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Abstract

Patients with end-stage renal failure often find
kidney donors who are willing to donate a life-
saving kidney, but who are medically incom-
patible with the patients. Kidney exchanges
are organized barter markets that allow such
incompatible patient-donor pairs to enter as a
single agent—where the patient is endowed
with a donor “item”—and engage in trade with
other similar agents, such that all agents “give”
a donor organ if and only if they receive an
organ in return. In practice, organized trades
occur in large cyclic or chain-like structures,
with multiple agents participating in the ex-
change event. Planned trades can fail for a
variety of reasons, such as unforeseen logisti-
cal challenges, or changes in patient or donor
health. These failures cause major inefficiency
in fielded exchanges, as if even one individual
trade fails in a planned cycle or chain, all or
most of the resulting cycle or chain fails. Ad-
hoc, as well as optimization-based methods,
have been developed to handle failure uncer-
tainty; nevertheless, the majority of the exist-
ing methods use very simplified assumptions
about failure uncertainty and/or are not scal-
able for real-world kidney exchanges.

Motivated by kidney exchange, we study a
stochastic cycle and chain packing problem,
where we aim to identify structures in a di-
rected graph to maximize the expectation of
matched edge weights. All edges are subject
to failure, and the failures can have noniden-
tical probabilities. To the best of our knowl-
edge, the state-of-the-art approaches are only
tractable when failure probabilities are iden-
tical. We formulate a relevant non-convex
optimization problem and propose a tractable
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mixed-integer linear programming reformula-
tion to solve it. In addition, we propose a
model that integrates both risks and the ex-
pected utilities of the matching by incorporat-
ing conditional value at risk (CVaR) into the
objective function, providing a robust formu-
lation for this problem. Subsequently, we pro-
pose a sample-average-approximation (SAA)
based approach to solve this problem. We test
our approaches on data from the United Net-
work for Organ Sharing (UNOS) and com-
pare against state-of-the-art approaches. Our
model provides better performance with the
same running time as a leading deterministic
approach (PICEF). Our CVaR extensions with
an SAA-based method improves the a x 100%
(0 < a < 1) worst-case performance substan-
tially compared to existing models.

1 INTRODUCTION

Kidney exchange is a centralized barter market were pa-
tients with end-stage renal disease trade willing donors
in cyclic or chain-like transactions [Abraham et al., 2007,
Rapaport, 1986, Roth et al., 2004]. The aim of the kidney
exchange clearinghouse is to find the “best” disjoint set
of such swaps—i.e., to solve a cycle and chain packing
problem. Exchanges already account for over 12% of liv-
ing kidney donations in the US, and exchange programs
are growing worldwide [Bir6 et al., 2019]—including
via extensions to liver and lung [Ergin et al., 2017], and
even multi-organ [Dickerson and Sandholm, 2017], ex-
change. Fielded exchanges face several source of ineffi-
ciency, primarily due to pre-transplant “failure” [Leish-
man, 2019]; that is, most planned transplants never re-
sult in transplantation due to medical or logistical in-
compatability [Agarwal et al., 2019, Alvelos et al., 2015,
Anderson et al., 2015, Dickerson et al., 2016, 2018,
Glorie et al., 2014, Goldberg and Poss, 2019, Klimen-



tova et al.,, 2016, Manlove and O’Malley, 2015]. In
other words, the exchange program cannot be certain
whether a compatible patient and donor will result in a
transplant. Exchanges are often represented by directed
graphs (see § 2), where edges indicate potential trans-
plants and edge weights reflect the medical or social util-
ity of the transplant. If a planned transplant (i.e., edge)
fails, its effects can cascade through the exchange, caus-
ing other edges to fail (see § 2.1)—thus, edge failures can
severely impact the overall utility of an exchange. Thus
it is of interest for exchange coordinators to account for
uncertainty when planning transplants. Kidney exchange
with edge existence uncertainty—specifically, selecting
transplants which minimize impact from edge failures—
is the focus of this paper.

Many approaches have been proposed to deal with edge
existence uncertainty, often using stochastic or robust op-
timization techniques. However most of these models ei-
ther make the simplifying assumption that all transplants
are equally likely to fail, or they require intractable algo-
rithms that cannot be used on large exchanges.

We fill a major gap in prior work by proposing the first
scalable algorithm (meaning it uses a number of vari-
ables polynomial in the input size) for maximizing ex-
pected matching weight, with non-identical failure prob-
abilities. This is an important step forward, as fail-
ure probabilities are known to be inhomogeneous—some
edges are inherently riskier than others [Dickerson et al.,
2018]. We provide a mixed-integer linear program for
our approach, which is compact and can be solved di-
rectly by a general-purpose integer programming solver
(e.g., CPLEX, Gurobi, or SCIP). In computational ex-
periments we demonstrate that accounting for inhomo-
geneous edge probabilities improves over state-of-the-art
approaches, using data from the United Network for Or-
gan Sharing.

