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Abstract

Causal inference quantifies cause effect rela-
tionships by means of counterfactual responses
had some variable been artificially set to a con-
stant. A more refined notion of manipulation,
where a variable is artificially set to a fixed
function of its natural value is also of inter-
est in particular domains. Examples include
increases in financial aid, changes in drug dos-
ing, and modifying length of stay in a hospital.

We define counterfactual responses to manip-
ulations of this type, which we call shift inter-
ventions. We show that in the presence of mul-
tiple variables being manipulated, two types of
shift interventions are possible. Shift interven-
tions on the treated (SITs) are defined with re-
spect to natural values, and are connected to
effects of treatment on the treated. Shift in-
terventions as policies (SIPs) are defined re-
cursively with respect to values of responses
to prior shift interventions, and are connected
to dynamic treatment regimes. We give sound
and complete identification algorithms for both
types of shift interventions, and derive efficient
semi-parametric estimators for the mean re-
sponse to a shift intervention in a special case
motivated by a healthcare problem. Finally, we
demonstrate the utility of our method by using
an electronic health record dataset to estimate
the effect of extending the length of stay in the
intensive care unit (ICU) in a hospital by an ex-
tra day on patient ICU readmission probability.

1 INTRODUCTION

Establishing cause effect relationships is a fundamental
goal in data-driven empirical science and decision mak-
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ing. An influential approach to causal inference quan-
tifies causal effects by means of responses to an inter-
vention operation, which manipulates variables to attain
specified values, possibly contrary to fact. This interven-
tion operation is denoted by do(.) in (Pearl, 2009), and
is used to define potential outcome random variables in
wide use in statistics and public health (Neyman, 1923;
Rubin, 1976).

Other kinds of intervention operations have been con-
sidered in the literature. Dynamic treatment regimes
(DTRs), used in precision medicine and related applica-
tions (Chakraborty and Moodie, 2013), manipulate vari-
ables to values that depend on causally prior variables.
Edge and path interventions (Shpitser and Tchetgen Tch-
etgen, 2016) manipulate variables to distinct values with
respect to different causal pathways the variables are in-
volved in. These interventions have been used to quan-
tify direct, indirect, and path-specific effects in mediation
analysis. Soft interventions (Eberhardt, 2014) “nudge”
variables (or the data-generating process for variables)
away from their natural state, rather than manipulating
them to attain specific constant values. A recent type of
intervention of this sort that manipulates the propensity
score was considered in (Kennedy, 2019).

In this paper we consider a particular type of soft inter-
vention where variables are manipulated to attain values
given by fixed functions of their existing values. We call
such interventions shift interventions. Shift interventions
arise in settings where the counterfactual change of in-
terest is most naturally expressed in terms of existing re-
alizations of variables to be manipulated. Examples of
such settings include changes in drug dosing, increases
in financial aid, or policy deviations from an existing
standard in medical, social, or economic domains. We
show that in the presence of multiple variables being ma-
nipulated, two types of shift interventions are possible.
Shift interventions on the treated (SITs) are defined with
respect to their naturally observed values, and are con-
nected to effects of treatment on the treated (ETTs) (Sh-
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Figure 1: (a) A causal graph representing a single treatment cross-sectional study. (b) A causal graph representing
a two stage observational study, with a first line treatment A, and a second line treatment B. (c) A causal graph
representing a two stage observational study, where the second line treatment B is not assigned using intermediate
outcomes W. (d) The latent projection representing the front-door causal model. (e) The latent projection representing
the bow arc causal model. (f) A class of latent projections representing failure of identification of SITs in Theorem 4.

pitser and Pearl, 2009). Shift interventions as policies
(SIPs) are defined recursively with respect to values of
responses to prior shift interventions, and are connected
to dynamic treatment regimes. Despite these connec-
tions, responses to shift interventions are distinct types
of counterfactuals, and we show their identification gives
rise to subtleties not present in identification of either
DTRs or ETTs.

We give sound and complete identification algorithms
for both types of shift interventions, and derive an ef-
ficient semi-parametric estimator for the response to a
shift intervention in a special case motivated by a health-
care problem. Finally, we demonstrate the utility of our
method by using an electronic health record dataset to
estimate the effect of extending the length of stay in the
intensive care unit (ICU) in a hospital by an extra day on
patient ICU readmission probability.

2 PRELIMINARIES

Causal inference aims to establish a link between ob-
served random variables V' = {V1,...,V};} and coun-
terfactual random variables V;(a), which denote the re-
sponse of V; had variables A C V been manipulated,
possibly contrary to fact, to obtain values a. The dis-
tribution over V;(a) is denoted by p(V;|do(a)) in (Pearl,
2009). Counterfactuals quantify causal effects as con-
trasts defined by two manipulations, representing treat-
ment and control arms of a hypothetical randomized con-
trolled trial (RCT). For example, the average causal ef-
fect (ACE) is defined as E[Y (a)] — E[Y (a)], where Y is
an outcome variable, and A are one or more treatment
variables manipulated to values a representing treat-
ments of interest, or values a’ representing the baseline
treatments in the control group.

