Supplement to Identifying causal effects in maximally oriented partially directed acyclic graphs

Emilija Perković
Department of Statistics
University of Washington
Seattle, WA 98195-4322

A PRELIMINARIES

Subsequences And Subpaths. A subsequence of a path p is obtained by deleting some nodes from p without changing the order of the remaining nodes. For a path $p=\left\langle X_{1}, X_{2}, \ldots, X_{m}\right\rangle$, the subpath from X_{i} to $X_{k}(1 \leq i \leq k \leq m)$ is the path $p\left(X_{i}, X_{k}\right)=$ $\left\langle X_{i}, X_{i+1}, \ldots, X_{k}\right\rangle$.

Concatenation. We denote concatenation of paths by \oplus, so that for a path $p=\left\langle X_{1}, X_{2}, \ldots, X_{m}\right\rangle, p=$ $p\left(X_{1}, X_{r}\right) \oplus p\left(X_{r}, X_{m}\right)$, for $1 \leq r \leq m$.
D-separation. If \mathbf{X} and \mathbf{Y} are d-separated given \mathbf{Z} in a DAG \mathcal{D}, we write $\mathbf{X} \perp_{\mathcal{D}} \mathbf{Y} \mid \mathbf{Z}$.

Possible Descendants. If there is a possibly causal path from X to Y, then Y is a possible descendant of X. We use the convention that every node is a possible descendant of itself. The set of possible descendants of X in \mathcal{G} is $\operatorname{PossDe}(X, \mathcal{G})$. For a set of nodes $\mathbf{X} \subseteq \mathbf{V}$, we let $\left.\operatorname{PossDe}(\mathbf{X}, \mathcal{G})=\cup_{X \in \mathbf{X}}\right) \operatorname{PossDe}(X, \mathcal{G})$.

Bayesian And Causal Bayesian Networks. If a density f over \mathbf{V} is consistent with DAG $\mathcal{D}=(\mathbf{V}, \mathbf{E})$, then (\mathcal{D}, f) form a Bayesian network. Let \mathbf{F} be a set of density functions made up of all interventional densities $f\left(\mathbf{v}^{\prime} \mid d o(\mathbf{x})\right)$ for any $\mathbf{X} \subset \mathbf{V}$ and $\mathbf{V}^{\prime}=\mathbf{V} \backslash \mathbf{X}$ that are consistent with \mathcal{D} (\mathbf{F} also includes all observational densities consistent with \mathcal{D}), then $(\mathcal{D}, \mathbf{F})$ form a causal Bayesian network.

Rules Of The Do-calculus (Pearl, 2009). Let $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ and \mathbf{W} be pairwise disjoint (possibly empty) sets of nodes in a DAG $\mathcal{D}=(\mathbf{V}, \mathbf{E})$ Let $\mathcal{D}_{\overline{\mathbf{x}}}$ denote the graph obtained by deleting all edges into \mathbf{X} from \mathcal{D}. Similarly, let $\mathcal{D}_{\underline{\mathbf{X}}}$ denote the graph obtained by deleting all edges out of \mathbf{X} in \mathcal{D} and let $\mathcal{D}_{\overline{\mathbf{X}} \underline{\mathbf{z}}}$ denote the graph obtained by deleting all edges into \mathbf{X} and all edges out of \mathbf{Z} in \mathcal{D}. Let $(\mathcal{D}, \mathbf{F})$ be a causal Bayesian network, the following rules hold for densities in \mathbf{F}.

Rule 1 (Insertion/deletion of observations). If $\mathbf{Y} \perp_{\mathcal{D}_{\overline{\mathbf{x}}}}$ $\mathbf{Z} \mid \mathbf{X} \cup \mathbf{W}$, then

$$
\begin{equation*}
f(\mathbf{y} \mid d o(\mathbf{x}), \mathbf{w})=f(\mathbf{y} \mid \operatorname{do}(\mathbf{x}), \mathbf{z}, \mathbf{w}) \tag{1}
\end{equation*}
$$

Rule 2. If $\mathbf{Y} \perp_{\mathcal{D}_{\overline{\mathbf{x}} \underline{z}}} \mathbf{Z} \mid \mathbf{X} \cup \mathbf{W}$, then

$$
\begin{equation*}
f(\mathbf{y} \mid d o(\mathbf{x}), d o(\mathbf{z}), \mathbf{w})=f(\mathbf{y} \mid d o(\mathbf{x}), \mathbf{z}, \mathbf{w}) \tag{2}
\end{equation*}
$$

Rule 3. If $\mathbf{Y} \perp_{\mathcal{D}_{\overline{\mathbf{X Z}(\mathbf{W})}}} \mathbf{Z} \mid \mathbf{X} \cup \mathbf{W}$, then

$$
\begin{equation*}
f(\mathbf{y} \mid d o(\mathbf{x}), \mathbf{w})=f(\mathbf{y} \mid \operatorname{do}(\mathbf{x}), d o(\mathbf{z}), \mathbf{w}) \tag{3}
\end{equation*}
$$

where $\mathbf{Z}(\mathbf{W})=\mathbf{Z} \backslash \operatorname{An}\left(\mathbf{W}, \mathcal{D}_{\overline{\mathbf{X}}}\right)$.

A. 1 EXISTING RESULTS

Theorem A. 1 (Wright's rule Wright, 1921). Let $\mathbf{X}=$ $\mathbf{A X}+\epsilon$, where $\mathbf{A} \in \mathbb{R}^{k \times k}, \mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{T}$ and $\epsilon=$ $\left(\epsilon_{1}, \ldots, \epsilon_{k}\right)^{T}$ is a vector of mutually independent errors with means zero. Moreover, let $\operatorname{Var}(\mathbf{X})=\mathbf{I}$. Let $\mathcal{D}=$ (\mathbf{X}, \mathbf{E}), be the corresponding DAG such that $X_{i} \rightarrow X_{j}$ in \mathcal{D} if and only if $A_{j i} \neq 0$. A nonzero entry $A_{j i}$ is called the edge coefficient of $X_{i} \rightarrow X_{j}$. For two distinct nodes $X_{i}, X_{j} \in \mathbf{X}$, let p_{1}, \ldots, p_{r} be all paths between X_{i} and X_{j} in \mathcal{D} that do not contain a collider. Then $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\sum_{s=1}^{r} \pi_{s}$, where π_{s} is the product of all edge coefficients along path $p_{s}, s \in\{1, \ldots, r\}$.
Theorem A. 2 (c.f. Theorem 3.2.4 Mardia et al., 1980). Let $\mathbf{X}=\left(\mathbf{X}_{\mathbf{1}}{ }^{T}, \mathbf{X}_{\mathbf{2}}{ }^{T}\right)^{T}$ be a p-dimensional multivariate Gaussian random vector with mean vector $\mu=$ $\left(\mu_{\mathbf{1}}^{T}, \mu_{\mathbf{2}}{ }^{T}\right)^{T}$ and covariance matrix $\boldsymbol{\Sigma}=\left[\begin{array}{ll}\boldsymbol{\Sigma}_{\mathbf{1 1}} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{\mathbf{2 1}} & \boldsymbol{\Sigma}_{22}\end{array}\right]$, so that $\mathbf{X}_{\mathbf{1}}$ is a q-dimensional multivariate Gaussian random vector with mean vector μ_{1} and covariance matrix $\boldsymbol{\Sigma}_{11}$ and $\mathbf{X}_{\mathbf{2}}$ is a $(p-q)$-dimensional multivariate Gaussian random vector with mean vector μ_{2} and covariance matrix $\boldsymbol{\Sigma}_{22}$. Then $E\left[\mathbf{X}_{\mathbf{2}} \mid \mathbf{X}_{\mathbf{1}}=\mathbf{x}_{\mathbf{1}}\right]=\mu_{\mathbf{2}}+$ $\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1}\left(\mathrm{x}_{\mathbf{1}}-\mu_{\mathbf{1}}\right)$.

```
Algorithm 2: PTO algorithm (Jaber et al., 2018)
input : DAG or CPDAG \(\mathcal{G}=(\mathbf{V}, \mathbf{E})\).
output : An ordered list \(\mathbf{B}=\left(\mathbf{B}_{\mathbf{1}}, \ldots, \mathbf{B}_{\mathbf{k}}\right), k \geq 1\)
                of the bucket decomposition of \(\mathbf{V}\) in \(\mathcal{G}\).
1 Let ConComp be the bucket decomposition of \(\mathbf{V}\)
    in \(\mathcal{G}\);
Let \(\mathbf{B}\) be an empty list;
while ConComp \(\neq \emptyset\) do
        Let \(\mathbf{C} \in \mathbf{C o n C o m p}\);
        Let \(\overline{\mathbf{C}}\) be the set of nodes in ConComp that
        are not in \(\mathbf{C}\);
        if all edges between \(\mathbf{C}\) and \(\overline{\mathbf{C}}\) are into \(\mathbf{C}\) in \(\mathcal{G}\)
        then
            Add \(\mathbf{C}\) to the beginning of \(\mathbf{B}\);
        end
end
return B;
```

