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Abstract

Confidence measures for the generalization
error are crucial when small training samples
are used to construct classifiers. A common
approach is to estimate the generalization er-
ror by resampling and then assume the re-
sampled estimator follows a known distribu-
tion to form a confidence set [Kohavi 1995,
Martin 1996,Yang 2006]. Alternatively, one
might bootstrap the resampled estimator of
the generalization error to form a confidence
set. Unfortunately, these methods do not re-
liably provide sets of the desired confidence.
The poor performance appears to be due to
the lack of smoothness of the generalization
error as a function of the learned classifier.
This results in a non-normal distribution of
the estimated generalization error. We con-
struct a confidence set for the generaliza-
tion error by use of a smooth upper bound
on the deviation between the resampled es-
timate and generalization error. The confi-
dence set is formed by bootstrapping this up-
per bound. In cases in which the approxima-
tion class for the classifier can be represented
as a parametric additive model, we provide
a computationally efficient algorithm. This
method exhibits superior performance across
a series of test and simulated data sets.

1 Introduction

Measures of uncertainty are particularly critical in the
small sample setting where training set to training set
variation is likely to be high. One example occurs
in medical diagnostics in mental health in which one
may want to classify patients as “low risk” or “high
risk” for relapse based on observed medical history. In
these settings the signal to noise ratio is likely to be

small. Thus, both the estimated generalization error
and the confidence in this estimate must be considered
as the confidence might be very low due to the noise
in the data. In addition, in this setting data must
be collected from clinical trials and is subsequently
expensive to obtain. The cost of these trials, coupled
with notoriously low adherence rates, leads to data sets
which are too small to admit a test set. Any inference
for the generalization error must be derived from a
single training set.

In this paper, we introduce a new method for obtain-
ing confidence bounds on the generalization error in
the small sample setting. The paper is organized as
follows. Section 2 of the paper provides the frame-
work for this research, and describes why this prob-
lem is difficult. We also survey several standard ap-
proaches to this problem and motivate the need for a
new method. In section 3 we derive a new bound called
the constrained uniform deviation bound (CUD bound
hereafter) on the deviation between the estimated and
true generalization errors and describe how to use this
bound to form confidence sets. Section 4 gives an ef-
ficient algorithm for computing the new upper bound
when the classifier can be represented as a paramet-
ric additive model. Section 5 describes an empirical
study of several methods for constructing confidence
sets and analyzes the results.

2 Framework

Our objective is to derive a confidence set for the
generalization error under minimal assumptions. To
this end, we only assume a training set D =
{(xi, yi)}i=1,...,n of n iid draws from (unknown) dis-
tribution F over X ×Y, where X is any feature space
and Y = {−1, 1} is the label space. We also assume
that there is a space of potential classifiers G from
which we choose our classifier f using some criterion
that depends on our training set D. Equally important
is what we do not assume. We make no assumptions



about the structure of G, nor do we assume that the
Bayes classifier belongs to G. Finally, we do not as-
sume the existence of an underlying “true” determin-
istic function y = g(x) which generates the data.

Given a training set D we choose a classifier f ∈ G us-
ing some criterion (discussed in detail below). The
classifier f aims to predict the value of a label y
given feature x. Thus, a natural measure of the
performance of f is its generalization error ξ(f) =
E(X,Y )∼FI{f(X) 6= Y }. That is, the probability that
f will fail to correctly predict label Y from feature X.

When data are abundant, inference for the general-
ization error is straightforward. In this setting, one
partitions the available data into two sets L and T
called a learning set and a testing set respectively.
Estimation is done by choosing classifier f ∈ G us-
ing learning set L and then using empirical estimate
ξ̂test(f) = 1

#T
∑

(xi,yi)∈F I{f(xi) 6= yi}. The exact

distribution of ξ̂test is known and confidence sets can
be computed numerically [Langford 2005(1)]. More-
over, ξ̂test(f) is, under mild regularity conditions,
asymptotically normal, making standard asymptotic
inference applicable.