An elegant formalism for defining causal models uses
directed acyclic graphs (DAGs). A DAG is a directed
graph with no directed cycles. In a causal model repre-
sented by a DAG G, each vertex in G corresponds to a

variable (we will use the same letter, e.g. V;, for both).
For each V}, the set of variables with directed arrows into
V; in G, denoted as parents of V;, or pa(V;), is the set of
direct causes of V;, in the following sense. We assume
the existence of atomic counterfactual random variables
of the form V;(a), for each value set a in X,,(v;), the

state space of pa(V;). We use these random variables
to define other counterfactuals by means of the recursive
substitution definition. For any V; € V., A C V, we have

Vi(a) = Viapa(vy), {(W(a) : W € pa(Vi) \ A}). ¢))

As an example, consider the DAG ¢ in Fig. 1 (a), repre-
senting an observational study with a single treatment A
(representing a drug dose), an outcome Y, and a vec-
tor of baseline covariates L. Given G, atomic coun-
terfactuals are of the form L, A(l), Y (a,l), for any
values a,l in X{4 ). Further, we define Y'(a) using
(1) as Y(a, L). Note that (1) allows definitions of the
form A(a,L) = A(L) = A, since A ¢ pa(A), and
A ¢ pa(L).

Causal models are defined by restrictions on counter-
factual random variables. We will work with a popular

model called the structural causal model (Pearl, 2009),
which asserts the following marginal independences:

{V1(a1) Tap Expa(vl)} .. 10 {Vk(ak) : ake:{pa(Vk)}'
In our example, these assert
LU {AN):leX} L {Y(a,l'):a,l' € Xpa 1}

Causal models such as the structural causal model al-
low counterfactual quantities such as p(Y (a)) to be ex-
pressed in terms of the observed data distribution. If
all variables in the causal model are observed, every
p(V (a)) is identified by the following functional:

p(V(a)) = ] p(Vilpa(Vi) \ A, apaqvy), ()
V;ev

known as the extended g-formula. If A is empty, we
have

p(V) =[] p(Vilpa(Vi)), 3)

Viev



which is the well-known Bayesian network factorization

of the observed data distribution p(V') (Pearl, 1988). In
other words, assuming a causal model on a DAG G im-
plies the observed data distribution p(V') factorizes ac-
cording to G as in (3), and all interventional distributions
p(V(a)) are identified by modified versions, as in (2), of
this factorization.

In our example, p(V(a)) = p(Y(a),A, L) is identi-
fied as p(Y|a, L)p(A|L)p(L). If we are only interested
in p(Y(a)), we simply marginalize the modified fac-
torization appropriately to yield the adjustment formula
ZL p(Yla, L)p(L).

Generalized Interventions and Targets of Inference

Before describing shift interventions, we consider two
related counterfactual quantities considered in the causal
inference literature. Aside from the example in Fig. 1 (a),
we will also consider the causal model in Fig. 1 (b) repre-
senting an observational study with two treatments A, B
given in stages. A is given based on a set of baseline
characteristics L, and would represent the primary treat-
ment in healthcare contexts. W represents an intermedi-
ate outcome, while B, given based on values of L, A, W,
would represent salvage therapy or second line treatment
in cases of poor response to A. Y represents the final
outcome of interest.

For a single treatment A, the effect of treatment on
the treated (ETT) is defined as E[Y(a)|]A = a] —
E[Y(a')JA = a]. Such an effect can be viewed as a
version of the ACE among the set of people naturally
exposed to a particular level of the treatment. For ex-
ample, ETT compares the effect of smoking one pack of
cigarettes a day to smoking nothing in the set of people
who happen to smoke one pack of cigarettes a day. In
the causal model represented by Fig. 1 (a), the ETT is
identified as E[Y'|a] — >~ E[Y|a’, C]p(Cla).

For multiple treatments, the effect of treatment
on the multiply treated is defined similarly. In
Fig. 1 (b), this effect is defined as E[Y (a,b)|a,b] —
E[Y(a’,b')|a,b]. While it can be shown that in
Fig. 1 (b) the ACE E[Y(a,b)] — E[Y(d,V)] is
identified as >,  E[Y|W, L,a,blp(W|b, L)p(L) —
E[Y|W,L,a’,b'|p(W|a’, L)p(L), the ETT is not iden-
tified. This is due to the fact that the second term of the
ETT is a function of variables Y (a’, b") and B, where the
former is defined via (1) as Y'(a’, ', W (a', L), L), while
the latter is defined via (1) as B(W (A, L), A(L), L). In
other words, the ETT is a function of a joint distribu-
tion containing p(W (a'), W) as a marginal, which is not
identified under the structural causal model. This issue is
described in detail in (Shpitser and Tchetgen Tchetgen,

2016).

