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Abstract

Trust Region Policy Optimization (TRPO) and
Proximal Policy Optimization (PPO) are among
the most successful policy gradient approaches
in deep reinforcement learning (RL). While
these methods achieve state-of-the-art perfor-
mance across a wide range of challenging tasks,
there is room for improvement in the stabiliza-
tion of the policy learning and how the off-
policy data are used. In this paper we revisit the
theoretical foundations of these algorithms and
propose a new algorithm which stabilizes the
policy improvement through a proximity term
that constrains the discounted state-action visi-
tation distribution induced by consecutive poli-
cies to be close to one another. This proximity
term, expressed in terms of the divergence be-
tween the visitation distributions, is learned in
an off-policy and adversarial manner. We empir-
ically show that our proposed method can have
a beneficial effect on stability and improve final
performance in benchmark high-dimensional
control tasks.

1 INTRODUCTION

In Reinforcement Learning (RL), an agent interacts with
an unknown environment and seeks to learn a policy
which maps states to distribution over actions to max-
imise a long-term numerical reward. Combined with deep
neural networks as function approximators, policy gradi-
ent methods have enjoyed many empirical successes on
RL problems such as video games (Mnih et al., 2016) and
robotics (Levine et al., 2016). Their recent success can
be attributed to their ability to scale gracefully to high
dimensional state-action spaces and complex dynamics.

The main idea behind policy gradient methods is to
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parametrize the policy and perform stochastic gradient
ascent on the discounted cumulative reward directly (Sut-
ton et al., 2000). To estimate the gradient, we sample
trajectories from the distribution induced by the policy.
Due to the stochasticity of both policy and environment,
variance of the gradient estimation can be very large, and
lead to significant policy degradation.

Instead of directly optimizing the cumulative rewards,
which can be challenging due to large variance, some ap-
proaches (Kakade and Langford, 2002; Azar et al., 2012;
Pirotta et al., 2013; Schulman et al., 2015) propose to
optimize a surrogate objective that can provide local im-
provements to the current policy at each iteration. The
idea is that the advantage function of a policy π can pro-
duce a good estimate of the performance of another policy
π′ when the two policies give rise to similar state visita-
tion distributions. Therefore, these approaches explicitly
control the state visitation distribution shift between suc-
cessive policies.

However, controlling the state visitation distribution shift
requires measuring it, which is non-trivial. Direct meth-
ods are prohibitively expensive. Therefore, in order to
make the optimization tractable, the aforementioned meth-
ods rely on constraining action probabilities by mixing
policies (Kakade and Langford, 2002; Pirotta et al., 2013),
introducing trust regions (Schulman et al., 2015; Achiam
et al., 2017) or clipping the surrogate objective (Schulman
et al., 2017; Wang et al., 2019b).

Our key motivation in this work is that constraining the
probabilities of the immediate future actions might not
be enough to ensure that the surrogate objective is still a
valid estimate of the performance of the next policy and
consequently might lead to instability and premature con-
vergence. Instead, we argue that we should reason about
the long-term effect of the policies on the distribution of
the future states.

In particular, we directly consider the divergence between
state-action visitation distributions induced by succes-



sive policies and use it as a regularization term added
to the surrogate objective. This regularization term is
itself optimized in an adversarial and off-policy manner
by leveraging recent advances in off-policy policy eval-
uation (Nachum et al., 2019a) and off-policy imitation
learning (Kostrikov et al., 2019). We incorporate these
ideas in the PPO algorithm in order to ensure safer policy
learning and better reuse of off-policy data. We call our
proposed method PPO-DICE.

The present paper is organized as follows: after reviewing
conservative approaches for policy learning, we provide
theoretical insights motivating our method. We explain
how off-policy adversarial formulation can be derived to
optimize the regularization term. We then present the
algorithmic details of our proposed method. Finally, we
show empirical evidences of the benefits of PPO-DICE
as well as ablation studies.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESSES AND
VISITATION DISTRIBUTIONS

In reinforcement learning, an agent interacts with its en-
vironment, which we model as a discounted Markov De-
cision Process (MDP) (S,A, γ,P, r, ρ) with state space
S, action space A, discount factor γ ∈ [0, 1), transition
model P where P(s′ | s, a) is the probability of transition-
ing into state s′ upon taking action a in state s, reward
function r : (S ×A)→ R and initial distribution ρ over
S. We denote by π(a | s) the probability of choosing
action a in state s under the policy π. The value func-
tion for policy π, denoted V π : S → R, represents the
expected sum of discounted rewards along the trajecto-
ries induced by the policy in the MDP starting at state
s: V π(s) , E [

∑∞
t=0 γ

trt | s0 = s, π]. Similarly, the
action-value (Q-value) function Qπ : S × A → R and
the advantage function Aπ : S × A → R are defined
as: Qπ(s, a) , E [

∑∞
t=0 γ

trt | (s0, a0) = (s, a), π] and
Aπ(s, a) , Qπ(s, a) − V π(s). The goal of the agent is
to find a policy π that maximizes the expected value from
under the initial state distribution ρ:

max
π

J(π) , (1− γ)Es∼ρ[V π(s)].

