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Bayesian Networks: Problem

= Bayes nets use attribute-based representation
= Real world has objects, related to each other

These “instances” are not independent
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Simple Approach

= Obvious solution:
=« Use a graphical model with shared parameters

= Nodes share not only parameters, but also local
dependency structure
= Want to enforce this constraint:

« For human knowledge engineer
= For network learning algorithm



%P| Simple Approach II

= How do we specify shared structure across
different nodes?
=« Each person depends on his mother
= But different people have different mothers
= How do we specify the mapping
= We can write a special-purpose program for
each domain:
= genetic inheritance (family tree imposes constraints)
= university (course registrations impose constraints)

= Is there something more general?




Attribute-Based Worlds
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= World = assignment of values to attributes
/ truth values to propositional symbols



Object-Relational Worlds

Ox,y(Smart(x) & Easy(y) & Take(x,’,
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= World = relational interpretation:
= Objects in the domain
= Properties of these objects
= Relations (links) between objects



Relational Logic

= General framework for representing:
= Objects & their properties
= classes of objects with same model
= relations between objects

= Represent a model at the template level, and
apply it to an infinite set of domains

= Given finite domain, each instantiation of the
model is propositional, but the template is not



Relational Schema

= Specifies types of objects in domain, attributes of each
type of object & types of relations between objects
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Possible Worlds
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Relational Logic: Summary

= Vocabulary:

= Classes of objects:
= Person, Course, Registration, ...

= Individual objects in a class:
= George, Jane, ...

= Attributes of these objects:
= George.Intelligence, Regl.Grade

= Relationships between these objects
= Of(Regl,George), Teaches(CS101,Smith)
= A world specifies:
= A set of objects, each in a class
= The values of the attributes of all objects
= The relations that hold between the objects



Binary Relations

= Any relation can be converted into an object:
= R(Xy,%5,..., %) —
new “relation” object y,

Rl(XIIY)I RZ(XZIY)I"'I Rk(XkIY)
=« E.qg., registrations are “relation objects”

—> Can restrict attention to binary relations R(X,y)



Relations & Links

Binary relations can also be viewed as links:
Specify the set of objects related to x via R
R(X,y) - y Ox.R1, x O0vy.R?

E.g., Teaches(p,c) -

= p.Courses = {courses c : Teaches(p,c)}
= C.Instructor = {professors p : Teaches(p,c)}



Probabilistic Relational Models:

.5’| Relational Bayesian Networks



'é’ Probabilistic Models "

= Uncertainty model:
= space of “possible worlds”;
= probability distribution over this space.

= In attribute-based models, world specifies
= assignment of values to fixed set of random variables

= In relational models, world specifies
= Set of domain elements
= Their properties
= Relations between them



%’| PRM Scope

= Entire set of relational worlds is infinite and too broad

= Assume circumscribed class of sets of worlds Q;
consistent with some type of background knowledge &

= PRM I is a template defining P(Q;) for any such ¢

= Simplest class 00 attribute-based PRMs:

s & = relational skeleton.
= finite set of entities E and relations between them

= Q. = all assignments of values to all attributes of entities in E
= PRM template defines distribution over Q; for any such &

[K. & Pfeffer 98; Friedman, Getoor, K. Pfeffer '99]



%P | Relational Bayesian Network

= Universals: Probabilistic patterns hold for all objects in class
= Locality: Represent direct probabilistic dependencies
= Links define potential interactions
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P RBN: Semantics

= &: set of objects & relations between them

= Q;: the set of all assignments of values to all
attributes of all objects in ¢

= Pr(Q;) is defined by a ground Bayesian network:
= variables: attributes of all objects

=« dependencies: determined by
« relational links in &
= dependency structure of RBN model I



RBN Structure

= For each class X and attribute A, structure specifies
parents for X.A
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= For any object x in class = T: link or chain of links

X, X.B is parent of x.A = For any object x in class
X, X.1.B is parent of x



RBN Semantics
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The Web of Influence
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The Web of Influence
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The Web of Influence
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Aggregate Dependencies
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Aggregate Dependencies
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Aggregate Dependencies
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%P| Basic RBN: Summary

