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Abstract

This is the supplementary material of the paper “A Simple Online Algorithm for Competing with Dynamic
Comparators”. In Section A, we present the proofs of path-length and temporal variability bounds. Then,
we provide the proof of Lemma 3 in Section B. Meanwhile, we provide additional experimental results on
classification tasks in Section C. Section D presents the technical lemmas. Notice that the adaptive bound of
Theorem 1 can be directly obtained from Theorem 2, since the vanilla Hedge is essentially a special case of
the optimistic Hedge when no predictable sequences are provided.

A Proofs of Path-length and Temporal Variability Bounds

Before showing the proofs of path-length and temporal variability bounds, we present a general dynamic regret bound
for OMD with the fixed step size, which supports the comparison between learner’s decisions and any sequence
{u1, . . . , uT }, where ut can be any point in the feasible domain X .
Lemma 4. WhenR(·) is a 1-strongly convex function, running OMD with any fixed step size η > 0 satisfies,

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤
ηDT

2
+
R2

max + γ
∑T
t=2‖ut − ut−1‖
2η

,

provided DR(x, z)−DR(y, z) ≤ γ‖x− y‖,∀x, y, z ∈ X , where ut can be any comparator in the feasible domain X .

Proof of Lemma 1. According to the update procedure of OMD (5) with the fixed step size η and Lemma 8, we have

〈xt − x̂t+1, ηMt〉 ≤ DR(x̂t+1, x̂t)−DR(x̂t+1, xt)−DR(xt, x̂t); (16)
〈x̂t+1 − ut, η∇ft(xt)〉 ≤ DR(ut, x̂t)−DR(ut, x̂t+1)−DR(x̂t+1, x̂t). (17)

Each iteration of the dynamic regret can be decomposed as,

ft(xt)− ft(ut) ≤ 〈∇ft(xt), xt − ut〉
= 〈∇ft(xt)−Mt, xt − x̂t+1〉︸ ︷︷ ︸

term A

+ 〈Mt, xt − x̂t+1〉︸ ︷︷ ︸
term B

+ 〈∇ft(xt), x̂t+1 − ut〉︸ ︷︷ ︸
term C

, (18)

where the first inequality holds for Jensen’s inequality. Then, we proceed to bound the each term. First, we can see that

term A ≤ ‖xt − x̂t+1‖ · ‖∇ft(xt)−Mt‖∗ ≤
η

2
‖∇ft(xt)−Mt‖2∗ +

1

2η
‖xt − x̂t+1‖2, (19)

where the first inequality satisfies due to Hölder inequality and the second holds due to the fact that ab ≤ η
2a

2 + 1
2η b

2

for a, b ∈ R and any η > 0. According to (16) and (17), term B and term C can be bounded as

term B ≤ 1

η
(DR(x̂t+1, x̂t)−DR(x̂t+1, xt)−DR(xt, x̂t)) ; (20)



term C ≤ 1

η
(DR(ut, x̂t)−DR(ut, x̂t+1)−DR(x̂t+1, x̂t)) . (21)

Due to the strong convexity of regularizerR, we have DR(x, y) ≥ 1
2‖x− y‖

2 for any x, y ∈ X [Mohri et al., 2018].
Therefore, by plugging (19), (21) and (20) into (18), we obtain that

ft(xt)− ft(ut) ≤
η

2
‖∇ft(xt)−Mt‖2∗ +

1

2η
‖xt − x̂t+1‖2

+
1

η

(
DR(ut, x̂t)−DR(ut, x̂t+1)− 1

2
‖x̂t+1 − xt‖2 −

1

2
‖xt − x̂t‖2

)
.

Summing over the index from t = 1 to T , we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤
η

2
DT +

T∑
t=1

DR(ut, x̂t)−DR(ut, x̂t+1)

η

≤ η

2
DT +

T−1∑
t=1

DR(ut+1, x̂t+1)−DR(ut, x̂t+1)

η
+
R2

max

η
.

Under the condition thatDR(x, z)−DR(y, z) ≤ γ‖x−y‖,∀x, y, z ∈ X , we can further bound the above inequality as

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤
η

2
DT +

T−1∑
t=1

γ‖ut+1 − ut‖
η

+
R2

max

η
≤ η

2
DT +

R2
max + γ

∑T
t=2‖ut − ut−1‖
η

,

which completes the proof.

