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OutlineOutline
I. Graphical Models Review
II. Speech Recognition Overview
III. Goals for GMs in Speech/Language

A. Explicit control
B. Latent Modeling (audio, speech, language)
C. Observation Modeling
D. Structure Learning

IV. Toolkits and Inference
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Graphical Models (GMs)
• Graphical Models give us:

SALAD
• Structure
• Algorithms
• Language
• Approximations
• Data-Bases
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Graphical Models (GMs)
GMs give us:
I. Structure: A method to explore the 

structure of “natural” phenomena (causal 
vs. correlated relations, properties of 
natural signals and scenes)

II. Algorithms: A set of algorithms that 
provide “efficient” probabilistic 
inference and statistical decision making

III. Language: A mathematically formal, 
abstract, visual language with which to 
efficiently discuss and intuit families of 
probabilistic models and their properties.
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Graphical Models (GMs)
GMs give us (cont):
III. Approximation: Methods to explore 

systems of approximation and their 
implications.
I. Inferential approximation
II. Task dependent structural approximation

IV. Data-base: Provide a probabilistic “data-
base” and corresponding “search 
algorithms” for making queries about 
properties in such model families.
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Conditional Independence
• Notation:  X || Y | Z ≡

• Many CI Properties (from Lauritzen 96)
- X || Y | Z  => Y || X | Z
- Y || X | Z and U=h(X) => Y || U|Z
- Y || X | Z and U=h(X) => X || Y|{Z,U}
- XA || YB | Z => XA’ || YB’ | Z

where A, B sets of integers, A’ ⊆ A, B’ ⊆B
XA = {XA1, XA2,..., XAN}

},,{)|()|()|,( zyxzypzxpzyxP ∀=
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Directed GM (DGMs) 
(Bayesian Networks)

• When is XA || XB | XC?
• Only when C d-separates A from B, i.e. if:

for all paths from A to B, there is a v on the path 
s.t. either one of the following holds:

1. Either →v→ or ←v→ and v∈ C
2. →v← and neither v nor any descendants are in C

• Equivalent to “directed local Markov property”
(CI of non-descendants given parents), plus 
others (again see Lauritzen ‘96)
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Conditional Independence
• Factorization (i.e., simplification)

• Better (more parsimonious) representations of the 
underlying problem since factors are local.

• Ex:

∏ ∏== −
i i

th
iiT ifXXPXP  )X ofsubset  ()|()( T:11:1:1

X1

X3

X2

X5

X6

X4

=),,,,,( 654321 XXXXXXP
)|()|()( 13121 XXPXXPXP

)|(),|()|( 3552624 XXPXXXPXXP
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Switching Parents: Value-specific conditional 
independence

S∈R2

S∈R1

C

M1 F1

M2 F2

S

M1 F1

( | 1, 1, 2, 2) ( | , , ) ( )i i i
i

P C M F F F P C M F S i P S R= = ∈∑
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Undirected GMs
• When is XA || XB | XC?
• Only when C separates A from B. I.e., if:

for all paths from A to B, there is a v on the path 
s.t. v∈ C

• Simpler semantics than Bayesian networks.
• Equivalent to “global Markov property”, plus 

others (again see Lauritzen ‘96)
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Directed and Undirected models 
represent different families

• The classic examples:

DGM UGM

Decomposable models

W X

Y Z

W

Y

Z
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Why Graphical Models for 
Speech and Language Processing

• Expressive but concise way to describe properties of 
families of distributions

• Rapid movement from novel idea to implementation 
(with the right toolkit)

• GMs encompass many existing techniques used in 
speech and language processing but GM space is 
only barely covered

• Holds promise to replace the ubiquitous HMM
• Dynamic Bayesian networks and dynamic graphical 

models can represent important structure in “natural” 
time signals such as speech/language.
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Time signalsTime signals
• Where is statistical structure?
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SpectrogramsSpectrograms
• Where is statistical structure?
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Structure of a Domain
• Graphs represent properties of (auditory) objects 

from natural scenes. 
• Goal: find minimal structure representing 

appropriate properties for a given task (e.g., object 
classification or ASR)
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Speech Recognition

?
Research & Development needed to move to the right.
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Automatic Speech 
Recognition: Broad View

Front End Back End

Deterministic 
Signal Processing:
Ex: Mel-frequency 
cepstral coefficients 

(MFCCs)

Length T sequence 
of feature vectors 
(so NxT matrix)

T is often (but not 
always) known

1:TX

Transform feature 
vectors into a string 

of words.