Lemma A. 3 (c.f. Lemma C. 1 of Perković et al., 2017, Lemma 8 of Perković et al., 2018). Let \mathbf{X} and \mathbf{Y} be disjoint node sets in a MPDAG \mathcal{G}. Suppose that there is a proper possibly causal path from \mathbf{X} to \mathbf{Y} that starts with an undirected edge in \mathcal{G}, then there is one such path $q=\left\langle X, V_{1}, \ldots, Y\right\rangle, X \in \mathbf{X}, Y \in \mathbf{Y}$ in \mathcal{G} and DAGs $\mathcal{D}^{1}, \mathcal{D}^{2}$ in $[\mathcal{G}]$ such that the path in \mathcal{D}^{1} consisting of the same sequence of nodes as q is of the form $X \rightarrow V_{1} \rightarrow \cdots \rightarrow Y$ and in \mathcal{D}^{2} the path consisting of the same sequence of nodes as q is of the form $X \leftarrow V_{1} \rightarrow \cdots \rightarrow Y$.
Lemma A. 4 (Lemma 3.2 of Perković et al., 2017). Let p^{*} be a path from X to Y in a MPDAG \mathcal{G}. If p^{*} is non-causal in \mathcal{G}, then for every DAG \mathcal{D} in $[\mathcal{G}]$ the corresponding path to p^{*} in \mathcal{D} is non-causal. Conversely, if p is a causal path in at least one DAG \mathcal{D} in $[\mathcal{G}]$, then the corresponding path to p in \mathcal{G} is possibly causal.
Lemma A. 5 (Lemma 3.5 of Perković et al., 2017). Let $p=\left\langle V_{1}, \ldots, V_{k}\right\rangle$ be a definite status path in a MPDAG \mathcal{G}. Then p is possibly causal if and only if there is no $V_{i} \leftarrow V_{i+1}$, for $i \in\{1, \ldots, k-1\}$ in \mathcal{G}.
Lemma A. 6 (Lemma 3.6 of Perković et al., 2017). Let X and Y be distinct nodes in a MPDAG \mathcal{G}. If p is a possibly causal path from X to Y in \mathcal{G}, then a subsequence p^{*} of p forms a possibly causal unshielded path from X to Y in \mathcal{G}.

Lemma $\mathbf{A .} 7$ (c.f. Lemma 1 of Jaber et al., 2018). Let $\mathcal{G}=(\mathbf{V}, \mathbf{E})$ be a CPDAG or $D A G$ and let $\mathbf{B}=$ $\left(\mathbf{B}_{\mathbf{1}}, \ldots, \mathbf{B}_{\mathbf{k}}\right), k \geq 1$, be the output of $\operatorname{PTO}(\mathcal{G})$ (Algorithm 2). Then for each $i, j \in\{1, \ldots k\}, \mathbf{B}_{\mathbf{i}}$ and $\mathbf{B}_{\mathbf{j}}$ are buckets in \mathbf{V} and if $i<j$, then $\mathbf{B}_{\mathbf{i}}<\mathbf{B}_{\mathbf{j}}$.
Lemma A. 8 (c.f. Lemma E. 6 of Henckel et al., 2019).

Let \mathbf{X} and \mathbf{Y} be disjoint node sets in an MPDAG \mathcal{G} and suppose that there is no proper possibly causal path from \mathbf{X} to \mathbf{Y} that starts with an undirected edge in \mathcal{G}. Let \mathcal{D} be a $D A G$ in $[\mathcal{G}]$. Then $\operatorname{Forb}(\mathbf{X}, \mathbf{Y}, \mathcal{G}) \subseteq \operatorname{De}(\mathbf{X}, \mathcal{G})$.

B PROOFS FOR SECTION 3.1 OF THE MAIN TEXT

Proof of Proposition 3.2. This proof follows a similar reasoning as the proof of Theorem 2 of Shpitser and Pearl (2006) and proof of Theorem 57 of Perković et al. (2018).

By Lemma A.3, there is a proper possibly causal path $q=\left\langle X, V_{1}, \ldots, Y\right\rangle, k \geq 1, X \in \mathbf{X}, Y \in \mathbf{Y}$ in \mathcal{G} and DAGs \mathcal{D}^{1} and \mathcal{D}^{2} in $[\mathcal{G}]$ such that $X \rightarrow V_{1} \rightarrow \cdots \rightarrow Y$ is in \mathcal{D}^{1} and $X \leftarrow V_{1} \rightarrow \cdots \rightarrow Y$ is in \mathcal{D}^{2} (the special case when $k=1$ is $X \leftarrow Y$).

Consider a multivariate Gaussian density over V with mean vector zero, constructed using a linear structural causal model (SCM) with Gaussian noise. In particular, each random variable $A \in \mathbf{V}$ is a linear combination of its parents in \mathcal{D}^{1} and a designated Gaussian noise variable ϵ_{A} with zero mean and a fixed variance. The Gaussian noise variables $\left\{\epsilon_{A}: A \in \mathbf{V}\right\}$, are mutually independent.

We define the SCM such that all edge coefficients except for the ones on q_{1} are 0 , and all edge coefficients on q_{1} are in $(0,1)$ and small enough so that we can choose the residual variances so that the variance of every random variable in \mathbf{V} is 1 .

The density f of \mathbf{V} generated in this way is consistent with \mathcal{D}^{1} and thus, f is also consistent with \mathcal{G} and \mathcal{D}^{2} (Lauritzen et al., 1990). Moreover, f is consistent with DAG \mathcal{D}^{11} that is obtained from \mathcal{D}^{1} by removing all edges except for the ones on q_{1}. Analogously, f is also consistent with DAG \mathcal{D}^{21} that is obtained from \mathcal{D}^{2} by removing all edges except for the ones on q_{2}. Hence, let $f_{1}(\mathbf{v})=f(\mathbf{v})$ and let $f_{2}(\mathbf{v})=f(\mathbf{v})$.
Let $f_{1}\left(\mathbf{v}^{\prime} \mid d o(\mathbf{x})\right)$ be an interventional density consistent with \mathcal{D}^{11}. Similarly let $f_{2}\left(\mathbf{v}^{\prime} \mid d o(\mathbf{x})\right)$ be an interventional density consistent with \mathcal{D}^{21}. Then $f_{1}\left(\mathbf{v}^{\prime} \mid \operatorname{do}(\mathbf{x})\right)$ and $f_{1}\left(\mathbf{v}^{\prime} \mid d o(\mathbf{x})\right)$ are also interventional densities consistent with \mathcal{D}^{1} and \mathcal{D}^{2}, respectively. Now, $f_{1}(\mathbf{y} \mid d o(\mathbf{x}))$ is a marginal interventional density of \mathbf{Y} that can be calculated from the density $f_{1}\left(\mathbf{v}^{\prime} \mid d o(\mathbf{x})\right)$ and the analagous is true for $f_{2}(\mathbf{y} \mid d o(\mathbf{x}))$ and $f_{2}\left(\mathbf{v}^{\prime} \mid d o(\mathbf{x})\right)$.

In order to show that $f_{1}(\mathbf{y} \mid d o(\mathbf{x})) \neq f_{2}(\mathbf{y} \mid d o(\mathbf{x}))$, it suffices to show that $f_{1}(y \mid d o(\mathbf{x}=1)) \neq f_{2}(y \mid d o(\mathbf{x}=\mathbf{1}))$ for at least one $Y \in \mathbf{Y}$ when all \mathbf{X} variables are set to 1 by a do-intervention. In order for $f_{1}(y \mid d o(\mathbf{x}=1)) \neq$
$f_{2}(y \mid d o(\mathbf{x}=\mathbf{1}))$ to hold, it is enough to show that the expectation of Y is not the same under these two densities. Hence, let $E_{1}[Y \mid d o(\mathbf{X}=\mathbf{1})]$ denote the expectation of Y, under $f_{1}(y \mid d o(\mathbf{X}=\mathbf{1}))$ and let $E_{2}[Y \mid d o(\mathbf{X}=\mathbf{1})]$ denote the expectation of \mathbf{Y}, under $f_{2}(y \mid d o(\mathbf{X}=\mathbf{1}))$.

