Supplement to Identifying causal effects in maximally oriented partially directed acyclic graphs

Emilija Perković

Department of Statistics University of Washington Seattle, WA 98195-4322

A PRELIMINARIES

Subsequences And Subpaths. A subsequence of a path p is obtained by deleting some nodes from p without changing the order of the remaining nodes. For a path $p = \langle X_1, X_2, \ldots, X_m \rangle$, the subpath from X_i to X_k $(1 \le i \le k \le m)$ is the path $p(X_i, X_k) = \langle X_i, X_{i+1}, \ldots, X_k \rangle$.

Concatenation. We denote concatenation of paths by \oplus , so that for a path $p = \langle X_1, X_2, \dots, X_m \rangle$, $p = p(X_1, X_r) \oplus p(X_r, X_m)$, for $1 \le r \le m$.

D-separation. If **X** and **Y** are d-separated given **Z** in a DAG \mathcal{D} , we write $\mathbf{X} \perp_{\mathcal{D}} \mathbf{Y} | \mathbf{Z}$.

Possible Descendants. If there is a possibly causal path from X to Y, then Y is a *possible descendant* of X. We use the convention that every node is a possible descendant of itself. The set of possible descendants of X in \mathcal{G} is $\text{PossDe}(X, \mathcal{G})$. For a set of nodes $\mathbf{X} \subseteq \mathbf{V}$, we let $\text{PossDe}(\mathbf{X}, \mathcal{G}) = \bigcup_{X \in \mathbf{X}} \text{PossDe}(X, \mathcal{G})$.

Bayesian And Causal Bayesian Networks. If a density f over \mathbf{V} is consistent with DAG $\mathcal{D} = (\mathbf{V}, \mathbf{E})$, then (\mathcal{D}, f) form a *Bayesian network*. Let \mathbf{F} be a set of density functions made up of all interventional densities $f(\mathbf{v}'|do(\mathbf{x}))$ for any $\mathbf{X} \subset \mathbf{V}$ and $\mathbf{V}' = \mathbf{V} \setminus \mathbf{X}$ that are consistent with \mathcal{D} (\mathbf{F} also includes all observational densities consistent with \mathcal{D}), then $(\mathcal{D}, \mathbf{F})$ form a *causal Bayesian network*.

Rules Of The Do-calculus (Pearl, 2009). Let X, Y, Z and W be pairwise disjoint (possibly empty) sets of nodes in a DAG $\mathcal{D} = (\mathbf{V}, \mathbf{E})$ Let $\mathcal{D}_{\overline{\mathbf{X}}}$ denote the graph obtained by deleting all edges into X from \mathcal{D} . Similarly, let $\mathcal{D}_{\underline{\mathbf{X}}}$ denote the graph obtained by deleting all edges out of $\overline{\mathbf{X}}$ in \mathcal{D} and let $\mathcal{D}_{\overline{\mathbf{X}}\underline{\mathbf{Z}}}$ denote the graph obtained by deleting all edges into X and all edges out of $\overline{\mathbf{Z}}$ in \mathcal{D} . Let $(\mathcal{D}, \mathbf{F})$ be a causal Bayesian network, the following rules hold for densities in \mathbf{F} . Rule 1 (Insertion/deletion of observations). If $Y\perp_{\mathcal{D}_{\overline{\mathbf{X}}}} Z|\mathbf{X}\cup \mathbf{W},$ then

$$f(\mathbf{y}|do(\mathbf{x}), \mathbf{w}) = f(\mathbf{y}|do(\mathbf{x}), \mathbf{z}, \mathbf{w}).$$
(1)

Rule 2. If $\mathbf{Y} \perp_{\mathcal{D}_{\mathbf{X}\mathbf{Z}}} \mathbf{Z} | \mathbf{X} \cup \mathbf{W}$, then

$$f(\mathbf{y}|do(\mathbf{x}), do(\mathbf{z}), \mathbf{w}) = f(\mathbf{y}|do(\mathbf{x}), \mathbf{z}, \mathbf{w}).$$
(2)

Rule 3. If $\mathbf{Y} \perp_{\mathcal{D}_{\overline{\mathbf{XZ}}(\mathbf{W})}} \mathbf{Z} | \mathbf{X} \cup \mathbf{W}$, then

$$f(\mathbf{y}|do(\mathbf{x}), \mathbf{w}) = f(\mathbf{y}|do(\mathbf{x}), do(\mathbf{z}), \mathbf{w}), \quad (3)$$

where $\mathbf{Z}(\mathbf{W}) = \mathbf{Z} \setminus \operatorname{An}(\mathbf{W}, \mathcal{D}_{\overline{\mathbf{X}}}).$

A.1 EXISTING RESULTS

Theorem A.1 (Wright's rule Wright, 1921). Let $\mathbf{X} = \mathbf{A}\mathbf{X} + \epsilon$, where $\mathbf{A} \in \mathbb{R}^{k \times k}$, $\mathbf{X} = (X_1, \dots, X_k)^T$ and $\epsilon = (\epsilon_1, \dots, \epsilon_k)^T$ is a vector of mutually independent errors with means zero. Moreover, let $\operatorname{Var}(\mathbf{X}) = \mathbf{I}$. Let $\mathcal{D} = (\mathbf{X}, \mathbf{E})$, be the corresponding DAG such that $X_i \to X_j$ in \mathcal{D} if and only if $A_{ji} \neq 0$. A nonzero entry A_{ji} is called the edge coefficient of $X_i \to X_j$. For two distinct nodes $X_i, X_j \in \mathbf{X}$, let p_1, \dots, p_r be all paths between X_i and X_j in \mathcal{D} that do not contain a collider. Then $\operatorname{Cov}(X_i, X_j) = \sum_{s=1}^r \pi_s$, where π_s is the product of all edge coefficients along path $p_s, s \in \{1, \dots, r\}$.

Theorem A.2 (c.f. Theorem 3.2.4 Mardia et al., 1980). Let $\mathbf{X} = (\mathbf{X_1}^T, \mathbf{X_2}^T)^T$ be a *p*-dimensional multivariate Gaussian random vector with mean vector $\boldsymbol{\mu} = (\boldsymbol{\mu_1}^T, \boldsymbol{\mu_2}^T)^T$ and covariance matrix $\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma_{11}} & \boldsymbol{\Sigma_{12}} \\ \boldsymbol{\Sigma_{21}} & \boldsymbol{\Sigma_{22}} \end{bmatrix}$, so that $\mathbf{X_1}$ is a *q*-dimensional multivariate Gaussian random vector $\boldsymbol{\mu_1}$ and covariance matrix $\boldsymbol{\Sigma}_{11}$ and $\mathbf{X_2}$ is a (p-q)-dimensional multivariate Gaussian random vector with mean vector $\boldsymbol{\mu_2}$ and covariance matrix $\boldsymbol{\Sigma}_{21}$. Then $E[\mathbf{X_2}|\mathbf{X_1} = \mathbf{x_1}] = \boldsymbol{\mu_2} + \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}(\mathbf{x_1} - \boldsymbol{\mu_1})$.