Spoken word 
output hypotheses:
“How to recognize 

speech”
“How to wreck a 

nice beach”

1: 1:( | )K TP W X
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Ideal case, use Bayes decision 
rule

1:

* *
1: 1: 1:

,
( , ) argmax Pr( , | )

K

K K T
K W

K W W K X=

•Bayes Decision Theory (see Duda & Hart 73)

1:

1: 1: 1:
,

argmax Pr( | , )Pr( )
K

T K K
K W

X W K W=
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• Ideal case: discriminative model

• Too many classes for a discriminative model
– 100k words, K = 10 ⇒ (100k)^10 classes

• (not to mention we didn’t consider all other K’s)

• Generative model can help:
• Use the “natural” hierarchy in speech/language:

– Sentences are composed of words (W)
– Words (W) are composed of phones (Q)
– Phones (Q) are composed of Markov chain states (S)
– States (S) are composed of acoustic feature vector sequences (X)
– Acoustic feature vector sequences (X) are composed of noisy (e.g., 

channel distorted) versions thereof (Y)

Generative vs. Discriminative 
Models

1: 1:( | )K TP W X

1:( )TP x
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Speech/Language Hierarchy
(time collapsed)

S

X

Q

W

Y

Word sequences

Phones – typically context-dependent, could be 
syllables, etc.

States – Markov chain states, 

“Clean” Speech – the ideal speech signal without 
channel effects (additive & convolutional noise)

Speech – as received by a microphone or your ears, 
typically contains speech + unwanted material.
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Other possible Q hidden variables
• Syllables – bigger than phones, smaller than words, 

perceptually meaningful unit
• Subphones (i.e., ½ or 1/3 of a phone)
• Context-dependent phones

– Tri-phone (a phone in the context of its immediately 
preceding and following phone)

– Better for temporal context and coarticulation
• Most common: 3-state tri-phones

– Tri-phones that force the use of three states (S values).
– Others are used, IBM uses 5 contextual phones on the left 

and right.
• Goal: not too many (curse of dimensionality, 

estimation problems) and not too few (accuracy).
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Tri-phones Example
• P(x|qt) where qt is a tri-phone
• x-y+z notation: phone y with 

– left context of x
– right context of z

• Example transcription of  “Beat it” : sil b iy t ih t sil
– sil
– sil-b+iy
– b-iy-t        (or b-iy+dx for Americans)
– iy-t+ih      (or iy-dx+ih)
– t-ih+t        (or dx-ih+t)
– ih-t+sil
– sil

• To further increase states: Word internal vs. cross-
word tri-phones
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A Generative Model of Speech

1:

1: 1:

1: 1: 1:

1: 1: 1:
,

1: 1: 1:
, ,

1: 1: 1: 1:
, ,

( | ) ( , , )

( , , , , )

( , , , , , )

K

T M

T M T

T T K
w K

T M K
w K q M

T T M K
w K q M s

P x T P x w K

P x q M w K

P x s q M w K

=

=

=

∑

∑ ∑

∑ ∑ ∑

K words

M “phones”

T states

• Key goal, find a distribution over the 
variable-length set of feature vectors. 
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Generative Models of Speech

1

1: 1: 1: 1:

1 1:: 1 1: 1: 1:: :( , | ,(
( , , , , , )
( | ) , ( ))| ) ,K

T T M K

T T MT M KP P q M w K P
P x s q M w K

s q Ms wP x K
=

Acoustic
Models

Phone 
models

Word pronunciation 
Models Language Model

Phone HMMs

Word HMMs

Sentence HMMs
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Solution implemented using 
search via dynamic programming

*
, ,max ( , , , )s q ww p x q s w=

• Need optimized search algorithms 
– Viterbi decoding, time synchronous
– stack decoding, A* search, time asynchronous
– Both will heavily prune the search space, thus 

achieving a form of  “approximate” inference
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In other words, ASR has used 
Hierarchical HMMs for years, …

S1 S2 S3 S4

X1 X2 X3 X4

Q1 Q2 Q3 Q4

W1 W2 W3 W4
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Hidden Markov Models

Q1 Q2 Q3 Q4

X1 X2 X3 X4

• … but, in existing speech systems, all of this 
complexity gets implicitly wrapped up (flattened) 
into an HMM

• Number of flattened states is strongly dependent 
on language model
– Bi-gram language model:
– Tri-gram language model:

1,( | )i iP w w −

1, 2( | )i i iP w w w− −
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Bi-gram Language Models
HMM 1

HMM, 2

HMM, M

1( )p w

2( )p w

( )Mp w

1 1( | )p w w

2 1( | )p w w
1( | )Mp w w

2( | )Mp w w

( | )M Mp w w

1( | )Mp w w

2( | )Mp w w

1 2( | )p w w
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HMM Lattice with bi-gram LMs

1 T

word1

word2

word3

1,( | , )t tP s s W−

3 1( | )P w w

2 3( | )P w w
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Tri-gram Language Models

HMM 1

HMM, 2

HMM 1

HMM, 2

HMM 1

HMM, 2

1( )p w

2( )p w

1 1( | )p w w

2 1( | )p w w

1 2( | )p w w

2 2( | )p w w

1 1 1( | , )p w w w

2 1 1( | , )p w w w

1 2 1( | , )p w w w

2 1 2( | , )p w w w
2 2 1( | , )p w w w

1 1 2( | , )p w w w

2 2 2( | , )p w w w

1 2 2( | , )p w w w

w1⇒w1

w2⇒w1

w1⇒w2

w2⇒w2
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HMM Lattice with tri-grams LMs

1 T

Word1->Word1

Word1->Word2

Word1->Word3

Word2->Word1

Word2->Word2

Word2->Word3

Word3->Word1

Word3->Word2

Word3->Word3

Prev -> Curr

3 1 1( | , )P w w w

2 3 1( | , )P w w w

1 2 3( | , )P w w w

2 1 2( | , )P w w w

3 2 1( | , )P w w w

[word1],word1,word3,word2,word1,word2,word3
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Challenges in Speech Recognition

• > 60k words, exhaustive examination of all 
words is infeasible  since                 states. 