The convenient properties of ξ̂test(f) are a direct con-
sequence of the independent test set T . We define the
small sample setting as one in which the data are too
meager to admit a test set. Without a test set one is
forced to use the same data both to train and eval-
uate the classifier. Estimates and confidence sets for
the generalization error must be constructed using re-
sampling (e.g. bootstrap, cross-validation, etc.). How-
ever, when the training sets are small, the training set
to training set distribution of these estimates may be
highly non-normal, thus complicating the construction
of confidence sets. This is particularly the case here as
the generalization error ξ(f) is a non-smooth function
of f .

It is worth pointing out that there exist alternative
motivations for seeking confidence sets in the absence
of a testing set. The formation of a test set essen-
tially “wastes” observations which are not used in the
training of the classifier. The omission of these obser-
vations can significantly deteriorate the performance
of the learned classifier. Another motivation is the
existence of learning algorithms which assume that
training accuracy correctly reflects generalization error
when selecting a classifier. Using high quality bounds
on the generalization error in the algorithm can boost
performance [Langford 2005(2)] particularly when the
training data is small.

Relevant Work

Much of the work on small sample inference for the
generalization error has focused on point estimates
via resampling. Popular point estimates include the
.632+ estimator given by Efron and Tibshirani [Efron
1995], the LV 1O∗ estimate given by Weiss [1991], and
more recently the bolstered error estimate of Braga-
Neto and Dougherty [Dougherty 2004]. A nice survey
of generalization error estimates is given by Schiavo
and Hand [Schiavo 2000].

In the literature, a variety of general approaches have
been suggested for constructing confidence sets for the
generalization error in the absence of a test set. We
discuss them in turn.

1. Known distribution. One approach to this prob-
lem is to assume the resampled estimator follows
a known distribution Φ [Kohavi 1995, Yang 2006].
Typically Φ is taken to be normal, so that a 1− δ
confidence set for estimated generalization error
ξ̂(f) of classifier f is given by

ξ̂(f) ± Φ−1

(
δ

2

)√
ν/
√

n∗,

where ν is some estimate of the standard error
and n∗ is the effective sample size1 used to con-
struct the resampled estimator. This approach
mimics the case where ξ̂(f) is constructed from
a training set and then a normal approximation
would have been justified for the estimator of the
generalization error based on an independent test
set.

2. Bayesian Approach. This approach mimics the
case where ξ̂(f) is constructed from a training
set and then using an independent test set, a
Bayesian approach is used to construct a poste-
rior confidence set. Here we specify a Beta prior
π on the generalization error ξ(f) [Martin 1995].

ξ(f) ∼ β(γ, λ).

If an independent test set T = {(xi, yi)}i=1,...,m

were available then random variables zi =
I(f(xi) = yi) would be iid bern(ξ). The posterior
P (ξ(f)|z1, . . . , zm) is also a Beta distribution,

ξ(f)|z1, . . . , zm ∼ β(γ + mξ̂(f), λ + m−mξ̂(f))

Note that the posterior depends only on the num-
ber of misclassified points, mξ̂(f) on the test set.

1Here we use effective sample size to mean the expected
number of unique points used in estimation during a single
step of a resampling procedure.



Suppose we do not have a test set. Then given re-
sampled estimate ξ̂, we can view (n− n∗)ξ̂(f) as
the misclassified examples where n and n∗ are the
full and effective sample sizes. One can think of
this as training on a set of size n∗ and testing on a
set of size n− n∗. Using this idea, the resampled
model is given by,

ξ(f) ∼ β(γ, λ)
ξ(f)|z1, . . . , zm ∼ β(ν, η)

ν = γ + ξ̂(f)(n− n∗)

η = λ + (1− ξ̂(f))(n− n∗).

The posterior given above can be used to con-
struct confidence intervals for ξ(f).

3. Direct Estimation. In this approach we repeat-
edly resample the data and from each resampled
dataset we construct a point estimate of the gen-
eralization error (this may require further resam-
pling). This process generates a sequence of esti-
mates for the generalization error. A confidence
set can be constructed, for example, by taking the
quantiles of the generated sequence of resampled
estimators.

The methods described above can work well in some
settings. Distribution-based methods tend to work
well when distributional assumptions are met, provid-
ing tight confidence sets and accurate coverage. How-
ever, these methods can be non-robust to large devi-
ations from distributional assumptions and can suf-
fer from unacceptable type I errors. Direct estimation
avoids distributional assumptions but is unstable for
small samples because of non-smooth 0-1 loss. These
problems are illustrated in the experiments sections of
the paper.

