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Abstract

We consider MAP estimators for structured
prediction with exponential family models.
In particular, we concentrate on the case
that efficient algorithms for uniform sampling
from the output space exist. We show that
under this assumption (i) exact computation
of the partition function remains a hard prob-
lem, and (ii) the partition function and the
gradient of the log partition function can be
approximated efficiently. Our main result
is an approximation scheme for the parti-
tion function based on Markov Chain Monte
Carlo theory. We also show that the efficient
uniform sampling assumption holds in several
application settings that are of importance in
machine learning.

1 Introduction

We consider discriminative structured prediction mod-
els with an emphasis on predicting combinatorial
structures. These structures find applications in ma-
chine learning problems such as multi-label classifica-
tion (Elisseeff & Weston, 2001), multi-category hier-
archical classification (Cesa-Bianchi et al., 2006), and
label ranking (Dekel et al., 2003).

Let X x )Y be the domain of observations and
labels, and let X = (x1,---,2,) € X™,
Y =(y1, - ,ym) € Y™ be the set of observations.
Our goal is to estimate y|z using exponential families
via

pylz, 0) = exp((¢(z,y),0) — In Z(0]x)) ,

where ¢(x,y) are the joint sufficient statistics of z and

y, and Z(0lz) = 3, .y exp((¢(z,y),0)) is the parti-
tion function which takes care of the normalisation.
We perform maximum-a-posteriori (MAP) parameter

estimation by imposing a normal prior on 6. This leads
to optimising the negative joint likelihood in # and Y':

6 = argmin [—Inp(0,Y|X)]
0

m

— arguin (O] + - 3~ Z(6lz:) — (6(ai,).6))| |
i=1
0

where A > 0 is the regularisation parameter. Through-
out this paper, we assume that the f5 norm of the
sufficient statistics and the parameters are bounded,
ie, |[|[¢(x,y)]| < R and ||0|| < B, where R and B are
constants (note that B can be bounded from above as
shown in Appendix C). The difficulty in solving (1) lies
in the computation of the partition function. The opti-
misation is typically performed using gradient descent
techniques (and advancements thereof). We therefore
also need to compute the gradient of the log partition
function, which is the first order moment of the suffi-
cient statistics, i.e., Vg In Z(0|z) = Eypyiz.0)[P(z, y)]-

Computing the log partition function and its gradient
are in general NP-hard. In section 2, we will show
that computing the partition function still remains
NP-hard given a uniform sampler for ). We therefore
need to resort to approximation techniques to compute
these quantities. Unfortunately, application of concen-
tration inequalities do not yield approximation guar-
antees with polynomial sample size. In this work, we
present Markov chain Monte Carlo (MCMC) based ap-
proximations for computing the partition function and
the gradient of the log partition function with provable
guarantees. There has been a lot of work in apply-
ing Monte Carlo algorithms using Markov chain sim-
ulations to solve §P-complete counting and NP-hard
optimisation problems. Recent developments include
a set of mathematical tools for analysing the rates of
convergence of Markov chains to equilibrium (see Ran-
dall (2003); Jerrum and Sinclair (1996) for surveys).
To the best of our knowledge, these tools have not
been applied in the design and analysis of structured
prediction problems, but have been referred to as an



important research frontier (Andrieu et al., 2003) for
MCMC based machine learning problems in general.

1.1 Ouwur Contributions

We analyse discriminative probabilistic structured pre-
diction models based on exponential families using
MCMC theory. In particular,

e we prove a hardness result for computing the par-
tition function (Section 2);

e we present an algorithm for approximating the
partition function and the gradient of the log par-
tition function with provable guarantees (Section
2);

e we design a Markov chain that can be used to
sample combinatorial structures from exponential
family distributions considered in this work given
that there exists an exact uniform sampler, and
also perform a non-asymptotic analysis of its mix-
ing time (Section 3);

e we describe several combinatorial structures that
find applications in machine learning problems,
including multi-label classification, label rank-
ing, and multi-category hierarchical classification
(Section 4).