• Even HMM decoding is a challenge
– Clearly, large grid approach is infeasible
– Pruning with a beam: try to discard unlikely 

partial hypotheses as soon as possible (without 
increasing error)

– Explore word sequences in parallel (multiple 
partial hypotheses are considered at same time)

2| | | || |W Q S
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Tree-based Lexicons

s

t

ey

p
ee

eh

k

ch

l
aw

eh

k

l

Say
Speak

Speech

Spell

Talk

Tell

• The speech/language hierarchy can help guide 
(and reduce computation in) the decoder
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The Savior: Parameter Tying
• Generative model + speech/language hierarchy allows 

for massive amounts of parameter tying or sharing.
– Same words in difference sentences or different parts of 

same sentence are the same
– Same phones (subwords) in different words or in different 

parts of same word are the same
– Certain states in different phones are merged

• E.g., p(x|S=i) = p(x|S=j) for the right i and j.
– Certain observation parameters (e.g., means) are shared.

• Various ways to accomplish this: 
– backing off (like in language model)

• [a-b+c] model backs off to [b+c] or to [a-b] etc.
– Smoothing, interpolation, and mixing
– clustering (widely used)

Decision tree clustered tri-phones
both bottom up and top down clustering procedures.

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Four Main Goals for 
GMs in Speech/Language

1. Explicit Control: Derive graph structures that 
themselves explicitly represent control constructs

• E.g., parameter tying/sharing, state sequencing, smoothing, 
mixing, backing off, etc.

2. Latent Modeling: Use graphs to represent latent 
information in speech/language, not normally 
represented.

3. Observation Modeling: represent structure over 
observations.

4. Structure learning: Derive structure
automatically, ideally to improve error rate while 
simultaneously minimizing computational cost.
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Graph Control Structure Approaches
• The “implicit” graph structure approach

– Implementation of dependencies determine sequencing 
through time-series model

– Everything is flattened, all edge implementations are random

• The “explicit” graph structure approach
– Graph structure itself represents control sequence mechanism 

and parameter tying in a statistical model.
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• Structure for the word “yamaha”, note that /aa/ 
occurs in multiple places preceding different phones.

Triangle Structures:
A basic explicit approach for parameter tying

6

aa

1

hh

5

1

Nodes & 
Edge Colors:

Red ⇔
RANDOM

Green ⇔
Deterministic

Nodes & 
Edge Colors:

Red ⇔
RANDOM

Green ⇔
Deterministic

ξ

aa

4

1

y

1

1

aa

2

0

aa

2

1

m

3

1

Counter

Transition

Phone

Observation

End of word observation
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Key Points
• Graph explicitly represents parameter sharing
• Same phone at different parts of the word are the same: 

phone /aa/ in positions 2, 4, and 6 of the word “yamaha”
• Phone-dependent transition indicator variables yield 

geometric phone duration distributions for each phone
• Counter variable ensures /aa/’s at different positions 

move only to correct next phone 
• Some edge implementations are deterministic (green) 

and others are random (red)
• End of word observation, gives zero probability to  

variable assignments corresponding to incomplete words.
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Explicit Bi-gram Training Graph Structure

Observation

State

State Transition

State Counter

Word 

End-of-Utterance 
Observation=1

Skip Silence

Word
Counter

Word TransitionNodes & 
Edge Colors:

Red ⇔
RANDOM

Green ⇔
Deterministic

Nodes & 
Edge Colors:

Red ⇔
RANDOM

Green ⇔
Deterministic

...

...
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Explicit Bi-gram Training Graph Structure

Observation

State

State Transition

State Counter

Word 

End-of-Utterance 
Observation=1

Skip Silence

Word
Counter

Word TransitionNodes & 
Edge Colors:

Red ⇔
RANDOM

Green ⇔
Deterministic

Nodes & 
Edge Colors:

Red ⇔
RANDOM

Green ⇔
Deterministic

...

...
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Bi-gram Training w. Pronunciation Variant

Observation

State

State Transition

State Counter

Word 

End-of-Utterance 
Observation=1

Skip Silence

Word Counter

Word TransitionNodes & 
Edge Colors:

Red ⇔
RANDOM

Green ⇔
Deterministic

Nodes & 
Edge Colors:

Red ⇔
RANDOM

Green ⇔
Deterministic

...