= RBN specifies
= A probabilistic dependency structure S
= A set of parents X.1.B for each class attribute X.A

= A set of local probability models:
= Aggregator to use for each multi-valued dependency

= Set of CPD parameters Oy 4

= Given relational skeleton structure &, RBN induces
a probability distribution over worlds w

= Distribution defined via ground BN over attributes x.A
P(w|&,5,0) =[] [1P(x-Al parents; [(x.A),64 ,)
A XDXg
Attrlbutes Objects



%P | Extension: Class Hierarchy

= Subclasses inherit all attributes of parents, but
may have additional ones
= For inherited attribute X.A, subclass can:

= inherit parent’s probabilistic model
= overwrite with local probabilistic model

= Example:

= Professor has subclasses assistant, associate, full
= Inherit distribution over Stress-Leve/
= Modify distribution over Sa/ary

[K. & Pfeffer 98]



®®| Extension: Class Hierarchies

= Hierarchies allow reuse in knowledge engineering
and in learning

=« Parameters and dependency models shared across
more objects

= If class assignments specified in &, class hierarchy
does not introduce complications

[K. & Pfeffer 98]



Coherence & Acyclicity

Professor = For given skeleton &, PRM T[]
Teaching- Abilit asserts dependencies
(Sh, ess-Level between attributes of objects:
: y.B — gi"rl X-A
' Reg = [] defines coherent probability
Grade model over o if - is acyclic

Satisfaction

Smith.Stress-leve/depends

probabilistically on itself
[Friedman, Getoor, K. Pfeffer '99]



%’ | Guaranteeing Acyclicity

How do we guarantee that a PRM [] is acyclic
for every object skeleton ¢&?

PRM template-level
dependency [0 > dependency
structure S graph

If X.1.B 1 Parents(X.A), and
class of X.tisY

Attribute stratification:
class dependency graph acyclic =

~¢n acyclic for all &



? Limitation of Stratification
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®®| Limitation of Stratification
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= Prior knowledge: the Father-of relation is acyclic

= Dependence of Person.A on Person.Father.B cannot
induce cycles



%’ | Guaranteeing Acyclicity

= With guaranteed acyclic relations, some cycles in
the dependency graph are guaranteed to be safe.

= We color the edges in the dependency graph

yellow: Within@ green: via red: via

single object g.a. relation other relations l

< Person.M-chrom Person.P-chrom
A cycle is safe if

= it has a green edge
rerson.B-fype = it has no red edge




%’ | Object-Oriented Bayesian Nets

= OOBNSs are RBN with only one type of relation
= One object can be a “part-of” another
= Objects can only interact with component parts

= Other types of relationships must be embedded into
the “part-of” framework

= Defines “neat” hierarchy of related objects

= Provides clearly defined object interface
between object x and its enclosing object y

[K. & Pfeffer '97]



Probabilistic Relational Models:

.5’| Relational Markov Networks



Why Undirected Models?

= Symmetric, non-causal interactions
= E.g., web: categories of linked pages are correlated
= Cannot introduce direct edges because of cycles

= Patterns involving multiple entities
= E.g., web: “triangle” patterns
= Directed edges not appropriate

= Solution”; Impose arbitrary direction

= Not clear how to parameterize CPD for variables
involved in multiple interactions

= Impossible to do within a class-based parameterization

[Taskar, Abbeel, K. 2001]



®®| Markov Networks: Review
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Markov Networks: Review

= A Markov network is an undirected graph over
some set of variables V

= Graph associated with a set of potentials @
= Each potential is factor over subset V,
= Variables in V; must be a (sub)clique in network

PV) = [],00)



Relational Markov Networks

= Probabilistic patterns hold for groups of objects
= Groups defined as sets of (typed) elements linked in

particular ways
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[Taskar, Abbeel, K. 2002]



®P Relational Markov Networks

= Probabilistic patterns hold for groups of objects

= Groups defined as sets of (typed) elements linked in
particular ways

Template potential
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%’| RMN Language

s Define dligue templates
= All tuples {reg R,, reg R,, group G}
s.t. In(G, Ry), In(G, R,)
= Compatibility potential ¢(R,.Grade, R,.Grade)

