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Abstract

The specification of a Markov decision process (MDP)
can be difficult. Reward function specification is espe-
cially problematic; in practice, it is often cognitively
complex and time-consuming for users to precisely
specify rewards. This work casts the problem of speci-
fying rewards as one of preference elicitation and aims
to minimize the degree of precision with which a re-
ward function must be specified while still allowing
optimal or near-optimal policies to be produced. We
first discuss how robust policies can be computed for
MDPs given only partial reward information using the
minimax regret criterion. We then demonstrate how
regret can be reduced by efficiently eliciting reward in-
formation using bound queries, using regret-reduction
as a means for choosing suitable queries. Empirical re-
sults demonstrate that regret-based reward elicitation
offers an effective way to produce near-optimal poli-
cies without resorting to the precise specification of
the entire reward function.

1 Introduction

Markov decision processes (MDPs) have proven to be an

extremely useful formalism for decision making in stochas-

tic environments. However, the specification of an MDP

by a user or domain expert can be difficult, e.g., cogni-

tively demanding, computationally costly, or time consum-

ing. For this reason, much work has been devoted to learn-

ing the dynamics of stochastic systems from transition data,

both in offline [11] and online (i.e., reinforcement learning)

settings [19]. While model dynamics are often relatively

stable in many application domains, MDP reward func-

tions are much more variable, reflecting the preferences and

goals of specific users in that domain. This makes reward

function specification more difficult: they can’t generally

be specified a priori, but must be elicited or otherwise as-

sessed for individual users. Even online RL methods re-

quire the specification of a user’s reward function in some

form: unlike state transitions, it is impossible to directly

observe a reward function except in very specific settings

with simple, objectively definable, observable performance

criteria. The “observability” of reward is a convenient fic-

tion often assumed in the RL literature.

Reward specification is difficult for three reasons. First, it

requires the translation of user preferences—which states

and actions are “good” and “bad”—into precise numerical

rewards. As has been well-recognized in decision analysis,

people find it extremely difficult to quantify their strength

of preferences precisely using utility functions (and, by ex-

tension, reward functions) [10]. Second, the requirement

to assess rewards and costs for all states and actions im-

poses an additional burden (one that can be somewhat alle-

viated by the use of multiattribute models in factored MDPs

[5]). Finally, the elicitation problem in MDPs is further ex-

acerbated by the potential conflation of immediate reward

(i.e., r(s, a)) with long-term value (either Q(s, a) or V (s)):
states can be viewed as good or bad based on their ability

to make other good states reachable.

In this paper, we tackle the problem of reward elicitation

in MDPs by treating it as a preference elicitation problem.

Recent research in preference elicitation for non-sequential

decision problems exploits the fact that optimal or near-

optimal decisions can often be made with relatively impre-

cise specification of a utility function [6, 8]. Interactive

elicitation and optimization techniques take advantage of

feasibility restrictions on actions or outcomes to focus their

elicitation efforts on only the most relevant aspects of a util-

ity function. We adopt a similar perspective in the MDP

setting, demonstrating that optimal and near-optimal poli-

cies can be often found with limited reward information.

For instance, reward bounds in conjunction with MDP dy-

namics can render certain regions of state space provably

dominated by others (w.r.t. value).

We make two main contributions that allow effective elici-

tation of reward functions. First, we develop a novel robust

optimization technique for solving MDPs with imprecisely

specified rewards. Specifically, we adopt the minimax re-

gret decision criterion [6, 18] and develop a formulation for

MDPs: intuitively, this determines a policy that has mini-

mum regret, or loss w.r.t. the optimal policy, over all pos-

sible reward function realizations consistent with the cur-



rent partial reward specification. Unlike other work on ro-

bust optimization for imprecisely specified MDPs, which

focuses on the maximin decision criterion [1, 13, 14, 16],

minimax regret determines superior policies in the presence

of reward function uncertainty. We describe an exact com-

putational technique for minimax regret and suggest sev-

eral approximations. Second, we develop a simple elicita-

tion procedure that exploits the information provided by the

minimax-regret solution to guide the querying process. In

this work, we focus on simple schemes that refine the upper

and lower bounds of specific reward values. We show that

good or optimal policies can be determined with very im-

precise reward functions when elicitation effort is focused

in this way. Our work thus tackles the problem of reward

function precision directly. While we do not address the

issue of reward-value conflation in this model, we will dis-

cuss it further below.

