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A Proof of Theorem 1

Proof. Let us express the inverse of f in the data generative model (1) by g such that s = g(x). The change of
variables provides

log p(x|u) = log {(1− ε(u))p?(g(x)|u) + ε(u)δ(g(x)|u)}+ log |detJg(x)|
= log {p?(g(x)|u) + ε(u)(δ(g(x)|u)− p?(g(x)|u))}+ log |detJg(x)|

= log

[
p?(g(x)|u)

{
1 + ε(u)

(
δ(g(x)|u)

p?(g(x)|u)
− 1

)}]
+ log |detJg(x)|

= log p?(g(x)|u) + ε(u)

(
δ(g(x)|u)

p?(g(x)|u)
− 1

)
+O(ε(u)2) + log |detJg(x)|,

where we applied log(1 + ε(u)z) = ε(u)z + O(ε(u)2) with a sufficiently small ε(u) on the last line. Then, the
conditionally exponential family assumption (A2) gives

log p(x|u) =

dx∑
j=1

λj(u)q?j (gj(x)) + ε(u)

(
δ(g(x)|u)

p?(g(x)|u)
− 1

)
+O(ε(u)2) + log |detJg(x)| − logZ(λ(u)).

Contrasting two log-conditional densities of x given u and a fixed point u0 yields

log p(x|u)− log p(x|u0) = (λ(u)− λ(u0))>q?(g(x)) +

{
ε(u)

δ(g(x)|u)

p?(g(x)|u)
− ε(u0)

δ(g(x)|u0)

p?(g(x)|u0)

}
+O(ε(u)2) +O(ε(u0)2)− (logZ(λ(u))− logZ(λ(u0))), (21)

where λ(u) := (λ1(u), . . . , λdx(u))>, q?(g(x)) := (q?1(g1(x)), . . . , q?dx(gdx(x)))>, and note that the Jacobian
|detJg(x)| is cancelled out.

On the other hand, by the universal approximation assumption (A4), we obtain

log p(x|u)− log p(x|u0) = (w(u)−w(u0))>h(x)− log e(u) + log e(u0). (22)



Then, equating (21) with (22) provides

λ̄(u)>q?(g(x)) + ε(u)
δ(g(x)|u)

p?(g(x)|u)
− ε(u0)

δ(g(x)|u0)

p?(g(x)|u0)
+O(ε(u)2) +O(ε(u0)2) = w̄(u)>h(x) + β̄(u), (23)

where w̄(u) := w(u) − w(u0), λ̄(u) := λ(u) − λ(u0), and β̄(u) := log e(u) − log e(u0) + logZ(λ(u)) −
logZ(λ(u0)).

Next, we multiply λ̄(u) to the both sides of (23) and evaluate it atm points, u1, . . . ,um. Finally, taking the summation
for u1, . . . ,um yields(

m∑
i=1

λ̄(ui)λ̄(ui)
>

)
︸ ︷︷ ︸

Λ̄

q?(s) +

m∑
i=1

(
ε(ui)

δ(g(x)|ui)
p?(g(x)|ui)

− ε(u0)
δ(g(x)|u0)

p?(g(x)|u0)

)
λ̄(ui)

+

m∑
i=1

{
O(ε(ui)

2) + ε(u0)2)
}
λ̄(ui) =

(
m∑
i=1

w̄(ui)λ̄(ui)
>

)
h(x) +

m∑
i=1

β̄(ui)λ̄(ui).

Applying the inverse of Λ̄ to both sides completes the proof.

B Influence of outliers in general non-exponential case

As in Hyvärinen et al. [2019], we assume that the general conditional independence (4) holds, and that both the mixing
function f in the data generative model (1) and a nonlinear featureh(x) = (h1(x), . . . , hdx(x))> are invertible. Then,
by the change of variables from the generative model (1),

v(y) := s = f−1 ◦ h−1(y), and y := h(x)

where ◦ denotes composition. For the case of no outliers, Hyvärinen et al. [2019] proved that the nonlinear feature
h(x) asymptotically recover the source s up to elementwise invertible transformations by showing that the following
equations hold: For all i, j, k = 1, . . . , dx with j 6= k,

∂

∂yj
vi(y) = 0,

∂

∂yk
vi(y) = 0, and

∂2

∂yj∂yk
vi(y) = 0. (24)

Eqs.(24) indicate that each vi(= si) is a function of only one distinct element in y(= h(x)), and thus s is identifiable
by h(x) up to elementwise invertible transformations. By denoting the first- and second-order derivatives of vi(y)
in (24) as

vji :=
∂

∂yj
vi(y), vj,ki :=

∂2

∂yj∂yk
vi(y),

Eqs.(24) for all i, j, k can be compactly expressed as the following matrix form:

M(v) = O, (25)

whereO denotes the null matrix, andM(v) is a (d2
x − dx) by 2dx matrix and defined by

M(v) :=


v1

1v
2
1 v1

2v
2
2 · · · v1

dx
v2
dx

v12
1 v12

2 · · · v12
dx

v1
1v

3
1 v1

2v
3
2 · · · v1

dx
v3
dx

v13
1 v13

2 · · · v13
dx

...
... · · ·

...
...