We define the discounted state visitation distribution dπρ
induced by a policy π:

dπρ (s) , (1− γ)

∞∑
t=0

γtPrπ(st = s | s0 ∼ ρ),

where Prπ(st = s | s0 ∼ ρ) is the probability that st = s,
after we execute π for t steps, starting from initial state
s0 distributed according to ρ. Similarly, we define the

discounted state-action visitation distribution µπρ (s, a) of
policy π

µπρ (s, a) , (1− γ)

∞∑
t=0

γtPrπ(st = s, at = a | s0 ∼ ρ).

It is known (Puterman, 1990) that µπρ (s, a) = dπρ (s)·π(a |
s) and that µπ is characterized via: ∀(s′, a′) ∈ S ×A 1

µπρ (s′, a′) = (1− γ)ρ(s′)π(a′ | s′) (1)

+ γ

∫
π(a′ | s′)P(s′ | s, a)µπρ (s, a)ds da,

2.2 CONSERVATIVE UPDATE APPROACHES

Most policy training approaches in RL can be understood
as updating a current policy π to a new improved policy π′

based on the advantage function Aπ or an estimate Â of it.
We review here some popular approaches that implement
conservative updates in order to stabilize policy training.

First, let us state a key lemma from the seminal work of
Kakade and Langford (2002) that relates the performance
difference between two policies to the advantage function.

Lemma 2.1 (The performance difference lemma (Kakade
and Langford, 2002)). For all policies π and π′,

J(π′) = J(π) + Es∼dπ′
ρ
Ea∼π′(.|s) [Aπ(s, a)] . (2)

This lemma implies that maximizing Equation (2) will
yield a new policy π′ with guaranteed performance im-
provement over a given policy π. Unfortunately, a naive
direct application of this procedure would be prohibitively
expensive since it requires estimating dπ

′

ρ for all π′ candi-
dates. To address this issue, Conservative Policy Iteration
(CPI) (Kakade and Langford, 2002) optimizes a surro-
gate objective defined based on current policy πi at each
iteration i,

Lπi(π
′) = J(πi) + Es∼dπiρ Ea∼π′(.|s) [Aπi(s, a)] , (3)

by ignoring changes in state visitation distribution due
to changes in the policy. Then, CPI returns the stochas-
tic mixture πi+1 = αiπ

+
i + (1 − αi)πi where π+

i =
arg maxπ′ Lπi(π

′) is the greedy policy and αi ∈ [0, 1] is
tuned to guarantee a monotonically increasing sequence
of policies.

Inspired by CPI, the Trust Region Policy Optimization
algorithm (TRPO) (Schulman et al., 2015) extends the
policy improvement step to any general stochastic policy

1By abuse of notation, we confound probability distribu-
tions with their Radon–Nikodym derivative with respect to the
Lebesgue measure (for continuous spaces) or counting measure
(for discrete spaces).



rather than just mixture policies. TRPO maximizes the
same surrogate objective as CPI subject to a Kullback-
Leibler (KL) divergence constraint that ensures the next
policy πi+1 stays within δ-neighborhood of the current
policy πi:

πi+1 = arg max
π′

Lπi(π
′) (4)

s.t Es∼dπiρ [DKL(π′(· | s)‖πi(· | s))] ≤ δ,

where DKL is the Kullback–Leibler divergence. In prac-
tise, TRPO considers a differentiable parameterized pol-
icy {πθ, θ ∈ Θ} and solves the constrained problem (4)
in parameter space Θ. In particular, the step direction is
estimated with conjugate gradients, which requires the
computation of multiple Hessian-vector products. There-
fore, this step can be computationally heavy.

To address this computational bottleneck, Proximal Policy
Optimization (PPO) (Schulman et al., 2017) proposes
replacing the KL divergence constrained objective (4) of
TRPO by clipping the objective function directly as:

Lclip
πi (π′) = E(s,a)∼µπiρ

[
min

{
Aπi(s, a) · κπ′/πi(s, a),

Aπi(s, a) · clip(κπ′/πi(s, a), 1− ε, 1 + ε)
}]
, (5)

where ε > 0 and κπ′/πi(s, a) = π′(s,a)
πi(s,a)

is the importance
sampling ratio.

3 THEORETICAL INSIGHTS

In this section, we present the theoretical motivation of
our proposed method.

At a high level, algorithms CPI, TRPO, and PPO follow
similar policy update schemes. They optimize some sur-
rogate performance objective (Lπi(π

′) for CPI and TRPO
and Lclip

π (π′) for PPO) while ensuring that the new policy
πi+1 stays in the vicinity of the current policy πi. The
vicinity requirement is implemented in different ways:

1. CPI computes a sequence of stochastic policies that
are mixtures between consecutive greedy policies.

2. TRPO imposes a constraint on the KL di-
vergence between old policy and new one
(Es∼dπiρ [DKL(π′(· | s)‖πi(· | s))] ≤ δ).

3. PPO directly clips the objective function based on the
value of the importance sampling ratio κπ′/πi between
the old policy and new one.

Such conservative updates are critical for the stability of
the policy optimization. In fact, the surrogate objective
Lπi(π

′) (or its clipped version) is valid only in the neigh-
bourhood of the current policy πi, i.e, when π′ and πi

visit all the states with similar probabilities. The follow-
ing lemma more precisely formalizes this2:

Lemma 3.1. For all policies π and π′,

J(π′) ≥ Lπ(π′)− επDTV(dπ
′

ρ ‖dπρ ) (6)

≥ Lclip
π (π′)− επDTV(dπ

′

ρ ‖dπρ ),

where επ = maxs∈S |Ea∼π′(·|s) [Aπ(s, a)] | and DTV is
the total variation distance.