2 Notation and Problem Formulation

We begin by reviewing MDPs and defining the minimax

regret criterion for MDPs with imprecise rewards.

2.1 Markov Decision Processes

Let 〈S, A, {Psa}, γ, α, r〉 be an infinite horizon MDP with:

finite state set S of size n; finite action set A of size k; tran-

sition distributions Psa(·), with Psa(t) denoting the proba-

bility of reaching state t when action a is taken at s; reward

function r(s, a); discount factor γ < 1; and initial state dis-

tribution α(·). Let r be the n×k-vector with entries r(s, a)
and P the n × k × n transition matrix. We use ra and Pa

to denote the obvious restrictions of these to action a. We

define E to be the nk ×n-matrix with a row for each state-

action pair and one column per state, with Esa,t = Psa(t)
if t 6= s, and Esa,t = Psa(t) − 1 if t = s.

Our aim is to find an optimal policy that maximizes ex-

pected discounted reward. A deterministic policy π : S →
A has value function V π satisfying:

V π(s) = r(s, π(s)) + γ
∑

s′

Psπ(s)(s
′)V π(s′)

or equivalently (slightly abusing subscript π):

Vπ = raπ
+ γPaπ

Vπ (1)

We also define the Q-function Q : S × A → R as:

Qπ
a

= ra + γPaV
π ,

i.e., the value of executing π forward after taking action a.

A policy π induces a visitation frequency function fπ,

where fπ(s, a) is the total discounted joint probabil-

ity of being in state s and taking action a. The pol-

icy can readily be recovered from fπ, via π(s, a) =
fπ(s, a)/

∑
a′ fπ(s, a′). (For deterministic policies, fπ

sa
=

0 for all a other than π(s).) We use F to denote the set

of valid visitation frequency functions (w.r.t. a fixed MDP),

i.e., those satisfying [17]:

γE⊤f + α = 0. (2)

The optimal value function V ∗ satisfies:

αV∗ = r⊤f∗ (3)

where f∗ = sup
f
r⊤f [17]. Thus, determining an optimal

policy is equivalent to finding optimal frequencies f∗.

2.2 Minimax Regret for Imprecise MDPs

A number of researchers have considered the problem of

solving imprecisely specified MDPs (see below). Here we

focus on the solution of MDPs with imprecise reward func-

tions. Since fully specifying reward functions is difficult,

we will often be faced with the problem of computing poli-

cies with an incomplete reward specification. Indeed, as

we see below, we often explicitly wish to leave parts of a

reward function unelicited (or otherwise unassessed). For-

mally we assume that r ∈ R, where the feasible reward set

R reflects current knowledge of the reward. These could

reflect: prior bounds specified by a user or domain expert;

constraints that emerge from an elicitation process (as dis-

cussed below); or constraints that arise from observations

of user behavior (as in inverse RL [15]). In all of these

situations, we are unlikely to have full reward information.

Thus we require a criterion by which to compare policies

in an imprecise-reward MDP.

We adopt the minimax regret criterion, originally suggested
(though not endorsed) by Savage [18], and applied with
some success in non-sequential decision problems [6, 7].
Let R be the set of feasible reward functions. Minimax
regret can be defined in three stages:

R(f , r) = max
g∈F

r · g − r · f (4)

MR(f ,R) = max
r∈R

R(f , r) (5)

MMR(R) = min
f∈F

MR(f ,R) (6)

R(f , r) is the regret of policy f (as represented by its visita-

tion frequencies) relative to reward function r: it is simply

the loss or difference in value between f and the optimal

policy under r. MR(f ,R) is the maximum regret of f w.r.t.