Since Y is d-separated from \mathbf{X} in $\mathcal{D}_{\frac{\mathbf{X}}{21}}^{21}$ we can use Rule 3 of the do-calculus (see equation (3)) to conclude that $E_{2}[Y \mid d o(\mathbf{X}=\mathbf{1})]=E[Y]=0$. Similarly, since Y is d-separated from \mathbf{X} in $\mathcal{D}_{\mathbf{X}}^{11}$, we can use Rule 2 of the do-calculus (see equation (2)) to conclude that $E_{1}[Y \mid$ $d o(\mathbf{X}=\mathbf{1})]=E[Y \mid X=1]$. By Theorems A. 2 and A.1, $E[Y \mid X=1]=\operatorname{Cov}(X, Y)=a$, where a is the product of all edge coefficients on q_{1}. Since $a \neq 0$, $E_{1}[Y \mid d o(\mathbf{X}=\mathbf{1})] \neq E_{2}[Y \mid \operatorname{do}(\mathbf{X}=\mathbf{1})]$.

C PROOFS FOR SECTION 3.2 OF THE MAIN TEXT

Lemma C.1. Let \mathbf{D} be any subset of \mathbf{V} in MPDAG $\mathcal{G}=$ (\mathbf{V}, \mathbf{E}). Then the call to algorithm $\operatorname{PCO}(\mathbf{D}, \mathcal{G})$ will complete. Meaning that, at each iteration of the while loop in $\operatorname{PCO}(\mathbf{D}, \mathcal{G})$ (Algorithm 1), there is a bucket \mathbf{C} among the remaining buckets in ConComp (the bucket decomposition of \mathbf{V}) such that all edges between \mathbf{C} and ConComp $\backslash \mathbf{C}$ are into \mathbf{C} in \mathcal{G}.

Proof of Lemma C.1. Let $\mathbf{C}_{\mathbf{1}}, \ldots, \mathbf{C}_{\mathbf{k}}$ be the buckets in ConComp at some iteration of the while loop in the call to $\operatorname{PCO}(\mathbf{D}, \mathcal{G})$. Suppose for contradiction that there is no bucket $\mathbf{C}_{\mathbf{i}}, i \in\{1, \ldots, k\}$ such that all edges between $\mathbf{C}_{\mathbf{i}}$ and $\cup_{j=1}^{k} \mathbf{C}_{\mathbf{j}} \backslash \mathbf{C}_{\mathbf{i}}$ are into $\mathbf{C}_{\mathbf{i}}$. We will show that this leads to the conclusion that \mathcal{G} is not acyclic (a contradiction).

Consider a directed graph \mathcal{G}_{1} constructed so that each bucket in ConComp represents one node in \mathcal{G}_{1}. Meaning, a bucket $\mathbf{C}_{\mathbf{i}}, i \in\{1, \ldots, k\}$ is represented by a node C_{i} in \mathcal{G}_{1}. Also, let $C_{i} \rightarrow C_{j}, i, j \in\{1, \ldots, k\}$, be in \mathcal{G}_{1} if $A \rightarrow B$ is in \mathcal{G} and $A \in C_{i}, B \in C_{j}$.

Since there is no bucket $\mathbf{C}_{\mathbf{i}}$ in ConComp such that all edges between $\mathbf{C}_{\mathbf{i}}$ and $\cup_{j=1}^{k} \mathbf{C}_{\mathbf{j}} \backslash \mathbf{C}_{\mathbf{i}}$ are into $\mathbf{C}_{\mathbf{i}}$, there is either a directed cycle in \mathcal{G}_{1}, or $C_{l} \rightarrow C_{r}$ and $C_{r} \rightarrow C_{l}$ is in \mathcal{G}_{1} for some $l, r \in\{1, \ldots, k\}$. For simplicity, we will refer to both previously mentioned cases as directed cycles.
Let us choose one such directed cycle in \mathcal{G}_{1}, that is, let $C_{r_{1}} \rightarrow \cdots \rightarrow C_{r_{m}} \rightarrow C_{r_{1}}, 2 \leq m \leq k, r_{1}, \ldots, r_{m} \in$ $\{1, \ldots, k\}$, be in \mathcal{G}_{1}. Let $A_{i} \in \mathbf{C}_{\mathbf{r}_{\mathbf{i}}}$ and $B_{i+1} \in \mathbf{C}_{\mathbf{r}_{\mathbf{i}+1}}$, for all $i \in\{1, \ldots, m-1\}$, such that $A_{i} \rightarrow B_{i+1}$ is in \mathcal{G}. Additionally, let $A_{m} \in \mathbf{C}_{\mathbf{r}_{\mathrm{m}}}$, and $B_{1} \in \mathbf{C}_{\mathbf{r}_{1}}$ such that $A_{m} \rightarrow B_{1}$ is in \mathcal{G}.

Since $A_{1} \rightarrow B_{2}$ is in \mathcal{G} and B_{2} and A_{2} are in the same
bucket $\mathbf{C}_{\mathbf{r}_{2}}$ in \mathcal{G}, by Lemma C.2, $A_{1} \rightarrow A_{2}$. The same reasoning can be applied to conclude that $A_{i} \rightarrow A_{i+1}$, for all $i \in\{1, \ldots, m-1\}$ and also that $A_{m} \rightarrow A_{1}$ is in \mathcal{G}. Thus, $A_{1} \rightarrow A_{2} \rightarrow \cdots \rightarrow A_{m} \rightarrow A_{1}$, a directed cycle is in \mathcal{G}, a contradiction.

Proof of Lemma 3.5. Lemma C. 2 and Lemma A. 7 together imply that Algorithm 2 can be applied to a MPDAG \mathcal{G} and also that the output of $\operatorname{PTO}(\mathcal{G})$ is the same as that of $\operatorname{PCO}(\mathbf{V}, \mathcal{G})$. Furthermore, $\operatorname{PTO}(\mathcal{G})=$ $\operatorname{PCO}(\mathbf{V}, \mathcal{G})=\left(\overline{\mathbf{B}_{\mathbf{1}}}, \ldots, \overline{\mathbf{B}_{\mathbf{r}}}\right) r \geq k$, where for all $i, j \in$ $\{1, \ldots, r\}, \overline{\mathbf{B}_{\mathbf{i}}}$ and $\overline{\mathbf{B}_{\mathbf{j}}}$ are buckets in \mathbf{V} in \mathcal{G}, and if $i<j$, then $\overline{\mathbf{B}_{\mathbf{i}}}<\overline{\mathbf{B}_{\mathbf{j}}}$ with respect to \mathcal{G}.
The statement of the lemma then follows directly from the definition of buckets (Definition 3.3) and Corollary 3.4, since for each $l \in\{1, \ldots, k\}$, there exists $s \in$ $\{1, \ldots, r\}$ such that $\mathbf{B}_{\mathbf{l}}=\mathbf{D} \cap \overline{\mathbf{B}_{\mathbf{s}}}$ and $\left(\mathbf{B}_{\mathbf{1}}, \ldots, \mathbf{B}_{\mathbf{k}}\right)$ is exactly the output of $\operatorname{PCO}(\mathbf{V}, \mathcal{G})$.

Lemma C.2. Let \mathbf{B} be a bucket in \mathbf{V} in MPDAG $\mathcal{G}=$ (\mathbf{V}, \mathbf{E}) and let $X \in \mathbf{V}, X \notin \mathbf{B}$. If there is a causal path from X to \mathbf{B} in \mathcal{G}, then for every node $B \in \mathbf{B}$ there is a causal path from X to B in \mathcal{G}.

Proof of Lemma C.2. Let p be a shortest causal path from X to \mathbf{B} in \mathcal{G}. Then p is of the form $X \rightarrow \ldots A \rightarrow$ B, possibly $X=A$ and $A \notin \mathbf{B}$.

