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Abstract

Causal models are fundamental tools to under-
stand complex systems and predict the effect of
interventions on such systems. However, de-
spite an extensive literature in the population—
or infinite-sample—case, where distributions
are assumed to be known, little is known about
the statistical rates of convergence of various
methods, even for the simplest models. In
this work, allowing for cycles, we study linear
structural equations models with homoscedas-
tic Gaussian noise and in the presence of in-
terventions that make the model identifiable.
More specifically, we present statistical rates
of estimation for both the LLC estimator intro-
duced by Hyttinen, Eberhardt and Hoyer and a
novel two-step penalized maximum likelihood
estimator. We establish asymptotic near min-
imax optimality for the maximum likelihood
estimator over a class of sparse causal graphs
in the case of near-optimally chosen interven-
tions. Moreover, we find evidence for practical
advantages of this estimator compared to LLC
in synthetic numerical experiments.

1 INTRODUCTION

Directed graphical models (Pearl, 2009; Spirtes et al.,
2000) provide a useful framework for interpretation, in-
ference, and decision making in many areas of science
such as biology, sociology, and environmental sciences
(Friedman et al., 2000; Duncan, 1966; Keats and Hitt,
1988). Unlike their undirected counterparts that merely
encode the structure of probabilistic dependence between
random variables directed graphical models reveal causal
effects that are the basis of scientific discovery (Pearl,
2009).
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Most frequently, the model is assumed to be governed
by a directed acyclic graph (DAG) G = (V,E), where
V = {X1, . . . , Xp} are the variables of an observed sys-
tem and E is a set of edges such that there is no directed
cycle in G. In such models, known as Bayes networks
(Pearl, 2009), the variables follow a joint distribution
that factorizes according to the graph G in the sense that
node i is independent of other nodes conditionally on its
parents. The absence of cycles allows for a direct in-
terpretation of the causal structure between the variables
X1, . . . , Xp whereby a directed edge corresponds to a
causal effect. At the same time, most complex systems
showcase feedback loops that can be both positive and
negative, and the need to extend Bayes networks to al-
low for cycles was recognized long ago.

A large body of work focuses on learning Bayes net-
works from observational data, that is, data drawn in-
dependently from the joint distribution of (X1, . . . , Xp).
Observational data is rather abundant but even in the
acyclic cases, it is known to lead to a severe lack of
identifiability: Such data, even in infinite abundance,
can only yield an equivalence class—the Markov equiv-
alence class—of DAGs that are all compatible with
the conditional independence relation in the given data.
While a DAG in the Markov equivalence class can al-
ready yield decisive scientific insight (Maathuis et al.,
2009), searching over the space of DAGs is often com-
putationally hard. Many algorithms have been pro-
posed over the years such as the PC algorithm (Spirtes
et al., 2000) and Greedy Equivalence search (Chickering,
2002) and max-min hill-climbing (Tsamardinos et al.,
2006), but all of them rely on the notion of faithful-
ness of the distribution, i.e., the assumption that all con-
ditional dependence relations that could be compatible
with the DAG G are actually fulfilled by the distribu-
tion of X . In fact, for consistency of these algorithms,
one needs to assume that these dependencies observe
a signal-to-noise ratio that allows to detect them with
high probability (Kalisch and Bühlmann, 2007; Loh and



Bühlmann, 2014; van de Geer and Bühlmann, 2013). Ex-
tensions that allow certain kinds of cycles, (Richardson,
1996; Richardson and Spirtes, 1996; Schmidt and Mur-
phy, 2009; Itani et al., 2010; Lacerda et al., 2008) have
been proposed but at the expense of having an increased
number of graphs in each equivalence class.