The ACE and the ETT, where variables are manipulated
to constants in order to mimic RCTs, are contrasts of
substantive interest in applied settings such as econo-
metrics and public health. In settings such as precision
medicine, variables are manipulated based on observed
patient characteristics, with the aim of improving posi-
tive outcomes or minimizing harmful ones. The result-
ing counterfactuals are defined as follows. For every
A; € A to be manipulated, define aset L; C V' \ A to
be some set of variables not causally determined by A;
(graphically, this means there is no directed path from
A; to any element in L; in G). Given a set of functions
f={fi: XL, — X4,|A; € A}, we define the response
Y (f) to setting values of each A; € A according to its
corresponding function f; as

Y{Ai=fi(Li(f)):Aic pa(Y)NA}L{W(F): Wepa(Y)\ A}),

by analogy with (1). As an example, in the model
shown in Fig. 1 (a), given a function f4 : X — X4,
Y(fa) = Y(A = fa(L),L). Similarly, in the model
shown in Fig. 1 (b), given functions f4 : X — X4,
and fp : Xpw = XB, Y(fa,fp) = Y(L,A =
fA(L>7W(L>A = fA(L»’B = fB(L’W(LvA =
fa(L)))). Here the second response of Y is defined ac-
cording to value of B set by fp using values of W recur-
sively determined by counterfactually setting A accord-
ing to f4. Functions in the set of f above are also known
as dynamic treatment regimes (DTRs).

As before, if all variables in a causal model are observed,
p(V(f)) is identified for any set A C V/, and set of func-
tions f4 = {f; : A; € A} by the following variation of
2):

[T p(Vil{A: = £i(L0) : A; € pa(Vi) 0 A}, pa(Vi) \ A).
Viev

Responses of specific variables in V' to A being set
according to f is obtained from the above formula by
marginalization, as before. As an example, p(Y (fa)) =
> P(Y[A = fa(L), L)p(L) in Fig. 1 (a).

Having described the ETT and responses to DTRs, we
are now ready to describe shift interventions. Assume
we are interested, in Fig. 1 (a), in the outcome Y had
the drug dose A been changed from its given value a by
a known function f4. We define such a counterfactual,
by analogy with (1) as Y(A = fa(A),L). Note that
unlike Y (a), each person in the data is assigned a poten-
tially different dose, as would be the case for responses to
DTRs. However, unlike DTR counterfactuals, the func-
tion only uses values of A as inputs.

Assuming A, B in Fig. 1 (b) also represent drug doses
administered over time, we may be interested in how the
outcome Y changes had drug doses been changed from
their values by known functions f4, fp. Note that there
are two ways to define such a counterfactual, which di-
verge in how the second treatment Ay is manipulated.



One definition might consider the response of Y to the
first treatment A being given by a fixed function f 4 of the
observed treatment A, and the second treatment B being
given by a fixed function fp of the observed treatment B.
This response Y (A = fa(A), B = fp(B)) is defined as
Y(A = fA(A)v B = fB(B), W(A = fA(A)7 L)» L)'
Another definition might consider the response of Y to
the first treatment A being given by a fixed function f4
of the observed treatment A, and the second treatment
B being given by a fixed function fp of the treatment
B observed in the world where the first treatment A was
counterfactually shifted according to f4. This response
Y(A = fa(A).B = fu(B(A = fa(A)))) is defined
as Y(LlA = fA(A)v W(L’ A= fA(A))’ B = fB(B))a
where B = B(L, A= fa(A),W(L, A= fa(A))).

We call the first definition shift interventions on the
treated (SITs), and the second definition shift interven-
tions as policies (SIPs). Unsurprisingly, identification
theory for SITs bears some similarity to that of ETTs,
while identification theory for SIPs bears some similar-
ity to that of DTRs, although in both cases new subtleties
present themselves.

SITs are of interest whenever deviations from current
best practices are investigated. For instance, responses to
SITs would be the correct counterfactual to use in health-
care settings to investigate the effect of dosing changes
from an existing standard. SIPs are of interest when vari-
able manipulations have a compound effect, and there-
fore effects of prior shift interventions on intermediate
outcomes must be taken into account. For instance, re-
sponses to SIPs could be used to evaluate changes to
financial aid, or a medical treatment administered over
time with a compound effect. SIPs have been described,
under a different name, in section 5.1 in (Richardson and
Robins, 2013).

Before describing identification theory for SITs and
SIPs, we give their general definitions, using a modifi-
cation of (1). Fix f = {f; : X4, — Xa4,|4; € A}. By
analogy with (1), we define for any Y € V/, the counter-
factual response Y (f(A)) to SITs on A as

Y({{A=/(A):A€ Anpa(Y)} {W(/(4)): Wepa(Y )\A}),

and the counterfactual response Y (f) to SIPs on A as

Y{A=F(A(f)):A€ Anpa(Y)} {W(f): Wepa(Y)\A)).

3 IDENTIFICATION UNDER FULL
OBSERVABILITY

We first describe identification theory for SITs and SIPs
in cases where all variables in a causal model are ob-

served. Identification for SIPs in fully observed models
is given by the following result.