... · · ·
...

vdx−1
1 vdx1 vdx−1

2 vdx2 · · · vdx−1
dx

vdxdx vdx−1,dx
1 vdx−1,dx

2 · · · vdx−1,dx
dx

 .



However, in the presence of outliers, (25) does not hold in general. In order to investigate the influence from outliers,
we define the following notations:

M̃(v) := −


v1

1v
2
2 v1

1v
2
3 · · · v1

dx−1v
2
dx

v1
1v

3
2 v1

1v
3
3 · · · v1

dx−1v
3
dx

...
... · · ·

...
vdx−1

1 vdx2 vdx−1
1 vdx3 · · · vdx−1

dx−1v
dx
dx


w(v,u,u0) :=

(
∂2

∂v2
1

ϕ(v|u,u0), . . . ,
∂2

∂v2
dx

ϕ(v|u,u0),
∂

∂v1
ϕ(v|u,u0), . . . ,

∂

∂vdx
ϕ(v|u,u0)

)>

w̃(v,u,u0) :=

(
∂2

∂v1∂v2
ϕ(v|u,u0),

∂2

∂v1∂v3
ϕ(v|u,u0), . . . ,

∂2

∂vdx−1∂vdx
ϕ(v|u,u0)

)>

,

where ϕ(v|u,u0) := log p(v|u) − log p(v|u0), u0 denotes a fixed point of u, M̃(v) by a (d2
x − dx) by (d2

x − dx)
matrix, whilew(s,u,u0) and w̃(s,u,u0) is the 2dx- and (d2

x−dx)-dimensional vectors, respectively. The following
theorem is useful to understand how (25) is affected by outliers:

Theorem 3. Assume that

(B1) Data x is generated from (1) where f is invertible.

(B2) Conditional independence (4) holds.

(B3) For all v and u, δ(v|u)
p?(v|u) , δi(v|u)

p?(v|u) and δi,j(v|u)
p?(v|u) are finite where δi(v|u) := ∂

∂vi
δ(v|u) and δi,j(v|u) :=

∂2

∂vi∂vj
δ(v|u).

(B4) The conditional density of x given u is universally approximated with an invertible feature extractor h(x) =
(h1(x), . . . , hdx(x)) as

log
p(x|u)

c(x)e(u)
=

dx∑
i=1

ψ(hi(x),u), (26)

where ψ, c and e are nonzero scalar functions.

Then, under the contaminated density model (5), the following holds at a fixed point u0:

M(v)w(v,u,u0) = M̃(v)w̃(v,u,u0). (27)

The proof is given in Section B.1. First of all, in the case of no outliers, Theorem 3 essentially recovers Theo-
rem 1 in Hyvärinen et al. [2019]: When ε(u) = 0 for all u, ϕ(v|u,u0) =

∑dx
i=1 {q?(vi|u0)− q?(vi|u0)} and thus

w̃(v,u,u0) = 0, which yields from (27)

M(v)w(v,u,u0) = O.

Then, applying an additional assumption called Assumption of Variability [Hyvärinen et al., 2019]1 recovers (25).

However, when ε(u) 6= 0, w̃(v,u,u0) is a nonzero vector and thus the right-hand sides on (27) are nonzeros in
general. Let us remind that the elements in w̃(v,u,u0) are given by

∂2

∂vi∂vj
{log p(v|u)− log p(v|u0)} , (28)

where i, j = 1, . . . , dx but i 6= j. Obviously, it is not easy to understand when these elements (28) are strongly
deviated from zeros, yet the following proposition proved in Section B.2 gives some insight:

1The assumption mean that there exist 2dx+1 points, u0,u1, . . . ,u2dx such that w(v,u1,u0), . . . ,w(v,u2dx ,u0) are linear
independent, implying that the conditional density p?(v|u) is sufficiently complex and diverse.



Proposition 1. Assume than the conditional independence (4) holds and sources are generated from the contaminated
density model (5). Then, with sufficiently small ε(u),

∂2

∂vi∂vj
log p(v|u)

= ε(u)

{
δi,j(v|u)

p?(v|u)
− q?i(vi|u)

δj(v|u)

p?(v|u)
− q?j(vj |u)

δi(v|u)

p?(v|u)
+ q?i(vi|u)q?j(vj |u)

δ(v|u)

p?(v|u)

}
+O(ε(u)2), (29)

where i 6= j and q?i(vi|u) := ∂
∂vi

q?(vi|u).

Eq.(29) allows us to more easily understand the implication of (28): w̃(v,u,u0) would be strongly deviated from the
zero vector when at least one of δ(v|u)

p?(v|u) , δi(v|u)
p?(v|u) , δ

j(v|u)
p?(v|u) and δi,j(v|u)

p?(v|u) is large. The four ratio factors could be very
large when smooth δ(v|u) lies on the tails of p?(v|u).