The proof is provided in appendix for completeness.
Lemma 3.1 states that Lπ(π′) (or Lclip

π (π′)) is a sensi-
ble lower bound to J(π′) as long as π and π′ are close in
terms of total variation distance between their correspond-
ing state visitation distributions dπ

′

ρ and dπρ . However, the
aforementioned approaches enforce closeness of π′ and
π in terms of their action probabilities rather than their
state visitation distributions. This can be justified by the
following inequality (Achiam et al., 2017):

DTV(dπ
′

ρ ‖dπρ ) ≤ 2γ

1− γ
Es∼dπρ [DTV(π′(.|s)‖π(.|s))] .

(7)
Plugging the last inequality (7) into (6) leads to the fol-
lowing lower bound:

J(π′) ≥ Lπ(π′)− 2γεπ

1− γ
Es∼dπρ [DTV(π′(.|s)‖π(.|s))] .

(8)
The obtained lower bound (8) is, however, clearly looser
than the one in inequality (7). Lower bound (8) suffers
from an additional multiplicative factor 1

1−γ , which is the
effective planning horizon. It is essentially due to the fact
that we are characterizing a long-horizon quantity, such
as the state visitation distribution dπρ (s), by a one-step
quantity, such as the action probabilities π(· | s). There-
fore, algorithms that rely solely on action probabilities
to define closeness between policies should be expected
to suffer from instability and premature convergence in
long-horizon problems.

Furthermore, in the exact case if we take at iteration i,
πi+1 ← arg maxπ′ Lπi(π

′)− επiDTV(dπ
′

ρ ‖dπiρ ), then

J(πi+1) ≥ Lπi(πi+1)− επiDTV(dπi+1
ρ ‖dπiρ )

≥ Lπi(πi) (by optimality of πi+1)
= J(πi)

Therefore, this provides a monotonic policy improvement,
while TRPO suffers from a performance degradation that
depends on the level of the trust region δ (see Proposition
1 in Achiam et al. (2017)).

2The result is not novel, it can be found as intermediate step
in proof of theorem 1 in Achiam et al. (2017), for example.



It follows from our discussion that DTV(dπ
′

ρ ‖dπρ ) is a
more natural proximity term to ensure safer and more
stable policy updates. Previous approaches excluded us-
ing this term because we don’t have access to dπ

′

ρ , which
would require executing π′ in the environment. In the next
section, we show how we can leverage recent advances in
off-policy policy evaluation to address this issue.

4 OFF-POLICY FORMULATION OF
DIVERGENCES

In this section, we explain how divergences between state-
visitation distributions can be approximated. This is done
by leveraging ideas from recent works on off-policy learn-
ing (Nachum et al., 2019a; Kostrikov et al., 2019).

Consider two different policies π and π′. Suppose that we
have access to state-action samples generated by execut-
ing the policy π in the environment, i.e, (s, a) ∼ µπρ .
As motivated by the last section, we aim to estimate
DTV(dπ

′

ρ ‖dπρ ) without requiring on-policy data from π′.
Note that in order to avoid using importance sampling
ratios, it is more convenient to estimate DTV(µπ

′

ρ ‖µπρ ),
i.e, the total divergence between state-action visitation
distributions rather than the divergence between state vis-
itation distributions. This is still a reasonable choice
as DTV(dπ

′

ρ ‖dπρ ) is upper bounded by DTV(µπ
′

ρ ‖µπρ ) as
shown below:

DTV(dπ
′

ρ ‖dπρ ) =

∫
s

∣∣∣(dπ′

ρ − dπρ )(s)
∣∣∣ds

=

∫
s

∣∣∣ ∫
a

(µπ
′

ρ − µπρ )(s, a)da
∣∣∣ds

≤
∫
s

∫
a

∣∣∣(µπ′

ρ − µπρ )(s, a)
∣∣∣da ds

= DTV(µπ
′

ρ ‖µπρ ).

The total variation distance belongs to a broad class of di-
vergences known as φ-divergences (Sriperumbudur et al.,
2009). A φ-divergence is defined as,

Dφ(µπ
′

ρ ‖µπρ ) = E(s,a)∼µπ′
ρ

[
φ

(
µπρ (s, a)

µπ′
ρ (s, a)

)]
, (9)

where φ : [0,∞)→ R is a convex, lower-semicontinuous
function and φ(1) = 0. Well-known divergences can be
obtained by appropriately choosing φ. These include the
KL divergence (φ(t) = t log(t)), total variation distance
(φ(t) = |t − 1|), χ2-divergence (φ(t) = (t − 1)2), etc.
Working with the form of φ-divergence given in Equa-
tion (9) requires access to analytic expressions of both µπρ
and µπρ as well as the ability to sample from µπ

′

ρ . We have
none of these in our problem of interest. To bypass these
difficulties, we turn to the alternative variational represen-
tation of φ-divergences (Nguyen et al., 2009; Huang et al.,

2017) as

Dφ(µπ
′

ρ ‖µπρ ) = sup
f :S×A→R

[
E(s,a)∼µπ′

ρ
[f(s, a)]−

E(s,a)∼µπρ [φ? ◦ f(s, a)]
]
, (10)

where φ?(t) = supu∈R{tu − φ(u)} is the convex con-
jugate of φ. The variational form in Equation (10)
still requires sampling from µπ

