ← ∅
for n = N, . . . , 1 do

if u ∼ U [0, 1] < λn
en−1
k−1

enk
then

J ← J ∪ {n}
k ← k − 1
if k = 0 then

break
{continue with the rest of Algorithm 1}

runtime as a Kalman filter with a state vector of size N .

Kulesza and Taskar (2011a) proved that a modification to
the first loop in Algorithm 1 allows sampling from a kDPP
with no change in the asymptotic complexity. The result
is Algorithm 3; here enk denotes the elementary symmetric
polynomial enk =

∑
|J|=k

∏
n∈J λn, which can be com-

puted efficiently using recursion.

We can now use Algorithm 3 to perform sequential sampling
for a M-kDPP. At first glance, the initial distribution (which
is not a kDPP) seems difficult to sample; however, from
Sec. 3 we know that it can be obtained by harnessing the
union process form of (29) and first sampling a 2kDPP
with L-ensemble kernel L and then throwing away half of
the resulting items at random. Transitionally, we have a
conditional kDPP whose kernel can be computed as in (30).
Algorithm 4 summarizes the M-kDPP sampling process,
which runs in time O(TN3 + TNk3).

Algorithm 4 Sampling from a Markov kDPP
Input: matrix L, size k
Z1 ← kDPP-SAMPLE(L, 2k)
Y1 ← random half of Z1

for t = 2, . . . , T do

L(t) ←
(
(L+ IY\Yt−1

)−1Y\Yt−1

)−1
− I

Yt ← kDPP-SAMPLE(L(t), k)
Output: {Yt}



4 LEARNING USER PREFERENCES

A broad class of problems suited to M-(k)DPP modeling are
also applications in which we would like to learn preferences
from a user over time. Recall the news headlines scenario.
Here, the goal is to present articles on a daily basis that are
both relevant to the user’s interests and also non-redundant.
With feedback from a user in the form of click-through
behavior, we can attempt to simultaneously learn features
of the articles that the user regards as preferable. While
the diversity offered by a M-DPP is intrinsically valuable
for this task, e.g., to keep the user from getting bored, in
the context of learning it also has an important secondary
benefit: it promotes exploration of the preference space.

Consider the following simple learning setup. At each time
step t, the algorithm shows the user a set of k items drawn
from some base set Yt, for instance, articles from the day’s
news. The user then provides feedback by identifying each
shown item as either preferred or not preferred, perhaps by
clicking on the preferred ones. The algorithm then incor-
porates this feedback and proceeds to the next round. The
learner has two goals. First, as often as possible at least
some of the items shown to the user should be preferred.
Second, over the long term, many different items preferred
by the user should be shown. In other words, the algorithm
should not focus on a small set of preferred items.

Perhaps the most important consideration in this framework
is balancing showing articles that the user is known to like
(exploitation) against showing a variety of articles so as
to discover new topics in which the user is also interested
(exploration). Neither extreme is likely to be successful.
However, using the L-ensemble kernel decomposition in (4),
a DPP seeks to propose sets of items that are simultaneously
high quality and diverse. The M-DPP takes this a step
further and encourages diversity from step to step while
maintaining DPP margins, exposing the user to an even
greater variety of items without significantly sacrificing
quality. Thus, we might expect that M-(k)DPPs can be used
to enable fast and successful learning in this setting.

The tradeoff between exploration and exploitation is a fun-
damental issue for interactive learning, and has received
extensive treatment in the literature on multi-armed bandits.
However, our setup is relatively unusual for two reasons.
First, we show multiple items per time step, sometimes
called the multiple plays setting (Anantharam et al., 1987).
Second, we use feature vectors to describe the items we
choose, allowing us to generalize to unseen items (e.g., new
articles); this is a special case of contextual bandits (Lang-
ford and Zhang, 2007). Each of these scenarios has received
some attention on its own, but it is only in combination that
a notion of diversity becomes relevant, since we have both
the need to select multiple items as well as a basis for relat-
ing them. This combination has been considered recently
by Yue and Guestrin (2011), who showed an algorithm that

yields bounded regret under the assumption that the reward
function is submodular. Here, on the other hand, our goal
is primarily to illustrate the empirical effects on learning
when the items shown at each time step are sampled from
a M-DPP. To that end, we propose a very simple quality
learning algorithm that appears to work well in practice.
Whether formal regret guarantees can be established for
learning with M-DPPs is an open question for future work.

4.1 SETUP

To naturally accommodate user feedback and transfer knowl-
edge across items, we will consider algorithms that learn a
log-linear quality model assigning item i the score

qi = exp(θ>fi) , (31)

where fi ∈ Rm is a feature vector for item i and θ ∈ Rm
is the parameter vector to be learned. Learning iterates
between two distinct steps: (1) sampling articles according
to the current quality scores and (2) using user feedback to
revise the quality scores via updates to θ.