Since the base algorithm that we run is Algorithm 2, which is the OMD incorporating surrogate loss function, we offer
a counterpart of Lemma 4 for these base algorithms.

Lemma 5. WhenR(·) is a 1-strongly convex function, the i-th base algorithm running Algorithm 2 with a fixed step
size ηi enjoys

T∑
t=1

`t(x
i
t)−

T∑
t=1

`t(ut) ≤
ηiDT

2
+
R2

max + γ
∑T
t=2‖ut − ut−1‖
2ηi

, (22)

provided DR(x, z)−DR(y, z) ≤ γ‖x− y‖,∀x, y, z ∈ X , where ut can be any comparator in the feasible domain X .

Proof of Lemma 5. The proof of Lemma 5 is almost the same with that of Lemma 4 as we can just substitute the
prediction xt with xit and x̂t with x̂it. First, according to the update procedure of OMD with the surrogate loss, we can
decompose each iteration of the dynamic regret following (18),

`t(x
i
t)− `t(ut) ≤ 〈∇ft(xt)−Mt, x

i
t − x̂it+1〉︸ ︷︷ ︸

term A

+ 〈Mt, x
i
t − x̂it+1〉︸ ︷︷ ︸

term B

+ 〈∇ft(xt), x̂it+1 − ut〉︸ ︷︷ ︸
term C

,
(23)

where term A, term B and term C can be bounded by,

term A ≤ ηi
2
‖∇ft(xt)−Mt‖2∗ +

1

2η
‖xit − x̂it+1‖2; (24)

term B ≤ 1

ηi

(
DR(x̂it+1, x̂

i
t)−DR(x̂it+1, x

i
t)−DR(xit, x̂

i
t)
)

; (25)

term C ≤ 1

ηi

(
DR(ut, x̂

i
t)−DR(ut, x̂

i
t+1)−DR(x̂it+1, x̂

i
t)
)
. (26)



By plugging (24), (26) and (25) into (23) and the fact that DR(x, y) ≥ 1
2‖x− y‖

2 for any x, y ∈ X , we obtain

`t(xt)− `t(x∗t ) ≤
ηi
2
‖∇ft(xt)−Mt‖2∗ +

1

2ηi
‖xit − x̂it+1‖2

+
1

ηi

(
DR(ut, x̂

i
t)−DR(ut, x̂

i
t+1)− 1

2
‖x̂it+1 − xit‖2 −

1

2
‖xit − x̂it‖2

)
.

Summing over T iterations and following the same argument in the proof of Lemma 4, we can obtain the dynamic
regret bound

T∑
t=1

`t(x
i
t)−

T∑
t=1

`t(ut) ≤
ηiDT

2
+
R2

max + γ
∑T
t=2‖ut − ut−1‖
2ηi

, (27)

which completes the proof.

A.1 Proof of the Path-length Bound (Lemma 1)

Proof of Lemma 1. Lemma 1 can be seen as a corollary of Lemma 4. We can complete the proof by setting the
comparator ut = x∗t for t ∈ [T ].

A.2 Proof of Temporal Variability Bound (Lemma 2 and Lemma 6)

In this section, we first derive the temporal variability bound for OMD with fixed step size (Lemm 2), followed by the
analysis on the our algorithm where optimistic Hedge is employed to aggregate multiple OMDs running on surrogate
loss (Lemma 6).

Proof of Lemma 2. First, we can decompose the dynamic regret in the following way,

RegdT =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)︸ ︷︷ ︸
term A

+

T∑
t=1

ft(ut)−
T∑
t=1

ft(x
∗
t )︸ ︷︷ ︸

term B

. (28)

Here, we insert a term of
∑T
t=1 ft(ut), where ut can be any comparator in the feasible set. The flexibility of the

sequence of {u1, . . . , uT } is of great importance. In this proof, we will specify {u1, . . . , uT } as a piece-wise stationary
sequence that changes every ∆ ∈ [T ] iterations. Concretely, denoting by Ii = [si, ei] the i-th interval with the
length ∆, where si = (i − 1) · ∆ + 1 and ei = i · ∆, for all t ∈ Ii, we specify ut as the best fixed decision
x∗Ii = arg minx∈X

∑
t∈Ii ft(x) of the corresponding interval Ii.