...
Pronunciation
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Nodes & 
Edges:

• Red ⇔
RANDOM

• Green ⇔
Deterministic

•Dashed line 

⇔

Switching 
Parent

Nodes & 
Edges:

• Red ⇔
RANDOM

• Green ⇔
Deterministic

•Dashed line 

⇔

Switching 
Parent

Explicit bi-gram Decoder

Word 

Word Transition

State Counter

State Transition

State

Observation
...

End-of-Utterance 
Observation=1

WordTransition is a switching parent of Word. It 
switches the implementation of Word(t) to either be a 
copy of Word(t-1) or to invoke the bi-gram.
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Explicit tri-gram Decoder

Word 

Word Transition

State Counter

State Transition

State

Observation
...

End-of-Utterance 
Observation=1

Previous Word 

Nodes & 
Edges:

• Red ⇔
RANDOM

• Green ⇔
Deterministic

•Dashed line 

⇔

Switching 
Parent

Nodes & 
Edges:

• Red ⇔
RANDOM

• Green ⇔
Deterministic

•Dashed line 

⇔

Switching 
Parent
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From Explicit Control to 
Latent Modeling

1. So far, each graph has been essentially still an 
HMM (in disguise).

2. Most edges were deterministic.
3. In latent modeling, we move more towards 

representing and learning additional 
information in (factored) hidden space.

4. Factored representations place constraints on 
what would be flattened HMM transition 
matrix parameters thereby potentially 
improving estimation quality.
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Graphs for Speech/Audio Transformations
(feature level)

X

Y

“Clean” Speech

Speech
Y1 Y2 Y3 Y4

X1 X2

• The data Y1:4 is explained by the two (marginally) 
independent latent causes X1:4

• Many techniques used:
– Principle components analysis
– Factor Analysis
– Independent Component Analysis
– Linear Discriminant Analysis (different graph than above)
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Speech/Audio De-Noising Models
(signal level)

• Latent variables X represent clean speech/sound at the 
signal/sample level for observed speech/sound Y

• Various forms of noise:
– Convolutional: Moving Average, Auto-regressive
– Independent Additive U
– Structured Additive V

X[n]

Y[n]

U[n]

V[n]
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Latent Modeling

Observations

Qt-2=qt-2 Qt-1=qt-1 Qt=qt Qt+1=qt+1
The Hidden Variable Cloud

• Key Questions: What are the most important 
“causes” or latent explanations of the temporal 
evolution of the statistics of the vector observation 
sequence?

• How best can we factor these causes to improve 
parameter estimation, reduce computation, etc.?

1:TX
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Latent X Modeling

Observations

Qt-2=qt-2 Qt-1=qt-1 Qt=qt Qt+1=qt+1
The Hidden Variable Cloud

• Where X = gender, speaker cluster, speaking rate, 
noise condition, accent, dialect, pitch, formant 
frequencies, vocal tract length, etc.

• We elaborate upon latent articulatory modeling…

Other hidden 
variables

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Pictures from Linguistics 001, University of Pennsylvania

Ex: Latent Articulatory Modeling
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• Definition:
– Articulatory features specify complete state of vocal 

tract (directly or implicitly) at a given point in time
– Features can be binary/multivalued,                      

discrete/continuous, partial/complete
– They are one of the “causes” of speech, yet they are 

hidden when given only acoustic signal

Latent Articulatory modeling.

Lips

Tongue

Velum

Glottis

• Motivation:
– Speech described by asynchronous articulator motion rather than by phones 

with synchronous start and end times
– Articulatory features concisely represent coarticulatory effects such as 

nasalization and inserted stop closures (“warmth” → “warmpth”)
– Articulatory features can help recover information; e.g., a vowel is more 

likely to be nasalized if following nasal is deleted
– Pronunciation modeling:  phones are more likely to be modified by 

articulatory change rather than replaced with entirely different phones

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Phone-based Articulatory 
graphical model

phone

frame  i frame  i+1

a1 a2 aN. . .

obs

phone

a1 a2 aN. . .

obs
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Phone-free Articulatory Graph
(by Karen Livescu)
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Standard Language Modeling

321( | ) ( | , , )tt t ttt wP w h P w w w− −−=
• Example: standard tri-gram

tW1tW −2tW −3tW −4tW −
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Interpolated Uni-,Bi-,Tri-Grams

1

1 2

( | ) ( 1) ( ) ( 2) ( | )
( 3) ( | , )

t t t t t t t

t t t t

P w h P P w P P w w
P p w w w

α α
α

−

− −

= = + =

+ =

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Conditional mixture tri-gram
1 2

1 2 1

1 2 1 2

( | ) ( 1| , ) ( )
( 2 | , ) ( | )
( 3 | , ) ( | , )

t t t t t t

t t t t t

t t t t t t

P w h P w w P w
P w w P w w
P w w p w w w

α
α
α

− −

− − −

− − − −

= =

+ =
+ =
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Skip Bi-gram
• Often there is silence between words