feasible reward set R. Should we chose a policy with vis-

itation frequencies f , MR(f ,R) represents the worst-case

loss over all possible realizations of the reward function;

i.e., the regret incurred in the presence of an adversary who

chooses the r from R to maximize our loss. Finally, in

the presence of such an adversary, we wish to minimize

this max regret: MMR(R) is the minimax regret of feasi-

ble reward set R. This can be viewed as a game between a

decision maker choosing f who wants to minimize loss rel-

ative to the optimal policy, and an adversary who chooses

a reward to maximize this loss given the decision maker’s



choice of policy. Any f∗ that minimizes max regret is a

minimax optimal policy, while the r that maximizes its re-

gret is the witness or adversarial reward function, and the

optimal policy g for r is the witness or adversarial policy.

Minimax regret has a variety of desirable properties relative

to other robust decision criteria [6]. Compared to Bayesian

methods that compute expected value using a prior over R
[3, 8], minimax regret provides worst-case bounds on loss.

Specifically, let f be the minimax regret optimal visitation

frequencies and let δ be the max regret achieved by f ; then,

given any instantiation of r, no policy will outperform f

by more than δ w.r.t. expected value. Minimax optimal de-

cisions can often be computed more effectively than de-

cisions that maximize expected value w.r.t. to some prior.

Finally, it has been shown to be a very effective criterion

for driving elicitation in one-shot problems [6, 7].

2.3 Robust Optimization for Imprecise MDPs

Most work on robust optimization for imprecisely speci-
fied MDPs adopts the maximin criterion, producing poli-
cies with maximum security level or worst-case value
[1, 13, 14, 16]. Restricting attention to imprecise rewards,
the maximin value is given by:

MMN(R) = max
f∈F

min
r∈R

r · f (7)

Most models are defined for uncertainty in any MDP pa-

rameters, but algorithmic work has focused on uncertainty

in the transition function, and the of eliciting information

about transition functions or rewards is left unaddressed.

Robust policies can be computed for uncertain transition

functions using the maximin criterion by decomposing the

problem across time-steps and using dynamic program-

ming and an efficient suboptimization to find the worst case

transition function [1, 13, 16]. McMahan, Gordon, and

Blum [14] develop a linear programming approach to ef-

ficiently compute the maximin value of an MDP (we em-

pirically compare this approach to ours below). Delage

and Mannor [9] address the problem of uncertainty over re-

ward functions (and transition functions) in the presence of

prior information, using a percentile criterion, which can

be somewhat less pessimistic than maximin. They also

contribute a method for eliciting rewards using sampling to

approximate the expected value of information of noisy in-

formation about a point in reward space. The percentile ap-

proach is neither fully Bayesian nor does it offer a bound on

performance. Zhang and Parkes ([20]) also adopt maximin

in a model that assumes an inverse reinforcement learning

setting for policy teaching. The approach is essentially a

form of reward elicitation which the queries are changes to

a student’s reward, and information is gained by observing

change in the student’s behavior.

Generally, the maximin criterion leads to conservative poli-

cies by optimizing against the worst possible instantiation

of r (as we will see below). Minimax regret offers a more

intuitive measure of performance by assessing the policy

ex post and making comparisons only w.r.t. specific reward

realizations. Thus, policy π is penalized on reward r only

if there exists a π′ that has higher value w.r.t. r itself.

3 Minimax Regret Computation

As discussed above, maximin is amenable to dynamic pro-

gramming since it can be decomposed over decision stages.

This decomposition does not appear tenable for minimax

regret since it grants the adversary too much power by

allowing rewards to be set independently at each stage

(though see our discussion of future work below). Fol-

lowing the formulations for non-sequential problems devel-

oped in [6, 7], we instead formulate the optimization using

a series of linear (LPs) and mixed integer programs (MIPs)

that enforce a consistent choice of reward across time.