= Ground Markov network contains potential
@(r,.Grade, r,.Grade) for all appropriate r; r,
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l;’| PRM Inference



Inference: Simple Method

Define ground network as in semantics
Apply standard inference methods

Problem:

= Very large models can be specified very easily

= Resulting ground network often highly connected
= Exact inference is typically intractable

In practice, often must resort to approximate
methods such as belief propagation



Exploiting Structure: Encapsulation

= Objects interact only in limited ways

= Can define object interface:
= Outputs: Object attributes influencing other objects
. : External attributes influencing object

= Object is independent of everything given interface

= Inference can be encapsulated within objects, with
“communication” limited to interfaces

( Student
— |

@rsonalD

>
Job-prospects
[K. & Pfeffer, 1997] k )

GPA




Exploiting Structure: Encapsulation

= Marginalize object distribution onto interface

= Dependency graph over interfaces induced by
= Inter-object dependencies
= And hence by the relational structure

s Perform inference over interfaces

« If interaction graph has low tree-width, can use exact
inference
= E.g., part-of hierarchy in OOBNs

» If relational structure is more complex, can use BP

= A form of Kikuchi BP, where cluster selection is guided by
relational structure



Exploiting Structure: Reuse

= Objects from same class have same model

s For generic objects — no internal evidence —
marginalize interface is the same

= Can reuse inference — a form of "lifting”

\_

(George

Job-prospects

Personality

[Pfeffer & K. 1998]
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%’ | Exploiting Structure: Reuse

= Generic objects often play same role in model
=« Multiple students that all take the same class

= Reuse: compute interface once

= Combinatorics: compute total contribution to
probability in closed form

P(4 students like the class | teaching-ability = low) =

P(generic student likes the class | teaching ability = low;

[Pfeffer & K. 1998]



%’ | Case study

Battlefield situation assessment for missile units

= several locations
= Many units
= each has detailed model

= Example object classes: = Example relations:
= Battalion = At-Location
= Battery = Has-Weather
= Vehicle = Sub-battery/In-battalion
= Location = Sub-vehicle/In-battery

= Weather.
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';’| PRM Learning



Outline

= Relational Bayesian networks
= Likelihood function
= ML parameter estimation
= EM
= Structure learning

= Relational Markov networks
= Parameter estimation

= Applications:
= Collective classification — web data
= Relational clustering — biological data



PRM Learning: Input

Input: a full world w
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®®| Likelihood Function
(5.0 4)=P(a|E.5.0)
= D} |D_)|( P(x.A| parents; ,(x.A),0, ,)

7 N~
Attributes Objects

= Likelihood of a BN with shared parameters

= Joint likelihood is a product of likelihood terms
= One for each attribute X.A and its family

= For each X.A, the likelihood function aggregates
counts from all occurrences x.A in world w

[Friedman, Getoor, K., Pfeffer, 1999]



'{)’ Likelihood Function: Multinomials

Log-likelihood:
logP(aw |£,5,0) =

> > > M(a,u)logd,,

X.A ullVal(Pa(X.A)) a Val(X.A)

Sufficient statistics:

M(a,u) =

}{X X, . x.A=a, parents, ,(x.A) = u}‘
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RBN Parameter Estimation

= MLE parameters:

P(Rey.Grade = A| Student Intell = hi,Course Diff = o)
_ M(Reg.Grade = A,Student . Intell = hi,Course.Diff = /o)

M (Reg.Grade =*,Student . Intell = hi,Course.Diff = /o)

= Bayesian estimation:

= Prior for each attribute X.A
= Posterior uses aggregated sufficient statistics



Learning w. Missing Data

= EM Algorithm applies essentially unchanged

» E-step computes expected sufficient statistics,
aggregated over all objects in class

=« M-step uses ML (or MAP) parameter estimation

= Key difference:

= In general, the hidden variables are not independent

= Computation of expected sufficient statistics requires
inference over entire network