Algorithm 2: PTO algorithm (Jaber et al., 2018)

- input : DAG or CPDAG $\mathcal{G} = (\mathbf{V}, \mathbf{E})$.
- output : An ordered list $\mathbf{B} = (\mathbf{B}_1, \dots, \mathbf{B}_k), k \ge 1$ of the bucket decomposition of V in \mathcal{G} .
- Let ConComp be the bucket decomposition of V in G;
- ² Let **B** be an empty list;
- ³ while ConComp $\neq \emptyset$ do
- 4 Let $C \in ConComp$;
- 5 Let $\overline{\mathbf{C}}$ be the set of nodes in ConComp that are not in C;
- 6 **if** all edges between **C** and $\overline{\mathbf{C}}$ are into **C** in \mathcal{G} **then**
- Add C to the beginning of B;
- 8 end

9 end

7

10 return B;

Lemma A.3 (c.f. Lemma C.1 of Perković et al., 2017, Lemma 8 of Perković et al., 2018). Let X and Y be disjoint node sets in a MPDAG \mathcal{G} . Suppose that there is a proper possibly causal path from X to Y that starts with an undirected edge in \mathcal{G} , then there is one such path $q = \langle X, V_1, \ldots, Y \rangle$, $X \in \mathbf{X}$, $Y \in \mathbf{Y}$ in \mathcal{G} and DAGs $\mathcal{D}^1, \mathcal{D}^2$ in $[\mathcal{G}]$ such that the path in \mathcal{D}^1 consisting of the same sequence of nodes as q is of the form $X \to V_1 \to \cdots \to Y$ and in \mathcal{D}^2 the path consisting of the same sequence of nodes as q is of the form $X \leftarrow V_1 \to \cdots \to Y$.

Lemma A.4 (Lemma 3.2 of Perković et al., 2017). Let p^* be a path from X to Y in a MPDAG \mathcal{G} . If p^* is non-causal in \mathcal{G} , then for every DAG \mathcal{D} in $[\mathcal{G}]$ the corresponding path to p^* in \mathcal{D} is non-causal. Conversely, if p is a causal path in at least one DAG \mathcal{D} in $[\mathcal{G}]$, then the corresponding path to p in \mathcal{G} is possibly causal.

Lemma A.5 (Lemma 3.5 of Perković et al., 2017). Let $p = \langle V_1, \ldots, V_k \rangle$ be a definite status path in a MPDAG \mathcal{G} . Then p is possibly causal if and only if there is no $V_i \leftarrow V_{i+1}$, for $i \in \{1, \ldots, k-1\}$ in \mathcal{G} .

Lemma A.6 (Lemma 3.6 of Perković et al., 2017). Let X and Y be distinct nodes in a MPDAG \mathcal{G} . If p is a possibly causal path from X to Y in \mathcal{G} , then a subsequence p^* of p forms a possibly causal unshielded path from X to Y in \mathcal{G} .

Lemma A.7 (c.f. Lemma 1 of Jaber et al., 2018). Let $\mathcal{G} = (\mathbf{V}, \mathbf{E})$ be a CPDAG or DAG and let $\mathbf{B} = (\mathbf{B}_1, \ldots, \mathbf{B}_k)$, $k \ge 1$, be the output of $PTO(\mathcal{G})$ (Algorithm 2). Then for each $i, j \in \{1, \ldots, k\}$, \mathbf{B}_i and \mathbf{B}_j are buckets in \mathbf{V} and if i < j, then $\mathbf{B}_i < \mathbf{B}_j$.

Lemma A.8 (c.f. Lemma E.6 of Henckel et al., 2019).

Let **X** and **Y** be disjoint node sets in an MPDAG \mathcal{G} and suppose that there is no proper possibly causal path from **X** to **Y** that starts with an undirected edge in \mathcal{G} . Let \mathcal{D} be a DAG in [\mathcal{G}]. Then Forb(**X**, **Y**, \mathcal{G}) \subseteq De(**X**, \mathcal{G}).

B PROOFS FOR SECTION 3.1 OF THE MAIN TEXT

Proof of Proposition 3.2. This proof follows a similar reasoning as the proof of Theorem 2 of Shpitser and Pearl (2006) and proof of Theorem 57 of Perković et al. (2018).

By Lemma A.3, there is a proper possibly causal path $q = \langle X, V_1, \ldots, Y \rangle$, $k \ge 1$, $X \in \mathbf{X}$, $Y \in \mathbf{Y}$ in \mathcal{G} and DAGs \mathcal{D}^1 and \mathcal{D}^2 in $[\mathcal{G}]$ such that $X \to V_1 \to \cdots \to Y$ is in \mathcal{D}^1 and $X \leftarrow V_1 \to \cdots \to Y$ is in \mathcal{D}^2 (the special case when k = 1 is $X \leftarrow Y$).

Consider a multivariate Gaussian density over \mathbf{V} with mean vector zero, constructed using a linear structural causal model (SCM) with Gaussian noise. In particular, each random variable $A \in \mathbf{V}$ is a linear combination of its parents in \mathcal{D}^1 and a designated Gaussian noise variable ϵ_A with zero mean and a fixed variance. The Gaussian noise variables { $\epsilon_A : A \in \mathbf{V}$ }, are mutually independent.

We define the SCM such that all edge coefficients except for the ones on q_1 are 0, and all edge coefficients on q_1 are in (0, 1) and small enough so that we can choose the residual variances so that the variance of every random variable in V is 1.

The density f of \mathbf{V} generated in this way is consistent with \mathcal{D}^1 and thus, f is also consistent with \mathcal{G} and \mathcal{D}^2 (Lauritzen et al., 1990). Moreover, f is consistent with DAG \mathcal{D}^{11} that is obtained from \mathcal{D}^1 by removing all edges except for the ones on q_1 . Analogously, f is also consistent with DAG \mathcal{D}^{21} that is obtained from \mathcal{D}^2 by removing all edges except for the ones on q_2 . Hence, let $f_1(\mathbf{v}) = f(\mathbf{v})$ and let $f_2(\mathbf{v}) = f(\mathbf{v})$.

Let $f_1(\mathbf{v}'|do(\mathbf{x}))$ be an interventional density consistent with \mathcal{D}^{11} . Similarly let $f_2(\mathbf{v}'|do(\mathbf{x}))$ be an interventional density consistent with \mathcal{D}^{21} . Then $f_1(\mathbf{v}'|do(\mathbf{x}))$ and $f_1(\mathbf{v}'|do(\mathbf{x}))$ are also interventional densities consistent with \mathcal{D}^1 and \mathcal{D}^2 , respectively. Now, $f_1(\mathbf{y}|do(\mathbf{x}))$ is a marginal interventional density of \mathbf{Y} that can be calculated from the density $f_1(\mathbf{v}'|do(\mathbf{x}))$ and the analagous is true for $f_2(\mathbf{y}|do(\mathbf{x}))$ and $f_2(\mathbf{v}'|do(\mathbf{x}))$.

In order to show that $f_1(\mathbf{y}|do(\mathbf{x})) \neq f_2(\mathbf{y}|do(\mathbf{x}))$, it suffices to show that $f_1(y|do(\mathbf{x}=1)) \neq f_2(y|do(\mathbf{x}=1))$ for at least one $Y \in \mathbf{Y}$ when all \mathbf{X} variables are set to 1 by a do-intervention. In order for $f_1(y|do(\mathbf{x}=1)) \neq$ $f_2(y|do(\mathbf{x} = \mathbf{1}))$ to hold, it is enough to show that the expectation of Y is not the same under these two densities. Hence, let $E_1[Y \mid do(\mathbf{X} = \mathbf{1})]$ denote the expectation of Y, under $f_1(y|do(\mathbf{X} = \mathbf{1}))$ and let $E_2[Y \mid do(\mathbf{X} = \mathbf{1})]$ denote the expectation of Y, under $f_2(y|do(\mathbf{X} = \mathbf{1}))$.