– “fool me once <sil> shame on <sil> shame on you”
• Silence might not be good predictor of next word
• But silence lexemes should be represented since 

acoustics quite different during silence.
• Goal: allow silence between words, but retain 

true word predictability skipping silence regions.
• Switching parents can facilitate such a model.
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Skip Bi-gram
1

1( | , ) t t

t t

r r t
t t t

r w t

if w sil
p r w r

if w sil

δ

δ
−=

−
=

=⎧⎪= ⎨ ≠⎪⎩

1
1

1
( | , )

( | ) 0
tw sil t

t t t
bigram t t t

if s
p w s r

p w r if s

δ =

−
−

=⎧⎪= ⎨ =⎪⎩
( 1) Pr( )tp s silence= =
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Skip bi-gram with conditional 
mixtures

1 1( | ) ( 1) ( ) ( 2) ( | )bigram t t t t t t tp w r P P w P P w wα α− −= = + =
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Two switching indicator variables
1 2 1 2 1 2

1 2 1

( | , ) ( 1| , ) ( | , )
( 0 | , ) ( | )

t t t t t t tri t t t

t t t t t

p w w w P w w P w w w
P w w P w w
α
α

− − − − − −

− − −

= =

+ =

1 1 1

1

( | ) ( 1| ) ( | )
( 0 | ) ( )

t t t t bi t t

t t t

p w w P w P w w
P w P w

β
β

− − −

−

= =

+ =
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Skip trigram
• Similar to skip bi-gram, but skips over two 

previous <sil> tokens.
• P(City|<sil>,York,<sil>,New) = 

P(City|York,New)
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Putting it together: 
mixture and skip tri-gram.
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Class Language Model
• When number of words large (>60k), can be 

better to represent clusters/classes of words
• Clusters can be grammatical or data-driven
• Just an HMM (perhaps higher-order)
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Explicit Smoothing
• Disjoint partition of vocabulary based on training-data 

counts:   = {unk}∪   ∪  

•  = singletons,  = “many-tons”, unk=unknown
• ML distribution gives zero probability to unk.
• Goal: Directed GM that represents:

• Word variable is like a switching parent of itself (but of 
course can’t be)

0.5 ( ) if
( ) 0.5 ( ) if

( ) otherwise

ml

ml

ml

p w unk
p w p w w

p w

=⎧
⎪= ∈⎨
⎪
⎩
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Explicit Smoothing
• Introduce two hidden variables K and B and one child 

observed variables V=1.
• Hidden variables are switching parents

– K = indicator of singleton vs. “many-ton”
– B = indicator of singleton vs. unknown word

• Observed child V induces “reverse causal” phenomena 
via its dependency implementation
– I.e., child says “if you want me to give you non-zero 

probability, you parents had better do X”

W

V

K
B
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Explicit Smoothing

W

V

K
B

( 1) ( 0) 0.5P B P B= = = =

( 1) 1 ( 0) ( )P K P K P= = − = =

( ) if 0
( | , ) ( ) if 1 and 1

if 1 and 0
t

M

S

w unk

p w k
p w k b p w k b

k bδ =

⎧ =
⎪

= = =⎨
⎪ = =⎩

( 1| , ) ( , 1) or ( , 1) 

or ( , 0)

{1
}

P V w k w k w unk k

w k

= = ∈ = = =

∈ =

 

 

( ) if
( )( )

0 else

ml

mlM

p w w
pp w

⎧ ∈⎪= ⎨
⎪⎩

 

( ) if
( )( )

0 else

ml

mlS

p w w
pp w

⎧ ∈⎪= ⎨
⎪⎩
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Putting it together: Class Language 
Model with smoothing constraints

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Part of speech Tagging
• Represent and find part-of-speech tags (noun, 

adjective, verb, etc.) for a string of words
• HMMs for word tagging

• Discriminative models for this task
Words

Tags

• Label bias issue and selection bias.
Words

Tags
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Factored Language Models

• Decompose words into smaller 
morphological or class-based units (e.g., 
morphological classes, stems, roots, 
patterns, or other automatically derived 
units).

• Produce probabilistic models over these 
units to attempt to improve language 
modeling accuracy and parameter 
estimation
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Example with Words, Stems, 
and Morphological classes

tS1tS −2tS −3tS −

tW1tW −2tW −3tW −

tM1tM −2tM −3tM −

( | , )t t tP w s m 1 2( | , , )t t t tP s m w w− − 1 2( | , )t t tP m w w− −
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Example with Words, Stems, 
and Morphological classes

tS1tS −2tS −3tS −

tW1tW −2tW −3tW −

tM1tM −2tM −3tM −

1 2 1 2 1 2( | , , , , , )t t t t t t tP w w w s s m m− − − − − −
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In general

2
tF2

1tF −
2
2tF −

2
3tF −

1
tF1

1tF −
1

2tF −
1

3tF −

3
tF3

1tF −
3
2tF −

3
3tF −
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• A word is equivalent to collection of factors.

• E.g., if K=3

• Goal: find appropriate conditional  independence 
statements to simplify while keeping perplexity 
and error low. 