Let $B^{\prime} \in \mathbf{B}, B^{\prime} \neq B$ and let $q=\left\langle B=W_{1}, \ldots, W_{r}=\right.$ $\left.B^{\prime}\right\rangle, r>1$ be a shortest undirected path from B to B^{\prime} in \mathcal{G}. It is enough to show that there is an edge $A \rightarrow B^{\prime}$ is in \mathcal{G}.

Since $A \rightarrow B-W_{2}$, by the properties of MPDAGs (Meek, 1995, see Figure 2 in the main text), $A \rightarrow W_{2}$ or $A-W_{2}$ is in \mathcal{G}. Since $A \notin \mathbf{B}, A \rightarrow W_{2}$ is in \mathcal{G}. If $r=2$, we are done. Otherwise, $A \rightarrow W_{2}-W_{3}-\cdots-W_{k}$ is in \mathcal{G} and and we can apply the same reasoning as above iteratively until we obtain $A \rightarrow W_{k}$ is in \mathcal{G}.

D PROOFS FOR SECTION 3.3 OF THE MAIN TEXT

The proof of Theorem 3.6 is given in the main text. Here we provide proofs for the supporting results.
Lemma D.1. Let \mathbf{X} and \mathbf{Y} be disjoint node sets in \mathbf{V} in MPDAG $\mathcal{G}=(\mathbf{V}, \mathbf{E})$ and suppose that there is no proper possibly causal path from \mathbf{X} to \mathbf{Y} that starts with an undirected edge in \mathcal{G}. Further, let $\left(\mathbf{B}_{\mathbf{1}}, \ldots \mathbf{B}_{\mathbf{k}}\right)=$ $\operatorname{PCO}\left(\operatorname{An}\left(\mathbf{Y}, \mathcal{G}_{\mathbf{V} \backslash \mathbf{x}}\right), \mathcal{G}\right), k \geq 1$.
(i) For $i \in\{1, \ldots, k\}$, there is no proper possibly causal path from \mathbf{X} to $\mathbf{B}_{\mathbf{i}}$ that starts with an undirected edge in \mathcal{G}.
(ii) For $i \in\{2, \ldots, k\}$, let $\mathbf{P}_{\mathbf{i}}=\left(\cup_{j=1}^{i-1} \mathbf{B}_{\mathbf{i}}\right) \cap \mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$. Then for every $D A G \mathcal{D}$ in $[\mathcal{G}]$ and every interventional density f consistent with \mathcal{D} we have

$$
f\left(\mathbf{b}_{\mathbf{i}} \mid \mathbf{b}_{\mathbf{i}-\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{1}}, d o(\mathbf{x})\right)=f\left(\mathbf{b}_{\mathbf{i}} \mid \mathbf{p}_{\mathbf{i}}, d o(\mathbf{x})\right)
$$

(iii) For $i \in\{2, \ldots, k\}$, let $\mathbf{P}_{\mathbf{i}}=\left(\cup_{j=1}^{i-1} \mathbf{B}_{\mathbf{i}}\right) \cap \mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$. For $i \in\{1, \ldots, k\}$, let $\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}=\mathbf{X} \cap \mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$. Then for every $D A G \mathcal{D}$ in $[\mathcal{G}]$ and every interventional density f consistent with \mathcal{D} we have

$$
f\left(\mathbf{b}_{\mathbf{i}} \mid \mathbf{p}_{\mathbf{i}}, d o(\mathbf{x})\right)=f\left(\mathbf{b}_{\mathbf{i}} \mid \mathbf{p}_{\mathbf{i}}, d o\left(\mathbf{x}_{\mathbf{p}_{\mathbf{i}}}\right)\right)
$$

Additionally, $f\left(\mathbf{b}_{\mathbf{1}} \mid \operatorname{do}(\mathbf{x})\right)=f\left(\mathbf{b}_{\mathbf{1}} \mid \operatorname{do}\left(\mathbf{x}_{\mathbf{p}_{\mathbf{1}}}\right)\right)$.
(iv) For $i \in\{2, \ldots, k\}$, let $\mathbf{P}_{\mathbf{i}}=\left(\cup_{j=1}^{i-1} \mathbf{B}_{\mathbf{i}}\right) \cap \mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$. For $i \in\{1, \ldots, k\}$, let $\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}=\mathbf{X} \cap \mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$. Then for every $D A G \mathcal{D}$ in $[\mathcal{G}]$ and every interventional density f consistent with \mathcal{D} we have

$$
f\left(\mathbf{b}_{\mathbf{i}} \mid \mathbf{p}_{\mathbf{i}}, d o\left(\mathbf{x}_{\mathbf{p}_{\mathbf{i}}}\right)\right)=f\left(\mathbf{b}_{\mathbf{i}} \mid \operatorname{pa}\left(\mathbf{b}_{\mathbf{i}}, \mathcal{G}\right)\right)
$$

for values $\mathrm{pa}\left(\mathbf{b}_{\mathbf{i}}, \mathcal{G}\right)$ of $\mathrm{Pa}\left(\mathbf{b}_{\mathbf{i}}, \mathcal{G}\right)$ that are in agreement with \mathbf{x}.

Proof of Lemma D.1. (i): Suppose for a contradiction that there is a proper possibly causal path from \mathbf{X} to $\mathbf{B}_{\mathbf{i}}$ that starts with an undirected edge in \mathcal{G}. Let $p=$ $\langle X, \ldots, B\rangle, X \in \mathbf{X}, B \in \mathbf{B}_{\mathbf{i}}$, be a shortest such path in \mathcal{G}. Then p is unshielded in \mathcal{G} (Lemma A.6).

Since $B \in \operatorname{An}\left(\mathbf{Y}, \mathcal{G}_{\mathbf{V} \backslash \mathbf{X}}\right)$ there is a causal path q from B to \mathbf{Y} in \mathcal{G} that does not contain a node in \mathbf{X}. No node other than B is both on q and p (otherwise, by definition p is not possibly causal from X to B). Hence, by Lemma D.2, $p \oplus q$ is a proper possibly causal path from \mathbf{X} to \mathbf{Y} that starts with an undirected edge in \mathcal{G}, which is a contradiction.
(ii): Let $\mathbf{N}_{\mathbf{i}}=\left(\cup_{j=1}^{i-1} \mathbf{B}_{\mathbf{j}}\right) \backslash \mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$. If $\mathbf{B}_{\mathbf{i}} \quad \perp_{\mathcal{D}_{\overline{\mathbf{X}}}} \mathbf{N}_{\mathbf{i}} \mid\left(\mathbf{X} \cup \mathbf{P}_{\mathbf{i}}\right)$, then by Rule 1 of the do calculus: $f\left(\mathbf{b}_{\mathbf{i}} \mid \mathbf{b}_{\mathbf{i}-\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{1}}, d o(\mathbf{x})\right)=f\left(\mathbf{b}_{\mathbf{i}} \mid \mathbf{p}_{\mathbf{i}}, d o(\mathbf{x})\right)$ (see equation (1)).

Suppose for a contradiction that there is a path from $\mathbf{B}_{\mathbf{i}}$ to $\mathbf{N}_{\mathbf{i}}$ that is d-connecting given $\mathbf{X} \cup \mathbf{P}_{\mathbf{i}}$ in $\mathcal{D}_{\overline{\mathbf{x}}}$. Let $p=\left\langle B_{i}, \ldots, N\right\rangle, B_{i} \in \mathbf{B}_{\mathbf{i}}, N \in \mathbf{N}_{\mathbf{i}}$ be a shortest such path. Let p^{*} be the path in \mathcal{G} that consists of the same sequence of nodes as p in $\mathcal{D}_{\overline{\mathbf{X}}}$.
First suppose that p is of the form $B_{i} \rightarrow \ldots N$. Since $B_{i} \in \mathbf{B}_{\mathbf{i}}$ and $\mathbf{N}_{\mathbf{i}} \subseteq\left(\cup_{j=1}^{i-1} \mathbf{B}_{\mathbf{j}}\right), p$ is not causal from B_{i} to N (Lemma 3.5). Hence, let C be the closest collider to B_{i} on p, that is, p has the form $B_{i} \rightarrow \cdots \rightarrow C \leftarrow \ldots N$. Since p is d-connecting given $\mathbf{X} \cup \mathbf{P}_{\mathbf{i}}$ in $\mathcal{D}_{\overline{\mathbf{X}}}, C$ must be an ancestor of $\mathbf{P}_{\mathbf{i}}$ in $\mathcal{D}_{\overline{\mathbf{X}}}$. However, then there is a causal path from $B_{i} \in \mathbf{B}_{\mathbf{i}}$ to $\mathbf{P}_{\mathbf{i}} \subseteq\left(\cup_{j=1}^{i-1} \mathbf{B}_{\mathbf{j}}\right)$ which contradicts Lemma 3.5.

