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Abstract

We reinterpret the problem of finding intrinsic
rewards in reinforcement learning (RL) as a
bilevel optimization problem. Using this inter-
pretation, we can make use of recent advance-
ments in the hyperparameter optimization litera-
ture, mainly from Self-Tuning Networks (STN),
to learn intrinsic rewards. To facilitate our meth-
ods, we introduces a new general conditioning
layer: Conditional Layer Normalization (CLN).
We evaluate our method on several continuous
control benchmarks in the Mujoco physics sim-
ulator. On all of these benchmarks, the intrinsic
rewards learned on the fly lead to higher final
rewards.

1 Introduction

The design of good reward functions is a perennial prob-
lem in reinforcement learning (RL). Often, rewards are
built from high level primitives such as object positions
and velocities. For example, if we want to teach a hu-
manoid robot to walk upright, then its reward function
would likely depend on the position of its head and its for-
ward velocity. Hand-designed rewards have the advantage
of being easy to interpret by the humans designing them.
However, these rewards can not be concerned with human
interpretability alone. They must also provide signal to
an RL algorithm that is responsible for actually training
the agent. Unfortunately, it may be the case that easily
interpretable hand-designed rewards are inefficient from
an optimization perspective. That is to say, it is possible
that alternative reward functions exist that lead to faster
convergence and better final performance – even when
performance is evaluated on the original hand-designed
reward function. The central question of this paper is:
How can we best recover these more efficient reward
functions?
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The concept of recovering a more efficient reward func-
tion is not a new idea. A sizable number of papers con-
sider the problem of learning intrinsic rewards. In prac-
tice, an intrinsic reward is simply any function learned
by the agent that is not the original human-provided re-
ward function. These intrinsic rewards are often tied
to some exploration objective. For instance, an agent
might be encouraged to visit novel states or scenarios
[Houthooft et al., 2016]. Alternatively, an exploration
objective might encourage the agent to learn something
fundamental about the environment such as a dynamics
model [Jaderberg, 2017]. While learning intrinsic re-
wards through exploratory objectives is an active area of
research, there exists no agreed upon methods for measur-
ing novelty or exploration progress.

A recent algorithm named LIRPG [Zheng et al., 2018]
addresses the problem of learning intrinsic rewards in
a more direct way. Instead of forcing the agent to also
optimize an auxiliary objective, LIRPG directly learns a
parameterized intrinsic reward function. The parameter-
ized reward is trained by using the chain rule to backpro-
pogate through the intrinsic reward function with respect
to the agent’s overall reward. LIRPG is appealing because
it makes no assumptions about the underlying problem,
can be combined with exploration strategies, and directly
optimizes the true objective of learning a more efficient
reward function. In this paper, we seek to take the ideas
underlying LIRPG and take them a step further.

Our key insight is that learning intrinsic rewards can be
treated as a bilevel optimization problem. In this set-
ting, the policy optimizes the intrinsic reward in the inner
loop and the parameterized intrinsic reward function opti-
mizes the inner-loop policy performance in the outer loop.
Under this interpretation, LIRPG is simply performing
Gradient-based bilevel optimization through Reversible
Learning [Maclaurin et al., 2015]. But, we can take things
further still. Rather than gradient based planning, we pro-
pose to learn intrinsic rewards by leveraging self-tuning
networks [Mackay et al., 2019] (STNs).

lunjun@cs.toronto.edu
bstadie@vectorinstitute.ai
jba@cs.toronto.edu


Figure 1: High level comparison of our method (bottom)
vs. hyper-parameter optimization (top). In this paper,
we will apply recent advances from the hyper parameter
optimization literature to the problem of learning intrinsic
rewards. We see that the problem of learning intrinsic re-
wards is analogous to hyper parameter optimization, with
the performance on the ground truth extrinsic objective
taking the place of the validation loss and the intrinsic
objective taking the place of the training loss. Thus, like
hyper parameter optimization, learning an intrinsic reward
can be cast as a bilevel optimization problem.