Recent breakneck advances in data collection processes
such as the spread of A/B testing for online market-
ing or targeted gene editing with CRISPR-Cas9 are con-
tributing to the proliferation of interventional data, the
gold standard for causal inference. With unlimited in-
terventions on any combination of nodes, learning a di-
rected graphical model becomes a trivial task. However,
exhaustively performing all interventions is a daunting
and costly task and recent work has focused on finding
a small number of interventions for several classes of
DAGs (Shanmugam et al., 2015; Kocaoglu et al., 2017).
For graphs with cycles, Hyttinen et al. (2012) have char-
acterized the system of interventions necessary to learn
a parametric linear structural equation model (SEM)
(Bielby and Hauser, 1977; Bollen, 1989), in which all
variables are real-valued and the causal relationships
given by the edges E are linear. Formally, the special case
of this model we consider here postulates that the fol-
lowing equation holds (in distribution) for observational
samples from X:

X = B∗X + Z, Z ∼ N (0, I), (1.1)

where we exclude explicit self-loops by assuming that
the diagonal of B∗ ∈ IRp×p is zero. By writing X =
(I − B∗)−1Z and assuming that the corresponding in-
verse matrix exists, this allows us to handle underly-
ing graphs that are cyclic. A more general form of this
model, additionally allowing for latent confounders and
unknown noise variances, has been extensively studied
in Hyttinen et al. (2012). There, it is shown that if we
have access to data from a sufficiently rich system of in-
terventions, i.e., if enough variables are randomized and
are thus made independent of the influence of their par-
ents encoded in B∗, then on a population level, B∗ is
identifiable by a method of moments type estimator that
the authors call LLC (for linear, latent, causal).

In this paper, we present upper and lower bounds for
the reconstruction of B∗ in Frobenius norm for classes
of sparse B∗, corresponding to graphs with bounded in-
degree, using multiple observations for each interven-
tion setup. We also provide upper bounds for the orig-
inal LLC estimator with `1-penalization term as well as
an `1-penalized maximum likelihood estimator, all under
the simplifying assumption that the noise or disturbance
variables Z are Gaussian, independent of each other, and
have unit variance. Moreover, we provide numerical ev-
idence that a non-convex ADMM type algorithm can be

used to find a solution to this maximum likelihood prob-
lem, albeit without convergence guarantees.

1.1 RELATED WORK

It is known that several variants of the model (1.1)
are identifiable from observational data, including non-
linear SEMs (Hoyer et al., 2009) or non-Gaussian
noise (Shimizu et al., 2006). Linear SEMs with Gaussian
noise can be identifiable under additional assumptions,
for example when the components of the noise have
equal variances and the underlying graph is a DAG (Loh
and Bühlmann, 2014; Peters and Bühlmann, 2014), when
the underlying graph is random and sparse (Abraham-
sen and Rigollet, 2018), or when the noise variables ful-
fill certain additional identifiability conditions (Ghoshal
and Honorio, 2018). Moreover, in the DAG case, lower
bounds for general exponential family models are avail-
able (Ghoshal and Honorio, 2017). Similarly, struc-
tural assumptions that lead to identifiability from obser-
vational data also arise in Independent Component Anal-
ysis (Shimizu et al., 2006; Abrahamsen and Rigollet,
2018).

Moreover, many more approaches to dealing with cy-
cles and/or interventions are known, such as convex reg-
ularizers in an exponential family model (Schmidt et al.,
2007; Schmidt and Murphy, 2009), independence test-
ing (Itani et al., 2010), Independent Component Analysis
(Lacerda et al., 2008), noisy path queries (Bello and Hon-
orio, 2018), and adapting Greedy Equivalence Search to
handle interventional data (Hauser and Bühlmann, 2012;
Wang et al., 2018). From the above, it seems that the
linear Gaussian case is somewhat of a worst-case exam-
ple for identifiability of the ground truth matrix, espe-
cially when allowing cycles, and thus warrants the in-
vestigation of controlled interventions to eliminate am-
biguity, which is the main contribution of Hyttinen et al.
(2012). Similar models have been considered for appli-
cations, for example in computational biology, see Cai
et al. (2013), where identifiability is not provided by con-
trolled experiments on the variance, but rather by a mean
shift of some variables.

Our work extends the results in Hyttinen et al. (2012)
by providing explicit upper bounds for their suggested
method, as well as presenting an alternative estimator
that leads to upper bounds independent of the condition-
ing of the experiments as explained in Section 3.3. In
spirit, our results are similar to consistency guarantees
obtained in van de Geer and Bühlmann (2013) and Wang
et al. (2018), but we focus on the case where enough
interventions are performed to identify the ground truth
structure matrix B∗, alleviating the need for additional
assumptions on B∗.