Assume feasible reward set R is represented by a convex
polytope Cr ≤ d, which we assume to be bounded. The
constraints on r arise as discussed above (prior bounds,
elicitation, or behavioral observation). Minimax regret can
then be expressed as following minimax program:

min
f

max
g

max
r

r · g − r · f

subject to: γE
⊤
f + α = 0

γE
⊤
g + α = 0

Cr ≤ d

This is equivalent to a minimization:

minimize
f,δ

δ (8)

subject to: r · g − r · f ≤ δ ∀ g ∈ F , r ∈ R

γE
⊤
f + α = 0

This corresponds to the standard dual LP formulation of

an MDP with the addition of adversarial policy constraints.

The infinite number of constraints can be reduced: first we

need only retain as potentially active those constraints for

vertices of polytope R; and for any r ∈ R, we only require

the constraint corresponding to its optimal policy g∗
r . How-

ever, vertex enumeration is not feasible; so we apply Ben-

ders’ decomposition [2] to iteratively generate constraints.

At each iteration, two optimizations are solved. The master

problem solves a relaxation of program (8) using only a

small subset of the constraints, corresponding to a subset

Gen of all 〈g, r〉 pairs; we call these generated constraints.

Initially, this set is arbitrary (e.g., empty). Intuitively, in

the game against the adversary, this restricts the adversary

to choosing witnesses (i.e., 〈g, r〉 pairs) from Gen.

Let f be the solution to the current master problem and

MMR′(R) its objective value (i.e., minimax regret in the

presence of the restricted adversary). The subproblem gen-

erates the maximally violated constraint relative to f . In

other words, we compute MR(f ,R); its solution deter-

mines the witness points 〈g, r〉 by removing restrictions



on the adversary. If MR(f ,R) = MMR′(R) then the con-

straint for 〈g, r〉 is satisfied at the current solution, and in-

deed all unexpressed constraints must be satisfied as well.

The process then terminates with minimax optimal solu-

tion f . Otherwise, MR(f ,R) > MMR′(R), implying that

the constraint for 〈g, r〉 is violated in the current relaxation

(indeed, it is the maximally violated such constraint). So it

is added to Gen and the process repeats.

Computation of MR(f ,R) is realized by the following MIP,

using value and Q-functions:1

maximize
Q,V,I,r

α · V − r · f (9)

subject to: Qa = ra + γPaV ∀ a ∈ A

V ≥ Qa ∀ a ∈ A (10)

V ≤ (1 − Ia)Ma + Qa ∀ a ∈ A (11)

Cr ≤ d
X

a

Ia = 1 (12)

Ia(s) ∈ {0, 1} ∀a, s (13)

Ma = M
⊤ − M

⊥

a

Here I represents the adversary’s policy, with Ia(s) de-

noting the probability of action a being taken at state s
(constraints (12) and (13) restrict it to be deterministic).

Constraints (10) and (11) ensure that the optimal value

V (s) = Q(s, a) for a single action a. We ensure a tight

M⊥

a by setting M⊤ to be the optimal value function V⊤ of

the optimal policy with respect to the best setting of each

individual reward point and M⊥
a to be the Q-value Q⊥

a of

the optimal policy with respect to the worst point-wise set-

ting of rewards (the resulting rewards need not be feasible).

The subproblem does not directly produce a witness pair

〈gi, ri〉 for the master constraint set; instead it provides ri

and Vi. However, we do not need access to gi directly; the

constraint can be posted using the reward function ri and

the value α ·Vi, since α ·Vi = ri ·gi (and gi is required to

determine this adversarial value in the posted constraint).

In practice we have found that the iterative constraint gen-

eration converges quickly, with relatively few constraints

required to determine minimax regret (see Sec. 5). How-

ever, the computational cost per iteration can be quite high.