Theorem 1 Fix A C V, and a set of functions f = {f; :
Xa, — Xa,|Ai € A} in a fully observed functional
causal model given by the DAG G. Then p(V (1)) is iden-
tified and equal to

I »(Vi | {Ai = fi(Ai) : As € pa(Vi)},pa(Vi) \ A).
Viev

For example, glven fa,fp in Fig. 1 (b),
pg{ L AW, B, Y} fa, [B)) is  identified  as

) (ALp(WIA™ =" fa(A), L)p(BIW, A =
fa(A),L) p(Y|B = [fp(B),W,A = fa(A),L),
and so p(Y (fa, fg)) is equal to

Z p(Y|B=fn(

L,W,A

(B),W,A=fa(A),L)p(L)p(A|L)
|A=fa(A),L).

That is, identification of responses to SIPs in fully ob-
served models resembles identification of DTRs.

(B|W7A = fA(A)vL)p(W

Now let us consider identification of responses to SITs. It
turns out that even if the causal model is fully observed,
SITs may not be identified if multiple treatments are ma-
nipulated simultaneously, due to the same issue that pre-
vents identification of ETTs. We have the following re-
sult.

Theorem 2 Fix disjoint A,Y C V, and a set of unre-
stricted functions f = {f; : Xa, — Xa,|Ai € A} ina
fully observed functional causal model given by the DAG
g.

Fix the set of all directed paths 7 in G which start with
A; € A, end in some element in AUY, and which do not
intersect elements in AUY otherwise. Then p(Y (f(A)))
is identified if and only if there are no two elements in
which share the first edge and where one path ends in an
element in A, and another path ends in an element in'Y .
Moreover, if p(Y (f(A))) is identified, it is equal to

> I
Y*\Y v;ey*\Y

[T p(Vil{A: = fi(A) - A € Anpa(Vi)}, pa(Vi) \ 4),

V;ey

p(Vi| pa(Vi)) x

where Y* is the set of ancestors of Y in G, and Y is the

set of variables not in A which lie on a path in 7 that
endsinY.

For example, given fa, f5, p(Y (fa(4), fB(B))) is not
identified in Fig. 1 (b), since the set of directed paths
inmTwillcontain B - Y, A —-Y A —-W —Y,
A%W%B,andAﬁB. SinceA%W%Y
and A — W — B share the first edge, and have final
elements in Y and B, the condition of theorem 2 applies.



However, if we consider identification of the same dis-
tribution p(Y (fa(A), f5(B))) in Fig. 1 (c), where the
edge W — B is absent, we obtain identification:

> (p(BIW, A, L)p(A|L)p(L)) % “4)
L,A,W,B

(p(Y|B=f5(B),W, A= fa(A), L)p(W|A= fa(A),L)

Note that while identification of ETTs and SITs in fully
observed DAGs runs into a similar difficulty having to
do with recanting witnesses (Avin et al., 2005), iden-
tification results for these two types of counterfactuals
are nevertheless quite different. This is because ETTs
are defined as functions of counterfactual conditionals
p(Y(a)|A = a’) for some set A, while SITs are defined
as counterfactual marginals.

4 IDENTIFICATION WITH HIDDEN
VARIABLES

Most causal inference problems of practical importance
contain hidden but relevant variables, motivating the use
of causal models of a DAG where some variables are not
observed. As we now show, identification theory implied
by the structural causal model of DAGs with hidden vari-
ables is more involved for both SIPs and SITs.

Identification theory of a causal model of a DAG G with
vertices V' U H, where V' corresponds to observed vari-
ables and H corresponds to hidden variables is often
phrased on an acyclic directed mixed graph (ADMG)
called a latent projection (Verma and Pearl, 1990). By
an ADMG we mean a graph with directed (—) and bidi-
rected (<) edges and no directed cycles.

Given a DAG G(V U H) where V' are observed variables
and H are hidden variables, we define the latent projec-
tion ADMG G(V') with vertices V' as follows. For every
Vi, V; € V, if there exists in G a directed path from V; to
V; with all intermediate vertices in H, an edge V; — V;
exists in G(V'). For every V;, V;, if there exists a collider-
free path from V; to V; in G with the first edge on the path
of the form V; « and the last edge on the path of the form
— Vj, an edge V; <> Vj exists in G(V'). For example,
if L is unobserved in Fig. 1 (a), then the resulting latent
projection is shown in Fig. 1 (e). This example illustrates
that latent projections are not always simple graphs.

Latent projections are used because for any two distinct
DAGs G1(V U Hy), Go(V U Hs) that share the same
latent projection G(V) = G1(V) = Go(V) also share
non-parametric identification theory (Richardson et al.,
2017).