• structure learning problem

General Factored LM
1:{ } { }K

t tw f≡

1 2 3 1 2 3 1 2 3
1 2 1 1 1 2 2 2

1 2 3 1 2 3 1 2 3
1 1 1 2 2 2

2 3 1 2 3 1 2 3
1 1 1 2 2 2

3 1 2 3 1 2
1 1 1 2 2

( | , ) ( , , | , , , , , )

( | , , , , , , , )

( | , , , , , , )

( | , , , , ,

t t t t t t t t t t t t

t t t t t t t t t

t t t t t t t t

t t t t t t

P w w w P f f f f f f f f f

P f f f f f f f f f

P f f f f f f f f

P f f f f f f f

− − − − − − − −

− − − − − −

− − − − − −

− − − − −

=

=

3
2 )t−

the kth factorkf =
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“Auto-regressive” HMMs

Q1 Q2 Q3 Q4

X1 X2 X3 X4

• Observation is no longer independent of 
other observations given current state

• Can not be represented by an HMM
• One of the first HMM extensions tried in 

speech recognition.



38

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Observed Modeling

X

Qt-2=qt-2 Qt-1=qt-1 Qt=qt Qt+1=qt+1

Say, for this 
element (suppose 
we name it Xti)

These are the feature
elements that comprise

z

The 
implementation of 

these edges 
determines f(z). 

Could be linear Bz
or non-linear

The Hidden Variable Cloud
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Buried Markov Models (BMMs)
• Markov chain is “further hidden” (buried) by 

specific element-wise cross-observation edges
• Switching dependencies between observation 

elements conditioned on the hidden chain.
Q1:T=q1:T Q1:T=q’1:T
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Switching StructureSwitching Structure

time frame ->

feature position

First ConditionSecond ConditionThird Condition
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BMM Complexity

• AR-HMM(K)

• Theorem: Triangulation comes for free after 
moralization in an AR-HMM.

• Theorem: Triangulated-by-moralization AR-
HMM(K) has hidden clique state space size of at 
most 2. 

• Therefore, BMMs have same asymptotic 
complexity as HMMs, but they can not be 
represented exactly via HMMs.

Q1 Q2 Q3 Q4

X1 X2 X3 X4



40

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Q1:T=q1:T Q1:T=q’1:T

Multi-stream buried Markov 
models

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Buried Articulator Models (BAMs)
Q1:T=q1:T Q1:T=q’1:T
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1
x

1 1x + 1 2
x +1x 2x

i
x∑ Tx

Segment Models as GMs 
1: 1: 1: 1: 1: 1:

1: 1:

1: ( , , ,1) ( , , ,2) ( , , , ) 1
1

( ) ( , , , | , ) ( | , ) ( )
iT t q i t q i t q i i i i

q i

p x p x x x q p q q p
τ τ τ τ τ τ

τ τ

τ

τ

τ τ τ−
=

= ∑∑∑∏

τ
Q1 Q2 Qτ

l2 lτl1 ...
...

... ... ......
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Discriminative structure learning
• Structure is typically learned to optimize marginal 

likelihood (e.g., statistical predictability)
• When the underlying goal is classification 

(regression), discriminative structure learning 
• Structure is chosen to optimize conditional 

posterior of class variable (more generally, 
conditional likelihood) rather than marginal 
likelihood.

• Can still use generative models
• Structure edges can “switch” depending on current 

condition



42

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Discriminative vs. Generative 
Models

• p(X|C)   vs.   p(C|X)
• Goals for recognition (classification) are different than for 

generative accuracy (e.g., synthesis)
• Generative models natural for ASR
• Approach: retain generative models but train 

discriminatively
– Discriminative parameter training can occur for 

parameters of generative models also (e.g., maximum 
mutual information estimation on HMMs)

– Discriminative structure learning.

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Discriminative Generative 
Models (DG models)

)}(),(maxarg)()|(maxarg:):({ mpmxf
m

mpmxp
m

mxf ==F

So choose the f that satisfies the above, but is as 
simple (few parameters, easy to compute) as possible.

Model might no longer “generates” samples 
accurately, but discriminates well.
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Visual Example

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Spatial Example

Point generated by real
generative model

Point not generated by real
generative model

Point generated by disc
generative model

Point generated by disc
generative model
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Structural Discriminability for 
Classification Performance

• Overall goal: model parsimony, 
– achieve same or better performance with same or 

fewer parameters.
– Family of models that concentrate power only on 

what matters.
• Find structures that are inherently discriminative.
• Rough idea: represent the “unique” dependencies of 

each class,  do not represent “common”  
dependencies for all classes that do not help 
classification.

• Models should be incapable of not discriminating
– Distinct from being capable of discriminating

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Structural Discriminability

V1 V2

V3

V1 V2

V3

Object generation process:

Object recognition process: remove non-distinct dependencies that 
are found to be superfluous for classification, for example:

V1 V2

V3

1 2 3 4( , , , | 1)P V V V V C = 1 2 3 4( , , , | 2)P V V V V C =

V1 V2

V3

1 2 3 4
ˆ ( , , , | 1)P V V V V C = 1 2 3 4

ˆ ( , , , | 1)P V V V V C =

V4 V4

V4 V4
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CASE TYPE WER PARAMS 
1 Generative 32.0% 207k 
2 HMM 5.0% 157k 
3 Discriminative 4.6% 157k 

 

Comparison of generative vs. 
generative-discriminative models.