1.2 STRUCTURE OF THE PAPER

The rest of the paper is structured as follows: In Section
2, we give an overview of the linear structural equation
model we consider and the main assumptions we make.
In Section 3, we present lower bounds, upper bounds for
LLC, and upper bounds for a two-step maximum like-
lihood estimator. In Section 4, we give an abbreviated
version of numerical experiments on synthetic data. The
full version is presented in Section A of the supplement,
where we derive a non-convex variant of ADMM to solve
part of the numerical optimization problem for the pe-
nalized maximum likelihood estimator and explore its
performance on synthetic and semi-synthetic data. The
proofs of the main results are deferred to Sections C –
E in the supplement, and we collect extended notational
conventions in Section B and general lemmas used in all
the proofs in Section F. Section G contains a short argu-
ment for why experimental data is necessary given our
assumption, and Section H provides a way of speeding
up our numerical calculations.

1.3 NOTATION

We write a . b for two quantities a and b if there ex-
ists an absolute constant C > 0 such that a ≤ Cb, and
similarly for a & b. For two real numbers a, b ∈ IR,
we write a ∧ b for their minimum and a ∨ b their max-
imum, respectively. For a natural number p, we denote
by [p] = {1, . . . , p}. Given a set S, we write |S| for its
cardinality.

For two matrices A,B ∈ IRp1×p2 , we abbreviate the ith
row by Bi,: and the ith column by B:,i. Similarly, Bi,−j
denotes the ith row of B where the jth element is omit-
ted. Further, ‖B‖F denotes the Frobenius norm, ‖B‖op
the operator norm, and

‖B‖1 =
∑
i,j

|Bi,j |.

If A is a square invertible matrix, we denote by A−1

its inverse and by A−> the transpose of A−1. By I ∈
IRp×p, we denote the identity matrix.

2 MODEL AND ASSUMPTIONS

Before summarizing our explicit assumptions, we give
a definition of observations under a linear cyclic struc-
tural equation model with and without interventions. We
assume that a linear SEM on a random vector X =
(X1, . . . , Xp) is given by a matrix B∗ ∈ IRp×p without
self-cycles, i.e., B∗ ∈ B0 with

B0 := {B ∈ IRp×p : Bi,i = 0, for all i = 1, . . . , p}.

That is, if Bi,j 6= 0 for i 6= j, then there is a linear causal
dependence of Xi on Xj , or equivalently, an edge (j, i)
in the directed graph associated with X . Without any in-
tervention, each observation is an independent copy of
X = (I − B∗)−1Z, where Z can in principle be any
noise variable. Since non-Gaussian noise can lead to
identifiability from observational data through exploiting
this particular property (Hoyer et al., 2009; Lacerda et al.,
2008), we focus on Gaussian noise, and make the simpli-
fying assumption that Z ∼ N (0, I). In order to guaran-
tee that (I−B∗)−1 exists, we assume ‖B∗‖op < 1 which
in particular allows us to write

X =

∞∑
k=0

(B∗)kZ,

and X can be interpreted as the steady state distribution
of an auto-regressive process {xt}t≥0 governed by the
dynamics

xt+1 = B∗xt + Z, x0 = Z. (2.1)

Hence, X is distributed according to X ∼ N (0,Σ∗)
with

Σ∗ = (I −B∗)−1(I −B∗)−>.

In order to obtain results in the high-dimensional regime
p � n, we additionally assume that the in-degree of B∗

is bounded, resulting in a sparse matrixB∗. That is, if we
denote the maximum in-degree of a matrix B ∈ IRp×p

by
d(B) = max

i∈[p]
|{j : Bi,j 6= 0}|,

then we assume d(B∗)� p.

Moreover, we assume that we have access to interven-
tional, a.k.a. experimental, data, which is modeled as
follows, keeping in line with the definition from Hytti-
nen et al. (2012). An experiment e is given by a partition

[p] = Ue ∪̇ Je, (2.2)

with associated projection matrices

(Ue)i,j =

{
1, i = j and i ∈ Ue
0, otherwise,

(Je)i,j =

{
1, i = j and i ∈ Je
0, otherwise.