Ideally confidence sets for the generalization error
should satisfy the following criteria.

1. The confidence set should deliver the promised
coverage for a wide variety of examples.

2. The confidence set should be efficiently com-
putable.

3. The confidence set should be theoretically justi-
fied.

Given multiple algorithms for constructing confidence
sets satisfying the above, algorithms that produce con-
fidence sets of smallest size are preferred. We propose a
new approach and compare this approach to the above
methods using the first and second criteria in the ex-
periments section.

3 The CUD Bound

We construct an upper bound on the deviation be-
tween the training error and generalization error of
a classifier using ideas from the large literature on
constructing bounds on the so-called excess-risk of
a selected classifier [Shawe-Taylor 1998, Barlett and
Mendelson 2006]. Also we allow the use of a convex
surrogate as in Zhang [2004] for the 0-1 loss. In par-
ticular we use the idea of constructing a bound for the
supremum of the deviation between the training error
and generalization error over a small subset of the ap-
proximation space G. This small subset is determined
by the convex surrogate loss, L : (D, f) → R used
to construct the classifier (f̂ = arg minf∈G L(D, f)).
A variety of surrogate loss functions may be used, a
common loss function is squared error loss, given by
L(D, f) = 1

n

∑
(xi,yi)∈D(yi − f(xi))2. Some other ex-

amples are the hinge loss, logistic loss, exponential loss
and penalized quadratic loss.

The intuition for the upper bound is as follows. Sup-
pose we knew (we don’t) the limiting value of f̂ , say
f∗, as the amount of training data becomes infinite.
f∗ may not be the Bayes classifier. Also notice that
f∗ does not depend on the training set. In addition,
since we can think of f̂ as being concentrated near f∗,
this motivates the use of f∗ as the anchor for the small
subset over which we take the supremum. In partic-
ular, we take the supremum over the set of classifiers
belonging to a neighborhood of f∗. The size of this
neighborhood should depend on how far f̂ is from f∗

in terms of the difference in loss, L(D, f̂)− L(D, f∗).

To fix notation, let ξ̂S(f) be the empirical error of f
on data set S, that is,

ξ̂S(f) =
1

#S
∑

(xi,yi)∈S

I{f(xi) 6= yi}

so that ξ̂D(f̂) is the training error. We have the fol-
lowing result.

CUD Bound. If αn is any positive function of the
size n of the training set D and g(x) = (x + 1) ∧ 1
then:∣∣ξ̂D(f̂)−ξ(f̂)

∣∣ ≤ sup
f∈G

∣∣ξ̂D(f)−ξ(f)
∣∣g(αn

(
L(D, f∗)−L(D, f)))

Proof. First notice that g(x) ≡ 1 ∀x ∈ R+. Then,
since f̂ = arg minf∈G L(D, f) we must have

L(D, f∗)− L(D, f̂) ≥ 0

so that,

g(αn(L(D, f∗)− L(D, f̂))) = 1.



The result follows from noticing,∣∣ξ̂D(f̂)− ξ(f̂)
∣∣ =

∣∣ξ̂D(f̂)− ξ(f̂)
∣∣×

g(αn(L(D, f∗)− L(D, f̂)))

≤ sup
f∈G

∣∣ξ̂D(f)− ξ(f)
∣∣×

g(αn

(
L(D, f∗)− L(D, f))),

with the last inequality following because f̂ ∈ G.

The intuition here is that we consider a small neigh-
borhood around f∗ with αn chosen so that the size of
the neighborhood shrinks at the same rate L(D, f̂) →
L(D, f∗) as the size of D tends to infinity. It is the
function g which restricts the domain over which the
supremum is taken. In particular,

|ξ̂D(f̂)− ξ(f̂)|

≤ sup
f∈G

∣∣ξ̂D(f)− ξ(f)
∣∣g(αn

(
L(D, f∗)− L(D, f)))

≤ sup
f∈G

∣∣ξ̂D(f)− ξ(f)
∣∣I(
L(D, f∗) ≥ L(D, f)− α−1

n

)
= sup

f∈W

∣∣ξ̂D(f)− ξ(f)
∣∣,

where,

W =
{
f ∈ G : L(D, f∗) ≥ L(D, f)− α−1

n

}
.