In practice, STNs were designed to solve the hyperparam-
eter optimization problem. While one could treat intrinsic
rewards as a hyperparameter and use STNs to directly
search for a parameterized reward function, this process
would be inefficient in practice due to the large search
space over reward models and the cost of evaluating the
parameterized reward functions. To overcome this prob-
lem, we use ideas from STNs to instead learn parameters
in a new type of neural network transformation: Con-
ditional Layer Normalization (CLN). By using a clever
gating architecture from the intrinsic reward function’s
parameters into the parameter space of the policy’s CLN
transformation, we can allow gradient signal to flow from
the policy back through the intrinsic reward function. This
architecture allows us to train the intrinsic reward function
much more efficiently than prior methods.

2 Related Work

Exploration and Curiosity As discussed in the prequel,
many exploration and curiosity methods can be charac-
terized as an attempt to learn an intrinsic reward function
that encourages the agent to encounter novelty in its envi-
ronment. Older work, such as R-Max an Bayesian Explo-
ration Bonuses (BEB) offered strong convergence guaran-

tees but did not scale to the high dimensional problems
usually considered in deep RL, [Brafman and Tennen-
holtz, 2002,Kolter and Ng, 2009,Kearns and Singh, 2002].
Consequently, there has been a flurry of work on discov-
ering the right novelty metric [Carmel and Markovitch,
1999,Tang et al., 2016,Houthooft et al., 2016,Stadie et al.,
2015,Osband et al., 2016,Bellemare et al., 2016,Ostrovski
et al., 2017]. Throughout his career, Schmidhuber and his
colleagues have written extensively on the problem of ex-
ploration and curiosity. We recommend the reader review
[Schmidhuber, 2015a, Ngo et al., 2012, Graziano et al.,
2011, Schmidhuber, 1991, Schmidhuber, 2015b, Storck
et al., 1995,Sun et al., 2011,Kompella et al., 2002,Schmid-
huber et al., 1997] for an overview. Novelty-seeking ex-
ploration methods are largely orthogonal to our work.
In principle, they can be freely combined with the algo-
rithms presented in this paper. Although, learning how to
balance an exploratory intrinsic reward and the more ex-
ploitative intrinsic rewards presented in this paper remains
a challenge.

Hierarchical RL provide an alternative route for learn-
ing intrinsic rewards. Hierarchical RL typically involves
some sort of high level manager that can set goals for
a lower level actor. In this setting, it’s possible the ac-
tor will receive an intrinsic reward from the manager for
following goals [Vezhnevets et al., 2017, Bacon and Pre-
cup, 2015, Tessler et al., 2016, Rusu et al., 2016, Barto
and Mahadevan, 2003, Wiering and Schmidhuber, 1997].
Most work in HRL focuses on abstracting policies across
multiple time-scales and goal dimensions. Along the way,
these works typically make fairly rigid assumptions about
the optimal architecture to produce a hierarchical learner.

Reward Design This paper makes extensive use of the
LIRPG method from the reward design literature. Below,
we show that our method is effectively a generalization of
LIRPG to use STNs rather than gradient based planning.
See [Zheng et al., 2018] for a more complete overview of
the relevant reward design literature. The upshot is that,
prior to LIRPG, there did not exist a reasonable algorithm
for learning intrinsic rewards that discovered the intrinsic
rewards fast enough to positively impact the online per-
formance of the RL algorithm. Reward shaping, a related
problem, is addressed by [Ng et al., 1999]. We actually
applied the reward shaping algorithms in [Ng et al., 1999]
to our paper, but found they did not create a measurable
impact on final performance. Finally, [Xu et al., 2018]
introduces a method for treating reward function parame-
ters, such as the discount rate, as hyperparameters. These
parameters are then optimized via meta learning. Meta-
learning these parameters is an orthogonal problem to
learning an intrinsic reward function. That approach can
be freely combined with ours.



Neuron-wise and Feature-wise Transformation

Layer Normalization [Ba et al., 2016] normalizes the
summed inputs to the neurons of a layer on a single train-
ing case. Each neuron is given its own adaptive bias and
gain after the normalization and before the non-linearity:

µl =
1

H

H∑
i=1

ali σl =

√√√√ 1

H

H∑
i=1

(ali − µl)2

where H denotes the number of hidden units of the net-
work, and ali is the i-th unit of the l-th layer.

