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Abstract

Structured prediction of objects in spaces that
are inherently difficult to search or com-
pactly characterize is a particularly challeng-
ing task. For example, though bipartite match-
ings in two dimensions can be tractably op-
timized and learned, the higher-dimensional
generalization—3D matchings—are NP-hard
to optimally obtain and the set of potential
solutions cannot be compactly characterized.
Though approximation is therefore necessary,
prevalent structured prediction methods in-
herit the weaknesses they possess in the two-
dimensional setting—either suffering from in-
consistency or intractability—even when the
approximations are sufficient. In this paper, we
explore extending an adversarial approach to
learning bipartite matchings that avoids these
weaknesses to the three dimensional setting.
We assess the benefits compared to margin-
based methods on a three-frame tracking prob-
lem.

1 INTRODUCTION

Machine learning for complex structured data and in-
terrelated variables is increasingly important for appli-
cations in computer vision, natural language process-
ing, computational biology, and other areas. Among
those learning tasks, some of them have certain re-
stricted relationships and structures (e.g., chains, trees,
and other low-treewidth structures) that facilitate ef-
ficient inference algorithms. For example, binary-
valued associative Markov networks [Taskar et al., 2004]
and the special case of attractive pairwise relation-
ships [Boykov et al., 2001], use minimum graph cuts
[Greig et al., 1989] for inference and maximum margin
methods [Joachims, 2005] for training.
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Unfortunately, many tasks with structured data are
intractable and approximation methods are required
for practical uses. Learning methods that provide
strong guarantees when using exact solutions often
lose those theoretical guarantees and desirable proper-
ties when we use these approximation methods. In-
deed, learning can fail even when using an approx-
imate inference method with rigorous approximation
guarantees [Kulesza and Pereira, 2008]. First, approx-
imation methods can effectively reduce the expressiv-
ity of an underlying model by making it impossible
to choose parameters that reliably give good predic-
tions. Second, approximations can respond to param-
eter changes in such a way that standard learning al-
gorithms are misled. Even without involving approx-
imations, many existed method have some drawbacks
when using exact inference. For problems like bipar-
tite matchings, the exponentiated potential fields mod-
els [Lafferty et al., 2001, Petterson et al., 2009] become
intractable to normalize as set sizes grows. Mean-
while, maximum margin methods such as Structured
Support Vector Machine (SSVM) [Taskar et al., 2005,
Tsochantaridis et al., 2005] do not have Fisher consis-
tency [Tewari and Bartlett, 2007, Liu, 2007].

Adversarial learning has been proposed to increase the
robustness of learned models [Dalvi et al., 2004]
with recent applications to generative models
[Goodfellow et al., 2014]. We consider the super-
vised setting with adversarial uncertainty in this work.
Unlike SSVM and some other methods that use hinge
loss surrogate that can be quite loose in practice. Ad-
versarial learning provides an adaptive way to reduce
the gap between training objective and evaluative loss
function for structured prediction tasks. It takes the
form of a zero-sum game between a predictor trying to
minimize an additive loss over predicted variables and
an adversarial training label approximator that seeks to
maximize this same loss. This provides Fisher consis-
tency [Fisher, 1922] on a wide range of loss functions,



which guarantees the model converges to make loss
minimizing predictions given more and more training
samples. All these great properties lead to the success of
adversarial methods on problems such as cost-sensitive
classification [Asif et al., 2015], classification under
covariate shift [Liu and Ziebart, 2014], classification
problems with zero-one loss [Fathony et al., 2016],
ordinal regression [Fathony et al., 2017] and chain
structures [Li et al., 2016].

Following and extending research that uses this minimax
perspective for structured prediction to learn bipartite
matchings [Fathony et al., 2018], this paper addresses
the problem of learning three-dimensional (3D) match-
ings. Unlike the 2D setting, in which inference reduces
to weighted maximum bipartite matching, a well studied
problem with polynomial time solutions, 3D matching is
NP-hard [Kann, 1991]. The gap in hardness between bi-
partite matching and 3D matching is substantial, yet due
to the similar form of the problem, the solution of ad-
versarial bipartite matching provides a new a approach
to efficiently solve the learning version of the 3D match-
ing problem. Instead of solving 3D matching directly,
we relax the problem into the space of marginal distri-
butions and solve it under the framework of adversarial
learning, leaving the hardest problem to the prediction
stage. This technique opens a window for solving addi-
tional hard problems in similar way. Our major contribu-
tions are: 1) Adversarially formulating the 3D matching
learning and prediction problem. 2) Providing detailed
solutions for solving the relaxed optimization problem in
the learning phase. 3) Demonstrating the effectiveness of
adversarial learning on hard learning tasks.