From the preceding set of inequalities we see that g
serves as a continuous approximation to the indicator
function. The rate, αn, will depend on the complexity
of G and the training set size, n. For example if G has
low complexity such as a smoothly parameterized class
with a finite dimensional parameter then the rate can
be expected to be on the order of n. We now present
the main result which follows immediately from the
upper bound.

Proposition 1. Let δ ∈ (0, 1], then if Q1−δ is the 1−δ
quantile of,

sup
f∈G

∣∣ξ̂D(f)− ξ(f)
∣∣g(αn

(
L(D, f∗)− L(D, f))),

then P
(∣∣ξ̂D(f̂)− ξ(f̂)

∣∣ ≤ Q1−δ) ≥ 1− δ.

Thus, the problem is reduced to computingQ1−δ. This
is done using the bootstrap.

3.1 Computing Q1−δ

For any fixed δ we estimate Q1−δ with its bootstrap
estimate Q̂1−δ. A bootstrap sample D(b) from D is
an iid draw of size n from the distribution which puts
equal mass on each point in D. The bootstrap esti-
mate is constructed by treating the original sample D

as the true population and each bootstrap draw as a
random draw of size n from the true population. The
mapping between population and bootstrap quantities
is straightforward and given in the table below. The
reader is referred to [Efron 1994] or [Hall 1992] for de-
tails.

Population Bootstrap
ξ(f) ξ̂D(f)
f∗ f̂

L(D, ) L(D(b), )
ξ̂D(f) ξ̂D(b)(f)

Using the above, the procedure to compute Q̂1−δ is as
follows.

1. Construct B bootstrap datasets D(1), . . . ,D(B)

from D.

2. For b = 1, . . . , B compute:

Q(b) = supf∈G
∣∣ξ̂D(b)(f)− ξ̂D(f)

∣∣×
g(αn(L(D(b), f̂)− L(D(b), f))).

3. Set Q̂1−δ to the 1 − δ sample quantile of
Q(1), . . . ,Q(B).

We now substitute Q̂1−δ into Proposition 1 in place of
Q1−δ to construct the confidence set.

Initially the computation of the sup in step 2 above
appears to be computationally intensive. Depending
on the form of classifier space G and loss function L(, )
taking this sup may prove to be computationally infea-
sible. However, when the loss function L(, ) is convex
and the classifier is approximated by a parametric ad-
ditive model, computation is straightforward by way of
a branch and bound algorithm which we discuss next.

4 An Efficient Algorithm For
Parametric Additive Models

In this section we consider the space of classifiers

G = {f(x) = sign

( p∑
i=1

βib(γi, x)
)

, βi, γi ∈ R ∀i},

where b(, ) are basis functions indexed by the γi’s and
the βi’s are the basis coefficients. We also assume a
convex surrogate loss function L(D, f) where convexity
refers to convexity in β = (β1, . . . , βp) but not neces-
sarily in γ = γ1, . . . , γp. We assume that given training



set D we choose classifier

f̂(x) = f(x; β̂, γ̂) = arg min
β,γ

L(D, f(;β,γ))

= arg min
β

(
arg min

γ
L(D, f(;β,γ))

)
= arg min

β
L(D, f(;β, γ̂))

We now hold γ̂ fixed and compute the upper bound as
a supremum over β.

CUD Bound (Parametric Additive Models). If
αn is any positive function of the size n of the training
set D and g(x) = (x + 1) ∧ 1 then:∣∣ξ̂D(f(; β̂, γ̂))− ξ(f(; β̂, γ̂))

∣∣
is bounded above by:

sup
β∈Rp

∣∣ξ̂D(f(;β, γ̂))− ξ(f(;β, γ̂))
∣∣

× g(αn

(
L(D, f(;β∗,γ∗))− L(D, f(;β, γ̂))))

The supremum is difficult to calculate because of the
term with the absolute values; it is the absolute dif-
ference between two sums of indicator functions and
is hence both non-smooth and non-convex. We now
discuss how to transform this problem into a series of
convex optimization problems with linear constraints.