Additionally, we propose a modified version of the kid-
ney exchange problem which balances the mean ex-
pected weight with the worst-case weight (“risk”) of an
exchange with known nonidentical edge failure probabil-
ities; we achieve this balance using a conditional value-
at-risk (CVaR) objective. This approach is motivated by
the fact that expected weight can be misleading when the
worst-case outcome can be arbitrarily bad (see § 2.1). We
are not the first to propose a CVaR approach for kidney
exchange; however, previous CVaR-based approaches do
not allow for arbitrary length limits on cycles and chains—
which are used by all fielded exchanges. With cycle and
chain length limits, the kidney exchange problem with
a CVaR objective is challenging, as there is no closed-
form expression for the objective function. Thus, we
propose a sample-average-approximation-based method

and develop an equivalent mixed-integer linear program-
ming representation. Computational experiments show
that our model improves the worst-case mean over state-
of-the-art methods.

1.1 Uncertainty in Kidney Exchange

Many prior approaches address edge existence uncer-
tainty in kidney exchange, often with the objective of
maximizing expected matching weight, assuming all
edges have identical failure probability. Dickerson et al.
[2016] provides a scalable formulation in this case, and
Dickerson et al. [2018] extends this to consider inho-
mogeneous edge probabilities; however the latter model
can require enumeration of all feasible cycles and chains,
which can be intractable for even small exchanges. Sim-
ilar approaches have been proposed, but still assume that
all edges have equal failure probability [Alvelos et al.,
2015, Constantino et al., 2013]. Rather than maximizing
expected edge weight, other approaches take the risk-
averse perspective, aiming to maximize the worst-case
matching weight [Carvalho et al., 2020, McElfresh et al.,
2019]; these approaches are often too conservative, as
the worst case in kidney exchange is often arbitrarily
bad (i.e., in the worst case, all planned transplants fail).
Zheng et al. [2015] propose a CVaR method that endoge-
nously balances structure length with risk; however, their
model is not amenable to length caps on cycles and/or
chains, a requirement in all fielded kidney exchanges.

Several other optimization-based approaches have been
proposed, using recourse [Anderson et al., 2015], forms
of “fallback” options [Bartier et al., 2019, Manlove and
O’Malley, 2015, Wang et al., 2019], and pre-match edge
queries [Blum et al., 2013, 2015, McElfresh et al., 2020].
These methods involve additional decision stages, and
are not directly comparable in our setting.

Next we describe the formal model of kidney exchange
and edge existence uncertainty.

2 PRELIMINARIES

We represent a kidney exchange as a directed graph
G = (E,V) where each vertex v; € V is an incompat-
ible patient-donor pair, or a non-directed donor (NDD,
i.e., a donor without a paired patient). Directed edges
e = (v;,v;) represent potential transplants from the
donor of node 7 to the patient of node j; edge weights
w. > 0 represent the medical or social utility of each
potential transplant. We assume that edge failure prob-
abilities p. € [0, 1] are known in advance and are not
necessarily homogeneous. That is, if edge e = (v;, v;) is
matched, then with probability p. the patient of v; would
still fail to receive a kidney from v;’s donor.



Kidney exchanges consist of two types of swaps: cycles
consist of several patient donor pairs, while chains be-
gin with an NDD and continue through one or more pa-
tient pairs [Roth et al., 2005a].The goal of the kidney ex-
change clearing problem (KEP) is often to select the set
of vertex-disjoint cycles and chains in G which maxi-
mize overall edge weight. We refer to any set of vertex-
disjoint cycles and chains as a matching. For example, let
w denote the vector of weights for all cycles and chains
in the graph, let & denote a vector of binary decision vari-
ables, and let M denote the set of feasible matchings
(i.e., binary vectors x corresponding to vertex-disjoint
cycles and chains); in this case the KEP is expressible as
MmaXge T ' w.

Cycles and chains are quite vulnerable to edge failure: if
any edge in a cycle fails, then none of the transplants in
the cycle can proceed, because at least one of the patients
will be left without a compatible donor. If an edge partic-
ipating in a chain fails, then none of the edges following
that failed edge can proceed.!

We consider modified versions of the KEP which ac-
count for edge failures, using known edge failure proba-
bilities. Before describing our approach, we emphasize
that the choice of objective is important in the KEP. We
demonstrate this point with a small example.

2.1 Example: Edge Existence Uncertainty

The choice of the objective function—and, in particular,
its treatment of uncertainty—can substantially impact the
structure of the final matching. Consider the exchange in
Figure 1, in which there are four possible matchings: 2-
cycle (1,2), 2-cycle (1, 3), 3-chain (n, 1,2), and 3-chain
(n,1,3).2 All edges have integer weight w and failure
probability p; only the edge from n to pair 1 is guaran-
teed to succeed (p = 0). Any of the four feasible match-
ing in this graph might be “optimal,” depending on the
choice of objective.

An objective that maximizes overall matching weight
(i.e., the objective used by many fielded exchanges [An-
derson et al., 2015, UNOS]) would select 2-cycle (1, 2)
with total weight 10. However this matching is likely
to fail: at least one cycle edge will fail with proba-
bility 0.84—in which case the matching receives zero
weight. Instead, we might maximize expected match-
ing weight (e.g., as in Dickerson et al. [2018]), and se-
lect 2-cycle (1,3). Indeed this matching achieves total
expected weight 6.23, nearly twice the expected weight

'We assume that chains can be partially executed. Some
fielded exchanges cancel the entire chain if even one edge fails.