(2.3)

In effect, all nodes in Je are intervened on, i.e., they
are not influenced by their parents anymore. We as-
sume that they follow a standard Gaussian distribution
N (0, 1), leading to a random variable Xe ∼ N (0,Σ∗,e)
corresponding to experiment e with covariance matrix

Σ∗,e = (I − UeB∗)−1(I − UeB∗)−>,



and inverse covariance matrix (concentration matrix)

Θ∗,e = (Σ∗,e)−1 = (I − UeB∗)>(I − UeB∗).

Hyttinen et al. (2012) provide the following criterion to
identify B∗ from interventional data associated with E .

Definition 1 (Completely separating system). The set of
experiments E is a completely separating system if for
every i 6= j ∈ [p], there exists e ∈ E such that i ∈ Je
and j ∈ Ue.

Note that Hyttinen et al. (2012) call the separation con-
dition for a pair (i, j) ∈ [p]2 the pair condition. They
show that Definition 1 guarantees identifiability of B∗

from observational data. Conversely, they show that if E
is not separating, there exists a ground truth system that
is not satisfied, albeit allowing a more general covariance
structure on the noise terms (Zek in Assumption A3 be-
low) for the latter construction than we do.

We are now in a position to state our assumptions.

A1 (Structure matrix). For any two positive integers d ≤
p and η ∈ (0, 1/2], let B(p, d, η) denote the set of sparse
matrices defined by

B(p, d, η) := {B ∈ IRp×p : Bi,i = 0 for i ∈ [p],

‖B‖op ≤ 1− η, d(B) ≤ d},

and assume B∗ ∈ B(p, d, η).

A2 (Interventions). Let E be a set of experiments with
associated partitions {(Ue,Je)}e∈E and projection ma-
trices {(Ue, Je)}e∈E as in (2.2) and (2.3), respectively.
Assume that E is separating in the sense of Definition 1.

A3 (Noise). Assume n ∈ N is divisible by E := |E|, set
ne = n/E for e ∈ E , and for k ∈ [ne], e ∈ E , denote by
Zek ∼ N (0, I) i.i.d. Gaussian random vectors. Then, we
assume that we have access to observations of the form
Xe
k = (I − UeB∗)−1Zek .

A few remarks are in order.

A1. The bound ‖B∗‖op ≤ 1− η guarantees invertibility
of I−UB∗ for any projection matrix U and convergence
of the process (2.1).

A2. As mentioned, this is the same assumption under
which Hyttinen et al. (2012) show identifiability of B∗

under more general assumptions than the ones presented
here, in particular allowing more general noise variances
and hidden variables. Note that their proof of neces-
sity of this assumption does not exactly match our as-
sumption because our noise variances are restricted, so in
principle, identifiability from observational data could be
possible under a weaker condition. However, we give ev-
idence in Section G that at least observational data alone
is not sufficient to recover a general B∗.

Intuitively, the fact that E is separating guarantees that
B∗ can be recovered from submatrices of {Σ∗,e}e∈E via
solving a system of linear equations, a fact that is made
more precise in Section 3.2. Since we are interested in
recovering B∗ under otherwise minimal assumptions on
B∗, this is the case we consider for the theoretical contri-
butions of this paper. We do however investigate the be-
havior of the two estimators considered in Section 3 with
respect to a violation of this assumption numerically in
Section 4.

A3. The assumption of Gaussian noise is not critical
for our analysis, and in fact all our proofs extend read-
ily to sub-Gaussian noise. Similarly, the assumption
ne = n/E can be replaced by ne � n/E, that is, the
number of observations in all experiments is compara-
ble. Next, the assumption IE[Zek] = 0 can be relaxed to
an unknown mean by estimating the means of the indi-
vidual experiments and subtracting them off, incurring
only higher-order error terms with respect to n. On the
other hand, the assumption that, IE[(Zek)2] = 1 might
be restrictive in practice. We conjecture that it might
be relaxed while maintaining many of the guarantees we
give in Section 3, but due to the notational burden as-
sociated with incorporating these additional factors into
the estimation, we chose to leave this topic as the sub-
ject of future research. Note that while the assumption
of equal variances implies identifiability from observa-
tional data in the case where B∗ is assumed to be acyclic
(Loh and Bühlmann, 2014; Peters and Bühlmann, 2014),
it does not in the cyclic case, see Section G. Hence, the
assumptions as presented still lead to a class rich enough
to require controlled experiments to estimate B∗. More-
over, contrary to the approach in (Loh and Bühlmann,
2014; Peters and Bühlmann, 2014), we do not explic-
itly exploit the fact that the variance is known by sorting
the variables, likely rendering the estimators considered
here robust in the case where the variances have to be
estimated as well.