2 BACKGROUND

2.1 WEIGHTED MAXIMUM 3D MATCHING
PROBLEM

Given three sets of elements A , B and C of equal
size (|A| = |B| = |C| = n), a perfect 3D match-
ing π ⊆ A × B × C contains one-to-one-to-one map-
pings (a, b, c) where a ∈ A, b ∈ B and c ∈ C. π
also needs to satisfy the conditions that: 1) No map-
pings share the same element; and 2) Elements in the
mappings cover A ∪ B ∪ C. An example of this prob-
lem is n people picking n different pieces of equipment
to do n different tasks. Figure 1 provides a visual rep-
resentation of a 3D matching task. A matching π can
be represented as a pair of permutations (π1, π2) where
(π1,i, π2,i), i ∈ [n] = 1, · · · , n means the the ith ele-
ment in the A match with the π1,ith element in B and
π2,ith element in C. Suppose that a perfect matching
has the additive potential ψ(π1, π2) =

∑
i ψi(π1,i, π2,i)

The problem of maximum weighted 3D matching is to

find π∗ that maximizes this value. The set of possible
solutions Π is simply all pairs of permutations with n
elements.

Figure 1: n = 4 3D matching with matches
{141, 233, 312, 424 }

Unlike weighted bipartite matching, which can be
solved in polynomial time using Hungarian method
[Kuhn, 1955], weighted maximum 3D matching prob-
lems or the balanced 3D assignment problem is NP-hard
(generalizing the NP-hard 0-1 version [Kann, 1991]).

We synthesize a 3D matching problem from a three-
frame video tracking problem. To do so, we use the
ground truth bounding boxes in the data as known ob-
jects and focus on matching them across frames. In con-
trast with existing tracking methods, which only consider
relationships between consecutive frames, we also incor-
porate relationships between the first and third frame.
Though somewhat artificial for this domain, this prevents
existing successful methods based on min-cost flow net-
work algorithms [Zhang et al., 2008, Chari et al., 2015,
Tang et al., 2015, Keuper et al., 2016, Tang et al., 2017]
from being applicable.

As a learning task, we need to solve the inverse problem
of learning parameters that for potentials ψ so that the
3D matchings in training data are indeed the maximum
matchings. It is useful for the potential function to in-
clude information from elements in the three sets in the
form of ψ(π1, π2, x). Here x is a general representation
of all the raw data in all the three sets whose elements
values lie in X . Depending on the information, x can
be a vector or even high dimensional tensor. We denote
its corresponding random variable as X. For permutation
π, we similarly denote its random variable as Π. Now,
given the training dataset, we can assume they follow an
empirical distribution P̃ (X,Π).

In this paper, an important assumption is that the poten-
tial ψ is a linear function of a vector of parameters θ



inner product a vector of features φ: ψ = θ · φ. The
features φ is decided by the matches and the matched el-
ements. For general problems, let’s use y instead of π
as the labels, and then we can denote these feature vec-
tors as φc(yc, x) for relationships over variables in some
subset of the y variables denoted by c ∈ C ⊆ 2n. For
a subset c = {c1, . . . , cl} which contains l variables,
yc = {yc1 , . . . , ycl} is the corresponding set of label
values for the variables in the subset. In the particular
problem of 3D matching, we have the form φ(π1, π2, x)

2.2 MARKOV NETWORKS

The Markov network is one of the general-purpose state-
of-art approaches for structured prediction. It can be
treated as a log-linear model when its density is positive.
A Markov network can be written as:

P (y|x) =
1

Z(x)
eψ(y,x). (1)

The structure of the potentialψ is an undirected graphical
model and the variables in set c form cliques that are
connected by undirected edges

In most cases, only pairwise and unary potential func-
tions are used. However, even with this limita-
tion, the most probable assignment of values, y∗ =
argmaxy∈Y P (y|x), and the normalization term, Z(x) =∑

y∈Y e
∑

c ∈C ψc(yc,x), are both still intractable in general
[Wainwright and Jordan, 2008]. Often undirected graphs
with low tree-width (e.g., chains, trees) are employed so
that efficient maximization and normalization computa-
tions can be achieved [Wainwright and Jordan, 2008].