The 2-chain (n, 1) is also a feasible exchange, though this
chain has strictly lower weight than either of the 3-chains.
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Figure 1: Example exchange graph with a single NDD
n, and three patient-donor pairs; weights w and failure
probabilities p are shown for each edge. The max-weight
matching is the cycle between pairs 1 and 2; the max-
expected-weight matching is the cycle between pairs 1
and 3, and the risk-averse/robust optimal matching is any
the chain beginning with the edge from n to pair 1.

of cycle (1,2). Of course, cycle (1,3) has a significant
(~ 10%) chance of failure, which may be unacceptable
in a real setting. Thus, we might choose an objective that
aims to maximize the matching weight under the worst-
case outcome (e.g., as in McElfresh et al. [2019]). In this
case, any chain beginning with edge (n, 1) is optimal.

Next we describe our approach, beginning with a charac-
terization of the expected matching weight.

3 MAXIMIZING EXPECTED
MATCHING WEIGHT

We are primarily interested in maximizing the expected
weight of a matching; indeed this is the focus of most
prior work (see § 1.1). We refer to this as the stochas-
tic KEP. First we characterize the objective of this
problem—the expected matching weight. With known
edge failure probabilities, the expected weight of a cycle
or chain is expressible in closed form.

Discounted weight of a cycle. The discounted weight of
a k-cycle c reflects the fact that the whole cycle will fail
if any single transplant fails. We use w, to denote the
weight of edge e in the cycle, c.

u(c) = (; we> Ll;[c(l —pe)] :

Discounted weight of a chain. The expected weight
u(k) of the k-chain k = (vy,...,v5+1), Where vy is a



Table 1: Comparison of stochastic and robust approaches to kidney exchange, which use a setting comparable to ours.

3

Columns indicate the type of uncertainty considered in the problem (“Unct.”: stochastic or worst-case/robust), whether
or not edge failure probability is assumed to be homogeneous (“Homog.”), and the number of variables and constraints

in each formulation.

Formulation Unct. Homog. # Vars. # Constr.
PC-TSP [Anderson et al., 2015] None N/A O(E|-[VI+|VIP+1|c) o(V]-(|E|+2V+|C))
PICEF [Dickerson et al., 2016] Stoch. Yes O(L-|E|+|C]) O(L-|V|+L-|E|+]C))
ROBUST [McElfresh etal., 2019] Robust ~ N/A  O(|E|-|V|+ [VI2+|C]) O(E|-|[V]+|V[? +|C))
DPS-18 [Dickerson et al., 2018]  Stoch. No O(VIE+|C)) o(|V])
Our model (6) Stoch. No O(L - |E|+|C|) O(L-|V|+L-|E|+|C))

non-directed donor (NDD), is defined as

k

i—1
u(k) =D pi | D
j=1

1—1
[T -p)+
=t (1)

(i w) ﬁ(l - pi)-

i=1 i=1

1=2

In the above, p; and w; denotes the failure probability
and weight of edge (v;, v;+1), respectively. The first term
above is the sum of expected weights for the chain exe-
cuting exactly i—1 = {1, ..., k—1} steps and then failing
on the ith step. The second term is the resulting weight
if the chain executes completely.

Using the above expressions, we can write the stochas-
tic KEP as follows. With some abuse of notation, let
(C,K) € M denote a feasible matching consisting of
cycles C' and chains K. Problem 2 is an equivalent for-
mulation of the stochastic KEP.

Z u(c') + Z u(k’) )

ceC r'eK

max
(C’",K")em

Next we describe our solution approach for Problem 2,
and an equivalent compact mixed-integer linear program
formulation.

3.1 Compact Formulation for Maximizing
Expected Matching Weight

Here we present a new compact formulation to maximize
the expected weight in the case of non-identical edge
failure probabilities. Compact means that the counts of
variables and constraints are polynomial in the size of
the input. We compare the size of this model with other
state-of-the-art approaches in § 3.2.

In [Dickerson et al., 2018], the authors propose a solu-
tion approach for Problem 2, which enumerates all feasi-
ble cycles and chains in the graph. However the number
of cycles and chains grows exponentially with the size of

the graph, meaning this formulation is not compact. Fur-
ther, it is intractable to even write this model in memory
for large exchanges or long chain lengths.

We propose an exact, compact representation for Prob-
lem 2, using an equivalent expression for expected chain
weight u(x) given in Lemma 1.

Lemma 1. The discounted weight u(x) of the k-chain
K= (V1,0 Vg 41) B8

%

k
u(K) =ZwiH(1—pj),

where w; and p; are the edge weight and failur proba-
bility of the it" edge, (v;,viy1), in the chain, for i =
1,...,k

In other words, the discounted weight of a chain can be
expressed as the sum of the “discounted weights” of each
edge in the chain, i.e. u(k) = Zle wh,
w; H;Zl (1—p;), where we refer to H;Zl(l —p;) as the
discount factor.

where w) =

The objective of Optimization (4) uses Lemma 1 to ex-
press the total discounted weight of all matched cycles
and chains, assuming non-uniform edge failure probabil-
ities. This is achieved using two sets of variables, o
(the discount factor of edge e at position k in a chain)
and v, (the success probability of cycle c). Optimization
(4) uses the following parameters:

e (G: kidney exchange graph, consisting of edges e €
F and vertices v € V = P U N, including patient-
donor pairs P and non-directed donors (NDDs) NV

C': aset of cycles on exchange graph G

e [L: chain cap (max. number of edges in a chain)

w,: edge weights for eachedge e €

w,: cycle weights for each cycle ¢ € C, defined as
We = ZeEc We



e 5 (i): the set of edges into vertex 4
e 67 (i): the set of edges out of vertex i

e p.: failure probability for edge e € £

Edges between an NDD n € N and a patient-donor ver-
tex d € P may only take position 1 in a chain, while
edges between two patient-donor pairs may take any po-
sition 2, ..., L in a chain. For convenience, we define
the function K for each edge e, such that (e) is the set
of all possible positions that edge e may take in a chain.