Since Y is d-separated from X in $\mathcal{D}_{\mathbf{X}}^{21}$ we can use Rule 3 of the do-calculus (see equation (3)) to conclude that $E_2[Y \mid do(\mathbf{X} = \mathbf{1})] = E[Y] = 0$. Similarly, since Y is d-separated from X in $\mathcal{D}_{\mathbf{X}}^{11}$, we can use Rule 2 of the do-calculus (see equation (2)) to conclude that $E_1[Y \mid do(\mathbf{X} = \mathbf{1})] = E[Y|X = 1]$. By Theorems A.2 and A.1, $E[Y \mid X = 1] = \text{Cov}(X, Y) = a$, where a is the product of all edge coefficients on q_1 . Since $a \neq 0$, $E_1[Y \mid do(\mathbf{X} = \mathbf{1})] \neq E_2[Y \mid do(\mathbf{X} = \mathbf{1})]$. \Box

C PROOFS FOR SECTION 3.2 OF THE MAIN TEXT

Lemma C.1. Let **D** be any subset of **V** in MPDAG $\mathcal{G} = (\mathbf{V}, \mathbf{E})$. Then the call to algorithm $PCO(\mathbf{D}, \mathcal{G})$ will complete. Meaning that, at each iteration of the while loop in $PCO(\mathbf{D}, \mathcal{G})$ (Algorithm 1), there is a bucket **C** among the remaining buckets in **ConComp** (the bucket decomposition of **V**) such that all edges between **C** and **ConComp** \ **C** are into **C** in \mathcal{G} .

Proof of Lemma C.1. Let $\mathbf{C}_1, \ldots, \mathbf{C}_k$ be the buckets in **ConComp** at some iteration of the while loop in the call to $PCO(\mathbf{D}, \mathcal{G})$. Suppose for contradiction that there is no bucket \mathbf{C}_i , $i \in \{1, \ldots, k\}$ such that all edges between \mathbf{C}_i and $\bigcup_{j=1}^k \mathbf{C}_j \setminus \mathbf{C}_i$ are into \mathbf{C}_i . We will show that this leads to the conclusion that \mathcal{G} is not acyclic (a contradiction).

Consider a directed graph \mathcal{G}_1 constructed so that each bucket in **ConComp** represents one node in \mathcal{G}_1 . Meaning, a bucket $\mathbf{C}_i, i \in \{1, ..., k\}$ is represented by a node C_i in \mathcal{G}_1 . Also, let $C_i \to C_j, i, j \in \{1, ..., k\}$, be in \mathcal{G}_1 if $A \to B$ is in \mathcal{G} and $A \in C_i, B \in C_j$.

Since there is no bucket C_i in ConComp such that all edges between C_i and $\bigcup_{j=1}^k C_j \setminus C_i$ are into C_i , there is either a directed cycle in \mathcal{G}_1 , or $C_l \to C_r$ and $C_r \to C_l$ is in \mathcal{G}_1 for some $l, r \in \{1, ..., k\}$. For simplicity, we will refer to both previously mentioned cases as directed cycles.

Let us choose one such directed cycle in \mathcal{G}_1 , that is, let $C_{r_1} \to \cdots \to C_{r_m} \to C_{r_1}$, $2 \leq m \leq k, r_1, \ldots, r_m \in \{1, \ldots, k\}$, be in \mathcal{G}_1 . Let $A_i \in \mathbf{C}_{\mathbf{r}_i}$ and $B_{i+1} \in \mathbf{C}_{\mathbf{r}_{i+1}}$, for all $i \in \{1, \ldots, m-1\}$, such that $A_i \to B_{i+1}$ is in \mathcal{G} . Additionally, let $A_m \in \mathbf{C}_{\mathbf{r}_m}$, and $B_1 \in \mathbf{C}_{\mathbf{r}_1}$ such that $A_m \to B_1$ is in \mathcal{G} .

Since $A_1 \rightarrow B_2$ is in \mathcal{G} and B_2 and A_2 are in the same

bucket $\mathbf{C}_{\mathbf{r}_2}$ in \mathcal{G} , by Lemma C.2, $A_1 \to A_2$. The same reasoning can be applied to conclude that $A_i \to A_{i+1}$, for all $i \in \{1, ..., m-1\}$ and also that $A_m \to A_1$ is in \mathcal{G} . Thus, $A_1 \to A_2 \to \cdots \to A_m \to A_1$, a directed cycle is in \mathcal{G} , a contradiction.

Proof of Lemma 3.5. Lemma C.2 and Lemma A.7 together imply that Algorithm 2 can be applied to a MPDAG \mathcal{G} and also that the output of $PTO(\mathcal{G})$ is the same as that of $PCO(\mathbf{V}, \mathcal{G})$. Furthermore, $PTO(\mathcal{G}) =$ $PCO(\mathbf{V}, \mathcal{G}) = (\overline{\mathbf{B_1}}, \dots, \overline{\mathbf{B_r}}) r \geq k$, where for all $i, j \in$ $\{1, \dots, r\}, \overline{\mathbf{B_i}}$ and $\overline{\mathbf{B_j}}$ are buckets in \mathbf{V} in \mathcal{G} , and if i < j, then $\overline{\mathbf{B_i}} < \overline{\mathbf{B_j}}$ with respect to \mathcal{G} .

The statement of the lemma then follows directly from the definition of buckets (Definition 3.3) and Corollary 3.4, since for each $l \in \{1, ..., k\}$, there exists $s \in \{1, ..., r\}$ such that $\mathbf{B}_{\mathbf{l}} = \mathbf{D} \cap \overline{\mathbf{B}}_{\mathbf{s}}$ and $(\mathbf{B}_{\mathbf{l}}, ..., \mathbf{B}_{\mathbf{k}})$ is exactly the output of PCO(\mathbf{V}, \mathcal{G}).

Lemma C.2. Let **B** be a bucket in **V** in MPDAG $\mathcal{G} = (\mathbf{V}, \mathbf{E})$ and let $X \in \mathbf{V}, X \notin \mathbf{B}$. If there is a causal path from X to **B** in \mathcal{G} , then for every node $B \in \mathbf{B}$ there is a causal path from X to B in \mathcal{G} .

Proof of Lemma C.2. Let p be a shortest causal path from X to **B** in \mathcal{G} . Then p is of the form $X \to \ldots A \to B$, possibly X = A and $A \notin \mathbf{B}$.

Let $B' \in \mathbf{B}$, $B' \neq B$ and let $q = \langle B = W_1, \dots, W_r = B' \rangle$, r > 1 be a shortest undirected path from B to B' in \mathcal{G} . It is enough to show that there is an edge $A \rightarrow B'$ is in \mathcal{G} .

Since $A \to B - W_2$, by the properties of MPDAGs (Meek, 1995, see Figure 2 in the main text), $A \to W_2$ or $A - W_2$ is in \mathcal{G} . Since $A \notin \mathbf{B}$, $A \to W_2$ is in \mathcal{G} . If r = 2, we are done. Otherwise, $A \to W_2 - W_3 - \cdots - W_k$ is in \mathcal{G} and and we can apply the same reasoning as above iteratively until we obtain $A \to W_k$ is in \mathcal{G} .