Before describing this theory, we introduce a few ad-
ditional definitions we will need. Given an ADMG G,

and S C V, define the induced subgraph Gg to be a
graph containing vertices in S, and any edge in G con-
necting elements of S. Given an ADMG @, a district
of G is a bidirected-connected component. The set of
districts of G forms a partition of vertices in G, and is
denoted by D(G). Finally, given a set S in G, define

pa(S) = Ug,es Pal(Si)-

Identification theory in hidden variable models uses AD-
MGs in an analogous way identification theory in fully
observed models uses DAGs. Just as the structural causal
model defined on a fully observed DAG G (V') implies the
DAG factorization on the observed data distribution with
respect to G(V'), and identification of all interventional
distributions p(V(a)) in terms of a modified factoriza-
tion of G, so does the structural causal model defined
on a hidden variable DAG G(V U H) implies the nested
Markov factorization (Richardson et al., 2017) on the ob-
served data distribution with respect to the latent projec-
tion ADMG G(V'), and identification of certain marginal
interventional distributions p(Y (a)) in terms of a modi-
fied nested factorization of G(V') given by the ID algo-
rithm (Tian and Pearl, 2002; Shpitser and Pearl, 2006).

The nested Markov factorization of p(V') with respect to
an ADMG G(V) is defined in terms of Markov kernels of
the form ¢g (S | W), with a single kernel for each subset
S C V that is an intrinsic set. A Markov kernel ¢g(.S' |
Wyg) is any map from Xy, to normalized densities over
S. For any A C S, conditioning and marginalization in
Markov kernels is defined in the usual way as:

qs(S|Ws)

as(AIWs) = > _ as(SIWs); as(S1A, Ws) = =25

S\A

A set S is intrinsic in G if Gg contains a single district
and is reachable in G. A set S is said to be reachable in
g if there exists a sequence of ADMGs Gy, . .., Gy such
that G; = G, Gr = g, each G, is obtained from G; 1
by removing a specific vertex V; and all edges with V;
as one endpoint. Finally, for each G; 1, the vertex V; to
be removed to obtain G; has no directed and bidirected
(consisting entirely of <+ edges) path to any other vertex
Vjin Gitq.

The Markov kernels defining the nested Markov models
are always functionals of p(V'). For example, in Fig. 1

(d), the Markov kernels corresponding to all intrinsic sets
are:

qa(A) = p(A); g (M|A) = p(M|A);
qgv.ay (Y, AIM) = p(Y[A, M)p(M);
qv (Y[M) = p(Y|M, A)p(A).
A
We describe the general scheme for deriving functionals

for intrinsic Markov kernels from p(V') in the Supple-
ment.



The nested Markov factorization expresses p(1') and any
kernel gg(R | Wg) where R is a reachable set in terms
of Markov kernels corresponding to intrinsic sets, as fol-
lows:

r(V)= I an(D WD),
DeD(G(V))

ar(R|Wr)= [  ao(@|Wn).
DeD(G(V)R)

For instance, the nested Markov factorization for
the ADMG in Fig. 1 (d) implies p(Y,M,A) =
gy, a3 (Y, A|M)qar (M| A), which is sometimes called
the district or c-component factorization of an ADMG.

Given disjoint subsets Y, A of V, the nested Markov fac-
torization naturally leads to the following reformulation
of the complete algorithm for identification of p(Y (a)),
sometimes called the ID algorithm (Shpitser and Pearl,
2006). This algorithm can be expressed as a modified
nested Markov factorization as follows:

pV(@)= S T @@ Wo)lta,apaewpnar.

Y*\Y DEG(V)yx

where Y™ is ancestors of Y in Gy 4. This factoriza-
tion is defined provided each D on the right hand side
is intrinsic, otherwise it is undefined and p(Y (a)) is not
identified given the structural causal model for any hid-
den variable DAG G(V U H) that yields the latent pro-
jection G(V).

For example, in the graph shown in Fig. 1 (d), we have:

p(Y(a)) = < p(Y|M7A)P(A)> p(Mla) ,
%: g an (M|A=a)

ay (Y|M)

known as the front-door formula, while p(Y (a)) is not
identified in Fig. 1 (e).

Identification of SIPs can be characterized in terms of the
nested Markov factorization, with an additional subtlety,
by the following result.

Theorem 3 Fix disjoint subsets A,Y C V, and a set of
unrestricted functions f = {f; : Xa, — Xa,|A; € A;
in a functional causal model given by the DAG G(VUH
that yields the latent projection ADMG G(V'). Define Y*
as the set of ancestors of Y in G(V'). Then p(Y (f)) is
identified if and only if for some district D € D(Gy+),
no element of A in D has children in D in Gp. Moreover,
if p(Y (f)) is identified, it is equal to

> I

Y*\Y DED(Gy*)

ap(DIWD)|{4;=1:(A:):A;€Anpa(D)}

As an example, the distribution p(Y'(f)) in Fig. 1 (d)
is identified, since the districts of ancestors of Y are

{A,Y}, and { M}, and no district contains a child of A
in the induced subgraph for that district. The identify-
ing formulais 3, 4 p(Y[A, M)p(A)p(M|A = f(A)).
On the other hand, the distribution p(Y'(f)) in Fig. 1 (e)
is not identified, even though the single district among
the ancestors of Y, namely {A, Y}, is intrinsic. This is
because this district contains a child of A.