Next, suppose that p is of the form $B_{i} \leftarrow A \ldots N$, $A \notin \mathbf{B}_{\mathbf{i}}$. Since $\mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right) \subseteq\left(\mathbf{X} \cup \mathbf{P}_{\mathbf{i}}\right)$ and since p is d-connecting given $\left(\mathbf{X} \cup \mathbf{P}_{\mathbf{i}}\right), B_{i}-A$ is in \mathcal{G} and $A \notin\left(\mathbf{X} \cup \mathbf{P}_{\mathbf{i}}\right)$.
Note that p^{*} cannot be undirected, since that would imply that $N \in \mathbf{B}_{\mathbf{i}}$ and contradict Lemma 3.5. Hence, let B be the closest node to B_{i} on p^{*} such that $p^{*}(B, N)$ starts with a directed edge (possibly $B=A$). Then p^{*} is either of the form $B_{i}-A-\cdots-L-B \rightarrow R \ldots N$ or of the form $B_{i}-A-\cdots-L-B \leftarrow R \ldots N$.

Suppose first that p^{*} is of the form $B_{i}-A-\cdots-L-B \rightarrow$ $R \ldots N$. Then $B \notin\left(\mathbf{X} \cup \mathbf{P}_{\mathbf{i}} \cup \mathbf{B}_{\mathbf{i}}\right)$ otherwise, p is either blocked by $\mathbf{X} \cup \mathbf{P}_{\mathbf{i}}$, or a shorter path could have been chosen.

Let $\left(\mathbf{B}_{\mathbf{1}}^{\prime}, \ldots \mathbf{B}_{\mathbf{r}}^{\prime}\right)=\operatorname{PCO}(\mathbf{V}, \mathcal{G}), r \geq k$. Let $l \in$ $\{i, \ldots, r\}$ such that $\mathbf{B}_{\mathbf{1}}^{\prime} \cap \mathbf{B}_{\mathbf{i}} \neq \emptyset$, then $B_{i}, B \in \mathbf{B}_{\mathbf{1}}^{\prime}$ and $N \in\left(\cup_{j=1}^{l-1} \mathbf{B}_{\mathbf{j}}^{\prime}\right)$. Now consider subpath $p(B, N)$. By Lemma 3.5, $p(B, N)$ cannot be causal from B to N. Hence, there is a collider on $p(B, N)$ and we can derive the contradiction using the same reasoning as above.

Suppose next that p^{*} is of the form $B_{i}-A-\cdots-L-$ $B \leftarrow R \ldots N$. Then either $R \rightarrow L$ or $R-L$ is in \mathcal{G} (Meek, 1995, see Figure 4 in the main text). Then $\langle L, R\rangle$ is also an edge in $\mathcal{D}_{\overline{\mathbf{X}}}$ otherwise, L or R is in \mathbf{X} and a non-collider on p, so p would be blocked by $\mathbf{X} \cup \mathbf{P}_{\mathbf{i}}$.
Hence, $q=p\left(B_{i}, L\right) \oplus\langle L, R\rangle \oplus p(R, N)$ is a shorter path than p in $\mathcal{D}_{\overline{\mathbf{X}}}$. If L and R have the same collider/noncollider status on q on p, then q is also d-connecting given $\mathbf{X} \cup \mathbf{P}_{\mathbf{i}}$, which would contradict our choice of p. Hence, the collider/non-collider status of L or R, is different on p and q. We now discuss the cases for the change of collider/non-collider status of L and R and derive a contradiction in each.

Suppose that L is a collider on q, and a non-collider on p. This implies that $W \rightarrow L \rightarrow B \leftarrow R$ is a subpath of p and $L \leftarrow R$ is in $\mathcal{D}_{\overline{\mathbf{X}}}$. Even though L is not a collider on p, B is a collider on p and $L \in \operatorname{An}\left(B, \mathcal{D}_{\overline{\mathbf{X}}}\right)$. Since p is d-connecting given $\mathbf{X} \cup \mathbf{P}_{\mathbf{i}}, \operatorname{De}\left(B, \mathcal{D}_{\overline{\mathbf{X}}}\right) \cap\left(\mathbf{X} \cup \mathbf{P}_{\mathbf{i}}\right) \neq \emptyset$. However, then also $\operatorname{De}\left(L, \mathcal{D}_{\overline{\mathbf{X}}}\right) \cap\left(\mathbf{X} \cup \mathbf{P}_{\mathbf{i}}\right) \neq \emptyset$ and q is also d-connecting given $\mathbf{X} \cup \mathbf{P}_{\mathbf{i}}$ and a shorter path between $\mathbf{B}_{\mathbf{i}}$ and $\mathbf{N}_{\mathbf{i}}$ than p, which is a contradiction.

The contradiction can be derived in exactly the same way as above in the case when R is a collider on q, and a noncollider on p. Since $B \leftarrow R$ is in $\mathcal{D}_{\overline{\mathbf{X}}}, R$ cannot be anything but a non-collider on q, so the only case left to consider is if L is a non-collider on q and a collider on p.

For L to be a non-collider on q and a collider on $p, W \rightarrow$ $L \leftarrow B \leftarrow R$ must be a subpath of p and $L \rightarrow R$ should be in $\mathcal{D}_{\overline{\mathbf{X}}}$. But then there is a cycle in $\mathcal{D}_{\overline{\mathbf{X}}}$, which is a contradiction.
(iii): We will show that $f\left(\mathbf{b}_{\mathbf{i}} \mid \mathbf{p}_{\mathbf{i}}, d o(\mathbf{x})\right)=$ $f\left(\mathbf{b}_{\mathbf{i}} \mid \mathbf{p}_{\mathbf{i}}, d o\left(\mathbf{x}_{\mathbf{p}_{\mathbf{i}}}\right)\right)$. The simpler case, $f\left(\mathbf{b}_{\mathbf{1}} \mid d o(\mathbf{x})\right)=$ $f\left(\mathbf{b}_{\mathbf{1}} \mid\left(\mathbf{x}_{\mathbf{p}_{1}}\right)\right.$ follows from the same proof, when $\mathbf{B}_{\mathbf{i}}$ is replaced by $\mathbf{B}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{i}}$ is removed.
Let $\mathbf{X}_{\mathbf{n}_{\mathbf{i}}}=\mathbf{X} \backslash \operatorname{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$ and let $\mathbf{X}_{\mathbf{n}_{\mathbf{i}}}^{\prime}=\mathbf{X}_{\mathbf{n}_{\mathbf{i}}} \backslash$ $\operatorname{An}\left(\mathbf{P}_{\mathbf{i}}, \mathcal{D}_{\overline{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}}}\right)$. That is $X \in \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}^{\prime}$ if $X \in \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}$ and if there is no causal path from X to $\mathbf{P}_{\mathbf{i}}$ in \mathcal{D} that does not contain a node in $\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}$.
Note that $\mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)=\mathbf{X}_{\mathbf{p}_{\mathbf{i}}} \cup \mathbf{P}_{\mathbf{i}}$. By Rule 3 of the do-calculus, for $f\left(\mathbf{b}_{\mathbf{i}} \mid \mathbf{p}_{\mathbf{i}}, d o(\mathbf{x})\right)=f\left(\mathbf{b}_{\mathbf{i}} \mid \mathbf{p}_{\mathbf{i}}, d o\left(\mathbf{x}_{\mathbf{p}_{\mathbf{i}}}\right)\right)$ to hold, it is enough to show that $\mathbf{B}_{\mathbf{i}} \quad \perp_{\mathcal{D}} \overline{\mathbf{x}_{\mathbf{p}_{\mathbf{i}} \mathbf{x}_{\mathbf{n}_{\mathbf{i}}}^{\prime}}}$ $\mathbf{X}_{\mathbf{n}_{\mathbf{i}}} \mid \mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$ (see equation (3)).
Suppose for a contradiction that there is a d-connecting path from $\mathbf{B}_{\mathbf{i}}$ to $\mathbf{X}_{\mathbf{n}_{\mathbf{i}}}$ in $\mathcal{D} \overline{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}} \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}^{\prime}}$. Let $p=\left\langle B_{i}, \ldots, X\right\rangle$, $B_{i} \in \mathbf{B}_{\mathbf{i}}, X \in \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}$, be a shortest such path in $\mathcal{D} \overline{\mathbf{X}_{\mathrm{P}_{\mathbf{i}}} \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}^{\prime}}$. Let p^{*} be the path in \mathcal{G} that consists of the same sequence of nodes as p in $\mathcal{D} \overline{\mathbf{X}_{\mathrm{P}_{\mathbf{i}}} \mathbf{X}_{\mathrm{n}_{\mathbf{i}}}^{\prime}}$. This proof follows a very similar line of reasoning to the proof of (ii) above.
Let $\left(\mathbf{B}_{\mathbf{1}}^{\prime}, \ldots \mathbf{B}_{\mathbf{r}}^{\prime}\right)=\operatorname{PCO}(\mathbf{V}, \mathcal{G}), r \geq k$. Let $l \in$ $\{i, \ldots, r\}$ such that $\mathbf{B}_{\mathbf{1}}^{\prime} \cap \mathbf{B}_{\mathbf{i}} \neq \emptyset$, then $B_{i} \in \mathbf{B}_{\mathbf{1}}^{\prime}$ and $\mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right) \subseteq\left(\cup_{j=1}^{i-1} \mathbf{B}_{\mathbf{j}}\right)$.
Suppose that p is of the form $B_{i} \rightarrow \ldots X$. If $X \in \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}^{\prime}$, then p is not a causal path since p is a path in $\mathcal{D} \overline{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}} \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}^{\prime}}$. Otherwise, $X \in \operatorname{An}\left(\mathbf{P}_{\mathbf{i}}, \mathcal{D}_{\overline{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}}}\right)$ and so any causal path from B_{i} to X would need to contain a node in $\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}$ and hence, would be blocked by $\operatorname{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$. Thus, p is not a causal path from B_{i} to X.