In such a case, according to Lemma 4, term A is bounded by

term A ≤ ηDT

2
+
R2

max + γ
√

2RmaxdT/∆e
2η

. (29)

Because the sequence {u1, . . . , uT } changes at most dT/∆e times and the deviation is bounded due to the boundedness
of X in terms of Bergman divergence that ‖x− y‖ ≤

√
2Rmax, for all x, y ∈ X .

Then we proceed to analyze the term B. By the construction of the comparator sequence {u1, . . . , uT }, term B is the
difference between the cumulative loss of best decisions within each interval and that of the worst case comparators,
which can be bounded following the argument in Besbes et al. [2015].

For contentedness, we present the proof here. At first, we first bound this difference on the interval Ii,∑
t∈Ii

ft(x
∗
Ii)−

∑
t∈Ii

ft(x
∗
t )

=
∑
t∈Ii

ft(x
∗
Ii)−

∑
t∈Ii

fsi(x
∗
si) +

∑
t∈Ii

fsi(x
∗
si)−

∑
t∈Ii

ft(x
∗
t )



≤
∑
t∈Ii

ft(x
∗
si)−

∑
t∈Ii

fsi(x
∗
si) +

∑
t∈Ii

fsi(x
∗
t )−

∑
t∈Ii

ft(x
∗
t )

≤ 2∆
∑
t∈Ii

sup
x∈X
|ft+1(x)− ft(x)|, (30)

where the first inequality comes from the optimality of x∗Ii over Ii and x∗si = arg minx∈X fsi(x). The last inequality
holds as fsi(xt)− ft(xt) ≤

∑
t∈Ii supx∈X |ft+1(x)− ft(x)| for all t ∈ Ii for all x ∈ X . Thus, by summing over all

intervals, we have
term B ≤ 2∆VT .

We emphasize that it is crucial to specify the comparator ut be the minimizer of the interval with respect to the original
function ft instead of the surrogate loss function `t, which is introduced in the master-base aggregation.

By plugging (29) and (30) into (28), we obtain

RegdT ≤
ηDT

2
+
R2

max + γ
√

2RmaxdT/∆e
2η

+ 2∆VT .

By further setting η =
√

(R2
max + γ

√
2RmaxdT/∆e)/(1 +DT ), we have

RegdT ≤
√

(1 +DT )(R2
max + γ

√
2RmaxdT/∆e) + 2∆VT ,

which completes the proof.

However, the base algorithm we run is Algorithm 2, which incorporates the surrogate loss function in the learning
process. Lemma 2 can not be expanded for analyzing the regret for these base algorithms, as their entemporal variability
term becomes V `T =

∑T
t=2 supx∈X |`t(x)− `t−1(x)|, which is hard to be converted to the desired VT term in terms of

original function ft.

Thus, instead of analyzing the dynamic regret of the single base algorithm, as shown in Appendix A of the main paper,
we bound the overall dynamic regret of the whole algorithm, where term A of (11) is bounded as Lemma 6.

Lemma 6. Under the same condition of Theorem 1, running the master algorithm (Algorithm 1) with N base OMDs
(Algorithm 2), we have

dT/∆e∑
i=1

∑
t∈Ii

`t(xt)−
dT/∆e∑
i=1

∑
t∈Ii

`t(x
∗
Ii) ≤ 2Rmax

√
(4 + 2 lnN)DT + 2

√
(1 +DT )(C1 + C2dT/∆e),

holds for any ∆ ∈ [T ]where Ii = [si, ei] is the i-th interval with the length ∆, and si = (i− 1) ·∆ + 1, ei = i ·∆.
Notation x∗Ii = arg minx∈X

∑
t∈Ii ft(x) refers to the best fixed decision in interval Ii.