To begin, suppose D(b) is a bootstrap dataset drawn
from D. For any training point (xi, yi) in D, let φi be
the number of copies of (xi, yi) in D(b). Then 0 ≤ φi ≤
n for all i and the distribution of each φi is binomial
with size n and probability 1

n . Then we can write,

n
∣∣ξ̂D(b)(f(;β, γ̂))− ξ̂D(f(;β, γ̂))

∣∣
=

∣∣∣∣ ∑
(xi,yi)∈D

(φi − 1)I{f(xi;β, γ̂) 6= yi}
∣∣∣∣

=
∣∣∣∣ ∑
(xi,yi)∈D(b)−D

(φi − 1)I{f(xi;β, γ̂) 6= yi}
∣∣∣∣.

The above term does not depend on points with φi =
1, that is, those points which were selected exactly
once in the bootstrap resampling. We let D(b) − D
denote the set of training points (xi, yi) that satisfy
φi 6= 1.

Notice that the number of points in D(b)−D is neces-
sarily smaller than n which translates into computa-
tional savings. To see this, we will need to make use
of the following equivalence relation.

Given β1,β2 ∈ Rp and S a subset of D, we say β1 is
congruent to β2 modulo S if f(x;β1, γ̂) = f(x;β2, γ̂)
for all x such that (x, y) ∈ S for some y (i.e. β1 and

β2 lead to the same classification on S). Congruency
modulo S defines an equivalency relation and hence
partitions Rp. For any fixed bootstrap dataset D(b)

let S be the collection of distinct points in D(b) − D
and let M1, . . . ,MR be the subsequent equivalence
classes. Then, for any equivalence class Mi,∣∣ξ̂D(b)(f(;β, γ̂))− ξ̂D(f(;β, γ̂))

∣∣ ≡ C(Mi)∀β ∈Mi,

where C(Mi) is a constant. Then referring back to
step 2 of the bootstrap procedure outlined in section
3 we can write,

Q(b) = supβ∈Rp

∣∣ξ̂D(f(;β, γ̂)− ξ̂D(b)(f(;β, γ̂)))
∣∣

× g(αn(L(D(b), f(; β̂, γ̂))− L(D(b), f(; β̂, γ̂))))

= supiC(Mi)

× sup
β∈Mi

g(αn(L(D(b), f(; β̂, γ̂))− L(D(b), f(;β, γ̂))))

= sup
i

C(Mi)

× g(αn(L(D(b), f(; β̂, γ̂))− inf
β∈Mi

L(D(b), f(;β, γ̂)))),

with the last equality following from the monotonicity
of g. Since L is convex in β this would be a series
of convex optimization problems if membership in Mi

could be expressed as a set of convex constraints. We
now show how this can be done.

Let βMi be a representative member of equivalence
class Mi. Then for any other β ∈Mi we must have,

f(xj ;βMi , γ̂)
p∑

k=1

βkb(γ̂k, xj) ≥ 0

for all xj such that (xj , y) ∈ D(b) − D for some y.
Since f(xj ;βMi , γ̂) does not depend on β we see that
membership to Mi is equivalent to satisfying a series
of linear constraints, which is clearly convex. We have
shown that calculation of Q(b) amounts to a series of
R convex optimization problems.

In practice, even though n is small (e.g. n ≤ 50) R
can be very large (on the order of 2n in the worst
case) making direct computation of all R convex opti-
mization problems infeasible. Fortunately, exhaustive
computation can be done using a branch and bound
algorithm.

To use branch and bound we must recursively par-
tition the search space. To do this we arbitrarily
label the feature vectors in D(b) − D by x1, . . . , xd.
The root of the tree represents all of Rp. The first
left child represents the set of all β ∈ Rp so that∑p

k=1 βkb(γ̂k, x1) ≥ 0 while the first right child rep-
resents all β ∈ Rp so that

∑p
k=0 βib(γ̂k, x1) < 0. In

general, if S is a region defined by a node at level j of
the tree, then its left child represents the subspace of



S which satisfies β ∈ S and
∑p

k=0 βkb(γ̂k, xj+1) ≥ 0,
similarly, its right child is the subspace of S which sat-
isfies β ∈ S and

∑p
k=1 βkb(γ̂k, xj+1) < 0. Notice that

the terminal nodes of this tree are either infeasible or
one of the equivalence classes M1, . . . ,MR.