B.1 Proof of Theorem 3

Proof. We first obtain the expression of log p(x|u) by the change of variables the data generative model (1) as

log p(x|u) = log p(g(x)|u)− logZ(u) + log |detJg(x)|,

where g := f−1, and Jg(x) and det denote the Jacobian and determinant, respectively. Then, the universal approxi-
mation assumption (B4) gives

dx∑
i=1

ψ(hi(x),u) = log p(g(x)|u)− logZ(u) + log |detJg(x)|.

To remove the Jacobian term and log-partition function, we compute the differences of the above equations at u and a
fixed point u0 as

dx∑
i=1

ψ̄(hi(x),u,u0) = log p(g(x)|u)− log p(g(x)|u0).

where

ψ̄(hi(x),u,u0) := ψ(hi(x),u)− ψ(hi(x),u0).

By the further change of variables y = h(x) and v(y) = g(h−1(y)),

dx∑
i=1

ψ̄(yi,u,u0) = ϕ(v(y),u,u0), (30)

where

ϕ(v(y),u,u0) := log p(v(y)|u)− log p(v(y)|u0).

Next, let us use or remind the following notations:

ϕl(v,u,u0) :=
∂

∂vl
ϕ(v,u,u0), ϕl,m(v,u,u0) :=

∂2

∂vl∂vm
ϕ(v,u,u0)

vkl :=
∂

∂yk
vl(y), vj,kl :=

∂2

∂yj∂yk
vl(y).

Taking the second-order partial derivative of the left-hand side on (30) with respect to yj and yk for j 6= k yields

∂2

∂yj∂yk

dx∑
i=1

ψ̄(yi,u,u0) = 0. (31)



On the other hand, the second-order partial derivative of the right-hand side on (30) can be expressed as

∂2

∂yj∂yk
ϕ(v(y),u,u0) =

dx∑
l=1

[
ϕl,l(v,u,u0)vjl v

k
l + ϕl(v,u,u0)vjkl

]
+

dx∑
l=1

dx∑
m=1
m6=l

ϕl,m(v,u,u0)vjl v
k
m. (32)

Equating (31) with (32) under (30) gives the following equation:
dx∑
l=1

[
ϕl,l(v,u,u0)vjl v

k
l + ϕl(v,u,u0)vjkl

]
= −

dx∑
l=1

dx∑
m=1
m6=l

ϕl,m(v,u,u0)vjl v
k
m. (33)

Regarding j = 1, . . . , dx and k = 1, . . . , dx, we collect all of vjl v
k
l , vjkl and−vjl vkm for j 6= k and l 6= m as (d2

x−dx)-
dimensional vectors, al(v), bl(v), and cl,m(v), respectively. Then, (33) for all j and k (but j 6= k) can be expressed
as

d∑
l=1

[
ϕl,l(v,u,u0)al(v) + ϕl(v,u,u0)bl(v)

]
=

dx∑
l=1

dx∑
m=1
m 6=l

ϕl,m(v,u,u0)cl,m(v).

Furthermore, the above equations for all l and m (but l 6= m) can be summarized as the following system of linear
equations:

M(v)w(v,u,u0) = M̃(v)w̃(v,u,u0),

where M(v) := (a1(v), . . . ,an(v), b1(v), . . . , bn(v)), M̃(v) := (c1,2(v), c1,3(v), . . . , cdx,dx−1(v)), and
w(v,u,u0) is the 2dx-dimensional vector of all ϕl,l(v,u,u0) and ϕl(v,u,u0) for l = 1, . . . , dx, and w̃(v,u,u0)
is the (d2

x − dx)-dimensional vector of all ϕl,m(v,u,u0) for l,m = 1, . . . , dx but l 6= m. Thus, the proof is com-
pleted.

B.2 Proof of Proposition 1

Proof. We first define the following notations:

pl(v|u) :=
∂

∂vl
p(v|u), pl,m(v|u) :=

∂2

∂vl∂vm
p(v|u)

p?l(v|u) :=
∂

∂vl
p?(v|u), p?l,m(v|u) :=

∂2

∂vl∂vm
p?(v|u).

Then, under the contaminated density model (5), we compute

∂2

∂vl∂vm
log p(v|u) =

∂2

∂vl∂vm
log p?(v|u) +

∂2

∂vl∂vm
log

{
1 + ε(u)

(
δ(v|u)

p?(v|u)
− 1

)}
=

∂2

∂vl∂vm
log

{
1 + ε(u)

(
δ(v|u)

p?(v|u)
− 1

)}
, (34)

where we used the following relation under the conditional independence assumption (4):

∂2

∂vl∂vm
log p?(v|u) =

∂2

∂vl∂vm

dx∑
i=1

q?(vi|u) = 0.

Next, we apply the Taylor expansion with sufficiently small ε(u) to the right-hand side on (34):

∂2

∂vl∂vm
log

{
1 + ε(u)

(
δ(v|u)

p?(v|u)
− 1

)}
=

∂2

∂vl∂vm

{
ε(u)

(
δ(v|u)

p?(v|u)
− 1

)
+O(ε(u)2)

}
= ε(u)

{
δl,m(v|u)

p?(v|u)
− δl(v|u)

p?(v|u)

p?m(v|u)

p?(v|u)
− δm(v|u)

p?(v|u)

p?l(v|u)

p?(v|u)
+

δ(v|u)

p?(v|u)

p?l(v|u)

p?(v|u)

p?n(v|u)

p?(v|u)

}
+O(ε(u)2).