2.3 MAXIMUM MARGIN LEARNING

Maximum margin methods for learning are another op-
tion for structured prediction. The structured support
vector machine (SSVM) [Tsochantaridis et al., 2004,
Taskar et al., 2005] optimizes over a hinge loss surrogate
of the original loss, which can be generally non-convex
and possibly not even continuous. It takes the following
form:

min
θ,ε≥0

||θ||+ λ
∑
i

εi s.t. :

εi ≥ max
y′

loss(y′, y(i)) + ψ(y′, x)− ψ(y(i), x), (2)

where loss() is any target loss function, θ is the potential
function parameter, λ is a pre-set regularization param-
eter, and εi is the hinge loss incurred by the ith training
example.

Unfortunately, the hinge loss can be quite loose. In
some cases, for a particular example y(i), it may

be far larger than the actual loss, loss(ŷ, y(i)), and
larger than random guessing or the worst possible loss,
maxy loss(y, y(i))[Behpour et al., 2018]. In such cases,
the hinge loss bounds do not provide meaningful guaran-
tees on the predictor’s performance.

2.4 ADVERSARIAL LEARNING

Adversarial learning aims to compete with a worst-
case distribution approximating the training labels un-
der certain constraints preserving the properties of train-
ing data [Topsøe, 1979, Grünwald and Dawid, 2004,
Asif et al., 2015]. Let P̌ (Y̌|X) be the adversary’s mixed
strategy to generate worse-case labels, i.e., maximize the
loss, while the predictor’s mixed strategy is P̂ (Ŷ|X),
aiming to minimize the loss. P̃ is the empirical distri-
bution. We can formalize any general learning problem
in this way:

min
P̂ (Ŷ|X)∈∆

max
P̌ (Y̌|X)∈∆∩Ξ

EX∼P̃ ;Ŷ|X∼P̂ ;

Y̌|X∼P̌
,

[
loss(Ŷ, Y̌)

]
, (3)

with ∆ representing the simplex to make the distribu-
tions between 0 and 1 and sum up to 1. Ξ is the empirical
constrains we want the adversarial to follow.

One important difference between adversarial learning
and other methods is that it no longer directly learns
from training samples, but instead learned by optimizing
against the adversary’s approximation of training labels.
Note that the adversary’s choice is not static and instead
depends on the predictor’s mixed strategy. In this model,
the adversary tries its best to make the predicted label
as uncertain as possible. Without constraint Ξ, nothing
could be learned. However, when proper Ξ is chosen,
such as the statistics from the training data, the adver-
sary can be forced to become highly predictable.

In exchange for not optimizing over the exact training
samples, this method is able to train based on the ex-
act loss (e.g., 0-1 loss for classification or Hamming loss
for structured prediction) and still forms a convex opti-
mization problem, hence no longer needing to use ex-
plicit surrogate losses. In fact, the training error is al-
ways upper bounded by the game value. Optimizing over
the game matrix can more closely bound the actual loss
[Asif et al., 2015].

For a polynomial-sized game matrix, the problem can
be solved directly efficiently [Asif et al., 2015]. How-
ever, for exponentially-sized game matrices (e.g., from
complex problems involving structured losses, such
as F-measure, or structured relationships between pre-
dicted variables) explicit formulations are intractable,
and constraint generation methods, such as double
oracle[McMahan et al., 2003] are employed to gradually



increase the size of the game matrix and reach the final
equilibrium.

3 APPROACH

3.1 MINIMAX GAME FORMULATION

Following the adversarial approach applied to the
task of learning bipartite matchings/permutations
[Fathony et al., 2018], we can build the following
objective function for the task of learning 3D matchings:

min
P̂ (Π̂1,Π̂2|X)

max
P̌ (Π̌1,Π̌2|X)

EX∼P̃ ;Π̂1,Π̂2|X∼P̂ ;Π̌1,Π̌2|X∼P̌[
loss(Π̂1, Π̂2, Π̌1, Π̌2)

]
s.t. EX∼P̃ ,Π̌1,Π̌2|X∼P̌

[
n∑
i=1

φi(Π̌1,i, Π̌2,i,X)

]

= E(X,Π1,Π2)∼P̃

[
n∑
i=1

φi(Π1,i,Π2,i,X)

]
. (4)

Here, Π1 and Π2 are the random variables of the
permutation of the elements in the second and the
third set. The constraint Ξ simply forces the adver-
sary to produce mean feature values that match with
the mean feature values of the training data sample.
Applying the method of Lagrangian multipliers and
strong duality for convex-concave saddle point problems
[Von Neumann and Morgenstern, 1945, Sion, 1958], the
optimization in Eq. (4) can be equivalently solved in the
dual formulation:

min
θ

Ex,Π1,Π2∼P̃ min
P̂ (Π̂1,Π̂2|x)

max
P̌ (Π̌1,Π̌2|x)