Hence, let C be the closest collider to B_{i} on p, that is, p has the form $B_{i} \rightarrow \cdots \rightarrow C \leftarrow \ldots X$. Since p is d-connecting given $\mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right), C$ is be an ancestor of $\operatorname{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$ in $\mathcal{D} \overline{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}} \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}^{\prime}}$. However, this would imply that there is a causal path from $B_{i} \in \mathbf{B}_{1}^{\prime}$ to $\operatorname{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right) \subseteq$ $\left(\cup_{j=1}^{i-1} \mathbf{B}_{\mathbf{j}}\right)$ in $\mathcal{D}_{\mathbf{x}_{\mathbf{P}_{\mathbf{i}}}}$, which contradicts Lemma 3.5.

Next, suppose that p is of the form $B_{i} \leftarrow A \ldots X$, $A \notin \mathbf{B}_{\mathbf{i}}$. Since p is d-connecting given $\mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$, $A \notin \operatorname{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$. Hence, $B_{i}-A$ is in \mathcal{G}.
Then $A \in \mathbf{B}_{1}^{\prime}$. Note that by (i) above, $\mathbf{X} \cap \mathbf{B}_{1}^{\prime}=\emptyset$, so p^{*} is not an undirected path in \mathcal{G}. Hence, let B be the closest node to B_{i} on p^{*} such that $p^{*}(B, X)$ starts with a directed edge (possibly $B=A$). Then p^{*} is either of the form $B_{i}-A-\cdots-L-B \rightarrow R \ldots X$ or of the form $B_{i}-A-\cdots-L-B \leftarrow R \ldots X$.

Suppose first that p^{*} is of $B_{i}-A-\cdots-L-B \rightarrow$ $R \ldots X$. Then $B \in \mathbf{B}_{1}$ and so $B \notin \mathbf{X}$. Since p is dconnecting given $\mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right), B \notin \mathrm{~Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$ and additionally, $B \notin \mathbf{B}_{\mathbf{i}}$ otherwise, a shorter path could have
been chosen.
Now consider subpath $p(B, X)$. There is at least one collider on $p(B, X)$. Since $B, B_{i} \in \mathbf{B}_{\mathbf{1}}^{\prime}$, the same reasoning as above can be used to derive a contradiction in this case.

Suppose next that p^{*} is of the form $B_{i}-A-\cdots-L-$ $B \leftarrow R \ldots X$. Then either $R \rightarrow L$ or $R-L$ is in \mathcal{G} (Meek, 1995, see Figure 4 in the main text). We first show that in either case, edge $\langle L, R\rangle$ is also in $\mathcal{D} \overline{\mathbf{X}_{\mathrm{p}_{\mathbf{i}}} \mathbf{X}_{\mathrm{n}_{\mathrm{i}}}^{\prime}}$.

Since $L \in \mathbf{B}_{1}^{\prime}$ and since $\mathbf{X} \cap \mathbf{B}_{1}^{\prime}=\emptyset, L \notin \mathbf{X}$. Hence, if $R \rightarrow L$ is in $\mathcal{G}, R \rightarrow L$ is in $\mathcal{D} \overline{\mathbf{X}_{\mathrm{p}_{\mathbf{i}}} \mathbf{X}_{\mathrm{n}_{\mathrm{i}}}^{\prime}}$. If $R-L$ is in \mathcal{G}, then $R \in \mathbf{B}_{1}^{\prime}$ and since $\mathbf{X} \cap \mathbf{B}_{1}^{\prime}=\emptyset, R \notin \mathbf{X}$, so $\langle L, R\rangle$ is in $\mathcal{D} \overline{\mathbf{X}_{\mathrm{p}_{\mathrm{i}}} \mathbf{X}_{\mathrm{n}_{\mathrm{i}}}^{\prime}}$.
Hence, $q=p\left(B_{i}, L\right) \oplus\langle L, R\rangle \oplus p(R, X)$ is a shorter path than p in $\mathcal{D} \overline{\mathbf{X}_{\mathrm{P}_{\mathbf{i}}} \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}^{\prime}}$. If L and R have the same collider/non-collider status on q on p, then q is also dconnecting given $\mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$, which would contradict our choice of p. Hence, the collider/non-collider status of L or R, is different on p and q. We now discuss the cases for the change of collider/non-collider status of L and R and derive a contradiction in each.

Suppose that L is a collider on q, and a non-collider on p. This implies that $W \rightarrow L \rightarrow B \leftarrow R$ is a subpath of p and $L \leftarrow R$ are in $\mathcal{D} \overline{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}} \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}^{\prime}}$. Even though L is not a collider on p, B is a collider on p and $L \in \operatorname{An}\left(B, \mathcal{D}_{\overline{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}} \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}^{\prime}}}\right)$. Since p is d-connecting given $\operatorname{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right), \operatorname{De}\left(B, \mathcal{D} \overline{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}} \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}^{\prime}}\right) \cap \operatorname{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right) \neq \emptyset$. However, then also $\operatorname{De}\left(L, \mathcal{D} \overline{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}} \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}^{\prime}}\right) \cap \operatorname{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right) \neq \emptyset$ and q is also d-connecting given $\mathrm{Pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)$ and a shorter path between $\mathbf{B}_{\mathbf{i}}$ and $\mathbf{X}_{\mathbf{n}_{\mathbf{i}}}$ than p, which is a contradiction.
The contradiction can be derived in exactly the same way as above in the case when R is a collider on q, and a noncollider on p. Since $B \leftarrow R$ is in $\mathcal{D}_{\overline{\mathbf{X}_{\mathbf{P}_{\mathbf{i}}} \mathbf{X}_{\mathbf{n}_{\mathbf{i}}}^{\prime}}}, R$ cannot be anything but a non-collider on q, so the only case left to consider is if L is a non-collider on q and a collider on p.

For L to be a non-collider on q and a collider on $p, W \rightarrow$ $L \leftarrow B \leftarrow R$ must be a subpath of p and $L \rightarrow R$ should be in $\mathcal{D} \overline{\mathbf{X}_{\mathrm{P}_{\mathrm{i}}} \mathbf{X}_{\mathrm{n}_{\mathrm{i}}}^{\prime}}$. . But then there is a cycle in $\mathcal{D} \overline{\mathbf{X}_{\mathrm{p}_{\mathrm{i}}} \mathbf{X}_{\mathrm{n}_{\mathrm{i}}}^{\prime}}$, which is a contradiction.
(iv):. If $\mathbf{B}_{\mathbf{i}} \perp_{\mathcal{D}_{\mathbf{x}_{\mathbf{p}_{\mathbf{i}}}}} \mathbf{X}_{\mathbf{p}_{\mathbf{i}}} \mid \mathbf{P}_{\mathbf{i}}$, then $f\left(\mathbf{b}_{\mathbf{i}} \mid \mathbf{p}_{\mathbf{i}}, d o\left(\mathbf{x}_{\mathbf{p}_{\mathbf{i}}}\right)\right)=$ $f\left(\mathbf{b}_{\mathbf{i}} \mid p a\left(\mathbf{b}_{\mathbf{i}}, \mathcal{G}\right)\right)$ by Rule 2 of the do calculus (equation (2)).