Notation: We will use [n] to denote the set of integers
{1,...,n}, || || to denote the ¢5 norm of a vector, and
| - | to denote the ¢; norm if the argument is a vector,
the absolute value if the argument is a scalar, and the
cardinality if the argument is a set.

2 Computing the Partition Function:
Hardness Result and
Approximations

2.1 Hardness of Computing the Partition
Function

Consider the output space of undirected cycles
over a fixed set of vertices X, ie., Y =
Upes, cyclic_permutations(U). Let ¢ : Y — R¥**
with 1y, (y) = 1 if {u,v} € y and 0 otherwise.

Theorem 2.1 Computing the partition function of
cyclic permutations is NP-hard.

Proof Suppose we can compute
mZ(0) =} yexp((¢(y),0)) efficiently. Given an
arbitrary graph G = (V,E) with adjacency matrix
0,let ¥ =V and 0 = 0 x In(|V|! x [V]). We will
show that G has a Hamiltonian cycle if and only if
InZ(0) > |V| x In(|[V|! x [V]).

First, observe that | Y| < |[V|! x |V].

Necessity: As the exponential function is posi-
tive and In is monotone increasing, it follows that
InZ(0) > |V] x In(|[V|! x [V]).

Sufficiency: Suppose G has no Hamiltonian cycle.
Then

In Z(0) < nf|Y| x exp[([V] = 1) x In([V[! x [V])]]
=W Y[+ (V] = 1) x In([V]! x [V])
< |V xIn(|V|! x |V]) .

This completes the proof. O

We are interested in the class of problems for which
sampling uniformly at random is easy, and cyclic per-
mutations is one example of these. The following re-
sult shows that computing the partition function is
hard even if we restrict the problem to this class. Es-
sentially, it transfers the general NP-hardness result
of computing the partition function to the restricted
class of problems that we are interested in.

Corollary 2.2 Computing the partition function of
cyclic permutations remains NP-hard even if efficient
algorithms for uniform sampling of cyclic permuta-
tions exist.

In the next section, we show how to approximate the
partition function given that there exist efficient algo-
rithms for uniform sampling.

2.2 Approximating the Partition Function

As a first step towards approximating the partition
function, we could consider using concentration in-
equalities. If we can sample uniformly at random from
Y, then we can apply Hoeffding’s inequality to bound
the deviation of the partition function Z(6|z) from its
finite sample expectation Z(f|x). Unfortunately, the
bound obtained from using Hoeffding’s inequality is
not useful due to its dependence on the size of the out-
put space |Y|. We now present an algorithm that is
a fully-polynomial randomised approximation scheme
for approximating the partition function.

Definition 2.1 Suppose f : P — RT is a function
that maps problem instances P to positive real num-
bers. A randomised approximation scheme for P is a
randomised algorithm that takes as input an instance
p € P and an error parameter € > 0, and produces as
output a number ) such that

P~ () <Q < (1 +0)f(p)] > 5

A randomised approzimation scheme is said to be fully
polynomial (FPRAS) if it runs in time polynomial in
the length of p and 1/e.



We exploit the intimate connection between count-
ing and sampling problems (Jerrum et al., 1986) to
approximately compute the partition function using
sampling algorithms. The technique is based on
a reduction from counting to sampling. The stan-
dard approach (Jerrum & Sinclair, 1996) is to ex-
press the quantity of interest, i.e., the partition func-
tion Z(f|x), as a telescoping product of ratios of pa-
rameterised variants of the partition function. Let
0=y < fB1--- < B =1 denote a sequence of parame-
ters also called as cooling schedule and express Z(0|x)
as a telescoping product

Z(0]x) Z(By-10|z) Z(5:0|z)
Z(ﬁlfla‘w) Z(ﬂl,29|x) Z(ﬁoe‘x) X Z(ﬂoﬂ\x) .
Define the random variable
fily) = exp[(Bi—1 — Bi) {¢(x,y),0)] (we omit the

dependence on x to keep the notation clear), for all
i € [I], where y is chosen according to the distribution
7, = p(ylz, 3:0). We then have

exp[Bi (d(x,y), 0)]

Ef; Z exp[(Bi—1 — Bi) (o(z,y),0)]
yey
Z(Bi—10|x)

Z(Bif0|x)

Z(Bif|x)

which means that f;(y) is an unbiased estimator for
the ratio p; = Z(Bi—10|z)/Z(B;0)x). This ratio can
now be estimated by sampling according to the dis-
tribution mg, and computing the sample mean of f;.
The desideratum is an upper bound on the variance of
this estimator. Having a low variance implies a small
number of samples S to approximate each ratio. The
final estimator is then the product of the reciprocal of
the individual ratios in the telescoping product.