′

ρ , which we cannot do.
To address this issue, we use a clever change of vari-
able trick introduced by Nachum et al. (2019a). Define
g : S×A → R as the fixed point of the following Bellman
equation,

g(s, a) = f(s, a) + γPπ
′
g(s, a), (11)

where Pπ′
is the transition operator induced by π′, defined

as Pπ′
g(s, a) =

∫
π′(a′ | s′)P(s′ | s, a)g(s′, a′). g may

be interpreted as the action-value function of the policy
π′ in a modified MDP which shares the same transition
model P as the original MDP, but has f as the reward func-
tion instead of r. Applying the change of variable (11)
to (10) and after some algebraic manipulation as done in
Nachum et al. (2019a), we obtain

Dφ(µπ
′

ρ ‖µπρ ) = sup
g:S×A→R

[
(1− γ)Es∼ρ,a∼π′ [g(s, a)]−

E(s,a)∼µπρ

[
φ?
(

(g − γPπ
′
g)(s, a)

)] ]
. (12)

Thanks to the change of variable, the first expectation over
µπ

′

ρ in (10) is converted to an expectation over the initial
distribution and the policy i.e s ∼ ρ(·), a ∼ π′(· | s).
Therefore, this new form of the φ-divergence in (12) is
completely off-policy and can be estimated using only
samples from the policy π.

Other possible divergence representations: Using
the variational representation of φ-divergences was a key
step in the derivation of Equation (12). But in fact any
representation that admits a linear term with respect to
µπ

′

ρ (i.e E(s,a)∼µπ′
ρ

[f(s, a)]) would work as well. For
example, one can use the the Donkser-Varadhan repre-
sentation (Donsker and Varadhan, 1983) to alternatively
express the KL divergence as:

Dφ(µπ
′

ρ ‖µπρ ) = sup
f :S×A→R

[
E(s,a)∼µπ′

ρ
[f(s, a)]− (13)

log
(
E(s,a)∼µπρ [exp(f(s, a))]

) ]
.

The log-expected-exp in this equation makes the Donkser-
Varadhan representation (13) more numerically stable
than the variational one (12) when working with KL di-
vergences. Because of its genericity for φ-divergences,
we base the remainder of our exposition on (12). But it is



straightforward to adapt the approach and algorithm to us-
ing (13) for better numerical stability when working with
KL divergences specifically. Thus, in practice we will use
the latter in our experiments with KL-based regularization,
but not in the ones with χ2-based regularization.

5 A PRACTICAL ALGORITHM USING
ADVERSARIAL DIVERGENCE

We now turn these insights into a practical algorithm. The
lower bounds in lemma 3.1, suggest using a regularized
PPO objective3 : Lclip

π (π′)− λDTV(dπ
′

ρ ‖dπρ ), where λ is
a regularization coefficient. If in place of the total vari-
ation we use the off-policy formulation of φ-divergence
Dφ(µπ

′

ρ ‖µπρ ) as detailed in Equation (12), our main op-
timization objective can be expressed as the following
min-max problem:

max
π′

min
g:S×A→R

Lclip
πi (π′)− λ

(
(1− γ)Es∼ρ,a∼π′ [g(s, a)]−

E(s,a)∼µπiρ

[
φ?
(

(g − γPπ
′
g)(s, a)

)])
, (14)

When the inner minimization over g is fully optimized,
it is straightforward to show – using the score function
estimator – that the gradient of this objective with respect
to π is (proof is provided in appendix):

∇π′Lclip
πi (π′)− λ

(
(1− γ)E s∼ρ

a∼π′
[g(s, a)∇π′ log π′(a | s)]

+ γE(s,a)∼µπiρ
[∂φ?
∂t

(
(g − γPπ

′
g)(s, a)

)
(15)

Es′∼P(·|s,a),a′∼π′(·|s′) [g(s′, a′)∇π′ log π′(a′ | s′)]
])
.

Furthermore, we can use the reparametrization trick if the
policy π is parametrized by a Gaussian, which is usually
the case in continuous control tasks. We call the resulting
new algorithm PPO-DICE, (detailed in Algorithm 1), as
it uses the clipped loss of PPO and leverages the DIs-
tribution Correction Estimation idea from Nachum et al.
(2019a).

In the min-max objective (14), g plays the role of a
discriminator, as in Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014). The policy π′ plays
the role of a generator, and it should balance between
increasing the likelihood of actions with large advantage
versus inducing a state-action distribution that is close to
the one of πi.

3 Both regularized Lclip
πi and Lπi are lower bounds on policy

performance in Lemma 3.1. We use Lclip
πi rather than Lπi be-

cause we expect it to work better as the clipping already provides
some constraint on action probabilities. Also this will allow a
more direct empirical assessment of what the regularization
brings compared to vanilla PPO.

As shown in Algorithm 1, both policy and dis-
criminator are parametrized by neural networks πθ
and gψ respectively. We estimate the objective (14)
with samples from πi = πθi as follows. At a
given iteration i, we generate a batch of M roll-
outs {s(j)1 , a

(j)
1 , r

(j)
1 , s

(j)
1 , . . . , s

(j)
T , a

(j)
T , r

(j)
T , s

(j)
T+1}Mj=1

by executing the policy πi in the environment for T steps.
Similarly to the PPO procedure, we learn a value function
Vω by updating its parameters ω with gradient descent
steps, optimizing the following squared error loss:

L̂V (ω) =
1

MT

M∑
j=1

T∑
t=1

(
Vω(s

(j)
t )− y(j)t

)2
, (16)

where y(j)t = r
(j)
t + γr

(j)
t+1 + . . . + γT+1−tVω(sT+1).