Let θ(t) denote the parameter vector prior to time step t
and let q(t)i denote the corresponding quality scores for the
items i ∈ Yt. We initialize θ(1) = 0 so that q(1)i = 1 for
all i ∈ Y1. (At this point we are effectively in a purely
exploratory mode.) Denote the items preferred by the user
at iteration t by {a(t)i }

Rt
i=1, and the non-preferred items by

{b(t)i }
St
i=1. Inspired by standard online algorithms, we define

the parameter update rule as follows:

θ(t+1) ← θ(t) + η

(
1

Rt

Rt∑
i=1

f
a
(t)
i
− 1

St

St∑
i=1

f
b
(t)
i

)
(32)

That is, we add to θ the average features of the preferred
items, and subtract from θ the average features of non-
preferred items. This increases the quality of the former
and decreases the quality of the latter. η is a learning rate
hyperparameter. We can then proceed to the next time step,
computing the new quality scores q(t+1)

i = exp(θ(t+1)>fi)
for each i ∈ Yt+1.

The updated quality scores are then used to select subse-
quent items to be shown to the user. In order to separate
the challenges of learning the quality scores, which is not
our primary interest, from the benefits of incorporating the
M-DPP, we consider five sampling methods:

• Uniform. We ignore the quality scores and choose k
items uniformly at random without replacement.

• Weighted. We draw k items with probabilities propor-
tional to their quality scores without replacement.

• kDPP. We sample the set of items from a kDPP with
L-ensemble kernel L given by the decomposition in



Algorithm 5 Interactive learning of quality scores
Input: learning rate η
θ(1) ← 0
for t = 1, 2, . . . do
q
(t)
i ← exp(θ(t)>fi) ∀i ∈ Yt

Select items to display given q(t)i
(using one of the methods described in Sec. 4.1)

Receive user feedback {a(t)i }
Rt
i=1 and {b(t)i }

St
i=1

θ(t+1) ← θ(t) + η
(

1
Rt

∑Rt

i=1 fa(t)i
− 1

St

∑St

i=1 fb(t)i

)

(4), where φ is fixed in advance and qi are the current
quality scores.

• kDPP + heuristic (threshold). We sample the set of
items from a kDPP after removing articles whose simi-
larity to the previously selected articles exceeds a pre-
determined threshold. At threshold > 1, the heuristic
is equivalent to the kDPP.

• M-kDPP. We sample the set of items from the M-
kDPP transition distribution given the items selected
at the previous time step. The L-ensemble transition
kernel is as in (30), with L defined as for the kDPP.

The learning algorithm is summarized in Algorithm 5.

4.2 LIKELIHOOD-BASED ALTERNATIVE

Instead of the additive learning rule proposed above, one
could instead take advantage of the probabilistic nature of
the M-DPP and perform likelihood-based learning, which
has associated theoretical guarantees. In particular, based
on a sequence of user feedback, we could solve for the
penalized DPP maximum likelihood estimate of q(t) =

[q
(t)
1 , . . . , q

(t)
N ] as:

argmax
q

t∏
t=1

Pq({a(t)i } ⊆ Y t, {b(t)i } ∩ Y t = ∅) + λ||q||2,

(33)

where Pq is a DPP with L-ensemble kernel defined by qual-
ity scores q and λ is a regularization parameter. We have

Pq({a(t)i } ⊆ Y t, {b(t)i } ∩ Y t = ∅) =(
1− Pq({b(t)i } ⊆ Y t | {a(t)i } ⊆ Y t)

)
· Pq({a(t)i } ⊆ Y t), (34)

which has computable terms in a DPP given the quality
scores q. The M-DPP has obvious extensions. However,
in both cases the objective function is not convex so com-
putations are intensive and only converge to local maxima.
Due to its simplicity and good performance in practice (see
Sec. 5.2), we use the heuristic algorithm described previ-
ously for illustrating the behavior of the M-DPP.

5 EXPERIMENTS

We study the performance of the M-kDPP for selecting
daily news items from a selection of over 35,000 New York
Times newswire articles obtained between January and June
of 2005 as part of the Gigaword corpus (Graff and Cieri,
2009). On each day of a given week, we display 10 articles
from a base set of the roughly 1400 articles written that
week. This process is repeated for each of the 26 weeks in
our dataset. The goal is to choose a collection of articles
that is high quality but also diverse, both marginally and
between time steps.

To examine performance in the absence of confounding
issues of quality learning, we first consider a scenario in
which the quality scores are fixed. Here, we measure both
the diversity and quality of articles chosen each day by the
different methods. We then turn to quality learning based on
user feedback to examine how the properties of the M-kDPP
influence the discovery of a user’s preferences.