K(e) = {{1}7 ebeginsinn € N,

. (3)
e beginsind € P.

(2,...,L},

The following decision variables are used.

e 2. € {0,1}: 1ifcycle cis used in the matching, and
0 otherwise

e y € {0,1}: 1if edge e is used at position k in a
chain, and 0 otherwise

e 0. € [0,1]: discount factor of edge e at position k
in a chain

Our formulation is given in (4).

;nf:)é Z Z WeYekOek + Z WezcVe (43)

ecE keK(e) ceC
st. {y,z} € X, (4b)
ZOekyek 2 Z 06,1€1+1y6,k+1,
— . . — DPe

e€d (N e€dt (i)

ke K(e)
iEP,kE{l,...,L—l}, (4¢)
0< 0er <1 —pe,e € E ke K(e), (4d)
ve=[]1-pe,ceC, (4e)

ecc

where X’ denotes the set of feasible decision variables for
the PICEF formulation of kidney exchange [Dickerson
et al., 2016], defined as

> DYk + 2 2. <1, i€ P;
ecd™ (i) keK(e) ceC:
1€ c
1€ P
Zyek > Zya,k+17 k c {1 L 1}
x =decds (Hn ecst (i) AR
k€ K(e)
Z yfil < 17 Z e Na
e€st (i)
yer € {0,1}, e€ E ke K(e);
ze € {0,1}, ceC;

&)

The constraints of A" are interpreted as follows: 1) the
first constraint in (5) requires that each patient-donor ver-
tex ¢ € P may only participate in one cycle or one chain;
2) the second constraint requires that each patient-donor
vertex ¢ € P can only have an outgoing edge at position
k + 1 in a chain if it has an incoming edge at position
k; 3) the third constraint requires that each NDD ¢ € N
may only participate in one chain.

Constraints (4c), (4d), and (4e) define the discounted
weight of chains and cycles. We briefly describe how the
discounted weight of cycles and chains are represented
in this formulation:

e For a «cycle, the success probability is
Ve = [[.ce 1 — Pe. Thus the discounted weight of
all cycles is expressed as ECEC WeZeVe.

e For a chain, the discounted weight is expressed
using Lemma 1. Consider the following exam-
ple: suppose a k-chain consists of edges ey, . . ., €.
Suppose that ¢ is the first patient-donor pair in this
chain— so e; is the edge into 7, and ey is the edge
out of i; that is, e; € 6~ (i) and e3 € 67 (7). From
constraints (4c) we have o, 1 > ﬁo%g for ver-
tex 7. The sums in constraint (4¢) contain no other
terms, because X requires that only one edge into
vertex ¢ and one edge out of vertex ¢ can be matched.
Therefore, (1 — pe,)0e;,1 = Oey,2-

Similarly, (1 — pe;,,)0¢;,j = 0Oc;yy,j+1 for j =
2,...,k—1. Since Optimization (4) is a maximiza-
tion problem, the optimal values of variables o ;
will satisfy oc, ; = [[]_; (1 — pe,), for 1 < j < k.
Accordingly, > cp > ke K(¢) WeYekOek TEpresents
the total discounted weight of all chains according
to Lemma 1.

3.2 MIP Reformulation of Optimization (4)

Although Optimization (4) exactly maximizes expected
edge weight under non-identical edge failure probabili-
ties, it is a nonconvex optimization problem. In this sec-
tion, we reformulate it as a mixed-integer linear program
which can be solved usings general-purpose solvers.
Proposition 1 concludes our results; the main idea is to
define a set of new variables O, to replace Y0k in
Optimization (4).

Proposition 1. Optimization (4) is equivalent to

max Z Z 'weOek + Z wczc(H 1- pﬁ)

y,2,0,0
e€E keK(e) ceC e€c

st. {y,z} € X, ©)

{y,0,0} € X/,



where X follows the definition in (4), and X' is defined as

S oz Y P
1 —pe
e€d— (i)AkeK(e) e€st(4)
, ie Pke{l,...,L—1},
X' =4 0. < Yer,€ € E k € K(e); O

Ock SOek,eeE,kGIC(e;
Ok € 10,1],e € E, k € K(e);
0<0ex, <1—pe,e € E ke K(e).

Appendix B gives an explicit example of how to use the
reformulation in Proposition 1 to model a kidney ex-
change graph. Optimization (6) can be solved using stan-
dard solvers such as CPLEX and Gurobi.

Scalability

We compare our model size with state-of-the-art ap-
proaches in literature. We summarize all approaches in
Table 1. The size of each model (the number of vari-
ables and constraints) is expressible in terms of the chain
cap L, and the number of edges (|E|), cycles (|C|), to-
tal vertices (|V'|), NDD vertices (| V), and patient-donor
pair vertices |P|. For ease of exposition we assume
[Nl = O(|V]) and | P| = O(|V]).