EΠ̂1,Π̂2|x∼P̂
Π̌1,Π̌2|x∼P̌

[

loss(Π̂1, Π̂2, Π̌1, Π̌2) + θ ·
n∑
i=1

(
φi(Π̌1,i, Π̌2,i,x)

− φi(Π1,i,Π2,i,x)
)]
, (5)

where θ is the Lagrange dual variable for the moment
matching constraints. For this problem, we use the
match-based Hamming distance, loss(π̂1, π̂2, π̌1, π̌2) =
1
n

∑n
i=1 1π̂1,i 6=π̌1,i(π̂1,i, π̌1,i) ∨ 1π̂2,i 6=π̌2,i(π̂2,i, π̌2,i), as

the loss function. It means that all the three elements in
a mapping must match with the ground truth, otherwise
a loss of one is produced.

Let’s define vector p̌X, p̂X ∈ ∆, which is the vector of
conditional probabilities of all the possible ŷ or y̌ given

x. Then we can rewrite (5) in matrix form as:

min
θ

Ex,Π1,Π2∼P̃

[(
max

p̌X

min
p̂X

p̂T
X Cθ,X p̌X

)
−
∑
i

θ · φ(Π1,i,Π2,i,X)

]
. (6)

where (Cθ,X)ŷ,y̌ = Cŷ,y̌ + θT(φ(y̌, x)− φ(ỹ, x)).

Table 1 is the payoff matrix Cθ,X for the game
of size n = 3 with 3!2 actions (permutations)
for the predictor player π̂ and also for the adver-
sarial approximation player π̌. Here, we define
the difference between the Lagrangian potential of
the adversary’s action and the ground truth permu-
tation as δπ̌1,π̌2 = ψ(π̌1, π̌2) − ψ(π1, π2) = θ ·∑n
i=1 (φi(π̌i,1, π̌i,2, x)− φi(πi,1, πi,2, x)) .

Table 1: Augmented Hamming loss matrix, n=3

123, 123 123, 132 123, 213 123, 231 · · ·

123, 123 0 + δ123,123
2
3
+ δ123,132

2
3
+ δ123,213 1 + δ123,231 · · ·

123, 132 2
3
+ δ123,123 0 + δ123,132 1 + δ123,213

2
3
+ δ123,231 · · ·

123, 213 2
3
+ δ123,123 1 + δ123,132 0 + δ123,213

2
3
+ δ123,231 · · ·

123, 231 1 + δ123,123
2
3
+ δ123,132

2
3
+ δ123,213 0 + δ123,231 · · ·

123, 312 1 + δ123,123
2
3
+ δ123,132

2
3
+ δ123,213 1 + δ123,231 · · ·

...
...

...
... · · ·

. . .

Since the number of permutations (π1, π2) is (O(n!2)),
we are not able to solve the game directly even for fairly
small n.

3.2 MARGINAL DISTRIBUTION
FORMULATION

For this problem, using the double oracle method leads to
solving 3D matching problems multiple times. Follow-
ing [Fathony et al., 2018], we can directly optimize on
marginal distribution to significantly improves the train-
ing efficiency, as all quantities that we are interested in
only rely on the marginal probabilities of the permuta-
tions.

Let us first define a tensor representation of permuta-
tion π1 and π2 as Y(π1, π2) ∈ Rn×n×n (or simply Y)
where the value of its cell Yi,j,k is 1 when π1,i = j
and π2,i = k , and 0 otherwise. If Y representing a
perfect 3D matching, each plane in any direction of Y
can only have one entry of 1. We can do the same for
each feature function φ

(l)
i (π1,i, π2,i, x) by denoting its

matrix representation as Xo whose (i, j, k)-th cell rep-
resents the o-th entry of φi(x, j, k). Then, for a given
distribution of permutations P (π1, π2), we denote the



marginal probabilities of matching i ∈ A with j ∈ B
and k ∈ C as pi,j,k , P (π1,i = j, π2,i = k).
We let P =

∑
π P (π1, π2)Y(π1, π2) be the predictor’s

marginal probability tensor where its (i, j, k) cell repre-
sents P̂ (π̂1,i = j, π̂2,i = k), and similarly let Q be the
adversary’s marginal probability tensor (based on P̌ ).

Figure 2: Marginal Tensor P.

The size of this marginal matrices grows cubically
(O(n3)), which is much smaller than the one of the orig-
inal game matrix (O(n!2)).