Remark 2. It was shown in Hyttinen et al. (2013) that
the minimum number of experiments necessary to obtain
a completely separating system is of the order log(p),
which can be seen by a simple binary coding argument.
Hence, if we are able to pick the experiments in the most
parsimonious way possible, E = O(log(p)) only con-
tributes a logarithmic factor to any of the rates presented
in Section 3.

3 MAIN RESULTS

3.1 LOWER BOUNDS

First, we give lower bounds for the estimation of matrices
B∗ ∈ B(p, d, η). This information-theoretic result sets a



benchmark for any method employed in this model. To
that end, let κ denote the redundancy of the experiments
E . It is defined as the maximum number of experiments
that separate two variables,

κ = κ(E) = max
i 6=j∈[p]

|{e ∈ E : i ∈ Ue, j ∈ Je}|.

Theorem 3. There exists a constant c > 0 such that if
d ≤ p/4 and

n ≥ pdE2 log
(

1 +
p

4d

)
,

then, for any estimator B̂, there exists B∗ ∈ B(p, d, η)
such that

‖B̂ −B∗‖2F ≥ c
pdE

κn
log
(
1 +

p

4d

)
(3.1)

with constant probability.

The proof of Theorem 3 is deferred to Section C of the
supplement. We remark that there is a mismatch in the
lower bound and the range of n for which it is effective
that is of order E. In the case of a minimal system of
completely separating interventions, by Remark 2, this
mismatch is of order log(p).

3.2 UPPER BOUNDS FOR THE LLC
ESTIMATOR

Next, we give bounds on the performance of the LLC
estimator introduced in Hyttinen et al. (2012). We briefly
summarize the algorithm below, which can be seen as a
moment estimator for B∗.

3.2.1 The LLC estimator

Denote by b∗i ∈ IRp−1 the ith row of B∗, where we omit
the ith entry, which is assumed to be zero since B∗ ∈ B.
Formally, b∗i = (PiB

>
i,:) = B>i,−i, where Pi : IRp →

IRp−1 denotes the projection operator that omits the ith
coordinate.

LLC is motivated by the observation that on the popu-
lation level, each b∗i satisfies a linear system T ∗i b

∗
i = t∗i ,

where T ∗i ∈ IRmi×(p−1) and t∗i ∈ IRmi for somemi ≥ 1
are defined as follows. For i = 1, . . . , p, define the ma-
trix T ∗i and the column vector t∗i row by row. For each
experiment e such that i ∈ Ue and each j ∈ Je, add a
row to T ∗i and to t∗i , say with index ` = `(e, j), that is of
the form

(T ∗i )`,: = e>j Σ∗,eP>i , (t∗i )` = Σ∗,ej,i

where ej is the jth canonical vector of IRp. To better
visualize (T ∗i )`,:, one may rearrange the indices so that

Je = {1, . . . , |Je|}, in which case we have

(T ∗i )`,: =
[
0 . . . 1 . . . 0 Σ∗,ej,Ue\{i}

]
,

where “1” appears in the jth coordinate. Let mi de-
note the total number of such rows obtained by scanning
through all experiments e such that i ∈ Ue and j such
that j ∈ Je.