We now proceed with the derivation of an upper bound
on the variance of the random variable f;, or more pre-
cisely on the quantity B; = Varf;/(Ef;)?. We first as-
sume that Z(Bp0|x) = |Y| can be computed in polyno-
mial time!. We use the following cooling schedule (Ste-
fankovic et al., 2007): I = p[R||9]|]; B; = j/(pR|6]))
for all j € [l — 1], where p is a constant integer > 3,
i.e., we let the cooling schedule to be of the following

form:

3 plBlal
q7 ) q ) )
where ¢ = pR||0|| (and w.l.o.g. we assume that R||0|| is
non-integer and real). Given this cooling schedule, ob-
serve that exp(—1/p) < f; < exp(1/p), which follows

1 2
077777
q q

!The assumption is true in all the applications we con-
sider in this work. If it is not possible to compute ||,
which is a counting problem, in polynomial time, we can
still approximate it using the machinery introduced in this
section.

from the definition of the random variable f;, and also
exp(—1/p) < Ef; = p; < exp(1/p). We are now ready
to prove the bound on the quantity B;.

Proposition 2.3 B; = (]\ggzj;’z <exp(2/p), Viel[l].

We first need to prove the following lemma.

Lemma 2.4 exp(1/p) — 1 < p; <exp(—1/p) + 1.

Proof a < b= exp(a) — exp(—a) < exp(b) — exp(—b)
as the exponential function is monotone increasing.
Thus a < 1/3= exp(a) — exp(—a) < exp(1/3) —
exp(—1/3) < 1.  Setting a = 1/p with p > 3 and
using the fact that exp(—1/p) < p; < exp(1/p) for all
i € [I] proves the lemma. 0]

Proof (of Proposition 2.3) Consider
pi > exp(1l/p) — 1> f; — 1. This implies f; — p; < 1.
Next, consider p; <exp(—1/p)+1< f;+1. This
implies f; — p; > —1. Combining these, we get

|fi = pi]l <1, which implies Varf; <1, and therefore
Varf;/(Ef;)? < exp(2/p). O

Equipped with this bound, we are ready to design an
FPRAS for approximating the partition function. We
need to specify the sample size S in each of the Markov
chain simulations needed to compute the ratios.

Theorem 2.5 Suppose the sample size
S = [65¢ 2lexp(2/p)] and suppose it is possible
to sample exactly according to the distributions mg,,
for all i € [I], with polynomially bounded time. Then,
there exists an FPRAS with € as the error parameter
for computing the partition function.

Proof The proof uses standard techniques described
in (Jerrum & Sinclair, 1996). Let Xi(l)7 e ,XZ.(S) be a
sequence of .S independent copies of the random vari-
able f; obtained by sampling from the distribution mg,,
and let X; = S~! Zle XZ-(j) be the sample mean. We
have EX; = Ef; = p;, and VarX; = S~ 'Varf;. The
final estimator p = Z(f|z)~! is the random variable
X = Hi'=1 X, with EX = Hi:l p; = p. Now, consider

if we choose S = [65e 2lexp(2/p)] (because
exp(a/65) < 14 a/64 for 0 < a < 1). By applying



Chebyshev’s inequality to X, we get

Pr[(|X — p|) > (e/4)p] < =

and therefore, with probability at least 3/4, we have
€ €
1 f) <X< (1 7) .
( )r=a=Utg)r

Thus, with probability at least 3/4, the partition func-
tion Z(0|r) = X ! lies within the ratio (1 £¢) of p~1.
Polynomial run time immediately follows from the as-
sumption that we can sample exactly according to the
distributions 7g, in polynomial time. ]

We have shown how to approximate the partition func-
tion under the assumption that there exists an exact
sampler?. In fact, it suffices to have only an exact uni-
form sampler. As we will see in Section 3, it is possible
to obtain exact samples from distributions of interest
other than uniform if there exists an exact uniform
sampler.