5.1 FIXED QUALITY

Similarity To generate similarity features φi, we first
compute standard normalized tf-idf vectors, where the idf
scores are computed across all 26 weeks worth of articles.
We then compute the cosine similarity between all pairs
of articles. Due to the sparsity of the tf-idf vectors, these
similarity scores tend to be quite low, leading to poor di-
versity if used directly as a kernel matrix. Instead, we let
the similarity features be given by binary vectors where the
jth coordinate of φi is 1 if article j is among the 150 near-
est neighbors of article i in that week based on our cosine
distance metric, and 0 otherwise.

Quality In the fixed scenario, we need a way to assign
quality scores to articles. A natural approach is to score
articles based on their proximity to the other articles; this
way, an article that is close to many others (as measured by
cosine similarity) is considered to be of high quality. In this
data set, for example, we find that there is a large cluster of
articles that talk about politics and articles that fall under
this topic generally have much higher quality than articles
that talk about, say, food. To model this, we compute quality
scores as qi = exp(αdi), where di is the sum of the cosine
similarities between article i and all other articles in our
collection and α is a hyperparameter that determines the
dynamic range. We chose α = 5 for our data set, although
a range of values gave qualitatively similar results.

For each method, we sample sets of articles on a daily basis
for each of the 26 weeks. To measure diversity within a time
step, we compute the average cosine similarity between
articles chosen on a given day. We then subtract the result
from 1 so that larger values correspond to greater diversity.
Diversity between time steps is obtained by measuring the
average cosine similarity between each article at time t and



Table 1: Average Diversity and Quality of Selected Articles

Method Marginal 1-step 2-step Quality
diversity diversity diversity

M-kDPP 0.899 0.849 0.843 0.654
k-DPP 0.896 0.786 0.779 0.668

k-DPP + heuristic (0.4) 0.904 0.849 0.804 0.651
k-DPP + heuristic (0.2) 0.946 0.891 0.889 0.587

Weighted Rand. 0.750 0.681 0.677 0.756
Uniform Rand. 0.975 0.949 0.947 0.457

the single most similar article at time t+1 (or t+2 for 2-step
diversity), and again subtracting the result from 1. We also
report the average quality score of the articles chosen across
all 182 days. All measures are averaged over 100 random
runs; statistical significance is computed by bootstrapping.

Table 1 displays the results for all methods. The M-kDPP
shows a marked increase in between-step diversity, on aver-
age, compared to the kDPP and weighted random sampling.
All of the differences are significant at 99% confidence. The
average marginal diversities for the M-kDPP and kDPP are
statistically significantly higher than for weighted random
sampling, but are not statistically significantly different from
each other. This is to be expected since, as we have seen in
Sec. 3, the marginal distribution for the M-kDPP does not
greatly differ from the kDPP process. On the other hand,
the uniform sampling shows much higher diversity than the
other methods, which can be attributed to the fact that it is
a purely exploratory method that ignores the quality of the
articles it chooses.

Table 1 also shows the average quality of the selected arti-
cles. The weighted random sampling chooses, on average,
higher quality articles compared to the rest of the methods
since it does not have to balance issues of diversity within
the set. The kDPP on average chooses slightly higher qual-
ity articles than the M-kDPP, perhaps due to the additional
between-step diversity sought by the M-kDPP; however,
the difference is not statistically significant. It is evident
from Table 1 that the M-kDPP achieves a balance between
the diversity of the articles it chooses (both marginally and
across time steps) and their quality.

As for the kDPP + heuristic baseline, our experiments show
that by tuning the threshold carefully we can mimic the
performance of the M-kDPP, but without the associated
probabilistic interpretation and theoretical properties. When
the threshold is too low, quality degrades significantly.

5.2 LEARNING PREFERENCES

We also study the performance of the M-kDPP when learn-
ing from user feedback, as outlined in Sec. 4. For simplicity,
we use only a week’s worth of news articles (1427 articles).
To create feature vectors, we first generate topics by running
LDA on the entire corpus (Blei et al., 2003). We then man-
ually label the most prevalent 10 topics as finance, health,
politics, world news, baseball, football, arts, technology,
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Figure 2: Performance of the methods at recovering the
preselected preferred articles. Solid lines indicate the mean
over 100 random runs, and dashed lines indicate the corre-
sponding confidence intervals, computed by bootstrapping.

entertainment, and justice, and associate each article with its
LDA-inferred mixture of these topics (a 10-dimensional fea-
ture vector fi). We define a synthetic user by a sparse topic
preference vector (0.7 for finance, 0.2 for world news, 0.1
for politics, and 0 for all other topics), and preselect as “pre-
ferred” the 200 articles whose feature vectors fi maximize
the dot product with the user preference vector.