By replacing P̂ (π̂1, π̂2) and P̌ (π̌1, π̌2) with the matrix
notation above, Eq. (5) can be rewrite as a minimax over
marginal probability tensors P and Q. The constraints
are also reformed, and we have:

min
θ

EX,Y∼P̃ min
P≥0

max
Q≥0

[
1− 1

n
〈P,Q〉

+〈Q−Y,
∑
o θoXo〉

]
s.t. :

∑
i,j

Pi,j,k =
∑
i,j

Qi,j,k = 1,∀k ∈ [n]

∑
j,k

Pi,j,k =
∑
j,k

Qi,j,k = 1,∀i ∈ [n]

∑
i,k

Pi,j,k =
∑
i,k

Qi,j,k = 1,∀j ∈ [n], (7)

where 〈·, ·〉 denotes the Frobenius inner product between
two tensors, i.e., 〈A,B〉 =

∑
i,j,k Ai,j,kBi,j,k. We call

the tensors P and P that satisfy the constrains in Eq. (7)
as hyperplanar stochastic tensors.

For bipartite matching, the Birkhoff–von Neumann theo-
rem [Birkhoff, 1946, Von Neumann, 1953] states that the
convex hull of the set of n × n permutation matrices
forms a convex polytope in Rn2

(known as the Birkhoff
polytope Bn) in which points are doubly stochastic ma-
trices, i.e., the n × n matrices with non-negative ele-
ments where each row and column must sum to one. This
means that for bipartite matching, there is always a lin-
ear combination of matching tensors Y that sum to the

marginal distribution. However, this result does not gen-
eralize to 3D matching. Some extreme points of the mul-
tistochastic tensor are not convex combinations of per-
mutation tensors [Cui et al., 2014]. Though this tensor
differs from ours, this implies that our marginal formu-
lation is a relaxation from the original mixed strategy of
permutations.

3.2.1 Optimization

To solve the marginal version of the problem, we try to
adjust the order of the parameters we need to learn. By
strong duality, we can pick Q as most external variable
and push it to the left most part of the objective func-
tion. To smooth the objective, we add a strongly convex
proxy-function to both P and Q as well as a regulariza-
tion penalty to the parameter θ to prevent overfitting in
our model. Also the empirical expectation in Eq. (7) can
be replaced by the average over training samples. Then
we have the following optimization:

max
Q≥0

min
θ

1

m

m∑
l=1

min
P(l)≥0

[ 〈
Q(l)

−Y(l),
∑
o θoX

(l)
o

〉
− 1

n

〈
P(l),Q(l)

〉
+ µ

2 ‖P
(l)‖2F −

µ
2 ‖Q

(l)‖2F
]

+ λ
2 ‖θ‖

2
2

s.t. :
∑
i,j

P
(l)
i,j,k =

∑
i,j

Q
(l)
i,j,k = 1,∀k ∈ [n]

∑
j,k

P
(l)
i,j,k =

∑
j,k

Q
(l)
i,j,k = 1,∀i ∈ [n]

∑
i,k

P
(l)
i,j,k =

∑
i,k

Q
(l)
i,j,k = 1,∀j ∈ [n], (8)

where m is the number of 3D matching problems in the
training set, λ is the regularization penalty parameter, µ
is the smoothing penalty parameter, and ‖A‖F denotes
the Frobenius norm of tensor A. The superscript (l) in
P(l),Q(l),X(l), and Y(l) refers to the l-th example in
the training set.

In Eq. 8, the inner minimization over θ and P can then
be solved independently when Q is given. For θ we have
a closed-form solution:

θ∗k = − 1

λm

m∑
l=1

〈
Q(l) −Y(l),X(l)

o

〉
. (9)

For P, we can solve it independently for each training



sample l:

P(l)∗ = argmin
{P(l)≥0}

µ
2 ‖P

(l)‖2F −
1

n

〈
P(l),Q(l)

〉
= argmin
{P(l)≥0}

‖P(l) − 1
nµQ(l)‖2F

s.t. :
∑
i,j

P
(l)
i,j,k = 1,∀k ∈ [n];

∑
j,k

P
(l)
i,j,k = 1,∀i ∈ [n]

∑
i,k

P
(l)
i,j,k = 1,∀j ∈ [n]. (10)

This minimization is equivalent to projecting the matrix
1
nµQ(l) to the set of hyperplanar stochastic tensors. We
solve this projection in the next section.

Now only Q is left. Given the solution of the inner op-
timization problems, we can then use the Quasi-Newton
algorithm [Schmidt et al., 2009] to find the best Q. After
we achieve the adversary’s optimal marginal probability
Q∗, we can use Eq. (9) to get θ∗, which is used in the
prediction step.