Feature-wise Linear Modulation (FiLM), introduced by
[Perez et al., 2017], is a recent approach towards visual
reasoning problems. Input queries are passed into a deep
network, which learn the coefficients for an affine trans-
formation of a hidden layer:[

γi,c
βi,c

]
= fc(xi) âi,c = γi,cai,c + βi,c

Where γc and βc are modulating parameters for the acti-
vation αc of a layer c, and fc is any function of the input.
FiLM layers are shown to build robustness into the model,
by effectively selecting relevant input features. Gating
architectures like the one investigated in this work are
an active and ongoing area of research [Chaplot et al.,
2017b, Munkhdalai et al., 2018].

Hyperparameter Optimization We make use of Self
Tuning Networks (STNs) and recent techniques from the
hypernetworks literature to help learn intrinsic rewards
[Mackay et al., 2019, Lorraine and Duvenaud, 2018].
There are several alternative approaches to hyperpareme-
ter optimization. Most notably, Bayesian hyperparame-
ter optimization has seen success in recent years [Snoek
et al., 2015]. For gradient based approaches wherein the
algorithm directly backpropogates through the policy up-
date rule, there are methods such as [Franceschi et al.,
2017, Maclaurin et al., 2015].

3 Learning Intrinsic Rewards

3.1 Problem Formulation and Notation

In this section, we will use the following notation:

• rη: intrinsic reward function parameterized by η.

• πθ,η: policy function parameterized by θ and condi-
tioned upon the intrinsic reward rη. Thus, it is also
indirectly parameterized by η.

• τ : a trajectory following the policy πθ,η. We may
write τ ∼ πθ,η .

• θk, ηi: the policy parameters and the intrinsic reward
function parameters in the k-th round and i-th round
of optimization, respectively.

• J EX : The extrinsic RL objective, given by

Eτ∼πθ,η
[∑

t rt

]
, where rt is the extrinsic reward

given by the environment at timestep t.

• J IN : The intrinsic objective, which can be thought
of as the surrogate objective of the policy. It max-
imizes the cumulative sum of intrinsic rewards,

Eτ∼πθ,η
[∑

t r
η
t

]
.

The policy πθ,η maximizes intrinsic objective J IN .
Meanwhile, the intrinsic objective maximizes the policy
performance under the extrinsic objective J EX . Thus,
the problem becomes a bilevel optimization problem:

θ∗ = argmax
θ

J IN (θ, η) (1)

subject to

η∗ = argmax
η

J EX(θ, η) (2)

We note that this is analogous to the problem of hyperpa-
rameter optimization (See Figure 1). If w and λ denote
the parameters and hyperparameters of a model, and ifLT
andLV denote the training loss and the validation loss, we
arrive at a very similar bilevel optimization formulation
[Mackay et al., 2019, Franceschi et al., 2018, Maclaurin
et al., 2015, Pedregosa, 2016]:

λ∗ = argmin
λ

LV (λ,w) subject to w = argmin
w

LT (λ,w)

(3)

where the training loss LT corresponds to the intrinsic
objective J IN , and the validation loss corresponds to the
the extrinsic objective J EX . By realizing that the two
problems share a very similar structure, we speculate that
recent advances in hyperparameter optimization can be
leveraged to better learn intrinsic rewards for RL agents.
In the next section, we attempt to bridge the gap between
the two problems by re-examining existing approaches,
particularly the gradient-based methods, under this frame-
work of bilevel optimization.