Identification of SITs is a little more involved, as we
must also ensure the difficulty described with the ETT,
where the counterfactual is a function of a non-identified
marginal of the form p(W (A; = fi(A;)), W) is avoided.

Theorem 4 Fix disjoint subsets A,Y C V, and a set of
unrestricted functions f = {f; : Xa, — Xa,|A; € A}
in a functional causal model given by the DAG G(VUH )
that yields the latent projection ADMG G(V'). Fix the set
of all directed paths 7 in G(V') which start with A; € A,
end in some element in AUY, and which do not intersect
elements in A UY otherwise. Define Y* as the set of
ancestors of Y in G(V'). Then p(Y (f(A))) is identified
if and only if

e There are no two paths in m which start with the
same edge, and where one path ends in an element
of Y, and another in an element of A.

e FEvery element of A that lies in a district D in
G(V)y~ does not have children in D in Gp.

e For any two paths in m where the second vertex on
the path is in district D, either both paths have the
final element in A or both paths have the final ele-
mentinY.

Moreover, if p(Y (f(A))) is identified, it is equal to

>, I

Y*\Y DED(Gy =)

qD(D|WD)|{A,i:fi(Ai):AieAﬁpay(D)}a

where paY (D) are parents of D along edges that are
first edges on paths in 7 that end in 'Y .

As an example of the application of this theorem, con-
sider Fig. 1 (f), where we are interested in identifying
p(Y (A1 = f1(A1), Ay = fa(A2))). If all green edges
are absent, the conditions of the theorem are satisfied,
and this distribution is identified, in fact by the same
functional as in (4). If the edge (1) is present, iden-
tification fails because of the presence of paths A —
W — Band A — W — Y, as in Theorem 2. If the
edge (2) is present, there exists a district in Y*, namely
{A,L,W,Y} with an element A in the district that also
has a child in the district (W). If the edge (3) is present,
apath A — B ends in a treatment, while a path A — Y
ends in an outcome, and both paths have a second vertex
in the same district.
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Figure 2: An example where SITs and SIPs give differ-
ent identifying functionals for p(Y (f)) and p(Y (f(A)))
respectively.

A Note On Completeness

Completeness results in this section have specified an un-
restricted set of shift functions f = {f; : X4, — X4,
A; € A}, and only hold under a sufficiently large class of
shift functions that allow counterexamples in our proofs
to be constructed. Results of this type are in the spirit
of non-parametric identification theory in the sense that
shift functions act as a kind of user-specified structural
equation, and identification theory results are often stated
in a way that does not restrict structural equations. A
similar notion of completeness for Tian’s identification
algorithm for responses to dynamic treatment regimes
(Tian, 2008), was shown to hold in (Shpitser and Sher-
man, 2018).

Identification theory for sufficiently restricted classes of
shift functions becomes considerably more complicated
than stated here, and indeed it may be possible identi-
fication may be shown to hold even if the response to
an unrestricted class of shift functions is not identified.
The situation is similar to one where semi-parametric re-
strictions are placed on structural equations in a causal
model.

It is also worth noting we will always have identification
when shift functions are specified as identity functions,
in which case the interventional distributions of p(Y'(f))
or p(Y(f(A))) are equal to p(Y).

Differences In Identifying Functionals

We now give another example that illustrates that when
SITs and SIPs that involve multiple treatments are iden-
tified, they will in general give different identifying func-
tionals. Consider the hidden variable causal model rep-
resented by a graph in Fig. 2, where Y is the outcome
of interest, and we are interested in its response to both
SITs and SIPs on treatment variables Ag and A;.

Here, Y* = {Y, T, Ay, Z, W, Ay}, and the set of districts
in D(gy*) are Dl = {Ao},DQ = {VV, Al,Y},Dg =
{Z},Dy = {T}. We first note that the SIP p(Y (f))
is identified because no elements of A in some dis-
trict D have children in that district. In particular, for
AO e D = {Ao},Cthl (Ao) = @, and for A, € Dy =

{VV7A17 Zu T}

The corresponding sets pa(D) for each district D
are pa‘(Dl) = wapa(D2) = {AOa Z7 T}7pa(D3)
{W,Ap},pa(Dy) = {Ag, A1}, and therefore A
pa(D1) = 0,A N pa(Dy) = {Ap}, A N pa(Ds)
{Ao}, AN pa(D4) = {A()7 Al}

The identifying functional from applying theorem 3 is
therefore

ST (A Hp(Y Ao = fo(Ao), Z, W, A1, T)
Ao ,W,Z,A1,T
x p(W)p(A1|Ao= fo(Ao), Z, W)}
x {p(Z|W, Ao = fo(A0))}
x {p(T|Ao= fo(Ao), A1 = f1(A1))},

o

with each term corresponding to the districts in Y* en-
closed in braces.