Our size is comparable with PICEF, while accounting for
non-identical failure probabilities. DPS-18 [Dickerson
et al., 2018] considers non-identical failure probabilities
at the cost of representing every single chain and cycle
as a decision variable, and thus this model grows expo-
nentially with the chain cap L; in contrast, the number of
variables in our formulation is polynomial in L. Real ex-
changes often use a cycle cap of 3, which is sufficiently
small that all cycles can be enumerated in practice—even
on realistic graphs with hundreds of vertices. If ex-
changes grow much larger in the future (e.g., thousands
of vertices), or if cycle lengths are increased substan-
tially, we further propose a branch-and-price implemen-
tation to solve the corresponding problems brought by
huge |C| in Appendix D.

4 EXTENSIONS TO MEAN-RISK
KIDNEY EXCHANGE MODEL

Next we introduce a kidney exchange model which bal-
ances both the mean expected weight and the worst-case
weight (“risk”) of a matching, using known non-identical
edge failure probabilities. We achieve this balance using
a conditional value-at-risk (CVaR) objective. This ap-
proach is motivated by the fact that the expected weight
of a matching can be misleading when the worst-case
outcome can be arbitrarily bad (see § 2.1). This is es-
pecially true in kidney exchange, where a single edge
failure can impact an entire cycle or chain.

4.1 Mean-risk Model

At a high level, the CVaR objective for kidney exchange
is expressed as

By X o,

where 1 is the expected matching weight and p,, is the
a x 100% (« € (0, 1]) worst-case mean weight—that is,
the mean matching weight in the worst & x 100% of all
outcomes. The parameter 7 is set by the user, and con-
trols the trade-off between average performance and the
risk of the solution.

For tractability and simplicity, we define W as an |E|-
dimensional vector with

We = — Z yek—ZI(eec)zc, Ve € E.
)

keK(e ceC

That is, W, = —1 if edge e is used, and W, = 0 oth-
erwise. We use w € R!Zl to represent the random dis-
counted edge weights under known edge failure prob-
abilities. Correspondingly, (w, W) represents the loss
(negative weight) of a matching. The o x 100% worst-
case (highest) mean loss is equivalent to the CVaR ob-
jective [Rockafellar et al., 2000] at level a. The corre-
sponding optimization problem is expressed in (8), by
introducing an auxiliary variable d. We use (z)* to de-
note max(0, ), and the expectation in (8) is taken over
the distribution of random edge weights under the known
edge failure probabilities. As before, X denotes the set
of feasible matchings using the PICEF formulation.

min E((w,W)) +~ [d+ éE [((w, W) —d)"]

v,z,d
st. {y,z} € X.

®)

4.2 An SAA-based Approach for Optimization (8)

The main difficulty in solving Optimization (8) is that
term E [((w, W) — d) "] does not have a simple closed-
form reformulation under the known edge failure proba-
bilities. Thus, we propose an approach based on Sample
Average Approximation (SAA) [Anderson et al., 2015]
to solve (8). The main idea is to first sample N real-
izations of edge existence according to the known edge
failure probabilities; for each realization we formulate
a mixed-integer linear program representing the match-
ing weight under this realization. Finally, we combine
all N models to obtain an optimization problem that is
(approximately) equivalent to Optimization (8) based on
these IV realizations. Algorithm 1 gives a pseudocode
description of this approach.



Algorithm 1 SAA

1: Initialization: NN,

2: STEP 1:

3: Sample N edge existence realizations {7e,, € {0,1}, Ve €
E},n=1,...,N;

4: STEP 2:

5: Solve Optimization (9).

This algorithm has only two steps: first it samples N re-
alizations of edge existence from the known edge failure
probabilities, where 7., is 1 if edge e succeeds in real-
ization n, and 0 if it fails. These realization variables are
used as input to Optimization (9), which uses decision
variables W, to represent the realized edge discount fac-
tor for realization n—that is, Wen is 1 if edge e is matched
and succeeds in realization n and 0 otherwise (see Ap-
pendix C for details). Using these decision variables,
the objective of Optimization (9) includes two terms: the
mean matching weight, and the CVaR objective—both ap-
proximated using all N samples (i.e., the sample-average
approximation). Thus, Optimization (9) represents the
SAA of (8) under the N sampled realizations.

Proposition 2. Optimization (9) is equivalent to the SAA
of (8) under N edge existence realizations represented by
Ten, With

N
min ;]n:l w, W) + v <d+ f*nzlﬂ >
sit. We, = ZOE’W — Z 1(e € ¢)zcVen, Ve, n,
keK(e) ceC
II,, > 0,Vn,
I, > (w,W,)) — d,Vn,
{y,z} € X,
{y,z} € X,

Ockn < fena Ve, ka n,
Ven = mln{ren}a Ve, n,
ecc

)
where X follows the definition in (4), and X' is defined

as
Z ekn / Z Oe k4+1,n5

e€d~ (i)ANkeK(e) ecdt (i)

Vie Pke{l,...,L—1},neN;
Oekn\yekaeeE kJE’C( ) nEN;

Ockn < Ockn, € € B k € K(e),n € N;
Ockns Oekn € [0,1],e € E k € K(e),n € N;
N={1,...,N}L

Optimization (9) can be understood by viewing (w, W,
as the realized edge weight under the n-th realization
with matching {y, z}.