2.3 Approximating the Gradient of the Log
Partition Function

The optimisation problem (1) is typically solved us-
ing gradient descent methods which involves gradient-
vector multiplications. We now describe how to
approximate the gradient-vector multiplication with
provable guarantees using concentration inequalities.
Let z be a vector in R™ (where n is also the dimension
of the feature space ¢(z,y)) with bounded ¢ norm,
ie, ||z|]| < G, where G is a constant. The gradient-
vector multiplication is given as

(VolnZ(6]2), z) = Eynp(yja.0) (02, 9), 2)] -

We use Hoeffding’s inequality to bound the deviation
of (VoInZ(0|z),z) from its estimate (d(f|z), z) on a
finite sample of size S, where

1 S
A0l) = 5 > 0lam1)

and the sample is drawn according to p(y|z, 6).

Note that by Cauchy-Schwarz’s inequality, we have
[ (¢(z,:),2)| < RG, for all i € [S]. Applying Ho-
effding’s inequality, we then obtain the following ex-
ponential tail bound:

—e
Pr(| (Voln Z(0|z) — d(0|x), z) | > €) < 2exp ( S ) .

2R2G?

2A similar result can be derived by relaxing the exact
sampling assumption and is described in Appendix A.

3 Sampling Techniques

We now focus on designing sampling algorithms.
These algorithms are needed (i) to compute the par-
tition function using the machinery introduced in the
previous section, and (ii) to do inference, i.e., predict
structures, using the learned model by solving the op-
timisation problem argmax, 4, p(y|z, 0) for any x € X
Sampling algorithms can be used for optimisation us-
ing the Metropolis process (Jerrum & Sinclair, 1996)
and other methods like simulated annealing for con-
vex optimisation (Kalai & Vempala, 2006) (note that
these methods come with provable guarantees and are
not heuristics).

The main contribution of this section is a generic,
‘meta’ approach that can be used to sample structures
from distributions of interest given that there exists a
uniform sampler. We start with the design of a Markov
chain based on Metropolis process (Metropolis et al.,
1953) to sample according to exponential family dis-
tributions p(y|x,d) under the assumption that there
exists an exact uniform sampler for ). Consider the
following chain META: If the current state is y, then

1. select the next state z uniformly at random, and

: s : p(z|z,0)
2. move to z with probability min (1, p(ylr.,e))’

We now analyse the mixing time of this chain using
coupling from the past technique (Propp & Wilson,
1996; Huber, 1998). Coupling from the past (CFTP)
is a technique to obtain an exact sample from the sta-
tionary distribution of a Markov chain. The idea is
to simulate Markov chains forward from times in the
past, starting in all possible states, as a coupling pro-
cess. If all the chains coalesce at time 0, then Propp
and Wilson (1996) showed that the current sample has
the stationary distribution.

To apply CFTP for META, we need to bound the ex-
pected number of steps T' until all Markov chains are
in the same state. For the chain META, this occurs as
soon as we update all the states, i.e., if we run all the
parallel chains with the same random bits, once they
are in the same state, they will remain coalesced. This
happens as soon as they all accept an update (to the
same state z) in the same step. First observe that, us-
ing Cauchy-Schwarz and triangle inequalities, we have

Vy,y' € YV [(d(z,y) — ¢(z,y),0)| <2BR .

The probability of an update is given by

minfl, p(y|z, 6)/p(y'|x, 0)] > exp(~2BR) .



We then have

ET <1 x exp[—-2BR]+
2 x (1 — exp[—2BR]) x exp[—2BR]+
3 x (1 — exp[-2BR])? x exp[-2BR] + - - -

By using the identity > i x a* = a~/(a™! — 1)?
with a = (1 — exp[-2BR)), we get ET < exp(2BR).
We now state the main result of this section.