3.2 Optimizing the Intrinsic Reward Objective

3.2.1 Learning Intrinsic rewards with Reverse
Mode Differentiation

In this paper, we mainly consider gradient-based ap-
proaches. Gradient-based approaches previously tack-
led hyperparameter optimization problems by back-
propagating through gradient updates. For instance,



[Maclaurin et al., 2015] considers reverse-mode differen-
tiation of the learning process to acquire meta-gradients
for the hyperparameters. In their case, these parameters
are the terms in stochastic gradient descent with momen-
tum. Expanding these ideas out and applying them to our
setting, we can derive a direct policy gradient formula
for intrinsic rewards. First, we differentiation through the
update rules in the intrinsic reward setting. The resulting
policy gradient update is given by:

θk+1 = θk + α
∂

∂θk
J IN (θk, ηi) (4)

= θk + αEτk
[
∂

∂θk
log πθk(τk)Â

IN
ηi (τk)

]
(5)

where Â is an advantage estimator, usually a generalized
advantage estimator (GAE) [Schulman et al., 2016]. The
policy gradient loss can be replaced by other surrogate
losses such as the ones in TRPO and PPO [Schulman et al.,
2015, Schulman et al., 2017]. Those methods have been
well studied. The chief challenge here is the mechanism
to train the intrinsic reward network. We can compute the
meta-gradient of the extrinsic RL objective as:

ηi+1 = ηi + β
d

dηi
J EX (6)

where

d

dηi
J EX (7)

=
∂

∂ηi
J EX(θk+1, ηi) +

∂J EX

∂θk+1

dθk+1

dηi
(8)

=Eτk+1

[∑
t

∂ log πθk+1

∂ηi
ÂEXτk+1

(t)

]
+ (9)

∂J EX

∂θk+1

(
Eτk
[∑

t

∂2 log π

∂θk∂ηi
ÂINτk (t)

])
+ (10)

∂J EX

∂θk+1

(
Eτk
[∑

t

∂ log π

∂θk

∂ÂINτk (t)

∂ηi

])
+ (11)

∂J EX

∂θk+1

(
I + Eτk

[∑
t

∂2 log π

∂θ2k
ÂINτk (t)

])
dθk
dηi

(12)

If we only consider backpropogation through a single step,
Equation 12 would be zero. Moreover, if the policy is
not conditioned upon the intrinsic reward function itself,
then Equations 9 and 10 will be zero as well. With these
assumptions, we would be left with only Equation 11,
which is exactly LIRPG [Zheng et al., 2018].

LIRPG, in principle, is equivalent to applying reverse-
mode differentiation through the learning process to ap-
proximate the Jacobian of the best-response function. We
note that Equations 10, 11, and 12 are all concerned with

the term
∂J EX

∂θk+1

dθk+1

dηi
. There is an intuitive understand-

ing for this term. The term is asking the intrinsic reward
function to compute the intrinsic reward it could have
given the policy such that, upon receiving this term, the
policy could have achieved better performance on the
extrinsic objective.

3.2.2 Our approach: Intrinsic rewards by
estimating the best response function

We now consider an alternative approach to finding in-
trinsic rewards. This alternative approach is the primary
contribution of this paper. In short, our idea is to directly
learn the approximate of the best-response function. We
want a mapping from any hyperparameters θ to the opti-
mal weights of the model w∗, which are the weights of a
converged model trained on the inner-loop optimization
loss (either the training loss or the policy gradient loss
under intrinsic rewards). One way to learn this direct
mapping is via a HyperNetwork [Ha et al., 2017]. We will
make use of Self Tuning Networks (STN) [Mackay et al.,
2019], which take the idea behind HyperNetworks a step
further by proposing a gating-based architecture for the
best-response function. In this setup, the best-response
function is trained on the inner-loop training objective
given a set of hyperparameters. The hyperparameters are
then tuned via the ”response gradients”, which are essen-
tially the gradients of the outer-loop training loss taken
with respect to the hyperparamters. In other words, the
response gradients flow through the best-response func-
tion before they reach the hyperparameters. Denote the
best-response function as w∗φ parameterized by φ:

θ∗ ≈ w∗φ(η) (13)

With these adjustments, the gradient updates for training
the intrinsic reward function’s parameters η becomes:

d

dηi
J EX =

dJ EX

dθ

dw∗φ
dηi

(14)

= Eτ
[∑

t

∂ log πθ
∂θ

dw∗φ
dηi

ÂEXτ (t)

]
(15)

As for training the HyperNet policy we arrive at the gra-
dient,

d

dφk
J IN =

dJ IN

dθ

dw∗φ
dφk

(16)

= Eτ
[∑

t

∂ log πθ
∂θ

dw∗φ
dφk

ÂINτ (t)

]
(17)

Let us examine the differences between the expressions
in Equation 8, developed under the reverse-mode differ-
entiation framework, and 14, developed under HyperNet



Figure 2: Overview of our model.

framework. Equation 15 is equivalent to Equation 9 (from
the expanded version of Equation 8). One might naturally
ask: why have the other terms (Equation 10, 11, and 12)
vanished in the HyperNet framework?