(35)



Substituting (35) into (34) yields

∂2

∂vl∂vm
log p(v|u)

= ε(u)

{
δl,m(v|u)

p?(v|u)
− q?l(vl|u)

δm(v|u)

p?(v|u)
− q?m(vm|u)

δl(v|u)

p?(v|u)
+ q?l(vl|u)q?m(vm|u)

δ(v|u)

p?(v|u)

}
+O(ε(u)2),

where we applied

p?l(v|u)

p?(v|u)
=

∂

∂vl
log p?(v|u) = q?l(vl|u),

under the conditional independence assumption (4). Thus, the proof is completed.

C Proof of Theorem 2

C.1 Derivation of (13)

With p(y,x,u) = p(x,u|y)p(y), we have

dγ(p(y|x,u), r(x,u); p(x,u)) := − 1

γ
log

∫∫ 1∑
y=0

{
r(x,u)y(γ+1)

1 + r(x,u)γ+1

} γ
γ+1

p(y,x,u)dxdu

= − 1

γ
log

[∫∫ {
r(x,u)γ+1

1 + r(x,u)γ+1

} γ
γ+1

p(x,u|y = 1)p(y = 1)dxdu

+

∫∫ {
1

1 + r(x,u)γ+1

} γ
γ+1

p(x,u|y = 0)p(y = 0)dxdu

]

= − 1

γ
log

1

2

∫∫ {
r(x,u)γ+1

1 + r(x,u)γ+1

} γ
γ+1

p(x,u)dxdu︸ ︷︷ ︸
(A)

+
1

2

∫∫ {
1

1 + r(x,u)γ+1

} γ
γ+1

p(x)p(u)dxdu

]
, (36)

where p(y = 0) = p(y = 1) = 1
2 , p(x,u|y = 1) = p(x,u), and p(x,u|y = 0) = p(x)p(u). Under the outlier

model, the joint density can be expressed as

p(x,u) = p(x|u)p(u) = (1− ε(u))p?(x,u) + ε(u)δ(x,u).

Then, the term (A) in (36) can be written as

(A) =

∫∫ {
r(x,u)γ+1

1 + r(x,u)γ+1

} γ
γ+1

p(x,u)dxdu

=

∫∫ {
r(x,u)γ+1

1 + r(x,u)γ+1

} γ
γ+1

(1− ε(u))p?(x,u)dxdu+

∫∫ {
r(x,u)γ+1

1 + r(x,u)γ+1

} γ
γ+1

ε(u)δ(x,u)dxdu

(37)



Finally, substituting (37) into (36) yields

dγ(p(y|x,u), r(x,u); p(x,u))

= − 1

γ
log

[
1

2

∫∫ {
r(x,u)γ+1

1 + r(x,u)γ+1

} γ
γ+1

(1− ε(u))p?(x,u)dxdu+
1

2

∫∫ {
1

1 + r(x,u)γ+1

} γ
γ+1

p(x)p(u)dxdu

+
1

2

∫∫ {
r(x,u)γ+1

1 + r(x,u)γ+1

} γ
γ+1

ε(u)δ(x,u)dxdu︸ ︷︷ ︸
=ν


= J [r(x,u); (1− ε(u))p?(x,u), p(x)p(u)] +O(ν),

where we applied the relation log(y + ν) = log(y) +O(ν) with sufficiently small ν.

C.2 Proof of the minimizer (14)

C.2.1 Preliminaries

We use the following results in the main proof, which are derived from the Taylor expansion:(
1

(r + ηφ)γ+1 + 1

) γ
γ+1

=

(
1

rγ+1 + 1

) γ
γ+1

− η γrγφ

(rγ+1 + 1)
2γ+1
γ+1

+
η2

2

{γ(γ + 1)r2γ − γ2rγ−1}φ2

(rγ+1 + 1)
3γ+1
γ+1

+O(η3)

(38)(
(r + ηφ)γ+1

(r + ηφ)γ+1 + 1

) γ
γ+1

=

(
rγ+1

rγ+1 + 1

) γ
γ+1

+ η
γrγ−1φ

(rγ+1 + 1)
2γ+1
γ+1

− η2

2

{γ(γ + 2)r2γ−1 − γ(γ − 1)rγ−2}φ2

(rγ+1 + 1)
3γ+2
γ+1

+O(η3).