Theorem 3.1 The Markov chain META can be used
to obtain an exact sample according to the distribution
m = p(y|z, 0) with expected running time that satisfies
ET < exp(2BR).

Note that the running time of this algorithm is ran-
dom. To ensure that the algorithm terminates with a
probability at least (1 — d), it is required to run it for
an additional factor of O(In(1/4d)) time (Huber, 1998).
In this way, we can use this algorithm in conjunction
with the approximation algorithm for computing the
partition function resulting in an FPRAS.

The implication of this result is that we only need to
have an exact uniform sampler in order to obtain ex-
act samples from the distributions 7g,, for all ¢ € [],
needed to approximate the partition function (cf. The-
orem 2.5). As we will see in the next section, designing
an exact uniform sampler is possible for several combi-
natorial structures that are of importance in machine
learning problems.

We end this section with a few remarks on the bound
in Theorem 3.1 and its practical implications. At first
glance, we may question the usefulness of this bound
because the constants B and R appear in the exponent.
But note that we can always set R = 1 by normalising
the features. Also, the bound on R (cf. Appendix C)
could be loose in practice as observed recently by Do
et al. (2009), and thus the value of R could be way
below its upper bound /In |Y|/A. We could then em-
ploy techniques similar to those described in (Do et al.,
2009) to design optimisation strategies that work well
in practice. Also, note that the problem is mitigated
to a large extent by setting A > In|)Y| and R = 1.

While in this work we focused on designing a ‘meta’ ap-
proach for sampling, we would like to emphasise that
it is possible to derive improved mixing time bounds
by considering each combinatorial structure individu-
ally. For instance, Randall (2003) analysed the mixing
time of a Markov chain to sample from the vertices of a
hypercube uniformly at random. It is fairly straight-
forward to extend this chain to sample according to
distributions mg, and also to analyse its mixing time
using the technique of canonical paths (Jerrum & Sin-
clair, 1996).

4 Application Settings

We describe three combinatorial structures with their
corresponding application settings in machine learn-
ing. For each of these structures, we show how to
obtain exact samples uniformly at random. Together
with the ‘meta’ approach presented in the previous
section, it is then possible to obtain exact samples
of these structures from exponential family distribu-
tions considered in this work. Therefore, we have all
the necessary ingredients to approximate the partition
function.

Vertices of a hypercube: The set of vertices of a
hypercube is used as the output space in multi-label
classification problems (see, for example, Elisseeff and
Weston (2001)). An exact sample can be obtained uni-
formly at random by generating a sequence (of length
d, the number of labels) of bits where each bit is de-
termined by tossing an unbiased coin.

Permutations: The set of permutations is used as
the output space in label ranking problems (see, for
example, Dekel et al. (2003)). An exact sample can
be obtained uniformly at random by generating a se-
quence (of length d, the number of labels) of integers
where each integer is sampled uniformly from the set
[d] without replacement.

Subtrees of a tree: Let T' = (V,E) denote a di-
rected, rooted tree with root r. Let T” denote a sub-
tree of T rooted at r. Sampling such rooted subtrees
from a rooted tree finds applications in multi-category
hierarchical classification problems as considered by
Cesa-Bianchi et al. (2006) and Rousu et al. (2006).
We now present a technique to generate exact samples
of subtrees uniformly at random. The technique com-
prises of two steps. First, we show how to count the
number of subtrees in a tree. Next, we show how to use
this counting procedure to sample subtrees uniformly
at random. The second step is accomplished along the
lines of a well-known reduction from uniform sampling
to exact/approximate counting (Jerrum et al., 1986).

First, we consider the counting problem. Let v € V' be
a vertex of T" and denote its set of children by §+(v).
Let f(v) denote the number of subtrees rooted at v.
Now, f can be computed by using the following recur-

' f =1+ [ f@ . 2)

c€st(r)

Next, we consider the sampling problem. Note that
any subtree can be represented by a d-dimensional vec-
tor in {0,1}4, where d = |V|. A naive approach to
generate samples uniformly at random would be the
following: generate a sequence of d bits where each bit
is determined by tossing an unbiased coin; accept this



sequence if it is a subtree (which can be tested in poly-
nomial time). Clearly, this sample has been generated
uniformly at random from the set of all subtrees. Un-
fortunately, this naive approach will fail if the number
of acceptances (subtrees) form only a small fraction of
the total number of sequences which is 2%, because the
probability that we encounter a subtree may be very
small. This problem can be rectified by a reduction
from sampling to counting, which we describe in the
sequel.