The answer lies in the assumption we are making. We
assume that all the weights in the policy network are con-
ditioned upon the hyperparameters (which, in this case, is
a function itself). This means that if there is any part of the
policy network that is independent of the hyperparameters,
then the HyperNet assumption will no longer hold true
and we need to take Equation 10, 11, and 12 into consider-
ation. In reality, it is often unrealistic to use conditioning
on all the weights in a neural network; instead, we usually
use gating architectures to modulate the behaviour of the
network [Perez et al., 2017, Dumoulin et al., 2017, Dhin-
gra et al., 2017, Chaplot et al., 2017a, van den Oord et al.,
2016]. Yet, the meta-gradients under the HyperNet as-
sumption do have many appealing properties, since they
do not require differentiation through the learning process.
The upshot is that the more powerful the gating mecha-
nism is, the more accurate the HyperNet meta-gradients
becomes when compared against the ground truth gradi-
ent. Thus, a more powerful gating mechanism will result
in a stronger gradient signal for the HyperNetwork ap-
proach. Therefore, the key to the success of HyperNet
framework is a powerful conditioning mechanism.

Figure 3: Conditional Layer Normalization. Rather than
learning the bias and gate directly as in traditional layer
norm, we apply a linear transformation to the weights
η from the intrinsic reward model. The image of the
intrinsic reward parameters under the linear transforma-
tion is then used directly to furnish the bias and gating
parameters.

3.3 Learning Intrinsic Rewards With Conditional
Layer Norm

The best-response function maps a set of weights to an-
other set of weights. The challenge we face in designing
our conditioning architecture is two-fold. First, the infor-
mation we want to condition our policy upon is a function
itself, parameterized by a neural network. Secondly, the
conditioning architecture will directly determine how the
policy is being modulated and ergo how the meta gradi-
ents will flow back during training. With these challenges
in mind, we introduce Conditional Layer Normalization
(CLN). The key idea in CLN is that the gain and bias
parameters from Layer Normalization, rather than being
adaptive, will instead be the output of the best-response
function (See Figure 3). The input to the best-response
function is the weights in the last layer of the intrinsic
reward network. In this work, we use an affine transfor-
mation as the best-response function. However, there is
an obvious extension to deeper models using our model.
We also find that applying a sigmoid function on the gain
output stabilizes training.

For the l-th layer of the network, Conditional Layer Nor-



malization can be formulated mathematically as:

CLN(Fl | η) = f
[ gl

σl
� (al − µl) + bl

]
(18)

gl = σ(fc(η)) (19)

bl = hc(η) (20)

fc and hc are both affine transformations in this case
(there are obvious extensions to non-linear transforma-
tions by adding more layers). The sigmoid gate on the
gain parameters stabilizes training. We find that for the
problems we are concerned with in this paper, applying
CLN on the final layer of the policy network is sufficient.
Figure 2 provides an overview of this policy conditioning
approach.

To ensure that the best response function, w∗φ(η) in Eq
(13), locally approximates neighborhood around the cur-
rent upper-level parameter θ, we follow the practice of
injecting noise to η as in STN [Mackay et al., 2019], by
sampling from a factorized Gaussian noise distribution
p(ε | σ). Intuitively, the injected noise forces the policy
network to adapt to a range of intrinsic reward functions
represented by η+ ε, thus providing training signals to η.
To improve the efficiency of credit assignment and further
stabilizes training, we regularize the intrinsic return of a
trajectory to be close to the extrinsic return. For each seg-
ment of the trajectory, we regularize the intrinsic reward
output by the following loss,(∑

τ

r(st, at)−
∑
τ

rφ(st, at,η)
)2

(21)

which makes sure that the learned intrinsic rewards are
roughly on the same scale as the extrinsic rewards, while
being more amenable to the optimization process.