To complete the branch and bound algorithm we need
to define upper and lower bounds on the value of ob-
jective function,

O(β) =
∣∣ξ̂D(b)(f(;β, γ̂)− ξ̂D(f(;β, γ̂)))

∣∣×
g(αn(L(D(b), f(; β̂, γ̂))− L(D(b), f(;β, γ̂)))).

In particular, given region S of Rp defined by a node
on the tree representing our partition, we require an
upper bound U(S) on O(β),

sup
β∈S

O(β) ≤ U(S).

The upper bound U(S) is constructed by bounding
the two terms in O(β) separately. An upper bound
on |ξ̂D(b)(f(;β, γ̂))− ξ̂D(f(;β, γ̂))| can be obtained by
noticing that if S is a region of Rp defined by a node
at level j, then the classification of the first j points in
D(b)−D is fixed on S. The upper bound is constructed
by assuming the worst performance possible on the
remaining d− j points. To bound the second term, we
compute,

supβ∈Sg(αn(L(D(b), f(; β̂))− L(D(b), f(;β, γ̂)))),

which is a convex optimization problem. The upper
bound U(S) is the product of these two upper bounds.

In addition, we require the following lower bound,

L(S) ≤ supβ∈SO(β).

The lower bound L(S) is obtained by plugging any
feasible point in S into O(β). In practice, a natural
choice is the argsup of the second term in the objective
function, which has already been computed during the
construction of U(β).

This algorithm running on a standard desktop with a
sample size of n = 50 and using a total of 500 boot-
strap samples to construct a confidence set runs in a
only a few minutes. While this algorithm is still an
NP-hard problem,2 in practice it is significantly less
computationally intensive than evaluating all possible
classifications. The reason is that the function g al-
lows for significant reduction of the search space by
restricting attention only to classifiers within a fixed
distance of selected the classifier f̂ . To see this, notice
that in the construction of U(S), if the term

supβ∈Sg(αn(L(D(b), f(; β̂))− L(D(b), f(;β, γ̂)))),
2Update: In the case of linear classification with

squared error loss, current work in progress has proved this
runs in polynomial time, on the order of O(nV C(G)).

is non-positive we can remove the region S from our
search space since we know O(β̂) ≥ 0.

5 Experiments

In this section we describe a set of experiments
designed to test the coverage and diameter of con-
fidence sets constructed using the CUD bound. To
form a baseline for comparison we also construct
confidence sets using a handful of methods found in
the literature. These consist of two non-parametric
bootstrap methods, a normal approximation using
the bootstrap [Kohavi 1995], a normal approximation
using CV [Yang 2006], a generalization of a Bayesian
approach [Martin 1995], and the inverted binomial
[Langford 2005].3 An online supplemental appendix
provides a full description of these methods, the sim-
ulation study, and provides links to the source code
(www.stat.lsa.umich.edu/∼laber/UAI2008.html).
The confidence sets were constructed for sample sizes
of n = 30 and n = 50 using the datasets given in table
1. All the data sets have binary labels and continuous

Dataset Motivation
Spam Not Simulated
Ionosphere Not Simulated
Heart Not Simulated
Diabetes Not Simulated
Abalone Not Simulated
Liver Not Simulated
Mammogram Not Simulated
Magic Not Simulated
Donut (Simulated) f∗ close to Bayes
Outlier (Simulated) f∗ far from Bayes
χ2

Small (Simulated) f∗ = 0, low noise,
far from Bayes

Three Points (Simulated) ξ̂(f̂) highly non-normal,
f∗ far from Bayes

Table 1: Datasets used in experiments along with the
reason for their inclusion. Here f∗ is the limiting value
of the classifier as the amount of training data becomes
infinite.

features. The real datasets can be found at the
UCI data repository (www.ics.uci.edu/mlearn). The
simulated data sets were designed to investigate the
performance of the new procedure in several scenarios
of interest.

3In this approach we are plugging in a resampled esti-
mate and the effective sample size. That is,we are acting
as if we had a test set.