When E is a completely separating system, T ∗i bi = t∗i
has the unique solution b∗i = (B∗i,−i)

>, (Hyttinen et al.,
2012). The LLC estimator is obtained by substituting
Σ∗,e in the above definitions with its empirical counter-
part Σ̂e defined by

Σ̂e =
1

ne

ne∑
k=1

Xe
k(Xe

k)>,

except for where the variances are known exactly due to
the fact that an intervention is performed. This leads to a
linear system of the form T̂ibi = t̂i. Rather than solving
the linear system exactly, the LLC estimator is obtained
by minimizing a penalized least squares problem to pro-
mote sparsity in the resulting estimate:

b̂i = argmin
b∈IRp−1

‖T̂ib− t̂i‖22 + λ‖b‖1, i = 1, . . . , p,

where λ > 0 is a tuning parameter. The solutions to the
above problems are assembled into the LLC estimator
B̂llc by setting

(B̂llc)i,−i = b̂>i , (B̂llc)i,i = 0, i ∈ [p]. (3.2)

3.2.2 Statistical performance

The upper bounds we give for the performance of LLC
depend on additional constants that are not directly con-
trolled for an arbitrary B∗ ∈ B(p, d, η). Loosely speak-
ing, they pertain to the conditioning of the `1-regularized
least squares problems that are solved to obtain B̂llc.
These constants are defined as follows. Denote by

C(d) := {v ∈ IRp : for all S ⊆ [p] with |S| ≤ d,
‖vSc‖1 ≤ 3‖vS‖1}.

Then, define

ρ(d) = min
i∈[p]

inf
v∈C(d),v 6=0

‖T ∗i v‖2
‖v‖2

,

R(d) = max
i∈[p]

sup
v∈IRp,v 6=0,
| supp(v)|≤d

‖T ∗i v‖2
‖v‖2

,

R̃ = max
i∈[p]

max
j∈[p]

∑
k∈[p]

|(T ∗i )k,j |.

We are now in a position to state the first rate of conver-
gence for the LLC estimator.



Theorem 4 (Rates for LLC estimator). Let assumptions
A1 – A3 hold and fix δ ∈ (0, 1). Assume further that

n &

(
1 ∨ p2

R̃2η4
∨ pd

(R(d) + 1)2η4ρ(d)4

)
E log(eκp/δ).

Then LLC estimator B̂llc defined in (3.2) with λ chosen
such that

λ � R̃
√
E log(eκp/δ)

n
,

satisfies

‖B̂llc −B∗‖2F .
R̃2

ρ(d)4η4
pdE log(eκp/δ)

n
, (3.3)

with probability at least 1− δ.

The proof is deferred to Section D of the supplement.
It uses standard arguments for the LASSO, together
with perturbation results for regression with noisy design
from Loh and Wainwright (2011) in Lemma 8 to handle
the presence of noise in the matrices T̂i.

Remark 5. Unfortunately, it is not clear whether the
factors ρ(d), R(d), R̃ stay bounded with increasing p, d,
and E, uniformly over all possible ground truth matrices
B∗ ∈ B(p, d, η). Hence, even though the explicit depen-
dence on p, d, and E in the upper bounds (3.3) matches
the lower bounds (3.1), we can not claim this rate to be
(near) minimax optimal.

Remark 6. Comparing the definitions of ρ(d) andR(d),
one might prefer an alternative definition of the former of
the form

ρ̃(d) := min
i∈[p]

inf
v∈IRp, v 6=0,
| supp v|≤d

‖T ∗i v‖2
‖v‖2

.

In fact, these two quantities are related, albeit for dif-
ferent values of d, see Section 8 in Bellec et al. (2018).
We choose ρ(d) instead of ρ̃(d) for the sake of a simpler
presentation.

In order to address the issues raised in the previous re-
mark, we next give a penalized maximum likelihood es-
timator.

3.3 UPPER BOUNDS FOR TWO-STEP
PENALIZED LIKELIHOOD

3.3.1 Two-step maximum likelihood estimator

One shortcoming in the rate for LLC for large n in Theo-
rem 4 are the constants ρ(d) and R̃ which might actually

grow with p, see Remark 5. Moreover, as a moment es-
timator, it does not naturally behave well with respect
to model misspecification. This motivates a different es-
timator based on a penalized maximum likelihood ap-
proach.

Recall that the negative log-likelihood of a multivariate
Gaussian with empirical covariance matrix Σ̂ and preci-
sion matrix Θ is given by.