Then, to estimate the advantage, we use the truncated
generalized advantage estimate

Â(s
(j)
t , a

(j)
t ) =

T∑
t=1

(γλ)t−1(r
(j)
t +γVω(s

(j)
t+1)−Vω(s

(j)
t )).

(17)
This advantage estimate is used to compute an estimate
of Lclip

πi given by:

L̂clip(θ) = (18)

1

MT

M∑
j=1

T∑
t=1

min
{
Â(s

(j)
t , a

(j)
t )κπθ/πi(s

(j)
t , a

(j)
t ),

Â(s
(j)
t , a

(j)
t ) · clip(κπθ/πi(s

(j)
t , a

(j)
t ), 1− ε, 1 + ε)

}
The parameters ψ of the discriminator are learned by
gradient descent on the following empirical version of the
regularization term in the min-max objective (14)

L̂D(ψ, θ) =
−1

MT

M∑
j=1

T∑
t=1

(1− γ)gψ(s
(j)
1 , a

′(j)
t ) (19)

− φ?
(
gψ(s

(j)
t , a

(j)
t )− γgψ(s

(j)
t+1, a

′(j)
t+1)

)
,

where a′(j)t ∼ πθ(· | s(j)1 ) and a′(j)t+1 ∼ πθ(· | s
(j)
t+1).

If the reparametrization trick is applicable (which is al-
most always the case for continuous control tasks), the
parameters θ of the policy are updated via gradient as-
cent on the objective L̂clip(θ) + λL̂D(ψ, θ) as we can
backpropagate gradient though the action sampling while
computing L̂D(ψ, θ) in Equation (19). Otherwise, θ are



Algorithm 1 PPO-DICE
1: Initialisation: random initialize parameters θ1 (policy), ψ1 (discriminator) and ω1 (value function).
2: for i=1, . . . do
3: Generate a batch of M rollouts {s(j)1 , a

(j)
1 , r

(j)
1 , s

(j)
1 , . . . , s

(j)
T , a

(j)
T , r

(j)
T , s

(j)
T+1}Mj=1 by executing policy πθi in

the environment for T steps.
4: Estimate Advantage function: Â(s

(j)
t , a

(j)
t ) =

∑T
t=1(γλ)t−1(r

(j)
t + γVωi(s

(j)
t+1)− Vωi(s

(j)
t ))

5: Compute target value y(j)t = r
(j)
t + γr

(j)
t+1 + . . .+ γT+1−tVωi(sT+1)

6: ω = ωi; θ = θi;ψ = ψi
7: for epoch n=1, . . . N do
8: for iteration k=1, . . . K do
9: // Compute discriminator loss:

10: L̂D(ψ, θ) = 1
MT

∑M
j=1

∑T
t=1 φ

?
(
gψ(s

(j)
t , a

(j)
t )− γgψ(s

(j)
t+1, a

′(j)
t+1)

)
− (1 − γ)gψ(s

(j)
1 , a

′(j)
t ) where

a
′(j)
t ∼ πθ(· | s(j)1 ), a

′(j)
t+1 ∼ πθ(· | s

(j)
t+1).

11: // Update discriminator parameters: (using learning rate cψη)
12: ψ ← ψ − cψη∇ψL̂D(ψ, θ);
13: end for
14: // Compute value loss:

15: L̂V (ω) = 1
MT

∑M
j=1

∑T
t=1

(
Vω(s

(j)
t )− y(j)t

)2
16: // Compute PPO clipped loss:
17: L̂clip(θ) = 1

MT

∑M
j=1

∑T
t=1 min

{
Â(s

(j)
t , a

(j)
t )κπθ/πθi (s

(j)
t , a

(j)
t ), Â(s

(j)
t , a

(j)
t )clip(κπθ/πθi (s

(j)
t , a

(j)
t ), 1−

ε, 1 + ε)
}

18: // Update parameters: (using learning rate η)
19: ω ← ω − η∇ωL̂V (ω);
20: θ ← θ + η∇θ(L̂clip(θ) + λ · L̂D(ψ, θ)) (if reparametrization trick applicable, else gradient step on Eq. 20)
21: end for
22: ωi+1 = ω; θi+1 = θ;ψi+1 = ψ
23: end for

updated via gradient ascent on the following objective:

L̂clip(θ)−

λ

MT

M∑
j=1

T∑
t=1

(1− γ)gψ(s
(j)
1 , a

′(j)
t ) log πθ(a

′(j)
t | s(j)1 )

+ γ
∂φ?

∂t

(
gψ(s

(j)
t , a

(j)
t )− γgψ(s

(j)
t+1, a

′(j)
t+1)

)
· gψ(s

(j)
t+1, a

′(j)
t+1) log πθ(a

′(j)
t+1) | s(j)t+1) (20)

Note that the gradient of this equation with respect to θ
corresponds to an empirical estimate of the score function
estimator we provided in Equation 15.

We train the value function, policy, and discriminator
for N epochs using M rollouts of the policy πi. We
can either alternate between updating the policy and the
discriminator, or update gψ for a few steps M before
updating the policy. We found that the latter worked
better in practice, likely due to the fact that the target
distribution µπiρ changes with every iteration i. We also
found that increasing the learning rate of the discriminator
by a multiplicative factor cψ of the learning rate for the
policy and value function η improved performance.