D PROOFS FOR SECTION 3.3 OF THE MAIN TEXT

The proof of Theorem 3.6 is given in the main text. Here we provide proofs for the supporting results.

Lemma D.1. Let **X** and **Y** be disjoint node sets in **V** in MPDAG $\mathcal{G} = (\mathbf{V}, \mathbf{E})$ and suppose that there is no proper possibly causal path from **X** to **Y** that starts with an undirected edge in \mathcal{G} . Further, let $(\mathbf{B}_1, \dots, \mathbf{B}_k) =$ $PCO(An(\mathbf{Y}, \mathcal{G}_{\mathbf{V} \setminus \mathbf{X}}), \mathcal{G}), k \geq 1.$

(i) For i ∈ {1,...,k}, there is no proper possibly causal path from X to B_i that starts with an undirected edge in G.

(ii) For $i \in \{2, ..., k\}$, let $\mathbf{P_i} = (\bigcup_{j=1}^{i-1} \mathbf{B_i}) \cap \operatorname{Pa}(\mathbf{B_i}, \mathcal{G})$. Then for every DAG \mathcal{D} in $[\mathcal{G}]$ and every interventional density f consistent with \mathcal{D} we have

$$f(\mathbf{b_i}|\mathbf{b_{i-1}},\ldots,\mathbf{b_1},do(\mathbf{x})) = f(\mathbf{b_i}|\mathbf{p_i},do(\mathbf{x})).$$

(iii) For $i \in \{2, ..., k\}$, let $\mathbf{P_i} = (\bigcup_{j=1}^{i-1} \mathbf{B_i}) \cap \operatorname{Pa}(\mathbf{B_i}, \mathcal{G})$. For $i \in \{1, ..., k\}$, let $\mathbf{X_{P_i}} = \mathbf{X} \cap \operatorname{Pa}(\mathbf{B_i}, \mathcal{G})$. Then for every DAG \mathcal{D} in $[\mathcal{G}]$ and every interventional density f consistent with \mathcal{D} we have

$$f(\mathbf{b}_{\mathbf{i}}|\mathbf{p}_{\mathbf{i}}, do(\mathbf{x})) = f(\mathbf{b}_{\mathbf{i}}|\mathbf{p}_{\mathbf{i}}, do(\mathbf{x}_{\mathbf{p}_{\mathbf{i}}})).$$

Additionally, $f(\mathbf{b_1}|do(\mathbf{x})) = f(\mathbf{b_1}|do(\mathbf{x_{p_1}})).$

(iv) For $i \in \{2, ..., k\}$, let $\mathbf{P_i} = (\bigcup_{j=1}^{i-1} \mathbf{B_i}) \cap \operatorname{Pa}(\mathbf{B_i}, \mathcal{G})$. For $i \in \{1, ..., k\}$, let $\mathbf{X_{p_i}} = \mathbf{X} \cap \operatorname{Pa}(\mathbf{B_i}, \mathcal{G})$. Then for every DAG \mathcal{D} in $[\mathcal{G}]$ and every interventional density f consistent with \mathcal{D} we have

$$f(\mathbf{b_i}|\mathbf{p_i}, do(\mathbf{x_{p_i}})) = f(\mathbf{b_i}|\operatorname{pa}(\mathbf{b_i}, \mathcal{G})),$$

for values $pa(\mathbf{b_i}, \mathcal{G})$ of $Pa(\mathbf{b_i}, \mathcal{G})$ that are in agreement with \mathbf{x} .

Proof of Lemma D.1. (i): Suppose for a contradiction that there is a proper possibly causal path from X to $\mathbf{B_i}$ that starts with an undirected edge in \mathcal{G} . Let $p = \langle X, \ldots, B \rangle, X \in \mathbf{X}, B \in \mathbf{B_i}$, be a shortest such path in \mathcal{G} . Then p is unshielded in \mathcal{G} (Lemma A.6).

Since $B \in An(\mathbf{Y}, \mathcal{G}_{\mathbf{V}\setminus\mathbf{X}})$ there is a causal path q from B to \mathbf{Y} in \mathcal{G} that does not contain a node in \mathbf{X} . No node other than B is both on q and p (otherwise, by definition p is not possibly causal from X to B). Hence, by Lemma D.2, $p \oplus q$ is a proper possibly causal path from \mathbf{X} to \mathbf{Y} that starts with an undirected edge in \mathcal{G} , which is a contradiction.

(ii): Let $\mathbf{N}_{\mathbf{i}} = (\bigcup_{j=1}^{i-1} \mathbf{B}_{\mathbf{j}}) \setminus \operatorname{Pa}(\mathbf{B}_{\mathbf{i}}, \mathcal{G})$. If $\mathbf{B}_{\mathbf{i}} \perp_{\mathcal{D}_{\overline{\mathbf{X}}}} \mathbf{N}_{\mathbf{i}} \mid (\mathbf{X} \cup \mathbf{P}_{\mathbf{i}})$, then by Rule 1 of the do calculus: $f(\mathbf{b}_{\mathbf{i}}|\mathbf{b}_{i-1}, \dots, \mathbf{b}_{1}, do(\mathbf{x})) = f(\mathbf{b}_{\mathbf{i}}|\mathbf{p}_{\mathbf{i}}, do(\mathbf{x}))$ (see equation (1)).

Suppose for a contradiction that there is a path from \mathbf{B}_i to \mathbf{N}_i that is d-connecting given $\mathbf{X} \cup \mathbf{P}_i$ in $\mathcal{D}_{\overline{\mathbf{X}}}$. Let $p = \langle B_i, \ldots, N \rangle$, $B_i \in \mathbf{B}_i$, $N \in \mathbf{N}_i$ be a shortest such path. Let p^* be the path in \mathcal{G} that consists of the same sequence of nodes as p in $\mathcal{D}_{\overline{\mathbf{X}}}$.

First suppose that p is of the form $B_i \to \ldots N$. Since $B_i \in \mathbf{B_i}$ and $\mathbf{N_i} \subseteq (\cup_{j=1}^{i-1} \mathbf{B_j})$, p is not causal from B_i to N (Lemma 3.5). Hence, let C be the closest collider to B_i on p, that is, p has the form $B_i \to \cdots \to C \leftarrow \ldots N$. Since p is d-connecting given $\mathbf{X} \cup \mathbf{P_i}$ in $\mathcal{D}_{\overline{\mathbf{X}}}$. C must be an ancestor of $\mathbf{P_i}$ in $\mathcal{D}_{\overline{\mathbf{X}}}$. However, then there is a causal path from $B_i \in \mathbf{B_i}$ to $\mathbf{P_i} \subseteq (\cup_{j=1}^{i-1} \mathbf{B_j})$ which contradicts Lemma 3.5.

Next, suppose that p is of the form $B_i \leftarrow A \dots N$, $A \notin \mathbf{B_i}$. Since $\operatorname{Pa}(\mathbf{B_i}, \mathcal{G}) \subseteq (\mathbf{X} \cup \mathbf{P_i})$ and since pis d-connecting given $(\mathbf{X} \cup \mathbf{P_i})$, $B_i - A$ is in \mathcal{G} and $A \notin (\mathbf{X} \cup \mathbf{P_i})$.