For this series of experiments we fit a linear classifier
using squared error loss. That is,

G =
{
f(x) = sign

( p∑
i=1

βiφi(x)
)
, βi ∈ R

}
where the φi are transformations of the features (in all
cases φi was either a polynomial or projection onto a
number of principle components). The surrogate loss
function is given by

L(D, f(;β) =
∑

(xi,yi)∈D

( p∑
j=1

βjφj(xi)− yi)2,

and the scaling factor αn used in g is chosen to be n.
For each data set the following procedure was used to
estimate coverage probabilities.

1. Randomly divide data into training set D and
testing set T .

• If the data set is real, randomly select n train-
ing points for D and use the remainder for T .

• If the data set is simulated, generate n data
points for D and generate 5000 data points
for T .

2. Build classifier f̂ = arg minf∈G L(D, f) using
training data D.

3. For each procedure use the training data D and
chosen classifier f̂ to construct confidence set with
target coverage .950. The confidence interval is
centered at ξ̂D(f̂) taken to be the .632 estimate
[Efron 1983] in the the competing methods and
the training error in the CUD bound.4

4. Using the ξ(f̂) = ξ̂T (f̂) we record the coverage
for each procedure.

The above steps are repeated 1000 times for each data
set and the average coverage computed. The results
are shown in tables 2 and 3 with the following abbre-
viations: quantile bootstrap (BS1) [Efron 1994], cor-
rected boostrap (BS2) [Efron 1994], Yang’s CV esti-
mate (Y) [Yang 2006], Kohavi’s normal approxima-
tion (K) [Kohavi 1996], a generalization of a Bayesian
approach from Martin (M) [Martin 1996], and the in-
verted binomial of Langford (L) [Langford 2005].

The results for the n = 50 case are similar and the
results are given in tables 4 and 5 of the appendix.

The results in tables 2 and 3 show promising results
for the new method. It was the only method to pro-
vide the desired coverage on all ten datasets and, in

4The competing methods experience a significant re-
duction in performance if they are centered at the training
error.

n = 30
Data CUD BS1 BS2 K M Y L

Spam 1.00 .478 .983 .782 .632 .996 .636

Donut .999 .880 .908 .631 .633 .937 .620

Ionosphere .998 .605 .926 .816 .757 .994 .747

Heart .999 .406 .981 .718 .475 .998 .458

Diabetes 1.00 .654 .900 .912 .986 .997 .984

Outlier .988 .884 .736 .808 .838 .910 .961

3 Pt. .993 .827 .717 .844 .896 .753 .952

Abalone .983 .963 .737 .972 .991 .998 .997

Liv. .961 .964 .878 .980 1.00 1.00 1.00

Magic .998 .918 .920 .961 .982 .991 .992

χ2 .985 .958 .786 .961 .982 .996 1.00

Mammogram 1.00 .678 .994 .646 .426 .983 .406

Table 2: Average coverage of new method and com-
petitors. Target coverage level was .950, those meeting
or exceeding this level are highlighted in orange.

n = 30
Data CUD BS1 BS2 K M Y L

Spam .469 .432 .432 .315 .314 .451 .354

Donut .485 .590 .590 .324 .324 .414 .364

Ionosphere .437 .429 .429 .301 .296 .501 .337

Heart .459 .468 .468 .319 .319 .433 .359

Diabetes .433 .305 .305 .307 .310 .312 .350

Outlier .555 .491 .491 .328 .329 .456 .368

3 Pt. .508 .476 .476 .318 .317 .457 .356

Abalone .617 .314 .314 .331 .331 .504 .371

Liver .559 .372 .372 .327 .326 .485 .366

Magic .606 .307 .307 .300 .283 .464 .324

χ2 .595 .330 .330 .329 .330 .501 .351

Mammogram .464 .532 .532 .321 .321 .421 .361

Table 3: Average diameter of confidence set con-
structed using new method and competitors. Method
with smallest diameter and having correct coverage is
highlighted in yellow.

addition, possessed the smallest diameter for two of
them. The CUD bound confidence set is conservative,
as must be expected by its construction. However, the
diameter of the new confidence set is far from trivial,
even for this extremely small sample size.