Choice of divergence: The algorithmic approach we
just described is valid with any choice of φ-divergence for
measuring the discrepancy between state-visitation distri-
butions. It remains to choose an appropriate one. While
Lemma 3.1 advocates the use of total variation distance
(φ(t) = |t−1|), it is notoriously hard to train high dimen-
sional distributions using this divergence (see Kodali et al.
(2017) for example). Moreover, the convex conjugate of
φ(t) = |t − 1| is φ?(t) = t if |t| ≤ 1

2 and φ?(t) = ∞
otherwise. This would imply the need to introduce an
extra constraint ‖g−Pπg‖∞ ≤ 1

2 in the formulation (12),
which may be hard to optimize.

Therefore, we will instead use the KL divergence (φ(t) =
t log(t), φ?(t) = exp(t − 1)). This is still a well
justified choice as we know that DTV(µπ

′

ρ ‖µπρ ) ≤√
1
2DKL(µπ′

ρ ‖µπρ ) thanks to Pinsker’s inequality. We

will also try χ2-divergence (φ(t) = (t− 1)2) that yields
a squared regularization term.



6 RELATED WORK

Constraining policy updates, in order to minimize the in-
formation loss due to policy improvement, has been an
active area of investigation. Kakade and Langford (2002)
originally introduce CPI by maximizing a lower bound on
the policy improvement and relaxing the greedification
step through a mixture of successive policies. Pirotta et al.
(2013) build on Kakade and Langford (2002) refine the
lower bounds and introduce a new mixture scheme. More-
over, CPI inspired some popular Deep RL algorithms
such as TRPO (Schulman et al., 2015) and PPO (Schul-
man et al., 2015), Deep CPI (Vieillard et al., 2019) and
MPO (Abdolmaleki et al., 2018). The latter uses similar
updates to TRPO/PPO in the parametric version of its
E-step. So, our method can be incorporated to it.

Our work is related to regularized MDP literature (Neu
et al., 2017; Geist et al., 2019). Shannon Entropic regu-
larization is used in value iteration scheme (Haarnoja
et al., 2017; Dai et al., 2018) and in policy iteration
schemes (Haarnoja et al., 2018). Note that all the men-
tioned works employ regularization on the action probabil-
ities. Recently, Wang et al. (2019a) introduce divergence-
augmented policy optimization where they penalize the
policy update by a Bregman divergence on the state visi-
tation distributions, motivated the mirror descent method.
While their framework seems general, it doesn’t include
the divergences we employ in our algorithm. In fact,
their method enables the use of the conditional KL di-
vergence between state-action visitations distribution de-
fined by

∫
µπρ (s, a) log π(a|s)

π′(a|a) and not the KL divergence∫
µπρ (s, a) log

µπρ (s,a)

µπ′
ρ (s,a)

. Note the action probabilities ratio

inside the log in the conditional KL divergence allows
them to use the policy gradient theorem, a key ingredi-
ent in their framework, which cannot be done for the KL
divergence.

Our work builds on recent off-policy approaches:
DualDICE (Nachum et al., 2019a) for policy evaluation
and ValueDICE (Kostrikov et al., 2019) for imitation
learning. Both use the off-policy formulation of KL diver-
gence. The former uses the formulation to estimate the
ratio of the state visitation distributions under the target
and behavior policies. Whereas, the latter learns a policy
by minimizing the divergence.

The closest related work is the recently proposed Al-
gaeDICE (Nachum et al., 2019b) for off-policy policy
optimization. They use the divergence between state-
action visitation distribution induced by π and a behavior
distribution, motivated by similar techniques in Nachum
et al. (2019a). However, they incorporate the regular-
ization to the dual form of policy performance J(π) =
E(s,a)∼µπρ [r(s, a)] whereas we consider a surrogate objec-
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Figure 1: Comparison of χ2 and KL divergences for PPO-
DICE for two randomly selected environments in OpenAI
Gym MuJoCo and Atari, respectively. We see that KL
performs better than χ2 in both settings. Performance
plotted across 10 seeds with 1 standard error shaded.

tive (lower bound on the policy performance). Moreover,
our method is online off-policy in that we collect data
with each policy found in the optimization procedure, but
also use previous data to improve stability. Whereas, their
algorithm is designed to learn a policy from a fixed dataset
collected by behaviour policies. Further comparison with
AlgaeDICE is provided in appendix.

7 EXPERIMENTS AND RESULTS

We use the PPO implementation by Kostrikov (2018) as a
baseline and modify it to implement our proposed PPO-
DICE algorithm. We run experiments on a randomly
selected subset of environments in the Atari suite (Belle-
mare et al., 2013) for high-dimensional observations and
discrete action spaces, as well as on the OpenAI Gym
(Brockman et al., 2016) MuJoCo environments, which
have continuous state-action spaces. All shared hyper-
parameters are set at the same values for both methods,
and we use the hyperparameter values recommended by
Kostrikov (2018) for each set of environments, Atari and
MuJoCo 4.

7.1 IMPORTANT ASPECTS OF PPO-DICE

7.1.1 Choice of Divergence

We conducted an initial set of experiments to compare
two different choices of divergences, KL and χ2, for
the regularization term of PPO-DICE. Figure 1 shows
training curves for one continuous action and one discrete
action environment. There, as in the other environments in
which we run this comparison, KL consistently performed
better than χ2. We thus opted to use KL divergence in all
subsequent experiments.