Proof of Lemma 6. First we can decompose the dynamic regret as

dT/∆e∑
i=1

∑
t∈Ii

`t(xt)−
dT/∆e∑
i=1

∑
t∈Ii

`t(x
∗
Ii)

≤
dT/∆e∑
i=1

∑
t∈Ii

`t(xt)−
dT/∆e∑
i=1

∑
t∈Ii

`t(x
i
t)︸ ︷︷ ︸

Reg-Mas(i)

+

dT/∆e∑
i=1

∑
t∈Ii

`t(x
i
t)−

dT/∆e∑
i=1

∑
t∈Ii

`t(x
∗
Ii)︸ ︷︷ ︸

Reg-Base(i)

for any i ∈ [N ], where the first term is regret of the master algorithm while the second term is dynamic regret of the
i-th base algorithm. According to Lemma 3, the master regret w.r.t any base algorithm indexed by i can be bounded as

Reg-Mas(i) ≤ 2Rmax

√
(4 + 2 lnDT ).



As for the regret of base algorithm, according to Lemma 4, by setting ut as the best fixed decision x∗Ii =
arg minx∈X

∑
t∈Ii ft(x) of the corresponding interval Ii, we have

Reg-Base(i) ≤ ηiDT

2
+
R2

max + γ
∑dT/∆e
i=2 ‖x∗Ii − x

∗
Ii−1
‖

2ηi
,

holds for any i ∈ [N ]. Due to the boundedness of X in terms of Bergman divergence, we have ‖x− y‖ ≤
√

2Rmax,
for all x, y ∈ X . Thus, the base regret can be further bounded as

Reg-Base(i) ≤ ηiDT

2
+
R2

max + γ
√

2RmaxdT/∆e
2ηi

,

. Combining Reg-Mas(i) with Reg-Base(i), we confirm that

dT/∆e∑
i=1

∑
t∈Ii

`t(xt)−
dT/∆e∑
i=1

∑
t∈Ii

`t(x
∗
Ii)

≤ 2Rmax

√
4 + 2 lnDT +

ηiDT

2
+
R2

max + γ
√

2RmaxdT/∆e
2ηi

,

which holds for any i ∈ [N ]. Since ∆ ∈ [T ], there must exist a step size η′ ∈ P satisfies η∗var/2 ≤ η′ ≤ η∗var, where

η∗var =
√

(R2
max + γ

√
2RmaxdT/∆e)/(1 +DT ) is the optimal tunning. Thus, we can choose the base algorithm

running with η′ as the intermediate term, where the dynamic regret can be further bounded by,

dT/∆e∑
i=1

∑
t∈Ii

`t(xt)−
dT/∆e∑
i=1

∑
t∈Ii

`t(x
∗
Ii)

≤ 2Rmax

√
4 + 2 lnDT +

η∗varDT

2
+
R2

max + γ
√

2RmaxdT/∆e
η∗var

≤ 2Rmax

√
4 + 2 lnDT + 2

√
(1 +DT )(R2

max + γ
√

2RmaxdT/∆e),

which completes the proof by setting C1 = R2
max and C2 = γ

√
2Rmax.

B Proof of Lemma 3

For self-containedness, we present the proof of Lemma 3 here, which is a counterpart of Lemma 4 in Rakhlin and
Sridharan [2013] without exploiting the local norm. Lemma 4 in Rakhlin and Sridharan [2013] requires the learning rate
satisfying ε‖ft −mt‖∞ ≤ 1/4 at any iteration. This limitation can be eliminated based on Theorem 19 in Syrgkanis
et al. [2015] by taking optimistic Hedge as a special case of Optimistic Follow the Regularized Leader (OFTRL).

Proof of Lemma 3. Note that the update procedure of optimistic Hedge is actually the solution of

wt+1 = arg min
w∈∆N

ε

〈
T∑
t=1

ft +mt+1, w

〉
+RH(w), (31)

where ∆N ⊆ RN is the probability simplex and RH(wt) =
∑N
i=1 w

i
t logwit is a 1-strongly convex function with

respect to ‖·‖1. The update procedure (31) is known as optimistic FTRL [Rakhlin and Sridharan, 2013, Syrgkanis et al.,
2015], whose static regret can be bounded by the following lemma.