S COMPUTATIONAL EXPERIMENTS

First, we benchmark our tractable model for non-
identical edge failure probabilities (6) (“KEP-NP”)
against previous approaches, with the stochastic (i.e.,
max-expected-weight) objective.  We find that our
approach outperforms two leading previous methods:
PICEF without edge failure probabilities [Dickerson
et al., 2016] (“KEP”), and PICEF with identical edge
failure probability [Dickerson et al., 2018] (“KEP-IP”).
Second, we compare our CVaR model (9) (“CVAR”)
against KEP, KEP-IP, and KEP-NP; to our knowledge,
there are no other tractable approaches using the CVaR
objective in our setting. Finally, we briefly present the
running time of all implemented approaches.

5.1 Stochastic Objective

We use two sets of 32 randomly-generated graphs, one
with 64 nodes each and one with 128 nodes each. These
graphs resemble the structure of real exchanges, and are
generated using anonymized data from the United Net-
work for Organ Sharing (UNOS) US-wide kidney ex-
change.* We simulate edge existence uncertainty by ran-
domly assigning each edge in each graph a failure proba-
bility, independently uniformly distributed on [0.1,0.9];
for simplicity, we set all edge weights to 1. We use cycles
of length 2 and 3, and chains up to length 4—which are the
standard limits in fielded exchanges (including UNOS).
For KEP-IP, we assume p. = 0.5 for all edges (the cor-
rect mean edge failure probability). For each random
exchange graph we first find the optimal matching ac-
cording to each approach (KEP, KEP-IP, and KEP-NP).
We then generate 200 realizations of the exchange graph,
according to each edge’s (randomly generated) failure
probability. We then calculate the realized weight of the
optimal matching for each method, accounting for failed
edges (cycles with any failed edges receive zero weight,
and chains only receive weight for consecutive success-
ful edges, beginning with the first). We also calculate the
omniscient matching for each realization, i.e., the maxi-
mum matching weight after observing edge failures.

Metric: Percentage of Omniscient Weight. We com-
pare all approaches against the omniscient matching
weight, which is a strict upper bound on performance for
any matching approach. Let Wopr be the omniscient-
optimal matching weight for a particular exchange, and
a particular realization; let W, be the realized match-
ing weight for a non-omniscient method. We calcu-
late the percentage of Wopr achieved by each match-
ing method, for a particular realization, as %OPT =

4See https://optn.transplant.hrsa.gov/
data for more information on UNOS.



100 x Wy /Wopr. Figure 2 (left column) shows %OPT
for all exchange graphs, over all 200 realizations, for 64-
node graphs (top) and 128-node graphs (bottom). Our
method (KEP-NP) improves expected matching weight
compared to previous methods KEP and KEP-IP.

5.2 CVaR Objective

We implement CVAR (§ 5.1) using N = 10 simulated
edge realizations, with v = 10, and o = 0.5.

Metric: a% Worst-Case Mean. CVAR is designed
to maximize the a% worst-case mean matching weight;
thus, we use this metric for each matching approach. For
each graph, and each matching approach, we calculate
the mean of the a% lowest realized matching weights
(over all 200 realizations). We compare each method to
KEP, which assumes p, = 0. Let u% be the a% lowest-
realized matching weights for KEP, and let 1, be the
same, for a different matching approach; we calculate a
ratio as follows: Aa% = 100 x (u$; — pp)/u% . Fig-
ure 2 (middle column) shows Aa% for all 32 exchange
graphs. CVAR clearly improves the a% worst-case mean
matching weight, over other methods (including our new
formulation for inhomogeneous edge failure probabili-
ties, KEP-NP).

Timing Figure 2 (right column) shows solver time re-
quired for each method. Our new formulation (KEP-NP),
requires nearly the same runtime as KEP (a deterministic
PICEF model). As expected CVAR requires more time—
and it increases with the number of samples (V).

6 CONCLUSION

In fielded kidney exchanges, planned transplants fail
for a variety of reasons. Due to the cycle- and chain-
like swaps used by exchanges, a single failed trans-
plant can “cascade” throuh an exchange, causing sev-
eral other transplants to fail. These failures are common
(UNOS estimates that about 85% of its planned trans-
plants fail [Leishman, 2019]); failures cause patients to
face longer waiting times, and incur the additional costs
and burden of dialysis.

We consider a setting where the failure probability of
each potential transplant (edge) is known, and the kid-
ney exchange clearing problem is to select a set of trans-
plants that maximize a mathematical objective subject
to this uncertainty. The choice of objective is impor-
tant, particularly in kidney exchange: a deterministic ap-
proach (which ignores potential failures) may naively se-
lect long cycles or chains, which have high likelihood of
failure. On the other hand, a robust approach (which pro-

tects against the worst-case outcome) is often too conser-
vative, because in kidney exchange, the worst-case out-
come is often that all transplants fail. We consider two
objectives: maximizing the expected weight, and maxi-
mizing the conditional value-at-risk (CVaR). We are not
the first to investigate these objectives in this setting.
However, state-of-the-art approaches either assume that
all edges have identical failure probabilities, or their al-
gorithms scale exponentially in the size of the input—
and are intractable for realistic exchanges.