4Code: https://github.com/facebookresearch/ppo-dice



7.1.2 Effect of Varying λ
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Figure 2: Varying λ in Hopper_v2, 10 seeds, 1 standard
error shaded. PPO-DICE is somewhat sensitive to λ value,
but the theoretically-motivated adaptive version works
well.

Next we wanted to evaluate the sensitivity of our method
to the λ parameter that controls the strength of the reg-
ularization. We examine in Figure 2 the performance
of PPO-DICE when varying λ. There is a fairly narrow
band for Hopper-v2 that performs well, between 0.01
and 1. Theory indicates that the proper value for λ is the
maximum of the absolute value of the advantages (see
Lemma 3.1). This prompted us to implement an adaptive
approach, where we compute the 90th percentile of ad-
vantages within the batch (for stability), which we found
performed well across environments. To avoid introduc-
ing an additional hyperparameter by tuning λ, we use the
adaptive method for subsequent experiments.
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Figure 3: Comparison of PPO-DICE with clipped loss
Lclip and without L. We see that clipping the action loss
is crucial for good performance.

7.1.3 Importance of Clipping the Action Loss

We earlier mentioned (see Footnote 3) two possible forms
of our regularized objective: one with clipped action loss
Lclip and one without L. Clipping the action loss was an

extra regularizing measure proposed in PPO (Schulman
et al., 2017). For our algorithm also, we hypothesized that
it would be important for providing additional constraints
on the policy update to stay within the trust region. Fig-
ure 3 confirms this empirically: we see the effect on our
method of clipping the action loss versus keeping it un-
clipped. Initially, not having the additional regularization
allows it to learn faster, but it soon crashes, showing the
need for clipping to reduce variance in the policy update.

7.2 RESULTS ON ATARI

Given our above observations we settled on using a KL-
regularized Lclip, with the adaptive method for λ that
we explained Section 7.1.2. We run PPO-DICE on ran-
domly selected environments from Atari. We tuned two
additional hyperparameters, the learning rate for the dis-
criminator and the number of discriminator optimization
steps per policy optimization step. We found that K = 5
discriminator optimization steps per policy optimization
step performed well. Fewer steps showed worse perfor-
mance because the discriminator was not updating quickly
enough, while more optimization steps introduced insta-
bility from the discriminator overfitting to the current
batch. We also found that increasing the discriminator
learning rate to be cψ = 10× the policy learning rate
helped most environments. We used the same hyperpa-
rameters across all environments. Results are shown in
Table 1. We see that PPO-DICE significantly outper-
forms PPO on a majority of Atari environments. See
Appendix C.2 for training curves and hyperparameters.

7.3 RESULTS ON OpenAI Gym MuJoCo

For the OpenAI Gym MuJoCo suite, we also used K = 5
discriminator optimization steps per policy optimization
step, and cψ = 10× learning rate for the discriminator
in all environments. We selected 5 of the more difficult
environments to showcase in the main paper (Figure 4),
but additional results on the full suite and all hyperparam-
eters used can be found in Appendix C.1. We again see
improvement in performance in the majority of environ-
ments with PPO-DICE compared to PPO and TRPO.

8 CONCLUSION

In this work, we have argued that using the action proba-
bilities to constrain the policy update is a suboptimal ap-
proximation to controlling the state visitation distribution
shift. We then demonstrate that using the recently pro-
posed DIstribution Correction Estimation idea (Nachum
et al., 2019a), we can directly compute the divergence
between the state-action visitation distributions of suc-
cessive policies and use that to regularize the policy opti-



Game PPO PPO-DICE

AirRaid 4305.0± 638.15 5217.5± 769.19
Asterix 4300.0± 169.31 6200.0± 754.10
Asteroids 1511.0± 125.03 1653.0± 112.20
Atlantis 2120400.0± 471609.93 3447433.33± 100105.82
BankHeist 1247.0± 21.36 1273.33± 7.89
BattleZone 29000.0± 2620.43 19000.0± 2463.06
Carnival 3243.33± 369.51 3080.0± 189.81
ChopperCommand 566.67± 14.91 900.0± 77.46
DoubleDunk −6.0± 1.62 −4.0± 1.26
Enduro 1129.9± 73.18 1308.33± 120.09
Freeway 32.33± 0.15 32.0± 0.00
Frostbite 639.0± 334.28 296.67± 5.96
Gopher 1388.0± 387.65 1414.0± 417.84
Kangaroo 4060.0± 539.30 6650.0± 1558.16
Phoenix 12614.0± 621.71 11676.67± 588.24
Robotank 7.8± 1.33 12.1± 2.91
Seaquest 1198.0± 128.82 1300.0± 123.97
TimePilot 5070.0± 580.53 7000.0± 562.32
Zaxxon 7110.0± 841.60 6130.0± 1112.48

Table 1: Mean final reward and 1 standard error intervals across 10 seeds for Atari games evaluated at 10M steps.
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Figure 4: Results from OpenAI Gym MuJoCo suite in more complex domains, with 10 seeds and 1 standard error
shaded. Results on the full suite of environments can be found in Appendix C.1.

mization objective instead. Through carefully designed
experiments, we have shown that our method beats PPO
in most environments in Atari (Bellemare et al., 2013) and
OpenAI Gym MuJoCo (Brockman et al., 2016) bench-
marks.
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A Omitted Proofs