Lemma 7 (Theorem 19 in Syrgkanis et al. [2015] ). The regret of a player under optimistic FTRL and with respect to
any w ∈ ∆N is upper bounded by:

T∑
t=1

〈ft, wt − w〉 ≤
lnN + 2

ε
+

T∑
t=1

‖ft −mt‖∞‖wt − ŵt+1‖1, (32)

where ŵt+1 = arg minw∈∆N
ε〈
∑T+1
t=1 ft, w〉+RH(w).



The right hand side of (32) can be further bounded by the stability of the FTRL type algorithm . SinceRH is 1-strongly
convex with respect to ‖·‖1, according to Lemma 9, we have

‖wt − ŵt+1‖1 ≤ ε‖ft −mt‖∞. (33)

Plugging (33) into (32) and setting w as the vector with i-th entry being 1 and the rest being 0, we complete the proof
with the learning rate ε =

√
(2 + lnN)/D∞.

C Additional Experiments

In this section, we offer additional experimental results to further justify the effectiveness and efficiency of our proposal,
where binary classification tasks with squared hinge loss are considered. Specifically, at iteration t, a sample (zt, yt)
arrives with predictable sequences Mt, where zt ∈ Rd is the feature vector and yt ∈ {+1,−1} is the label. Then the
learner makes prediction xt and suffers the squared loss ft(xt) = (1− yt · 〈zt, xt〉)2.

Setting. The experimental setup is similar to that in the main paper, where OMD, AOMD and our proposal with
R(x) = 1

2‖x‖
2
2 are compared. We use three classification datasets 1: IJCNN1, mushroom and svmguide1 to simulate

the non-stationary environments, whose labels flip 9 times over 1200 iterations. All configurations are repeated 5 times
and we normalize the features of the datasets to range from [0, 1] at the beginning of the learning process.

Results. Table 1 and Table 2 report contenders’ cumulative loss and running time in seconds, when predictable
sequences of middle quality are provided (λ = 0.4). The results show the same tendency as those in the main paper,
where our proposal achieves comparable performance with AOMD and reduces the computational burden dramatically.

Table 1: Mean and standard deviation of contenders’ cu-
mulative loss, where the best algorithms are emphasized
in bold (paired t-test at 95% significance level)

Dataset OMD AOMD Ours

IJCNN1 778 ± 31 583 ± 15 590 ± 17
svmguide1 918 ± 11 720 ± 11 763 ± 11
mushroom 2234 ± 63 1968 ± 73 1850 ± 99

Table 2: Mean and standard deviation of contenders’ run-
ning time in seconds, where the best algorithms are em-
phasized in bold (paired t-test at 95% significance level)

Dataset OMD AOMD Ours

IJCNN1 0.02 ± 0.011 5541 ± 173 0.43 ± 0.200
svmguide1 0.02 ± 0.011 6258 ± 167 0.27 ± 0.064
mushroom 0.02 ± 0.013 5001 ± 171 0.37 ± 0.070

D Technical Lemmas

In this section, we first introduce the lemma on the property of Bregman divergence.
Lemma 8 (Beck and Teboulle [2003]). Let X be a convex set in a Banach space B, and regularizerR : X 7→ R be a
1-strongly convex function on X with respect to a norm ‖·‖, and let DR(·, ·) be the Bregman divergence induced byR.
Then, any update of the form

x∗ = arg min
x∈X

{〈a, x〉+DR(x, c)}

satisfies the following inequality

〈x∗ − d, a〉 ≤ DR(d, c)−DR(d, x∗)−DR(x∗, c),

for any d ∈ X .

Next, the following lemma shows the stability of the FTRL algorithm.
Lemma 9 (Lemma 20 in Syrgkanis et al. [2015]). If w∗ = arg minw∈X ε〈w,F 〉 + RH(w) and w′∗ =
arg minw∈X ε〈w,F ′〉 + R(w) for a λ-strongly convex regularizer R : W 7→ R with respect to a norm ‖ · ‖ and
some F ∈ Rd and F ′ ∈ Rd. Then we have

λ‖w∗ − w′∗‖ ≤ ε‖F − F ′‖∗.
1The datasets are downloaded from https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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