(39)

C.2.2 Main proof

Proof. Let us define J̃ [r] := exp(−γJ [r(x,u); (1 − ε(u))p?(x,u), p(x)p(u)]), and then we derive a maximizer of
J̃ [r] alternative to a minimizer of J [r(x,u); (1 − ε(u))p?(x,u), p(x)p(u)]). For η > 0 and a perturbation φ, with
(38) and (39), we have

J̃ [r + ηφ] = J̃ [r] +
η

2

∫ ∫ [
γr(x,u)γ−1φ(x,u){(1− ε(u))p?(x,u)− r(x,u)p(x)p(u)}

(r(x,u)γ+1 + 1)
2γ+1
γ+1

]
dxdu

+
η2

4

∫∫ [{
γ(γ + 1)r(x,u)2γ − γ2r(x,u)γ−1

}
p(x)p(u)φ(x,u)2

(r(x,u)γ+1 + 1)
3γ+2
γ+1

−
{
γ(γ + 2)r(x,u)2γ−1 − γ(γ − 1)r(x,u)γ−2

}
(1− ε(u))p?(x,u)φ(x,u)2

(r(x,u)γ+1 + 1)
3γ+2
γ+1

]
dxdu+O(η3). (40)

The optimality condition is satisfied when the term of order η on the right-hand side of (40) equals to zero for arbitrary
φ. Thus, an optimizer r?(x,u) satisfies the following equation:

(1− ε(u))p?(x,u)− r(x,u)p(x)p(u) = 0.

Then, we obtain r?(x,u) as

r?(x,u) =
(1− ε(u))p?(x,u)

p(x)p(u)
=

(1− ε(u))p?(x|u)

p(x)
.

To investigate if r? is a maximizer of J [r], we compute the term of order η2 on the right-hand side of (40) at r = r? as

−
∫∫ [

γ
{
r?(x,u)2γ + r?(x,u)γ−1

}
p(x)p(u)φ(x,u)2

(r?(x,u)γ+1 + 1)
3γ+1
γ+1

]
dxdu,



where we used the relation, (1− ε(u))p?(x,u) = r?(x,u)p(x)p(u). This shows that the term of order η2 is negative
for any choices of φ. Thus, r? is a maximizer, and the proof is completed.

D Proof of Proposition 1

Proof. We first define the support of δ(x|u) as

X δu := {x | δ(x|u) > 0} .

In the neighborhood of r?(x,u) = (1−ε(u))p?(x|u)
p(x) , we can obtain

ν =

∫∫
X ,U

{
r(x,u)γ+1

1 + r(x,u)γ+1

} γ
γ+1

ε(u)δ(x,u)dxdu

=

∫
U

[∫
X δu

{
r(x,u)γ+1

1 + r(x,u)γ+1

} γ
γ+1

ε(u)δ(x|u)dx

]
p(u)du

≤
∫
U

[∫
X δu

{
p?(x|u)γ+1

{(1− ε(u))p?(x|u)}γ+1 + p(x)γ+1

} γ
γ+1

δ(x|u)dx

]
gγ(u) +O

(
sup
x,u
|r(x,u)− r?(x,u)|

)
,

(41)

where gγ(u) := (1− ε(u))γε(u)p(u). Since the generative model (1) is invertible, by the change of variables from x
to s, we obtain the following equation:

∫
X δu

{
p?(x|u)γ+1

{(1− ε(u))p?(x|u)}γ+1 + p(x)γ+1

} γ
γ+1

δ(x|u)dx

=

∫
Sδu

{
p?(s|u)γ+1

{(1− ε(u))p?(s|u)}γ+1 + p(s)γ+1

} γ
γ+1

δ(s|u)ds. (42)

Substituting (42) into (41) yields

ν ≤
∫
U

[∫
Sδu

{
p?(s|u)γ+1

{(1− ε(u))p?(s|u)}γ+1 + p(s)γ+1

} γ
γ+1

δ(s|u)ds

]
gγ(u)du+O

(
sup
x,u
|r(x,u)− r?(x,u)|

)
.

Under the assumption that Sp?u ∩ Sδu = ∅, we can easily conform that for γ > 0,

∫
Sδu

{
p?(s|u)γ+1

{(1− ε(u))p?(s|u)}γ+1 + p(s)γ+1

} γ
γ+1

δ(s|u)ds = 0.

The above equation gives

ν ≤ O
(

sup
x,u
|r(x,u)− r?(x,u)|

)
.

Thus, the proof is completed.



E Proof of Proposition 2

E.1 Main proof

Proof. We first define the following notations:

Lθ(x,u) =
1

1 + rθ(x,u)(γ+1)

Sθ(x,u) = {Lθ(x,u)(1− Lθ(x,u))}γ/(1+γ)

αθ(x,u) = Lθ(x,u)1/(1+γ)Sθ(x,u)
∂ log rθ(x,u)(γ+1)

∂θ

βθ(x,u) = (1− Lθ(x,u))
1/(1+γ)

Sθ(x,u)
∂ log rθ(x,u)(γ+1)

∂θ

Cθ =

∫∫ {
∂

∂θ
αθ(x,u)>p̄(x,u)− ∂

∂θ
βθ(x,u)>p̄(x)p̄(u)

}
dxdu.