Next, consider the SIT p(Y (f(A))) for A = {Ag, A1}.
We note that A UY = {4y, A;,Y }. Y* is unchanged,
and all three identification conditions are satisfied. The
set of paths 7 are

™ = {(A(),T, Y), (1407 Z, Al), (Al,T, Y), (A(),Y)}

paY (D) for each district are pa¥ (D;) = 0, pa¥ (D) =
{Ao},pa¥(D3) = 0,pa"(Ds) = {A:}. pa¥(Dy)
only includes Ay, as there is only one path ending in Y’
whose first edges are parents of Do — namely, Ay — Y.
pa¥ (D3) is empty since no such paths exist. ANpa¥ (D)
for each D gives A N pa¥ (D) = 0, AN pa¥ (Ds) =
{Ao}, ANpa¥ (D3) =0, ANpa’ (Dg) = {A1},
which means that the identifying functional is changed
in exactly one place — p(Z|W, Ay = fo(Ap)) is replaced
with p(Z|W, Ayp), yielding:

Z {p(AO)}{p(YlAO :fO(A0)727 W, AlaT)

Ao, W,Z,A1, T
x p(W)p(A1]|Ao = fo(Ao), Z, W)}
x {p(Z|W, Ao)}
x {p(T| Ao = fo(Ao), A1 = f1(A1)}.

Once again, each term corresponding to the districts in
Y™ is enclosed in braces.

S PARAMETRIC AND
SEMI-PARAMETRIC INFERENCE

Assessing the impact of responses to SIPs and SITs en-
tails evaluating functions of counterfactual distributions
p(Y(f)) and p(Y(f(A))) from data. Here we concen-
trate on estimating expected value parameteres [ in cases
where these distributions are identified, e.g. E[Y(f)],
and E[Y (f(A))].

If a parametric model for the observed data distribution
p(V'), or a sufficiently large part of the distribution, can



be correctly specified, maximum likelihood plug-in es-
timators are used for efficient statistical inference for
(. In the fully observed model, plug-in estimators may
be straightforwardly derived from a DAG observed data
likelihood. For example, E[Y (f4(A), fp(B))] with re-
spect to the distribution in (4) may be estimated via

LS ST (BIW, v, Lisip)p(WIA= fa(A0), L)

i B,W

ElY|B=fg(B),W, A= fa(A:), Li; fiy],

where 75, Nw, )y are maximum likelihood estimates of
parameters for parametric models above.

If 5 is identified in a hidden variable model with a latent
projection ADMG G(V'), parametric statistical inference
is sometimes possible using plug-in estimators that max-
imize nested Markov likelihoods, which are known for
discrete data (Evans and Richardson, 2018), and multi-
variate normal distributions (Shpitser et al., 2018). We
do not discuss these estimators further in the interests of
space.

If a parametric likelihood cannot be assumed, statistical
inference must proceed within a semi-parametric or non-
parametric model, where a part of the likelihood or the
whole likelihood is infinite-dimensional. In such cases,
plug-in estimators are known to have non-negligible first
order bias. A principled alternative approach to obtain-
ing high quality consistent estimators is based on the
semi-parametric theory, and influence functions (Tsiatis,
2006).

The resulting regular asymptotically linear (RAL) esti-
mators take the form

V(B - B) = % g ¢(Zi) + op(1),

where ¢ € R? with mean zero and finite variance, o,(1)
denotes a term that approaches to zero in probability, and
d(Z;) is the influence function (IF) of the ith observation
for the parameter vector 5. RAL estimators are consis-
tent and asymptotically normal (CAN), with the variance
of the estimator given by its IF:

V(B - B) B N(0,967).

Thus, there is a bijective correspondence between RAL
estimators and IFs.

We now derive the IF for 3 in a single treatment setting
given by Fig. 1 (a), where SITs and SIPs coincide.

Theorem 5 Fix g =3 , E[Y|a= f(A), C]p(A|C)p(C),
which is equal to E[Y (f(A))] = E[Y(f)] under the
model in Fig. 1 (a). The efficient influence function for 8
under the non-parametric observed data model is given

by
0(p) ==L LDy vy acpy
FEIY [a= f(4).C)] - 8 ®

The influence function U(f) leads to a RAL estima-
tor which solves the estimating equation E[U(5)] =
0, and which resembles augmented inverse probability
weighted (AIPW) estimators derived in other contexts
in causal inference (Scharfstein et al., 1999). As is of-
ten the case with these estimators, our estimator exhibits
the property of double robustness, where the estima-

tor remains consistent in the union model where either
E[Y|A, C] or p(A|C) is correctly specified.

Theorem 6 The estimator of 8 which solves the estimat-
ing equation E[U(B)] = 0 is consistent, and asymptot-
ically normal (CAN) in the union model where one of
m(Cs;na) = p(A|C), m(A, C;ny) = E[Y|A, C| is cor-
rectly specified.

In the Supplement we also derive the efficient influence
function for the shift intervention p(Y(f)) in a variant of
the causal model shown in Fig. 1 (d) that also contains a
vector of baseline covariates.