= [Same reasoning as for forward-backward algorithm
in temporal models]



Learning w. Missing Data: EM

[Dempster et al. 77]
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%’| Learning RBN Structure

= Define set of legal RBN structures
= Ones with legal class dependency graphs

= Define scoring function 0 Bayesian score

marginal
likelihood prior

Score(S:w) =log[P(w|S.OP(S)]
P(w|S,¢) :IL(S,G)S:w)P(G)S)aG)S
= Product of family scores:

= One for each X.A
= Uses aggregated sufficient statistics

= Search for high-scoring legal structure
[Friedman, Getoor, K., Pfeffer, 1999]




Learning RBN Structure

= All operations done at class level
= Dependency structure = parents for X.A
= Acyclicity checked using class dependency graph
= Score computed at class level

= Individual objects only contribute to sufficient
statistics
= Can be obtained efficiently using standard DB queries



'3’ Exploiting Locality: Phased Search

Phase 0: consider only dependencies within a class
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'3’ Exploiting Locality: Phased Search

Phase 1: consider dependencies one link away
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'3’ Exploiting Locality: Phased Search

Phase k: consider dependencies k links away




®® TB Patients in San Francisco
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%P| TB Patients in San Francisco

.1000 strains

')
@ Y

Input: Relational database

0000 contacts



%P| TB Patients in San Francisco
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[Getoor, Rhee, K., Small, 2003]



®P| Learning RMN Parameters

Student __[Reg Template potential @
Intelligence >Grade —~~
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Course
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Parameterize potentials as log-linear model
[Taskar, Abbeel, K., 2002]
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%’| Learning RMN Parameters

((w:w)=logh,(w|w)=> w, f(w)-logZ
F H_J
Counts in w

For example:
fan () = # of tuples {reg r,, reg r,, group g} s.t.
In(g, ry), In(g, r,); ry.Grade=A, r,.Grade=A



%’| Learning RMN Parameters

= Parameter estimation is not closed form
= Convex problem = unique global maximum
= Can use methods such as conjugate gradient

0/
ow,,

- P(6rade = A,6rade =A) - expected count

= #(6rade = A,6rade = A) actual count

= Gradient process tries to find parameters s.t.
expected counts = actual counts

= Computing expected counts requires inference
over ground Markov network



%P Collective Classification

Training Data Probabilistic
Relational

Model
=i A=
i » l:
":> Learning —

- S
“Model
tructure
New Data Conclusions

& |l:> Inference
Example:

= Train on one year of student intelligence, course difficulty, and grades
= Given only grades in following year, predict all students’ intelligence




%’ | Discriminative Training

= Goal: Given values of observed variables w.0=0,
predict desired target values w.T=t*

= Do not necessarily want the model to fit the
joint distribution P(w.0=0, w.T=t*)
= T0 maximize classification accuracy, we can
consider other optimization criteria
= Maximize conditional log likelihood
PlaT =1*|a.O =0)
= Maximize margin

logP(w.T =1* |w.O =0)

—~log[max,,,. P(wT =1 |w0 =0)]
[Taskar, Abbeel, K., 2002; —
Taskar, Guestrin, K. 2003] P(second highest probability label)




St - 5 - @[ A Qoch [igretss Bt

eb of Data

Whishang
e web. Caack ot

ot cper

Foedin Profeceo of Al nd Lesuing
Ditector, Cepie or Awormatd Learsisg and Dicover
Seliolof Compores See.

Comege Malor Usseesty

an2-268-2611, B o Mich

Research: Machine Learning, Computer Sclence

Howwcan
T includes
i
&

i e Fatis s b
ke - Q) A s e Py |
s [ET W e o st

ERE

CMU World Wide Knowledge Base (Web->KB)
project

(o might be Iooking o st
it nsganesi i g ed

Goak:

T
» o, encbltg

sucesse,

s more sophisbeated nfemsien reiel s probiem oleg

Approach:

L g vty

et macane Larang mcthods

Datasets:

£
o

- 5 - @ B 4| Qe Gtrovnes vy | B 3 6 - &
3 BTy o e s e, ot =] @a [fuks ™|

lattery
i Al slgeace

TR —— R p———

celed

Conld come vl

e o - O [ 8| Qe Gt
s BT e e, ot

= oo Ju

Mine, Antaine_mins @ ¢ crweh

Wity Seentt G50

M, Torsko oo @ s e sz
Senar Resaarcn St L1

ol @ ey

Freeer G50

Montgomery.Alan s @ sndien s i

AEeacst Pofsson Of aaing. GEIA

Moore, Andrewe o @ e cnwad
esocets Poessan oo ke

Moran, Thamss s @ e coi 680
Vising Presssor Rl iy

Moravee, Hans o @ o< cma . s
Pl Rsaarcn S 11

Mo samss _jaiss moris @ e s80
Dein G SCasbror 1 C8 (50

et al.]

M Patick i @ cmusd sne
Finc Sesaarch Sowruet Rl =
B Z

CED

.....
L

...

Project-

&
L]
L]
L J
4
L4
4




Web Classification Experiments

= WebKB dataset

= Four CS department websites
= Bag of words on each page

= Links between pages

= Anchor text for links

= Experimental setup
= Trained on three universities

=« Tested on fourth
= Repeated for all four combinations



Standard Classification

Logistic
Regression

‘ -

Categories:
Professor faculty

department | course
extract project
Information | student
computer other
science
machine
learning

\. J




Standard Classification

Research: Machine Learning, Computer Science

Wit

Tomp.12

Mitchall”’

\ 0.08;

0.04

MNANANY

0.02;

0— - -
E Logistic




Power of Context

Professor? Student? Post-doc?
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Collective Classification
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More Complex Structure

a David Wood's Home Page - Microsoft Internet Explorer
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s Steve Eemhardt
+ DBran Toonen

Recently Graduated Students:

Eahmat Hyder (Intel)

Ay Lebeck (Tulkce Tniversity)
Eob Phle (Sun Microsystems)

Wlark Callaghan {Informg)
Courses I Teach:

o Fall 1594 CS/ECE 552 - Introduction to Computer Arclutecture
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%’| More Complex Structure
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Collective Classification: Results
R_R ) A
e .
ﬁ:\ /?io q:)%(.(

N
0.18 ;
0.16
0.141" L
n1 ')-/

35.4% relative reduction in error

relative to strong flat approach

0.04
0.02

[Taskar, Abbeel, K., 2002] @ Logistic B LinksE Section B Link+Section



%’ | Relational Clustering

Unlabeled Relational Data Probabilistic
Relational
% =5
S
&oa . n OB n®
":> Learning -

Clustering of instances
odel

; %tructure %

Example:

=l

= Given only students’ grades, cluster similar students
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Discovering Hidden Types

D/r'ec far

@ MPAA Ra‘l'm

[Taskar, Segal, K., 2001]
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Discovering Hidden Types

Movies

Wizard of Oz
Cinderella
Sound of Music
The Love Bug
Pollyanna .
The Parent Trap """
Mary Poppins

Swiss Family Robinson

Actors

Directors

Sylvester Stallone |
Bruce Willis
Harrison Ford
Steven Seagal
Kurt Russell
Kevin Costner
Jean-Claude Van Damme
Arnold Schwarzenegger

Terminator 2
Batman

Batman Forever
GoldenEye

Mission: Impossible
Hunt for Red October

Anthony Hopkins
Robert De Niro
Tommy Lee Jones T
Harvey Keitel a4
Morgan Freeman
Gary Oldman

Alfred Hitchcock
Stanley Kubrick
David Lean
Milos Forman
Terry Gilliam
Francis Coppola

Tim Burton

Tony Scott
James Cameron
John McTiernan
Joel Schumacher




Biology 101: Pathways

= Pathways are sets of genes that act together to
achieve a common function



Blology 101: Expressmn

Gene 1 Gene 2
Contro/—>i+ Coding— i~ Control~»i< Coding

RNA

Protein

Cells express different
subsets of their genes

In different tissues and
under different conditions

‘ Transcription factor




%’ | Finding Pathways: Attempt I

= Use protein-protein interaction data

@ Pathway IIT
O O

EE




%’ | Finding Pathways: Attempt I

= Use protein-protein interaction data

= Problems:
« Data is very noisy

s Structure is lost:

« Large connected component
(3527/3589 genes)
in interaction graph




%’ | Finding Pathways: Attempt II

= Use gene expression data
= Thousands of arrays available under different conditions




%’ | Finding Pathways: Attempt II

x Use gene expression data
= Thousands of arrays available under different conditions

s Problems:

= Expression is only ‘weak’
indicator of interaction

= Data is noisy

= Interacting pathways are
not separable




&®|Finding Pathways: Our Approach

= Use both types of data to find pathways
= Find “active” interactions using gene expression
« Find pathway-related co-expression using interactions

-\.
o i, f . = a
- - 8
3 = £ = -
e, Ly S A e e

-~ ] ey T n MLE - .

*a Tl 3 Wy WS T
o L - [ e _\.-'

P, .
e PR i = Lo T
W
L L] |- L - - 5
i w . | ul ; i » ]
r
¥ H
L]
'
H
| = ,
i — =
a

Y Pathway IV




%P\ Probabilistic Model

= Genes are partitioned into “pathways”:
= Every gene is assigned to one of 'k’ pathways
= Random variable for each gene with domain {1,...,k}

s EXpression component:

= Model likelihood is higher when genes in the same
pathway have similar expression profiles

= Interaction component:

= Model likelihood is higher when genes in the same
pathway interact

[Segal, Wang, K., 2003]



Expression Component

Naive Bayes

Pathway of gene g

Expression level of gene g in m arrays




%’ | Protein Interaction Component

= Interacting genes are more likely to be in the
same pathway

protein product
Interaction

NEFPWOWDNPEFEPWDNPEP

-

Compatibility potential



Joint Probabilistic Model
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Learnlng Task

Large Markovnetwork Wlt::h hlgh connect|V|ty

U
Use loopy bellef propagatlon
L B[
T g\%\ _2____4-:___
3 32 Path. I

— O ©

= E-step: compute pathway assignments
= M-step: Estimate Gaussian distribution parameters
= Estimate compatibility potentials using cross-validation




%P | Capturing Protein Complexes

= Independent data set of interacting proteins

400

< Our method
350 AT » Standard expression clustering

300
d - 124 complexes covered
]
= at 50% for our method
S 200
o 46 complexes covered at
= 50% for clustering
Z
100
50

O , ‘ ‘ ‘ , E—— iy ‘
O 10 20 30 40 50 60 70 80 90 100
Complex Coverage (%)



%’| RNAse Complex Pathway

YHRO81W
RRP40
RRP42
MTR3
RRP45

= Includes all 10 RPAD (TRMT
known pathway Q%
RRP42

genes DIS3
CSL4 RR@
= Only 5 genes
found by YHRO81W RP4
clustering

RRP4)—( SKI6 MTR3



%’ | Interaction Clustering

= RNAse complex found by interaction clustering as
part of cluster with 138 genes




Uncertainty about

';’| Domain Structure

or

PRMs are not just template
BNs/MNs



Structural Uncertainty

= Class uncertainty:
= To which class does an object belong

= Relational uncertainty:
= What is the relational (link) structure

= Identity uncertainty:
= Which “"names” refer to the same objects
= Also covers data association



%’ | Relational Uncertainty

Probability distribution over graph structures
= Link existence model

= E.qg., hyperlinks between webpages

=« Each potential link is a separate event

= Its existence is a random variable
= Link reference model

= E.q., instructors teaching a course

= Fix set of outgoing links per object

= Distribution over # of endpoints for outgoing link

= Each link has distribution over link endpoint
= e.g., instructor link for CS course likely to point to CS prof

= Many other models possible
[Getoor, Friedman, K. Taskar, 2002]



'{)’ Link Existence Model

= Background knowledge ¢ is an object skeleton
= A set of entity objects

= PRM defines distribution over worlds w
= Assignments of values to all attributes
= Existence of links between objects

= Define objects for any potential links

=« E.g., a potential link object for any pair of webpages
wl, w2

= Each potential link object has /ink existence
attribute, denoting whether the link exists or not

= Link existence variables have probabilistic model
[Getoor, Friedman, K. Taskar, 2002]




%P | Exists Uncertainty Example

Page-from --{Page - fo

Type . -: . E i Typ e

Words ] f{”k (I | Words
Exists

From.Type

Student Student
Student Professor
Professor Student
Professor  Professor




Why Are Link Models Useful?