4 Experiments

Experimental Setup We evaluate our method on sev-
eral continuous control benchmarks from OpenAI Gym
[Brockman et al., 2016]. All tasks use the MuJoCo
physics simulator [Todorov et al., 2012]. We do not mod-
ify the default gym environments in any way. Our meth-
ods are parallelized by spawning between 4 copies of each
environment, each with a different random seed. Each en-
vironment is rolled out under the current policy for 2048
timesteps and then gradient information is computed. We
then use MPI (message passing interface) to average the
gradients across each worker. Finally, the weights on each
node are updated using this averaged gradient. For all
experiments in this section, learning curves are averaged
over 5 trials. Each trial represents a full run of the algo-
rithm starting from a different random seed. The shaded
regions in the graphs capture 75 % of the total variance

Algorithm 1 Learning Intrinsic Rewards as a Bi-level
Optimization Problem
Initialize: policy π parameterized by θ. Dr = {}.
Initialize: intrinsic reward parameterized by {φ, η}.

1: while not converged do
2: Samples τ = {(s,a, πθ(a|s, η), r, s′), . . .}.
3: Dr ← Dr ∪ {(st, . . . , st+K ,at+K , rt+K)}.
4: for i = 1, ..., Nr do . Number of Iterations
5: Sample gaussian noise ε ∼ p(· | σ).
6: Calculate policy gradient loss J EX(η + ε)

for τ .
7: Calculate Lr in Eq (21) on a batch from Dr.
8: Backprop through CLN, gη = dJ EX/dη.
9: Backprop for Lr on {φ, η} to get gφr , g

η
r .

10: Update η ← Adam(λgη + gηr ).
11: Update φ← Adam(gφr ).
12: end for
13: for i = 1, ..., Np do
14: Sample gaussian noise ε′ ∼ p(· | σ).
15: Calculate gθ = dJ IN (θ, η + ε′)/dθ.
16: Update θ ← Adam(gθ).
17: end for
18: end while

present in the learning curves. We use Adam [Kingma
and Ba, 2015] Optimizer for all our experiments.

Comparison of our method with LIRPG and PPO Fig-
ure 4 shows the performance of LIRPG, PPO, and our
method (labeled CLN). For all environments, the final
performance of CLN is consistently better than the base-
line methods across the tasks considered. We do note
that, on a number of environments, CLN does not lead the
performance during the first half of the training process,
but eventually converges to a better solution. We suspect
that the slower convergence is due to the initial difficulty
in learning a stable intrinsic reward mapping. See the
conversation below analyzing the intrinsic rewards. Ad-
ditionally, in the beginning phase of training, the best
response function likely provides poor approximations,
but as training continues, this conditioning mechanism
becomes advantageous. For LIRPG, we used the imple-
mentation provided by the authors in [Zheng et al., 2018].
Overall, we find that LIRPG is not able to improve the
asymptotic performance of policy optimization, and at
times could be unstable. It could be LIRPG works best on
sparse reward environments, rather than the dense reward
environments considered in this paper. For PPO, we used
the reference implementation in OpenAI Baselines.

Ablation Analysis on the Three Gradient Terms from
Section 3 In the prequel, we derived a full policy gradient
formula for the bilevel optimization problem of learning
a paramaterized intrinsic reward function. We were cu-



rious to see how much impact each of the three terms,
Equations 15, 10, and 11 had on the learning process. In
particular, Equation 15 is significantly cheaper to compute
than Equations 11 and 10. Due to its second order term,
Eq 10 often bottlenecks the optimization process. The
results on the Hopper environment are presented in Fig-
ure 5. Surprisingly, we see that Equation 15 is the most
dominant term. Optimizing against Equation 15 alone
produces better performance than optimizing against all
three terms combined. This is especially surprising in
light of Equation 11 being largely similar to the gradient
update from LIRPG. However, utilizing all three gradient
terms requires having a conditional policy while also dif-
ferentiating through each gradient update, which may lead
to noisy and conflicting gradient signals and prohibit effi-
cient learning. While it is possible that including the right
constants in front of all three terms to ”balance” them
out could potentially speed up learning in the beginning
phase, Eq 15 has the additional benefits of being cheap
to compute. Because of these considerations, we choose
to optimize against only Equation 15 in all experiments
labeled CLN.