Then, our proof relies on the following lemma proved in Section E.2:

Lemma 1. The influence function of θ̂ under the γ-cross entropy (11) satisfies the following equations:

• Under the contamination model (A),

Cθ̂IF(x̄) =

∫ {
αθ̂(x̄,u)− βθ̂(x̄,u)

}
p?(u)du, (43)

where IF denotes the influence function,

• Under the contamination model (B),

Cθ̂IF(x̄, ū) =−αθ̂(x̄, ū) +

∫
βθ̂(x, ū)p?(x)dx+

∫
βθ̂(x̄,u)p?(u)du−

∫∫
βθ̂(x,u)p?(x)p?(u)dxdu.

(44)

First of all, under Assumption (19), we observe that

lim
‖x‖→∞

αθ(x,u) = lim
‖x‖→∞

βθ(x,u) = 0 (45)

because Lθ(x,u)1/(1+γ) ≤ 1. From Lemma 1, regarding the contamination model (A), (45) ensures that the right-
hand side of (43) approaches to 0 as ‖x̄‖ → ∞. Thus,

lim
‖x̄‖→∞

‖IF(x̄)‖ = 0.

Furthermore, under Assumption (18),

sup
x,u
‖αθ(x,u)‖ <∞, sup

x,u
‖βθ(x,u)‖ <∞. (46)

This indicates that

sup
x̄
‖IF(x̄)‖ <∞,

and therefore θ̂ is B-robust.

For the the contamination model (B), (46) holds, which indicates that the right-hand side of (44) is uniformly bounded
even when rθ̂(x̄, ū), rθ̂(x̄,u) or rθ̂(x, ū) diverge through the influence of the outliers (x̄, ū). Thus, we have

sup
x̄,ū
‖IF(x̄, ū)‖ <∞. (47)



E.2 Proof of Lemma 1

Proof. θ̂ associated with the densities p?(x,u) and p?(x)p?(u) is a solution of the following estimating equation:

0 =
∂

∂θ
dγ(p?(y|x,u), rθ(x,u); p?(x,u))

∣∣∣∣
θ=θ̂

∝

[∫∫ {(
rθ(x,u)(γ+1)

1 + rθ(x,u)(γ+1)

)−1/(1+γ) ∂
∂θ rθ(x,u)(γ+1)

(1 + rθ(x,u)(γ+1))2
p?(x,u)

−
(

1

1 + rθ(x,u)(γ+1)

)−1/(1+γ) ∂
∂θ rθ(x,u)(γ+1)

(1 + rθ(x,u)(γ+1))2
p?(x)p?(u)

}
dxdu

]∣∣∣∣∣
θ=θ̂

=

∫∫ {
αθ̂(x,u)p?(x,u)− βθ̂(x,u)p?(x)p?(u)

}
dxdu (48)

On the other hand, θ̂ε is a solution of the the estimating equation with the contaminated densities:

0 =
∂

∂θ
dγ(p̄(y|x,u), rθ(x,u); p̄(x,u))

∣∣∣∣
θ=θ̂ε

∝

[∫∫ {(
rθ(x,u)(γ+1)

1 + rθ(x,u)(γ+1)

)−1/(1+γ) ∂
∂θ rθ(x,u)(γ+1)

(1 + rθ(x,u)(γ+1))2
p̄(x,u)

−
(

1

1 + rθ(x,u)(γ+1)

)−1/(1+γ) ∂
∂θ rθ(x,u)(γ+1)

(1 + rθ(x,u)(γ+1))2
p̄(x)p̄(u)

}
dxdu

]∣∣∣∣∣
θ=θ̂ε

=

∫∫ {
αθ̂ε(x,u)p̄(x,u)− βθ̂ε(x,u)p̄(x)p̄(u)

}
dxdu. (49)

Next, we obtain (43) and (44) under two contamination models separately by combining (49) with (48).

E.2.1 Contamination model (A)

We remind that p̄(x,u), p̄(x), and p̄(u) in the contamination model (A) are defined as

p̄(x,u) = (1− ε)p?(x,u) + εδ̄x̄(x)p?(u)

p̄(x) = (1− ε)p?(x) + εδ̄x̄(x)

p̄(u) = p?(u),

with δ̄z̄(z) is the Dirac delta function having a point mass at z̄. Then, the right-hand side of (49) is given by

(1− ε)
∫∫ {

αθ̂ε(x,u)p?(x,u)− βθ̂ε(x,u)p?(x)p?(u)
}

dxdu︸ ︷︷ ︸
(∗)

+ε

∫ {
αθ̂ε(x̄,u)− βθ̂ε(x̄,u)

}
p?(u)du. (50)

Taylor expansion of (50) around θ̂ is given by

0 =
∂dγ
∂θ

∣∣∣∣
θ=θ̂

+
∂dγ

∂θ∂θ>

∣∣∣∣
θ=θ̂

(θ̂ε − θ̂) +O(‖θ̂ε − θ̂‖2). (51)

Since it follows from (48) that the term (∗) in (50) vanishes as θ̂ε = θ̂, we obtain (43) by taking the limit of ε → 0

because Cθ̂ =
∂dγ

∂θ∂θ>

∣∣∣
θ=θ̂

in (51).