3.2.2 Hyperplanar Stochastic Tensors Projection

The projection from an arbitrary tensor R to the set of
hyperplanar stochastic tensors can be formulated as:

min
P≥0
‖P−R‖2F ,

s.t. :
∑
i,j

Pi,j,k = 1,∀k ∈ [n];
∑
j,k

Pi,j,k = 1,∀i ∈ [n]

∑
i,k

Pi,j,k = 1,∀j ∈ [n]. (11)

The alternating direction method of multipliers
(ADMM) technique [Douglas and Rachford, 1956,
Boyd et al., 2011] is a powerful tool for solving this
problem. The essential idea of the ADMM method is
that for optimization problems with linear constraints
and convex objective function, if the objective function
and constraints are both linearly separable when we
divide the target variables into subgroups:

min
x,z

f(x) + g(z) s.t. : Ax+Bz = c,

then the original problem can then be solved by the fol-
lowing step by step updating approach:

xk+1 = argmin
x

Lρ(x, z
k, yk)

zk+1 = argmin
z

Lρ(x
k+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c),

where Lρ is the Lagrangian of original problem plus a
L2 norm ρ

2 ||Ax+Bz − c||22 with Lagrangian parameter

y with the preset ADMM penalty parameter ρ. It can also
expand to conditions in which variables are divided into
more than two groups [Liu and Han, 2015].

The hyperplanar stochastic tensors constraint can be di-
vided into three sets of constraints C1 :

∑
i,j Pi,j,k =

1,∀k ∈ [n] and P ≥ 0, C2 :
∑
j,k Pi,j,k = 1,∀i ∈ [n]

and P ≥ 0 and C3 :
∑
i,k Pi,j,k = 1,∀j ∈ [n] and

P ≥ 0. By adding two additional auxiliary variables S
and T , Eq. 11 can be rewrite as:

min
P,S,T

1
2‖P−R‖2F + 1

2‖S−R‖2F + 1
2‖T−R‖2F+

IC1
(P) + IC2

(S) + IC3
(T)

s.t. : P−S = 0 and P− T = 0, (12)

where IC(x) is an indicator function whose value is 0
when x satisfy logical expression C, otherwise it is inf .
The augmented Lagrangian for this optimization is:

Lρ(P,S,T,W1,W2) = 1
2‖P−R‖2F + 1

2‖S−R‖2F
+ 1

2‖T−R‖2F + IC1(P) + IC2(S)

+IC3
(T) + ρ

2‖P− S + W1‖2F
+ρ

2‖P−T + W2‖2F (13)

where W1 and W2 are the scaled dual variable. From the
above formula, we can compute the update for P as:

Pt+1 = argmin
P
Lρ(P,St,Tt,Wt

1,W
t
2)

= argmin
{P|P∈C1}

1
2‖P−R‖2F + ρ

2‖P− St + Wt
1‖2F

+ ρ
2‖P−Tt + Wt

2‖2F
= argmin
{P|P∈C1}

‖P− 1
1+2ρ

(
R + ρ

(
St + Tt

−W1
t −W2

t
))
‖2F . (14)

This is actually a projection to the set C1 by projecting
to the probability simplex independently for each slice
of the tensor 1

1+2ρ (R + ρ (St + Tt −Wt
1 −Wt

2)). All
the ADMM updates for other tensor variables can also
be view as a projection, but from another direction.
This technique has been studied previously, e.g., by
[Duchi et al., 2008]. We list all the update strategy here:

Pt+1 = ProjC1

(
1

1+2ρ

(
R + ρ

(
St + Tt −Wt

1 −Wt
2

)))
St+1 = ProjC2

(
1

1+ρ

(
R + ρ

(
Pt+1 + Wt

1

)))
(15)

Tt+1 = ProjC3

(
1

1+ρ

(
R + ρ

(
Pt+1 + Wt

2

)))
(16)

Wt+1
1 = Wt

1 + Pt+1 − St+1 (17)

Wt+1
2 = Wt

2 + Pt+1 − Tt+1. (18)

These updating steps are repeated until the primal and
dual residual optimality is reached [Boyd et al., 2011].



3.2.3 Prediction

In the prediction step, we first use the θ∗ we learned and
the testing data to solve the inner optimization problem
in Eq. 10, giving us the predictor’s best marginal dis-
tribution. After we get the marginal distribution, which
may or may not correspond to an exact combination of
3D matchings, we still need to produce a 3D matching as
the final prediction.