We propose the first scalable approaches for kidney ex-
change with non-identical edge failure probabilities, for
both the stochastic and CVaR objectives. For the max-
expected weight objective our approach is exact, and
clearly outperforms prior approaches that assume iden-
tical edge failure probabilities—with marginally longer
runtime. For the CVaR objective we use a sample-
average-approximation-based method, which outper-
forms comparable state-of-the-art approaches, even with
a small number of samples. We formulate both of our
approaches as mixed integer linear programs, which are
solvable with off-the-shelf commercial solvers such as
CPLEX or Gurobi.

There are several areas for future work. Our model as-
sumes perfect knowledge of edge failure probabilities—
while in reality only rough estimates of these probabil-
ities are available. Furthermore, slight over- or under-
estimation of these probabilities can impact the matching
weight [Dickerson et al., 2018]—something we did not
address in this work.

We emphasize that the choice of objective is important
in kidney exchange, as different objectives (or a dif-
ferent weighting of multiple objectives) can drastically
change the outcome. Before implementing any of these
approaches, it is necessary to understand the priorities
of the relevant stakeholders, their appetite for risk, and
whether these priorities align with our mathematical ob-
jectives [Freedman et al., 2020, Noothigattu et al., 2018].

Finally, each of the approaches discussed in this paper
may negatively impact some exchange participants. For
example, highly-sensitized patients are often sicker and
harder to match than other patients; transplants involving
highly-sensitized patients are thus often riskier than other
transplants. A risk-averse or stochastic objective func-
tion would likely de-prioritize highly-sensitized patients,
ignoring them for lower-risk matches. Thus, new ob-
jective functions and other modeling choices will likely
raise concerns of fairness for different patients, or groups
of patients, within an exchange [McElfresh and Dicker-
son, 2018, Roth et al., 2005b, Yilmaz, 2011].
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Figure 2: Boxplots of %OPT (left column), Aa% (center column), and timing (right column) for each matching
approach, over 32 random graphs with 64 nodes (top row) and 128 nodes (bottom row). The horizontal line at the
center of each box plot indicates the median; the upper and lower edges of the box indicate the first and third quartiles;

the whiskers extend 1.5 times the interquartile range beyond quartile 1 and 3.
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A Proof of Lemma 1

Proof. The expected discounted weight of a chain with
k edges is expressed as

The coefficient on weight w; (the ithledge in the chain),
forany 1 < i < k, is expressed as H;Zl(l — p;). Thus,

B Operationalizing Proposition 1

In this section, we give an explicit instantiation of the
mixed-integer linear program of Proposition 1. We pro-
vide an example here for the compatibility graph shown
in Figure 1, where there are two cycles, five edges, and
several feasible chains. Suppose cycle 1 contains Edge 1
and 2, and cycle 2 contains Edge 3 and 4. Additionally,
the chain capacity is L = 2 in Figure 1.

y,2,0,0

4
max E WeOe2 + w5051
e=1

+ (wl + w2)Z1(1 —pl)(l —p2)
+ (w3 4+ wa)z2(1 — ps)(1 — p4)
s.t. Ys1 + Y22 + Ya2 + 21 + 22 < 1,

Y12 +21 <1,

Ys2 + 22 < 1,

Ys1 2 Y12 + Y32,

ys1 < 1,

ye2 € {0,1},e € {1,...,4},

ys1 € {0,1}, (10)
zc € {0,1},¢c € {1, 2},

Os1 2> Or + Os2

1—p1 1—p3’
Oeo §yez,e€{1,...,4},

Os51 < ys1,
Oe2 < 0e2,€ € {1,...,4},
Os51 < 051,
Oe2 € 10,1],e € {1,...,4},
Os1 € [0,1],

0§062§17pe7e€{17"'74}7
0§051 S17p5

C Optimization (8) under one realization
of edge existence

Before showing the equivalence between the SAA of (8)
and (9), we first obtain the objective value of (8) under
one fixed realization of edge existence. The objective
value of (8) is obtained in (11), where we assume the
fixed realization is 7. € {0,1}, e € E, where 1 means
the edge exists, and 0 otherwise.

In (11), we use two sets of variables 0., € {0,1} and
v. € {0,1}, which indicate the validity of chains and
cycles, respectively.

e For any cycle c, cis only valid (v, = 1) if all edges
in ¢ exist. Therefore, we restrict v, = minee {7}

e For any chain, an edge e at position k is only valid
(0er; = 1) if 1) this edge exists (r. = 1) and 2) the
prior edges in this chain are valid too. Therefore,
we use 0. < 7. to guarantee this edge e exists.
The constraint (11c) serves the goal to guarantee the
prior edges are valid. To see this point, we consider
the following example. Suppose edge e; € 6 (i)
and eo € 01 (7). Both edges are selected in one
chain with y., x = 1, ye, k+1 = 1. If edge e fails
(re, = 0), then o, j = 0 restricting o, j+1 to be
zero too. Therefore, all the edges after position k in
this chain will be invalid.

mind ( E E WeYekOek — E wczcvc)
¥,%,0,V,

ecE kek(e) ceC
1
+'Y d+ *(72 Z WeYekOek
o ZE ke (e)
=) wezeve — d)*] (11a)
ceC
st. {y,z} € X, (11b)

E OckYek = E Oc,k+1Ye,k+1,

e €87 (i)A ecdt (i)

k€ K(e)
iePke{l,...,L—1}, (11c)
Ock < Teye € B k € K(e), (11d)
vc:rglei?{re},ce C; (11e)
ock € [0,1],e € E k € K(e). (116)

Optimization (11) has a tractable reformulation as
shown in Proposition 3.