A.1 Proof of Lemma 3.1

According to performance difference lemma 2.1, we have

J(π′) = J(π) + Es∼dπ′
ρ
Ea∼π′(·|s) [Aπ(s, a)]

= J(π) +

(
Es∼dπρEa∼π′(·|s) [Aπ(s, a)] +

∫
s∈S

Ea∼π′(·|s) [Aπ(s, a)] (dπ
′

ρ (s)− dπρ (s))ds

)
≥ J(π) +

(
Es∼dπρEa∼π′(·|s) [Aπ(s, a)]−

∫
s∈S
|Ea∼π(·|s) [Aπ(s, a)] | · |dπ

′

ρ (s)− dπρ (s)|ds
)

≥ J(π) +

(
Es∼dπρEa∼π′(·|s) [Aπ(s, a)]− επ

∫
s∈S
|dπ

′

ρ (s)− dπρ (s)|ds
)

≥ J(π) +
(
Es∼dπρEa∼π′(·|s) [Aπ(s, a)]− επDTV(dπ

′

ρ ‖dπρ )
)

= Lπ(π′)− επDTV(dπ
′

ρ ‖dπρ )

where επ = maxs |Ea∼π′(·|s) [Aπ(s, a)] | and DTV is total variation distance. The first inequality follows from
Cauchy-Schwartz inequality.

A.2 Score Function Estimator of the gradient with respect to the policy

∇π′E s∼ρ
a∼π′

[g(s, a)] = ∇π′

∫
g(s, a)ρ(s)π′(a | s) =

∫
g(s, a)ρ(s)∇π′π′(a | s) = E s∼ρ

a∼π′
[g(s, a)∇π′ log π′(a | s)]

∇π′E(s,a)∼µπiρ
[
φ?
(

(g − γPπ
′
g)(s, a)

) ]
= E(s,a)∼µπiρ

[
∇π′φ?

(
(g − γPπ

′
g)(s, a)

) ]
= E(s,a)∼µπiρ

[∂φ?
∂t

(
(g − γPπ

′
g)(s, a)

)
∇π′(g − γPπ

′
g)
]

= −γE(s,a)∼µπiρ
[∂φ?
∂t

(
(g − γPπ

′
g)(s, a)

)
∇π′

∫
g(s′, a′)P(s′ | s, a)π′(a′ | s′))

]
= −γE(s,a)∼µπiρ

[∂φ?
∂t

(
(g − γPπ

′
g)(s, a)

)
Es′∼P(·|s,a)
a′∼π′(·|s′)

[g(s′, a′)∇π′ log π′(a′ | s′)]
]

B Comparison with AlgaeDICE

Both the recent AlgaeDICE (Nachum et al., 2019b) and our present work propose regularisation based on discounted
state-action visitation distribution but in different ways. Firstly, AlgaeDICE is initially designed to find an optimal
policy given a batch of training data. They alter the objective function itself i.e the policy performance J(π) by adding
the divergence between the discounted state-action visitation distribution and training distribution, while our approach
adds the divergence term to Lπ(π′). The latter is a first order Taylor approximation of the policy performance J(π′).
Therefore, our approach could be seen as a mirror descent that uses the divergence as a proximity term. Secondly, their
training objective is completely different from ours. Their method ends up being an off-policy version of the actor-critic
method.

We implemented the AlgaeDICE min-max objective to replace our surrogate min-max objective in the PPO training
procedure i.e at each iteration, we sample rollouts from the current policy and update the actor and the critic of
AlgaeDICE for 10 epochs. Empirically, we observed that AlgaeDICE objective is very slow to train in this setting.
This was expected as it is agnostic to training data while our method leverages the fact that the data is produced by the
current policy and estimates advantage using on-policy multi-step Monte Carlo. So our approach is more suitable than
AlgaeDICE in this setting. However, AlgaeDICE, as an off-policy method, would be better when storing all history of
transitions and updating both actor and critic after each transition, as shown in Nachum et al. (2019b).



C Empirical Results

C.1 OpenAI Gym: MuJoCo

See Figure 5

C.2 Atari

See Figure 6

D Hyperparameters

D.1 OpenAI Gym: MuJoCo

For the OpenAI Gym environments we use the default hyperparameters in Kostrikov (2018).

Parameter name Value
Number of minibatches 4
Discount γ 0.99
Optimizer Adam
Learning rate 3e-4
PPO clip parameter 0.2
PPO epochs 10
GAE λ 0.95
Entropy coef 0
Value loss coef 0.5
Number of forward steps per update 2048

Table 2: A complete overview of used hyper parameters for all methods.

D.2 Atari

For the Atari hyperparameters, we again use the defaults set by Kostrikov (2018).

Parameter name Value
Number of minibatches 4
Discount γ 0.99
Optimizer Adam
Learning rate 2.5e-4
PPO clip parameter 0.1
PPO epochs 4
Number of processes 8
GAE λ 0.95
Entropy coef 0.01
Value loss coef 0.5
Number of forward steps per update 128

Table 3: A complete overview of used hyper parameters for all methods.
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Figure 5: Our method with KL divergences in comparison to PPO and TRPO on MuJoCo, with 10 seeds. Standard
error shaded.
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Figure 6: Our method with KL divergences in comparison to PPO on Atari, with 10 seeds and standard error shaded.
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