Suppose for a contradiction that there is a d-connecting path from $\mathbf{B}_{\mathbf{i}}$ to $\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}$ in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}}$. Let $p=\left\langle B_{i}, \ldots, X\right\rangle$, $B_{i} \in \mathbf{B}_{\mathbf{i}}, X \in \mathbf{X}_{\mathbf{p}_{\mathbf{i}}}$, be a shortest such path in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}}$. Let
p^{*} be the path in \mathcal{G} that consists of the same sequence of nodes as p in $\mathcal{D}_{\overline{\mathbf{X}}}$. This proof follows a very similar line of reasoning to the proof of (ii) above.
Let $\left(\mathbf{B}_{\mathbf{1}}^{\prime}, \ldots \mathbf{B}_{\mathbf{r}}^{\prime}\right)=\operatorname{PCO}(\mathbf{V}, \mathcal{G}), r \geq k$. Let $l \in$ $\{i, \ldots, r\}$ such that $\mathbf{B}_{\mathbf{1}}^{\prime} \cap \mathbf{B}_{\mathbf{i}} \neq \emptyset$, then $B_{i} \in \mathbf{B}_{\mathbf{1}}^{\prime}$ and by (i) above, $\mathbf{X}_{\mathbf{p}_{\mathbf{i}}} \subseteq\left(\cup_{j=1}^{l-1} \mathbf{B}_{\mathbf{j}}^{\prime}\right)$.
Suppose that p is of the form $B_{i} \rightarrow \ldots X$. Since $B_{i} \in$ \mathbf{B}_{1}^{\prime} and $\mathbf{X}_{\mathbf{p}_{\mathbf{i}}} \subseteq\left(\cup_{j=1}^{l-1} \mathbf{B}_{\mathbf{j}}^{\prime}\right)$, by Lemma 3.5, there is at least one collider on p. Hence, let C be the closest collider to B_{i} on p, that is, p has the form $B_{i} \rightarrow \cdots \rightarrow C \leftarrow \ldots X$. Since p is d-connecting given $\mathbf{P}_{\mathbf{i}}$ in $\mathcal{D}_{\mathbf{x}_{\mathrm{P}_{\mathbf{i}}}}, C$ is be an ancestor of $\mathbf{P}_{\mathbf{i}}$ in $\mathcal{D}_{\mathbf{X}_{\mathbf{P}_{\mathbf{i}}}}$. However, this would imply that there is a causal path from $B_{i} \in \mathbf{B}_{\mathbf{i}}$ to $\mathbf{P}_{\mathbf{i}} \subseteq\left(\cup_{j=1}^{i-1} \mathbf{B}_{\mathbf{j}}\right)$ in $\mathcal{D}_{\mathbf{X}_{\mathrm{P}_{\mathrm{i}}}}$, which contradicts Lemma 3.5.

Next, suppose that p is of the form $B_{i} \leftarrow A \ldots X, A \notin$ $\mathbf{B}_{\mathbf{i}}$. Since p is a path in $\mathcal{D}_{\mathbf{X}_{\mathrm{p}_{\mathbf{i}}}}, A \notin \mathbf{X}_{\mathbf{p}_{\mathbf{i}}}$. Additionally, since p is d-connecting given $\mathbf{P}_{\mathbf{i}}, A \notin \mathbf{P}_{\mathbf{i}}$. Hence, $B_{i}-A$ is in \mathcal{G}.

Then $A \in \mathbf{B}_{\mathbf{1}}^{\prime}$ and since $X \in\left(\cup_{j=1}^{l-1} \mathbf{B}_{\mathbf{j}}^{\prime}\right), p^{*}(A, X)$ is not an undirected path in \mathcal{G}. Hence, let B be the closest node to B_{i} on p^{*} such that $p^{*}(B, X)$ starts with a directed edge (possibly $B=A$). Then p^{*} is either of the form $B_{i}-A-\cdots-L-B \rightarrow R \ldots X$ or of the form $B_{i}-$ $A-\cdots-L-B \leftarrow R \ldots X$.

Suppose first that p^{*} is of $B_{i}-A-\cdots-L-B \rightarrow$ $R \ldots X$. Then $B \in \mathbf{B}_{1}^{\prime}$ and since $\mathbf{X}_{\mathbf{p}_{\mathbf{i}}} \subseteq\left(\cup_{j=1}^{l-1} \mathbf{B}_{\mathbf{j}}^{\prime}\right)$, $B \notin \mathbf{X}_{\mathbf{p}_{\mathbf{i}}}$. Since p is d-connecting given $\mathbf{P}_{\mathbf{i}}, B \notin \mathbf{P}_{\mathbf{i}}$ and additionally, $B \notin \mathbf{B}_{\mathbf{i}}$ otherwise, a shorter path could have been chosen.

Now consider subpath $p(B, X)$. Since $B, B_{i} \in \mathbf{B}_{\mathbf{1}}^{\prime}$, the same reasoning as above can be used to derive a contradiction in this case.

Suppose next that p^{*} is of the form $B_{i}-A-\cdots-L-$ $B \leftarrow R \ldots X$. Then either $R \rightarrow L$ or $R-L$ is in \mathcal{G} (Meek, 1995, see Figure 4 in the main text). Since $R \rightarrow$ B is in $\mathcal{D}_{\mathbf{x}_{\mathbf{p}_{\mathbf{i}}}}, R \notin \mathbf{X}_{\mathbf{p}_{\mathbf{i}}}$. Since $L \in \mathbf{B}_{\mathbf{1}}^{\prime}, L \notin \mathbf{X}_{\mathbf{p}_{\mathbf{i}}}$, so $\langle L, R\rangle$ is also in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}}$.

Hence, $q=p\left(B_{i}, L\right) \oplus\langle L, R\rangle \oplus p(R, X)$ is a shorter path than p in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}}$. If L and R have the same collider/noncollider status on q on p, then q is also d-connecting given $\mathbf{P}_{\mathbf{i}}$, which would contradict our choice of p. Hence, the collider/non-collider status of L or R, is different on p and q. We now discuss the cases for the change of collider/non-collider status of L and R and derive a contradiction in each.

Suppose that L is a collider on q, and a non-collider on p. This implies that $W \rightarrow L \rightarrow B \leftarrow R$ is a subpath of p and $L \leftarrow R$ are in $\mathcal{D}_{\underline{\mathbf{x}_{\mathbf{p}_{\mathbf{i}}}}}$. Even though, L is not a
collider on p, B is a collider on p and $L \in \operatorname{An}\left(B, \mathcal{D} \mathbf{X}_{\mathbf{p}_{\mathbf{i}}}\right)$. Since p is d-connecting given $\mathbf{P}_{\mathbf{i}}, \operatorname{De}\left(B, \mathcal{D}_{\mathbf{x}_{\mathbf{P}_{\mathbf{i}}}}\right) \cap \overline{\mathbf{P}_{\mathbf{i}}} \neq$ \emptyset. However, then also $\operatorname{De}\left(L, \mathcal{D}_{\mathbf{x}_{\mathbf{p}_{\mathbf{i}}}}\right) \cap \mathbf{P}_{\mathbf{i}} \neq \emptyset$ and q is also d-connecting given $\mathbf{P}_{\mathbf{i}}$ and a shorter path between $\mathbf{B}_{\mathbf{i}}$ and $\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}$ than p, which is a contradiction.
The contradiction can be derived in exactly the same way as above in the case when R is a collider on q, and a noncollider on p. Since $B \leftarrow R$ is in $\mathcal{D}_{\mathbf{X}_{\mathbf{P}_{\mathbf{i}}}}, R$ cannot be anything but a non-collider on q, so the only case left to consider is if L is a non-collider on q and a collider on p.

For L to be a non-collider on q and a collider on $p, W \rightarrow$ $L \leftarrow B \leftarrow R$ must be a subpath of p and $L \rightarrow R$ should be in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}}$. But then there is a cycle in $\mathcal{D}_{\mathbf{X}_{\mathbf{p}_{\mathbf{i}}}}$, which is a contradiction.