E.2.2 Contamination model (B)

In the contamination model (B), the auxiliary variables u are also contaminated as follows:

p̄(x,u) = (1− ε)p?(x,u) + εδ̄x̄(x)δ̄ū(u)

p̄(x) = (1− ε)p?(x) + εδ̄x̄(x)

p̄(u) = (1− ε)p?(u) + εδ̄ū(u).

Then, the right-hand side of (49) is given by∫∫
αθ̂ε(x,u)p?(x,u)−

∫∫
βθ̂ε(x,u)p?(x)p?(u)dxdu+ ε

[
αθ̂ε(x̄, ū)−

∫
βθ̂ε(x, ū)p?(x)dx

−
∫
βθ̂ε(x̄,u)p?(u)du−

∫∫
αθ̂ε(x,u)p?(x,u) + 2

∫∫
βθ̂ε(x,u)p?(x)p?(u)dxdu

]
+O(ε2), (52)

By following the derivation in Section E.2.1, we have

Cθ̂IF(x̄, ū) = −αθ̂(x̄, ū) +

∫
βθ̂(x, ū)p?(x)dx+

∫
βθ̂(x̄,u)p?(u)du

+

∫∫
αθ̂(x,u)p?(x,u)− 2

∫∫
βθ̂(x,u)p?(x)p?(u)dxdu

= −αθ̂(x̄, ū) +

∫
βθ̂(x, ū)p?(x)dx+

∫
βθ̂(x̄,u)p?(u)du−

∫∫
βθ̂(x,u)p?(x)p?(u)dxdu,

where (48) was applied in the last line. Thus, the proof is completed.

F Robust property in multiclass classification

Here, we perform a similar robust analysis as Theorem 2 in multiclass classification. We first specifically assume that
the following ν̃ is sufficiently small:

ν̃ :=

∫ ∑
u r(u,x)γδ(x|u)ε(u)p(u)

(
∑
u′ r(u′,x)γ+1)

γ
γ+1

dx. (53)

Then, the outlier model (5) decomposes the γ-cross entropy (20) into

dγ(p(u|x), r(u,x); p(x))

= − 1

γ
log

∫ ∑
u r(u,x)γp(u|x)

(
∑
u′ r(u′,x)γ+1)

γ
γ+1

p(x)dx

= − 1

γ
log

[∫ ∑
u r(u,x)γ(1− ε(u))p?(x|u)p(u)

(
∑
u′ r(u′,x)γ+1)

γ
γ+1

dx+

∫ ∑
u r(u,x)γδ(x|u)ε(u)p(u)

(
∑
u′ r(u′,x)γ+1)

γ
γ+1

dx

]
= dγ(r(u,x), p?(x|u); (1− ε(u))p(u)) +O(ν̃), (54)

where we employed log(y + z) = log(y) + O(z) with sufficiently small z and p(u|x) = p(x|u)p(u)
p(x) =

(1−ε(u))p?(x|u)p(u)+ε(u)δ(x|u)p(u)
p(x) , and

dγ(r(u,x), p?(x|u); (1− ε(u))p(u)) := − 1

γ
log

[∑
u

{∫
r(u,x)γp?(x|u)

(
∑
u′ r(u′,x)γ+1)

γ
γ+1

dx

}
(1− ε(u))p(u)

]
.

Eq.(54) indicates that minimization of dγ(p(u|x), r(u,x); p(x)) approximately equals to minimization of
dγ(r(u,x), p?(x|u); (1 − ε(u))p(u)) when ν̃ is sufficiently small. In addition, dγ(r(u,x), p?(x|u); (1 − ε(u))p(u))
is minimized at

r(u,x) = p?(x|u) (55)



because it is the γ-cross entropy to p?(x|u) under the measure (1 − ε(u))p(u). The minimizer (55) is desirable in
terms of the universal approximation assumptions (A4) and (B4).

Next, we discuss when ν̃ is sufficiently small. Following Section D, in the neighborhood of p?(x|u),

ν̃ ≤
∑
u

{∫
p?(x|u)γδ(x|u)

(
∑
u′ p?(x|u′)γ+1)

γ
γ+1

dx

}
ε(u)p(u) +O(sup

u,x
|r(u,x)− p?(x|u)|)

=
∑
u

{∫
p?(s|u)γδ(s|u)

(
∑
u′ p?(s|u′)γ+1)

γ
γ+1

ds

}
ε(u)p(u) +O(sup

u,x
|r(u,x)− p?(x|u)|), (56)

where we performed the change of variables from x to s under the data generate model (1). When
∑
u′ p?(s|u′)γ+1 6=

0 and the supports of p?(s|u) and δ(s|u) are mutually disjoint as in Section D, we can make the same implication
as Proposition 1: ν̃ can be sufficiently small in the neighborhood of p?(x|u) when p?(s|u) and δ(s|u) are clearly
separated. This clear separation possibly happens on a situation where δ(s|u) lies on the tails of p?(s|u) as seen in
common contamination by outliers. Thus, the γ-cross entropy for multiclass classification would be also robust against
outliers.