This is due exclusively to the subproblem optimization,

which requires the solution of a MIP with a large number

of integer variables, one per state-action pair. The master

problem optimization, by contrast, is extremely effective

(since it is basically a standard MDP linear program). This

suggests examination of approximations to the subproblem,

i.e., the computation of max regret MR(f ,R). This is also

motivated by our focus on reward elicitation. We wish to

use minimax regret to drive query selection: our aim is not

1Specifying max regret in terms of visitation frequencies (i.e.,
the standard dual MDP formulation) gives rise to a non-convex
quadratic program. Regret maximization does not lend itself to a
natural, linear primal formulation.

to compute minimax regret for its own sake, but to deter-

mine which state-action pairs should be queried, i.e., which

have the potential to reduce minimax regret. The visitation

frequencies used by our heuristics need not correspond to

exact minimax optimal policy.

We have explored several promising alternatives, including

an alternating optimization model that computes an adver-

sarial policy (for a fixed reward) and an adversarial reward

(for a fixed policy). This reduces the quadratic optimization

for max regret to a sequence of LPs. An simpler approx-

imation is explored here (which performs as well in prac-

tice): we solve the LP relaxation of the MIP by removing

the integrality constraints (13) on the binary policy indica-

tors. The value function V resulting from this relaxation

does not accurately reflect the (now stochastic) adversarial

policy: V may include a fraction of the big-M term due to

constraint (10). However, the reward function r selected

remains in the feasible set, and, empirically, the optimal

value function for r yields a solution to the subproblem

that is close to optimal.2 Since the reward is valid choice,

this solution is guaranteed to be a lower bound on the so-

lution to the subproblem. When this approximate subprob-

lem solution is used in constraint generation, convergence

is no longer guaranteed; however, the solution to the master

problem represents a valid lower bound on minimax regret.

4 Reward Elicitation

Reward elicitation and assessment can proceed in a vari-

ety of ways. Many different query forms can be adopted

for user interaction. Similarly, observed user behavior can

be used to induce constraints on the reward function under

assumptions of user “optimality” [15]. In this work, we fo-

cus on simple bound queries, though our strategies can be

adapted to more general query types. We discuss some of

these below.3

We assume that R is given by upper and lower bounds on

r(s, a) for each state-action pair. A bound query takes the

form “Is r(s, a) ≥ b?” where b lies between the upper

and lower bound on r(s, a). While this appears to require a

direct, quantitative assessment of value/reward by the user,

it can be recast as a standard gamble [10], a device used

in decision analysis to reduce this to preference query over

two outcomes (one of which is stochastic). For simplicity,

we express it in this bound form. Unlike reward queries [9],

which require a direct assessment of r(s, a), bound queries

require only a yes-no response and are less cognitively de-

manding. A response tightens either the upper or lower

2Finding the optimal value function for r requires solving a
standard MDP LP.

3We allow reward queries about any state-action pair, in con-
trast to online RL formalisms, in which information can be
gleaned only about the reward (and dynamics) at the current state.
As such, we face no exploration-exploitation tradeoff.



bound on r(s, a).4

Bound queries offer a natural starting point for the inves-

tigation of reward elicitation. Of course, many alternative

query modes can be used, with the sequential nature of the

MDP setting opening up choices that don’t exist in one-

shot settings. These include the direct comparison of poli-

cies; comparison of (full or partial) state-action trajectories

or distributions over trajectories; and comparisons of out-

comes in factored reward models. Trajectory comparisons

can be facilitated by using counts of relevant (or reward-

bearing) events as dictated by a factored reward model for

example. These query forms should prove useful and even

more cognitively penetrable. However, the principles and

heuristics espoused below can be adapted to these settings.

There are many ways to select the point (s, a) at which to
ask a bound query. We explore some simple myopic heuris-
tic criteria that are very easy to compute, are based on cri-
teria suggested in [6]. The first selection heuristic is called
halve largest gap (HLG), which selects the point (s, a) with
the largest gap between its upper and lower bound. For-
mally, we define the gap ∆(s, a) and largest gap by:

∆(s, a) = max
r′∈R

r
′(s, a) − min

r∈R
r(s, a)

argmax
a∗∈A,s∗∈S

∆(s∗, a∗)

The second selection heuristic is the current solution (CS)
strategy, and uses the visitation frequencies from the min-
imax optimal solution f or the adversarial witness g to
weight each gap. Intuitively, if a query involves a reward
parameter that influences the value of neither f nor g, min-
imax regret will not be reduced, and visitation frequencies
quantify the degree of influence. Formally CS selects the
point:

argmax
a∗∈A,s∗∈S

max{f(s∗, a∗)∆(s∗, a∗), g(s∗, a∗)∆(s∗, a∗)}.