`(Θ, Σ̂) = Tr(Σ̂Θ)− log det(Θ)

Thus, the negative log-likelihood for the whole model is
proportional to

L(B) = L(B, Σ̂1, . . . , Σ̂E) =
∑
e∈E

`(Θe(B), Σ̂e),

where Θe(B) = (I − UeB)>(I − UeB), and

Σ̂e =
1

ne

ne∑
k=1

Xe
k(Xe

k)> =
E

n

ne∑
k=1

Xe
k(Xe

k)>.

In order to exploit sparsity in the underlying matrix B∗,
we need to penalize L(B) before minimizing it. How-
ever, due to the non-linear dependence of Σe on B, a
vanilla `1-penalization term might not yield desirable
statistical rates. To overcome this limitation, we propose
a two-step estimation procedure. First, an initial guess
B̂init is produced using a penalization acting on the scale
of the concentration matrices. This initial guess is sub-
sequently refined to B̂ as the solution to the `1-penalized
log-likelihood restricted to a small ball around B̂init.

In the first step, we employ penalization with a term re-
sembling a graphical lasso penalty for each experiment,

peninit(B) = peninit,λinit
(B) = λinit

∑
e∈E
‖Θe(B)‖1,

leading to the penalized log-likelihood

Tinit(B) = Tinit,λinit
(B, Σ̂1, . . . , Σ̂E)

= L(B, Σ̂1, . . . , Σ̂E) + peninit,λinit
(B) .(3.4)

The initialization estimator is then given by

B̂init ∈ argmin
B∈B0

Tinit(B). (3.5)

Note that this is not a convex optimization problem due
to the fact that B enters the log-likelihood term quadrati-
cally and the penalty term linearly, which means it might
be hard to solve in general. However, we do give a local
optimization algorithm in Section 4 that attempts to find
a local minimum for (3.4).



In the second step, this estimator is refined by employing
a different regularization term,

penloc(B) = penloc,λloc
(B) = λloc‖B‖1,

Tloc(B) = Tloc,λloc
(B, Σ̂1, . . . , Σ̂E)

= L(B, Σ̂1, . . . , Σ̂E) + penloc,λloc
(B), (3.6)

and the estimator is given by

B̂loc ∈ argmin
B∈B0

‖B−B̂init‖F≤Rloc

Tloc(B), (3.7)

with a suitably chosen localization parameter Rloc > 0.

The loss function (3.6) is again non-convex and hence
hard to optimize, but local optimization algorithms seem
to produce good results, see Section 4.

3.3.2 Statistical performance

Assuming we have access to the global minima B̂init and
B̂loc, we show the following rates for B̂loc:

Theorem 7. Under assumptions A1 – A3, if

n &

(
E2 ∨ 1

η4
∨ p2

)
p2(d+ 1)2E3

η4
log(epE/δ)

and the parameters for the estimators B̂init and B̂loc are
chosen such that

Rloc �
1√
E
∧ η ∧ 1

√
p
,

λinit �
√
E log(epE/δ)

n
, and

λloc �
√
E2 log(epE/δ)

n

then

‖B̂loc −B∗‖2F .
p(d+ 1)E2

η8 n
log(pE/δ), (3.8)

with probability at least 1− δ.

The proof is deferred to Section E of the supplement. It
is based on the one hand on restricted convexity prop-
erties of the Gaussian log-likelihood function that were
developed in the context of convex optimization prob-
lems for estimation of sparse concentration matrices in
Rothman et al. (2008) and Loh and Wainwright (2013),
see also Negahban et al. (2012), and on the other to new
structural results on the difference Θe(B)−Θ∗,e between
concentration matrices expressed in terms ofB−B∗; see
Lemma 10.

Note that the upper bound (3.8) is worse by a factor of E
and a log factor than the lower bound (3.1) in Theorem
3. However, the completely separating system E can be
chosen to be as small as E � log(p), see Hyttinen et al.
(2013) and Remark 2, in which case this eventual rate is
almost minimax optimal up to logarithmic terms.

We also note that the requirement on n in Theorem 7
of n & (p2 ∨ E2)p2d2E3 log(Ep) is much larger than
the regime at which (3.8) becomes less than 1, n &
pdE2 log(pE). It is unclear whether these are due to in-
efficiencies in our proof technique or shortcomings of the
particular estimator in question.