Analyzing the intrinsic reward We plot the intrinsic re-
turn versus the extrinsic return over time for the Hopper
environment and the Walker2d environment in Figure 6.
Throughout the first half of training, the CLN policy gen-
erally receives greater intrinsic return than the extrinsic
return, and the intrinsic return exhibits greater variance.
We observe a turning point when the extrinsic return ex-
ceeds the intrinsic return computed from the learned re-
wards later in the training process. We hypothesize that
the intrinsic reward encourages the policy not to converge
to a solution too quickly.

Why not delayed reward environments? In LIRPG,
the authors used a delayed-reward version of the MuJoCo
environments. In these environments, rewards are accu-
mulated for N timesteps. After N timesteps, the agent
receives the accumulated rewards all at once. We chose
not to use these environments for two reasons. First,
the artificial sparsity does not reflect true sparse reward
problems. In the delayed reward environments, the agent
receives rewards periodically, in contrast to sparse reward
settings where the agent typically receives a reward for
making major progress. Second, our algorithm is not
meant to be a solution for sparse learning problems. We
are concerned with learning a method for finding intrin-
sic rewards that leads to better performance on standard
dense reward RL problems. Since the environments from
gym are more commonly used than the delayed reward
environments, we choose to use those instead.

Figure 4: Learning curves for PPO, LIRPG, and our
method (labeled CLN). While our approach does not im-
prove the speed of convergence (sometimes being slightly
slower to converge) because of the difficulty of learning a
sensible intrinsic reward function, its final performance
is significantly better than the baseline methods, demon-
strating that intrinsic reward learning can facilitate the
policy optimization procedure, and that directly approxi-
mating the best response function is more favorable than
differentiating through the optimization process.

What about other feature transformations such as
FiLM etc? We made a choice to link our intrinsic reward



Figure 5: Measuring the impact of Equations 15, 10,
and 11 on performance. The blue curve (1TERM) corre-
sponds to optimizing with just Equation 15. The red term
(LIRPG) corresponds to optimizing with just equation 11
and is equivalent to LIRPG. The green curve (3TERMS)
optimizes against all three equations simultaneously. Sur-
prisingly, we get the best performance when optimizing
against Equation 15 alone. Results are obtained on the
Hopper environment. They are similar across other envi-
ronments.

Figure 6: Plots of intrinsic return versus extrinsic re-
turn obtained by the trained policy on the Hopper and
Walker2d environments. The intrinsic return generally
has greater variance than the extrinsic return across dif-
ferent runs; the learned rewards tend to be more generous
than the extrinsic rewards throughout the first half of train-
ing, possibly rewarding the policy for not converging to a
solution too quickly.

model to the policy model by using a gating architec-
ture the fed into a layer normalization. While we could
have also adapted FiLM or another feature transformation
technique, rather than layer normalization, preliminary
experiments suggested there was no additional benefit in
doing so. The simplicity of the layer normalization archi-
tecture made it easy to tune and adapt to the problems we
consider in this paper.

5 Closing Remarks

In this work, we consider how intrinsic rewards in RL can
be learned by directly approximating the best response
function, and we demonstrate promising results showing
that by carefully designing the architecture and the opti-
mization process, this approach is able to scale to deep RL
settings and improve policy performance on challenging
high dimensional continuous control tasks. An interesting
line of future work is to extend the method in this paper
to incorporate other exploration strategies. How can we
best balance the tendencies for exploitation present in this
algorithm with the need for exploration? Similarly, can
the method presented here be extended to work on sparse
reward problems? This appears particularly challenging,
because under the bi-level optimization framework, our
method eventually relies on extrinsic reward signals to
train the intrinsic reward. Making sure that intrinsic re-
wards are aligned with the objective of maximizing extrin-
sic rewards while encouraging state covering behaviors is
an exciting direction to investigate.
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