As discussed in Section 4.3, the non-robustness of TCL can be understood in terms of the γ-cross entropy. TCL
employs the multiclass logistic regression whose cross-entropy can be obtained as a limit of γ = 0 in the γ-cross
entropy (20). The multiclass logistic regression cannot also fulfill the robustness condition: It follows from the defini-
tion (53) that ν̃ cannot be sufficiently small when γ = 0. Thus, this implies that TCL is sensitive to outliers.

G Experimental details

G.1 Robust time contrastive learning

Source vectors with time segment length 512 was first generated from (5): Following (2), given a time segment
label u, the target density p?(s|u) was conditionally independent Laplace densities with means 0 and different scales
across time segments, which were randomly determined from the uniform density on [0, 1√

2
]. Regarding the outlier

density δ(s|u), two types of densities were used: An independent Laplace density with mean 0 and scale 3.0, and a
mixture of mean-modulated two Gaussians. More precisely, the outlier density of the mixture is given by δ(s|u) =
0.5N(1+3y(u), 0.5)+0.5N(−1−3y(u), 0.5) whereN(a, b) is a Gaussian density with mean a and standard deviation
b, and y(u) is fixed at the scale parameter of p?(s|u) above in the u-th time segment. We set ε(u) = ε for all time
segments u. The total numbers of segments and of data samples were K = 256 and T = 512 × 256, respectively.
The dimensionality of data was dx = 10 in Table 1, while dx = 5 in Table 2. Then, data x was generated according
to (1) where f(s) was modelled by a three-layer neural network (Table 1) or two-layer (Table 2) neural network with
the leaky ReLU activation function and random weights. The numbers of all hidden and output units were the same
as the dimensionality of data (i.e., dx). As preprocessing, we performed whitening based on the γ-divergence [Chen
et al., 2013].

ICA features h(x) both in RTCL and TCL were modelled by a three layer neural network where the number of
hidden units was 4dx, but the final layer was dx. Regarding the activation functions, the final layer employed the
absolute value function, while the other hidden layers were the max-out function [Goodfellow et al., 2013] with two
groups. `2 regularization was employed with the regularization parameter 10−4. When ε < 0.1, we optimized the
network parameters both in RTCL and TCL with 0.001 learning rate using the Adam optimizer for 1, 000 epochs
with mini-batch size 256, while we updated the parameters for 3, 000 epochs for ε = 0.1. We empirically observed
that more iterations for parameter update are often needed to escape from bad local optima when the contamination
ratio is larger. No postprocessing was applied. The performance was measured by the absolute value of the Pearson
correlation coefficient between learned ICA features h(x) and s without outliers.

When comparing with iVAE, the same neural network has been employed both in RTCL and iVAE, but the activation
functions were all ReLU except for the final layer. We optimized the network parameters with 0.001 learning rate
using the Adam optimizer for 1, 000 epochs, and the mini-batch size was 256.



G.2 Robust permutation contrastive learning

First, the temporally dependent T sources were generated from

log p?(s(t)|s(t− 1)) = −
dx∑
i=1

|si(t)− ρsi(t− 1)|+ C,

where C denotes a constant and the auto-regressive coefficient ρ was fixed at 0.7. The total number of sources was
T = 65, 536. Then, we randomly replaced the sources with outliers based on a constant contamination ratio ε,
which were generated from the independent Gaussian density with the mean 0 and scale 3. Data x was generated
as the nonlinear mixing of the sources with outliers by a three-layer neural networks with the leaky ReLU function
and random weights according to (1). The same whitening preprocessing above was performed based on the γ-
divergence [Chen et al., 2013].

Based on the universal approximation assumption in Hyvärinen and Morioka [2017, Theorem 1 and Eq.(12)] or Ap-
pendix B, we restrict the model r as

r(x(t),u(t)) = exp

(
dx∑
i=1

ψi(hi(x(t)), hi(u(t))

)
,

with a neural network h(x) = (h1(x), . . . , hdx(x))>. Following Hyvärinen and Morioka [2017], ψi(hi(x), hi(u))
was further modelled by

|ai,1hi(x) + ai,2hi(u) + bi| − (āihi(x) + b̄i)
2 + c,

where ai,1, ai,2, bi, āi, b̄i, c are parameters to be estimated from data. ICA features h(x) both in RPCL and PCL were
modelled by a three layer feedforward neural network where the number of hidden units is 4dx. No activation function
was applied in the last layer, while the max-out function was employed in the other layers. `2 regularization was
employed with the regularization parameter 10−4. Then, we optimized the parameters in RPCL and PCL using the
Adam optimizer with 0.001 learning rate for 1, 000 epochs with mini-batch size 128. The performance was measured
by the absolute Pearson correlation coefficient between learned ICA features h(x) and s without outliers.

H Visualization of outliers on fMRI data

Fig.1 visualizes the time series data from the Parahippocampal brain region, and demonstrates the presence of outliers
in many of the segments.
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Figure 1: Subset of time series data corresponding to the Parahippocampal (PHc) region taken from the Hippocampal
fMRI dataset. Different colors denote distinct segments, which in this case correspond to fMRI measurements from
the same subject on distinct days.