It is also of interest to learn when competing meth-
ods perform poorly. Figure 1 plots the empirical cov-
erage of the top four methods against the mean abso-
lute value of the training error’s kurtosis (standardized
central fourth moment subtract 3) for each of the nine
data sets listed in table 1. The kurtosis for a normal
distribution is 0, and we use absolute kurtosis as a
measure of deviation from normality. Figure 1 shows
a trend of decreasing coverage as deviation from nor-
mality increases for the three distribution based meth-
ods. This suggests these methods may not be robust



●

●●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Coverage By Kurtosis

kurtosis

C
ov

er
ag

e

● ●● ●● ● ●

●

●

●
●●

●

●

● ●

●

●

● ●● ●● ● ●
●

●

target

New Method
Y
M
K

Figure 1: Shows coverage of top four methods by ab-
solute value of kurtosis of the training error.

to non-normal training error. In particular we see that
the method K (which has strongest normality assump-
tions) is most sensitive to deviation from normality. In
contrast, the CUD bound method has stable, if conser-
vative, coverage, regardless of the normality of training
error.

6 Conclusions and Future Work

In this paper we introduced a new method for con-
structing confidence sets for the generalization error in
the small sample setting in classification. This bound
is derived under the minimal assumption of a train-
ing set of iid draws from some unknown distribution
F . In addition, we provided a computationally effi-
cient algorithm for constructing this new confidence
set when the classifier is approximated by a paramet-
ric additive model. In preliminary experiments, the
new confidence set exhibited superior coverage while
maintaining a small diameter on a catalog of test and
simulated data sets. Moreover, it was demonstrated
that confidence sets based on distributional assump-
tions may not be robust to deviation from normality
in the training samples.

Much work remains to be done. First, we need to
provide theoretical guarantees for the level of confi-
dence. We conjecture that a correct choice of αn will
depend on the complexity of the approximation space
used to construct the classifier. It is well known that
bootstrap estimators perform better when estimating

smooth functions. Selecting αn = ∞ is similar to stan-
dard quantile bootstrap (BS1) which is ineffective in
the classification setting because it bootstraps the non-
smooth 0-1 loss. This suggests an upper bound on αn.
Conversely, a smaller choice of αn leads to a boot-
strapped estimate of a smoother quantity but also in-
troduces conservatism. For example, setting αn = 0 is
equivalent to a uniform deviation bound on the train-
ing error which can often be trivially loose. This sug-
gests a lower bound on αn as well. Thus, αn must
strike a balance between smoothness required by the
bootstrap and conservatism.
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Appendix: Experimental Results for
n = 50

n = 50
Data CUD BS1 BS2 K M Y L

Spam 1.00 .172 .987 .415 .632 .996 .636

Donut .998 .837 .904 .450 .633 .882 .620

Ionosphere 1.00 .292 .975 .575 .757 .985 .747

Heart .999 .072 .999 .186 .475 .998 .458

Diabetes .999 .654 .900 .912 .986 .984 .984

Out. .984 .805 .893 .702 .838 .933 .961

3 Pt. .972 .800 .812 .648 .896 .624 .952

Abalone .988 .960 .832 .962 .991 .999 .997

Liver .986 .888 .888 .974 1.00 .988 1.00

Magic 1.00 .824 .823 .950 .982 .998 .992

χ2 .999 .955 .791 .960 .982 .996 1.00

Mammogram .999 .317 .999 .146 .426 .991 .406

Table 4: Average coverage of new method and com-
petitors. Target coverage level was .950, those meeting
or exceeding this level are highlighted in orange.

n = 50
Data CUD BS1 BS2 K M Y L

Spam .418 .377 .377 .250 .314 .329 .354

Donut .448 .529 .529 .258 .324 .331 .364

Ionosphere .386 .364 .364 .237 .296 .315 .337

Heart .409 .436 .436 .254 .319 .443 .359

Diabetes .433 .365 .365 .247 .310 .358 .350

Out. .442 .439 .439 .262 .329 .328 .368

3 Pt. .440 .413 .413 .253 .317 .357 .356

Abalone .523 .248 .248 .264 .331 .391 .371

Liver .499 .304 .304 .260 .326 .382 .366

Magic .561 .209 .209 .227 .283 .350 .324

χ2 .401 .265 .265 .236 .330 .389 .351

Mammogram .419 .511 .511 .255 .321 .320 .361

Table 5: Average diameter of confidence set con-
structed using new method and competitors. Method
with smallest diameter and having correct coverage is
highlighted in yellow.