Note that p^* cannot be undirected, since that would imply that $N \in \mathbf{B_i}$ and contradict Lemma 3.5. Hence, let B be the closest node to B_i on p^* such that $p^*(B, N)$ starts with a directed edge (possibly B = A). Then p^* is either of the form $B_i - A - \cdots - L - B \rightarrow R \dots N$ or of the form $B_i - A - \cdots - L - B \leftarrow R \dots N$.

Suppose first that p^* is of the form $B_i - A - \cdots - L - B \rightarrow R \dots N$. Then $B \notin (\mathbf{X} \cup \mathbf{P_i} \cup \mathbf{B_i})$ otherwise, p is either blocked by $\mathbf{X} \cup \mathbf{P_i}$, or a shorter path could have been chosen.

Let $(\mathbf{B}'_1, \dots, \mathbf{B}'_r) = \text{PCO}(\mathbf{V}, \mathcal{G}), r \geq k$. Let $l \in \{i, \dots, r\}$ such that $\mathbf{B}'_1 \cap \mathbf{B}_i \neq \emptyset$, then $B_i, B \in \mathbf{B}'_1$ and $N \in (\bigcup_{j=1}^{l-1} \mathbf{B}'_j)$. Now consider subpath p(B, N). By Lemma 3.5, p(B, N) cannot be causal from B to N. Hence, there is a collider on p(B, N) and we can derive the contradiction using the same reasoning as above.

Suppose next that p^* is of the form $B_i - A - \cdots - L - B \leftarrow R \dots N$. Then either $R \to L$ or R - L is in \mathcal{G} (Meek, 1995, see Figure 4 in the main text). Then $\langle L, R \rangle$ is also an edge in $\mathcal{D}_{\overline{\mathbf{X}}}$ otherwise, L or R is in \mathbf{X} and a non-collider on p, so p would be blocked by $\mathbf{X} \cup \mathbf{P_i}$.

Hence, $q = p(B_i, L) \oplus \langle L, R \rangle \oplus p(R, N)$ is a shorter path than p in $\mathcal{D}_{\overline{\mathbf{X}}}$. If L and R have the same collider/noncollider status on q on p, then q is also d-connecting given $\mathbf{X} \cup \mathbf{P_i}$, which would contradict our choice of p. Hence, the collider/non-collider status of L or R, is different on p and q. We now discuss the cases for the change of collider/non-collider status of L and R and derive a contradiction in each.

Suppose that *L* is a collider on *q*, and a non-collider on *p*. This implies that $W \to L \to B \leftarrow R$ is a subpath of *p* and $L \leftarrow R$ is in $\mathcal{D}_{\overline{\mathbf{X}}}$. Even though *L* is not a collider on *p*, *B* is a collider on *p* and $L \in \operatorname{An}(B, \mathcal{D}_{\overline{\mathbf{X}}})$. Since *p* is d-connecting given $\mathbf{X} \cup \mathbf{P}_i$, $\operatorname{De}(B, \mathcal{D}_{\overline{\mathbf{X}}}) \cap (\mathbf{X} \cup \mathbf{P}_i) \neq \emptyset$. However, then also $\operatorname{De}(L, \mathcal{D}_{\overline{\mathbf{X}}}) \cap (\mathbf{X} \cup \mathbf{P}_i) \neq \emptyset$ and *q* is also d-connecting given $\mathbf{X} \cup \mathbf{P}_i$ and a shorter path between \mathbf{B}_i and \mathbf{N}_i than *p*, which is a contradiction.

The contradiction can be derived in exactly the same way as above in the case when R is a collider on q, and a noncollider on p. Since $B \leftarrow R$ is in $\mathcal{D}_{\overline{\mathbf{X}}}$, R cannot be anything but a non-collider on q, so the only case left to consider is if L is a non-collider on q and a collider on p.

For L to be a non-collider on q and a collider on p, $W \rightarrow L \leftarrow B \leftarrow R$ must be a subpath of p and $L \rightarrow R$ should be in $\mathcal{D}_{\overline{\mathbf{X}}}$. But then there is a cycle in $\mathcal{D}_{\overline{\mathbf{X}}}$, which is a contradiction.

(iii): We will show that $f(\mathbf{b_i}|\mathbf{p_i}, do(\mathbf{x})) = f(\mathbf{b_i}|\mathbf{p_i}, do(\mathbf{x_{p_i}}))$. The simpler case, $f(\mathbf{b_1}|do(\mathbf{x})) = f(\mathbf{b_1}|(\mathbf{x_{p_1}}))$ follows from the same proof, when $\mathbf{B_i}$ is replaced by $\mathbf{B_1}$ and $\mathbf{P_i}$ is removed.

Let $\mathbf{X}_{\mathbf{n}_{i}} = \mathbf{X} \setminus \operatorname{Pa}(\mathbf{B}_{i}, \mathcal{G})$ and let $\mathbf{X}'_{\mathbf{n}_{i}} = \mathbf{X}_{\mathbf{n}_{i}} \setminus \operatorname{An}(\mathbf{P}_{i}, \mathcal{D}_{\overline{\mathbf{X}_{\mathbf{p}_{i}}}})$. That is $X \in \mathbf{X}'_{\mathbf{n}_{i}}$ if $X \in \mathbf{X}_{\mathbf{n}_{i}}$ and if there is no causal path from X to \mathbf{P}_{i} in \mathcal{D} that does not contain a node in $\mathbf{X}_{\mathbf{p}_{i}}$.

Note that $\operatorname{Pa}(\mathbf{B}_{i}, \mathcal{G}) = \mathbf{X}_{\mathbf{p}_{i}} \cup \mathbf{P}_{i}$. By Rule 3 of the do-calculus, for $f(\mathbf{b}_{i}|\mathbf{p}_{i}, do(\mathbf{x})) = f(\mathbf{b}_{i}|\mathbf{p}_{i}, do(\mathbf{x}_{\mathbf{p}_{i}}))$ to hold, it is enough to show that $\mathbf{B}_{i} \perp_{\mathcal{D}}_{\overline{\mathbf{x}_{\mathbf{p}_{i}}\mathbf{x}'_{\mathbf{n}_{i}}}} \mathbf{X}_{\mathbf{n}_{i}} | \operatorname{Pa}(\mathbf{B}_{i}, \mathcal{G})$ (see equation (3)).

Suppose for a contradiction that there is a d-connecting path from $\mathbf{B_i}$ to $\mathbf{X_{n_i}}$ in $\mathcal{D}_{\overline{\mathbf{X_{p_i}}\mathbf{X'_{n_i}}}}$. Let $p = \langle B_i, \ldots, X \rangle$, $B_i \in \mathbf{B_i}, X \in \mathbf{X_{n_i}}$, be a shortest such path in $\mathcal{D}_{\overline{\mathbf{X_{p_i}}\mathbf{x'_{n_i}}}}$. Let p^* be the path in \mathcal{G} that consists of the same sequence of nodes as p in $\mathcal{D}_{\overline{\mathbf{X_{p_i}}\mathbf{x'_{n_i}}}}$. This proof follows a very similar line of reasoning to the proof of (ii) above.

Let $(\mathbf{B}'_{1}, \dots, \mathbf{B}'_{\mathbf{r}}) = \text{PCO}(\mathbf{V}, \mathcal{G}), r \geq k$. Let $l \in \{i, \dots, r\}$ such that $\mathbf{B}'_{1} \cap \mathbf{B}_{i} \neq \emptyset$, then $B_{i} \in \mathbf{B}'_{1}$ and $\text{Pa}(\mathbf{B}_{i}, \mathcal{G}) \subseteq (\cup_{j=1}^{i-1} \mathbf{B}_{j})$.