Given the selected (s∗, a∗), bound b in the query is set

to the midpoint of the interval for r(s∗, a∗). Thus either

response will reduce the interval by half. It is easy to apply

CS to the maximin criterion as well, using the visitation

frequencies associated with the maximin policy.

5 Experiments

We assess the general performance of our approach using a

set of randomly generated MDPs and specific MDPs aris-

ing in an autonomic computing setting. We assess scal-

ability of our procedures, as well as the effectiveness of

minimax regret as a driver of elicitation.

We first consider randomly generated MDPs. We impose

structure on the MDP by creating a semi-sparse transition

function: for each (s, a)-pair, ⌈log n⌉ reachable states are

drawn uniformly and a Gaussian is used to generate tran-

sition probabilities. We use a uniform initial state distri-

bution α and discount factor γ = 0.95. The true reward

4Indifference (e.g., “I’m not sure”) can also be handled by con-
straining bounds to be within ε of the query point.
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Figure 1: Reduction in regret gap during constraint generation.

is drawn uniformly from a fixed interval and uncertainty

w.r.t. this true (but unknown) reward is created by bound-

ing each (s, a)-pair independently with bounds drawn ran-

domly: thus the set of feasible rewards forms a hyper-

rectangle. 5

5.1 Computational Efficiency

To measure the performance of minimax regret computa-

tion, we first examine the constraint generation procedure.

Fig. 1 plots the regret gap between the master problem

value and subproblem value at each iteration versus the

time (in ms.) to reach that iteration. Results are shown for

20 randomly generated MDPs with ten states and five ac-

tions. Fig. 2 shows how minimax regret computation time

increases with the size of the MDP (5 actions, varying num-

ber of states). Constraint generation using the MIP formu-

lation scales super-linearly, hence computing minimax re-

gret exactly is only feasible for small MDPs using this for-

mulation; by comparison the linear relaxation is far more

efficient.6 On the other hand, minimax regret computation

has very favorable anytime behavior, as exhibited in Fig. 1.

During constraint generation, the regret gap shrinks very

quickly early on. If exact minimax regret is not needed,

this property allows for fast approximation.

5.2 Approximation Error

To evaluate the linear relaxation scheme for max regret,

we generated random MDPs, varying the number of states.

Fig. 3 shows average relative error over 100 runs. The ap-

proximation performs well and, encouragingly, error does

not increase with the size of the MDP. We also evaluate its

impact on minimax regret when used to generate violated

constraints. Fig. 3 also shows relative error for minimax

regret to be small, well under 10% on average.

5CPLEX 11 is used for all MIPS and LPs, and all code run on
a PowerEdge 2950 server with dual quad-core Intel E5355 CPUs.

6Of note, the computations shown here are using the initial re-
ward uncertainty. As queries refine the reward polytope, regret
computation becomes faster in general. This has positive impli-
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Figure 3: Relative approximation error of linear relaxation

5.3 Elicitation Effectiveness

We analyzed the effectiveness of our regret-based elicita-

tion procedure by comparing it with the maximin criterion.

We implemented a variation of the Double Oracle maximin

algorithm developed by McMahan, Gordon & Blum [14].

The computation time for maximin is significantly less the

that of minimax regret—this is expected since maximin re-

quires only the solution of a pair of linear programs.