Proposition 3. Optimization (11) is equivalent to

min  (w, W)+ {d + $(<w, W) — d)*]

y.2,0,v,d
st. {y,z} € X, X'
- Z Oc,k — Z 1(e € ¢)zcve, Ve,
keK(e) ceC
O,k < Te, Ve, k,
Ve = rélelil{’l"e},vc.

12)
where X' is defined as

Eeasf(i)Akeic(e) Oc,k 2 Zeeﬁ(i) Oc k+1,
iePke{l,...,L —1};

Oec.k € Ye,k,e € Bk € K(e);

Oc,ie < 0c e € Bk € K(e);

Oc,iis Oc i € 10,1],e € E, k € K(e).

By comparing Optimization (12) and (9), it is easy to see
that the objective value of (9) equals the average realized
weights of N realizations. Therefore, we get the con-
clusion that Optimization (9) is equivalent to the SAA of
Optimization (8).

D A branch and price implementation

In this section, we present a method for scaling our
model to graphs with high cycle capacities. Theoret-
ically, the number of cycles of length at most M is
O(|P|M), making explicit representation and enumera-
tion of all cycles infeasible for large enough instances.
To solve this problem, we propose a branch and price al-
gorithm, which uses column generation to incrementally
consider the possible cycles in a graph. Similar ideas in
other kidney exchange problems have also been explored
[Dickerson et al., 2016, Glorie et al., 2014]. We show
that our formulation with non-identical failure probabili-
ties also scales well with large cycle numbers.

The detailed procedure is introduced as follows; for con-
venience, we use a vector X to denote the solution
X = [y,z]. First, we define a set X that indicates
the fixed components in the solution X. For example,
Xy = {X; = 0,X; = 1} means the i-th and j-th com-
ponents in X are fixed to 0 and 1, respectively. Our al-
gorithm begins with Xy = (). Next, an LP relaxation
(13) based on a (random) subset of cycles C’ (C" C C)
is solved.

YD weOe+ Y weze (H 1 —pe>

max
y,z,0,0
e€E keK(e) ceC’ e€c
(13a)
s.t. Z Zy€k+ Z < 1,7 € P,
ecd (i) keK(e) ceC’:iec
(13b)
> Y= D Yerrr, (130)
e€6— () NKEK () e€5+(4)
i€ Pke{l,...,L —1}, (13d)
Z yelglaieNa (136)
e€5+(4)
Yer € [0,1],e € E, k € K(e), (131)
€ 0,1, ceC, (13g)

S Oaz Y %,asm

De

e€d~ (i)ANkeK(e) e€dt (i)

iePkell,...,L—1}, (13i)
Ock € Yok € € E k € K(e), (13j)
O € 0ck,e € Bk € K(e), (13k)
Oer € [0,1],¢ € E, k € K(e), (131)
0< 0k <1—pe,e€ E;keK(e). (13m)

The following step is to find positive price cycles: cycles
that have the potential to improve the objective value if
included in the model. The price of a cycle c is defined
as [we [Toeo(1 — pe) — D ;e Ai]» where A; are the dual
values corresponding to the constraints (13b). While
there exist any positive price cycles, optimality of the
reduced LP has not yet been proved. This can be evi-
denced from Proposition 4, which can be proved through
the strong duality of linear programming.

Proposition 4. Suppose the dual variables correspond-
ing to the constraints (13b) are \;, i € P. Then the
optimal \;, © € P, satisfy

1_‘[171)6 Z)\

ecc 1€c

Therefore, we incrementally add (one or more) cycles
that have positive prices, i.e. we]].c.(1 — pe) —
> ice Ai > 0into C’ until no positive price cycles exist
in C. Afterwards, if the optimal solutions of the relaxed
LP, i.e. (13), are integral, then they are the desired opti-
mal solutions. Otherwise, branching occurs by following
the standard branch-and-bound tree search. For example,
suppose the ¢-th component of X is fractional, then we
fix X; = 0or X; = 1. Werecord these fixed components
in set Xy and repeat above procedures with the new set



Xt. We conclude the above discussions in the follow-
ing Algorithm 2. By running BranchAndPrice(G, 0), we
obtain the optimal solution.

Algorithm 2 BranchAndPrice(G, Xf)

DN —

: Generate a subset C' C C,
: Solve LP relaxation (13) based on C’ and fixed compo-

nents in Xy;

: while max.ec we [[,c.(1 = pe) = D ;cc A > 0do

Add ¢" = argmax .o we [[ e (1—pe) =D ;e 10 C's

: end while

X = [y, z] + solve LP relaxation (13) based on C" and
fixed components in Xy;

. if X is fractional then

Find fractional binary variable X; € X closest to 0.5;

X = BranchAndPrice(G, Xy U X; = 0);

X = BranchAndPrice(G, Xy U X; = 1);

Return X or X> that gives larger objective values in
the original Problem (6).

: else

Return X.

. end if