We will use the term prefiz to denote a subtree T” in-
cluded by another subtree T”, both rooted at r. Let
L(T") denote the set of leaves of T’. We will reuse the
term prefiz to also denote the corresponding bit rep-
resentation of the induced subtree 7’. The number of
subtrees with T” as prefiz can be computed using the
recursive formula (2) and is given (with a slight abuse
of notation) by f(I") = (I, f(v)) — |L(T)].
Now, we can generate a sequence of d bits where each
bit u with a prefix v is determined by tossing an bi-
ased coin with success probability f(u)/f(v) and is
accepted only if it forms a tree with its prefix. The re-
sulting sequence is an exact sample drawn uniformly
at random from the set of all subtrees.

5 Conclusions and Future Work

The primary focus of this work was to rigorously
analyse structured prediction models using tools from
MCMC theory. We designed algorithms for approx-
imating the partition function and the gradient of
the log partition function with provable guarantees.
We also presented a simple Markov chain based on
Metropolis process that can be used to sample accord-
ing to exponential family distributions given that there
exists an exact uniform sampler. While in the appli-
cation settings considered in this work, we were able
to design an exact uniform sampler, we note that this
may not be feasible in general for all applications. In
such cases, we can design a Markov chain to obtain ap-
proximate samples from distributions of interest and
also bound its mixing time. This is possible using
coupling technique. Indeed, we show how to obtain
approximate samples given that there exists an exact
uniform sampler and the analysis is given in Appendix
B. We note that the coupling technique is much more
amenable than the coupling from the past technique to
the problem of obtaining approximate samples from a
non-uniform distribution given only approximate uni-
form samples.

If we were to solve the optimisation problem (1) using
iterative techniques like gradient descent, then we have
to run Markov chain simulations for every training ex-
ample in order to compute gradients in any iteration of

the optimisation routine. We therefore argue for using
online convex optimisation techniques (Hazan et al.,
2007; Shalev-Shwartz et al., 2007) as these would re-
sult in fast, scalable algorithms for structured predic-
tion. Furthermore, it would be interesting to anal-
yse the effects of our approximation guarantees on the
regret bounds and convergence rates of online algo-
rithms. Further application settings include correla-
tion clustering (Bansal et al., 2004) which corresponds
to sampling equivalence relations. This setting has
attracted a lot of attention recently in machine learn-
ing problems (Finley & Joachims, 2005; Haider et al.,
2007).

A Approximating the Partition
Function using Approximate
Samples

In Section 2.2, we designed an FPRAS for approximat-
ing the partition function under the assumption that
there exists an exact sampler. We now consider the
case where we only have approximate samples result-
ing from a truncated Markov chain.

We first begin with some definitions. Let  denote
the state space of a Markov chain with stationary dis-
tribution 7 and transition probability matrix P. The
mizing time of a Markov chain is a measure of the time
taken by the chain to converge to its stationary distri-
bution. It is measured by the total variation distance
between the distribution at time ¢ and the stationary
distribution.

Definition A.1 Let P'(u,v) denote the t-step prob-
ability of transition from w to v. The total variation
distance at time t is

1
t _ t
||P?, 7|l = glélg}l(i;eﬂ\]—" (u,v) — m(u)]| .

Definition A.2 For ¢ > 0, the mizing time 7(€) is
given by

() = min{t : ||P", 7|jw <€, V' >t} .

A Markov chain is rapidly mizing if the mixing time
is bounded by a polynomial in the input and Ine~!.

We are now ready to state the main result of this sec-
tion.

Theorem A.1 Suppose the sample size
S = [65e 2lexp(2/p)] and suppose the simula-
tion length T; is large enough that the wvariation
distance of the Markov chain from its stationary
distribution mg, is at most €/(5lexp(2/p)). Under the
assumption that the chain is rapidly mixing, there



exists an FPRAS with € as the error parameter for
computing the partition function.