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Why HMMs and delta features?
• Wrong can be right

– HMM observations augment feature vector 
with temporal derivative estimates

– Wrong generative structure is better from a 
discriminative point of view
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The EAR Measure
( ; | ) ( ; )I X Z Q I X Z−

• EAR: Explaining Away Residual
• A way of approximating the discriminative 

quality of the edge between Z and X in 
context of Q.

• Marginally Independent, Conditionally 
Dependent

Z X Q
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Visualizing Dependency

,

( , | )( ; | ) ( , | ) log
( | ) ( | )x y

p x y cI X Y C c p x y c
p x c p y c

= = ∑

• Use Conditional Mutual Information

• There are many points to compute

time frame ->

feature position

tt+τ

,t jX τ+

,t iX

ChildChildParentParent

Candidate
Edge

Candidate
Edge
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Projection Visualizations

lagiparent

i ch
ild

parent-lag 
plot

child-lag 
plot

parent-child 
plot
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MI vs. EAR measure 
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MI vs. EAR measure 
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Learned 
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GMTK: Graphical Models 
Toolkit

• A GM-based software system for speech, language, 
and time-series modeling

• One system – Many different underlying statistical 
models (more than an HMM)

• Complements rather than replaces other ASR and 
GM systems (e.g., HTK, AT&T, ISIP, BNT, 
BUGS, Hugin, etc.)

• Ultimately will be open-source, freely available
• Long-term multi-year goal: improve features, 

computational speed, and portability.

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

GMTK is infrastructure
• GMTK does not solve speech and language 

processing problems, but provides tools to 
help to simplify testing modeling, and does 
so in novel ways.

• The space of possible solutions is huge, 
and its exploration has only just begun. 
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GMTK Features
• Textual Graph Language
• Switching Parent Functionality
• Linear/Non-linear Dependencies on observations
• Arbitrary low-level parameter sharing (EM/GEM 

training)
• Gaussian Vanishing/Splitting algorithm.
• Decision-Tree-Based implementations of 

dependencies (deterministic and sparse)
• Full inference, single pass decoding possible on 

smaller tasks (current version)
• Sampling Methods
• Log space Exact Inference – Memory O(logT)
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GMTK Structure file for HMM
frame : 0 {

variable : state {
type : discrete hidden cardinality 4000;
switchingparents : nil;
conditionalparents : nil using DenseCPT(“pi”);

}
variable : observation {

type : continuous observed 0:39;
switchingparents : nil;
conditionalparents : state(0) using mixGaussian mapping(“state2obs”);

}
}
frame : 1 {

variable : state {
type : discrete hidden cardinality 4000;
switchingparents : nil;
conditionalparents : state(-1) using DenseCPT(“transitions”);

}
variable : observation {

type : continuous observed 0:39;
switchingparents : nil;
conditionalparents : state(0) using mixGaussian mapping(“state2obs”);

}
}
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GMTK Structure file for HMM
• Structure file defines a prologue  , chunk 

 , and epilog  . E.g., for the basic HMM:

Q1 Q2 Q3

X1 X2 X3

Prologue, first
Group of frames

Chunk, Repeated
Until T frames

Epilogue, last
Group of frames

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

GMTK Unrolled structure
• Chunk is unrolled T-size(prologue)-

size(epilog) times (if 1 frame in chunk)

Q1

X1

Q2

X2

Q3

X3

QT

XT

QT-1

XT-1

…
Prologue, first

group of frames
Chunk, Repeated

until T frames is obtained.
Epilog, last

group of frames
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Multiframe Repeating Chunks
Prologue  Epilogue  Repeating Chunk  

Prologue Epilogue

…

Chunk Unrolled 1 time

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Switching Parents

S∈R2

S∈R1

C

M1 F1

M2 F2

S

M1 F1

( | 1, 1, 2, 2) ( | , , ) ( )i i i
i

P C M F F F P C M F S i P S R= = ∈∑
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variable : S {
type : discrete hidden cardinality 100;
switchingparents : nil;
conditionalparents : nil using DenseCPT(“pi”);

}
variable : M1 {...}
variable : F1 {...}
variable : M2 {...}
variable : F2 {...}
variable : C {

type : discrete hidden cardinality 30;
switchingparents : S(0) using mapping(“S-mapping”);
conditionalparents : 

M1(0),F1(0) using DenseCPT(“M1F1”)
| M2(0),F2(0) using DenseCPT(“M2F2”);

}

GMTK Switching Structure

C

M1 F1

M2 F2

S

M1 F1
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Gaussians Represented as Bayesian 
Networks

• Factor concentration matrix: K = U’DU
– D = positive diagonal of conditional variances
– U = unit upper-triangular matrix