Suppose that p is of the form $B_i \to \ldots X$. If $X \in \mathbf{X}'_{\mathbf{n}_i}$, then p is not a causal path since p is a path in $\mathcal{D}_{\overline{\mathbf{X}_{\mathbf{p}_i}}\mathbf{X}'_{\mathbf{n}_i}}$. Otherwise, $X \in \operatorname{An}(\mathbf{P_i}, \mathcal{D}_{\overline{\mathbf{X}_{\mathbf{p}_i}}})$ and so any causal path from B_i to X would need to contain a node in $\mathbf{X}_{\mathbf{p}_i}$ and hence, would be blocked by $\operatorname{Pa}(\mathbf{B_i}, \mathcal{G})$. Thus, p is not a causal path from B_i to X.

Hence, let C be the closest collider to B_i on p, that is, p has the form $B_i \to \cdots \to C \leftarrow \ldots X$. Since p is d-connecting given $\operatorname{Pa}(\mathbf{B_i}, \mathcal{G})$, C is be an ancestor of $\operatorname{Pa}(\mathbf{B_i}, \mathcal{G})$ in $\mathcal{D}_{\overline{\mathbf{X_{P_i}X'_{n_i}}}}$. However, this would imply that there is a causal path from $B_i \in \mathbf{B'_1}$ to $\operatorname{Pa}(\mathbf{B_i}, \mathcal{G}) \subseteq (\bigcup_{i=1}^{i-1} \mathbf{B_j})$ in $\mathcal{D}_{\mathbf{X_{P_i}}}$, which contradicts Lemma 3.5.

Next, suppose that p is of the form $B_i \leftarrow A \dots X$, $A \notin \mathbf{B_i}$. Since p is d-connecting given $\operatorname{Pa}(\mathbf{B_i}, \mathcal{G})$, $A \notin \operatorname{Pa}(\mathbf{B_i}, \mathcal{G})$. Hence, $B_i - A$ is in \mathcal{G} .

Then $A \in \mathbf{B}'_{1}$. Note that by (i) above, $\mathbf{X} \cap \mathbf{B}'_{1} = \emptyset$, so p^{*} is not an undirected path in \mathcal{G} . Hence, let B be the closest node to B_{i} on p^{*} such that $p^{*}(B, X)$ starts with a directed edge (possibly B = A). Then p^{*} is either of the form $B_{i} - A - \cdots - L - B \rightarrow R \dots X$ or of the form $B_{i} - A - \cdots - L - B \leftarrow R \dots X$.

Suppose first that p^* is of $B_i - A - \cdots - L - B \rightarrow R \dots X$. Then $B \in \mathbf{B}'_1$ and so $B \notin \mathbf{X}$. Since p is d-connecting given $\operatorname{Pa}(\mathbf{B}_i, \mathcal{G}), B \notin \operatorname{Pa}(\mathbf{B}_i, \mathcal{G})$ and additionally, $B \notin \mathbf{B}_i$ otherwise, a shorter path could have

been chosen.

Now consider subpath p(B, X). There is at least one collider on p(B, X). Since $B, B_i \in \mathbf{B}'_1$, the same reasoning as above can be used to derive a contradiction in this case.

Suppose next that p^* is of the form $B_i - A - \cdots - L - B \leftarrow R \dots X$. Then either $R \to L$ or R - L is in \mathcal{G} (Meek, 1995, see Figure 4 in the main text). We first show that in either case, edge $\langle L, R \rangle$ is also in $\mathcal{D}_{\mathbf{X}_{pi}, \mathbf{X}'_{pi}}$.

Since $L \in \mathbf{B}'_{\mathbf{l}}$ and since $\mathbf{X} \cap \mathbf{B}'_{\mathbf{l}} = \emptyset$, $L \notin \mathbf{X}$. Hence, if $R \to L$ is in \mathcal{G} , $R \to L$ is in $\mathcal{D}_{\overline{\mathbf{X}_{p_{\mathbf{l}}}\mathbf{X}'_{n_{\mathbf{l}}}}}$. If R - L is in \mathcal{G} , then $R \in \mathbf{B}'_{\mathbf{l}}$ and since $\mathbf{X} \cap \mathbf{B}'_{\mathbf{l}} = \emptyset$, $R \notin \mathbf{X}$, so $\langle L, R \rangle$ is in $\mathcal{D}_{\overline{\mathbf{X}_{p_{\mathbf{l}}}\mathbf{X}'_{n_{\mathbf{l}}}}$.

Hence, $q = p(B_i, L) \oplus \langle L, R \rangle \oplus p(R, X)$ is a shorter path than p in $\mathcal{D}_{\overline{\mathbf{X}_{p_i}\mathbf{X}'_{n_i}}}$. If L and R have the same collider/non-collider status on q on p, then q is also dconnecting given $\operatorname{Pa}(\mathbf{B_i}, \mathcal{G})$, which would contradict our choice of p. Hence, the collider/non-collider status of Lor R, is different on p and q. We now discuss the cases for the change of collider/non-collider status of L and Rand derive a contradiction in each.

Suppose that L is a collider on q, and a non-collider on p. This implies that $W \to L \to B \leftarrow R$ is a subpath of p and $L \leftarrow R$ are in $\mathcal{D}_{\overline{\mathbf{X}_{p_i}\mathbf{X}'_{n_i}}}$. Even though L is not a collider on p, B is a collider on p and $L \in \operatorname{An}(B, \mathcal{D}_{\overline{\mathbf{X}_{p_i}\mathbf{X}'_{n_i}}})$. Since p is d-connecting given $\operatorname{Pa}(\mathbf{B}_i, \mathcal{G})$, $\operatorname{De}(B, \mathcal{D}_{\overline{\mathbf{X}_{p_i}\mathbf{X}'_{n_i}}}) \cap \operatorname{Pa}(\mathbf{B}_i, \mathcal{G}) \neq \emptyset$. However, then also $\operatorname{De}(L, \mathcal{D}_{\overline{\mathbf{X}_{p_i}\mathbf{X}'_{n_i}}}) \cap \operatorname{Pa}(\mathbf{B}_i, \mathcal{G}) \neq \emptyset$ and qis also d-connecting given $\operatorname{Pa}(\mathbf{B}_i, \mathcal{G})$ and a shorter path between \mathbf{B}_i and \mathbf{X}_{n_i} than p, which is a contradiction.

The contradiction can be derived in exactly the same way as above in the case when R is a collider on q, and a noncollider on p. Since $B \leftarrow R$ is in $\mathcal{D}_{\mathbf{X}_{p_i}\mathbf{X}'_{n_i}}$, R cannot be anything but a non-collider on q, so the only case left to consider is if L is a non-collider on q and a collider on p.

For *L* to be a non-collider on *q* and a collider on *p*, $W \rightarrow L \leftarrow B \leftarrow R$ must be a subpath of *p* and $L \rightarrow R$ should be in $\mathcal{D}_{\overline{\mathbf{X}_{p_i}\mathbf{X}'_{n_i}}}$. But then there is a cycle in $\mathcal{D}_{\overline{\mathbf{X}_{p_i}\mathbf{X}'_{n_i}}}$, which is a contradiction.