Proof The proof again uses techniques described
in (Jerrum & Sinclair, 1996). The bound
Varf;/(Ef;)? < exp(2/p) (from Proposition 2.3) w.r.t.
the random variable f; will play a central role in the
proof. We cannot use this bound per se to prove
approximation guarantees for the partition function
Z(0|x). This is due to the fact that the random vari-
able f; is defined w.r.t. the distribution ngs;, but our
samples are drawn from a distribution 7g, resulting
from a truncated Markov chain, whose variation dis-
tance satisfies |Tg, — mg,;| < ¢/5lexp(2/p). There-
fore, we need to obtain a bound on Varf;/(Ef;)?,
w.r.t. the random variable fi defined analo-
gously to f; with samples drawn from the dis-
tribution 7g,. An interesting observation is the
fact that Lemma (2.4) still holds for pg;, i.e.,
exp(1l/p) — 1 < p; <exp(—1/p) +1, for all integers
p > 3, and using similar analysis that followed Lemma
(2.4), we get Varf;/(Ef;)? < exp(2/p), Vi € [I].

Also, note that |7, — mg,| < €/blexp(2/p) im-
plies |p; — pil < €/blexp(l/p) (using the fact that
exp(—1/p) < p; < exp(1/p)). Therefore,

)pi - 3)

€ €
— N\ < s < —

Equipped with these results, we are ready to compute
the sample size S needed to obtain the desired approx-
imation guarantee in the FPRAS. Let Xi(l), e ,Xi(s)
be a sequence of S independent copies of the random
variable f; obtained by sampling from the distribution
g, and let X; = S~1 Zle Xi(j) be the sample mean.
We have EX; = Eﬁ = pi, and VarX; = S‘lVarfi.
The final estimator p = Z(f|x)~! is the random vari-
able X = [['_, X; with EX = [['_, 5 = j. From (3),

we have
€ €

(1—Z)PSPAS(1+1>P~ (4)

Now, consider

if we choose S = [65e¢ 2lexp(2/p)] (because
exp(a/65) < 14 a/64 for 0 < a < 1). By applying

Chebyshev’s inequality to X, we get

Pr[(|X —p[) > (e/4)p] < —
and therefore, with probability at least 3/4, we have

€. . €. .
(1-Sp<x<+5m

Combining the above result with (4), we see that

with probability at least 3/4, the partition function

Z(0)lz) = X! lies within the ratio (1 & ¢€) of p~!.

Polynomial run time follows from the assumption that

the Markov chain is rapidy mixing. [

B Mixing Time Analysis of META
using Coupling

We will use the following lemma in our analysis.

Lemma B.1 (Aldous, 1983) (Coupling lemma)
Suppose M is a countable, ergodic Markov chain.
Let (P,Q) be a random process (the coupling).
Suppose  t:(0,1] = N is a function such that
Pr(Py ) # Que)) < €, for all € € (0,1], uniformly over
the choice of initial state (Py, Qo). Then the mizing
time 7(€) of M is bounded from above by t(e).

Theorem B.2 The mizing time of META is bounded
from above as follows:

[(Ine!)/In(1 — exp(—2BR))"'7 .

Proof Using Cauchy-Schwarz and triangle inequali-
ties, we have

Vy.y' €Y [o(z,y) — oz
The probability of an update is

,y'),0)] < 2BR.

minfl, p(y|z,0)/p(y'|z, 0)] = exp(~2BR) .

The probability of not updating for 7" steps is therefore
less than (1 — exp(—2BR))?. Let

t(e) = [(Ine 1)/ In(1 — exp(—2BR)) '] .

We now only need to show that Pr(Py) # Q) = €.
Consider
Pr(Pye) # Qu(e))
< (1 _ exp(_QBR))(ln €)/In(1—exp(—2BR))
= exp[In(1 — exp(—2BR) + ¢ — 1 + exp(—2BR))]
=e€.