We use both maximin and minimax regret to compute poli-

cies at each step of preference elicitation, and paired each

with the current solution (CS) and halve largest gap (HLG)

query strategies, giving four elicitation procedures: MMR-

HLG (policies are computed using regret, queries gener-

ated by HLG); MMR-CS (regret policies, CS queries);

MM-HLG (maximin policies, HLG queries); and MM-CS

(maximin policies, CS queries). We assess each proce-

dure by measuring the quality of the policies produced af-

ter each query, using the following metrics: (a) its maximin

value given the current (remaining) reward uncertainty; (b)

its max regret given the current (remaining) reward uncer-

tainty; and (c) its true regret (i.e., loss w.r.t. the optimal pol-

icy for the true reward function r, where r is used to gen-

erate query responses). Minimax regret is the most critical

since it provides the strongest guarantees; but we compare

to maximin value as well, since maximin policies are op-

timizing against a very different robustness measure. True

cations for anytime computation.
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MMR-CS.

regret is not available in practice; but it gives an indication

of how good the resulting policies actually are (as opposed

to a worst-case bound).

Fig. 4 show the results of the comparison on each mea-

sure. MMR-CS performs extremely well on all measures.

Somewhat surprisingly, it outperforms MM-CS and MM-

HLG w.r.t. maximin value (except at the very early stages).

Even though the maximin procedures are optimizing max-

imin value, MMR-CS asks much more informative queries,

allowing for a larger reduction in reward uncertainty at the

most relevant state-action pairs. This ability of MMR-CS to

identify the highest impact reward points becomes clearer

still when we examine how much reduction there is in re-

ward intervals over the course of elicitation. Let χ measure

the sum of the length of the reward intervals. At the end

of elicitation, MMR-HLG reduces χ to 15.6% of its orig-

inal value (averaged over the 20 MDPs), while MMR-CS

only reduces χ to 67.8 % of its original value. MMR-CS is

effectively eliminating regret while leaving a large amount

of uncertainty. Fig. 5 illustrates this using a histogram of

the number of queries asked by MMR-CS about each of

the 1000 possible state-action pairs.7 We see that MMR-

CS asks no queries about the majority of state-action pairs,

and asks quite a few queries (up to eight) about a small

number of “high impact” pairs.

Fig. 4(b) shows that MMR-CS is able to reduce regret to

zero (i.e., find an optimal policy) after less than 100 queries

on average. Recall that the MDP has 50 reward parameters

(state-action pairs), so on average, less than two queries

per parameter are required to find a provably optimal pol-

icy. The minimax regret policies also outperform the max-

imin policies by a wide margin with respect to true regret

(Fig. 4(c)). With the CS heuristic, a near-optimal policy is

found after fewer than 50 queries (less than one query per

parameter), though to prove that the policy is near-optimal

requires further queries (to reduce minimax regret).

It is worth noting that during preference elicitation, HLG

does not require that minimax regret actually be computed.

720 MDPs with 10 states, 5 actions each.
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Figure 4: Reward elicitation with randomly generated MDPs.

Minimax regret is only necessary to assess when to stop the

elicitation process (i.e., to determine if minimax regret has

dropped to an acceptable level). One possible modifica-

tion to reduce the time between queries is to only compute

minimax regret after every k queries. Of course, the HLG

strategy will lead to a slower reduction in true regret and

minimax regret as shown in Figs. 4(b) and 4(c).

To further evaluate our approach we elicit the reward func-

tion for an autonomic computing scenario [4] in which we

must allocate computing or storage resources to applica-

tion servers as their client demands change over time. We

assume k application server elements and N units of re-

source available to be assigned to the servers (plus a “zero

resource”). An allocation n = 〈n1 . . . nk〉 must satisfy∑k

i ni < N . There are D demand levels at which each

server can operate, reflecting client demands. A demand

state d = 〈d1 . . . dk〉 specifies the current demand for each

server. A state of the MDP comprises the current resource

allocation and the current demand state: s = 〈n,d〉. Ac-

tions are new allocations m = 〈m1 . . . mk〉 of the N re-

sources to the k servers. Reward r(n,d,m) = u(n,d) −
c(n,d,m) decomposes as follows. Utility u(n,d) is the

sum of server utilities ui(ni, di). The MDP is initially

specified with strict uncertainty over the utilities ui how-

ever, we assume that each utility function ui is monotonic

non-decreasing in demand and resource level. The cost

c(n,d,m) is the sum of the costs of taking away one unit

of resource from each server at any stage. Uncertainty in

demand is exogenous and the action in the current state

uniquely determines the allocation in the next state. Thus

the transition function is composed of k Markov chains

Pr(d′i | di), i ≤ k. Reward specification in this context

is inherently distributed and quite difficult: the local util-

ity function ui for server i has no convenient closed form.