Similar to our previous experiment, we define the similarity
features between articles to be binary vectors based on 50
nearest neighbors using the tf-idf cosine distances. The
quality is defined as in Sec. 4, q(t)i = exp(θ(t)>fi), where
fi is the feature vector of article i (based on the mixture
of topics) normalized to sum to 1. We set the learning rate
η = 2; however, varying η did not change the qualitative
behavior of each method, only the time scale at which these
behaviors became noticeable. We also note that although
we base the similarity on 50 nearest neighbors, the results
were not sensitive to the size of this neighborhood.

The goal of this experiment is to illustrate how the different
methods balance between exploring the space of all arti-
cles to discover the 200 preselected articles (recall) and
exploiting a learned set of features to keep showing pre-
ferred articles (precision). On one end of the spectrum,
uniform sampling simply explores the space of articles with-
out taking advantage of the user feedback, leading to high
recall and low precision. On the other end, the weighted
random sampling fully exploits the learned preference in
selecting articles, but does not have a mechanism to encour-
age exploration. We demonstrate that the M-kDPP balances
these two extremes, taking advantage of the user feedback
while also exploring diverse articles.

Results We use each method to select 10 articles per day
over a period of 100 days, using the current quality scores
q(t) on each day t. We measure recall by keeping track of
the fraction of preselected preferred articles (out of the 200
total) that have been displayed so far. We also compute, out
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Figure 3: Cumulative fraction of preferred articles displayed
to the user.

of the 10 articles shown on a given day, the fraction that
are preferred. This serves as a measure of precision. All
measures are averaged over 100 random runs.

Figure 2 shows the recall performance of the methods we
tested. Uniform sampling discovers the articles at a some-
what linear rate of about 5% per day; given a larger base
set relative to the size of the preferred set, however, we
would expect a slower rate of discovery. The methods that
incorporate user feedback discover a larger set of preferred
articles more rapidly by harnessing learned features of the
user’s interests. The M-kDPP dominates both the kDPP and
weighted random sampling in this metric since it encourages
exploration by introducing both marginal and between-step
diversity of displayed articles. In contrast, the kDPP does
not penalize repeating similar marginally diverse sets and
the weighted random sampling does not have any explicit
mechanism for exploration. It takes uniform random sam-
pling nearly 100 time steps to discover the same number of
unique preferred articles as the M-kDPP. For the sake of
clarity, we omit the results of kDPP + heuristic with thresh-
old 0.4 since they are not statistically significantly different
from the M-kDPP. The supplementary material includes a
randomly selected example of the articles displayed on days
99 and 100 for the various methods.

Figure 3 shows the cumulative fraction of displayed articles
that were preferred, reflecting precision. (The supplement
includes a sample non-cumulative version of Figure 3.) All
methods besides uniform sampling quickly achieve high
precision. Weighted random sampling displays the largest
number of preferred articles per day, almost always having
precision of at least 0.9. However, as we have observed, this
large precision is at the cost of lower recall. In particular,
weighted random sampling quickly homes in on features
related to a small subset of preferred articles, thereby in-
creasing the probability of them being repeatedly selected
with no force to counteract this behavior. As expected,
by only requiring marginal diversity, the kDPP achieves
slightly higher precision than the M-kDPP on average (both
typically above 0.8), but again at the cost of reduced explo-
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Figure 4: Performance measured by a marginally decreasing
utility function.

ration. Overall, the differences in precision between these
methods are not large. In many applications, having 8 out
of 10 results preferred may be more than sufficient.

Finally, to examine the balance between exploration and
exploitation, we compute a metric based on the idea of
marginally decreasing utility. Under this metric, at every
time step, the user experiences a utility of 1 for each pre-
ferred article shown for the first time. If a previously dis-
played preferred article is once again chosen, the user gets a
utility of 1

l+1 where l is the number of times that article has
appeared in the past. The underlying assumption is that a
user benefits from seeing preferred articles, but in decreas-
ing amounts as the same articles are repeatedly displayed.
Figure 4 shows the performance of the methods under this
utility metric; the M-kDPP scores highest.

6 CONCLUSION

We introduced the Markov DPP, a combinatorial process
for modeling diverse sequences of subsets. By establishing
the theoretical properties of this process, such as stationary
DPP margins and a DPP union process, we showed how
our construction yields sets that are diverse at each time
step as well as from one time step to the next, making it
appropriate for interactive tasks like news recommendation.
Additionally, by explicitly connecting with DPPs, further
properties of M-DPPs are straightforwardly derived, such
as the marginal and conditional expected set cardinality.

We showed how to efficiently sample from a M-DPP, and
found empirically that the model achieves an improved bal-
ance between diversity and quality compared to baseline
methods. We also studied the effects of the M-DPP on learn-
ing, finding significant improvements in recall at minimal
cost to precision for a news task with user feedback.
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