6 SIMULATIONS AND A DATA
APPLICATION

We now present a simulation study that demonstrates our
estimator is doubly robust to misspecification of either
the E[Y| A, C] model or the p(A|C') model. The precise
data generating process is described in the Supplement.

Based on the simulation above, our parameter of interest
8 = E[Y(f(A))], where f(A) = A+ 0.5, is equal to
6.5. We simulated datasets of size 500 and used 5000
replicates. The results are seen in Fig. 3a, where M, ,
denotes the correctly specified models for E[Y|A, C],
and p(A|C), M, o denotes the model where only
E[Y|A,C] is specified correctly, M+, denotes the
model where only p(A|C) is specified correctly, and
M- o+ denotes the model where both E[Y'|A, C]| and
p(A|C) are specified incorrectly. As expected, the esti-
mates show no bias for M, o, My, 4, and M- ,, while
bias is introduced in the model M« 4.

Data Application

We now describe our data application. Intensive care unit
(ICU) readmission (‘“bounceback”) after cardiac surgery
is costly and associated with worse mortality and mor-
bidity outcomes (Benetis et al., 2013). We used our
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Figure 3: (a) Estimation of E[Y(f(A))] using (5) under various types of model misspecification. (b) Empirical
distribution (N = 500) of B FA)— B 4, with 95% confidence interval (-0.0043, 0.0047). (c) The bounceback probability
(Y axis) learned by the random forest model for E[Y| A, C] vs discretized length of stay (X axis) for all patients in the
data set. Blue values denote bounceback actually occurred, red values indicate bounceback did not actually occur.

methods to estimate shift interventions to investigate
whether increasing length of stay may influence the prob-
ability of bounceback. Data from 5242 patient visits to
our institution who had undergone a surgical procedure
on the heart, entered the hospital ICU at any point, and
did not die during the visit were curated from our in-
stitution’s contribution to the Society of Thoracic Sur-
geon Adult Cardiac Surgery database, and our internal
electronic health records. 151 discrete and continuous
variables covering patient demographics, medications, as
well as pre-, inter- and post-operative status were used.

We partitioned variables in the dataset into three types:
the treatment variable A which is the number of initial
ICU hours, discretized into 12-hour time intervals, the
binary outcome Y representing bounceback, and a vec-
tor C' of covariates representing potential confounders.
We discretized A to avoid issues with lack of sup-
port. Specifically, we avoid unstable or invalid inferences
which occur if p(A|C') = 0. We are interested in the
change in probability of bounceback after a hypothetical
increase of length of stay by 24 hours. We estimate this
probability by using (5), where the outer expectation is
evaluated empirically, and the required nuisance models
p(A|C) and E[Y'| A, C] are estimated via a negative bino-
mial regression (in case of overdispersion) and a random
forest classifier, respectively. We are interested in a pol-
icy where patients receive an additional 24 initial ICU
hours, denoted f(A) = A + 2.

We compare the total effect under the shift intervention
Bf(A) = E[Y(f(A))] against the total effect under the
observed distribution of A, 34 = E[Y (A)] = E[Y]. The
distribution for B ) — B 4 under 500 bootstrap samples
is given in Fig. 3b. As the 95% bootstrap confidence
interval contains 0, we fail to reject the null of no sta-
tistically significant effect of the shift intervention of in-
creased initial ICU hours on ICU readmission rates.

To explore why the null hypothesis was not rejected, we
considered the behavior of the learned outcome regres-

sion function E[Y'|A, C] with respect to A. Fig. 3¢ shows
the predicted bounceback probabilities for each unit in
our data, plotted vs their observed discretized length of
stay. Red values denote no bounceback (the significantly
more common case), while blue values denote bounce-
back. The response to the shift intervention that we es-
timated via (5) can be viewed as a modified empirical
average of this regression, augmented with an inverse
weighted term. The learned regression function appears
to indicate that our data contains two types of patients:
the significantly more common low risk patients, and the
rarer high risk patients. Both types of patients occur at
all durations of length of stay, and variations of length of
stay are not a significantly predictive feature for type. In
particular, variations in A do not significantly alter pa-
tient’s risk from its level predicted from other features.

7 CONCLUSIONS

In this paper we define a type of soft intervention where
a set of variables are manipulated to obtain values which
are fixed functions of their previous values. We call this
type of intervention shift intervention. We showed that
if multiple variables are manipulated, shift interventions
may be defined with respect to naturally occurring values
of manipulated variables, or with respect to recursively
defined values of manipulated variables responding to
previous shift interventions. We gave a sound and com-
plete identification algorithm for both types of shift in-
terventions in fully observed and hidden variable causal
models.

In addition, we derived an efficient semi-parametric es-
timator based on efficient influence functions for a spe-
cial case of responses to shift interventions motivated by
a clinical problem. We demonstrated the utility of our
method by a simulation study, and applied it to consider
how the readmission probability to the intensive care unit
(ICU) of a hospital changes if the duration of the pa-
tients’ stay in the ICU is manipulated to be longer.
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