4 NUMERICAL EXPERIMENTS

Recall that we want to find solutions to the two regu-
larized maximum likelihood problems (3.5) and (3.7).
Both problems are non-convex and there is no obvious
strategy for how to find global minima. However, since
they are continuous, we can empirically study the perfor-
mance of optimization algorithms designed for convex
problems, hoping to obtain at least local minima. In Sec-
tions A.1 and A.2 of the supplement, we describe how
candidate solutions for both (3.5) and (3.7) can be found
efficiently by using a nonlinear version of the Alternat-
ing Direction Method of Multipliers (ADMM) (Gabay
and Mercier, 1976; Glowinski and Marroco, 1975; Boyd
et al., 2011) and an augmented Lagrangian method (No-
cedal and Wright, 2006), respectively.

Here, we report results from experiments with synthetic
data generated using (directed) random regular graphs
to gauge the performance of the maximum likelihood
procedure, comparing it to the LLC algorithm (Hyttinen
et al., 2012). Further details on the experiments and more
experiments on synthetic and semi-synthetic data involv-
ing graphs comprised of disconnected cliques and a small
gene regulatory network from Cai et al. (2013) can be
found in the full version of the Numerical Experiments,
Section A of the supplement.

4.1 EXPERIMENTAL SETUP

Data generation The ground truth graphs are gener-
ated by first obtaining the (directed) adjacency matrix
Badj ∈ {0, 1}p×p, a matrix Bval ∈ IRp×p containing
edge values, and finally setting B∗ to be the Hadamard
product of the two, normalized to have operator norm
1− η = 0.5,

B̃ = Badj �Bval, B∗ =
(1− η)

‖B̃‖op
B̃.

Here, Bval consists of independent standard Gaussian
entries, and Badj is the adjacency matrix of a regular
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(b) Varying E

Figure 1: Experiments for random regular graphs, varying one parameter while keeping the other ones fixed. “llc”
refers to B̂llc, “init” to B̂init, “loc” to B̂loc.

random graph, where supp((Badj)i,:) is constructed by
sampling d times uniformly at random without replace-
ment from {1, . . . , p}\{i} and all elements in the support
are assigned the value 1.

Choice of λ: To keep the comparison simple, we use
an oracle choice of λinit, λloc and Rloc. For the first two,
this means choosing them such that ‖B̂init − B∗‖F and
‖B̂loc − B∗‖F is minimal. For Rloc, we choose Rloc =
2‖B̂init − B∗‖F . In practice, both parameters could be
chosen by cross-validation.

Initialization of optimization algorithm: We initial-
ize the calculation of B̂init for the largest value of λinit
with the all zeros matrix and then warm-start the calcula-
tion with the output of the calculation for the next larger
value of λinit. The calculation of B̂loc is initialized with
the output of B̂init. We further investigate the depen-
dence on the initialization value in the full version of the
numerical experiments, Section A of the supplement.

Systems of interventions: We consider two choices
for the experiments E . The first one, which we call bi-
nary, consists of separating the nodes with a bisection
approach similar to the construction given in Dickson
(1969) that leads to E = O(log p). The second one,
which we call bounded, is given by Cai (1984) and pro-
duces experiments whose sizes |Je| are bounded by k.
In this case, E = O(n/k).

Repetitions: All errors are averaged over 32 random
repetitions of sampling B∗ and the observations Xe

k .

4.2 RESULTS

In Figure 1, we collect comparisons for the estimation
rates of B̂llc, B̂init, and B̂loc, varying p and E, respec-
tively, where in the varying p case, we consider binary
experiments. The varying E case is given by bounded
experiments with a varying bound on the size k of the
experiments which, of course, governs the total number
E of experiments needed for separation. In all cases, we
performed linear regression on the log-transformed val-
ues to arrive at an estimate of the polynomial dependence
of the error rate on the parameters, indicated by a dashed
line.

In Figure 1(a), we observe a scaling with respect to p
that is slightly worse than guaranteed by our theorems
and could be due to the presence of log factors. In Figure
1(b), we observe that the scaling with respect to E when
increasing the number of experiments appears to be bet-
ter than predicted by our theory: about E1/2 for B̂llc and
B̂init, about E1/3 for B̂loc.

Further experiments with varying n and d are reported in
Figure 2 of Section A of the supplement.
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