= Predict which links exist in the world
= Which professor teaches each course
= Which student will register for which course

= Use known links to infer values of attributes

= Given that student registered for a hard class, is she
more likely to be a graduate student

= Given that one page points to another, is it more
likely to be a faculty page?
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Flat Model
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Collective Classification: Links

[Taskar, Wong, Abbeel, K., 2002]



Link Model




Triad Model

Profess




%P Link Prediction: Results

k- 72.9% relative reduction In error
relative to strong flat approach

= Error measured over .
links predicted to be

25-
present
20-
. . 151
= Link presence cutoff is
at precision/recall 10-
break-even point 5-

(=30% for all models) o

[Taskar, Wong, Abbeel, K., 2002] @ Flat B Links B Triad




'é’ Identity Uncertainty Model

= Background knowledge ¢ is an object universe
= A set of potential objects

= PRM defines distribution over worlds w
= Assignments of values to object attributes
= Partition of objects into equivalence classes
= Objects in same class have same attribute values

[Pasula, Marthi, Milch, Russell, Shpitser, 2002]



%’ | Citation Matching Model*

Link chain: )
Appears-in.
Refers-to.
Written-by

Narme -

Wr'i’r’ren-lgy

: Appears-in

= Each citation object associated with paper object
= Uncertainty over equivalence classes for papers

= If P,=P,, have same attributes & links
* Simplified El'itle, PubType i Authors |




%’ | Identity Uncertainty

= Depending on choice of equivalence classes:
= Number of objects changes
= Dependency structure changes

= No “nice” corresponding ground BN

= Algorithm:
= Each partition hypothesis defines simple BN
= Use MCMC over equivalence class partition

= Exact inference over resulting BN defines acceptance
probability for Markov chain

[Pasula, Marthi, Milch, Russell, Shpitser, 2002]



Identity Uncertainty Results

@ Phrase Match C PRM+MCMC

- N A

61.5% relative reduction in error
relative to state of the art
90
J1dl <
H R B

Face Reasoning Constraint Average
Accuracy of C|tat|on recovery:

% of actual citation clusters recovered perfectly
[Pasula, Marthi, Milch, Russell, Shpitser, 2002]
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Summary: PRMs ...

= Inherit the advantages of graphical models:
= Coherent probabilistic semantics
= Exploit structure of local interactions

= Allow us to represent the world in terms of:
= Objects
= Classes of objects
= Properties of objects
= Relations



P So What Do We Gain?

= Convenient language for specifying complex models

= "Web of influence”: subtle & intuitive reasoning

= A mechanism for tying parameters and structure
= within models

= across models

= Framework for learning from relational and
heterogeneous data



P So What Do We Gain?

New way of thinking about models & problems

= Incorporating heterogeneous data by connecting
related entities

= New problems:
= Collective classification
= Relational clustering

= Uncertainty about richer structures:

= Link graph structure
« Identity



%’ | But What Do We Really Gain?

Are PRMs just a convenient language for
specifying attribute-based graphical models?

= Simple PRMs = relational logic w. fixed domain and O only
= Induce a “propositional” BN

= Can augment language with additional expressivity
= Existential quantifiers & functions
= Equality
= Resulting language is inherently more expressive, allowing
us to represent distributions over
= worlds where dependencies vary significantly [Getoor et al., Pasula et al.]
= worlds with different numbers of objects [Pfeffer et al., Pasula et al.]
= worlds with infinitely many objects [Pfeffer & K.]

= Big questions: Inference & Learning




2 103 You!

http://robotics.stanford.edu/~koller/