(iv):. If $\mathbf{B}_{\mathbf{i}} \perp_{\mathcal{D}_{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}}} \mathbf{X}_{\mathbf{p}_{\mathbf{i}}} | \mathbf{P}_{\mathbf{i}}$, then $f(\mathbf{b}_{\mathbf{i}} | \mathbf{p}_{\mathbf{i}}, do(\mathbf{x}_{\mathbf{p}_{\mathbf{i}}})) = f(\mathbf{b}_{\mathbf{i}} | pa(\mathbf{b}_{\mathbf{i}}, \mathcal{G}))$ by Rule 2 of the do calculus (equation (2)).

Suppose for a contradiction that there is a d-connecting path from \mathbf{B}_i to $\mathbf{X}_{\mathbf{p}_i}$ in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_i}}$. Let $p = \langle B_i, \dots, X \rangle$, $B_i \in \mathbf{B}_i, X \in \mathbf{X}_{\mathbf{p}_i}$, be a shortest such path in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_i}}$. Let p^* be the path in \mathcal{G} that consists of the same sequence of nodes as p in $\mathcal{D}_{\overline{\mathbf{X}}}$. This proof follows a very similar line of reasoning to the proof of (ii) above.

Let $(\mathbf{B}'_1, \dots, \mathbf{B}'_r) = \text{PCO}(\mathbf{V}, \mathcal{G}), r \geq k$. Let $l \in \{i, \dots, r\}$ such that $\mathbf{B}'_1 \cap \mathbf{B}_i \neq \emptyset$, then $B_i \in \mathbf{B}'_1$ and by (i) above, $\mathbf{X}_{\mathbf{p}_i} \subseteq (\cup_{i=1}^{l-1} \mathbf{B}'_i)$.

Suppose that p is of the form $B_i \to \ldots X$. Since $B_i \in \mathbf{B}'_{\mathbf{l}}$ and $\mathbf{X}_{\mathbf{p}_i} \subseteq (\cup_{j=1}^{l-1} \mathbf{B}'_{\mathbf{j}})$, by Lemma 3.5, there is at least one collider on p. Hence, let C be the closest collider to B_i on p, that is, p has the form $B_i \to \cdots \to C \leftarrow \ldots X$. Since p is d-connecting given \mathbf{P}_i in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_i}}$, C is be an ancestor of \mathbf{P}_i in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_i}}$. However, this would imply that there is a causal path from $B_i \in \mathbf{B}_i$ to $\mathbf{P}_i \subseteq (\cup_{j=1}^{i-1} \mathbf{B}_j)$ in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_i}}$, which contradicts Lemma 3.5.

Next, suppose that p is of the form $B_i \leftarrow A \dots X$, $A \notin \mathbf{B_i}$. Since p is a path in $\mathcal{D}_{\mathbf{X_{P_i}}}$, $A \notin \mathbf{X_{P_i}}$. Additionally, since p is d-connecting given $\mathbf{P_i}$, $A \notin \mathbf{P_i}$. Hence, $B_i - A$ is in \mathcal{G} .

Then $A \in \mathbf{B}'_{\mathbf{l}}$ and since $X \in (\bigcup_{j=1}^{l-1} \mathbf{B}'_{\mathbf{j}})$, $p^*(A, X)$ is not an undirected path in \mathcal{G} . Hence, let B be the closest node to B_i on p^* such that $p^*(B, X)$ starts with a directed edge (possibly B = A). Then p^* is either of the form $B_i - A - \cdots - L - B \to R \dots X$ or of the form $B_i - A - \cdots - L - B \leftarrow R \dots X$.

Suppose first that p^* is of $B_i - A - \cdots - L - B \rightarrow R \dots X$. Then $B \in \mathbf{B}'_{\mathbf{l}}$ and since $\mathbf{X}_{\mathbf{p}_i} \subseteq (\bigcup_{j=1}^{l-1} \mathbf{B}'_j)$, $B \notin \mathbf{X}_{\mathbf{p}_i}$. Since p is d-connecting given \mathbf{P}_i , $B \notin \mathbf{P}_i$ and additionally, $B \notin \mathbf{B}_i$ otherwise, a shorter path could have been chosen.

Now consider subpath p(B, X). Since $B, B_i \in \mathbf{B}'_1$, the same reasoning as above can be used to derive a contradiction in this case.

Suppose next that p^* is of the form $B_i - A - \cdots - L - B \leftarrow R \ldots X$. Then either $R \to L$ or R - L is in \mathcal{G} (Meek, 1995, see Figure 4 in the main text). Since $R \to B$ is in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_i}}, R \notin \mathbf{X}_{\mathbf{p}_i}$. Since $L \in \mathbf{B}'_1, L \notin \mathbf{X}_{\mathbf{p}_i}$, so $\langle L, R \rangle$ is also in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_i}}$.

Hence, $q = p(B_i, L) \oplus \langle L, R \rangle \oplus p(R, X)$ is a shorter path than p in $\mathcal{D}_{\mathbf{X}_{\mathbf{Pi}}}$. If L and R have the same collider/noncollider status on q on p, then q is also d-connecting given $\mathbf{P_i}$, which would contradict our choice of p. Hence, the collider/non-collider status of L or R, is different on p and q. We now discuss the cases for the change of collider/non-collider status of L and R and derive a contradiction in each.

Suppose that L is a collider on q, and a non-collider on p. This implies that $W \to L \to B \leftarrow R$ is a subpath of p and $L \leftarrow R$ are in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_i}}$. Even though, L is not a

collider on p, B is a collider on p and $L \in An(B, \mathcal{D}_{\mathbf{X}_{\mathbf{P_i}}})$. Since p is d-connecting given $\mathbf{P_i}$, $De(B, \mathcal{D}_{\mathbf{X}_{\mathbf{P_i}}}) \cap \overline{\mathbf{P_i}} \neq \emptyset$. However, then also $De(L, \mathcal{D}_{\mathbf{X}_{\mathbf{P_i}}}) \cap \mathbf{P_i} \neq \emptyset$ and q is also d-connecting given $\mathbf{P_i}$ and a shorter path between $\mathbf{B_i}$ and $\mathbf{X}_{\mathbf{P_i}}$ than p, which is a contradiction.

The contradiction can be derived in exactly the same way as above in the case when R is a collider on q, and a noncollider on p. Since $B \leftarrow R$ is in $\mathcal{D}_{\mathbf{X}_{\mathbf{P}_{i}}}$, R cannot be anything but a non-collider on q, so the only case left to consider is if L is a non-collider on q and a collider on p.

For *L* to be a non-collider on *q* and a collider on *p*, $W \rightarrow L \leftarrow B \leftarrow R$ must be a subpath of *p* and $L \rightarrow R$ should be in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_i}}$. But then there is a cycle in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_i}}$, which is a contradiction.

Lemma D.2. Let X, Y and Z be distinct nodes in MPDAG $\mathcal{G} = (\mathbf{V}, \mathbf{E})$. Suppose that there is an unshielded possibly causal path p from X to Y and a causal path q from Y to Z in \mathcal{G} such that the only node that p and q have in common is Y. Then $p \oplus q$ is a possibly causal path from X to Z.