Lemma D.2. Let X, Y and Z be distinct nodes in MPDAG $\mathcal{G}=(\mathbf{V}, \mathbf{E})$. Suppose that there is an unshielded possibly causal path p from X to Y and a causal path q from Y to Z in \mathcal{G} such that the only node that p and q have in common is Y. Then $p \oplus q$ is a possibly causal path from X to Z.

Proof of Lemma D.2. Suppose for a contradiction that there is an edge $V_{q} \rightarrow V_{p}$, where V_{q} is a node on q and V_{p} is a node on p (additionally, $V_{p} \neq Y \neq V_{q}$). Then $p\left(V_{p}, Y\right)$ cannot be a causal path from V_{p} to Y since otherwise there is a cycle in \mathcal{G}. So $p\left(V_{p}, Y\right)$ takes the form $V_{p}-V_{p+1} \ldots Y$.
Let \mathcal{D} be a DAG in $[\mathcal{G}]$, that contains $V_{p} \rightarrow V_{p+1}$. Since $p\left(V_{p}, Y\right)$ is an unshielded possibly causal path in \mathcal{G}, it corresponds to $V_{p} \rightarrow \cdots \rightarrow Y$ in \mathcal{D}. Then $V_{q} \rightarrow V_{p} \rightarrow$ $\cdots \rightarrow Y$ and $q\left(Y, V_{q}\right)$ form a cycle in \mathcal{D}, a contradiction.

Proof of Corollary 3.7. The first statement in Corollary 3.7 follows from the proof of Theorem 3.6 when replacing \mathbf{Y} with \mathbf{V} and \mathbf{X} with empty set.

For the second statement in Corollary 3.7, note that since there are no undirected edges $X-V$ in \mathcal{G}, where $X \in \mathbf{X}$ and $V \in \mathbf{V}^{\prime}$, some of the buckets $\mathbf{V}_{\mathbf{i}}, i \in\{1, \ldots, k\}$ in the bucket decomposition of \mathbf{V} will contain only nodes in \mathbf{X}. Hence, obtaining the bucket decomposition of $\mathbf{V}^{\prime}=$ $\mathbf{V} \backslash \mathbf{X}$ is the same as leaving out buckets $\mathbf{V}_{\mathbf{i}}$ that contain only nodes in \mathbf{X} from $\mathbf{V}_{\mathbf{1}}, \ldots, \mathbf{V}_{\mathbf{k}}$. The statement then follows from Theorem 3.6 when taking $\mathbf{Y}=\mathbf{V}^{\prime}$.

E PROOFS FOR SECTION 4 OF THE MAIN TEXT

Proof of Proposition 4.2. If the causal effect of X on Y is not identifiable in \mathcal{G}, by Theorem 3.6, there is a proper possibly causal path from X to Y that starts with
an undirected edge in \mathcal{G}. Then by Theorem 4.1, there is no adjustment set relative to (X, Y) in \mathcal{G}.

Hence, suppose that there is no proper possibly causal path from X to Y that starts with an undirected edge in \mathcal{G} and consider $\mathrm{Pa}(X, \mathcal{G})$. By Theorem 4.1, it is enough to show that $\operatorname{Pa}(X, \mathcal{G})$ satisfies the generalized adjustment criterion relative to (\mathbf{X}, \mathbf{Y}).

If \mathcal{G} is a $\mathrm{DAG}, \operatorname{Pa}(X, \mathcal{G})$ is an adjustment set relative to (X, Y) by Theorem 3.3.2 of Pearl (2009). Hence, suppose that \mathcal{G} is not a DAG.
Since \mathcal{G} is acyclic, $\operatorname{Pa}(X, \mathcal{G}) \cap \operatorname{De}(X, \mathcal{G})=\emptyset$. Additionally, by Lemma A.8, $\operatorname{Forb}(X, Y, \mathcal{G}) \subseteq \operatorname{De}(X, \mathcal{G})$. Hence, $\operatorname{Pa}(X, \mathcal{G})$ satisfies $\operatorname{Pa}(X, \mathcal{G}) \cap \operatorname{Forb}(X, Y, \mathcal{G})=$ \emptyset, that is, condition 2 in Theorem 4.1 relative to (X, Y) in \mathcal{G}.
Consider a non-causal definite status path p from X to Y. If p is of the form $X \leftarrow \ldots Y$ in \mathcal{G}, then p is blocked by $\operatorname{Pa}(X, \mathcal{G})$. If p is of the form $X \rightarrow \ldots Y$, then p contains at least one collider $C \in \operatorname{De}(X, \mathcal{G})$ and since $\operatorname{Pa}(X, \mathcal{G}) \cap \operatorname{De}(X, \mathcal{G})=\emptyset, p$ is blocked by $\operatorname{Pa}(X, \mathcal{G})$.

Lastly, suppose that p is of the form $X-\ldots Y$. Since p is a non-causal path from X to Y and since p is of definite status in \mathcal{G}, by Lemma A.5, there is at least one edge pointing towards X on p. Let D be the closest node to X on p such that $p(D, Y)$ is of the form $D \leftarrow \ldots Y$ in \mathcal{G}. Then by Lemma A.5, $p(X, D)$ is a possibly causal path from X to D so let p^{\prime} be an unshielded subsequence of $p(X, D)$ that forms a possibly causal path from X to D in \mathcal{G} (Lemma A.6). Additionally, p is of definite status, so D must be a collider on p.

In order for p to be blocked by $\mathrm{Pa}(X, \mathcal{G})$ it is enough to show that $\operatorname{De}(D, \mathcal{G}) \cap \operatorname{Pa}(X, \mathcal{G})=\emptyset$. Suppose for a contradiction that $E \in \operatorname{De}(D, \mathcal{G}) \cap \mathrm{Pa}(X, \mathcal{G})$. Let q be a directed path from D to E in \mathcal{G}. Then p^{\prime} and q satisfy Lemma D. 2 in \mathcal{G}, so $p^{\prime} \oplus q$ is a possibly causal path from X to E. By definition of a possibly causal path in MPDAGs, this contradicts that $E \in \mathrm{~Pa}(X, \mathcal{G})$.

Lemma E.1. Let \mathbf{X} and \mathbf{Y} be disjoint node sets in an $\operatorname{MPDAG} \mathcal{G}=(\mathbf{V}, \mathbf{E})$. If there is no possibly causal path from \mathbf{X} to \mathbf{Y} in \mathcal{G}, then for any observational density f consistent with \mathcal{G} we have

$$
f(\mathbf{y} \mid d o(\mathbf{x}))=f(\mathbf{y})
$$

Proof of Lemma E.1. Lemma E. 1 follows from Lemma A. 4 and Rule 3 of the do-calculus of Pearl (2009) (see equation (3)).

References

Henckel, L., Perković, E., and Maathuis, M. H. (2019). Graphical criteria for efficient total effect estimation via adjustment in causal linear models. arXiv:1907.02435.

Jaber, A., Zhang, J., and Bareinboim, E. (2018). A graphical criterion for effect identification in equivalence classes of causal diagrams. In Proceedings of IJCAI 2018, pages 5024-5030.
Lauritzen, S. L., Dawid, A. P., Larsen, B. N., and Leimer, H.-G. (1990). Independence properties of directed Markov fields. Networks, 20(5):491-505.
Mardia, K. V., Kent, J. T., and Bibby, J. M. (1980). Multivariate analysis (probability and mathematical statistics). Academic Press London.
Meek, C. (1995). Causal inference and causal explanation with background knowledge. In Proceedings of UAI 1995, pages 403-410.
Pearl, J. (2009). Causality: Models, Reasoning, and Inference. Cambridge University Press, New York, NY, second edition.

Perković, E., Kalisch, M., and Maathuis, M. H. (2017). Interpreting and using CPDAGs with background knowledge. In Proceedings of UAI 2017.
Perković, E., Textor, J., Kalisch, M., and Maathuis, M. H. (2018). Complete graphical characterization and construction of adjustment sets in Markov equivalence classes of ancestral graphs. Journal of Machine Learning Research, 18.
Shpitser, I. and Pearl, J. (2006). Identification of joint interventional distributions in recursive semi-Markovian causal models. In Proceedings of AAAI 2006, pages 1219-1226.

Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20(7):557-585.