• det(U) = 1 so det(U’DU) = det(D)
• Gaussian becomes:

)(')'(
2
1

2/12)(
µµ

π
−−−−=

xDUUx
eDxf
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Gaussians and Directed Models
The B matrix

•A Gaussian can be viewed 
as a directed graphical model
• FSICMs, obtained via 
U’DU factorization, provides 
the edge coefficients

' ( ) ' ( )K U DU I B D I B= = − −

1 1 112 13 14

2 2 223 24

3 3 334

4 4 4

0
0 0
0 0 0
0 0 0 0

x xb b b
x xb b
x xb
x x

ε
ε
ε
ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

X1 X2 X3 X4
( ) ( | )i

i
i

f x f x xπ=∏
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Actual Sparse Covariance Matrix

C
hi

ld
re

n
∆
∆

(e
,c

1-
c1

2)
∆

(e
,c

1-
c1

2)
e,

c1
-c

12

Parents
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GMTK Sharing & EM/GEM Training
• In GMTK, Gaussians are viewed as directed 

graphical models.
• GMTK supports arbitrary parameter 

sharing: 
– Any Gaussian can share its mean, variance D, 

and/or its (sparse) B matrix with others.
• Normal EM training leads to a circularity
• GMTK training uses a GEM algorithm

* * *

, ,
( , , ) argmax ( , , ; , , )o o o

D B
D B Q D B D B

µ
µ µ µ=
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GMTK Splitting/Vanishing 
Algorithm

• Determines number Gaussian components/state
• Split Gaussian if it’s component probability 

(“responsibility”)  rises above a number-of-
components dependent threshold

• Vanish Gaussian if it’s component probability 
falls below a number-of-components dependent 
threshold

• Use a splitting/vanishing schedule, one set of 
thresholds per each EM training iteration.
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Decision-tree implementation 
of discrete dependencies

X1

X2

Q1

Q2 Q3

Q4 Q5 Q6 Q7

Q1(X1)=T Q1(X1)=F

PA(X2) PB(X2) PC(X2) PD(X2)
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Linear and Log space exact 
inference

• Exact inference O(T*S) space and time 
complexity, S = clique state space size

• Log-space inference O(log(T)*S) space at 
an extra cost of a factor of log(T) time.

• Can use both linear and log space inference 
at same time (for optimal tradeoff).

• This is same idea as what has been called 
the Island Algorithm
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Example: Linear-Space in HMM
( ) ( 1) ( )i j ji i t

j

t t a b xα α= −∑

1( ) ( 1) ( )i j ij j t
j

t t a b xβ β += +∑
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Example: One recursions Log Space
( ) ( 1) ( )i j ji i t

j

t t a b xα α= −∑

1( ) ( 1) ( )i j ij j t
j

t t a b xβ β += +∑
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Example: Two recursions Log Space
( ) ( 1) ( )i j ji i t

j

t t a b xα α= −∑

1( ) ( 1) ( )i j ij j t
j

t t a b xβ β += +∑
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The GMTK Triangulation Engine
(an anytime algorithm)

• User specifies an amount of time (2mins, 3 hours, 4 
days, 5 weeks, etc.) to spend triangulating

• User does not worry about intricacies of graph 
triangulation

• Uses a “boundary algorithm” to find chunks of DBN 
to triangulate (UAI’2003)

• Many heuristics implemented: min-fill in, min size, 
min weight, maximum cardinality search, simulated 
annealing, exhaustive elimination, and exhaustive 
triangulation
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Current StatusCurrent Status
I. System available at:

A. http://ssli.ee.washington.edu/~bilmes/gmtk
B. ~100 pages of documentation
C. Book chapter on use of graphical models for speech 

and language
D. JHU’2001 Workshop technical report

II. GMTK Triangulation “Engine” running and 
ready
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Exact inference in DBNs
• Triangulation in DBNs

– Standard triangulation heuristics typically poor for DBNs
since they are short and wide

– Slice-by-slice triangulation via elimination: severely limit 
number of elimination orders without limiting optimal 
triangulation quality

– Triangulation quality is lower-bounded by size of interface to 
previous (or next) slice

– Can allow interfaces to span multiple slices, which can make 
interface quality much better (UAI’2003)

• Use message passing order in junction tree that 
respects directed deterministic dependencies (to cut 
down on state space)



60

GMs in Audio, Speech, and LanguageJeff  A. Bilmes

Approximate inference in DBNs
• Standard approximate inference methods

– Pruning as is done performed by modern speech 
recognition systems

– Variational and mean-field approaches
– Loopy belief propagation
– Sampling, particle filtering, etc.

• All techniques for approximate inference in 
DBNs are relevant to the speech/language case 
as well.
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Conclusions
• Many models and many techniques
• We have just scratched the surface, still a 

relatively young research area.
• Key challenges summary:

– Explicit Control Structures
– Structure learning
– Fast inference techniques
– Identifying interesting latent variables
– Structural Discriminability
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The End