Proof of Lemma D.2. Suppose for a contradiction that there is an edge $V_q \rightarrow V_p$, where V_q is a node on q and V_p is a node on p (additionally, $V_p \neq Y \neq V_q$). Then $p(V_p, Y)$ cannot be a causal path from V_p to Y since otherwise there is a cycle in \mathcal{G} . So $p(V_p, Y)$ takes the form $V_p - V_{p+1} \dots Y$.

Let \mathcal{D} be a DAG in $[\mathcal{G}]$, that contains $V_p \to V_{p+1}$. Since $p(V_p, Y)$ is an unshielded possibly causal path in \mathcal{G} , it corresponds to $V_p \to \cdots \to Y$ in \mathcal{D} . Then $V_q \to V_p \to \cdots \to Y$ and $q(Y, V_q)$ form a cycle in \mathcal{D} , a contradiction. \Box

Proof of Corollary 3.7. The first statement in Corollary 3.7 follows from the proof of Theorem 3.6 when replacing **Y** with **V** and **X** with empty set.

For the second statement in Corollary 3.7, note that since there are no undirected edges X - V in \mathcal{G} , where $X \in \mathbf{X}$ and $V \in \mathbf{V}'$, some of the buckets \mathbf{V}_i , $i \in \{1, \ldots, k\}$ in the bucket decomposition of \mathbf{V} will contain only nodes in \mathbf{X} . Hence, obtaining the bucket decomposition of $\mathbf{V}' =$ $\mathbf{V} \setminus \mathbf{X}$ is the same as leaving out buckets \mathbf{V}_i that contain only nodes in \mathbf{X} from $\mathbf{V}_1, \ldots, \mathbf{V}_k$. The statement then follows from Theorem 3.6 when taking $\mathbf{Y} = \mathbf{V}'$.

E PROOFS FOR SECTION 4 OF THE MAIN TEXT

Proof of Proposition 4.2. If the causal effect of X on Y is not identifiable in \mathcal{G} , by Theorem 3.6, there is a proper possibly causal path from X to Y that starts with

an undirected edge in \mathcal{G} . Then by Theorem 4.1, there is no adjustment set relative to (X, Y) in \mathcal{G} .

Hence, suppose that there is no proper possibly causal path from X to Y that starts with an undirected edge in \mathcal{G} and consider $\operatorname{Pa}(X, \mathcal{G})$. By Theorem 4.1, it is enough to show that $\operatorname{Pa}(X, \mathcal{G})$ satisfies the generalized adjustment criterion relative to (\mathbf{X}, \mathbf{Y}) .

If \mathcal{G} is a DAG, $Pa(X, \mathcal{G})$ is an adjustment set relative to (X, Y) by Theorem 3.3.2 of Pearl (2009). Hence, suppose that \mathcal{G} is not a DAG.

Since \mathcal{G} is acyclic, $\operatorname{Pa}(X, \mathcal{G}) \cap \operatorname{De}(X, \mathcal{G}) = \emptyset$. Additionally, by Lemma A.8, $\operatorname{Forb}(X, Y, \mathcal{G}) \subseteq \operatorname{De}(X, \mathcal{G})$. Hence, $\operatorname{Pa}(X, \mathcal{G})$ satisfies $\operatorname{Pa}(X, \mathcal{G}) \cap \operatorname{Forb}(X, Y, \mathcal{G}) = \emptyset$, that is, condition 2 in Theorem 4.1 relative to (X, Y) in \mathcal{G} .

Consider a non-causal definite status path p from X to Y. If p is of the form $X \leftarrow \ldots Y$ in \mathcal{G} , then p is blocked by $\operatorname{Pa}(X,\mathcal{G})$. If p is of the form $X \to \ldots Y$, then p contains at least one collider $C \in \operatorname{De}(X,\mathcal{G})$ and since $\operatorname{Pa}(X,\mathcal{G}) \cap \operatorname{De}(X,\mathcal{G}) = \emptyset$, p is blocked by $\operatorname{Pa}(X,\mathcal{G})$.

Lastly, suppose that p is of the form $X - \ldots Y$. Since p is a non-causal path from X to Y and since p is of definite status in \mathcal{G} , by Lemma A.5, there is at least one edge pointing towards X on p. Let D be the closest node to Xon p such that p(D, Y) is of the form $D \leftarrow \ldots Y$ in \mathcal{G} . Then by Lemma A.5, p(X, D) is a possibly causal path from X to D so let p' be an unshielded subsequence of p(X, D) that forms a possibly causal path from X to Din \mathcal{G} (Lemma A.6). Additionally, p is of definite status, so D must be a collider on p.

In order for p to be blocked by $\operatorname{Pa}(X, \mathcal{G})$ it is enough to show that $\operatorname{De}(D, \mathcal{G}) \cap \operatorname{Pa}(X, \mathcal{G}) = \emptyset$. Suppose for a contradiction that $E \in \operatorname{De}(D, \mathcal{G}) \cap \operatorname{Pa}(X, \mathcal{G})$. Let q be a directed path from D to E in \mathcal{G} . Then p' and q satisfy Lemma D.2 in \mathcal{G} , so $p' \oplus q$ is a possibly causal path from X to E. By definition of a possibly causal path in MPDAGs, this contradicts that $E \in \operatorname{Pa}(X, \mathcal{G})$. \Box

Lemma E.1. Let **X** and **Y** be disjoint node sets in an MPDAG $\mathcal{G} = (\mathbf{V}, \mathbf{E})$. If there is no possibly causal path from **X** to **Y** in \mathcal{G} , then for any observational density f consistent with \mathcal{G} we have

$$f(\mathbf{y}|do(\mathbf{x})) = f(\mathbf{y}).$$

Proof of Lemma E.1. Lemma E.1 follows from Lemma A.4 and Rule 3 of the do-calculus of Pearl (2009) (see equation (3)).

References

- Henckel, L., Perković, E., and Maathuis, M. H. (2019). Graphical criteria for efficient total effect estimation via adjustment in causal linear models. arXiv:1907.02435.
- Jaber, A., Zhang, J., and Bareinboim, E. (2018). A graphical criterion for effect identification in equivalence classes of causal diagrams. In *Proceedings of IJCAI* 2018, pages 5024–5030.
- Lauritzen, S. L., Dawid, A. P., Larsen, B. N., and Leimer, H.-G. (1990). Independence properties of directed Markov fields. *Networks*, 20(5):491–505.
- Mardia, K. V., Kent, J. T., and Bibby, J. M. (1980). Multivariate analysis (probability and mathematical statistics). Academic Press London.
- Meek, C. (1995). Causal inference and causal explanation with background knowledge. In *Proceedings of UAI 1995*, pages 403–410.
- Pearl, J. (2009). *Causality: Models, Reasoning, and Inference*. Cambridge University Press, New York, NY, second edition.
- Perković, E., Kalisch, M., and Maathuis, M. H. (2017). Interpreting and using CPDAGs with background knowledge. In *Proceedings of UAI 2017*.
- Perković, E., Textor, J., Kalisch, M., and Maathuis, M. H. (2018). Complete graphical characterization and construction of adjustment sets in Markov equivalence classes of ancestral graphs. *Journal of Machine Learning Research*, 18.
- Shpitser, I. and Pearl, J. (2006). Identification of joint interventional distributions in recursive semi-Markovian causal models. In *Proceedings of AAAI 2006*, pages 1219–1226.
- Wright, S. (1921). Correlation and causation. *Journal of Agricultural Research*, 20(7):557–585.