We pursue the following problem:

argmin
Y

‖P− Y‖2F

s.t. :
∑
i,j

Yi,j,k = 1,∀k ∈ [n];
∑
j,k

Yi,j,k = 1,∀i ∈ [n];

∑
i,k

Yi,j,k = 1,∀j ∈ [n]; Yi,j,k ∈ {0, 1} (19)

Y is prediction we want and the whole problem is a in-
teger quadratic programming problem. This problem is
NP-hard [Del Pia et al., 2017], but there are approxima-
tion algorithms that can often be used for solving it in
practice.

4 EXPERIMENT AND EVALUATION

We apply our method on two different datasets. The first
is a synthetic dataset that we can easily manipulate to test
the property of the algorithm. Another one is the multiple
object video tracking dataset [Leal-Taixé et al., 2015].

Based on the assumption that there can be a linear com-
bination of the feature that indicate the best matching,
we create the synthetic data by uniformly generating raw
data vectors with length l for all the 3n objects, and use
them to construct the feature φ(π1, π2, x). To get the
ground truth matching, we further uniformly generate a
weight vector w that has the same size as φ(π1, π2, X).
The permutation π1, π2 that leads to the highest value of
wT · φ(π1, π2, X) will be used as the ground truth and
it is found through exhausted searching. For each object
number n, we generate 10 groups of data sets with dif-
ferent w, and for each group, there are 50 triples of 3D
matching samples.

For the video tracking task, we have a set of images
(video frames) and a list of objects (bounding boxes)
in each image alone with the ground truth matching be-
tween objects in frame t and objects in frame t + 1. For
the 3D matching task, we create a data sample by com-
bining three consecutive frames in t, t+ 1 and t+ 2.

There are two groups of datasets: TUD datasets and ETH
datasets with different numbers of objects and numbers
of samples (frame triples). Table 2 contains the detailed
information about the datasets. To make the training

Table 2: Video tracking dataset properties.

DATASET # OBJECTS # SAMPLES

TUD-CAMPUS 12 69
TUD-STADTMITTE 16 177
ETH-SUNNYDAY 18 352
ETH-BAHNHOF 34 998
ETH-PEDCROSS2 30 835

and testing samples more different, we pair up different
datasets as training and testing sets.

The number of objects can be different in each frame,
which is caused by objects entering and/or leaving. We
address this by first expanding each frame to 3k, where
k is the maximal number of objects a frame can contain,
to allow the cases that all the objects in each frame does
not appear in the other frames. Then we add additional
binary features indicating entering, leaving, occlusion in
the middle or “staying invisible” (i.e., out of frame). For
other pairwise and triple features that contain a virtual
object, we assign similarity features as 0 and distance
features as infinitely large to force real objects to turn to
match with each other. The drawback of this setting is
that it will ignore the cases such as two objects leave and
one object enters. If the time interval between frames is
small enough that at most one object leaves or enters a
frame, this will not be a problem.

4.1 FEATURE REPRESENTATION

The synthetic data, the features φi(π1,i, π2,i, X) contain:
a copy of the raw data, summation of each pair of raw
data in the given tuple, the overall summation, the abso-
lute difference between raw data, maximal and minimal
L2 norm value of the raw data and group differences.

For the video tracking problem, we use an existing fea-
ture representation [Kim et al., 2012] that uses six differ-
ent types of features: intersection over union (IoU) over-
lap ratio between bounding boxes, Euclidean distance
between object centers, 21 color histogram distance fea-
tures (RGB) from the Bhattacharyaa distance, 21 local
binary pattern (LBP) features from similar Bhattacharyaa
distances and bounding box blocks, Optical flow (mo-
tion) between bounding boxes and Four indicator vari-
ables (for entering, leaving, hiding in the middle and
staying invisible).

4.2 EXPERIMENT SETUP

To make the comparison with our method adversarial
3D matching (Adv3DMarg), we implement the SSVM
model [Taskar et al., 2005, Tsochantaridis et al., 2005]
based on [Kim et al., 2012] using SVM-Struct
[Joachims, 2008, Vedaldi, 2011] and two-stage marginal



Table 3: The mean and standard deviation (in parenthe-
sis) of the average accuracy for synthetic data.

# OBJECTS
2S-ADV
MARG.

ADV3D
MARG. SSVM

3 0.852
(0.09)

0.885
(0.08)

0.893
(0.09)

4 0.812
(0.10)

0.855
(0.10)

0.833
(0.09)

5 0.815
(0.12)

0.827
(0.11)

0.802
(0.10)

6 0.779
(0.10)

0.808
(0.11)

0.800
(0.09)

Table 4: The mean and standard deviation (in parenthe-
sis) of the average accuracy for video tracking.