The bound follows immediately from the Coupling
Lemma (B.1). 0



C Bounds on the Norm of the
Parameter Vector

We derive a useful bound on the norm of the parameter
vector 0. Let F(#) = —Inp(A,Y|X). Consider the
optimisation problem (1) for MAP estimation:

0 = argmin F(0)
0

= argmin
0 i1

Proposition C.1 The norm of the optimal parameter
vector 0 is bounded from above as follows:

i
[JERVES

Proof Consider any (z,y) € X x ). De-
note by ¢(0,z,y) the loss function, where
00,z,y) =nZ(0|z) — (¢(z,y),0) >0, and note

that £(0,z,y) = In|Y|. Therefore, the true regularised
risk w.r.t. 6 and an underlying joint distribution D
on X X )V is

E(ay)~lt(8,2,9)] + M]3 < F(0) =1n |V .

This implies that the optimal solution 6 of
the above optimisation problem lies in the set

{01101l < /In[Y|/A}.
U

References

Aldous, D. (1983). Random walks on finite groups
and rapidly mixing markov chains. Séminaire de
probabilités de Strasbourg, 17, 243-297.

Andrieu, C., de Freitas, N., Doucet, A., & Jordan,
M. I. (2003). An introduction to mcme for machine
learning. Machine Learning, 50, 5—43.

Bansal, N., Blum, A., & Chawla, S. (2004). Correla-
tion clustering. Machine Learning, 56, 89—113.

Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (2006).
Incremental algorithms for hierarchical classifica-
tion. Journal of Machine Learning Research, 7, 31—
54.

Dekel, O., Manning, C. D., & Singer, Y. (2003). Log-
linear models for label ranking. NIPS 16.

Do, C. B., Le, Q. V., & Foo, C.-S. (2009). Proximal
regularization for online and batch learning. Proc.
of ICML.

Al6]* + %Z[an(Hlxi) - <¢($i,yi)79>}] :

Elisseeff, A., & Weston, J. (2001). A kernel method
for multi-labelled classification. NIPS 14.

Finley, T., & Joachims, T. (2005). Supervised cluster-
ing with support vector machines. Proc. of ICML.

Haider, P., Brefeld, U., & Scheffer, T. (2007). Super-
vised clustering of streaming data for email batch
detection. Proc. of ICML.

Hazan, E., Agarwal, A., & Kale, S. (2007). Logarith-
mic regret algorithms for online convex optimiza-
tion. Machine Learning, 69, 169—192.

Huber, M. (1998). Exact sampling and approximate
counting techniques. Proc. of STOC.

Jerrum, M., & Sinclair, A. (1996). The Markov chain
Monte Carlo method: An approach to approxi-
mate counting and integration. In Hochbaum DS(ed)
Approzimation Algorithms for NP-hard Problems,
482-520. PWS Publishing, Boston, Mass.

Jerrum, M. R., Valiant, L. G., & Vazirani, V. V.
(1986). Random generation of combinatorial struc-
tures from a uniform distribution. Theoretical Com-
puter Science, 32, 169-188.

Kalai, A. T., & Vempala, S. (2006). Simulated anneal-
ing for convex optimization. Mathematics of Oper-
ations Research, 31, 253-266.

Metropolis, N., Rosenbluth, A., Rosenbluth, M.,
Teller, A., & Teller., E. (1953). Equation of state
calculation by fast computing machines. Journal of
Chemical Physics, 21, 1087-1092.

Propp, J. G., & Wilson, D. B. (1996). Exact sam-
pling with coupled markov chains and applications
to statistical mechanics. Random Structures and Al-
gorithms, 9, 223-252.

Randall, D. (2003). Mixing. Proc. of FOCS.

Rousu, J., Saunders, C., Szedmék, S., & Shawe-Taylor,
J. (2006). Kernel-based learning of hierarchical mul-
tilabel classification models. Journal of Machine
Learning Research, 7, 1601-1626.

Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007).
Pegasos: Primal estimated sub-gradient solver for
svm. Proc. of ICML.

Stefankovic, D., Vempala, S., & Vigoda, E. (2007).
Adaptive simulated annealing: A near-optimal con-
nection between sampling and counting. Proc. of
FOCS.