Server i can respond only to queries about the utility it gets

from a specific resource allocation level, and this requires

intensive optimization and simulation on the part of the

server [4]; hence minimizing the number of such queries

is critical.

We constructed a small instance of the autonomic comput-

ing scenario with 2 servers, 3 demand levels and 3 (indi-

visible) units of resource. The combined state space of

both servers includes 32 demand levels and 10 possible al-

locations of resources leading to 90 states and 10 actions.

We modeled the uncertainty over rewards using a hyper-

rectangle as with the random MDPs. We compared elicita-

tion approaches as above, this time using the linear relax-

ation to compute minimax regret (each minimax computa-

tion takes under 3s.). Fig. 6 shows that MMR-CS again

outperforms the maximin criterion on each measure. Min-

imax regret and true regret fall to almost zero after 200

queries. Recall that the autonomic MDP had 900 state-

action pairs—the additional problem structure results in

fewer than 0.25 queries being asked for each state-action

pair. In fact, on average MMR-CS only asks about 106.5
distinct state-action pairs, only examining 12% of the re-

ward space. By comparison, the queries chosen by the

MM-CS strategy cover just over 68% of the reward space.

As with random MDPs, minimax regret quickly reduces re-

gret because it focuses queries on the “high impact” state-

action pairs.

Overall, our regret-based approach is quite appealing from

the perspective of reward elicitation. While the regret com-

putation is more computationally intensive than other cri-

teria, it provides arguably much more natural decisions in

the face of reward uncertainty. More importantly, from the

perspective of elicitation, it is much more attractive than

maximin w.r.t. the number of queries required to produce

high-quality policies. As long as interaction time (time be-

tween queries) remains reasonable, reducing user burden

(or other computational costs required to answer queries)

is our primary goal.

6 Conclusions & Future Work

We have developed an approach to reward elicitation in

MDPs that eases the burden of reward function elicitation.

Minimax regret not only offers robust policies in the face

of reward uncertainty, but we’ve shown it also allows one

to focus elicitation attention on the most important aspects

of the reward function. While the computational costs are

significant, it is an extremely effective driver of elicitation,
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Figure 6: Elicitation of reward in autonomic computing domain

thus reducing the (more important) cognitive or computa-

tional cost of reward determination. Furthermore, it lends

itself to anytime approximation.

The somewhat preliminary nature of this work leaves many

interesting directions for future research. Perhaps most in-

teresting is the development of more informative and intu-

itive queries that capture the sequential nature of the elici-

tation problem. Direct comparison of policies allows one to

distinguish value from reward, but are cognitively demand-

ing. Trajectory comparison similar distinguishes value, but

may contain irrelevant detail. However, trajectory sum-

maries (e.g., counts of relevant reward bearing events) may

be more perspicuous, and could be generated to reflect

expected “event counts” given a policy. Other forms of

queries should also prove valuable, but all exploit the ba-

sic idea embodied by minimax regret and the current solu-

tion heuristic. Another direction for improving elicitation

is to incorporate implicit information in a manner similar

to policy teaching [20]. Inverse RL [15] can be also used

to translate observed behavior into constraints on reward.

Some Bayesian models [6, 8] allow noisy query responses

and adding this to our regret model is another important

direction. Two approaches include: approximate indiffer-

ence constraints and regret-based sensitivity analysis. The

efficiency of the minimax regret computation remains an

important research topic. We are exploring the use of dy-

namic programming to generate linear representations of

the best policies over all regions of reward space (much

like POMDPs) which can greatly assist max regret compu-

tation. We are also exploring techniques that exploit fac-

tored MDP structure using LP approaches [12].
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