TRAINING/
TESTING

2S-ADV
MARG.

ADV3D
MARG. SSVM

CAMPUS/
STADTMITTE

0.421
(0.07)

0.453
(0.08)

0.424
(0.07)

STADTMITTE/
CAMPUS

0.452
(0.10)

0.478
(0.11)

0.470
(0.09)

BAHNHOF/
SUNNYDAY

0.552
(0.06)

0.578
(0.05)

0.568
(0.05)

PEDCROSS2/
SUNNYDAY

0.535
(0.08)

0.563
(0.08)

0.545
(0.10)

SUNNYDAY/
BAHNHOF

0.541
(0.15)

0.583
(0.17)

0.570
(0.18)

PEDCROSS2/
BAHNHOF

0.565
(0.10)

0.597
(0.13)

0.589
(0.16)

BAHNHOF/
PEDCROSS2

0.492
(0.11)

0.523
(0.11)

0.511
(0.13)

SUNNYDAY/
PEDCROSS2

0.499
(0.14)

0.537
(0.12)

0.522
(0.14)

adversarial bipartite matching (2S-AdvMarg) proposed
by [Fathony et al., 2018]. For the SSVM, we also use
it to predict the best marginal distribution. We use
minConf [Schmidt, 2008] to perform the projected
Quasi-Newton optimization. In the prediction part of
SSVM and Adv3DMarg, we used the Gurobi Mixed-
Integer Programming solver. For 2S-AdvMarg, we
simply apply it on frame t to t + 1 and frame t + 1 to
t + 2 separately, and pick out the matched triples. We
use 5-fold cross validation to tune the regularization
parameter (λ in adversarial matching, and C in SSVM).

4.3 RESULTS

Table 3 and Table 4 provide the mean and the standard
deviation of the average accuracy for synthetic and video
tracking data. It is calculated by 1− lossHamming.

Table 5: Running time (in seconds) with 50 samples

DATASET # OBJECTS ADV3DMARG. SSVM

CAMPUS 12 21.34 11.72
STADTMITTE 16 54.73 18.79
SUNNYDAY 18 73.22 22.69
PEDCROSS2 30 357.70 146.12
BAHNHOF 34 563.50 173.41

We can see that both of the 3D matching algorithms
are consistently better than the 2S-AdvMarg, indicating
that directly solving the 3D matching problem can in-
deed improve the performance beyond simply applying
the multistage bipartite matching. To compare the ac-
curacy with SSVM, we use bold font to show the cases
where Adv3DMarg outperformed with statistical signif-
icance. We can see that we have better results on all six
pairs of the ETH datasets and still somewhat better than
SSVM on the TUD datasets. For the synthetic data, the
accuracy decreases as the number of objects increases,
which is reasonable as the problem becomes harder.

To compare the running time, we list the time used on
the video tracking dataset in Table 5. The predictions
from Adv3DMarg and SSVM differ from that in 2S-
AdvMarg, but since the prediction consumes much less
time in our setting, we only focus on the training time.
It shows that SSVM is faster, but Adv3DMarg is ac-
ceptable within this scale of data. The running time of
Adv3DMarg grows roughly cubically in the number of
objects, identical with the growth rate of the 3D ten-
sor. This speed is much better than employing a CRF
approach, which has running time that is high even for
small problems. Unlike results for bipartite matching in
which the SSVM tries to predict the matching directly
and has an efficient direct method to solve the inner
optimization method [Fathony et al., 2018], SSVM also
needs to solve the ADMM problem for 3D matchings.
Thus, SSVM for 3D matching is much slower than the
one in bipartite matching. However, it still has the speed
benefit that may also caused by different tools for im-
plementation, i.e., C++ for SSVM and MATLAB for our
method.

5 CONCLUSIONS & FUTURE WORK
In this paper, we use adversarial learning to formulate the
3D matching learning problem. We explore a way that
avoids directly solving the 3D matching problem and can
efficiently train on both synthetic and real datasets. Re-
sults of the average accuracy clearly show the improve-
ment comparing with two stage bipartite matching ap-
proach. It also has better results over SSVM.

We postpone the challenge of solving a NP-hard problem
to the prediction stage. Although the practical results are



promising, there is still no clear theoretical proof about
the error bound by transforming the marginal tensor to
an exact 3D matching. Building a more solid theoretical
base for this method remains as important future works.
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